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ABSTRACT
This paper introduces the sparse periodic systolic (SPS) dataflow,
which advances the state-of-the-art hardware accelerator for sup-
porting lightweight neural networks. Specifically, the SPS dataflow
enables a novel hardware design approach unlocked by an emer-
gent pruning scheme, periodic pattern-based sparsity (PPS). By
exploiting the regularity of PPS, our sparsity-aware compiler op-
timally reorders the weights and uses a simple indexing unit in
hardware to create matches between the weights and activations.
Through the compiler-hardware codesign, SPS dataflow enjoys
higher degrees of parallelism while being free of the high indexing
overhead and without model accuracy loss. Evaluated on popular
benchmarks such as VGG and ResNet, the SPS dataflow and ac-
companying neural network compiler outperform prior work in
convolutional neural network (CNN) accelerator designs targeting
FPGA devices. Against other sparsity-supporting weight storage
formats, SPS results in 4.49× energy efficiency gain while lowering
storage requirements by 3.67× for total weight storage (non-pruned
weights plus indexing) and 22,044× for indexing memory.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Hard-
ware→ Power estimation and optimization.
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1 INTRODUCTION
Convolutional Neural Networks (CNNs) exhibit great performance
in many computer vision applications such as image classifica-
tion, object recognition, and scene labeling [6]. However, the high
performance of deep CNNs is achieved at the cost of high com-
putation. This makes it challenging for networks to be deployed
to resource-constrained edge devices with strict storage and en-
ergy limits. Therefore, developing CNN architectures with reduced
computation and storage costs is of great importance. At the al-
gorithmic level, methods such as weight quantization [8], weight
pruning [3, 4], and knowledge distillation [5] have gained recent
popularity.

In particular, weight pruning is a widely practiced approach for
reducing the memory footprint and computational cost of neural
networks. By removing redundant weights of a network that does
not harm the model accuracy, the model is compressed from a
dense to a sparse computational graph. With the progress in weight
pruning methods, pattern-based pruning [7, 9] has emerged as a
promising avenue that seeks to find a sweet spot between the two
conventional pruning schemes: 1) structured pruning [10] which
has high regularity and is hardware-friendly, but susceptible to
accuracy degradation; 2) unstructured pruning which retains high
accuracy, but suffers from large hardware overhead to manage irreg-
ular weight indices. Pattern-based pruning method compromises
between these two pruning schemes by enforcing a semi-structured
level of regularity through pre-defined patterns. This ameliorates
the hardware overhead compared to unstructured pruning, but it
still necessitates a series of auxiliary buffers to manage a unique
set of indexing scenarios with the pattern-based approach. At its
core, hardware overhead caused by indexing sparse weights mani-
fests a fundamental design limitation for the accelerator to further
optimize latency, power, and memory requirements.

In this paper, we advance the state-of-the-art in sparse neural
network accelerator design by exploiting the concept of periodicity
in pattern-based pruning for the first time in hardware. Prior art [7]
mainly explores the software stack of the periodic pattern-based
pruning approach and demonstrate that added periodicity has negli-
gible accuracy loss. Here, we observe periodicity as an opportunity

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3531437.3539715
https://doi.org/10.1145/3531437.3539715
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3531437.3539715&domain=pdf&date_stamp=2022-08-01


ISLPED ’22, August 1–3, 2022, Boston, MA, USA Jung Hwan Heo, Arash Fayyazi, Amirhossein Esmaili, and Massoud Pedram

in hardware to avoid indexing overhead with its added regularity.
We first present our compiler that reorders the weights according
to the periodicity, optimizing for maximum parallelism. Then we
present sparse periodic systolic (SPS) dataflow that computes con-
volutions in a systolic array of processing elements, commonly seen
in Field Programmable Gate Arrays (FPGAs). Then, a dedicated in-
dexing method is introduced in hardware to fetch the pre-defined
locations of nonzero weight indices using significantly smaller
memory requirements. The main contributions of this paper are
summarized as follows:

• We present a novel SPS dataflow that exploits the periodic
pattern-based sparsity in neural networks to achieve an FPGA-
friendly architecture.

• Using a compiler tailored to the SPS dataflow, we effectively
solve the long-standing indexing overhead problem for un-
structured pruning. We co-design the period-pattern-weight
(PPW) compact storage format and the corresponding archi-
tecture to efficiently fetch weights and activations.

• We perform the next layer reordering (NLR) optimization
method enabled by the periodic pattern-based design to fur-
ther reduce data movement cost in between layers.

2 PRELIMINARIES AND BACKGROUND
This section includes background on deep neural network (DNN)
processing and details the periodic pattern-based pruning method,
which is the weight reduction technique used for DNN compression
in this paper.

2.1 DNN processing and Compilers
A convolutional layer receives input feature feature maps (IFMs) of
sizewin×hin×cin and convolves themwith cout different filters, each
filter of sizewk×hk×cin to generate output feature maps (OFMs) of
sizewout ×hout ×cout. Here,wx, hx, cx represent width, height, and
depth of tensor x , which can represent the 3D input/output feature
map. The IFMs for the next convolutional layer are equivalent of
the current convolutional layer’s OFMs. Such computations can
be represented by a six-level nested loop (seven-level nested loops
when considering iteration over images in a mini-batch), i.e., loops
overwout,hout, cout,wk,hk, and cin. Also known as a computational
block, these nested loops characterize the computational flow for a
convolutional layer in CNNs.

2.2 Periodic Pattern-based Sparsity (PPS)
Pattern-based sparsity will first be explained before the introduc-
tion of periodicity. In pattern-based sparsity, a pattern is defined
as a pre-defined 2D kernel that constrains the locations of nonzero
entries, also referenced as a kernel variant (KV). Thus, any given
kernel of a 3D filter can be classified as one of the KVs, since the
locations of the weights are strictly assigned to form a pattern
while pruning. The number of nonzero entries (the kernel support)
in a wk × hk kernel is also referred to kernel support size (KSS).
KSS is fixed for all patterns to support high regularity, which re-
duces workload imbalance between processing elements (PEs) in
the systolic array. Unlike unstructured pruning that prunes at the
granularity of individual weights, pattern-based pruning prunes at
the granularity of patterns, which adds regularity yet less flexibility.
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Figure 1: Illustration of PPS with params KSS=4 and P=2.
The regularity helps with achieving higher hardware performance,
but less flexibility poses a relative challenge in retaining accuracy.

Periodic pattern-based sparsity is an extension of the pattern-
based sparsity, where the concept of periodicity constrains the
sequence in which the patterns occur in a given filter. Fig. 1 il-
lustrates an example of PPS. Rotation of patterns (or KVs) due to
periodicity occurs in two directions, across the kernels and across
the filters. Each KV appears in a repeating sequence of [KV1, KV2,
KV1, ...] for the first filter. Such sequence of filters with a unique
initial KV is denoted as a filter variant (FV). For the second FV, it
will begin with KV2 in a rotating sequence of [KV2, KV1, KV2, ...].
Having rotations across both channel and filter dimension adds
flexibility to improve network accuracy.

A key insight here is the simplicity at which the KVs can be
indexed in an any arbitrary filter. Thanks to the modulo rotation
that occurs with an interval of periodicity (P), the burden of storing
the location of each KV (or pattern) can be reduced to a single
scalar value P, which is also the number of KVs. This means the
weights associated with each KV can be accessed by P with minimal
overhead. Thus, every KV of same type can be indexed by iterating
across the filter with offset P, which is much simpler than iterating
over the indices of each KV type and its respective location that
irregularly occurs across the filter.

3 OVERALL FLOW
Given the golden opportunity to design a hardware that does not suf-
fer from indexing overhead while preserving the network accuracy,
we propose a novel end-to-end FPGA-friendly DNN acceleration
framework that can fully exploit the new periodic pattern-based
dimension in its dataflow. Fig. 2 shows our acceleration framework
that consists of three stages. First is the model pruning stage, where
we employ pattern-based periodic pruning method developed by
[7]. Second is the sparsity-aware compiler optimization (cf. Section
4) that performs a series of periodicity-driven weight reshaping
operations. The compiler provides a maximum degree of flexibility
for model compression parameters, such as pattern shapes, P, and
KSS. Systolic padding is also applied to maintain the parallelism
that occurs across the two dimensions of the systolic array. Last
is the sparsity-aware architecture (cf. Section 6), where the input
matching Unit (IMU) is designed to facilitate the SPS dataflow in
an FPGA-friendly hardware architecture.
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Figure 2: Overall flow of the SPS Acceleration Framework.

4 COMPILER TAILORED TO PPS
Once the model is trained using pattern-based periodic pruning,
sparse weights must be stored in an efficient format. Otherwise,
the indexing overhead will cause the expected benefits of pruning
to be lost. As such, this section introduces a compiler that shapes
the initial weight tensor to a compact format that we call period-
pattern-weight (PPW) format. From the initial 4Dweight tensor that
is periodically pattern-pruned with periodicity P and KSS number
of nonzero weights per KV, we apply a series of transformations to
arrive at the sparsity parameters described below in Table 1.

4.1 Sparsity-aware Optimizations
Key challenges of hardware acceleration for unstructured pruning
can be reduced to heavy control-flow instructions, as well as thread
divergence and load imbalance [2]. These are largely solved by
promoting parallelism during the dataflow. Grouping filters with
similar kernel sequences achieves better inter-thread parallelization,
while grouping same patterns within a filter improves intra-thread
parallelization [9]. Taken together, these provide a key insight as to
how the patterns should be rearranged by the compiler to maximize
parallelism.
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Figure 3: Overview of the PPW storage format.

Kernel and Filter Reordering: Kernel and filter reorderings
both group the KVs according to P. A running example is illustrated
in Fig. 2 where it shows a grouping of three distinct KVs together.
Periodicity of three results in a first group KV1 that increments in
multiples of three with the offset of one, which is the KV number.
Similarly, KV2 increments in P with offset of 2 and so on. This
results in 3 arrays of input channels (ICs) in the form of [1+P*0,
1+P*1, 1+P*2, ...], [2+P*0, 2+P*1, ...], and [3+P*0, 3+P*1, ...] assuming
1-based indexing. Each array has a size of ⌈cin/P⌉ denoted by ICp .

Once the same KVs are grouped together, the same sequences
of kernels are grouped together as well. Each unique sequence
produces a filter variant (FV), where in our example equates to
three groups of output channels (OC) being produced with each
group having a size of ⌈cout /P⌉, denoted by OCp (see Fig. 3).

Systolic Padding: To support the SPS dataflow (Section 5) that
concurrently processes groups of input channels ICp and output
channels OCp together, padding is applied when either of these
groups doesn’t fully populate the systolic array resources. It is
worth noting that padding is usually interpreted as a wasteful
operation and should be avoided whenever possible, for example
by pipelining. However, in our experience, the number of patterns
required to achieve high performance is 6-8. This means that if the
dimension of the weight matrix (ICp , OCp ) is divisible by (sysw ,
sysh ), no padding will be necessary. Fortunately, most well-known
networks such as VGG and ResNets have weight dimensions in
multiples of 8 with popular ones being 128, 256, and 512. Since
the quotient values can be used as reconfigurable systolic array
dimensions, the cost incurred from padding is minimal.

Table 1: Parameters used in the proposed compiler.
Symbol Calculation Description
WNUM P × KSS total # of predefined nonzero weights
ICp ⌈cin/P⌉ # of input channels per group
INCp ⌈ccin/P/sysw ⌉ # of input channels tiled iterations per group
OCp ⌈cout/P⌉ # of output channels per group
ONCp ⌈cout/P/sysh⌉ # of output channels tiled iterations per group
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Algorithm 1: The Sparse Periodic Systolic Dataflow
Input:W oc,ic

kh,kw : Nonzero weights; Aickh,kw : Input activations;
wk × hk: Kernel Size; PS[][]: Partial Sum register in PE
hout ×wout × cout: Output Feature Map (OFM) Size;

Output: Result stored in OFM
1 for oh = 0;oh < hout ;oh++ do
2 for ow = 0;ow < wout ;ow++ do

// begin convolution
3 for д = 0;д < P ;д++ do
4 for cc = 0; cc < ONCp ; cc++ do
5 for kv = 0;kv < P ;kv++ do
6 for w = 0;w < KSS ;w++ do

// read Weight Index Buffer (kh, kw)
7 for r r = 0; r r < I NCp ; r r++ do
8 for i = 0; i < wsys ; i++ do
9 #pragma unroll(i)

10 for j = 0; j < hsys ; j++ do
11 #pragma unroll(j)
12 PS[j][i]+=W j,i

kh,kw ∗Aikh,kw
13 end
14 end
15 end
16 end
17 end

// Tree Adder to add Partial Sums across wsys
// Accumulate partial OFM in Output Buffer

18 end
// Store resulting OFM from the buffer to DRAM

19 end
20 end
21 end

5 THE SPARSE PERIODIC SYSTOLIC
DATAFLOW

The SPS Dataflow guides compact weights to be run in the FPGA-
friendly systolic architecture. It has two major functionalities: 1)
matching the PPW weight tensor with the corresponding activa-
tions and 2) tiling across the INCp and ONCp by concurrently
executing all MAC operations in the systolic array.

First, the temporal component of the SPS Dataflow may be un-
derstood by looking at a single PE unit in the 2D systolic array
of the hardware accelerator. As Section 6 describes, weights are
stored in the BRAMs in each PE and the output of the associated
MAC unit is stored in a partial sum register inside the PE. Thus, the
dataflow is a combination of weight stationary and output station-
ary dataflow. This order maximizes the reuse of weights as well as
outputs, while paying some cost to stream the activations to the
computation units.

The spatial component of the SPS Dataflow is mapped to match
the dimensions of the systolic array. The compiler has already
grouped the input and output channels according toweight patterns,
and two additional inner loop nests (i and j iterators in Algorithm
1) further blocks out the subgroup within ICp by sysw and OCp by
sysh , resulting in INCp and ONCp , respectively.

The crux of the SPS dataflow lies in the simplicity of decod-
ing the compressed PPW format to fetch the corresponding input
activations. Many state-of-the-art sparsity-supported accelerators
use storage formats such as the coordinate list (COO), compressed

sparse row (CSR), and compressed sparse column (CSC) [1], where
the storage requirement for nonzero indexing polynomially in-
creases with the network size. However, the storage for PPW is
network architecture-agnostic, meaning it can stand on a constant
storage requirement only dependent on pruning parameters P and
KSS, regardless of how deep or wide the network is.

The method to facilitate the MAC operation indexing between
activation and the weight is as follows. We create two indexing
buffers of sizeWNUM , each responsible for storing the two spatial
dimensions of a kernel, hk andwk. Similar to the COO format, each
weight can be indexed by a single iterator that fetches the height
and width of the weight inside the kernel. Thanks to the highly
regular occurrence of the patterns, each weight in a given group,
kernel number, and nonzero weight number can be calculated by
((д + kv) ∗ KSS +w)%WNUM . The modulus operation wraps the
buffer so it continues the periodically occurring patterns.

5.1 Next Layer Reordering
After the convolution operation is completed, the results of theMAC
operations are stored. Due to compiler’s reordering, the unnatural
ordering of output channels produces results in increments of P.
A naive solution is to simply sort it to a natural order (increasing
from channel 0 to ccout − 1. Yet, this causes a nontrivial amount
of data movement from scanning and reordering the entire output
channel for every layer transition and also accessing the buffer that
stores the the sorting indices.

Here, we observe that SPS dataflow produces the OFM with
an increment of P. Therein, the compiler can expect the channels
to be grouped in certain strides of P and proactively reorder the
channels for the next layer so that it matches the channel ordering
of incoming activations. As such, NLR can save the total execution
time and energy efficiency from reordering after each convolutional
layer, effectively imitating the dense dataflow where such channel
indexing problems do not occur.

6 PROPOSED PERIODIC SPARSITY
ARCHITECTURE

In this section, we describe our FPGA-tailored architecture cus-
tomized for the proposed periodic pattern-based sparsity.
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The accelerator contains (i) a 2D array of PEs (systolic array)
which is responsible for executing the MAC operations associated
with the convolution operation, (ii) a memory hierarchy feeding
data to the said array, which consists of register files, on-chip mem-
ory (Block RAMs on FPGA devices), and external off-chip memory
(DRAM), and (iii) an input matching unit (IMU) that reads the
nonzero weight indices from the Weight Index Buffer and matches
with the input feature maps. The systolic array is followed by a
vector processing unit, which includes multiple ALUs that conduct
neural network operations such as nonlinear activation functions
and maximum pooling, as illustrated in Fig. 4.

The available hardware resources in an FPGA device, such as
digital signal processing units (DSPs), Configurable Logic Blocks
(CLBs) that contain several look-up tables (LUTs), and Block RAMs
(BRAMs) are placed as resource groups in a column-wise manner.
Consequently, the all resources are uniformly distributed on the
FPGA chip, and one should place data that is used by a DSP in a
BRAM that is physically close to the DSP. Hence, A PE in our design
comprises one DSP and its adjacent BRAM. We also use some of the
CLBs as distributed memories to store indices of non-zero weights
in KVs. Note that these indices are low precision (e.g., 4 bits for
a 2D kernel with size of 3 × 3 which is common in well-known
computer vision models).

The IFMs are initially cached in an input buffer, then passed
through the IMU to skip pruned weights, and sequentially trans-
mitted onto the first row of PEs in the systolic array. In addition,
input data is simply shifted into the PE array and between nearby
PEs on the same row of the systolic array. This technique does
away with the need for global interconnections between the input
buffers and all PEs and the costly multiplexers. We also bring the
indices associated with KVs in parallel with weight fetching. This is
feasible since input data, weights, and indices are stored in separate
off-chip memory banks in the target FPGA board and are thus si-
multaneously accessible. Finally, the registered partial sum results
that reside in the PEs of one row are passed to the adder tree to
conduct the required summation and generate the final OFM value
when all computations for one OFM are completed.

7 EXPERIMENTAL RESULTS
In this section, we assess the storage required by the proposed
PPW format compared to popular sparsity-supporting formats and
present the hardware utilization of our accelerator as well as its
energy consumption comparison to state-of-the-art accelerators.

7.1 Experimental Configuration
For the storage format experiments, 8 bit unsigned integers are
used to calculate the weight storage format. For a fair comparison,
the connectivity pruning that allows higher weight compression for
FKW format is recognized during calculation. Sparsity constants of
KSS=2 and P=8 is used for all PPW calculations, as we validate the
model accuracy (91.2%) [7] that has less than 1% accuracy degrada-
tion compared to the non-pruned version. For evaluating hardware
performance, we targeted a Xilinx VU9P FPGA using the AWS EC2
F1 instance. We implemented it on Xilinx Virtex UltraScale+ FPGA
board using Vivado HLS design suite 2019.1. We evaluate our SPS
Dataflow on a VGG16 architecture on the CIFAR-10 dataset.
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7.2 Storage Comparison
Fig. 5 shows that PPW compresses over 77.8% (4.5x), 72.8% (3.67x),
61.2% (2.57x), 52.9% (2.12x), 10.5% (1.12x) of the total storage require-
ment compared to dense, COO, CSR, CSC, and FKW, respectively
over unique convolutional layers in VGG16. Note that layers 8-10
and 11-13 in VGG16 has the same weight matrix size and are rep-
resented by L7 and L8 in our figures. Similar selection has been
adopted for ResNet18. Dense model represents the non-pruned
baseline model.

Fig. 6 illustrates that PPW format requires 22044x less index-
ing storage even compared to the FKW format, which is the most
competitive. As seen on the graph, PPW enjoys constant storage
requirement of small amount of bits across different convolutional
layers in VGG, while others grow on the order of MegaBytes. Sim-
ilar effects are shown in selected convolutional layers of ResNet18,
where PPW consistently outperforms total storage while remaining
near zero-valued for indexing storage.

For larger convolutional layers (the later layers) with many irreg-
ular weights, more space is dedicated to store indexing buffers than
the actual weights (see Fig. 7). The halfway point (50%) of the total
storage is marked with a dotted line, and we can observe that most
storage formats easily exceed this threshold. This also shows that
the marginal increase in indexing storage is greater than that of
weight storage. For example, COO steadily uses higher proportions
of storage for indexing with larger convolutional layers, from the
low point of 58% in the smallest layer to 73% in the largest layer.

To conduct a comparative analysis on a single storage format
against others, we benchmark the effective sparsity threshold, which
is defined as the minimum sparsity rate that the weight format
must achieve in order to realize a lower total storage requirement.
This attempts to answer the question: given the pruning ratio and
the total storage used for the benchmarked format, what is the
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Figure 7: Percent Storage for unique layers.
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Figure 8: Benchmarking effective sparsity threshold for VGG16.

minimum sparsity that the other formats must achieve in order to
save more storage?

Our results from the left plot of Fig. 8 show that most traditional
sparse weight storage formats have a relatively harsh constraint
on the sparsity requirement, with COO requiring only 22.2% of
weights to be unpruned. In other words, it requires 77.8% of the
weights to be pruned in order to begin saving more storage than
the baseline dense format.

We also benchmark PPW and observe as shown on the right
of Fig. 8 that the highly compact format of PPW enforces a strict
effective sparsity threshold on all other weight storage formats. The
effective sparsity threshold for FKW, the most competitive format,
is 90%, which means that FKW requires the compression ratio to be
at least 10x to begin saving more storage than PPW. Yet, reference
[9] reports an 8x pruning rate, suggesting that the PPW format
saves more storage under similar network accuracy. FKW could
employ harsher pruning and achieve more than 10x pruning rate
to realize lower storage, but this would nontrivially sacrifice the
network accuracy under 91% which is more than the acceptable 1%
degradation range.

7.3 Hardware Utilization and Energy Efficiency
Comparisons

In this section, we evaluate the aforementioned sparsity storage
formats in the FPGA platform. First, the hardware utilization of the
proposed accelerator tailored to SPS dataflow for running VGG16 on
CIFAR-10 dataset is reported in Table 2. The baseline architecture is
similar to the architecture shown in Fig. 4 while removing IMU and
weight index buffer. As shown in the table, when employing the
accelerator design discussed in Section 7, periodic pattern-based
pruning that eliminates 77.8% of the weights stored in the BRAM
alongside with the PPW storage format that requires minimal in-
dexing support in hardware leads to efficient usage of hardware
resources in the FPGA.

Next, we evaluate the energy efficiency of our proposed archi-
tecture and dataflow compared to other formats. CSR and FKW are
implemented as they are the competitive formats that exist today.
The relative energy savings is reported in Fig. 9, normalized with
the dense baseline architecture. Our PPW format executed by the
SPS dataflow achieves 4.49× energy savings over the dense baseline,
while CSR acehives 1.4× and FKW achieves 3.1×. To understand
the energy savings, we classify the resources of energy cost in

Table 2: Hardware Utilization for VGG16 on CIFAR-10.
Hardware resource DSP48E LUT BRAM_18K Frequency (MHz)

Usage in our architecture 1038 (15%) 115290 (10%) 512 (12%) 342

Baseline architecture∗ 1038 (15%) 115290 (10%) 2942 (68%) 342

∗the baseline architecture is used for handling the dense format.
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Figure 9: Energy Savings over dense baseline for VGG16.
four ways: 1) bringing in weights 2) running MAC operations 3)
read/write from/to weight index buffers and 4) data reordering cost
for pattern-based dataflows such as the FKW. The first two costs
are very similar as they’re directly proportional to the the num-
ber of weights being moved around the hardware (thus modeled
by the weight density). However, the third cost poses a nontrivial
challenge to CSR, while FKW and PPW are relatively immune to
the indexing overhead that occurs while supporting the MAC op-
eration. This follows suit in Fig. 6. 4) is unique to pattern-based
formats, where FKW pays the cost of reordering the number of
output channels that have been mixed during the compiler opti-
mization. Such indexing overhead occurs in every layer, as the
output feature map is the input feature map of the next layer, and
the dataflow expects it to be in the natural, unmixed order. On the
other hand, SPS dataflow’s next layer reordering allows outputs to
be grouped together without the need of data reordering, which
eliminates the cost #4.

8 CONCLUSION
The SPS dataflow offers a novel hardware design approach afforded
by periodic pattern-based sparsity, resulting in neural network
weights with higher degrees of regularity and thus parallelism.
By avoiding excessive indexing costs with the compiler-hardware
co-design approach, the SPS dataflow outperforms state-of-the-art
sparisty formats in CNN accelerator designs targeting FPGAs.
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