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Abstract

Obstruction flatness of a strongly pseudoconvex hypersurface ¥ in a complex manifold refers to
the property that any (local) Kéhler-Einstein metric on the pseudoconvex side of ¥, complete up
to X, has a potential —logu such that u is C°°-smooth up to ¥. In general, v has only a finite
degree of smoothness up to X. In this paper, we study obstruction flatness of hypersurfaces ¥ that
arise as unit circle bundles S(L) of negative Hermitian line bundles (L, h) over Kéhler manifolds
(M, g). We prove that if (M, g) has constant Ricci eigenvalues, then S(L) is obstruction flat. If,
in addition, all these eigenvalues are strictly less than one and (M, g) is complete, then we show
that the corresponding disk bundle admits a complete Kéhler-Einstein metric. Finally, we give a
necessary and sufficient condition for obstruction flatness of S(L) when (M, g) is a Kéhler surface

(dim M = 2) with constant scalar curvature.

La platitude d’obstruction d’une hypersurface strictement pseudo-convexe 3 dans une variété
complexe fait référence a la propriété selon laquelle toute métrique de Kéhler-Einstein (locale)
du c6té pseudo-convexe de X, compléte jusqu’a X, posseéde un potentiel — logu tel que u soit C*
jusqu’a 3. En général, u n’a qu'un degré fini de régularité jusqu’a . Dans cet article, nous étudions
la platitude d’obstruction des hypersurfaces 3 qui proviennent de fibrés en cercles unitaires S(L)
de fibrés en droites hermitiens négatifs (L, h) sur des variétés de Kahler (M, g). Nous prouvons que
si (M, g) a des valeurs propres de Ricci constantes, alors S(L) est obstruction plate. De plus, si
toutes ces valeurs propres sont strictement inférieures & un et que (M, g) est compléte, alors nous
montrons que le fibré de disques correspondant admet une métrique de Kéahler-Einstein complete.
Enfin, nous donnons une condition nécessaire et suffisante pour la platitude d’obstruction de S(L)

lorsque (M, g) est une surface de Kéhler (dim M = 2) avec une courbure scalaire constante.
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1. Introduction

On a smoothly bounded strongly pseudoconvex domain Q C C", n > 2, the existence of a
complete Kéhler-Einstein metric on €2 is governed by the following Dirichlet problem:
uo Uz .
J(u) = (—1)" det =1 inQ

Uz;  Uzjzy (1)

u=0 on 0f)

with u > 0 in Q. The equation J(u) = 1 is often referred to as Fefferman’s complex Monge-Ampére
equation. If u is a solution of (1), then — log w is the Kéhler potential of a complete Kéhler-Einstein
metric on . Fefferman [1] established the existence of an approximate solution p € C*(Q) of (1)
that only satisfies J(p) = 1 + O(p"*!), and showed that such a p is unique modulo O(p"*2).
Such an approximate solution p is called a Fefferman defining function. Cheng and Yau [2] then
proved the existence and uniqueness of an exact solution u € C*°(2) to (1), which is now called

the Cheng—Yau solution. Lee and Melrose [3] established that the Cheng—Yau solution has the

following asymptotic expansion:

w~p Y (" log )" (2)
k=0

where each 7, € C(Q) and p is a Fefferman defining function.

It follows from (2) that, in general, the Cheng—Yau solution u can only be expected to possess a
finite degree of boundary smoothness; namely, v € C"*27¢(Q) for any £ > 0. Graham [4] discovered
that in the expansion (2), the restriction of 77 to the boundary, 11 |oq, turns out to be precisely the
obstruction to C* boundary regularity of the Cheng—Yau solution. More precisely, in [4] Graham
proved that if 71 |9q vanishes identically (on 09), then every n vanishes to infinite order on 92 for
all k > 1. For this reason, ny|gq is called the obstruction function. Graham also showed (op. cit.)
that, for any k& > 1, the coefficients 7 mod O(p"**!) are independent of the choice of Fefferman
defining function p and are locally uniquely determined by the local CR geometry of 9Q2. As a
consequence, the n; mod O(p™*1), for k > 1, are local CR invariants that can be defined on any
strongly pseudoconvex CR hypersurface in a complex manifold. In particular, the obstruction
function O = n1|aq is a local CR invariant and it can be defined on any strongly pseudoconvex
CR hypersurface ¥ in a complex manifold. If ¥ is a CR hypersurface for which the obstruction
function O vanishes identically, then X is said to be obstruction flat. The most basic examples of
obstruction flat hypersurfaces are the sphere {z € C" : |z| = 1} and, more generally, any spherical
CR hypersurface; recall that a CR hypersurface ¥ is called spherical if, at every p € X, there
is a neighborhood of p that is CR diffeomorphic to an open piece of the sphere. On the other



hand, another result of Graham (op. cit.) shows that there are also plenty of non-spherical CR
hypersurfaces that are obstruction flat. The construction of such examples, however, is local and
amounts to solving a Cauchy problem. Two questions then arise naturally: (Q1) Is there a more
constructive and natural way to obtain obstruction flat CR hypersurfaces, and (Q2) is it possible
to characterize compact, obstruction flat hypersurfaces in terms of more classical notions of CR
geometry and complex geometry/several complex variables?

For question (Q2), for example, ample evidence supports the conjecture that if a 3-dimensional
strongly pseudoconvex CR hypersurface X is obstruction flat and compact, then X is spherical. In
particular, Curry and the first author confirmed this conjecture for smooth boundaries of bounded,
strongly pseudoconvex domains in C2, subject to the existence of a holomorphic vector field satisfy-
ing a mild approximate tangency condition along the boundary 3. The same authors also confirmed
the conjecture for arbitrary small deformations, not necessarily embeddable, of the standard CR
structure of the unit sphere in C2. We refer readers to [5, 6] for precise statements and related
results.

Much less is known about higher dimensional obstruction flat strongly pseudoconvex hypersur-
faces. Leitner [7] proved that the Fefferman space associated with a CR hypersurface admitting a
torsion-free and pseudo-Einstein contact form is always locally conformally Einstein. In particular,
the CR hypersurface is obstruction flat (cf. [8, 9]). This result was reproved by Takeuchi [10] via
a different method. Hirachi announced the result that if the boundary of a smoothly bounded
strongly pseudoconvex domain 2 C C", n > 3, is obstruction flat and is sufficiently close to the
unit sphere, then Q is biholomorphic to the unit ball (in his talk at the conference on ‘Symmetry
and Geometric Structures’ at IMPAN, Warsaw, November 12-18, 2017).

In this paper, we shall consider the special case where the CR hypersurface arises as the unit
circle bundle of a negative Hermitian line bundle over a Kéhler manifold. Let (L, h) be a negative
line bundle over a complex manifold M, so that the dual bundle (L*, h~!) induces a Kihler metric
g on M. By a well-known observation of Grauert, the corresponding circle bundle S(L) = {v €
L : |v|;, = 1} is strongly pseudoconvex; here, |v|;, denotes the norm of v with respect to the metric
h. One of our goals is to characterize obstruction flatness of the circle bundle S(L) in terms of the
Kéhler geometry of (M, g).

To formulate our results, we first recall some standard notions in Kéhler geometry. Let (M, g)
be an n-dimensional Kéhler manifold and let Ric = —id9logdet(g) denote the associated Ricci
tensor. The latter naturally induces an endomorphism, the Ricci endomorphism, of the holomorphic
tangent space T’ M given by Ric - g~' for p € M. The eigenvalues of this endomorphism will
be referred to as the Ricci eigenvalues of (M, g) and, by design, depends on p € M. All Ricci
eigenvalues are real-valued as both Ric and g are Hermitian tensors. For a fixed p, we label the
Ricci eigenvalues such that Aq(p) < -+ < A,(p). Note that the sum of the \;(p), i.e., the trace

of the Ricci endomorphism, gives the scalar curvature at p. The product of the A;(p), i.e., the



determinant of the Ricci endomorphism, gives the so-called central curvature at p (cf. [11]). The
Kéhler manifold (M, g) is said to have constant Ricci eigenvalues, if each X;(p), for 1 < i < n, is
a constant function on M; equivalently, the characteristic polynomial of the Ricci endomorphism,
Ric-g~!': Tpl*OM — TPLOM is the same at every point p € M.

A Kahler manifold with constant Ricci eigenvalues must have constant scalar and central curva-
tures. Typical examples of Kéahler manifolds with constant Ricci eigenvalues include homogeneous
spaces and Kéhler-Einstein manifolds, and more generally products of Kéhler-Einstein manifolds.
We emphasize, however, that there are also many examples of Kéhler manifolds with constant Ricci
eigenvalues, which cannot be expressed as a product of Kéhler-Einstein manifolds. The following

is such an example:

Example (Siegel-Jacobi space). Set M = C x H = {(z1,22) € C?>: Rezy > 0}. Let ¢ : M — R be

(21 +71)?

¢(215Z2) = m

— log(z2 + %2).

One can verify that ¢ is strongly plurisubharmonic and thus w = i09¢ induces a Kihler
metric g on M. The Kéhler manifold (M, g) is called the Siegel-Jacobi space. It is a complete
homogeneous Kéhler surface (see [12]). A routine computation yields that the Ricci endomorphism

TYOM — TYOM is given by

. 1 0 0
Ric-g7" = _ . (3)
_3atz g
22422

The Ricci eigenvalues are 0 and —3, which are obviously constants. However, the Siegel-Jacobi space
cannot be locally holomorphically isometric to a product of Kéhler-Einstein manifolds (Riemann
surfaces in this case) because if it were, then every entry in the matrix (3) would be holomorphic,

as is clearly not the case.
Our first result asserts that S(L) is obstruction flat if (M, g) has constant Ricci eigenvalues.

Theorem 1.1. Let (L,h) be a negative line bundle over a complex manifold M, so that the dual
bundle (L*,h=1) of (L,h) induces a Kdihler metric g on M (not necessarily complete). If (M,g)

has constant Ricci eigenvalues, then the circle bundle S(L) is obstruction flat.

Remark 1.2. A standard result in Kéhler geometry states that a Kéhler metric with constant
scalar curvature must be real analytic (which follows from the work of Hopf and Morrey. See [13]
and the references therein). Consequently, the circle bundle S(L) in Theorem 1.1 is a real analytic
CR hypersurface in the ambient space L. We also remark that a special case of Theorem 1.1
occurs when the manifold (M, g) is Kahler-Einstein. In this case the circle bundle S(L) becomes
a Sasakian n-Einstein manifold and the conclusion of Theorem 1.1 was known by Leitner [7] and

Takeuchi [10].

An interesting problem (as alluded to above) is to find obstruction flat CR hypersurfaces that
are not spherical. Combining Theorem 1.1 with the work of Webster [14] and Bryant [15] (see also



Wang [16]), we obtain the following corollary, which provides a way to construct many such CR
hypersurfaces as circle bundles; w,. in the statement of the corollary denotes the Kéahler metric with

constant holomorphic sectional curvature c.

Corollary 1.3. Let (L,h) and (M, g) be as in Theorem 1.1 and suppose that (M, g) has constant
Ricci eigenvalues. Then the circle bundle S(L) of L is obstruction flat. Furthermore, S(L) is
spherical if and only if (M, g) is locally holomorphically isometric to one of the following:

(1) (B",Aw_1) for some XA € RT,

(2) (CP", Aw) for some A € RT,

(3) (C",wo),

(4) (B! x CP" " \w_1 x Mwy) for some 1 <1<n—1 and some A € RT.

We observe that Corollary 1.3 allows us to easily construct examples of compact, obstruction
flat and non-spherical CR hypersurfaces as circle bundles S(L) (with dim S(L) > 5); take as
the base any compact Kéhler manifold (M,g) with constant Ricci eigenvalues, but not locally
holomorphically isometric to any one in the list (1)-(4) above. Such (M, g) are clearly abundant,
for instance, compact homogeneous Hodge manifolds (in particular compact Hermitian symmetric
spaces) other than CP". This observation indicates that question (Q2) above is non-trivial even
for circle bundles S(L) when n = dim M > 2, in the situation considered in this paper. When
n = 1, obstruction flatness of S(L) implies that it is also spherical by a result proved (in a different
context) by the first author [17], since S(L) always has a transverse S*-symmetry.

As we have noted, the notion of obstruction flatness is a local CR invariant, but is originally
related to complete Kéhler-Einstein metrics on domains. It is natural to ask whether a complete
Kéhler-Einstein metric exits on the corresponding disk bundle D(L) := {w € L : |w|, < 1} of

(L, h) in the situations we are considering. We prove the following result:

Theorem 1.4. Let m = n+ 1 > 2. Let M be a complex manifold of dimension n and (L,h)
a negative line bundle over M such that the dual bundle (L*,h™') of (L,h) induces a complete
Kdihler metric g on M. If (M,g) has constant Ricci eigenvalues and every Ricci eigenvalue is
strictly less than one, then the disk bundle D(L) = {w € L : |w|, < 1} admits a unique complete
Kdhler-Einstein metric § with Ricci curvature —(m + 1). Moreover, this metric is induced by the

following Kdhler form:

(7" Ric)|w + (7*w)|w — 100 log d(|wln), (4)

Wl =

_m+1 m—+1

where w and Ric are respectively the Kihler and the Ricci form of (M, g), m: L — M the canonical
fiber projection of the line bundle, and ¢ : (—1,1) — R™ an even real analytic function that depends

only on the characteristic polynomial of the Ricci endomorphism.



Remark 1.5. The even real analytic function ¢ : (—1,1) — R* in Theorem 1.4 is constructed in

Proposition 2.7 in § 2.2.

Remark 1.6. The special case of Theorem 1.4 when (M, g) is Kdhler-Einstein was already proved
by Calabi [18] and Tsuji [19] (see also [20]). However, our treatment is different from these classical

approaches, as the methods used there do not reflect the boundary regularity of the solution.

Remark 1.7. When M and D(L) in Theorem 1.4 are realized as bounded domains in C" and
C"*! respectively. Then Cheng—Yau solution of D(L), which satisfies (1) with Q = D(L), extends
real analytically across the circle bundle S(L). This can be seen easily from the proof of Theorem

1.4 and Remark 2.15.

Theorem 1.4 is optimal in the sense that the conclusion fails, in general, if some Ricci eigenvalue

is greater than or equal to 1, as is shown by the following proposition.

Proposition 1.8. Let 7 : (L,h) — CP" be a negative line bundle over CP". Assume that the
metric g on CP" induced by the dual bundle of L satisfies the Kahler-FEinstein equation Ric(g) = Ag
with A € R. Then the disk bundle D(L) = {v € L : |v|? < 1} admits a complete Kihler-Einstein

metric with negative Ricci curvature if and only if A < 1.

When the base manifold M has a high degree of symmetry (e.g, is homogeneous), one can
use the automorphisms of M to reduce the complex Monge-Ampére equation (1) to an ODE.
This idea seems to first have been used by Bland [21] and subsequently by many others; see for
example [22] and references therein. The novelty of our proof (of Theorem 1.1 and 1.4) consists of
applying an ODE trick in a different way so that it works on a much more general class of base
manifolds M whose automorphism groups can be trivial. While one cannot expect to explicitly
solve the resulting ODE in general, we investigate the rationality of its solution in a particular
case of interest; namely, when the underlying Kdhler manifold is a domain of holomorphy. As a
consequence, we obtain the following corollary, characterizing the unit ball among egg domains in
terms of the Bergman-Einstein condition. A well-known conjecture posed by Yau [23] asserts that
if the Bergman metric of a bounded pseudoconvex domain is Kéhler-Einstein, then the domain
must be homogeneous. This conjecture has been solved affirmatively when the domain is strongly
pseudoconvex (see [24]). It remains to study domains that are not strongly pseudoconvex. The
following result provides affirmative support for this conjecture in a special class of domains; we
note that some (most) domains in this class are not strongly pseudoconvex and not even smoothly

bounded.

Proposition 1.9. Let p be a positive real number and E, C C"*1 n > 1, the egg domain:
By = {W = (2,6) € C" x C: |22 + ¢/ < 1}.

Then the Bergman metric of E, is Kdhler-Einstein if and only if p = 1.



Remark 1.10. When n = 1 in the above proposition, the result was proved by Cho in [25] (see
Proposition 12 there) via an explicit (and rather lengthy) computation. When n = 1 and p € Z*
(so that E, is smoothly bounded), the result also follows from Fu-Wong [26] (see Section 3 there).

When M is a complex manifold and g a K&hler metric on M (which is not necessarily complete),
then for any p € M, the Kéhler condition implies that there exist a local coordinate chart (U, 2)
near p, a trivial line bundle L = U x C, and a Hermitian metric h on L such that (L, h) is negative
and g is induced by the dual of (L,h) on U via wy = i00 log h, where wyg is the Kahler form of g.

We define in the usual way the circle bundle
S(L) = S(L,h) :={(2,&) €U x C: |¢|*h(z,2) = 1}.

Note that while the choice of bundle metric A inducing the Kéhler metric g is not unique, any other
choice h must be such that log?z and log h differ by a pluriharmonic function near p. Consequently,
h = TL\ef |? for some holomorphic function f near p. This implies that, by shrinking U if needed,
the circle bundles S(L,h) and S(L,h) are CR diffeomorphic via the map (z,£) — (z,e/¢). With

this observation and motivated by Theorem 1.1, we introduce the following terminology.

Definition 1.11. The Kéhler manifold (M, g), or simply the metric g, is said to be obstruction
flat (respectively, spherical) at p € M, if the circle bundle S(L) (introduced above) is obstruction
flat (respectively, spherical) over some neighborhood U of p. Moreover, (M, g), or simply g, is said

to be obstruction flat (respectively, spherical) if it is so at every p € M.

With this terminology, Theorem 1.1 can be reformulated as follows: If a Kihler manifold (M, g)
has constant Ricci eigenvalues, then g is obstruction flat.

When (M, g) is a Riemann surface (i.e., n = 1) and g has constant Gaussian curvature, then
locally (M, g) is a space form and, consequently, g is spherical and therefore obstruction flat. As
indicated above, the converse holds for compact Riemann surfaces by a result of the first author
[17]: If g is obstruction flat, then it is spherical and, hence, (M, g) is locally a space form. It
is natural to ask about the higher dimensional case with Gaussian curvature replaced by scalar
curvature. As a consequence of the work of Webster [14], Bryant [15] and Wang [16], the only
constant scalar curvature Kdhler manifolds (cscK manifolds) that are spherical are those that are
locally holomorphically isometric to the spaces listed in (1)-(4) in Corollary 1.3. We summarize

this characterization of spherical metrics in the following proposition:

Proposition 1.12. Let (M, g) be a Kahler manifold of complex dimension at least two. Assume
that either M is compact or (M, g) has constant scalar curvature. Then (M,g) is spherical if and

only if (M, g) is locally holomorphically isometric to one of (1)-(4) in Corollary 1.3.

Much less (in fact, essentially nothing) is known about necessary conditions for a cscK manifold
to be obstruction flat in higher dimensions. We shall give a complete answer to this question in

the K&hler surface case (n = dimM = 2). Recall that the central curvature is defined as the



determinant of the Ricci endomorphism and note that when n = 2, the scalar curvature and the

central curvature determine completely both the Ricci eigenvalues.

Theorem 1.13. Let (M,g) be a Kdhler surface with constant scalar curvature, and denote the

central curvature by C': M — R. The following are equivalent:

(1) The metric g is obstruction flat.

(2) LC := V&VBVgVaC’ =0 on M, where V is the Levi-Civita connection of g.
If, in addition, M is compact, then (1) and (2) are also equivalent to:

(3) V5gVaC =0, or equivalently, the central vector field grad™® C is a holomorphic vector field
on M.

Remark 1.14. The fourth order differential operator L is the well-known Lichnerowicz operator,
which plays a fundamental role in the study of extremal metrics. Indeed, on a compact manifold a
Kéhler metric is extremal if and only if L annihilates the scalar curvature (see [27] for more details

on this topic). When the scalar curvature is constant, we can also express this operator as
L® = A% + RV, V50, & € C°(M)

where A = gO‘BVaVB is the complex Laplacian on (M, g) and RoP = go‘ﬁg”BR,,ﬂ is the Ricci
curvature with indices raised by the metric in the usual way.

In Theorem 1.13, if we assume that M is compact and, additionally, that M admits no nontrivial
holomorphic vector fields with zeros, then by (3), C' must be constant. Combining this with the
constant scalar curvature assumption, we see that (M, g) has constant Ricci eigenvalues. Thus, in

this situation, the converse of Theorem 1.1 holds.

Theorem 1.1, as well as the work of Lee [28] and Graham-Hirachi [29, 30] (see also Gover-
Peterson [9]), will play a fundamental role in the proof of Theorem 1.13. As an application of
Theorem 1.13, we provide what seems to be the first collection of examples of cscK manifolds that
are not obstruction flat. Noncompact examples can be found explicitly, while compact examples
seem more complicated to construct. For the following proposition, recall that the Burns-Simanca
metric on C2\ {0} is given by the Kihler form w = i99(|z|? + log |2|?), where z = (21,20). It
extends to a complete Kihler metric on Bly C? (see subsection 8.1.2 in [27] for more details), where
Blp(C?) denotes the space obtained by blowing up the origin in C2. The so extended metric is

scalar flat (cscK with scalar curvature identically zero) on Blg(C?).

Proposition 1.15. The following hold:
1. The Burns-Simanca metric is not obstruction flat.

2. Let k > 14. The complex projective space CP?, blown up k suitably chosen points, admits a

scalar flat Kdahler metric that is not obstruction flat.



Remark 1.16. For the Burns-Simanca metric, with C' denoting the central curvature as above,
we actually prove that in C2\ {0}, LC equals 0 only on two concentric spheres. (The obstruction

non-flatness then follows from Theorem 1.13.)

The paper is organized as follows. In § 2, we will prove Theorem 1.1 and Theorem 1.4, as
well as Corollary 1.3 and Propositions 1.8, 1.9 and 1.12. In § 3, we first recall some preliminary
materials on the CR invariant theory and pseudohermitian geometry which will be important for
the proofs. Then Theorem 1.13 and Proposition 1.15 will be established, except that some detailed
computations needed in the proofs will be left to the Appendix.

Acknowledgement. The authors would like to thank Sean Curry for helpful discussions on
the topics in this paper. The authors would also express sincere gratitude to the anonymous referee

for the careful reading and many valuable comments.

2. Proof of Theorem 1.1 and 1.4

We will prove Theorem 1.1, Proposition 1.12 in § 2.1. Corollary 1.3 will then follow from the
two results. In § 2.2, we establish Theorem 1.4 and Proposition 1.8. An ODE (see Proposition 2.1
and 2.7) will play an important role in the proofs. In § 2.3, we will study the rationality of the
solution to this ODE when the underlying manifold is a domain of holomorphy. We then use the

rationality result to prove Proposition 1.9.

2.1. Proof of Theorem 1.1

We first recall the following work of Graham [4], which will be the starting point of our proof.
Let ¥ be a piece of smooth strongly pseudoconvex hypersurface in C",n > 2, and let {2 be a
one-sided neighborhood of ¥ on its strongly pseudoconvex side, such that £ := Q U ¥ becomes a
manifold with boundary. Graham [4] showed that, given any a € C°*°(X) and p a Fefferman defining
function of %, there exists an asymptotic formal solution u in the form of (2), with n, € C*(Q),

solving J(u) = 1 to the infinite order along ¥ for which 2‘3;11 = a. (Any formal solution of the

form (2) to J(u) = 1 necessarily satisfies Z%:ll € C*°(X)). Such formal solution u is unique in the

sense that two choices of each 7, agree to infinite order along 3. Furthermore, Graham proved that
for each k > 1,7 mod O(p"*+1) is independent of the choice of a and the choice of the Fefferman
defining function p. The restriction 7 |x gives precisely the obstruction function on 3. Graham
in addition showed that if 7|z, = 0 for some formal solution of form (2) to J(u) = 1, then every
formal solution v must satisfy 1 = 0 to infinite order along ¥ for all £ > 1.

Therefore, if there is a function ug € C*°(Q) such that ug = 0 on ¥ and J(ug) = 1 in €2, then
one sees X must be obstruction flat, by writing ug into the form of (2). To establish Theorem 1.1,
we will construct such a function ug locally for S(L).

We split the proof of Theorem 1.1 into Propositions 2.1 and 2.5. Our proof, especially Lemma
2.6, is inspired by the work of Bland [21].



Proposition 2.1. Let P(y) be a monic polynomial in y € R of degree n = m — 1> 1. Let Q(y) be
a polynomial satisfying % = (m+ DyP(y) (thus Q is a monic polynomial of degree m + 1 and is

unique up to a constant addition). Let P and Q be polynomials satisfying

P(a) =™ 'P(@™"), Qz) =a2"'Q(x7").

Then P(0) = 1,Q(0) = 1. Let I C (0,00) be an open interval containing r = 1 and Z(r) a real

analytic function in I satisfying the following conditions:

rZ'P(Z)+Q(Z) =0 on I, Z(1)=0. (5)
Z'(r) <0 and P(Z) >0 on I, and Z(r) >0 on Iy :== I N (0,1). (6)
Set ¢(r) = Q(fp(z))#ﬂ Z on I. Then ¢ is real analytic on I, ¢(1) = 0, and ¢ > 0 on Iy.

Moreover, ¢ satisfies that (m + )rZ¢' + (m+1—2Z)¢p =0 on I, and ¢'(1) = —2.

Remark 2.2. It follows easily from the assumption and elementary ODE theory that (5) has a
real analytic solution Z in some open interval I containing 1. Since P(0) = 1,Q(0) = 1, we see (5)

implies Z’(1) = —1. Then by shrinking I if necessary, we can assume (6) holds.

Proof of Proposition 2.1. Tt is clear that ¢ is real analytic on I, ¢(1) =0, and ¢ > 0 on Iy by
the definition of ¢ and the assumption of Z. We only need to prove the last assertion in Proposition

2.1. For that, we first establish the following two lemmas.
Lemma 2.3. Let Z be as in Proposition 2.1. Then we have

r(Z' 2=V P(Z)) = (m+1)2' 2~ "D P(Z) — 2' 27TV P(Z) on 1.
FEquivalently,

(Z/Z—(m+1)p(Z))/
T =
Z’Z_(’”+1)P(Z)

=—1+m+1)Z"" onI.

Proof. We first observe by the definition of Q and Q, we have W = —(m+Dz73P(z1).
Dividing the ODE in (5) by Z™*! | we have

rZ' 2= Pp(Z) + 27TV Q(Z) = 0 on I.
We then differentiate the above equation with respect to r to obtain
r(Z' 2=V P(Z)) + 227" FVP(Z) — (m+1)2' 273 P(Z71) = 0. (7)
By the definition of P, we see Z3P(Z~') = Z~(m+2 P(Z). Then (7) yields Lemma 2.3. O

Lemma 2.4. Let ¢, Z be as in Proposition 2.1. Then we have

Z/Z—(m+1)]5 AN ’
7‘( A( ) :1—(m+1)r£ on Iy.
7' Z-(m+1) P(Z) ¢

10



Proof. By the definition of ¢, we have

gt g T2
—Z'P(Z)
Equivalently,
—2' 7=tV p(7) = 2amHlpg=(mHD on . (8)

We now take the logarithmic derivative of both sides of (8) with respect to r, and then multiply

by r to obtain the desired equation in Lemma 2.4. O

Finally we compare (the second equation in) Lemma 2.3 and Lemma 2.4 to obtain (m+1)rZ¢'+
(m+1—2Z)¢ = 0 on Iy. By analyticity, it holds on . Recall Z(1) = 0, P(0) = 1 and Z’(1) = —1.
It then follows from the definition of ¢ that ¢'(1) = —2. This finishes the proof of Proposition
2.1. O

Let (M, g) and (L, h) be as in Theorem 1.1. Write n for the complex dimension of M and write
m = n+1. Choose a coordinate chart (D, z) of M with a frame ey, of L over D. Writing 7 : L — M

for the canonical projection, we have
7 H(D) = {€er(2) : (2,€) € D x C}.
Under this trivialization, S(L) can be written as follows locally over D,

Y ={(z,¢6)eDxC:|¢*H(z%) =1}

Here H(2,%) = h(er(2),er(z)). In the local coordinates 2z = (21, , 2,,), we write g =3~ g;5d2; @

dzj on D. By the definition of g, we have g7 = aszlf’ag;. Write G(z) = G(z,%) = det(g,7) > 0.

Denote by I,, the n x n identity matrix. Write P(y,p) for the characteristic polynomial of the
linear operator mL_HRi(rg*1 : TZ}"OM — Tpl’OM. That is, P(y, p) = det(yl,, — mL_HRiog*l). In the

. L. .. . 8%log G
local coordinates, writing Ricci tensor as Ric = (R,z)1<ik<n = —( (')zl(')ng )1<i,k<n, we have P(y,p)

is the determinant of the n x n matrix (yd;; — mLHRiE . ng(p)). Here the indices i, j, k run over
{1,2,--- ,n}.

By the constant Ricci eigenvalue assumption, P(y,p) does not depend on p. We will therefore
just write it as P(y). It is clear that P(y) is a monic polynomial in y of degree n. We apply
Proposition 2.1 to this polynomial P(y), then we get polynomials Q(y), P(m), Q(m), as well as real
analytic functions Z(r),#(r) in some interval I containing » = 1 as in Proposition 2.1. Write
y(r) = ﬁ for r € Iy. By Proposition 2.1, (m+1)rZ¢' + (m+1—2Z)¢ = 0 on I. It then follows
that

2¢(r) — (m + 1)r¢/(r) 2 ¢’

O T B TR S ©)

Theorem 1.1 will follow from the next proposition.

Proposition 2.5. Let

U={W=(26¢eCm™:z2eD,[|H(2)? €I}, Uy={W = (2,6 €C™:z ¢ D,[¢|H(2)? € I}.

11



Set
w(W) = (GH)™ 771 ¢(|g|H? (2)) for W € U.

Then u is real analytic in U and satisfies
J(u)=1o0onUy, u=0on.
Consequently, > is obstruction flat.

Proof of Proposition 2.5. The analyticity of u follows easily from the analyticity of ¢, as well as
that of G and H (for the later, see the discussion in Remark 1.2). We thus only need to prove the
remaining assertions. For that, we first prove the following lemma. Write X = X (W) := [£|H 2 (2)

for WeU andY =Y(W) := X¢((X) for W € Uy. Then by (9), we have Y = y(r)|,=x =

m+1
7 r=x-

In the following, we will also write the coordinates of D x C as W = (wy, -+ ,Wy—1, Wy, ). That
is, we identify w; with z; for 1 <7 < m—1, and w, with £. For a sufﬁciently differentiable function

and <I> ~ 0’

® on an open subset of D x C, we write, for 1 <i,j <m, &, = 22 Q5 = = G
1OW;

Bw ’ 87’

Lemma 2.6. Let u(W) be as defined in Proposition 2.5. Write Y' = dX, ie, Y =y (r)|=x

Then we have in Uy,

1 Y Y’ , -
(—logu);; =— +1RU+2QU+XXX ifl1<i,j<m-—1,
Yl
(_IOgu)ZEZYX’XF’ Zfz:m orj)g=m

Consequently,
P(Y)Y’
det ((—logw);7);¢; j<m = %H(Z)G(z)'

Proof. Note for 1 <4,j <m,(log X); = %(log H) 7. Consequently, for 1 <4d,j <m,

1
(—logu)7 = — 1 (log G);5 + 7 (log H) 5 — (log (X)) 7
B 1 (bl ¢/ v
o 11esGlig+ o (log X) 5 (¢X +(¢)X1Xj)-
Since X7 = X (log X);5 + YXiX;-? the above is reduced to
2 ¢ o, 1
(—logu); = o (log G) ;5 + (m - X= 5 )(logX)ﬁ - ((5) + §E>XZX5"

1 Y’

Since G(z) only depends on z, we have (logG);; =0 if i =m or j = m. Furthermore, (logG);; =
—R; for 1 < i,j < m — 1. Similarly, (log X);; = 1(log H); = 0ifi =mor j = m, and
(log X);5 = 1(log H)7 = %gﬁ if 1 <4,5 <m—1. Then the first two equations in the lemma follow.
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To compute the determinant of the matrix ((— log u)ﬁ)7 we first take out the factor Ylem from

the last row, and then use the last row to eliminate %Xinf terms from other rows. This yields

Y’ 1 Y
det ((* log “)ﬁ)lgi,jgm = }XmXWldet ( T mt lRﬁ + 59i3)1§i,j§m—1

Y’ Y 1 %
=X X X det (Eéz‘j Tl Ry - gjk(p))lgingm,l det(gﬁ)lﬁidﬁmfl
Yl

ik
:2m,1X Rq? : g] (p))lﬁi,jg'm—l det(gi;)lgi,jgm—l-

m—+1

Note X,,, = %|§|flgH%(z),Xm = %|§|*1§H%(z). Therefore by the definitions of G and P(y), we

have the above equals to %H (2)G(2). This proves the last equation Lemma 2.6. O
We continue to prove Proposition 2.5. Recall ¢ is defined by ¢(r) = 2(72,415@))7#1 Z on I.

This yields
—Z'P(Z2)z~(m+D) = ogmHlpg=(mtD) o [,

Consequently, since y = Z~! and —Z' = y'y~2,

yy" Pyt =2 re (M) on I,
By the definition of P, we have 3™ 'P(y~!) = P(y). Therefore the above is reduced to
y'P(y) =2"r¢~ (") on I,
Replacing r by X = X(W) = |£\H%(z) for W € Uy, we have
YP(Y) = 27 (6(X)) ") X = 27X G () B (2) (u(W)) (),
The last equality follows from the definition of w. Combining this with Lemma 2.6, we have

u™ ! det ((—log u)i;) =1 for W € Up.

1<i,j<m

This yields J(u) = 1 on Up. Since ¢(1) = 0, we have u = 0 on 3. This proves the first part of
Proposition 2.5. The latter part of Proposition 2.5 follows from the first part and Graham’s work
[4] (see the discussion at the beginning of § 2.1). O

Proof of Theorem 1.1: Theorem 1.1 follows from Proposition 2.5. O

Proof of Proposition 1.12: By the work of Webster [14] (see Proposition 4 in [16]), (M, g) is
spherical if and only if (M, g) is Bochner flat (i.e., its Bochner tensor vanishes). If M is com-
pact, then the conclusion follows from Corollary 4.17 in Bryant [15]; if (M, g) has constant scalar
curvature, then the conclusion follows from [31] and [32] (see also Proposition 2.5 in [15]). O

Proof of Corollary 1.3: As the statement is trivial if dim M = 1, we will assume dim M > 2.
Note since (M, g) has constant Ricci eigenvalues, it also has constant scalar curvature. Corollary

1.3 then follows from Theorem 1.1 and Proposition 1.12. O
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2.2. Proof of Theorem 1.4

Before we prove Theorem 1.4, we first establish the following proposition, which is of particular

importance for the proof of the theorem.

Proposition 2.7. Let n = m —1 > 1. Let A\; < --- < A\, < 1 be real numbers. Let P(y) =
1, (y— 'm2>«tl) Let Q(y) be a polynomial satisfying % = (m+1)yP(y) and Q(mi“) =0 (thus Q

is a monic polynomial of degree m + 1 and is uniquely determined). Let P and Q be polynomials

satisfying

Pe)=a""'P(x7h), Q(z) =a""'Qx).

Note P(0) = 1, P(z) > 0 on (0, 1], and Q(0) = 1,Q(™L) = 0, @'(™L) <0, Q(z) > 0 on

(0, mT'H) We have the following conclusions hold:

(1) There exists a unique real analytic function Z = Z(r) on [—1,1] (meaning it extends real

analytically to some open interval containing [—1,1]) satisfying the following conditions:
rZ'P(Z)+Q(Z) =0, Z(1)=0. (10)

Moreover, Z is an even function satisfying Z(0) = ™ and Z'(0) = 0,Z'(r) < 0 on (0,1] and
Z'(1) = —1,2"(0) < 0. Consequently, Z(r) € (0,51) on (=1,0) U (0, 1).

(2) Let ¢(r) := Q(fzﬁ(z))ﬁ Z. Then ¢ is real analytic on [—1,1]. Moreover, ¢ is an even
function satisfying ¢ > 0 on (—1,1) and ¢(1) = 0. Moreover, ¢ satisfies (m + \)rZ¢' + (m +1 —
22)¢ =0, and ¢'(1) = —2.

Proof of Proposition 2.7. It follows easily from the assumption and elementary ODE theory
that the ODE in (10) has a real analytic solution Z in some open interval I containing 1. Since

P(0) = 1,Q(0) = 1, we see the ODE in (10) implies Z’(1) = —1. Set
to =inf{t € [0,1) : on (¢,1], I a real analytic solution Z to (10) with Z’ < 0}.
By the definition, 0 < ¢3 < 1 and on (¢, 1], there is a real analytic solution Z to (10) with Z’ < 0.

Lemma 2.8. We must have tg = 0. Consequently, on (0,1] there exists a (unique) real analytic

solution Z to (10) and it satisfies Z' < 0.

Proof of Lemma 2.8: Seeking a contradiction, suppose ¢y > 0. Since Z is decreasing on (g, 1),
we have p1 = hmr—n;r Z(r) > 0 exists. We claim p < ™. Otherwise, there exists some t* € (to, 1)
such that Z(t*) = L. This is a contradiction as the ODE in (10) cannot hold at t*. We therefore

proceed in two cases:

Case I: Assume p = 1. Recall P(p) > 0 and Q(p) = 0. Since —Z' = rﬁ((ZZ))’ we have
0<—Z"<c(p—Z) on (tg, 1) for some positive constant c. Consequently, W < con (tg,1).

This contradicts the fact that Z(r) — pas r — tg.
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Case II: Assume p < mTH Then P(u) > 0 and Q(y) > 0. In the case, the following initial

value problem has a real analytic solution Z on some open interval J containing tg:
rZ'P(Z)+Q(2) =0, Z(to) = p.

Shrinking .J if necessary, we can assume Z' < 0onJ. By the uniqueness of solutions in the ODE
theory, we can glue the previous solution with Z to obtain a real analytic solution to (10), still
called Z, on some open interval containing [to, 1], which still satisfies Z’ < 0. This contradicts the
definition of ¢g.

This proves Lemma 2.8. O

By Lemma 2.8, Z is decreasing on (0,1) and therefore A = lim, ,q+ Z(r) > 0 exists. By the
same reasoning as in the proof of Lemma 2.8, we must have A < mT'H Suppose A < mT"'l Note
P(x),Q(z) > 0 on [0,\]. Since —Z' = %, we have —Z" > £ on (0, 1) for some positive constant
c. This contradicts the fact that Z is bounded on (0,1). Hence we must have A = mTH and thus

Q) =0.
We will keep the notation A := ™1 and write Q(Z) = (Z — N)g(Z) for some polynomial g.

Lemma 2.9. Tt holds that g(\) = —2P(\) < 0. Furthermore, Z'(0) := lim,_,o+ 2022 g,

”

Proof of Lemma 2.9: The first statement follows from the direct computation as below. By the

definition of g and Q,

1. 1
9 = Q') = (m+ N'Q(S) V()
By the fact that Q(}) = 0 and the definition of @, we have

g(>\) — _)\m—lQ/(i) — _(m;— 1) )\m—lp(

1
Y

1

_ m—1
)= -2 P(5

) = —2P()\).

To prove the latter assertion, we write Z(r) = A + rG(r) for some analytic function G on (0,1).
It is clear that G < 0 on (0,1). We only need to show lim,_,q+ G(r) = 0. For that, we substitute
Z=X+7rG and Q(Z) = (Z — N)g(Z) = rG(r)g(Z) into the ODE in (10) to get

G _ P2 +9(2)

=T RY 60 (0,1).

G rP(Z) 1)
By the first part of the lemma, lim,_,q+ % = —1. Consequently, %T_G) = % > < on (0,0)
for some positive constants ¢ and ¢. This implies lim,._,o+ G(r) = 0. O

Lemma 2.10. Write Z(r) = A+ W (r). It holds that W < 0 on (0,1], and a = lim,_,q+ W(r)

erists and is a negative real number.

Proof of Lemma 2.10: We only need to prove the second assertion. By assumption, Q(Z) =

(Z —Ng(Z) = r*W(r)g(Z). Substituting this and Z = X + r2W into the ODE in (10), we get
2P(2) +9(Z 2P

(}D-l-g( )W:_ ()x—l—rG)—ﬁ—g()\—i—rG)Won(O’l}. (11)
r

W= — -
(2) rP(A+rG)
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Note 215()\+7"G) +g(A+rG) is a polynomial in rG, whose constant term equals 215()\) +g(\) =0by

Lemma 2.9. Again by Lemma 2.9, G(r) — 0 as r — 0. Consequently, f(r) := W
extends to a continuous function on [0, 1]. Then by (11) we have
1 1
(=W (r)) = In(—W (1)) - / F(#)dt = In()) — / Ft)dt
Consequently, a = lim,._,o+ W (r) exists and is a negative real number. O

Lemma 2.11. There exists a unique real analytic function To(r) at r = 0 satisfying the following

initial value problem:

> 2 2
T _2P(>\+TA T)+gA+r T)T7 T(0) = a. (12)
rP(\+r2T)

Moreover, the function is even on (—e,€) for some small € > 0.

Remark 2.12. Note 2P(A+72T) 4+ g(A+72T) is a polynomial in r2T’, whose constant term equals
2P(\) + g(\) = 0 by Lemma 2.9. Therefore 215()‘+T2T)r+g(>‘+r2T) is a polynomial in r and 7.

Proof of Lemma 2.11: Note by Remark 2.12, the right hand side of the ODE in (12) is real
analytic in 7, T in a neighborhood of (0, a). Therefore the existence and uniqueness of the solution,
as well as its real analyticity, follow from elementary ODE theory. Note if Tj is a solution to
the initial value problem (12), then so is Tyo(—r). By uniqueness of the solution, T} is an even
function. O

Let Tp : (—€,€) — R be as in Lemma 2.11. Write Z(r) = A + r2W(r) as in Lemma 2.10. Note
W and Ty are both continuous functions on [0, €) satisfying the following ODE and the Cauchy

data: .
2P\ +72T) + g(\ + r2T)
7’15(/\ +727)

Lemma 2.13. We have W =1T; on [0,€).

T = — T on (0,¢), T(0)=a. (13)

Proof of Lemma 2.13: This follows from basic ODE theory. For the convenience of readers, we
sketch a proof. Write ¢ (r,T') for the right hand side of the ODE in (13). Recall ¢(r,T) is real
analytic in a neighborhood of (r,T) = (0, a). Pick a small neighborhood U of (0,a) and a positive

constant L such that
W)(rv Tl) - 1/)(7’, T2)| < L|T1 - T2| for (T7 Tl)a (Tv TQ) evU.

By making e smaller if necessary, we can assume (r, W (r)), (r, To(r)) € U whenever r € [0,¢€). Then

for z € [0, ¢€),

W () - To(e)] < /0 "o, W) — (e, To(t))ldt < /0 " LWty - To(o)ldr.

Then by the integral form of the Gronwall lemma, we have W = T on [0, €). O
We now continue the proof of Proposition 2.7. Let )\, Ty be as above and set ¥ = \ + r2T.

Then ¥ is a real analytic even function on (—¢,€). Moreover, ¥ = Z on [0,¢). Therefore we can
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glue Z with ¥, and then apply the even extension to obtain a real analytic function on [—1, 1],
which we still denote by Z. It is clear that this new function Z still satisfies the ODE in (10).
Moreover, since a = W(0) < 0, we see Z”(0) < 0. This proves part (1) of Proposition 2.7.

We now prove part (2) of Proposition 2.7. First by the definition of ¢ and the properties of Z
in part (1), it is clear that ¢ is real analytic and even on [—1,1], and ¢ > 0 on (—1,1) and ¢(1) = 0.
The latter assertion in part (2) can be proved identically as Proposition 2.1.

This finishes the proof of Proposition 2.7. O

We are now ready to prove Theorem 1.4. Choose a coordinate chart (D, z) of M together with

a frame ey, of L over D. Writing 7 : L — M for the canonical fiber projection, we have
7 (D) = {&e(2) : (2,€) € D x C}.
Under this trivialization, D(L) and S(L) can be written as follows locally over D,
DL)N7 YD) ={W = (2,§) € D xC: |¢|*H(z,%) < 1},

S(LYN7 Y (D) ={W = (2,6) e Dx C: |¢]*H(z,2) = 1}.

Here H(z) = H(z,%) = |er(2)|3. In the local coordinates, we write g = (9;7) on D. By the definition

of g, we have g,; = 6;;;’5;. Write G(z) = G(z,%) = det(g;;) > 0. In the local coordinates, the
Kihler form & in Theorem 1.4 is given by & = —id0logu, where u = (GH)_ﬁcj)(mH%(z)) and
¢ is given by part (2) of Proposition 2.7. Since ¢ is real analytic and even on [—1,1], u is real
analytic in a neighborhood of D(L)N7—!(D). Consequently, & is a real analytic Hermitian form on
D(L)N7~1(D). By the identical proof as in Proposition 2.5, we can show u = 0 on S(L)N7~1(D)
and J(u) =1 on D(L) N7~ (D).

Since J(u) = 1, equivalently, det ((—logu),;) = u~ "t in D(L) N7~ YD), and u is

1<i,j<m
a local defining function of some strongly pseudoconvex piece of boundary, we see w is positive
definite in D(L) N 7w~ 1(D). Also J(u) = 1 implies the metric § induced by @ has constant Ricci
curvature —(m + 1). Since the coordinate chart D is arbitrarily chosen, g is a Kéhler-Einstein
metric in D(L).

It remains to prove g gives a complete metric on D(L). By the Hopf-Rinow theorem, it suffices
to show (D(L),q) is geodesically complete. Let v : [0,a) — D(L) be a non-extendible geodesic in
D(L) of unit speed with respect to g. We only need to show that a = +oo, equivalently that v has
infinite length. For that, we first establish the following lemma.

Lemma 2.14. One has g > Zj‘; m*(g) in D(L).
Proof of Lemma 2.14: Fix a coordinate chart (D, z) of M together with a trivialization of L

over D. Let Z be as in Proposition 2.7 and let y(r) = % Under the coordinates of 7 ~1(D), as in

§ 2.1, we write X = X(W) = [¢[H3(2), and ¥ = Y(W) == ;27 — X4 Similarly as in § 2.1,

by (9), we have Y = y(r)|,=x. Furthermore, by Proposition 2.7, Y € [-27,00) on D(L) N7~ !(D).
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Since the setup here is the same as in § 2.1, an identical version of Lemma 2.6 still holds. In

particular, writing Y’ = 9¥ we have the following hold in D(L) N 7~'(D) when X # 0:

ax°
- Y Y’ . .
g7 = (—logu); = —THRZ; + 2597 + yXiX;, if1<i,7<m-—1, (14)
Y/
97 = (—logu)7 = YXiXF’ ifi=morj=m. (15)

Recall by Proposition 2.7, Z(r) is even, real analytic and positive on (—1,1), Z'(r) < 0 on (0, 1)
and Z'(0) = 0,Z"(0) < 0. Note y/(r) = —Z~2(r)Z'(r). Tt follows that y?, is real analytic, even and

positive on (—1,1). Consequently, Yyl is a positive real analytic function in D(L) N7~1(D). Finally

by (14) and (15), since (X;X7) is semi-positive definite and r> mlﬂ, we have the following holds

(recall g extends real analytically across {X = 0})

> ( L i +Y)ea0> L
e T B D LV g |

(= Ric+g) ®0 on D(L)N=~'(D).

By the assumption on the Ricci eigenvalues, we have Ric < A\,g with A, < 1. Then the lemma

follows easily. O
Next we write 4 = 7(7y) for the projection of v to M and proceed in two cases:

Case I: Assume 7 is not contained in any compact subset of M. In this case, since g is complete

on M, the length L4(¥) of 4 under the metric g equals +00. Now by Lemma 2.14 the length Lz(7) of

1-Ap
m+1

v under the metric g satisfies Lg(7y) > L4(%). Therefore it also equals +o00. Hence a = +oc.

Case II. Assume 4 is contained in some compact subset K of M. Seeking a contradiction,
we suppose a < +oo. Note for any sequence {t;};>1 with ¢; — a, we must have |y(¢;)[, — 1.
Otherwise, by passing to subsequence, 7(t;) converges in D(L), which contradicts the assumption
that + is non-extendible. Consequently, there exist some small ¢ > 0 and some 0 < ty < a such
that y([to,a)) C W :=={w € D(L) : n7(w) € K, |w|p > €}.

Again by the assumption on the Ricci eigenvalues, we have Ric < \,g < ¢g. Then by (4), we
have in D(L),

w(w,w) > wi(w,w) := —id0log ¢(|wp,)-

Define a function ¢ : L — R by (w) := |w|? —1. Then by the well-known Grauert’s observation,
1 is strictly plurisubharmonic at every point w € L with |w|, > 0. Moreover, 4 is a defining function
of S(L).

Write p(w) = ¢(Jw|p). Recall ¢(1) = 0,¢'(1) < 0, and ¢ > 0 on (—1,1). Hence p = (—¢)u
for some positive smooth function y in a neighborhood of W,. By page 509 of Cheng-Yau [2], it
proves ¥ := log ﬁ has bounded gradient with respect to wy = i00¥. More precisely, VY|, <1
in W,. Here the gradient is taken with respect to wy. Note in any coordinates chart, we have

1 1 1
YRS g R e = oy
Therefore wg > ﬁia&ﬂ- Write k := log i By the compactness of W, and the positivity of {99,

1/9%-

we see 100y > —cidOk in W, for some positive constant ¢ > 0. Consequently, when ﬁ is large
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enough, we have wy > 4(—id0k). Hence we can find M > 0 such that in Vys := {z € W, : ¥(2) >
M}, it holds that wy > 4(—i00k). This implies wy = —iddlogy = wo + (100kK) > 3wy in V.
Consequently, |v]y, > §|v|OJO for any tangent vector v.

Next we choose a sequence {¢;};>1 such that all ¢; > ¢9,¢; — a, and y(¢;) € O, := {z € W, :
U(z) > 27}. Then for any j large enough, it holds that O;_5 C Vias. Moreover, we can find some
0 <t} < t; such that y((t5,1;]) C Oj_1 and W(y(t5)) = 277" Then we have

t; t;
/ I (£) o dt > / A Ot > X / (Dt > 5 / V0o |7 (1)
0 t;

> ? /t7 (VU (t))wdt = ? / J %(‘I’ oy(t))dt = o (t;) — Wor(t]) > 277

t*
J
This proves v has infinite length and thus a = +00, a plain contradiction.
Therefore in any case, a = +o0o. This proves the completeness of the metric g. The uniqueness
of a complete Kahler-Einstein metric of negative curvature is well-known and follows from Yau'’s

Schwarz Lemma [33]. This finishes the proof of Theorem 1.4.

Remark 2.15. When M and D(L) are realized as bounded domains in C"™ and C**! respectively,
as D(L) admits a complete Kéhler-Einstein metric @, D(L) is a domain of holomorphy by Mok and
Yau [34]. Moreover, by page 45-46 of [34], the volume form of & goes to co when approaching the
whole boundary of D(L) (including S(L) and 0M). Note in this case the function u constructed
in the proof of Theorem 1.4 can be chosen as a global function, which is the —1/(m + 1)th power

of the coefficient function of the volume form. Therefore, v = 0 on the whole boundary of D(L).

Remark 2.16. Proposition 1.8 shows that in Theorem 1.4 the assumption that all Ricci eigenvalues
are strictly less than 1 cannot be relaxed. On the other hand, it remains interesting to see whether
the constancy assumption on the Ricci eigenvalues can be dropped. More precisely, let M be
a complex manifold and (L, h) be a negative line bundle over M. Assume the Kéhler metric g
induced by the dual bundle (L*,h~!) is complete on M. Assume at every point p € M, the Ricci
eigenvalues of (M, g) are all strictly less than one. Does the disk bundle D(L) = {w € L : |w|;, < 1}

admit a complete Kéhler-Einstein metric with negative Ricci curvature?

2.8. Proof of Proposition 1.8

In this section, we prove Proposition 1.8. By Theorem 1.4, it suffices to prove the “only if”
implication. For that, we let (L,h) be as in the assumption of Proposition 1.8, such that D(L)
admits a complete Kéhler-Einstein metric with negative Ricci curvature, and we will prove A < 1.
Set

Lo :={([Z],€Z) : € € C and Z € C"*!\ {0}} c CP" x C"*,

which is the tautological line bundle over CP". Let hg be the Hermitian metric on Lq defined by
ho(€Z) = €22 for any ([Z),€7) € Lo,
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Then wy := —c;1 (Lo, ho) = i001og hy induces the Fubini-Study metric gy on CP", which satisfies
the Kéhler-Einstein equation Ric(wg) = (n + 1)wp.

Note that the automorphism group Aut(CP") is PGL(n + 1). For any f € Aut(CP"), there
exists some A € GL(n+1) such that f([Z]) = [ZA]. Note f naturally induces a bundle isomorphism
F: Ly — Lo, depending on the choice of A,

F([2],62) = ([2A],£ZA).

In particular, if A € U(n+ 1), then f is an isometry of (CP", go) and F is an isometry of (Lq, ho).

More generally, every f € Aut(CP") also induces an automorphism of L given by
F(Z21,2Z---@2)=(2],6ZAQ ZA---® ZA). (16)

In addition, if A € U(n + 1), then F is an isometry of (LE, hk).
Since the Picard group of CP" is generated by the tautological line bundle Lj, we can assume,
up to isomorphism, I = L§ for some positive integer k. Now we have two Hermitian metrics, h

and hf, on L. Their induced metrics on CP", g and kgo, respectively satisfy

Ric(w) = \w and Ric(kwg) = nTH(kwo).
Here w denotes the Kéhler form of g. Since [Ric(w)] = [Ric(kwp)] = ¢1(CP") and [w] = [kwo] =
c1(L), we have A = "L,

By the uniqueness of the complete Kéhler-Einstein metric on CP", there exists some f €
Aut(CP") such that kgy = f*g. By a standard argument in Kéhler geometry, up to a bundle
isometry, we can just assume (L,h) = (LE, hE), and g = kgp. In this case, the isometry group of
(CP", g) is PU(n + 1), which acts transitively on CP".

Suppose D(L) admits a complete Kéhler-Einstein metric of negative Ricci curvature. Write
its Kéhler form as w. By rescaling the metric, we can assume Ric(w) = —(n + 2)w. Set Uy :=
{[ZO,ZI, e Zy) € CP" 2 Zy # 0} C CP". Let z = (21, - 2n) be the local affine coordinates of
CP" on Uy, that is, z; = Z;/Zy for 1 < j < n. Under the local trivialization of L on Uy :

([1,2], €1 z) @ - @ (1,2)) = (2,€) € U x C,

we have (z,¢) forms a local coordinate system of L on 7=1(Up). For simplicity, we also denote
Zpi1 =& On 771 (Up) N D(L), we write
n+1

o =+v-1 Z Gi7dzi A d7;.

3,j=1

_1
Set u = (det(g;;)) "**. Since @ is Kéhler-Einstein, u is real analytic on 7= *(Up) N D(L) (cf.

Theorem 6.1 in [35]). We write the Kéhler-Einstein condition in terms of u:
—8;0;logu™""? = —(n + 2)g,5. (17)
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By taking the determinant, we get

det((—logu)ij),; jpyy = v "2 (18)

Given any biholomorphism F': D(L) — D(L), by the uniqueness of negatively curved complete

+

Kéhler-Einstein metric, we have F*& = @. This yields F*@"+! = &"*!, and in local coordinates

this writes into
u(F(2,6)) |det JF(2,€)| 772 = u(z,€) if (2,€), F(z,€) € 7~} (Up) N D(L), (19)

where JF is the Jacobian matrix.
We will use this transformation relation to simplify u. Consider the S* action on D(L). That

is, for any 6 € [0, 27), we have an associated biholomorphism Ry : D(L) — D(L) defined by
R([2),620Z--®2) = ([2),e%Z2 0 Z---® Z).

In local coordinates (z,€), Rg(z,€&) = (z,€"%¢), and the determinant of the Jacobian of Ry equals

e’?. We let F' = Ry in (19) to obtain
u(z,&) = u(z,|¢])  for any (z,€) € 7~ (Up) N D(L). (20)

Let f be an isometry of (CP",wp). Recall that f induces a bundle isometry F' as in (16). In
particular, F' is a biholomorphism on D(L). Since Iso(CP",wg) = PU(n + 1), f is rational. Thus
there exists a complex variety E, depending on f, such that f|y,\ g, which we still denote by f,
gives a holomorphic rational map from Uy \ E — Uy. Moreover, the induced bundle isometry F'

can be written as follows for some linear function p in z :
F(2,€) = (£(2),6p()") on n~'(Uo \ B) N D(L).

To apply the transformation relation (19) to the above map F', we need to compute |det Jf| and
|det JF|. Since f € Iso(CP",wy), f preserves the volume form ‘;’T‘S,L Note that on Up,

wo L A o
= A5 e "dzy NdZT A - - dzy, N\ dZy,. (21)
Thus,
2
1
| det Jf(2)] = for any z € Uy \ E. (22)

(L+[f()P)m (1 + [z2)
Note that the Hermitian metric of L is hg and

h§(E(L,2) ® -~ @ (1,2)) = [€2(1+ [2[*)".
Since F' preserves this Hermitian metric, we have
2L+ [21%)* = [€PIp(2) P (1 + f(2))".

Thus,
1+ |2
LI Ll E eUy\ E. 23
|p(2)‘ 1+|f(z)|2 or any z 0\ ( )
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By (22) and (23), we obtain

k (1+‘f(z)|2)%m

| det(JE)(2)] = | det(Jf)(=)] - Ip(2)]" = (= EE

Now we can rewrite (19) into

14 |f(2)‘2)n+17k B

u(F(6) (7710 = u(,6).

Since Iso(CP",wy) acts transitively on CP", for any z € Uy we can choose some f € Iso(CP", wy)

such that f(z) = 0. Therefore, we get

1 miiok
u(zvg) = u(07§p(z)k) : (TW) e
By (20) and (23), we simplify it into
b 1 n4+l—k
u(z,€) = u(0, [€](1 + [2[*)?) - (TIZP) B (24)
We denote
k’ﬂ
G(z) = Wa H(z) = h((la 2)® - ® (LZ)) = (142"

Note that by (21), G(z) is the determinant of the metric g = kgo. By writing X := |£|H%, the
equation (24) is reduced to
u(z,€) = k72 u(0, X) (GH) ™. (25)
Let ¢(r) = ka+2u(0,7) for 7 € (—=1,1). Then ¢ is a positive, real analytic, even function (see
(20)). We rewrite u into
u(z,€) = ¢(X)(GH) 7.
We shall reduce the complex Monge-Ampeére equation (18) on w into an ODE on ¢. Set

2 rg'(r)
n+2  ¢(r)

y(r) == (26)

By the same computation as in Lemma 2.6, we have

1 Y Y’ . .
(—IOgU)ij Ny
inXE ifi=n+1lorj=n+1,

where Y = yl,=x, Y = ¢/|/=x, X; = B—Z for 1 <i<n+1(§=2p41) and X; is defined similarly

as in Lemma 2.6; g = > 9;7dz; @ dzj and R;j is the Ricci curvature of g. Moreover,

P(Y)Y’

det((*IOgu)ii)gi,jgnH = ontzy GH,
where
2 . 1 2\ \n
P(Y)=det(YI, — lec(g) g )= (Y - ot 2)
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Therefore, the complex Monge-Ampére equation (18) now writes into

P(Y)Y'

ey CH = $(X)" "I GH.

After simplification, we obtain
PY)Y' =2"F2X¢(X)~ "2 for any X € (0,1).

That is,
P(y)y = 2" 2r¢(r)~*2  for any r € (0,1).

Note that ¢(r) and y(r) are both real analytic on (—1,1). It follows that
P(y)y' =2"2r¢(r)~ "2 for any r € (—1,1). (27)
We observe the following properties of function y(r).

Lemma 2.17. y = y(r) satisfies (1) y'(0) = 0; (2) y'(r) > 0 for any r € (0,1); and (3)
f; Yy (r)dr = 4oo for any € € (0,1). In particular, y is an increasing function on (0,1) and

lim, ;- y(r) = +oo.

Proof. Since ¢(r) is an even function on (—1, 1), by (26), y(r) is also an even function on (—1,1).

Thus, y'(0) = 0. Next, note that (log(1)),; is positive definite by the Kéhler-Einstein condition
(17). Thus,
1 Y’ Y'H
(log(a))nJ’,lm = ?XnJrle = K >0 for X € (0, ]_)

Therefore, 4’ > 0 on (0, 1). To prove (3), we consider a curve v(t) = (0,---,0,t) € 7~1(Ug) N D(L)
for t € (¢,1). Since @ is complete, the length of v with respect to @ is infinity. Note that on ~,
H =1 and X =t. Thus, by Hoélder’s inequality

1 1 U/ 1 1 1 19 1
oo=/ |7/(t)\adt:\/§/ (;l—t)zdtgx/i(/ y’dt)2~(/ Edt)z,
€ € € €
Therefore, f: y' = oo for any ¢ € (0, 1). O

We are now ready to prove A < 1. First, we compare the vanishing order at » = 0 of both sides
n (27). Since ¢(r) is positive on (—1, 1), the vanishing order of the right hand side is 1. Therefore,
S0 is the left hand side. By this fact, since 3'(0) = 0 and y(0) = —25, we must have 3" (0) # 0 and

n+2°
2 22X \n
0%# P(y)|r=0 = — .
#PWlh== (55— )
Therefore, A # 1. It remains to rule out the case A > 1. Assume A > 1. Since y(0) = %ﬁ and y is

increasing to infinity on (0, 1), there exists some r* € (0,1) such that y(r*) = 7%2 We let r = r*
in (27) to obtain

0= 2"F2pp(r*) ("2 > 0,

This is a contradiction. Hence we must have A < 1, and this proves Proposition 1.8.
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Remark 2.18. We learned from the referee that Proposition 1.8 is indeed a consequence of Corol-
lary 5.6 in [36]. Moreover, Corollary 5.6 in [36] gives an affirmative answer to the question raised
in Remark 2.16 when M is compact. We also remark that Theorem 1.4 does not follow from [36]

as we do not assume M is compact.

2.4. An interesting case in Theorem 1.4 and proof of Proposition 1.9

A case of particular interest in Theorem 1.4 is when the base manifold M is a bounded domain
of holomorphy D. Recall that by a result of Mok—Yau [34], given A < 0, any bounded domain of
holomorphy D C C™ admits a unique complete Kéhler-Einstein metric g with Ric(g) = Ag. Write
z = (21, , 2y) for the coordinates of C", and g = }_ g,5dz; ® dz;. Write G(2) = det(g;5). Let

L = D x C be the trivial line bundle over D and H = H(z,%) a metric of L with g,; = a(;zlfag;

(the existence of H is guaranteed by the Kahler-Einstein condition). In this case, the disk bundle

D(L) becomes a domain in C"™ =C" x C,m =n+1,
Q=D(L)={W = (2,8 €DxC:|¢{?H(2,%) —1<0}. (28)

Likewise, S(L) C D x C is defined by |¢|?H(z,Z) = 1. Note all n Ricci eigenvalues of the
metric g equal to A\. By Theorem 1.4, Q admits a complete Kéhler-Einstein metric g with Ricci

curvature —(m + 1). We further use (4) to write the metric g in a more concrete way. For that,

. . . . ops ops 22 .
we first investigate the function ¢ given by Proposition 2.7. Writing pu = = the polynomials
P(y), P(z),Q(y), Q(x) in Proposition 2.7 are given by,
n m+1 m 1 m+1
Piy)=@w-w", Q) =——yly—p)"——H-—u"" +q
m m
R . 1 1
Pla) = (1= )", Q)= "0 (1= )™ = = (1= )™
m m

Here ¢ = 7(%_H)m“(1 - )™+ %) It turns out that in this case the ODE considered in
Proposition 2.7 can be a lot simplified. Let {(r) = 1_2#(2)(”’ which defines a real analytic and even

function in a neighborhood of [—1,1]. With the change of variables from Z to (, one can verify
that the ODE in (10) is reduced to (29), and ¢(r) = Q(flg(z))ﬁZ = 2( jC,)ﬁC. In addition,
since (m + 1)rZ¢' + (m+ 1 —2Z)¢ = 0, we have (30) holds. Then Proposition 2.7 and Theorem

1.4 (together with Proposition 2.5) yield Proposition 2.19 and Theorem 2.20, respectively.

Proposition 2.19. There exists a unique real analytic function ¢(r) on J := [—1,1] (meaning
it extends real analytically to some open interval containing J) such that the following conditions
hold:

r¢ = —c¢"™ +aC—1onJ, ((1)=0. (29)

1

Here c is as above and a = —%\ > 0. Furthermore, the function ¢(r) = 2 (fg, ) i C 1is the function

in part (2) of Proposition 2.7. In addition, the following holds:

21— \)

¢ + (1 — al)p = 0 with o = e

(30)
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Theorem 2.20. Let D C C" be a bounded domain of holomorphy and g be a complete Kaihler-
Finstein metric on D with some negative Ricci curvature \. Let G, H be as above and ) be the

domain in C™ as defined in (28). Let ¢ and ¢ be as in Proposition 2.19. Set
u(W) = (GH)™ 7 §(|E| H (2)). (31)

Then u is real analytic in €, and log% gives a potential function for a complete Kihler-Einstein
metric on Q with Ricci curvature —(m + 1). In particular, u is the (global) Cheng—Yau solution in

Q. It extends real analytically across the boundary part S(L).

Remark 2.21. The ODE (29) can be explicitly solved when A = —m. In this case, a = a = 2 and

¢ =0. A direct computation yields ¢(r) = 1’2’"2 ,Z(r) = ﬁ and ¢(r) =1 —r2.

While it seems difficult to solve (29) explicitly in general, in this section we will study the

rationality of  (equivalently, the rationality of Z) and find some applications.

Proposition 2.22. The following statements are equivalent: (1) ( is rational; (2) ¢™F 1 is rational;

(8) A =—m.

Proof of Proposition 2.22: We first prove (1) and (2) are equivalent. By Proposition 2.19,

Pt = (%)(2()7’”‘1. Consequently, the rationality of ¢ implies that of ¢™*!. On the other

ad—r ’ ’ IS m—+1y/
hand,by(30),%:7¢¢¢:afr%:af (@

presy| ¢m7+1) Hence if ¢™*1! is rational, then so is (.

This proves the equivalence of (1) and (2). By Remark 2.21, we see (3) implies (1) and (2). It then

suffices to show (1) implies (3). Suppose ( is rational and write {(r) = Sg;g with p and ¢ coprime.

Putting this into the ODE in (29), we obtain

rqg™(p'q—pd') = —cp™ T + apg™ — ¢ (32)

Since m > 2, we have ¢ divides p™*!. But this is only the case when g is constant. Therefore we
can assume ¢ = 1 and thus ¢ = p. Since ¢ cannot be constant by (29), we have the degree of p is at
least 1. Then by comparing the degree of both sides of (32), we must have ¢ = 0, and consequently
A = —m. This finishes the proof of Proposition 2.22. O
We are now ready to prove Proposition 1.9.
Proof of Proposition 1.9: Let D be the n—dimensional complex unit ball {z € C" : |2|? < 1}.

Letm=n+1,A<0and H = (1—1z?>)%. Let g = > 9;7d% ® dzj be the induced metric with

__ B%logH
95 = “oz0%;

. It is a well-known fact that ¢ is a complete Kahler-Einstein metric on D with Ricci

curvature A. In addition, writing G(z) = det(g;7), we have G = (}/\)"% To keep notation
simple, we will write ¢ = p(n) = (Z5)"m™, and thus p = 'G = (1 — [2*)™™, H = (11G)~>. Note

the disk bundle Q as defined in (28) is now reduced to

Q=Qy:={W=_(2,8ecC"xC:zeB"|¢*1-|z)% <1}.
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Set p* = ﬁn' If we pick A = —Z%, then we have pr% = E,. Therefore by Theorem 2.20, writing
u(W) for the Cheng—Yau solution of E,, we have

P _pt41 _p" "
u(W) = p51 (G(2) "1 o (7 [€|(G(2)) 7). (33)
We also recall the Bergman kernel K of E, was computed by D’Angelo [37]:

TR S U ¢ e 1 B
KWW)=Y ¢ . .
() Z (1= l22)7 —Jg2)"™

Here ¢; are constants depending on i,m and p. Note (1 — |z|2)% = (u~'G)~?". Consequently,

ISR o W (7 ) [ (7 ) Il
; ((p1G)=—r" —|e2)"™

. m 1

:(/flG)Hp C; <.

; (1 (urayw ey

To establish Proposition 1.9, we only need to show that if the Bergman metric of E, is Kahler-

(34)

Einstein, then p = 1. For that, we assume the Bergman metric gg of E, is Kéhler-Einstein and
first follow the work of Fu-Wong [26] to compute the volume form of gg. Note a generic boundary
point of E, is smooth and strictly pseudoconvex (indeed spherical). Fix any strictly pseudoconvex
boundary point W*. By using Fefferman’s expansion (see [38] and [39]) for the Bergman kernel near
W* and the argument in Cheng—Yau ([2], page 510), we see the Ricci curvature of gg at W € E,,
tends to —1 as W approaches W*. By the Ké&hler-Einstein assumption, the Ricci curvature of gp
must equal to —1. Then by Proposition 1.2 in [26], the determinant of gg equals the Bergman
kernel up to a constant multiple. On the other hand, the volume form of two complete Kéhler-
Einstein metrics, ((— log u)z5) and gg, on E, can only differ by a constant multiple. Consequently,
we have u(W)~("*+1) = cK for some constant ¢ > 0. Combining this with (33) and (34), we obtain

m

—(m—+1) __ c 1
o(r) ( ) = p Zczm (35)
i=0
This implies ¢™*! is rational. By proposition 2.22, A = —p% = —m. That is, p = 1. O

3. Kéahler surface with constant scalar curvature and Proof of Theorem 1.13

3.1. Preliminaries from CR and pseudohermitian geometry

In this section, we briefly review some background materials on the CR and pseudohermitian
geometry, which will be used in the proof later. For more details, we refer readers to [14], [28] and
[16].

3.1.1 Pseudohermitian geometry. Let X be a smooth orientable manifold of real dimension
2n+1. An almost CR structure on X is a pair (H(X), J), where H(X) is a subbundle of TX with
rank 2n, and J is an almost complex structure on H(X). We can then decompose H(X) ® C =
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TYOX @ T X, where J acts by i on T"°X and by —i on T%'X = T10X. (X, H(X),J) is called
a CR manifold if T X satisfies the integrability condition [T*°X T*0X] c T10X.

Since X is orientable and the complex structure J defines an orientation on H(X), the annihi-
lator subbundle H(X)+ := Ann(H (X)) C T*X is also orientable. A section 6 of H(X)? is a real
1-form. If € is nowhere vanishing, then we shall refer to such 8 as a contact form for H(X). (The
assumption of strict pseudoconvexity below justifies this terminology as € will then be a contact
form in the classical sense.) A CR structure (X, H(X), J) together with a choice of contact form 6
is referred to as a pseudohermitian structure, a terminology that is explained and motivated below.
Let w = df. Then w(-, J-) defines a symmetric bilinear form on H(X). If this symmetric bilinear
form is positive definite, then the CR manifold X is said to be strictly (or strongly) pseudoconver.
The Reeb vector field associated with the contact form 6 is the unique vector field 7" on X such
that 6(T) =1 and T 1df = 0.

From now on, (X, H(X), J) is always assumed to be a strictly pseudoconvex CR manifold and
6 is a given choice of a contact form. Let {Z1,---Z,} be a local frame of TYOX and Z5; = Z,
for 1 < a <mn. Then {T,Z1,--+ ,Zn,Z1, -+ ,Zn} is a local frame of TX ® C. We denote the
dual frame by {0,0',.--,0",0',... ,#"}. Note this is an admissible coframe in the terminology of
Webster [40], and {#',--- ,6"} can be identified with a coframe for (T19)*X. By the integrability
condition and the fact that T is the Reeb vector field, we have

6 = ig,50° N6,

where g,z is a positive definite Hermitian matrix. The induced Hermitian form on T10X is called
the Levi form. Some authors refer to the symmetric form in the previous paragraph as the Levi
form, but one is the complexification (and restriction to T*°X) of the other so both contain the
same information.
Webster introduced the notion of a pseudohermitian structure in [40]. By fixing a contact form
6, he showed that there are uniquely determined 1-forms wo?,7% on X satisfying
do? = 0% ANwo? +0NnTE,
(36)
Wog T Waa = d9ug, Ta NO* =0,
where the complex conjugate is reflected in the index (e.g., wz, = Wpa), and we have used the Levi
form g,5 to raise and lower the index. These conventions will be also adapted in the following.
We can write 7o = Aq,07 with Ay = Ayq, and (A ) is called the pseudohermitian torsion. The

Tanaka- Webster connection is defined by
VZo=w" ©2Zs, VZs=ws"®2Z5; VT =0.

In the case (Aqn-) all vanish, we say that the Tanaka-Webster connection V is (pseudohermitian)
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torsion free. By the work of Webster [40] (cf. [16]), the curvature form is given by

0.7 i=dw,® — wy? A wwﬁ

=— Rupa" 0" NO” + VP A 00 NO — Vo ASPOT N0+ 00, A TP — ity AOP,

where R,5” (equivalently, R,;0p) is the pseudohermitian curvature. Taking trace, we have the
pseudohermitian Ricci curvature R,; = —R,p,“ and the pseudohermitian scalar curvature R =
R,5g"".

3.1.2 The Fefferman space. Let (X, H(X),J) be a CR manifold and 6 a choice of contact
form, giving the CR manifold a pseudohermitian structure as defined in § 3.1.1. We introduce the

canonical line bundle of X as follows:
K:={ne A" (X):V1n=0forany V€ T"'X}.

If X obtains its CR structure from an embedding in a complex manifold N, then K is naturally
isomorphic to the restriction of the canonical line bundle Ky of (n + 1,0) forms on N.

Let K* be the canonical line bundle with the zero section deleted. We define an intrinsic circle
bundle F = K*/R™ as the quotient of K* by the R action  — An for any A € RT. A point in
F is an equivalent class [n] of (n + 1,0)-forms under multiplication by any A € RT. We can fix a

unique representative 7y by imposing the volume normalization condition
010 A (T 2mo) A (T 275) = 0 A dO™. (37)
In an admissible coframe {6,6",- - ,9",91, -+ ,0™} over an open set U C X, define ¢ to be
¢ = (detg,z) /20 NO A A O™

One can verify ¢ is a nonvanishing (n + 1,0) form on U and satisfies (37). Therefore, ¢ serves as a
local frame of the circle bundle F over U: any point 1 of F over U can be expressed as 7. We
will use v as a local fiber coordinate.

The Fefferman metric on F is given in terms of the pseudohermitian invariants by

g=ga50%-0°+20-0, with (38)

1 . (A
o= m(dv +iwe® — igaﬁdgag -

1
2(n+1)
The Fefferman metric g is a Lorentz metric with signature (2n + 1,1), and (F, g) is called the

RY). (39)

Fefferman space. The conformal class of the Fefferman metric is a CR invariant of (X, H(X), J).
The reader is referred to, e.g., [28] for more details.

3.1.3 The circle bundle and Kéhler geometry. Let (L,h) be a Hermitian line bundle
over a complex manifold M of dimension n. We assume (L, h) is a negative line bundle, that is,

w = —c1(L, h) induces a Kahler form on M. Consider the circle bundle

S(L)=S8(L,h):={veL:|v=1}
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which is a (2n + 1)-dimensional CR manifold. By an observation of Grauert, it is strictly pseu-
doconvex. Set § = idlog|v|?, which defines a contact form on S(L). In this way, we obtain a
pseudohermitian structure on the strictly pseudoconvex CR manifold S(L) with contact form 6;

we shall use the notation (S(L),6) for this pseudohermitian structure.

Let (U, (2%,--+,2™)) be a local chart of M on which we have a local trivialization e, of L. If we
write |ep|} = H(z, %), then locally w = i0dlog H(z, z) := ig,zdz* A dz8 with 9B = %

Over U, S(L) is given by {(2,&) € UxC : |¢|?H(z,%) = 1} with the contact form 6 = i0log(|¢|?H)
and df = w. We have a local frame of the complexified tangent bundle T'S(L) ® C:

%_28 7 0 g(‘_?logHg 7. 7.

T=i(£ 55)7 a:@— 920 OF

The dual frame is given by
0, 0¢ = dz*, 0% = dz°.

Let V be the Tanaka-Webster connection of the pseudohermitian structure induced by 6. As is
well-known in this case, the Tanaka-Webster connection is (pseudohermitian) torsion free (i.e., the
pseudohermitian torsion defined in § 3.1.1 vanishes) and the connection (covariant differentiation)
is given by

ViZoa=0, Vz.Zs=0, Vg, Zs=T),7,

where IN“ZB =g %97‘1’7 (see more details in [16]). Note that the IN‘ZB are S'-invariant and can by

identified with the Christoffel symbol of the Levi-Civita connection of (M, g) (where g denotes the

Kéhler metric induced by the Kéhler form w).

1ol
9z "

Let m : S(L) — M be the natural projection. Then 7,7 = 0, 7.2,

" = %ﬂ and 7, Zg =
Under this map, we can actually identify the Tanaka-Webster connection on the CR tangent bundle
H(S(L))®C with the Levi-Civita connection on M. In particular, the Tanaka-Webster connection
1-forms w,® are identified with the Levi-Civita connection 1-form of (M, g). By the work of Webster

[40] (cf. [16]), the pseudohermitian curvatures are given by

a2g(¥/§ 'yg ag’YB agag

_ _ _ pM _ pM _ pM
Runad = 5. 0 9" 07 0z, Twep  Twr =Ry R=RT
where Rﬁ/l{/a 5 RMMD and RM are respectively the (Kihler) Riemannian, Ricci and scalar curvature

of (M,w). Due to these identities, we can drop the superscript ‘M’ in the curvature notations of

(M,w) without causing any ambiguity.

3.2. Proof of Theorem 1.13
In this section, we focus on the case of Kéhler surfaces (n = 2) with constant scalar curvature.
In this case, we can give an explicit formula of the obstruction function in terms of curvature tensors
of the Kéhler surface (Theorem 3.1 below), from which Theorem 1.13 will follow immediately.
Let K5 be the trace-modified Ricci curvature tensor defined by K5 = i(RaB — %Rgaf}). We
denote A = K, 3K @B where the indices are raised up by using g*%.
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In computations, we shall often use normal coordinates for g near a given point p € M, under

which we have all connection 1-forms w,? vanish at p (i.e., all Christoffel symbols fgv vanish) and

10 MO
(905(P) = , (Ro5(p)) = ; (40)
0 1 0 Mo

where A\; and A9 are the Ricci eigenvalues at p.

Theorem 3.1. If (M, g) is a Kdhler surface with constant scalar curvature, then the obstruction
function O of the circle bundle S(L) with the contact form 0 (as fized in § 3.1.8) up to a nonzero
constant multiple is given by

A%A + RV, V3A, (41)
where A = gO‘EVQVB is the (complex) Laplacian on M.

We first sketch the idea to prove Theorem 3.1 here. In the seminal work of Fefferman and Gra-
ham [41], they introduced the obstruction tensor O;; on an even dimensional conformal manifold.
The obstruction tensor is a conformally invariant symmetric 2-tensor. Consider a strictly pseu-
doconvex CR manifold X with pseudohermitian structure (X, 6) and let (F,g) be its Fefferman
space. In [30], Graham and Hirachi pointed out the relation between the obstruction function O

of X and the obstruction tensor O;; of its Fefferman space (F,g).

Theorem 3.2 (Proposition 3.6 in [30]). Let m : F — X be the natural projection. Then the

pullback of © 02 is the obstruction tensor of (F,g) up to a nonzero constant multiple.

In our situation, the CR manifold X is S(L) and (F,g) is its Fefferman space. Let the local
frame {T', Z,, Zz} on an open neighborhood U C X and its dual frame {60, 6%, 6%} be as introduced
in § 3.1. We shall identify 6, 6%, #® with their pullback 7*@, 7*#%, 7%« on F respectively. Putting

them together with o introduced in (39), we obtain a local coframe on F:
(60, 0271y = (0,6%, - 0™, 6%, 07, 0). (42)
By a straightforward computation, this is the dual frame of
(Xo, -+, Xong1) == (N, Y1, Yy, Yq, -, Yo, (n 4 2)5), (43)

where S is the vector field induced by the S! action on F, and

R i s _
N=T+——S8, Yo=24—=9"(Z0g.5)S, Ys=7Y,
+2(n+1) . 597" (Zagy5)

Remark 3.3. For any function f on S(L), we can lift it to an S!-invariant function 7*f on F.
Then X;,0 < i< 2n, (ie, N,Y,, Y5, 1 < a<n,) acting on 7* f, respectively, is the same as the lift
of Tf,Znf, Zaf to F. On the other hand, Xs,,4+1 always annihilates 7* f. These facts will be often

used in the following computations without being explicitly pointed out. We will also identify 7* f

with f when there is no ambiguity.
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In this local coframe (42), Theorem 3.2 yields that the only possibly nonzero component of the
obstruction tensor O;; is the 62 component, i.e., Oy. Furthermore, under the map 7 : S(L) — M,
the obstruction function O equals Opy up to a nonzero constant multiple. Therefore, to find O it
suffices to compute Ogg.

We will use the letters i, j, k to denote indices ranging between 0 and 2n + 1, and use Greek
letters «, 3,7 to denote indices ranging between 1 and n. Let D be the Levi-Civita connection of
(F,g). Let p;; and p be respectively the Ricci and scalar curvature of (F,g). When M is a Kahler
surface (n = 2), we have dimg F = 6. In this case, Graham and Hirachi [29] gave an explicit

formula for the obstruction tensor in terms of certain curvatures and their covariant derivatives.
Theorem 3.4 ([29]). When dimg F = 6, one has

Oij = Bij ¥ — 2Wyij B* — 4P.* By + 8PklO(1',j)k7l —4C* ! Cyyy, (44)
44
+ 20 Cjpy + 4P* 1 Ciipyt — AWyiji PF o P™,
where Wi is the Weyl curvature tensor of the Fefferman space (F,g); Pi;,Cijr and Bj;j are

respectively the Schouten, Cotton and Bach tensor of (F,g) defined by
1 p .
P = i(pij - Egz‘j)7 Cijk = Pijik —Piksj Bij = Py * = Py ¥ = PP Wiiji.

The parentheses in C(;;),,; and C(i]—)l above indicate symmetrization over the index pair i, j:
Clijykot = %Cij;c,l —i—%Cjik,l, and likewise for C(,-j)l. The comma notation is used to represent a
covariant derivative.

By Lee’s work [28], the Fefferman metric g on F can be characterized by Webster’s pseudoher-
mitian invariants on X. As a result, we can translate the curvature tensors in (44), such as the
Schouten, Cotton, Weyl and Bach tensors, into the pseudohermitian curvatures on X. This process
consists of standard, but technical calculations; we will therefore leave it to Appendix § 4. It is
worth to mention that every S'-invariant tensor on F can be identified with a tensor on X. We
shall then express the component Qg in terms of the pseudohermitian curvatures. As pointed out
in § 3.1, the pseudohermitian curvatures on X can be identified with the corresponding curvatures
of the Kahler manifold (M,w). This allows us to write Qg in terms of the curvatures on (M,w)
and obtain the desired result in Theorem 3.1. However, a complete computation would a priori
be quite laborious. We make a key observation that Theorem 1.1 can be applied to much simplify
the process.

Before proving Theorem 3.1, let us set up some notations. Denote by 7 = T (R,3, g,5) the vec-
tor space of all pseudohermitian tensors which are linear combinations of the products of Rz, 9.5
and their contractions. For example, all the following terms

(X7 1 1 (X7
R=Rop0*, Kap=j(Rop ~ §ROap): Ka'Kyp, A=KopK
are in 7. Note that neither the full Riemannian curvature R

R

35 DOT any covariant derivative of
w5 18 allowed in 7. For two tensors A and B, we write A=B+T if A-BeT.
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Let A7 < X2 be the Ricci eigenvalue functions on M. That is, for any p € M, A\ (p) and
A2(p) denote the two eigenvalues of the endomorphism Ro”|, : Tp°M — T3°M. Denote by
P = P(A1, \2) the vector space of symmetric polynomials of A; and Ay (which are well-defined
smooth functions on M). For example, all of A\; + Ag, /\% + /\3 and A A2 are elements in P. For
another example, the complete contraction of any tensor in 7 is always in P. This is because we
can choose the normal coordinates at a given point p to make (40) hold. For two functions ® and
U on M, we write 8=V +Pif & — ¥ € P.

We are in the position to prove Theorem 3.1. In the proof, we will use some results and formulas
from Appendix § 4.

Proof of Theorem 3.1: We first need the following lemma on the covariant derivative of the

Bach tensor on (F,g).

Lemma 3.5.

5 10
g Boo,ki = 8AA + 4R’V ,V5A + S RAL+P.
Proof. We work with the local frame {Xo, -+, Xap+1} with n = 2. By (49) we have
g Boo,ki = Booso2n+1 +Boos2nt10 +29a33007a5 +295aB0075a .

Let us compute these four terms one by one. Let Ffj be the Christoffel symbol of the Levi-Civita

connection D on (F,g). Since I'ly =T% 1 =T§4,,1 = 0 for any p by (51), we have

Boo,02n+1 = Xan+1Boo,0 Boo,2n+10 = XoBoo,2n+1-

For the same reason, we also have Byg,0 = XoBoo and Byog,2n+1 = Xon+1Boo. By Corollary 4.9 and
Remark 33, it follows that BOQ,O = Boo,Qn+1 = 0 and thus Boo,oo = B00,2n+10 =0.
We note gQBBOO,aB and gEQBOO,Ba are the conjugate of each other. Thus it is sufficient to

compute either one of them. Since the Bach tensor is symmetric,
Booso5 = X3Boosa _F%OBpOmz _F%OBOp;a _F%QBOOW = X3Booa _QF%OBOpaa _P%a3007p .
By (51) and the fact Byg,0 = Boo,2n+1 = 0, we get
Boo,a5 = X5Bo0:a —QFgoBoma —T5,Booso —F%Z+1Boo72n+1 = X5Boo,a +2iK57 Bog,a . (45)
To proceed, we need to compute the first order covariant derivatives By, and Bos,. By (51),
Boo,a = XaBoo — 2Ty Boy = XoBoo — 2iK." Boy,
. i
Bos,a = XaBoy—T" By — Fg:yBoo - Fi%HBomH = XoBoy — iK' By + 590@300-
We put these identities back into (45) and use Corollary 4.9 to obtain
. R . )
Boosa =Xj(XaBoo = 2iKa" Bop) + 2iK5" (XaBoy = iKa" Bys + 5905 Boo)

=X5X0Boo + 2V K. VA + 2K, "V 5V, A+ 2K57V, V5 A — Ko5B00 + T
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We shall trace out the index by the Fefferman metric g. Note that gaBVBKa“ =0 and go‘gK 3=

@

+R (see Lemma 4.2). Thus, by (49) and Corollary 4.9 again we have

3 5 5 1
£"” Boo,ap =29"" X3XaBoo + 8K’V VA — 312Boo + P

=2A(2AA + 4(%AR - %1%3)) +2(RYP — éRg“B)VaVBA - %RAA +P
=4A%A + 2RV, VA + gRAA +P.
So the result follows from
£ Boo.ki = 29°° Boosap +29°7 Boo,as = SA%A + 4RV, VA + ?RAA +P
O

We continue to prove Theorem 3.1. The proof divides into two steps. In the first step, we prove

(41) holds up to some zero order term, that is,
Ooo = 8A2A +8R*PV,V3A + P. (46)

Then in the second step, by comparing with some model case which has constant Ricci eigenvalues
and applying Theorem 1.1, we conclude the zero order term represented by P in the above equation
must be identically zero.

Step 1. We first prove (46).

We will compute each term of Qg in (44) up to some term in P. Since the first term is
computed in Lemma 3.5, we shall begin from the second term in (44).

e Computation of Wy B*.

By (49) and (62) in the appendix and the symmetry of the Bach tensor, we have
Wion B* = gaawaaooﬁBSw + gaégwwﬁoo(vaS = 89a69wWaooﬁBw5-

Since B.; € T by Corollary 4.9 and W05 € T by (62), it follows that Wioo B* € P.
e Computation of P,*By.

By (57) and (52), we have
P* =2¢""P, 5 =29""K,5 = -R. (47)

By Corollary 4.9, Bog = 2AA + P. Therefore, P,*Byg = 2RAA + P.
e Computation of P*Cyy,;.

By (49), we have

P Coort =PijCoor . g g (48)
=PooCo02n+1,2n+1 +Pant120+1C000:0 +4P55C0057 9°° 977 + 4P3,Co0r-5 9°° 97"
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We need to compute the covariant derivatives of the Cotton tensor. Since I'S 5 . =T% (=

I'5, = 0 for any p by (51), we have

Coozn+12n+1 = X2n+1C002n+1, Co00,0 = X0Cooo-

By Proposition 4.5 and Remark 3.3, it follows that

Coozn+1,2n+1 = Cooo,0 = 0.

Note that the last two terms of (48) are the conjugate of each other. Thus we only need to compute

the last one. By (51), we have
Cooy:5 =X5C00y — I3, Cpoy — T, Copy — I'§ Coop

i

:XECOO’Y + Z‘I(gpcpo7 + iKSDOODr\/ — 5

1
9+5C000 — QKVSCOO27L+1~
We further apply Proposition 4.5 and obtain
1
Cooys5 = 5 XXy A+ T
Therefore, by (57) it follows that
a8 B _ B L g !

1P3oCo0y,5 979" = KV X X0A + P = LRV, VA — o RAN +P.

We put it back into (48) and get

1 .5 1
P Coopy = 5R“ﬁvavBA — o RAA+P.

e Computation of C*y'Cjo;, and Co* Cyp;.

Since Cjj;, = 0 if at least one of the index is 2n + 1 by Proposition 4.5, we have
C*o!'Cror, =g™g7' Cio; Cion
=787 (Ca0,Cs05 + C50,C50a + Ca05Cr05 + C05Cyoa)-

By Proposition 4.5 again, Caos = 0 and C,q5 € T. It follows that C*'Cior, € P. Similarly, we

also have
Co" Cop = g*Pg7° (CoarCop5 + CosyCoas + CoasCopy + Co55Coay) € P-

e Computation of P¥j; Cyot.
Since P¥j, = %R by (47) and R is constant, we have P¥;,; = 0. Therefore, P*;,; Coo! = 0.
e Computation of Wjyy P*,, P™.

By (62) and (58), we have
Wioot P* 1 P™ = Wa005 P P + W00 PP P™ = Wagos Py PP 4+ Wigga PP P14
By (62) again and (57), it follows that W03, Poj € T- Therefore, Wyoo P*,, P™ € P.
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Now we have done the computations for all terms in Opg. We put them back into (44) to obtain
) of 10 8 op 2
Ooo =8A*A + 4R’V ,V5A + gRAA — gRAA +4R*V,VzA — gRAA +P
=8A2A +8RPV, VA + P.

Thus (46) is proved. Consequently, Ogg — 8AZA — SR‘*BVQVBA = P for some P € P.
Step 2. We then show P = 0.
Given A € R, let Ay be the unit disk D(0,1) C C endowed with Kéhler metric

2
Xiaalog(l +12?) when A >0

wy = %85\z|2 when A =0

2
Xi@@log(l —|2?) when A < 0.

Then Ay has constant Gauss curvature A\. Given a,b € R, A, x Ay is a Kéhler surface with
constant Ricci eigenvalues a and b. By Theorem 1.1, its circle bundle is obstruction flat. On the
other hand, by Step 1 of the proof, we know the obstruction tensor is in the form of (46). Since A

is a constant in this case,
0= 0Ogp = P(a,b) for any a,b € R.

Thus we must have P = 0 and Opg = 8A%A + SRaﬁVaVBA. Combining this with Theorem 3.2
(see the discussion right after Remark 3.3), the desired conclusion follows immediately. O
We are now ready to prove Theorem 1.13.
Proof of Theorem 1.13: By Remark 1.14, when (M, g) has constant scalar curvature, the
differential operator A2 + RS VoV appearing in (41) is the Lichnerowicz operator L. Then
Theorem 3.1 yields that, up to a nonzero constant multiple, O is given by LA = vayhs VizVaA.

By using the normal coordinates at a given point in M, we have at this point

10 A O
0 1 “ 0 N

1 §)\1 — l)\2 0
(KQB) =7 0 ¢ 5 1
0 A2 — M1

It follows that

1,5 1 5 1 13 1

A= —(GM =22+ G — =A1)?) = — (13A7 + 1302 — 10\ \2) = ——R* — —C.

16 (M — 52"+ (Gha = 5A)7) = g (IBAL+ 1335 — 10N de) = o0 8 = 50

Since the scalar curvature R is a constant, we have LC' = —8LA. Therefore the Kéhler metric is

obstruction flat if and only if LC' = 0. If M is compact, by integration by parts, we have LC' = 0 if
and only if V5VaC = 0, which is equivalent to say that grad® ¢ = gaBVBOB% is a holomorphic
vector field on M. O
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3.8. Proof of Proposition 1.15

Since these two examples in Proposition 1.15 are not related, we shall prove them separately.
Let us first prove part (a) in Proposition 1.15.

Recall the Burns-Simanca metric is defined by

w =1400(|2|* + log |2|?)  for any z = (21, 22) € C*\ {0}.

Therefore, the metric tensor and its inverse are

2 —
g (Ve R EC LR =
Gap)=| A =1 = 14 Lzl
B R R

A straightforward computation shows the Ricci tensor is given by

Gy 1 ool 12— [af®) (2Ll + 1)
aB) T 4 2)2 _
251+ [21%) —@EP+VEA af o+ 2R(al - [2f?)
By raising up the index we obtain
(RF) = 1 |22]2 — |21 —27120
Py=—
FRAHERE | oz |a? — |2

The scalar curvature is R = tr(R,%) = 0 and the central curvature is C' = det(R.”) =

—W. By a straightforward computation, we have

12 16 —240|z|2 + 60  480|z|%> — 96
AC = — + A%C = .
(I+z2) A+ [2?)° (1+ 27 (1+]z)®
Moreover, we also have
3 20]z|> — 4
RV, V50 = 2.
T 1+ 2P

Therefore,
—240|z|2 +60  500/z|%> — 100

(1 + 1227 (1+1z[?)*
The above equals 0 if and only if |z|? = %. This yields part (a) of Proposition 1.15.

LC = A2C + RV, V;C =

To show part (b) of Proposition 1.15, we first prove the following theorem.

Theorem 3.6. Let (M, g) be a compact Kéihler surface with constant nonnegative scalar curvature
and with discrete automorphism group. If (M, g) is not Kaihler-Einstein and not locally symmetric

(i.e., is not locally isometric to any Hermitian symmetric space), then (M,g) is not obstruction
flat.

Proof. Suppose (M, g) is obstruction flat. Then by Theorem 1.13, grad™® C is a holomorphic vector
field. Since (M, g) has discrete automorphism group, grad®® C' must be trivial and therefore C' is
constant on M. Now that both the central curvature C' and the scalar curvature are constant, we
conclude that the Ricci eigenvalues are constant. Since (M, g) is not Kahler-Einstein, the two Ricci
eigenvalues must be distinct. But this is impossible by Theorem 2 in [42] (note in [42], by “Ricci
tensor has constant eigenvalues”, it means the Ricci eigenvalues are constant in our terminology),

as (M, g) is not locally symmetric and has nonnegative scalar curvature. O
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Now to establish part (b) of Proposition 1.15, it suffices to prove

Lemma 3.7. Let k > 14. Then there is a complex surface M obtained by the blow up of CP?
at k suitably chosen points, that admits a scalar flat Kdhler metric g satisfying all the following

conditions:
(1) the automorphism group of M is discrete;
(2) (M, g) is not Kihler-Finstein;
(8) (M, g) is not locally symmetric.

Proof. First by Theorem A in [43], the complex projective plane CP?, blown up at 10 suitably
chosen points, pi,---,p1o (not necessarily distinct), admits a scalar flat Kéhler metric, and any
further blow-up of the resulting complex surface M still admits a scalar flat Kihler metric. Note
there exists a union T of subvarieties of M such that M \ T is biholomorphic to CP* \ U2, {p;}.
Next we pick distinct points q1,- -+, qr_10 in M\T = CP?\ U2, {p;} such that the first 4 points
are in general position, which means any choice of 3 of them are linearly independent in C3. Then
we blow up M at q1,"** ,qr—10 to obtain a complex surface, which will be denoted by M. By the
aforementioned result in [43], we see that M admits a scalar flat K&hler metric g. Since g1, ,q4
are in general position, it is well known that the automorphism group of M is discrete. For the
convenience of the readers, we sketch a proof here.

Let 7 : M — CP? be the natural projection, induced by the blowups. Let L; = 7~ !(p;) for
1 <4¢<10and H; = 71'_1((]]') for 1 < j < k —10. They are all compact subvarieties of M. If
f is an automorphism of M that is sufficiently close to the identity, then m o f(L;) is in an affine
neighborhood of p;, and 7 o f(H;) is in an affine neighborhood of ¢;. On the other hand, since
mo f is a proper map, o f(L;) and 7 o f(H;) are complex subvarieties of CP?. This implies
mo f is constant on each L; and H;. But f is an automorphism of M and 7 is isomorphic away
from L; and H;. Hence we must have f(L;) = L; and f(H;) = H; for all ¢ and j. Consequently,
denoting by W the union of L; and Hj, f is a biholomorphism of M \ W. We conclude there
exists an automorphism ¢ of CP? such that 7o f = ¢ o 7. Note it must hold that o(p;) = p; and
¢(q;) = g; for all i and j. Since ¢i,---,qs are in general position, ¢ must be the identity map
of CP?. Consequently, f is the identity map of M. Therefore, the automorphism group of M is
discrete.

It also follows from a standard argument that (M, g) is not Kéhler-Einstein. Indeed note the
Chern number of M satisfies ¢f (M) = 9—k < 0. Assume Ric(g) = Awy. Then [, Ric(g) ARic(g) =
A2 f M wg > 0, a plain contradiction. For more details, we refer the readers to page 236 of [43].
Finally, since the blowup of a simply connected compact complex manifold is also simply-connected,
we see M must be simply connected. Then M cannot be locally symmetric. Otherwise M is

(globally) biholomorphic to some Hermitian symmetric space, which contradicts (1). O
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4. Appendix: Computation of several tensors

In this appendix, we will compute several tensors that were used in § 3. We will first compute
them in general dimension, and then restrict to the 2-dimensional case.

Let (L, h) be a negative line bundle over a complex manifold M of dimension n. We assume
(L,h) is negative and let w = —ci(L,h) be the induced Kéhler form on M. Thus, (M,w) is a
Kéhler manifold and we denote the induced Kéhler metric by g. Let X = S(L) be the circle
bundle, which is a strictly pseudoconvex CR manifold of dimension 2n + 1. Let the local frame
{T, Z., Zz} on an open neighborhood U C X and its dual frame {6,6% 6%} be as in § 3.1. Let
(F,g) be the Fefferman space over X. We will work with the local frame (Xo,- -, Xopy41) of F,
and its dual frame (09, --- ,6?"*1) defined in (43) and (42) respectively.

We will use the Roman letters 4, j, k,- -+ to denote indices ranging between 0 and 2n + 1 and
Greek letters «, 3,7, -+ to denote indices ranging between 1 and n. With respect to the above

frame, by (38) the Fefferman metric g on F and the Ké&hler metric g on M are related as follows:

(8i5) = (49)

o]
Q
Q
sy
o O O =

For the rest of this appendix, we will always assume the Kéahler manifold (M, g) has constant
scalar curvature. We will denote by D the Levi-Civita connection of the Fefferman space (F,g),
and denote by V the Tanaka-Webster connection on X. As discussed in § 3.1, the Tanaka-Webster
connection V is (pseudohermitian) torsion free and we can also identify it with the Levi-Civita
connection on (M,g). In the following context, we denote by pijri, pi; and p respectively the
Riemannian (Lorentzian) , Ricci and scalar curvature of (F,g). We denote by R,z.5, R,5 and R
respectively the pseudohermitian curvature, Ricci curvature and scalar curvature of X; recall that
these curvatures of the pseudohermitian manifold X can be identified with those of the Kéahler
manifold (M, g).

We now compute the Schouten, Cotton, Weyl and Bach tensors of the Fefferman metric. Before

carrying out the calculations, we will need the formulas for the Christoffel symbols.

4.1. The Christoffel symbol

Lee computed the Levi-Civita connection on the Fefferman space (F, g). Since in our setting the
Tanaka-Webster connection V is (pseudohermitian) torsion free and the pseudohermitian scalar

curvature is constant, Lee’s result simplifies into the following.

Proposition 4.1 (Proposition 6.5 in [28]). The Levi-Civita connection 1-form (¢;%) of the Feffer-
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man metric g is given by
0 io? —ic® 0

2
0 0% —ie? 0
where

1 1

— B ; Vel _ _pB R _ _
60 = 4K D 800, 0= K Koy = g (Rui = 3y B0

Here 08 is the Kronecker symbol and w,”’s are defined in (36).

The Christoffel symbol is defined by Dx, X; = Ff’jX k- It is related to the connection 1-form as
Ffj = ¢;®(X;). By this relation, we can easily find out the Christoffel symbol.

0 0 0 0 0 K, 0 0
0 iK, 0 0 0 I, 0 0
(T5o) = : . ) =1 . N .
0 0 —iKz”® 0 tova 0 0 1Ky
0 0 0 0 0 i 0 0 (
, 51)
0 0 —iK;’ 0 0 0 0 0
Vet =3 j2n+1) = e

0 0 I 0 0 0 =—idy O
0o 0 —il 0 00 0 0

In the above, j is the row index and k is the column index, and r gv = gh? %7; is the Christoffel
symbol on Kéhler manifold (M, g). Note Ffj fF;?i = 0*([X;, X;]), which does not vanish in general.

The following lemma on the tensor K5 will be used in later computations.

Lemma 4.2.

1
K, = — 2
2(n + 1) (52)
KoK= — R#R,;— ——— RR;+———— _R% . (53)

BB T 22t B T i Dt 22 T Yt 1)2(n+ 22 B
VoKpy =VsKay,  V3K.;=V;K,5 VaKz*=0, VI Kz*=0. (54)

5 1
(VoK P) K" = K1V K 5 = 5 VaA. (55)
15 1 .

V’YV’YKO(B = mR’Y RO‘B'YS + mRal RP‘E (56)

Proof. The first two identities follow from straightforward computations:

3 1 1 3 1
Ka: *aﬁziR’—iR 3 aﬂziR
o =Kapg™" = 1o (Rap 2(n+1) 9a5)9 2n+1) "
1 1
KMK s=—— (R — ——R§" s _
5 =t ap e a8 e gy )
~_ ! Remy-— Y Rpr+—— 1 g
T2 T i D+ 22 P T A 1)2(n+ 22 Yol
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For (54), since the scalar curvature R is assumed to be constant, V,Kg5; = ﬁVQR[ﬁ. By

the second Bianchi identity, we have V,Kgy = VgK,5. If we trace out the index o and 7, then

VoKg* =VaK," = VR =0.

1
2(n+1)
The other two identities in (54) can be proved similarly. To prove (55), we have

(Vo K, )K" = %va (K,’Ks") = %VQA.

Similarly, we can also prove KVEVQK,yg = %VQA.
We now prove the last identity. Since R is constant, by the second Bianchi identity we have
V'V, K, *—LV"’V R *—LV"’V R.3
TReB T 49 PB4 2 atb
We use the Ricci identity to commute the covariant derivatives:
ViVoR,5=VaV'R, 5+ R, zR,™", + RA,DRQWB =VuoV'R 5+ R,zR." + RW‘SRagWB.
Note that by the second Bianchi identity again we have
VoV'R,5=V,V3R,” =V,VzR=0.
Finally, (56) follows from the above three equations. O

4.2. The Schouten tensor

In [28], Lee expressed the curvature of the Fefferman metric on F in terms of the pseudoher-
mitian curvature on X. In our setting the Tanaka-Webster connection V is (pseudohermitian)
torsion free and the pseudohermitian scalar curvature is constant, and Lee’s result simplifies into

the following.

Theorem 4.3 (Theorem 6.6 and Theorem 6.2 in [28]). The Ricci curvature tensor of (F,g) is
given by

S 1 o _ _ _
pijf @0 = ngijG’ ® 07 +nK 50" @ 0° + nK,30° @ 0%+ 2no @ 0 + 2K,;K°70 @ 0.

2(2n+1)
=i R.

In particular, the scalar curvature of (F,g) is p =
The Schouten tensor is defined as

N O
R 2(2n+1)g”)'

By Theorem 4.3, we can express the Schouten tensor in terms of pseudohermitian curvatures.

IA 0 0 0
0 0 K5 0 5
(P;) = 27 ap , where A = K, 5K°7. (57)
0 1Ksg 0 0
0 0 0 1
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We emphasize that P;; is a tensor on the Fefferman space F, and its indices are raised up or
lowered down by the Fefferman metric g. On the other hand, K, ; is a pseudohermitian curvature

on X, whose indices are raised up or lowered down by the pseudohermitian metric g. For example,
— 1 - _ — — —
pef — §g“6K57g75 = 2ga5ngg'YB = 2K*8.

A straightforward computation gives

1 0 0 0
g 0 0 2K* 0
(PY) = i (58)
0 2K 0 0
0 0 0 1A
4.8. The Cotton tensor
Since the Cotton tensor is defined as Cijr = Pij,x —FPik,;, we first compute the covariant
derivatives of the Schouten tensor P;;.
Proposition 4.4. The covariant derivatives of the Schouten tensor are given as follows.
(1) Poo,i = %XkA for any k.
3(KasK75 = 905) when k=B
(2) Poosk = Paosk = .
0 otherwise
—1K7K5¢—Ag& when k = 8
(3) Poak = Paosk = 2 (Ko™ = 500) .
0 otherwise
0 when k=0,2n+1
(4) P.g:ik = Pgosk = %VvKaB when k =~
%VWKQB when k=%
(5) Papsk= Psg=0 for any k.
(6) Pij,e=0 if at least one of i,j and k is 2n + 1.
Proof. We start with the covariant derivative formula
Py = XePij — TPy — T}, Pa. (59)

To prove (1), we let ¢ = j = 0 in the above equation and apply (57) to obtain
Poosi, = X5 Poo — Tyo Pro — Do Por = XxPoo — 2T Poo-

Since Pgo =0 for any k£ and Py = %A, it follows that Pyg,r = %XkA.
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For (2), we first note Pao,x = Poa,k as the Schouten tensor is symmetric. Therefore it is sufficient

to prove the formula for Py,,;. For that, we let ¢ =0 and j = « in (59) and get
Poask = XiPoa — ThoPia — Tho Por = —T75 Pya — I Poo.

By (51) and (57), we get

1

QKETVKQ.—Y — ;—ngagA when k = j,

POa sk =
0 otherwise.

Then the result in (2) follows from the symmetry K57 = K B:Y. We take the conjugate of the
equation (2) to obtain (3).

To prove (4) we let i = o and j = S in (59) and apply (57) to obtain
1 _
l l 17
Pogk=XePos —TpoPig — FkBPal = §X’“Ka5 - FgaPM; - FkBPag.

It follows that when k = 7, by Remark (3.3) and (51),

1 1
= 3K, = 5V, Ko

1
PaB”Y = §X'YKC¥B 9" Y

1 1 5 1
~ 3Tha s — 5T Ker = 52, Kap

When k =73, P,5,5= Psay = %VWKaB- Likewise when k = 0,2n + 1, one can show Pz, = 0.

The equations (5) and (6) can be proved in the same way as above, and we omit the proof. O
Then the explicit formulas of the Cotton tensor are given as follows.
Proposition 4.5. The following equations hold.
(1) Cij =0 if at least one of i,j and k is 2n + 1.
(2) Coor. = %Xk/\ for any k.

(8) Conk equals f%VQA when k = 0, equals i(KoﬂKﬁ — %gag) when k = B, and equals 0 for
any other k.

oak equals —=VgA when k =0, equals —1 a — =09Ba) when £k = D, and equals or
1) C Is —1VaA when k=0 l K5"Kqa — 2g3a) when k= j3, and Is 0 f
any other k.

(5) Cook equals %(KQ'VKW; — %gag) for k = B, and equals 0 for any other k.
(6) Caor equals —%(K,g”Kﬂ,@ — %g/g@) for k =3, and equals O for any other k.
(7) Capi equals —3VKay for k=7, and equals O for any other k.

(8) Cupy equals —%(KQ'YKw- — %gag) for k =0, equals %V.YKQB for k =, and equals 0 for
any other k.

Proof. The above formulas follow directly from Proposition 4.4 as Cjjr = Pjj,; —Fik,;. To show

C,p5 =0, we need to apply (54) to see V5K, 5 — VzKqy = 0. O
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4.4. The Weyl tensor

We shall compute the Weyl curvature tensor, which is defined by
Wikt = pijet — (Pirgji + Pjgix — Pugjr — Pjrgil)- (60)
Here p; ;1 is the Riemannian curvature of the Fefferman metric, given by the structure equation
QF =do — ¢ Nyl = f%ppqﬁep NG (61)

Proposition 4.6. The Weyl curvature tensor satisfies

WPOO ont1 =10 for any p, Waznt102n+1 =0,
1 A
Waoos = Wagos =0 Waoos = Waooa = *gKaWKWE T 5, 9ab (62)
7
WQBOS = Wa 2n+108 — 0, Waowg = —ivang.

Proof. We begin with the computation of the curvature form Q4°. By (50), we have
00 = dgo® — doF A 910 = =0 A d5° — do” A ¢5° = —io® A %96 —iof A %95.
Since o = K707 and 05 = g,50°, it follows that o A 05 = K507 A 6°. Therefore,
1

_ 11—
Q" = S K507 A0+ S K507 A 600 = 0.

Thus, by (61) the Riemannian curvature satisfies ppqoo = 0 for any p,q. By lowering down the

index, we get ppqo2n+1 = 0 for any p,¢g. Then by (60),
Wogo2n+1 = —(Ppo8q2n+1 + Py2n+18p0 — Pp2n+18q0 — Pyogpan+1)  for any p,q.
In particular, we let ¢ = 0 and apply (49) to get
Wpoo2n+1 = —(Ppogo ont+1 + Poon+18p0 — Ppan+1800 — POng2n+1) = —Ppo + Poogpont1-

When p = 0, it follows immediately Wooo2n+1 = 0. When p # 0, Py and gpaon+1 both vanish, and
thus Wpoo2n+1 = 0. Therefore, Wy 2n+1 = 0 for any p.

Moreover, by (60), (49) and (57), we also have
Wasn+102n+1 = _(pa0g2n+1 2n+1 T Pont12n+18a0 — Pa2n+182n+10 — Pant108a 2n+1) =0.
We then compute Qy“:

Q% = do™ — do® A ¢ =d(ic®™) — ¢o” N "

=id(K,“07) —iK, 07 A (wp® +iK3%0 + i650).
We use the normal coordinates at a given point p € M. At p all w,® vanish and furthermore

Qo = iVsK,“0° N0 +iV5K,%0° ANOY + K, K307 A+ K,“0" Ao
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By (54), VsK,* is symmetric in v and §. Thus the first term on the right hand side vanishes.
Therefore,

Q0 = —iV;K, %07 N 0° — K,P K0 A0 + K,%07 Ao.

It follows that the Riemannian curvatures satisfy

Pyooa = —KwﬁKﬁav Pﬁooa =0,

«

Pry2n+1 Oa = _K'y .

«
I

pys0” =0, p5” =iV5K,

We shall lower down the index «. Note that the left hand sides are curvatures of the Fefferman
metric, whose index is raised up or lowered down by the Fefferman metric g;;. But the right
hand sides are pseudohermitian curvatures, whose index is raised up or lowered down by the

pseudohermitian metric g, 5. By relation g,5 = % 9af> We obtain

1
p'yOOB = _iK”YuKlu[% p’?OOB = Oa
1 1
Prsop = 0o Pysop = 5VsKap  Pyanpiop = —5 K8
We can further compute the Weyl curvatures by (60), (49) and (57). We first compute W,,q93-
L., A
Woa005 = Paoos — (Paogos + Poggao — Paggoo — Poogaj) = —§Ka K. 5+ o Jai
By the symmetry of the Weyl curvature, we also have
1 A
Wa00a = Waoog = _iKavKVB + o Jab:
Next we compute Waoos and Wsggg. Similarly as above, we get
Wa005 = Paoos — (Pso8os + Pozgao — Pajzgoo — Poogaj) = 0.
We take the conjugate and obtain Wagos = 0. We can similarly compute W, 505 and W, z05:
Wagos = Papos — (Pao8ss + Pasao — Pasgso — Pso8as) =0,

i
Wapos = Papos — (Paogss + Pasgao — PasBpo — PhoBas) = 5 VKap:

For the last equality we have used (54). By taking the conjugate and using the symmetry of Weyl

tensor, we also have
- i
Waov5 = Waoszs = Wesoa = —§VaK75'

Finally we compute W, ,, 1105 in a similar way:

W 204105 =Pa2n+105 — (Pa0g2n+15 + Po,1158a0 — PosB2nt+10 — Pont1 Ogas)
1 1
=—-K s+-K s=0.
9 ad =+ 9 ad
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Proposition 4.7. The Weyl curvature tensor satisfies

1 1 1 1 1
WOLB"{S = iRaB’yg + EKozﬁg'yg + inggaB + §K'y,[§ga5 + éKaSg'yB7

Weapgss =0, Want1agont1 = Wont1 gaons1 = 0.
Proof. We first compute the Riemannian curvature p,z,5 of the Fefferman metric. Note
Q0 = da” = da’ N ;7 = dda” = 60" N 60 — 00T NG = 6" A fani”.
By (50), we get
Q0 = d(we” +iK, 0+i6%0) + %@ ANKPOT + %Kageg N
— (wo + K, 0 +i60) A (wy” +iK.,P0 + 65 o).

We next compute the term do. For that, we use the normal coordinates at a given point p € M.

Then by (39) the following holds at p:

o a 1

do =

Note that at p we have dw,” = —ngaﬁm A 6°. In particular, dw,® = R 507 A 0°. We can thus
simplify do into
1

do = ———(iR,30% N 07 —

. B BY _ .+ B 3
- iRg,30% NOP) =iK 50" N6

1
2(n+1)

By this expression of do, under the normal coordinates at p we write the curvature form into

— 1 1 —
Q0 =dw,” +iK, do — 65K 507 NO° + 2 0a A K,%07 + iKM;eS A0%  mod 6

1 1 5
=(=R5." — Ko’g.5 — 60K 5 — igagKﬁ - 51r<ag5fj‘)m AB°  mod 6.

Thus, by (61)

1

1
Prsa” = Roga” + Kalg,5 + 00K 5+ 59057 + 5

5B

We lower down the index 3 to get the following equation. Here again recall on the two sides of the
above equation the indices are raised up or lowered down by g;; and g,z respectively.
1 1 1 1 1
p'ygaﬁ = §R7(§QB + §Ka[§gwg + 59&3K75 + igaSK'yB + ZK(ySg'\/B

The corresponding Weyl curvature is given by

W5 =Pagrs — (Pav83s + Pisory — Pasiy — P3y8a5)
1 1 1 1 1
:§Raﬁ'yg + §Kaﬁg'75 + igaBK'yS + igongyB + §Ka<§g'\/5'

Next we compute the Riemannian curvature p,gs5 and the Weyl curvature W, g+5.

0’ = dpa” — da’ N 67 = 60 NG0" = 6> A b2nia”.
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Then by (50)

;1 ;1 5 1 55 1 5 0B
0.7 = —50a A of — 3%a A 0 = = 500507 A K570° — 5 K07 A 0°.

By anti-symmetrizing the index 7 and & on the right hand side, we get

7 1 ;3 1 5 1 7 1
pasa” = 59axK5" + §Ka’76§ - §9a5KﬁB - 5K

2 2 35

5
We lower down the index /3 to obtain

1 1 1 1
Pysap = 907K s + 1985 Kas — 1 905K 87 — 987K as-

Therefore, the corresponding Weyl curvature is
Waﬁﬁ/g = Papys — (Paﬁgﬂg + Pﬂggoﬁ/ - Pozggﬁ:}’ - Pﬁﬁgacg) =0.
Finally, we compute pa, 11 g4 2n+1 a0d Way, 11 02041+ BY (50), we have
Q= doa” = 9o’ A 6,° = 5d(ga507) = (wa” + Ko +i000) A 505
Since df® = 6% Aw,” by (36), if we use normal coordinates at a given point, then it simplifies into
0 . 8 B 7 5 1 5 1 =

Qa = —(ZK(X 0 + 26(10') A 5955,9 = iKa:Y@/\e + iga:yo/\e .

Thus, p2"+17yao = —%ga:y. If we lower down the index 0, then p2n415a2n+1 = —%ga:y. Therefore,

Wit Ba2ntt =P2nt1faznit — (Pontia85ont1 + Poont182n+1a — Pont12041850 — PiaB2nt12n+1)

1 1

= —gui+ 0.5 =0.
29aﬁ+2gaﬁ

By taking the conjugate, we also have Wy, 1 459041 = 0. 0

4.5. The Bach tensor

We next compute the Bach tensor B;; = gh D, Cijr — Plelm’jl-

Proposition 4.8. The Bach tensor of the Fefferman metric satisfies

4 4

Boo =—AA + 8K, KK, — ——A

7 8 B T+ 1) R,

n—1 n—1 n—1 n—1
Byj=— +—————=5RR.3 R'R5+ ——————5 R0, — ——Agap
BT D2 e g W g )22 e T Ty e
2n —2
Boo = z VoA, Bo2ny1 =0,

where A = go‘BVaVE is the complex Laplacian on the base Kdhler manifold M.

Proof. We begin with the computation of Byy. Note

Boo = "' D1Coor — P* Wiooi- (64)
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By (58) and the symmetry of Weyl tensor, the second term on the right hand side writes into

PHWioor =P Woooo + P Woagos + PP*Wigoa + P12 T Wy 1002041

=2P"W 005 + P 2" Wap i1 00 2041

We further use (62), (58) and (52) to write it into

g, 1 A A
Pl =4K* (2K, 'K 5+ ~—9a5) = 2K."K,*K,* + ———R.
Wioot ( 5 ~3t 2nga5) v Bt n(n + 1)R

Let us also compute the first term on the right hand side of (64).
"' DiCook = Dan+1Co00 + gaBDBCO()a + gBaDaCooB + DoCoo2n+1- (65)

We need to compute the covariant derivatives of the Cotton tensor on the right hand side of the

above equality. For the first one,

_ p p P
D2n11Co00 = X2n+1Co00 — 'y 0Cpo0 — 'y 1 0C0po — ', 11 0Coop

Since Cyop = 0 by Proposition 4.5 and an-s-l o = 0 for any p by (51), it follows that Day,+1Co00 =

For the second and third terms in (65), we apply Proposition 4.5 and (51) to obtain

D5Co0a =X5C00a — P%OCpOOz — F%OCOpa - F%acoop

1 R A
= KXol + SKT (Ko Ky = gas);

_ 2 - - A
g’ D5Co0a :EgQBXBXaA + 3K (K" K,s — ng)

2 3
=ZAAN+3K,’K3 K, — ———AR.
n 3 it/ 2n(n+1) R

Note that g‘“BDBCOOu is real. By taking the conjugate, we see gB"‘DuCO()B = g”BDBCOOw

For the last term in (65), we have

_ P P P
DoCoo2n+1 = X0Coo2n+1 — 'ggCpo2nt1 — L'ooCop2ntt — I'gapni1Coop-

Since Cooant1 = 0 by Proposition 4.5 and Tty = I'(,,,; = 0 for any p by (51), it follows that
DoCoo2n+1 = 0.

Bringing these results on Cotton tensor’s derivatives into (65), we get

4 3
kl _ B vy «
DiCoor = — AN+ 6K, Kg"K.,“ — —AR.
g DiCook n + 06" K1y n(n 1)
Therefore,

4 4

By = —AA+ 8K, Kz 'K, — ———AR.

00 n +8 « B o n(n+ 1) R
Next we will compute B, 3:

Ba,é = glelCosz - Plek:aBl' (66)
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The second term on the right hand side writes into

PlekaEl = POOWO&BO + P2n+1 2n+1W2n+1a52n+1 + PW&WWQBS + Pé’yWSaE'y‘
By (58), (62) and (63), we get
PlekaBl ="Wa0038 + P&YWSQB'Y

1 A 5.1 1 1 1 1
= §KQ’YKWB + %gaﬁ? + 2K7 (§Ra(§'y[§ + §KaBg'yS + §K'y5gafl + §K'7§ga5 + §Ko¢(§g'yf3)'
We use (52) and the fact that A = KQBKQB to simplify it into

2n+1 3

RKQB + TAQO‘B +-K, K - (67)

5
Plek’aBl =K’ RaB'yS + 2 5

1
2(n+1)
We next compute the first term on the right hand side of (66).

glelCaBk = DOC&B 2n+1 + D2n+1ca30 + 29’YSDSCO¢BV + QQS’YD’YCQEE' (68)

Let us compute these covariant derivatives of the Cotton tensor. Since Cjj; = 0 if at least one of

the index is 2n + 1 by Proposition 4.5 and I'f,,, ;, = 0 for any p by (51),
Doca52n+1 = _Fg2n+1caﬁp =0.
For the second term in (68), we have

D2n+1CuBO :X2n+1c(y50 - anJrlanBO - an_;,_lﬁcﬂtpo - an+1 OCaBp

= anJrlanBO -r CO&PO'

p _
2n+1p3
By (51), we get

D2n+1ca50 = 7an+1acuﬁo - ngb+1écal70 = 72(550#50 + Z’(Sgcap() = 0

For the third term in (68), we apply (51), Remark 3.3 and Proposition 4.5 to obtain

D5Capy =X5Capy — FZ(;BOO‘P'Y —TI5,Cppy — Fg»ycaﬁp
=(X5Cagy = I§5Cary) = T§.Cogy = T§,Capo
1 1 A 1 A
=3 VaVrlap = 3903 (K" Kug = 11915) = 3975 (Ko’ Kyg = ap)-
Therefore,
5 A n A
)
297" D5Cajy =NV Kop = 60 (K Kys = —95) = 5 (Ko Ky = - 9ap)

n+2 A
=V Kop = 5 (Ko K5 = —9ap):
For the last term in (68), we have

. — - _ p - P _
D‘Yoaﬁé 7X"YCO£5(; - Fgacpﬁé - F,YBCapé - FWS afp

_ ,, 0 0
=X,Cop5 —T5aClps — I5C005 — I'15Cqz0-
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By Proposition 4.5 and (51), it follows that
1 A 1 A
D:Cas = = 398 (Ka" Kys = - 9as) + 1955 (Ko Ky = T ga5).

Therefore,

n—1
2

5 1.5 A n A A

5 s
2g ’YD"/CaBE = §§B(KaNK“5 ngm;) + Q(KaHKILB ngaB) = (KaHKHB ngag).
We put the formulas on covariant derivatives of the Cotton tensor into (68) and obtain

3 A
glelCaEk = vawKaB - i(KauKuB - E9a6)~ (69)

By putting (67) and (69) into (66), we have

5 1 n—1
_ _ 0 o _ _ _
By (53) and (56), we finally get
R 5 1 1 n—1

Byg=:——+—9"Rogs+——R"Rg— =—RK,5— ——Ag,5 — 3K."K 3
B ot )nt2)? P T WB T op 1) BT Ty eB 78

n—1 n—1 n—1 n—1
- ——— _RR;+ ———RJ 'R 5+ —————R%g5 — ——Ngos
et Dmt 22 el T et s e 22 e T T s

The last two equations of Proposition 4.8 can be proved similarly and we omit the proof. [
Corollary 4.9. When n = 2, we have
Boo = 2AA + 4(1AR - iRB)
3 63
BQB eT, Boo = iV4A, By oan+1 = 0.

Proof. Note that the last three identities follow immediately from Proposition 4.8. It remains to
prove the first one on Byg. Fix a point p € M and we use the normal coordinates at p. In particular
(40) holds at p, i.e., (g,3) becomes the identity matrix and (R,3) becomes diag(A1, A2) at p. Since
K,z = %(Raﬁ - %Rga[;), we have the following two equations hold at p.

5/\12 Z/\2 0 w0

(Kap) = = ;

0 5)\221/\1 0 Lo

1
Ko K Ko™ =i + i = 5 (i + o) (347 + 313 — (n + p2)?).

Note that p1 4 p2 = R and pf + p3 = A. Therefore,

1 1 1 1
B _ 2\ 3
K,"Kg"K,* = —12R(3A — —36R )= ZAR ~ i 33R )

Finally bringing the above identity into the first equation of Proposition 4.8, we get

1
233

1 1 . 2 4
SAR— ———R¥ — SAR=2AA+ -RA —
JAR = 5 BY) — SAR +3R

BOQZQAA-FS( R3.
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