2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS) | 978-1-6654-7180-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/MASS56207.2022.00032

2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

DQN-based QoE Enhancement for Data Collection
in Heterogeneous IoT Network

Hansong Zhou*, Sihan YuT, Xiaonan Zhang*, Linke Guo' and Beatriz Lorenzo?
*Department of Computer Science, Florida State University, Tallahassee, FL. 32306, USA
TDepartment of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
IDepartment of Electrical and Computer Engineering, University of Massachusetts, Amherst, Amherst, MA 15221, USA
Email: hz21e@my.fsu.edu, sihany @g.clemson.edu, xzhang @cs.fsu.edu, linkeg@clemson.edu, blorenzo@umass.edu

Abstract—Sensing data collection from the Internet of Things
(IoT) devices lays the foundation to support massive IoT ap-
plications, such as patient monitoring in smart health and
intelligent control in smart manufacturing. Unfortunately, the
heterogeneity of IoT devices and dynamic environments result in
not only the life-cycle latency but also data collection failures,
affecting the quality of experience (QoE) for all the users. In this
paper, we propose a recovery mechanism with a dynamic data
contamination method to handle the failure. To further enhance
the long-term overall QoE, we allocate the spectrum resources
and make contamination decisions for each device using a deep
reinforcement learning method. Particularly, a lightweight de-
centralized State-sharing Deep-Recurrent Q-Network (SDRQN)
is proposed to find the optimal collection policies. Our simulation
results indicate that the recurrent unit in SDRQN gives rise to
10% lower waiting time and 60% lower task drop rate than the
fully-connected design. Compared to a centralized DQN scheme,
SDRQN achieves a similar ultra-low drop rate of 0.29% but
requires only 1% GPU memory, demonstrating the effectiveness
of SDRQN in the large-scale heterogeneous IoT network.

Index Terms—Heterogeneous IoT Network, Data Collection,
Quality of Experience, Recovery Mechanism, Deep-Q Network

[. INTRODUCTION

Internet of Things (IoT) is expected to reshape the way
we interact with the world, as evidenced by innovations such
as wearable computing in healthcare, intelligent controls of
home appliances, and automatic irrigation in smart farming
[1]. As the foundation of supporting various IoT applications,
different types of sensing data are collected from various IoT
devices and processed by IoT gateways. As an example of
smart health applications, the smartphone plays the role of an
IoT gateway to process different health parameters of patients’
vital signs collected by various wearable devices. It then sends
control messages such as the scheduling and the configurations
to these devices [2].

Ensuring all the data is sent to IoT gateways with a bearable
latency is an essential ingredient in the life-cycle data collec-
tion that is satisfied by users. Existing works rely on several
assumptions, including homogeneous network structure and
static wireless channel [3], [4]. In practice, large-scale hetero-
geneous IoT devices with different protocols are deployed for
the above emerging IoT applications. Coexisting in a small
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space, those devices are likely to incur severe interference,
causing a long life-cycle latency and a high possibility of
data collection failures. Existing approaches [5]-[7] achieve a
lower latency roughly from the conventional Quality of Service
(QoS) perspective. However, they make few efforts to address
the failure problem. Taking into account the failure that occurs
in data collection, we introduce Quality of Experience (QoE),
defined as the degree of delight or annoyance of the user of
an application [8], for evaluating the data collection efficiency
in our paper.

Aiming at enhancing the QoE for all the users, in the paper,
we propose to employ a recovery mechanism along with the
dynamic data contamination to design a reliable data collection
scheme. The major challenge lies in that: it is hard to construct
a mathematical model of task recovery with the conditions
of the dynamics in wireless environments together with the
heterogeneity in IoT devices and sensing data. To address
this issue, we deploy the deep reinforcement learning (DRL)
approach to maximize the long-term overall QoE for all users.
Specifically, the Deep Q-Network (DQN) is adopted to find the
optimal decisions on whether to collect the data, batch size,
and spectrum allocation. To avoid the large searching space in
a centralized DQN, we design a decentralized DQN scheme
allowing multiple IoT gateways to make decisions for their
managed IoT devices. Our contribution is as follows:

« We propose a data recovery mechanism with the dynamic
data contamination in order to mitigate the collection
failure as well as decrease the life-cycle latency.

o« We design a light-weight decentralized State-sharing
Deep-Recurrent Q-Network (SDRQN) to learn the data
collection policy, including the spectrum resource allo-
cation and the contamination decision, without any prior
knowledge of environment dynamics.

o Our experimental results demonstrate that compared to
several benchmarks, SDRQN enhances the long-term
QoE by significantly reducing the drop rate and average
waiting time for all the users.

The rest of our paper is organized as follows The related
works are briefly reviewed in Section II. In Section III, we
describe the system model of the data collection. Our proposed
task recovery mechanism as well as the QoE optimization
problem are explained in Section IV. A lightweight SDRQN
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is then used in Section V. We evaluate the performance of our
proposed data collection scheme in section VI, followed by
the conclusion in Section VII.

II. RELATED WORK

Interference Mitigation in Heterogeneous IoT Network.
Effectively mitigating the interference is of significant im-
portance in improving transmission reliability as well as de-
creasing transmission latency in a heterogeneous IoT network.
Conventional schemes usually leverage either MAC layer
protocols such as CSMA/CA or energy detection methods
to avoid interference from a different wireless protocol [9].
Unfortunately, these schemes will be less effective when
there is a dense device deployment. Recent efforts in Cross-
Technology Communication (CTC) [10]-[12] enable direct
communication among different protocols, which effectively
mitigates interference. However, CTC usually replaces original
spectrum bands with another one, which exacerbates the
spectrum scarcity issue. Different from them, we dynamically
allocate the spectrum resources to IoT devices based on the
current environment and the task arrival status, for which
the interference is alleviated. The transmission reliability and
latency are further improved.

Enhancement on QoE. Existing works focus on maximiz-
ing the QoE for users with a proper resource allocation scheme
in wireless network. Among different application scenarios,
QoE evaluation and its enhancement methods vary as well.
In hierarchical edge-cloud computing [13], they define the
QoE as the amount of cost reduction achieved by the users
when offloading the task. A suboptimal resource allocation
mechanism is then proposed to obtain the Nash Equilibrium
to enhance the QoE. Mean opinion score (MOS) is a common
QoE evaluation in video stream [14]. He et al. [15] propose the
shortest path tree (SPT) algorithm and a DQN-based algorithm
to maximize the MOS. For the edge computing network with
the queueing system [16], round trip workload transmission
time and queueing delay at the edge layer are two major
metrics of QoE. In our work, we specifically consider the
QoE during the data collection, in which not only the life-
cycle latency but also the potential data collection failures are
taken into account.

Resource Allocation Methods in IoT Network. The in-
creasing number of devices in the IoT network challenges the
design of an optimal resource allocation scheme to improve
the wireless system performance. Lu et al. [17] propose a
cooperative spectrum sharing method to guarantee the target
rate of the primary system in cognitive IoT networks. Yang et
al. [18] increase the spectrum efficiency of the fog IoT network
with the multi-armed bandit algorithm. In the NOMA (Non-
orthogonal multiple access)-enabled IoT network, a Karush-
Kuhn-Tucker (KKT) conditions-based spectrum resource al-
location scheme is adopted [19] to maximize the spectrum
efficiency. DRL-based resource allocation scheme [20] [21] is
trending in recent research. Shi et al. [22] studies the problem
of spectrum resource sharing in the Industry IoT (IIoT) system
with multiple IoT sensors and gives a DRL-based solution. In
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our paper, we adopt the DQN-based algorithm to address the
data collection failures and its long life-cycle latency in the
heterogeneous IoT network.

III. SYSTEM MODEL

Our system model is shown in Fig. 1, where a set of
IoT devices M = {1,2,---, M} collect sensing data. They
operate under K different wireless protocols. Each device
is denoted as my. The sensing data are then sent to J
multi-protocol IoT gateways (MPGs) over the air. Each MPG
Jj manages M; IoT devices where 3, M; = M. These
devices share the spectrum with a total bandwidth of B, which
is divided into N channel units with a unit bandwidth of
Byyin. Suppose that device my, uses N,,, channel units for
transmission. The total channel bandwidth occupied by my, is
B, = Np,, Brin. We focus on a stationary environment in a
quasi-static scenario [23] where the channel is static in a time
slot but dynamic through a long-term period. The spectrum
efficiency of IoT device my is given as follows

amkjpk ZneBmk |hmknj|2
]mk + BWLkNO

where Imk = ZmieMsub,k: P; ZnIEB'rnlg 5min’|hnL17L/j|2 rep-
resents the interference from these devices. Mg, 1 is a set
of IoT devices working on the channel units overlapped with
the IoT device mj. We use a binary symbol 3,,,,» = 1 to
indicate that the channel unit {n'|n’ € B,,, } is shared with the
device m;, m; € Mgyp k. Otherwise, B, = 0. ap,j =1
denotes that device my is sending data to MPG j. Otherwise,
Q5 = 0. N, is the Additive white Gaussian noise.

Mmyj = logo{1 + oM
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Fig. 1: Data collection model in heterogeneous IoT network.

power, channel
occupation, etc.

At the start of a time slot, each IoT device continuously
transmits the pilot signal to all MPGs through all available
channel units before sending the data. The MPG estimates the
channel gain [24] and then generates a channel gain table H;
with the size of M x N, which is

hi;  hioj hin;
H, — ho1j  haoj han; @)
hary horej hyng

Assume that Lfnk refers to the i-th data sensed by the IoT
device my. It follows the Poisson process with the arrival rate
A, denoted as L}, ~ Poisson()). Bach IoT device my, keeps
a queue Q,,, with max length V,,,, for storing the data in a
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FIFO (First-In-First-Out) manner. Assume that v,,, tasks are

concatenated as a batch in each transmission. The size of the
. . Vm, i

entire batch is denoted as L,,, = > "t L,

IV. QOE MAXIMIZATION

A. Factors Affecting QoE Performance

1) Life-Cycle Latency: The life-cycle latency 7'9
[oT device my, contains the transmission latency 7./’

ing latency ,7;;:” ,

for the
s process-
and feedback latency 7/¢ as follows

79

rmt fd
mip 'mk + ka + T
Pm_

where R, ; Bmknmkj denotes the data transmission
rate; the binary symbol (,: indicates whether the data is
successfully processed by M1§G pm 18 the processing density
and is same for all MPGs; f7  is the computation resource
allocated to the current data batch, which is proportional to
the batch size L,,,. Because of the high transmit power of
the MPG, 77¢ is ignored in computing the latency.
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Fig. 2: Handshake procedure for data collection

2) Task Failure: The handshake procedure for each time
slot is shown in Fig. 2. The Ready message from IoT devices
includes the device number and the queue status. Meanwhile,
the IoT device will start a countdown timer starting from 7.
According to the Ready message and the observed channel sta-
tus, the MPG makes the data collection decisions for managed
IoT devices and notifies them for scheduling the transmission.
The IoT devices then will start transmitting data. If the data
batch is processed successfully, the MPG will return the
results with an ACK1 signal to the IoT device. However, there
are three failure cases resulting from unpredictable dynamic
environments as follows:

o Case 1: Task Processing Incomplete. The processing of
the tasks cannot be completed by the end of the time slot.
The MPG will send back an ACK 2 signal as well as the
failed task number to the device.

Case 2: Task Missing. If the MPG does not receive the
scheduled tasks, the device will receive ACK 3 signal by
the end of the time slot.

Case 3: Transmission Collision. Batches from different
devices are sent to the same MPG through the overlapped
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channel. The MPG will return a Collision message to all
the above devices for re-transmission.

B. Task Recovery with Dynamic Contamination

To address the above task failures, we propose a task re-
covery mechanism with dynamic data contamination depicted
in Fig.3. After receiving the Ready message, the MPG will
decide the data batch size, which is compatible with the current
wireless environment, available computation resources, and the
recovery queue status. For instance, in time slot ¢ in Fig.3, the
data batch size is set to 4 since those 4 tasks are small. As a
comparison, in time slot ¢ + 1, the data batch size becomes 2
because the second task is large. For those failed tasks, they
will be attached to the tail of the recovery queue.
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Fig. 3: Recovery queue example

C. QoFE Optimization

Denote 6,,, as the current queue length of IoT device my.
If 6,,, > Vi, by the end of the current time slot, the task
which arrives in the next time slot will be dropped due to the
limited storage, denoted by Oﬁnk = 1. Although the recovery
mechanism is able to mitigate the task failures, it introduces
an extra delay that negative]y affects the QoE for users. We
quantize each user’s QoE O% | my, € M, in the following

myg?
4 B min(7%,,T) + 0m, T N
Oma = \/1 Voo +17 O @

which indicates that both the short life-cycle latency and the
short length of the recovery queue lead to a higher QoE.
We would like to maximize the QoE for all the users as

d

J
Jmy, ’Igf:jv”mk Zj:l kaEMj Om;ﬂ (Sa)
st U, € [Ly0%],Ymy, € M (5b)
B, C B,Vmy € M (50)
RIYT > Ly, (5d)

where Bﬁnk denotes the first channel unit the device my
should use. J,,,, indicates whether the device should transmit
data. (5b) constrains the maximum number of tasks that can
be contaminated in a single batch. Constraint (5c) limits
the channel units which can be allocated to the IoT device.
Constraint (5d) indicates that each IoT device my is supposed
to successfully transmit its batch with the maximum data rate
when no interference exists.
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V. DQN-BASED TASK COLLECTION DECISION MAKING

Maximizing the QoE in (5a) is a Mixed Integer Nonlinear
Programming problem (MINLP), which is NP-hard [25]. To
handle this, we propose to train the Deep Q-Network (DQN)
on the MPGs to find the optimal policy for making decisions.
Nonetheless, when a single DQN is deployed, increasing the
number of devices will dramatically enlarge the searching
space. Facing this challenge, we decompose the enormous
DQN into M lightweight DQNs on J MPGs, where each
DQN decides a combinatorial action for a single IoT device. In
addition, the DQNs on the same MPG share the same channel
state H; in (2). We will show in Section VI that sharing
channel state will improve the long-term QoE.

As for the network structure, it has been proved that taking
into account the historical information can achieve a better
performance than the traditional DQN [26]. In our paper,
a Long short-term memory (LSTM) unit is applied in each
DQN. We name the network structure as State-sharing Deep-
Recurrent Q-Network (SDRQN) according to the following
specifications.

A. State Space

For each IoT device my, trained on MPG j, the state S i
consists of the queue length V. mi > arrival task size L, ;, and
the shared channel gain table H “We write the state as é mi =
{V i v Lis J} The first two elements describe the 1ntr1n51c
state’ of thke device whereas the last one reflects the channel
status between the transmitter IoT device and receiver MPG.

B. Action Space

Each MPG decides the actions for its managed [oT devices,
which are composed of whether to send the collected data,
channel unit selection, and the data batch size. The action is
denoted as @, = {Jm,, Bl,, , Vm, } for each device my.
C. Reward Function

We define the reward R(t) as the total QoE value after all
devices take action at the end of each time slot

Z; 1kaeM mi (®).

The value of R;(t) could be close to 0 or even negative, which
happens when the actions result in a high task drop rate.

R(t)

Q)

Jj= 1

D. Training Algorithm

In our neural network model, each SDRQN aims to learn a
policy 7; from each state-action pair to a Q-value by updating
the parameter 67, , denoted as Q(Smi (t),a k( );07,.). After
the SDRQN outputs the Q-value of all possible actions, the
MPG will dispatch the decisions a mi 10 each IoT device based
on the € — greedy policy shown as *follows

(t)Z{

where ¢ is a small probability between 0 and 1. This policy
encourages the exploration for a global optimum solution [27].

argmaz, ) Qn;(t) 1—¢
mi
random action

a‘m; @)

g
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Each SDRQN includes a target DQN network with param-
eter 6’ and a training DQN with parameter 6 in the same
structure. In the training stage, a mini-batch of experience is
used to train the training DQN for updating the parameter 6
based on the following loss function

L = (Ry +ymax Q5 (S}, at;0') — Qr(Se, as36))>. (8)

After D steps of training, the parameter ¢’ is renewed by set-
ting it to #. The proposed DQN-based algorithm is summarized
specifically in Algorithm 1.

Algorithm 1 DQN-based long-term QoE optimization

1: Initialize the training network and target network with
same random parameter 67, = 6,7 for each device my, .
Set a empty replay buffer with size G for the SDRQN.
for m =1,2,..., M do episodes
Initialize the state S of the system.
forn=1,2,..., N do steps
Each MPG observes the state for its managed IoT
devices Smi(t)ﬂngﬂ =1,2,...,M;;
7: Input each state into the SDRQN of each device
to train the parameter 67, ;
8: Take action g (t) based on the € — greedy policy
and interact with the environment;
9: Calculate the corresponding reward R, ( );
Observe the environment at the next time slot £+ 1
and obtain the next state .S, (t +1);
Update the experlence replay buffer with the ex-
perience ¢(t) = {5, ;(t),a,,;(t), R, (), S, (t+1)};
Randomly sefect a nlilm batch ) of Iéxperlences
from the replay buffer;
Train the training network with {2 with using loss
function (8) and update the parameter §; of network;

AN AN

11:

12:

14: if Training steps = D then

15: Update 6,’7{& of target network equals to 67,
16: end if

17: end for

18: end for

E. Network Structure

The SDROQN is a four-layer neural network where the first
hidden layer is a fully connected layer with 32 neurons. It
extracts the common feature of input states and reduces the
dimension of the sequence to match the input interfaces of
the next layer. The second layer is the LSTM layer with
32 features in the hidden state. This layer remembers the
historical information about the input feature. It has been
proved in [28] that introducing recurrent unit strengths the
conventional multiple dense layers networks with partially
observed input state. The LSTM layer is followed by two
fully-connected layers with 32 and 16 neurons, separately. The
output layer gives the Q-value of the combinatorial action. The
output size varies based on the number of available channels
and recovery batch size of the IoT devices.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on August 08,2023 at 01:57:04 UTC from IEEE Xplore. Restrictions apply.



1 7 0.14
w o.;é‘:!:!:g&‘ O S CDaN
c o.sr 5 o6 8012 espRrRaN
Eor, £s € 0.1 SDaN
o A o 4 -3 Random
<06 £ 4||-¢cDpaN 2 0.08
205 ‘ £ || k-SDRQN ©
204 S cban 23 SDQN ] go.osr
@ [ Random 2
go.s -SDRGN 22 : _A'.__*/*k E 0.04
3 0-2/-5-spaN s 1 <
o g1 0.02
P 0.1 Random 2 M
0 0 0¥ ¢

1.2
Task arrival rate \ (Mbit)

(a) Average long-term QoE

Task arrival rate )\ (Mbits)

(b) Average waiting time

1.2 1.2

Task arrival rate )\ (Mbits)

(c) Average drop rate

Fig. 4: Data collection performance under different arrival task rates

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
data collection scheme. The simulations are conducted using
the Pytorch 1.10.0 and CUDA 11.3 on a desktop with the
GeForce RTX 3060 graphic card.

A. Experiment Settings

We place 4 MPGs and 12 heterogeneous IoT devices by de-
fault in an indoor area with the size of 20m x 20m. The MPGs
are placed at the coordinates (5,5), (5,15),(15,5), (15,15),
respectively whereas IoT devices are randomly distributed.
The spectrum between 2400 MHz and 2420 MHz is divided
into 20 orthogonal channel units with a unit bandwidth of
1MHz. These IoT devices are classified into 3 types working
under different physical regulations, which are listed as follows

Device | Tx power(mW) | Total channels | channel units
Type A 100 5 4
Type B 20 3 6
Type C 50 2 10

TABLE I: Benefits of state sharing in data collection

We utilize the WINNER2 channel model [20] to simulate
the wireless channel. Since we investigate the efficiency of the
proposed recovery mechanism, we set a large task arrival rate
A = 1Mbits in default. As for the computational resource of
the MPG, based on previous work [29], the process density
pm 18 set to 0.297 Gigacycles per Mbits (Geycles/Mbs). The
total computation capability of an MPG is 30 Gcycles/s.

B. DON Description

The DQN of each device trained on the MPG shares the
exact same settings. The learning rate is set to 0.001. The size
of the mini-batch is 32. The ¢ is initialized as 0.9, decreasing
0.001 by each step to 0.01. We apply the Adam optimizer
with the MSE loss function [30] to update the parameters.
The reward discount factor is equal to 0.9. The network trains
33 episodes, each of which comprises 1000 steps. The first
3 episodes are used to fulfill the replay buffer with a size of
3000 experiences. The frequency D of updating the parameter
of the target DQN is set to 100 steps.

We compare the SDRQN with the random decision scheme
(Random) and the other two DQNs. Their differences from
SDRON is listed in the following:

192

1) Random: The IoT devices take random actions.

2) Centralized Deep Q-Network (CDQN): MPG trains a
DOQN for its managed devices in a centralized manner.
The output is the action combination for all devices.

3) Decentralized State-Sharing Deep Q-Network (SDQN):
SDQN has a similar structure with the proposed
SDRQN, but the recurrent unit is replaced by a con-
ventional fully-connected layer with the same size.

Meanwhile, three major metrics are considered: the average
reward that each IoT device obtains; the average waiting
time of all IoT devices including the queueing time before
a successful task transmission and the life-cycle latency; the
average drop rate of all the tasks.

C. Result Analysis

Benefit of state sharing. We compare the decentralized
neural network performance w/o the channel state sharing.
The networks without channel state sharing are denoted as
Independent-State DQN (ISDQN) and ISDRQN in Table.II,
respectively. Specifically, in both ISDQN and ISDRQN, the
input is the channel state between the IoT device itself and its
manager MPG. The MPG trains the network for each of its
managed IoT devices independently.

Structure | Average QoE | Waiting time(s) | Drop rate
SDRQN 0.9127 1.5450 0.0029
ISDRQN 0.8716 2.0260 0.0062
SDQN 0.8895 1.7190 0.0101
ISDQN 0.8381 1.9880 0.0239

TABLE II: Benefits of state sharing in data collection

Among the four network structures in Table.ll, SDRQN
obtains the highest reward as well as the lowest waiting time
and task drop rate. Without both the channel state sharing and
the recurrent unit, ISDQN results in the lowest reward because
of the high drop rate of 2.39%. As shown in the last column,
via sharing channel state, the average drop rates in SDRQN
and SDQN reduce to 0.29% and 1.01%, respectively, which
are around 55% of those in ISDRQN and ISDQN. As for the
waiting time, the SRDQN with the LSTM benefits more from
the channel state sharing compared to the SDQN. Specifically,
It reduces more than 10% of the waiting time compared to that
of the SDQN.
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Fig. 5: Data collection performance under different IoT device numbers

Impact of arrival task rate. Fig.4 depicts the data col-
lection performance with different task arrival rates from
0.8Mbits/s to 1.2Mbits/s. When the task arrival rate is less
than the unit data size, A < 7, the average drop rate is lower
than 1%. The average QOoE is higher than 0.9, indicating
that all three DQNs have a satisfactory performance with a
small \. When the A is larger than 1.17, the rewards of
both decentralized DQN decrease dramatically to 0.85 and
0.8 separately. However, when the rate increases to 1.27, the
waiting time is over 2 time slots in decentralized DQNs. Note
that the 7 can be easily adjusted to fit other networks.
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Fig. 6: Performance with different recovery mechanisms

Effectiveness of proposed contamination mechanism.
We compare data collection performance among the recovery
mechanism with the dynamic contamination, the recovery
mechanism with the fixed batch [31], and without the recovery
mechanism. In the fixed batch size setting, the IoT device
always packs a certain number of tasks in a batch. The IoT
device working without the recovery mechanism only attempts
to send a single task and will drop it if any failure occurs.
According to the results in Fig. 6, when the recovery batch
size is fixed to 5, the average drop rate is around 13%, which
is even higher than that without the recovery mechanism. The
reason is that the large batch size leads to the long life-cycle
latency and further causes the collection failure. The recovery
mechanism with the dynamic batch size reduces around 67%
drop rate from that without the recovery mechanism in all three
DQNs. In addition, the recovery mechanism with the dynamic
contamination always achieves the highest reward among all
three DQN structures.
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Impact of max batch size in the dynamic contamination.
Fig.7a illustrates the averaged long-term QoE and the task
drop rate in SDRQN, where the curves are all convex. It
demonstrates that there always exists an optimal max batch
size given different task arrival rates. When A = 0.8 Mbits/s,
the optimal max batch size is 4 and the drop rate is only
0.26%. As X\ increases, the optimal size is 3 in most cases.
When the ) increases to 1.2 Mbits/s, the average drop rate is
about 1.4% when v]%* = 2, lower than 1.9% when v]2%* = 3.
With this being said, we can tell that the optimal max batch
size presents a decreasing trend as the arrival rate gets larger.

1
'8 0.05
G 2
g 0. : &
E y
S085, 3
2 o8 °
o )
& 0.75 5
g s
@ 0.7 9
8 <
$ 065
<

0.6

Max batch size

Max batch size

(a) Average long-term QoE (b) Average drop rate

Fig. 7: SDRQN performance under different max batch sizes

Scalability and necessaries of the SDRQN. To demon-
strate the feasibility of SDRQN in the large-scale IoT network,
we increase the number of IoT devices from 8 to 16. The
number of IoT devices in type A, B, C are [2,3,3], [3,3,4],
[4,4,4], [4,5,5], and [4,5, 7], respectively. As shown in Fig.5,
all three DQN structures achieve the ultra-low drop rates, 0%
when 8 heterogeneous IoT devices coexist and at most 0.24%
with 10 devices. This is attributed to the sparse distribution of
the IoT devices with weak interference most of the time. When
the IoT network continues to scale up, the proposed SDRQN
still maintains a great performance. Compared to the Random
policy, SDRQN reduces 83% of the drop rate to about 3.9%.
It also outperforms the 9% drop rate realized by SDQN.

Structure SDRQN | SDQN | CDQN

Number of parameters 9768 10120 | 5121792
Memory allocated (MBytes) 0.16 0.17 144.54
Training memory (MBytes) 3.01 2.53 1177.14

TABLE III: Source utilization of different network structure
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Table.III lists the computation and memory resources re-
quired for training different DQNs, where Memory allocated
indicates the GPU memory allocated for initializing the neural
network. Training memory represents the memory required for
each update of the network parameters. As we can see, the
SDRQN and SDQN only need around 10 thousand parameters,
which is far less than over 5 million parameters in centralized
CDOQN. Meanwhile, there is a much higher level memory
usage in CDQN than that in both SDRQN and SDQN. This
demonstrates that the decentralized structure of DQN must be
considered in a large-scale IoT network.

VII. CONCLUSION

In this paper, we proposed a sensing data collection scheme
to enhance the long-term overall QoE in the heterogeneous
IoT network, where task failures and the life-cycle latency are
taken into consideration. A recovery mechanism with dynamic
data contamination is proposed to address those challenges.
Technically, to maximize the long-term overall QoE, a DRL
algorithm with a lightweight DQN structure SRDQN is de-
ployed for finding the optimal data collection policy. Our
simulation results show that SRDQN has a better performance
than CDQN, SDQN, and Random schemes. Furthermore, our
data collection scheme is demonstrated to be efficient and
effective in the large-scale heterogeneous IoT network.
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