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ABSTRACT

Narrative sensemaking is an essential part of understanding se-

quential data. Narrative maps are a visual representation model

that can assist analysts to understand narratives. In this work, we

present a semantic interaction (SI) framework for narrative maps

that can support analysts through their sensemaking process. In

contrast to traditional SI systems which rely on dimensionality

reduction and work on a projection space, our approach has an ad-

ditional abstraction layerÐthe structure spaceÐthat builds upon the

projection space and encodes the narrative in a discrete structure.

This extra layer introduces additional challenges that must be ad-

dressed when integrating SI with the narrative extraction pipeline.

We address these challenges by presenting the general concept of

Mixed Multi-Model Semantic Interaction (3MSI)Ðan SI pipeline,

where the highest-level model corresponds to an abstract discrete

structure and the lower-level models are continuous. To evaluate

the performance of our 3MSI models for narrative maps, we present

a quantitative simulation-based evaluation and a qualitative eval-

uation with case studies and expert feedback. We find that our SI

system can model the analysts’ intent and support incremental

formalism for narrative maps.
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1 INTRODUCTION

Narratives are systems of stories [27]Ðsequences of events con-

nected in a coherent manner. Narratives are fundamental to the

sensemaking process and our understanding of the world [38], as

humans use them as a natural way to capture relationships between

sequences of events, alongside the goals, motivations, and plans of

actors [24]. Narrative sensemaking tasks range from intelligence

analysis [22], where analysts try to find hidden or implicit connec-

tions between events, to journalistic analysis of news narratives,

where analysts seek to understand the big picture across many

articles [11].

To help analysts in sensemaking tasks, scholars have developed

visual analytics tools, which aid analysts in processing and under-

standing greater quantities of data [15]. These tools usually focus

on different parts of the sensemaking process [48]. For example,

some tools focus on the synthesis loop [68] to help analysts gener-

ate hypotheses. Others focus on the foraging loop [33], where the

goal is to gather and select appropriate data for further analysis.

In this work, we focus on the synthesis loop of the sensemaking

process. In particular, we deal with extracting narratives from large

sets of documents describing events (e.g., news articles) in the

form of a graph structureÐa narrative mapÐthat represents the

system of storylines [36]. These composite structures can then be

used to aid analysts in narrative sensemaking tasks by providing

a higher-level view and explicit connections based on chronology

[38] that traditional visualization systems, such as those based on

dimensionality reduction (DR) and clustering of documents, would

not well capture.

Recent work has sought to develop computational models to

assist in the narrative sensemaking process [38]. However, cur-

rent approaches are static and lack refinement based on user- or

task-specific goals beyond basic interactions such as searching or

emphasizing specific keywords [4, 12, 36, 43, 56, 62]. More specifi-

cally, we design and evaluate an interactive narrative sensemaking

tool that integrates previous work on narrative extraction and repre-

sentation [36ś38] with the semantic interaction (SI) frameworkÐa

framework for visual analytics that enables steering models by

inferring data characteristics that are of interest to the user based

on their interactions [20, 28, 55]. Our tool’s purpose is to help ana-

lysts in narrative sensemaking tasks by building a better narrative

model through incremental formalism [60]Ðthe ability to learn in-

crementally over multiple iterations to produce better models. Our

main hypothesis is that the proposed SI models effectively support

incremental formalism for narrative map models.

In particular, recent developments [22] have shown the capabili-

ties of semantic interaction techniques in aiding the sensemaking

process [8] through human-AI collaboration [67]. Thus, we seek
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to integrate semantic interaction methods with narrative maps in

order to create an interactive AI narrative sensemaking framework

that is capable of learning from the analyst. These techniques could

prove useful to an expert user who needs to extract and under-

stand evolving narratives, such as intelligence analysts trying to

uncover the underlying connections between documents or jour-

nalists attempting to understand rapidly evolving news narratives

[38].

To date, no previous research has sought to integrate seman-

tic interaction with narrative extraction and visualization. Thus,

our research provides a first step towards creating a human-AI

interaction system that aids in the narrative sensemaking process.

Furthermore, our overarching research goal is to explore how to

design an SI model for narratives. This requires dealing with the

issue of how to modify the machine learning pipeline of narrative

extraction to support SI (i.e., how do we model user intent in our

narrative extraction model?).

As a specific example of how semantic interaction techniques

could aid in the narrative sensemaking process, consider an analyst

seeking to understand the causes and effects of a newsworthy event

(e.g., the COVID-19 pandemic or social movements) from news

data. The analysts would generate a visual representation of the

narrative from data and provide their feedback through interactions

(see Figure 1), leading to incremental improvements as they work

through their sensemaking process (e.g., removing biases, changing

the focus of the narrative, or including specific storylines). We show

a concrete example in Figure 9 as part of a case study.

Furthermore, we note that traditional SI systems usually work

directly on projection spaces generated by DR methods [10], lever-

aging distance changes induced by the user on the elements of

the projection space to improve the underlying model. However,

our proposed SI model has to deal with an additional challenge in

the form of an intermediate abstraction layer: the structure space

(i.e., the space of possible narrative graphs). Unlike the projection

space, distance is not meaningful in the structure space. Instead,

relationships are determined by the edges of the narrative graph.

Thus, instead of continuous distance-based interactions, the natu-

ral interactions that arise in the structure space are discrete (e.g.,

removing a specific connection from the graph).

In this context, we need to design a semantic interaction model

that interacts with the discrete nature of the higher-level structure

layer in a meaningful way. To solve this problem, we propose a

general framework that builds upon the Multi-Model Semantic

Interaction (MSI) concept of Bradel et al. [10] and addresses the

challenges of developing SI pipelines with a mix of higher-level

discrete structure space and low-level continuous models. Figure 1

shows an overview of the supported semantic interactions and the

changes they induce on the extraction model.

In summary, the core contributions of this work are as follows:

• The concept of theMixed Multi-Model Semantic Inter-

action (3MSI) pipelineÐan SI pipeline comprised of a high-

level discrete structure and a lower-level continuous model

that helps build the structure.

• An SI Model for Narrative Extraction that handles the

intermediate abstraction layer defined by the narrative struc-

ture space and showcases the challenges of 3MSI.

• An Evaluation of the SI model to show whether it supports

incremental formalism in the sensemaking process using

a quantitative simulation-based approach and a qualitative

approach with expert feedback.

2 BACKGROUND AND RELATED WORK

2.1 Narrative Extraction and Visualization

Narratives are defined as systems of stories interrelated with co-

herent themes [27]. The same story can be told in countless ways,

leading to a distinction between the underlying story itself and

its representation. Narratological studies seek to understand the

relation between stories and their representations [1, 49].

Most computational narrative representation and extraction

methods rely on event-based models [36, 43, 56]. Events are the

fundamental unit of narratives [38] and they represent actions in-

volving entities and characters or happenings without casually

involved entities [1]. However, event-based representations are not

the only approach. For example, some works use a topic-level analy-

sis, abstracting the narrative away from specific events [40, 47, 70];

some scholars propose even more fine-grained approaches, such as

claims [61] and named entities [23].

Furthermore, there are three general structures for narrative

representations [38]: timelines [57, 64], trees [4, 43], and directed

acyclic graphs (DAGs) [36, 59, 71]. Of these structures, DAGs pro-

vide the most flexibility by allowing the representation of divergent

and convergent story substructures [36].

Independent of the representational structure of the narrative

model, extraction methods usually rely on optimizing a notion

of narrative quality to generate the narrative representation [38].

There are multiple optimization criteria, such as topical cohesion

[64] (measuring whether two events share the same topic), coher-

ence [56] (measuring whether it makes sense to join two events

together), and coverage [58] (measuring whether the narrative is

properly covering the events). In this work, we use an extraction

approach that maximizes coherence subject to coverage constraints

[36].

In the context of visual analytics and information visualization,

narratives and storytelling are common techniques used to present

data [51, 54, 63]. In particular, presenting visualization as stories

can be used to aid in the sensemaking process [31, 32]. Visual

storytelling systems can help users detect relationships, structures,

and other patterns, which can help in confirming hypotheses or

gaining additional knowledge [3, 63]. In this regard, constructing

and interacting with visual narratives could be interpreted through

the lens of a visual knowledge generation process [53], as users

generate new knowledge as they work through their hypotheses

and insights with the visual narrative model.

In this work, we develop an interactive visualization model of

narratives based on the narrative map as defined by Keith and Mi-

tra [36]Ða DAG describing the connections between events (see

Figure 9 for examples). The original narrative extraction method

for narrative maps is grounded in narrative theory and previous

work has found that it provides analysts with a useful narrative

representation for sensemaking tasks [36, 37]. However, subsequent

work showed that this narrative representation could be improved
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Figure 1: Overview of the semantic interaction model for narrative maps and its core interactions. The analyst modifies the

original map on the left by: (1) adding an edge between events a and e, (2) adding event c, (3) removing event d, (4) removing the

edge between events e and g, (5) grouping events b, f, and h by assigning them to the same cluster. After this, the system makes

changes to the extraction process based on the interactions and generates a new map that integrates the analyst’s interactions

into the model.

by following a series of design guidelines [38] based on an empiri-

cal study of how analysts create and use narrative maps to solve

sensemaking tasks. Thus, we implement an improved version of the

extraction method following these design guidelines to support our

semantic interaction model. However, we note that the core contri-

bution of our work is the semantic interaction model, rather than

the incremental improvements to the narrative extraction process.

2.2 Semantic Interaction

Semantic interactions [19] exploit the natural interactions within a

visualizationÐusually a projection of the data in a lower dimension

spaceÐto learn the intent of the analyst. In particular, instead of

trying to manually modify parameters to model a specific concept,

semantic interactions learn the parameters associated with that

concept from user interactions and changes in the visualization.

Semantic interactions have seen applications in text analytics [20],

images [28], and other quantitative data with high dimensionality

[55].

Training

Loop

ML Model Semantic Interaction Analyst

Sensemaking

Loop

Projection Space

Figure 2: The traditional semantic interaction pipeline has

the analyst interact with a dimensionality reduction model

by making changes to the projection space. These changes

are captured by the machine learning model and used to

generate a new projection space. The process repeats as the

analyst works through their sensemaking process.

Figure 2 shows semantic interaction as a bidirectional pipeline

[17] based on an interactive DR model [10], the most common

approach used when implementing SI systems. In this pipeline,

analysts use the visualized projection to get insights, then they

make changes to this projection by changing the position of data

points. By making these changes, analysts are expressing their

preferences. Thus, based on these changes, the interactive DRmodel

is able to learn the intent of the analyst behind the changes in

the projection. Using this information, the changes are converted

back into a high-dimensional space. Afterward, the modified DR

model updates the projection based on the new high-dimensional

representations. Note that while this example is focused on DR, the

underlying approach is not limited to just DR models and it can be

generalized to other methods, such as force-directed graph layouts

[10, 20].

Regardless of the implementation of the pipeline, it is necessary

to capture the changes from the visualization and turn them into

changes to the model. There are multiple machine learning models

that attempt to solve the bidirectional transforms required to imple-

ment SI, such as Observation-Level Interaction [21], Bayesian Visual

Analytics [29], and Visual to Parametric Interaction [41]. Further-

more, the semantic interaction pipeline can be extended to leverage

multiple models by chaining them and providing functionality and

interactions at each level through the concept of Multi-Model Se-

mantic Interaction [10]. In general, any number of models can be

used in this pipeline. Then, the interaction feedback from the user

is interpreted as a change into one (or many) of the models using an

appropriate inverse. These works show how DRmodels can capture

the different interactions and modifications made by analysts.

However, unlike the previous examples, narratives have an un-

derlying temporal and causal structure [1], and in particular, graph-

based representations of narratives have a discrete structure that

has no natural continuous notion of distance that can be leveraged

to define the necessary inverse transformation like in DR. There-

fore, SI models for narrative or story visualizations must account

for the underlying temporal structure and the discrete nature of

the narrative representation, introducing an additional layer of

complexity to the development of an SI model for narrative sense-

making. To address these issues, we develop the concept of 3MSI,

which accounts for the usage of mixed models (i.e., a high-level dis-

crete structure and a low-level continuous space) in the multi-level
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pipeline. Finally, to date, no previous research has sought to use

SI in a narrative or story visualization setting. Thus, this research

would provide a first step towards creating a human-AI interaction

system that aids in the narrative sensemaking process by allowing

the analysts to manipulate a narrative structure.

3 NARRATIVE MAP EXTRACTION

In this section, we present our narrative extraction pipeline, which

builds upon the extraction algorithm for narrative maps proposed

by Keith and Mitra [36]. We further introduce optimizations to

reduce computational costs and post-processing to align our results

with the design guidelines for narrative maps [38]. However, we

note that the core contribution of our work is building an SI model

for narrative maps, rather than the extraction process itself. We

show the narrative extraction pipeline in Figure 3. There are 2

phases in this pipeline: extraction and post-processing.
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Figure 3: Narrative maps extraction pipeline. The pipeline

consists of twomain phases (extraction and post-processing).

The extraction phase builds upon the original extraction algo-

rithm proposed by Keith and Mitra [36], using UMAP to generate a

projection space [45], HDBSCAN to compute topical clusters [44],

and linear programming to find the optimal narrative map. The

narrative map corresponds to the structure space of our SI model.

Next, the post-processing phase takes the basic map and simpli-

fies it, following the design guidelines defined by Keith et al. [38]. In

particular, the post-processing phase seeks to decrease the overall

complexity of the base map in order to reduce the cognitive load

of the users. Specifically, post-processing involves removing low

coherence edges, transitive connections inside each storyline, and

redundant inter-story connections.

We note that there are two key steps in the extraction phase:

the coherence computation stepÐwhich provides a quantitative

measure of how much sense it makes to connect specific eventsÐ

and the linear program (LP) formulation itselfÐwhich seeks to find

the optimal narrative structure. We focus on these two steps to

develop our SI model.

The coherence computation step relies on DR and clustering. We

use the UMAP [45] and HDBSCAN [44] algorithms, respectively.

The coherence computation step is highly dependent on the un-

derlying projection space. Thus, our SI model intervenes at the

projection space level to induce changes in the coherence values.

The LP formulation step handles structural constraints and inte-

grates the coherence values from the previous step. Furthermore,

the LP formulation can be modified to handle constraints induced

by the user interactions directly.

We present the LP used for extraction in Figure 4, which seeks to

maximize the coherence of the map. We note that compared to the

original formulation [36], our approach allows multiple endings

and removes unnecessary constraints to reduce computational costs

while maintaining the general structure. We provide more details

in Appendix A

Figure 4: Linear program used to obtain the optimal narrative

map (i.e., the basic structure space).

Finally, we note that the interactive and iterative nature of SI

can lead to overfitting issues [14] as the model attempts to satisfy

the incremental requirements imposed by the user through each

iteration of semantic interactions. Furthermore, each interaction

performed by the user only affects a small subset of the data, which

can lead to further overfitting issues, similar to how few-shot learn-

ing methods are prone to overfitting issues in general [65]. Thus,

we include a regularization term that seeks to minimize the sum of

all edge weights (i.e., 𝐿1 regularization) and produce a sparse and

less complex solution [16]. We discuss the effects of regularization

in more detail in Appendix D.

4 SEMANTIC INTERACTION MODEL

In this section, we present our general 3MSI concept and how to

address the challenges of using a mix of continuous spaces and

discrete structures in the SI pipeline. Then, we present the SI model

for narrative maps.

4.1 Mixed Multi-Model Semantic Interaction

The concept of 3MSI deals with a specific type of MSI where the

top-level model of the SI pipelineÐwhich is associated with the

visualization shown to the userÐis represented by a discrete struc-

ture space. Furthermore, the model must not have a continuous

notion of distance that can be leveraged to model user interactions.

For example, a graph represented with a force-directed layout can

use a continuous notion of distance to model interactions, but a

graph represented with a hierarchical layout would not be able to di-

rectly translate display distances into model changes (e.g., narrative

maps).

The general 3MSI pipeline is shown in Figure 5. In this pipeline,

the lower-level model uses a continuous representation and the

high-level model corresponds to a discrete structure. This model

extends the traditional MSI approach [10]Ðwhich only considers

continuous spaces as internal modelsÐwith an additional layer of
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abstraction in the form of a discrete structure space, which provides

users with further scaffolding to perform sensemaking tasks.

Once the user perceives the visualization associated with the

high-level model, they can interact with it. However, the introduc-

tion of a discrete structure in the 3MSI framework makes capturing

user interactions and feedback for semantic interaction purposes

more difficult compared to the traditional pipeline. The interaction

feedback needs to be interpreted and fed to the inverse models

in an appropriate manner. Defining how to interpret and feed the

interactions back to the inverse models is the key step in using

the 3MSI framework. Once the feedback has been captured by the

models, the updated parameters are stored and used alongside the

original data to update the visualization. This process repeats as

the user keeps interacting with the updated models.

In the context of our work, the forward models are defined by the

narrative extraction pipeline, with the low-level model correspond-

ing to the UMAP projection and the higher-level model correspond-

ing to the narrative structure itself. The inverse models depend

on the specific type of interactions that we define and can rely on

mathematically rigorous, heuristic, or probabilistic approaches [17].

In our implementation of 3MSI for narrative maps, we consider

heuristic approaches, rather than defining formal mathematical in-

verses. In particular, we rely on adding specific constraints to the LP

definition to modify the structure space and using semi-supervised

learning to modify the projection space.

As mentioned before, interpreting the interactions and feeding

them into the inverse models is the key step in the 3MSI pipeline.

In particular, there are two key challenges that arise at this point.

These two challenges are further amplified by the mixed nature of

the pipeline:

• The placement challengeÐhow do we choose the levels at

which we will handle each one of the relevant semantic

interactions?

• The transformation challengeÐhow do we transform changes

from the higher-level discrete structure (e.g., the structure

space) back to the low-level continuous space (e.g., the pro-

jection space)?

We note that these challenges are not necessarily unique to the

mixedmodel context, but the discrete nature of the high-level model

induces extra difficulties (e.g., defining an inverse function between

the discrete structure and the low-level model). Furthermore, the

solutions to these challenges depend on the specific architecture of

the system. In this context, we propose general guidelines to aid in

solving these challenges. In particular, we focus on providing ways

to solve the placement challenge and circumventing the transforma-

tion challenge when possible, as this is the more complex challenge

due to the difficulty of defining proper inverse transformations

for these interactions, which can rely on mathematically rigorous,

heuristic, or probabilistic approaches [17].

The proposed guidelines follow the general design principle

of separation of concerns and apply a divide-and-conquer strategy

when required for more complex interactions, adapting the general

tenets of algorithmic and software design [46] to the context of

our SI framework. More specifically, the goal is to minimize the

need of dealing with multiple levels at the same timeÐavoiding

the transformation challenge. Assuming that the relevant semantic

interactions have been identified, we present the general guidelines

and specific examples pertaining to our narrative extraction case.

Handling Single-level Interactions: Separation of Concerns. As our

core design guideline is to avoid the transformation challenge and

reduce the implementation complexity of the 3MSI pipeline, inter-

actions that have an intuitive and direct effect on a level should

be implemented exclusively at that level and avoid changing the

other level. This is the simplest case to implement for a semantic

interaction, as it only requires interpreting the changes on a single

level. For example, removing an event from a narrative map has

a direct effect on the structure space (i.e., the model must create

a representation that avoids that event). Thus, we implement this

by only inducing changes to the structure space, without chang-

ing the underlying projection space, avoiding the transformation

challenge.

Furthermore, interactions that can be solved at different levels in

equally valid ways should be solved at the highest level possible (i.e.,

closest to the visualization and the user). As the model moves away

from the visualization and deeper into the semantic interaction

levels, each step makes the resulting changes potentially more

opaque to the user. Thus, we recommend choosing the highest

level possible, as this should provide a solution that is closer to

the changes expected by the user, which would likely be biased by

the visualization. In particular, this would be particularly relevant

in cases where there are more internal lower-level models. In the

narrative extraction context, removing an edge from a narrative

map could be solved at the structure space level by simply imposing

a specific constraint to avoid this edge in subsequent solutions or

at the projection space level by forcing the events of that edge to

be sufficiently distant to reduce the likelihood of being connected.

However, following the guideline of using the highest level possible,

we should choose the structure space level, as it is closer to the user

and thus more likely to produce the intended effect.

Handling Multi-level Interactions: Divide and Conquer. Interac-

tions that are more abstract and complex and do not have a direct

effect on a single level should be separated into their constituent

effects and each one of these should be implemented separately

at a different level as appropriate. By separating the interaction

into simpler components, we address both the placement challenge

and the transformation challenge. Instead of relying on an explicit

inverse function to get from the discrete structure space back to the

continuous space or vice versaÐwhich might not even be properly

definedÐwe directly induce changes at each separate level follow-

ing heuristics. This strategy can also be easily scaled to pipelines

with many internal lower-level models.

For example, in contrast to the remove event example, grouping

events is a more abstract and indirect interaction, as it does not

specify how the events should be connected in the structure space.

Instead, it simply implies that the events should be łclosež and that

the events should be somehow connected. Thus, we implement

this interaction at both levels, inducing a change in the projection

space (closeness) and adding constraints to the structure space

(connectedness). We note that if it is not possible to adequately

divide the semantic interaction by level, then we would have to

deal with finding an appropriate inverse function instead of simpler

heuristics.
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Figure 5: Generalized Mixed Multi-Model Semantic Interaction (3MSI) visualization pipeline.

4.2 Semantic Interaction for Narrative Maps

4.2.1 Pipeline Overview. Following the 3MSI concept, our approach

has an additional abstraction layer compared to traditional SI sys-

tems: the structure space. This space builds upon the projection

space, as it uses the projected representations to compute a dis-

crete structure (the narrative map) that has no natural notion of

continuous distance. The structure space captures higher-level re-

lationships that might not be apparent in the projection space.

In contrast to the traditional pipeline of Figure 2, the proposed

pipeline has an additional level of abstraction: the structure space,

which builds upon the projection space. The analyst interacts di-

rectly with the structure space (i.e., the narrative map), rather than

with the continuous projection space. The changes in the structure

space are used to update the underlying models, either by defining

constraints that affect the narrative extraction process or by in-

ducing changes into the projection space through semi-supervised

learning. Thus, the semantic interactions with the narrative map

can lead to either direct changes to the structure space or indirect

changes to the projection space.

4.2.2 Design Goals for SI in Narrative Maps. Following previous

work [38] and preliminary evaluations with users, there are two

general ways in which narrative maps are used: exploratory anal-

ysisÐwhere users are trying to find the different storylines in

the data and understand the big pictureÐand directed analysisÐ

where users seek to understand specific connections between events

and stories. Thus, we seek to design an interactive model to support

these analyses. In particular, there are three core subtasks that we

support:

Correcting Storylines: Analysts need to be able to make cor-

rections to existing storylines. This includes modifying intra-story

connections (e.g., changing a specific edge, removing an event from

the storyline) and inter-story connections (e.g., adding a connection

with a different storyline to highlight common events or entities).

This is mostly related to the directed analysis task, as users are

refining the narrative schema.

Creating Storylines: Analysts need to be able to create new

storylines and integrate them into the narrative map. For example,

analysts might want to add new events or specify which events

should be grouped into a coherent and consistent storyline. This is

mostly an exploratory analysis task, as users are uncovering the

different stories in the data.

Shifting Focus: Analysts need to be able to change the focus of

the narrative map (e.g., changing the main storyline or the overall

contents of the data). This interaction is relevant to both tasks, as

users perform work through the sensemaking process they might

require changing the focus of the narrative.

4.2.3 Relevant Interactions. We capture five relevant user interac-

tions in our model. Examples of these interactions and their effects

are shown in Figure 1. We note that all the user interactions are

done at the structure level, but they might imply a change in the

underlying projection space too. Following the 3MSI framework,

we need to identify the level at which these interactions must be

handled and if necessary divide them into their constituent effects.

We briefly describe the interactions and how they influence the

underlying projection and structure space.

Add/Remove Event: Adding an event implies that the analyst

would prefer for this specific event to appear in all subsequently

extracted narrative maps. Likewise, removing an event implies it

should not appear in any of the subsequently extracted narrative

maps. In our implementation, these interactions only affect the

model at the structure space level, without changing the underlying

projection space.

Add/Remove Connection: Adding a connection between two

event nodes implies that the analyst would prefer for this specific

connection to appear in all subsequently extracted narrative maps.

Likewise, removing a connection implies that it should not appear.

These interactions only affect the structure space.

Group Events (Clustering): This interaction implies that the

analyst would like for these events to appear in the same storyline

or be close to each other in the narrative map (i.e., in the same route

or at least connected in some way). As this interaction is more

abstract and there is no clear definition of how a cluster should be

handled in the structure space, we will handle this interaction at

both levels (projection and structure space).

4.3 Integrating SI into Narrative Extraction

There are two steps in the extraction pipeline where we can im-

plement semantic interaction: the coherence computation step (i.e.,

the projection space) and the linear programming step (i.e., the

structure space). For the coherence computation step, we can mod-

ify the DR model used to generate the projection based on user

interactions (e.g., forcing two events to be close together in the pro-

jection). For the LP step, we can modify the problem formulation

by adding explicit constraints that force the solution to include the

feedback from the user interactions (e.g., removing an event from

the map should prevent it from appearing in the solution again).

Single-level Semantic Interactions:We first deal with seman-

tic interactions that can be handled at a single level by adding
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constraints directly to the LP formulation shown in Figure 4. This is

a direct and straightforward method to model simple changes to the

narrative map. We summarize all induced constraints in Figure 6(a).

In particular, node and edge removal can be directly incorporated

by adding constraints of the form node𝑖 = 0 and edge𝑖 𝑗 = 0, re-

spectively. These constraints ensure that nodes and edges removed

by the user are not included in any of the subsequently extracted

narrative maps. In contrast, node and edge addition are not as direct.

It is not possible to include constraints of the form node𝑖 > 0 and

edge𝑖 𝑗 > 0, as linear programming does not support constraints

with strict inequalities [73]. Instead, we use non-strict inequality

constraints with a small positive number 𝜀 to ensure that nodes and

edges added by the user are included in all subsequently extracted

narrative maps. We set 𝜀 empirically, testing different threshold

values we found that 0.01 for edges and 0.05 for nodes ensured that

the elements were added in a mostly coherent way to the map.

We note that this approach only requires working on the struc-

ture space, as the constraints only induce changes to the extracted

narrative map, rather than the lower-level projection space. Fur-

thermore, as the user interacts with the visualization through their

sensemaking process, the LP formulation will accumulate a series

of induced constraints, forcing the optimization algorithm to find

ways to fit the user feedback into the overall narrative structure it

extracts.

Multi-level Semantic Interactions: Now, we turn our atten-

tion to the more complex interaction of grouping events. Analysts

can group events by manually selecting event nodes and assigning

them a cluster number. For example, in Figure 1, events 𝑏, 𝑓 , and

ℎ are assigned to Cluster 1. Unlike the previous cases, clustering

events is a more complex interaction, as it not only implies that

events should be connected or added directly in the structure space

but also imposes the notion of these events being part of the same

group (i.e., relatively similar).

Following the 3MSI guidelines, we divide the interaction into

two effects: the events should be close in the projection space (close-

ness) and the events should be connected in the structure space

(connectedness). Thus, we first use semi-supervised DR with the

cluster information to keep the events close in the projection space.

Next, we impose constraints on the LP formulation, seeking to

keep the events connected in the structure space. This way, we

induce changes in both levels of the SI pipeline without explicitly

computing an inverse function between the structure space and the

projection space. Instead, we rely on intuitive notions of closeness

and connectedness to create appropriate heuristics.

In more detail, we incorporate these manual clusters as training

information for the DR step that uses UMAP. These clusters would

be created based on user-defined labels (e.g., the user could assign all

nodes with a specific keyword to be part of the same cluster) and fed

to the extraction pipeline. UMAP supports semi-supervised learning

[45]. Thus, including the label information is direct and does not

require further modifications. In particular, we create a label vector

that contains the value −1 for all data points, which means that

no labels have been assigned yet. Then, for each data point that

belongs to a user-defined cluster, we assign the corresponding

integer label to their entry in the label vector, following the format

defined by the semi-supervised UMAP implementation [45]. Next,

we recompute the projection space using the label vector and the

original embeddings. Note that when there are no user-defined

clusters, we simply use the unsupervised version of the method.

Once we obtain the new projection, we use it to recompute the

similarity and clustering tables for the extraction algorithm.

Regarding the structure space changes, we add constraints to

the LP to ensure that the clustered events appear on the map

(node𝑖 ≥ 𝜀). We also impose further constraintsÐshown in Figure

6(b)Ðby requiring the user-created cluster to be (weakly) connected,

as shown in Figure 6(c). As with the previous constraints, we set 𝜀

empirically. We found that 0.01 for nodes and 0.05 for the edge sum

worked well in most test runs. In conjunction with the new projec-

tion space, this ensures that the resulting map properly connects

the grouped events. With all these changes, we solve the linear

program again to find the new optimal narrative map.

5 EVALUATION METHODOLOGY

5.1 Data Set

To show the effectiveness of our SI model we use news data covering

the 2021 Cuban Protests that occurred in July 2021Ðthe biggest

protests in decades in Cuba [52]Ðwhich provide a sensemaking

task of moderate difficulty for our experiments. We focus mostly

on breaking news, as each news article represents a single main

event [35]. We scraped a data set of 500 online news articles from

20 news sources from different sides of the political spectrum. We

categorized the sources based on external bias ratings taken from

AllSides.com1 and the Media Bias/Fact Check database 2.

Throughout our evaluation tasks, we rely on keywords and po-

litical leanings as labels. Previous research has shown that it is

possible to computationally distinguish political leanings from the

content of a news article [5, 34]. Particularly, in times of political

crises, there is a strong use of partisan content frames, which can

be computationally detected [34]. Thus, we expect our SI model to

be capable of learning such distinctions.

5.2 Simulation Tasks

The human-centered approach [9] is the primary evaluationmethod

for SI systems [6]. However, this method is highly dependent on

human feedback and makes it challenging to compare different SI

systems. This is due to the inherent difficulty of replicating user

interactions in SI systems, as the semantic interactions build upon

each other and modify the internal model through incremental

formalism [60]. To deal with these issues, simulation-based evalua-

tions [6, 7] work by creating a simulated analyst agent that attempts

to replicate human interactions. Since there are no ground truths

available for analyst intent and their cognitive process in general,

these approaches use keywords or other easy-to-define criteria to

label the data. Thus, this ground truth is used to guide the simulated

interactions and compute error rates, allowing us to evaluate the

ability of these models to perform incremental inference [6].

5.2.1 Task Overview and Definitions. We define five simple tasks

with basic narrative goals and easy-to-define ground truths. These

tasks use a series of labels that can be easily extracted from the data

1allsides.com/media-bias/media-bias-ratings
2mediabiasfactcheck.com/search
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Figure 6: (a) Constraints induced by basic interactions (addition and removal). (b) Additional constraints to ensure that user-

defined clusters are connected. (b) Examples of weakly connected subgraphs produced by the previous constraints in the

narrative map.

to simulate the creation of user-defined target labels (i.e., relevant

events, consistent connections, etc.). These user-defined labels are

based on keywords or other metadata that can be easily retrieved

and do not require complex computations. In practice, users would

define more complex and nuanced labels in their sensemaking pro-

cess. Nonetheless, simple labelsÐbased on keywords or pre-defined

classificationsÐare sufficient to showcase the learning capabilities

of our SI model.

Furthermore, we note that the simulated analyst will only inter-

act with a subset of the potentially relevant nodes or edges from the

data set (i.e., those that appear on the map). Moreover, the model

is not aware of these labels, it only knows about the embedding

representation of the articles and the interaction feedback from the

analyst. We expect the model to be able to learn these user-defined

labels based on the simulated analyst interactions.

Moreover, we make the simulated analysts follow the same rules

in each iteration (i.e., selecting events or edges based on a specific

label). However, we note that each execution of the simulation is

done using a different random seed, which leads to different narra-

tive maps and, in turn, a different sequence of interactions in each

task throughout the iterations, even if the simulated analysts al-

ways follow the same rules. We note that while it would be possible

to create simulated analysts with more diverse interactions, such as

interacting with random subsets of map elements or choosing ran-

dom interactions, we opt to define simple rules for our simulation

in order to reduce sources of variability.

We note that the evaluation metrics all measure the error rate

of the model with respect to a specific element of interest. In par-

ticular, each task has a different metric based on its goal and the

user-defined labels that we use (e.g., a specific set of relevant nodes,

consistent connections, or consistently connected clusters). The

tasks and their evaluation metrics are shown in Table 1. We pro-

vide more details about the implementation of the simulation in

Appendix B.

5.2.2 Specific Task Definitions.

T1 - Remove Irrelevant Events. We define three sub-tasks for T1

using different user-defined labels of increasing complexity. We

start with a simple label based on keywords, where events are

marked as irrelevant if they contain łFloridaž or łMiamiž in their

headline (41 events). The goal is to create a narrative map that

does not cover these specific events, as they are not relevant to

the protests in Cuba itself or the US response in general. Next, we

move to a more complex label based on the publication source

of the event, where events are marked as irrelevant if they were

published by Breitbart or Fox News (155 events). Both of these news

sources are right-leaning and in general present a highly biased

version of the events with right-wing framing. Thus, the goal is to

create a narrative map that avoids these highly biased articles, thus

providing a more neutral view of the narrative. Unlike the previous

keyword-based approach, this requires the model to understand the

differences between these highly biased sources and other sources.

Finally, the last label is also based on the publication source of the

event, where events are marked as irrelevant if they were published

by any right-leaning news outlet (207 events). Generating a map

that excludes this label is even harder than the previous example,

as it considers highly biased sources the same as sources with only

mild bias, making the distinction fuzzier.

T2 - Remove Inconsistent Connections. T2 is based on our defini-

tion of inconsistent edges (connecting right-leaning to left-leaning

articles and vice versa). Intuitively, minimizing inconsistent edges

in a narrative map leads to a map that does not have abrupt changes

in the framing and coverage perspective. Thus, the goal of remov-

ing these inconsistent edges is to create a map that avoids drastic

changes in the framing and presentation of the facts. We seek

to create a map that does not directly connect left-leaning and

right-leaning articles. Thus, any change in the political leaning of a

storyline would be mediated by an unbiased article, allowing for a

slower shift in framing.

T3 - Clean Up Storylines. T3 is based on our definition of consis-

tent nodes (i.e., having the same political leaning as their storyline).

The goal of cleaning up storylines is to create internally consistent

storylines that share their political leaning and avoid storylines that

shift their political leaning. This is similar to the goal of removing

inconsistent edges, but using a mix of node and edge operations at

a storyline level, rather than edge operations on the whole map. Ide-

ally, this would lead to a map with parallel storylines showing how

each side of the political spectrum presents the events, allowing

analysts to contrast these different perspectives.

T4 - Cluster Events. The goal of this task is to create a narrative

map that properly covers the events from the user-defined clusters,

by creating a consistent presentation of these events. That is, the

nodes of these clusters should be connected according to our def-

inition. The SI model should be capable of inferring other events

(modeled by the changes in the projection space) that should be in

the cluster and connecting them properly, even if the user did not

explicitly label them as part of the cluster. We define two sub-tasks

for T4.

For the first sub-task, we define two clusters based on headline

keywords. The first cluster (41 articles) is made from articles focus-

ing on Florida and Miami. The second cluster (96 articles) is made
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Task Description Interactions Evaluation Metric

Remove Irrelevant

Events (T1)

Generate a narrative that does not include events corre-

sponding to user-defined labels.

Remove Node Fraction of irrelevant nodes with respect to the total

number of nodes in the map.

Remove Inconsistent

Connections (T2)

Generate a narrative with consistent edges according

to user-defined labels.

Remove Edge Fraction of inconsistent edgeswith respect to the total

number of edges in the map.

Clean Up Storylines

(T3)

Generate a narrative with consistent storylines accord-

ing to user-defined labels.

Remove Node, Add

Edge

Fraction of inconsistent nodes with respect to the

total number of nodes in the map.

Cluster Events (T4) Generate a narrative with consistent clusters according

to user-defined labels.

Clustering Fraction of relevant nodes that are not connected

over the total number of relevant nodes in the map.

Add Relevant Events

(T5)

Generate a narrative that incorporates additional events

in a consistent manner according to user-defined labels.

Add Node, Clustering Fraction of relevant nodes that are not connected

over the total number of relevant nodes in the map.

Table 1: Evaluation task description and evaluation metrics.

from US-focused articles, excluding Florida and Miami. The goal

is to create a narrative map that includes coverage of the general

US response and the additional protests in Florida. For the second

sub-task, we define two clusters based on publication source and

political leaning. The first cluster (83 articles) is made exclusively

from articles published by Breitbart, a highly biased news source.

The second cluster (92 articles) is made from articles published by

unbiased sources (AP news and Reuters). The goal in this example

is to create a narrative map that includes highly-biased coverage

from Breitbart and unbiased coverage. The resulting map would

help an analyst compare and contrast these perspectives.

T5 - Add Relevant Events. We define two sub-tasks for T5. For

the first sub-task, we define relevant events as those that contain

łFloridaž or łMiamiž in their headline (41 articles). The goal is to

generate a narrative that includes events about the protests in

Florida. To do this, the analyst would mark relevant events in the

map as part of a single cluster and add more relevant events. These

two interactions tell the narrative extractionmodel that the relevant

events are closely related and that the narrative map should also

integrate more relevant elements into the map, respectively. For

the second sub-task, we define relevant events as those that contain

łBidenž in their headline (92 articles). The goal is to generate a

narrative map that includes events about the response of the US

president to the Cuban protests.

5.3 Qualitative Evaluation

To perform a qualitative evaluation of our model, we first imple-

mented an interactive prototype that allows analysts to extract

narrative maps and use semantic interactions on the extracted nar-

rative maps. Using this prototype, we studied two different usage

scenarios for SI and narrative maps (COVID-19 and Cuban protests).

Then, to evaluate whether our proposed SI model provides value

to actual users, we performed an evaluation and review with three

experts in visual analytics working in the intelligence analysis

domain. Furthermore, the prototype was shown to two analysts

working in the same domain. In particular, we discussed the general

capabilities of the model and the prototype, the resulting maps of

each case study, and the effects of the semantic interactions as we

navigated the different examples. Due to space constraints, we only

present the COVID-19 case study in the main article and leave the

other case in Appendix C.

Case Study.We used a data set about news on COVID-19 taken

from the design guidelines study [38] which contains 40 documents.

The goal of the analyst in this case study is to understand the global

spread of COVID-19 and its effects during January 2020. We note

that, unlike the simulated analysts, we do not attempt to correct the

map until its error rate is zero in the case study. Instead, we show a

more natural approach that combines different types of semantic

interactions to evaluate their quality as an analysis tool in a more

realistic context. Furthermore, we only perform a few iterations,

showing that the model provides valuable insights even with only

a limited amount of semantic interactions.

Interactive Prototype. We implemented an interactive pro-

totype using the Dash Cytoscape library 3. The graph layout of

the narrative map is generated using GraphViz [18] and the DOT

language [25]. We show the interface in Figure 7. This interface

supports all the interactions and tasks defined in our simulation

methodology and case studies, as well as basic navigation and pro-

viding details-on-demand about the elements of the map.

The prototype shows the narrative map on the main canvas on

the left. Events are shown on the map with the landmark icon

and connected with edges . Nodes include the logo of the news

outlet that published the corresponding article. The main storyline

is shown with the dashed blue line . Edge width is based on the

coherence value of the connection.

We note the addition of background gray nodes that show

similar events to those in the map but were not chosen by the

optimization algorithm (i.e., they do not improve the coherence of

the map). These extra nodes are useful to guide the łAdd Eventž

interaction, although that interaction can also be done directly from

the data table. The gray nodes are organized using a force-directed

layout based on similarity. We note that the original narrative maps

implementation did not show related events [36], focusing only

on the extracted structure. However, we chose to display them to

provide analysts with potentially relevant events and help with the

node addition interaction.

The top menu allows selecting the data set and loading it into

the system . The top menu also contains the core interactions

that allow users to manipulate the narrative map, such as łAdd

Eventž , łRemove Eventž , łAdd Connectionž , łRemove

3https://dash.plot.ly/cytoscape
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Figure 7: Prototype interface showing an example extracted map in the main canvas, the data set table in the right tab, and the

main menu and extraction parameters on the top.

Connectionž , and łCluster Eventsž

{

. The parameters of the

extraction algorithm (expected length 𝐾 , minimum average cover-

age, and temporal sensitivity 𝜎𝑡 ) can also be modified by the user.

To create a map, the user must click the łGenerate Mapž button .

The right panel has six tabs containing additional information

and options (overview, event details, edge details, event comparison,

data set details, and additional options). For the purposes of the

case study, we only used the event details tab (i.e., the contents of

the article) and the data set details tab (i.e., a list of all the articles),

as the rest are used for development purposes. Finally, we note that

the prototype contains other supporting interactions that can aid

in navigation and analysis (e.g., searching), but these interactions

are not used in the current SI model.

6 RESULTS

6.1 Simulation Results

We now present our simulation simulation-based evaluation results

for each task, including the average error rate in each iteration and

how many iterations are needed in each task to achieve the target

error rate. Figure 8 shows all the simulation results. We note that

for all tasks, the error rate tends to zero after a sufficient number of

iterations. Moreover, in most cases, it only takes a few iterations to

reach a low error rate (e.g. around 5% error rate). However, some

tasks are harder than others, taking more iterations to converge.

The hardest taskÐin terms of iterations neededÐcorresponds

to the edge-based task T2. In particular, after the initial drop in

error rate, the number of inconsistent edges stabilizes below 2%,

but it takes up to 18 iterations to completely remove them. We

note that this is an inherently harder task compared to event-based

tasks due to the number of possible combinations of edges that can

arise in a graph, which rise quadratically with the number of nodes.

Nevertheless, if our goal is to remove most of the inconsistent

edges and achieve a mostly consistent narrative map, we could stop

between 7 to 9 iterations, which results in around 2% inconsistent

edges.

As an example of intra-task variability, consider T1, where the

second and third cases take longer than the simpler case of removing

Florida/Miami events. The slower convergence is expected, as these

two specific sub-tasks are more complex, as the user-defined label

does not rely on simple keywords, but rather the abstract concept

of political bias. Likewise, T4 shows similar behavior, where the

keyword-based clustering creates an easier task compared to the

more abstract clustering based on bias vs. unbiased news.

6.2 Case Study

We now present the qualitative analysis of the COVID-19 case study

as an extended example. The goal of the analyst in this case study is

to understand the global spread of COVID-19 and its effects during

its first month in January 2020. However, during this time period,

most of the news articles reported events from China, leading to the

data set being mostly focused on Chinese news. Thus, the analyst

needs to set an appropriate starting point that is more likely to lead

to a map detailing the global spread of the virus and its effects. In

this context, the analyst sets the 5th event of the data setÐwhich

reports Japan’s first COVID-19 caseÐas the starting point, as it

corresponds to the first news article that is not about China in the

data set. In terms of parameters, the analyst uses 𝐾 = 6 for the map

size and default values for the rest. Figure 9 shows all the maps
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Figure 8: Error rate vs. the number of iterations. (a, b, c) T1: Remove Irrelevant Events. (d) T2: Remove Inconsistent Edges. (e)

T3: Clean Up Storylines. (f, g) T4: Cluster Events. (h, i) T5: Add Events.

created throughout the analysis process and the interactions done

by the analyst.

Figure 9(a) shows the initial map and the interactions of the

analyst. The map has two major storylinesÐshown in the map

as linear subgraphs in gray boxes. The main storyline represents

the most important path in the narrative map and is computed

using maximum likelihood [36] and is shown with blue edges. All

other connections use gray edges. Finally, there is also a singleton

storylineÐa storyline with only one elementÐshown without a

gray box.

On a more detailed inspection, the main storyline has some

relevant events about the effects of the virus and its spread (e.g.,

comments about the US containment strategy, oil prices, vaccines,

and travel restrictions). However, there are also some events about

the effects in China that are not necessarily useful for the analyst’s

goal. The other storylines are also all focused on China. Thus, to

shift the focus of the map towards the global spread and its effects,

the analyst performs the sequence of interactions shown in Figure

9(a).

In particular, the analyst adds two potentially relevant events to

the map: global markets being on edge and the CDC screening at

airports. The first event relates to the global economic effects and

the second to the international prevention strategies. Afterward, to

ensure that the added events are integrated consistently into the

map, the analyst clusters them together with other relevant events

from the main storyline (see the highlighted events in Figure 9(a)).

Then, after completing the interactions, the analyst generates

the newmap shown in Figure 9(b). This map still has two storylines,

and the events highlighted in blue that we assigned to the same

cluster are mostly connected (some indirectly). However, there are

still some issues, such as irrelevant events and the fact that the map

still focuses on China. To fix the first issue, the analyst removes

the irrelevant events on animal or omnivorous marketsÐwhich

are potentially important as a cause of the start of the pandemic,

but not relevant to its ongoing spread and effectsÐand the event

about daily life under quarantineÐwhich is also irrelevant for the

analyst’s goal.

These interactions lead to the map shown in Figure 9(c). This

map has four major storylines and all highlighted events are con-

nected (technically, their induced subgraph is weakly connected).

The main storyline now covers more relevant events, and although

it still contains events about China, they fit into the overall context
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Figure 9: (a) Initial map and analyst interactions (add events and cluster events). (b) Second map and analyst interactions

(remove events). (c) Third map and analyst interactions (add edge and remove edge). (d) Final map after all iterations. Note that

a higher-resolution version is available as part of the supplementary materials.
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(e.g., lockdowns and lack of supplies). Two of the storylines consist

of only highlighted events, thus they focus exclusively on the global

spread and effects on a worldwide scale. Furthermore, these story-

lines are connected through relevant inter-story connections with

the main storyline. Furthermore, the map now has distilled an extra

storyline about Chinese socio-political effects into its own storyline.

Thus, providing a better structure to represent the narrative.

While the current map provides a good overview, it could be

improved further. In particular, the analyst could add a direct edge

between the two events about the oil market. Furthermore, the ana-

lyst could disconnect the event about Saudi Arabia from the Chinese

facade of unity event, as they are unrelated. These operations lead

to the map shown in Figure 9(d). This time the interactions did

not introduce major changes. In fact, two storylines are preserved

from the previous map (main story and Chinese socio-political ef-

fects). The third story is about relevant side effects, such as the US

screening for the virus leading to oil prices dropping due to fear.

However, the last event of this storyline does not seem to fit and

could be removed to further improve the representation. The only

singleton storyline of this map is placed in an interesting position,

its connections imply that the fear in oil markets has extended to

global markets.

Overall, the final structure showcases some of the key story-

lines about the early impact of COVID-19, including the global

spread and the ensuing economic issues. Furthermore, the map still

contains relevant information about the socio-political effects in

China, which were not prevalent in other countries at this point

(e.g., lockdowns and unrest). All these storylines provide valuable

insights into the pandemic and even foreshadow future effects of

the pandemic.

6.3 Expert Feedback

First, the experts provided feedback on the general narrative maps

framework, highlighting how the prototype could provide analytic

value by generating a structured representation of the documents

organized over time into different storylines. Second, regarding the

SI model, the experts found that it was able to properly capture

user feedback in most cases and examples, leading to improved

maps or clearer storylines. Furthermore, we discussed the potential

value of the model for exploratory tasks and directed tasks. For ex-

ploratory tasks, the value of the model was clearer, as they provide

analysts with a series of potentially relevant storylines, which can

be then explored in-depth via SI. In contrast, for directed tasks, the

value would depend on the type of objective, as not all directed

tasks would need a structured approach (e.g., they could be solved

with simpler search-based models). However, if the task required

finding complex connections, then the narrative model provided

more value.

In general, the experts found the general narrative maps frame-

work useful and the SI model capable of properly capturing user

feedback. However, they highlighted two potential issues: trans-

parency and scalability. In particular, the current SI model acts as

a black box, and understanding its effects is not straightforward.

Thus, it could be complemented with an explainable AI approach

to provide clear explanations of the changes induced by the model.

Regarding scalability and performance issues, we note that this is

one of the main drawbacks of the current implementation, as the

optimization approach and the layout algorithm have issues scaling

to larger data sets. Nevertheless, the experts noted that scalabil-

ity and transparency are generally considered open problems in

complex sensemaking systems. Thus, regardless of these issues, the

experts found the 3MSI narrative model to be a welcome advance-

ment to help during the sensemaking process. Finally, the experts

noted that they had not seen any previous work that integrated SI

capabilities with narrative extraction, which provided additional

value and it would be łextremely usefulž for certain sensemaking

tasks.

7 DISCUSSION

7.1 Semantic Interaction Model

Our results show that the proposed 3MSI system is capable of inte-

grating analyst feedback into the narrative model. In all tasks, the

average error rate tends to zero as the analyst refines the model,

although we note that the convergence rate depends on the spe-

cific task and its inherent difficulty. Thus, our experimental results

support the hypothesis that our 3MSI model for narrative maps is ef-

fective at supporting incremental formalism [60] based on iterative

interactions.

In general, our 3MSI concept provides a flexible approach that

can enable researchers to use higher-level discrete structures as

outputs of a semantic interaction pipeline in conjunction with a

lower-level continuous model (or even multiple lower-level models).

Furthermore, our proposed guidelines for handling single-level and

multi-level interactions can aid researchers and practitioners in the

construction of complex SI models. However, while the 3MSI ap-

proach is flexible, it could become increasingly complex depending

on the number of levels we include in the pipeline.

Furthermore, in the context of interactive AI [67], if we seek

to add an explainable AI component to complement our SI model,

each additional layer in the system’s architecture increases the com-

plexity of generating explanations, as each transformation between

layers requires some way to łinvertž it and extract meaningful

information. This increasing complexity makes dealing with the

transparency issues highlighted in our expert review a more com-

plicated endeavor.

7.2 Semantic Interactions and Narrative
Sensemaking

Our simulation-based analysis provides a replicable and scalable

evaluation for our narrative SI models without requiring human

analysts. However, we note that due to the relative simplicity of

our test tasks compared to real sensemaking tasks, these results

might overestimate the incremental formalism capabilities of the

SI model, yet it provides a good baseline. In practice, we would

expect real sensemaking tasks to require more iterations to refine

the model. Nevertheless, the fact that, on average, we were able to

learn from different types of analyst interactions is promising.

Regarding our qualitative evaluation, our case studies and subse-

quent expert evaluation show that SI is capable of providing value

to analysts and aiding in the sensemaking process. In particular,

both the final structure provided by the narrative map after SI and
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the intermediate maps generated in each step are useful for gather-

ing insights from the data. In this context, despite the main goal of

semantic interaction being to generate a łgoodž final map by trying

to capture user intent through successive iterations, the iterative

process itself also has value to the analyst. Even if each individual

iteration is not a perfect map, the exploratory nature of this process

can provide valuable insights, which can be compounded as the an-

alyst explores different configurations of the structure space. Even

in cases where SI fails to generate a łgoodž map, there is value in

the exploratory analysis that it allows.

Overall, our findings suggest that combining semantic interac-

tions with narrative visualizations can assist in the sensemaking

process and allow analysts to change the story according to their

own preferences. Intelligence analysis [22], computational journal-

ism [11], and other fields that require analyzing and understanding

narratives could benefit from our proposed SI model for narrative

maps.

7.3 Model Transparency and Performance

Two of the key issues of the current SI model as identified by our

analysis with experts are transparency and scalability.

Regarding transparency, the system should provide appropriate

explanations of the changes it makes to the narrative to the users.

Thus, it would be useful to complement SI with an explainable AI

model that provides such feedback. In the context of creating a

general interactive AI model [67] for narrative maps, adding an

explainable AI component to our pipeline would be the natural

next step. Furthermore, we also note that the transparency issues

are likely accentuated due to the usage of non-incremental layout

algorithms for the output graphs, which can lead to additional

cognitive load due to drastically different positioning of events.

Regarding performance and scalability, we note that it would be

possible to reduce the computational cost by applying techniques to

group documents together and treat them as a single event, rather

than keeping the assumption of a one-to-one relationship between

documents and events. Such an approach could be helpful to reduce

the computational cost of the map extraction process and the cost

of the subsequent layout generation. However, it would require

extensive pre-processing and appropriate machine learning models

to detect which documents refer to the same event.

In this context, referring back to topic detection and tracking

literature [39, 47] to identify events or other structured narrative

extraction approaches [4, 43, 62] that represent events as clusters of

documents could be useful. In particular, adding an event extraction

model in the middle of the proposed 3MSI pipeline for narrative

maps could help reduce the overall computational cost and make

the model more scalable, as the last step to generate the structure

space is the most computationally expensive part of the pipeline.

7.4 Interaction Ambiguity

While our SI model was able to capture knowledge from the sim-

ulated analyst, there is ambiguity in how to interpret the user

interactions properly. The challenge of defining user intent from

interactions has been called the łWith Respect to Whatž problem

[30, 66] in SI literature. Possible solutions to this issue include

providing additional interactions [66] so that the user can specify

with more precision what they actually want to obtain (e.g., by

using additional interactions) or providing the ability to control

the impact [30] of the interactions (e.g., by designing a weighting

scheme that integrates elements from original representation and

the post-interaction representation). In our particular example, an-

alysts could specify that the current stories should be kept together

by using the clustering interaction. By doing so, the model would

be forced to keep the original storylines in the representation while

also integrating the new story. Thus, ensuring that the model prop-

erly captures the incremental formalization process, rather than

throwing away the previous narrative map. However, further ex-

ploration is required to define a robust model of user interaction

for narrative maps that captures user intent correctly when there

is ambiguity.

Furthermore, based on the feedback from the experts, an im-

portant step that can aid in understanding how the interactions

are working is explicitly showing the changes introduced by the

semantic interactions. Adding such explanations would help users

determine whether the interactions are capturing their intentions

properly when there is potential ambiguity. Furthermore, in case

the semantic interactions have misinterpreted the intent of the

analyst, they could apply corrective interactions to the highlighted

changes and guide the extraction algorithm to generate a new map

that deviates less from the original intent.

7.5 Limitations

Our work is not without limitations. While the general 3MSI frame-

work provides a general approach to semantic interaction, our

specific SI approach for narrative maps is not model agnostic. The

current model is built around the linear programming extraction

model and the use of a DRmethod for the embedding representation

of documents. Thus, any changes to the extraction pipeline would

require figuring out how to integrate constraints into methods.

Regarding the evaluation of the SI model, we note that the

simulation-based experiments only used simple tasks that do not

represent the full complexity range of narrative sensemaking tasks

that analysts could perform with a narrative map. To ameliorate

this issue, we presented in-depth case studies that attempt to repli-

cate real sensemaking tasks and gathered feedback from experts in

visual analytics working in the field of intelligence analysis.

Finally, we note that there are other potential interactions that

could be used to capture the intent of analysts. For example, manu-

ally changing the main story of the narrative map or highlighting

a specific event to mark it as more important. However, the cur-

rent model does not handle such interactions in its current form.

Despite these limitations, our quantitative and qualitative results

show that our 3MSI model has the potential to help analysts mod-

ify computational narrative models through simple interactions

with narrative visualizations, without having to understand the

underlying extraction or representation models used to generate

the narrative visualization.

8 CONCLUSIONS

In this paper, we proposed the concept of 3MSIÐMixedMulti-Model

Semantic InteractionÐan SI pipeline defined by a higher-level dis-

crete structure and lower-level continuous models. Furthermore,
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we showcased the capabilities of this approach by developing an

SI model for narrative maps, which had a lower-level model in the

form of a document embedding projection space and a higher-level

narrative structure space.

We evaluated our SI model through a quantitative simulation-

based approach. The evaluation showed that the SI model is capable

of integrating the simulated analyst’s interactions into the narrative

model. Thus, supporting the hypothesis that the SI models are

effective at supporting incremental formalism for narrative maps.

Furthermore, our review of case studies and validation with ex-

perts led to valuable feedback regarding the SI model in particular

and the interactive narrative maps framework in general. The ex-

pert feedback showed that the SI model for narrative maps could

provide value to analysts in their sensemaking process. In terms of

broader impact, integrating SI models with narrative maps allows

us to better support the sensemaking loop for narrative sensemak-

ing tasks, such as journalistic analysis of news narratives [11] and

intelligence analysis [22]. However, we note that there are two

key issues in the current SI model for narrative maps: scalability

and transparency. Thus, future work should seek to improve the

extraction approach to allow for the analysis of larger data sets

and explainable AI techniques should be used to improve the trans-

parency of the SI model and the changes it makes to the narrative

maps.

Finally, in terms of broader impact, the 3MSI concept provides a

flexible framework that allows researchers to employ higher-level

discrete structures as outputs of an SI pipeline in combination with

different continuous internal models and representations. Further-

more, our proposed guidelines for dealing with single-level and

multi-level interactions can help academics and practitioners build

complex SI models.
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A NARRATIVE MAPS EXTRACTION

In this appendix, we provide more details about the narrative maps

extraction pipeline, including the coherence computation step, the

linear programming formulation, and the post-processing steps.

A.1 Coherence Computation

The coherence computation step relies on the projection space and

the associated topical clusters [36]. Thus, it depends on the dimen-

sionality reduction and clustering algorithms used to build this

space. In particular, coherence is computed as the geometric mean

between content similarity and topical similarity. The content simi-

larity term is computed based on the normalized cosine similarity

of the projected document embeddings, which are based on the

all-MiniLM-L6-v2 model of the sentence-transformers library [50].

The topical similarity term is computed using the Jensen-Shannon

similarity [26] to compare the distribution of the topical cluster

probabilities of each document.

However, this definition of coherence leads to issues when deal-

ing with data sets that span longer periods of time, such as gener-

ating long-ranging connections between events that are seemingly

related but too temporally distant to be relevant. To deal with this,

previous approaches have used exponential decay factors based on

the temporal distance between events [13, 42, 43, 69, 72]. Thus, we

extend the previous notion of coherencewith a temporal component

that penalizes events that are temporally distant using an exponen-

tial factor. Let Δ𝑡𝑖, 𝑗 be the temporal distance between events 𝑖 and

𝑗 . The new value for coherence is defined as

coherence𝑖, 𝑗 = exp

(

−
Δ𝑡𝑖, 𝑗

𝜎𝑡

)

·
√︁

CS𝑖, 𝑗 · TS𝑖, 𝑗 .

where 𝜎𝑡 represents the temporal sensitivity, a user-defined param-

eter for the extraction algorithm that regulates the rate of decay,

CS𝑖, 𝑗 represents content-based similarity of the events and TS𝑖, 𝑗
represents topical-based similarity of the events. For the purposes

of our work, we measure all temporal distances and 𝜎𝑡 in days

and we use a default value of 30. However, for other data sets and

contexts, it could be necessary to change the units of temporal

measurement.

A.2 Linear Program Formulation

Now we provide more details about the components of the linear

program formulation (see Figure 4).

Variables and Parameters. The map is built by finding the opti-

mal weights for its nodes and edges. These weights are represented

by the node𝑖 and edge𝑖, 𝑗 , respectively, where 𝑖 and 𝑗 represent the

indices of the corresponding events in the data set. These variables

take values between 0 and 1. There are three user-given parameters:

𝐾 , the expected main story length that regulates the size of the

map;mincover, the minimum average coverage for the topical clus-

ters; and 𝜆, the strength of the regularization term in the objective

function. There are also pre-defined parameters that depend on

the results of the projection space. Namely, the coherence values

of each connection coherence𝑖, 𝑗 , and the membership of an edge

to a given topical cluster membership𝑖, 𝑗,𝑘 [36]. In this context, 𝐶

represents the set of topical clusters (indexed by 𝑘). Finally, the

minedge variable represents the minimum coherence value of the

narrative map over the edges and is used as the optimization goal.

Objective Function and Constraints. Following the model

of Keith and Mitra [36], the linear program seeks to maximize

the value of the minimum edge, under the assumption that the

best narrative structure should have no weak connections (i.e., the

minimum coherence of the map is as high as possible). This is done

using theminedge constraints that depend on the coherence values.

In our evaluations, we fixed the regularization strength param-

eter (𝜆) to the inverse of the total number of potential edges in a

directed acyclic graph of size 𝑛. That is, we set 𝜆 =
2

𝑛 (𝑛−1) . Our
empirical evaluations showed that this value worked well for our

purposes (see analysis of results in Appendix D).

Starting Event Constraints. We note that the aforementioned

design guidelines study showed that analysts tend to use maps

with a single source event and potentially multiple endings [38].

Thus, we allow users of our extraction algorithm to select a single

starting event 𝑠 when extracting the map. This is handled by the

node𝑠 = 1 which sets the corresponding starting node as active.

Furthermore, to avoid interfering with the user-defined starting

event, we prevent events that occur before the starting event from

appearing on the map, which is handled by the constraint that

assigns their node variables to 0. We note that it would be possible to

adapt this approach to a fixed ending event, or other combinations

of starting and ending events, including none of them.

Chronological Order. To ensure that the events in the map

follow a chronological order, we impose a series of constraints based

on the index of the events. This constraint assumes that the data set

has been sorted by time before running the extraction algorithm.

Map Size Constraint. This constraint determines the expected

length of the main storyline on the map and thus it regulates the

map size. This constraint is determined by the parameter 𝐾 , which

is defined by the user. We note that the original extraction model

[36] had another constraint to ensure that the sum of edge weights

added up to𝐾−1. However, we removed this constraint and replaced

it with the regularization term that seeks to minimize this sum.

Edge Constraints. These constraints seek to generate the con-

nection structures of the map, relating the incoming and outgoing

edges of each node with the activation value of that node. Unlike

the original formulation by Keith and Mitra [36], we use inequality

constraints for the outgoing edges, as this approach allows for maps

with multiple endings.

Coverage. To ensure appropriate topical diversity and coverage

over the narrative map, the original formulation of the extraction

algorithm also included a coverage constraint based on the average

coverage of each topical cluster (obtained from the HDBSCAN

clusters in the projection space). A topical cluster is considered

to be covered if sufficient edges belonging to the cluster (defined

by the membership𝑖, 𝑗,𝑘 parameter) are on the map. The minimum

coverage required (mincover) is a user-defined parameter. We set

20% minimum coverage as the default value of this parameter.

A.3 Post-processing

We note that despite the use of regularization, the optimal map

in terms of coherence could still be highly complex and have re-

dundant edges or connections that make it difficult for a human to
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interpret adequately. Thus, as described in the extraction pipeline,

we perform a series of post-processing on the optimal map for

usability purposes and to keep in line with the design guidelines

defined by Keith et al. [38].

Pruning Edges. In particular, after extracting the initial narra-

tive map, we pruned edges to reduce the cognitive load for users. In

particular, we only keep a certain number of edges per node, thus,

restricting the branching factor of the DAG. Furthermore, after the

initial pruning, we remove any leftover edges that have too low of

a coherence value in the final model.

More specifically, we only leave the top ⌈
√
𝐾⌉ outgoing edges

of each node and remove the rest. Next, we removed all edges that

had less than 0.1/𝐾 coherence after re-normalizing edge weights.

In both formulas, 𝐾 is the map size parameter of the linear program

described in the previous subsection. These heuristics were found

through empirical testing.We note that the cut-off values depend on

𝐾 because a fixed cut-off value became problematic for larger maps,

as it leads to too many edges being filtered. These heuristics helped

prevent most cases of excessive edge density without eliminating

potentially relevant connections.

Storyline Identification. Next, we also identified the different

storylines of the narrative map. This is a necessary step to remove

the transitive connections from storylines (i.e., redundant connec-

tions) and to minimize inter-story connections (i.e., only keep the

first and last of such connections for each pair of stories). Further-

more, identifying these storylines is used for evaluation purposes

(e.g., analyzing a specific storyline of a map). However, the orig-

inal narrative map extraction method does not directly generate

a partition of the map into storylines, it only highlights the main

storyline [36]. Thus, we need to develop an algorithm to partition

the map into storylines.

To do this, we use the recursive algorithm described in Algorithm

1. This algorithm takes a narrative map as an input (i.e., a weighted

directed acyclic graph), with potentially many sources (starting

events) and sinks (ending events). This algorithm is based on the

idea that we can recursively extract the storylines by finding the

most coherent paths of the graph in each step. The first storyline is

easy to identify, as that would simply be the main storyline, which

we identify by finding the maximum likelihood chain of the graph

based on coherence. To find the rest of the storylines, we first re-

move the events from the main storyline and all the corresponding

connections. Then, we find the new łmainž storyline using what-

ever events and connections remain in the graph. We recursively

perform this process and store all the extracted storylines until

only storylines of size 1 remain (i.e., a graph of disconnected single

events). As we remove storylines, we might end up separating the

graph into multiple connected components. Intuitively, these com-

ponents correspond to different parts of the narrative (e.g., topics)

and should contain different storylines.

Transitive Reduction.We note that the original implementa-

tion of the narrative map extraction algorithm had an additional

constraint to reduce redundant transitive connections [36]. How-

ever, this approach introduced a cubic number of constraints in

the worst case, greatly increasing the computational cost. Thus,

removing this constraint from the optimization problem and per-

forming post-processing to remove transitive connections reduces

Input: Narrative map 𝐺 = (𝑉 , 𝐸) - Weighted directed

acyclic graph with weights between 0 and 1.

Output: List of sequences of events (storylines).

Function GraphStories(G):

if |𝐸 | == 0 then

return List(Singletons(V)) // Base Case -

graph with no edges.

end

𝑠𝑝 = ShortestPath(G) // Shortest Path

(Negative Log Likelihood).

𝐻 = 𝐺 − 𝑠𝑝 // Delete Nodes in 𝑠𝑝 (and edges)

from graph 𝐺.

𝐻 = Normalize(H) // Normalize outgoing edge

weights (sum = 1).

return List(sp) + GraphStories(H) // + means

list concatenation.

Algorithm 1: Recursive algorithm to extract all the story-

lines based on their overall coherence.

the overall computational cost of the extraction process, allowing a

more responsive system.

In particular, for each identified storyline in the graph, we use

transitive reduction [2] on the corresponding storyline sub-graph

making sure to keep the edges with higher coherence values. Af-

terward, we re-normalize the edges and obtain the final storyline.

Note that this process does not affect inter-story connections.

Inter-story Connections. For inter-story connections, we only

keep the first and last of such connections for each pair of storylines

on the map. To do this, we find the boundary edges between the sub-

graphs defined by each storyline. Then, we keep the first identified

connection and the last identified connection, based on the indices

of the corresponding nodes. After removing all redundant inter-

story connections, we re-normalize the edges of the graph.

B SIMULATED ANALYST IMPLEMENTATION

In this appendix, we describe our simulation experiment and the

implementation of the simulated analyst.

B.1 Simulation Overview

Throughout our experiments, we test the ability of the models to

learn incrementally over the course of several interactions with the

simulated analyst. Due to the computational costs of executing the

narrative map extraction process and the subsequent interactions

and refinements, we only take 10 samples of each task. Each sample

will generate slightly different narrative maps, as the underlying

embedding spaces are projected and clustered with a different seed

each time. Our results show that regardless of the starting condi-

tions, after sufficient interactions the models are capable of learning

based on the simulated interactions. Furthermore, we fixed the start-

ing event for all maps to reduce variability and make comparisons

easier. In particular, we chose a news article from an unbiased
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source (Reuters) describing the start of the protests: łCuba sees

biggest protests for decades as pandemic adds to woesž4.

In each iteration, we first compute the evaluation metric for

the current narrative map using the definitions in Table 1. Then,

the simulated analyst performs a series of interactions with the

model and generates a new map. We rinse and repeat until the error

rate achieves the desired target level (0%). Finally, we discarded

all samples that started with a 0% error rate, as it would not make

sense to use semantic interactions to improve the narrative model

in those cases. We kept executing our simulation until we obtained

10 valid samples.

Finally, we note that the SI system has no awareness of the

user-defined labels throughout the evaluation process. Only the

simulated analyst knows these definitions and uses them to deter-

mine its actions in each task. Moreover, the analyst only interacts

with a subset of the potentially relevant elements from the data

set, but we expect the model to be able to generalize based on

these interactions. For example, for T1 with the Miami/Florida la-

bel (41 events in the data set), the average number of total user

interactions throughout the simulation was approximately 7 node

removals. Thus, the different metrics seek to capture the model’s

generalization ability.

B.2 Simulation Definitions

We provide more details on the definitions used for the task defi-

nitions and associated evaluation metrics in Table 1. In particular,

the tasks make use of the following definitions:

• Relevant and Irrelevant Nodes We define event nodes

as relevant if they are associated with a user-defined label,

which can be defined by the presence of a keyword, the

political leaning of the associated news outlet, or even the

news outlet itself. We define irrelevant nodes in a similar

manner.

• Inconsistent Edges We define edges as inconsistent if

they connect articles from opposite political leanings. For ex-

ample, articles from right-leaning outlets with articles from

left-leaning outlets, or vice versa. Any other combination is

considered consistent.

• Inconsistent NodesWe define event nodes as inconsistent

with respect to their storyline if they conflict with the most

frequent political leaning of their storyline, excluding unbi-

ased articles. Ties are broken by selecting the first political

leaning in the storyline.

• Connected Nodes We define event nodes as connected

with respect to their cluster if they fulfill any of the following

conditions based on general narrative structures [36]: they

are directly connected to another relevant node of the same

cluster, they are in the same storyline as another relevant

node of the same cluster, or they share direct predecessors or

successors with another relevant node of the same cluster.

4https://www.reuters.com/world/americas/street-protests-break-out-cuba-2021-07-
11/

B.3 Simulated Analyst Actions

We now describe the actions taken by the simulated analyst in

each iteration for each task. We note that each iteration consists of

multiple actions (e.g., multiple node removals or additions).

T1 - Remove Irrelevant Events. The simulated analyst re-

moves all nodes marked as irrelevant according to the defined

target labels. These interactions should eventually lead to a narra-

tive map that avoids events with this keyword. When there are no

more events to remove from the map, the error rate is zero and the

simulation ends.

T2 - Remove Inconsistent Connections. The simulated an-

alyst removes all nodes marked as inconsistent according to our

criteria. These interactions should eventually lead to a narrative

map that avoids inconsistent connections. When there are no more

connections to remove from the map, the error rate is zero and the

simulation ends.

T3 - Clean Up Storylines. For each storyline in the narrative

map, the simulated analyst removes all inconsistent edges. To do

this, the simulated analyst first computes the political leaning of a

storyline by selecting the most frequent political leaning, excluding

center articles. The simulated analyst breaks ties by selecting the

political leaning of the first biased article in the storyline.

Once the political leaning of a story has been chosen, all nodes

inside that have the opposite leaning are marked as inconsistent.

To make the storyline consistent, the simulated analyst disconnects

the inconsistent nodes from the rest of the storyline by removing

the inconsistent edges in the storyline. Then, the simulated ana-

lyst reconnects the storyline by adding edges between the events

that are missing connections. See Figure 10 for an example of this

interaction.

R
Initial
Storyline L L R

R L L Rx x

R

L L

R

Remove
Inconsistent
Edges

Add
Consistent
Edges

(a)

(b)

(c)

Figure 10: Example of the simulation steps for task T3 (Clean

Up Storylines). (a) The initial storyline. (b) Removing the

inconsistent edges from the storyline. (c) Reconnecting the

storyline with consistent edges.

These interactions should eventually lead to a narrative map

with only consistent storylines. Note that we do not delete the

inconsistent nodes, as they could be re-used as part of another

storyline by the extraction algorithm. When there are no more

inconsistent nodes in all storylines of the map, the error rate is 0%

and the simulation ends.

T4 - Cluster Events. For each pre-defined cluster label, the

simulated analyst marks the relevant nodes in the narrative map as

part of their respective clusters. These interactions should eventu-

ally lead to a narrative map that integrates the relevant clusters as

part of the map by properly connecting them in the same storyline

or through common predecessors or successors. When there are

no more relevant isolated nodes on the map, the error rate is zero

and the simulation ends. The simulation also ends if there are no
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more relevant nodes to add to the cluster (note that this termination

condition did not occur in practice during our experiments).

We note that our clustering task only considers disjoint clusters.

The current implementation of our SI model is not able to handle

the multi-label case, where a single event belongs to more than one

cluster.

T5 - Add Relevant Events. The simulated analyst marks the

relevant nodes present in the narrative map as part of a single

cluster. Then, they add new nodes to the map by taking the first

10% (rounded up) of the relevant events that did not appear on the

map from the data set.

In this task, we cannot measure success based on the simple

frequency of relevant events associated with the user-defined label,

because our goal is not to generate a map filled with only the rele-

vant events. Instead, we care about the added events being properly

integrated into the narrative map, which is why we need to use both

clustering and node addition in this task. Thus, we use the same

metric from the clustering task (T4), but with only a single łclusterž.

Thus, like in T4, when there are no more relevant isolated nodes

on the map, the error rate is zero and the simulation ends. The

simulation also ends if there are no more events to add (although

this ending condition did not occur in practice). Preliminary eval-

uations showed that using node addition without clustering does

not lead to convergence, because the model does not understand

that the added nodes are necessarily related.

C CASE STUDY: CUBAN PROTESTS

The goal of the analyst in this task is to gain an understanding of

the causes and effects of the Cuban protests using a smaller version

of the Cuban data set with only 160 documents. For the effects,

the analyst considers both what happened in Cuba itself and any

relevant developments in the US, due to its geopolitical importance

in this context. Relevant effects range from the general response

by the administration to more specific socio-political effects. The

analyst generates a map using the same event we used for our

simulation experiments, namely: łCuba sees biggest protests for

decades as pandemic adds to woesž. In terms of parameters, the

analyst uses 𝐾 = 6 for the map size and default values for the rest.

Figure 11 shows the resulting maps and interactions of the analyst.

Using these parameters, the system generates the map shown

in Figure 11(a). This map has two major storylines, as well as four

minor singleton storylines. The main storyline starts focuses on the

Cuban protests at first, but it slowly starts to drift toward US-related

issues. The side storyline that comes afterward is focused mostly

on socio-political effects in the US, including protests and political

struggles. However, there are two events that are relevant to the

Cuban protests themselves. Furthermore, the first two singleton

storylines simply reinforce some aspects of the protests (e.g., ag-

gressive suppression of the protests). The second two singleton

storylines, which happen after the Cuban president claims that the

protests are a US plot, provide some insights into how the US is

responding to these events, particularly, there is political infighting

in Florida and calls to action from the senate. Despite some use-

ful insights, the current structure is not that practical as it has a

disjointed coverage of different aspects of relevant events. Thus,

the analyst will perform semantic interactions to generate a better

structure to represent the narrative.

In particular, the analyst wants to find out more about the effects

on Florida, as several events mention this state and related entities

or keywords (e.g., DeSantis and Miami). The analyst adds two rele-

vant protest events, as seen in Figure 11(a). Next, the analyst groups

these events with the DeSantis events that were already present

the clustering interaction. The expected result of this interaction is

a map that focuses more on the effects on Florida and the US.

The actual results are shown in Figure 11(b), where we see four

major storylines and four singleton storylines. The main story-

line is now exclusively focused on the Cuban protests, including

counter-protests and government repression. which is a nice side

effect of the interactions. Second, we see a storyline that has only

highlighted events that the analyst clustered, corresponding to a

storyline focused on Miami. Next, the third storyline starts with

a DeSantis event but then turns its attention to a series of events

about trying to provide internet access to Cubans. This connection

makes sense when delving deeper into the article’s contents, which

mentions that DeSantis is pushing for the administration to provide

internet access to the island. One of the singleton storylines right

after this also provides further insights, as Cuba outlaws social

media usage after the protests. The last storyline also mentions

the internet cutoff on the first event, but then shifts focus toward

calls for military actions against the Cuban regime. Afterward, the

storyline gives us some insights into the potential causes of the

protests from different points of view. From the Cuban perspective,

the US embargo was the key cause, although the government also

admits some blame for the economic shortages and lack of supplies.

From the Cuban Americans’ perspective, it is more about freedom

than supply shortages. Finally, the last event highlights how the

final response of the government was to attempt to fix the supply

issues by giving more rations without any fundamental change to

the regime. While further improvements would be possible, the

current layout and contents provide a decent overview of the main

developments of the Cuban protests, and the protests in Florida, as

well as some insight into the potential causes of the protests (e.g.,

supply shortages), as well as some relevant effects (e.g., banning

social media and censorship).

D REGULARIZATION EXPERIMENT

In this appendix, we present an additional simulation evaluation

to study overfitting issues and the effect of regularization in our

extraction model.

We addressed potential overfitting issues by adding a regular-

ization term to the objective of the linear program. However, we

have not shown the actual effects of overfitting when this term is

not considered nor how this addition properly curtails overfitting

issues. Preliminary qualitative evaluations showed that attempting

to solve certain tasks led to overly complex maps after perform-

ing semantic interactions. Thus, we added a regularization term

into the extraction model to minimize the risks of overfitting. In

particular, the regularization term added to Figure 4 acts like 𝐿1
regularization. This term seeks to minimize the sum of all edge

weights, leading to a sparse solution in the number of edges [16].

This provides two-fold benefits: first, it simplifies the resulting map,
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(a) Initial Map + Interactions

(b) Final Map

Events 

already on 

the map that 

were added 

to the blue 

cluster by the 

analyst

Events that were 

manually added to the 

map and then added 

to the blue cluster by 

the analyst

Figure 11: (a) Initial map and interactions performed by the analyst (add events and cluster events). (b) Final map after a single

iteration. Note that a higher-resolution version is available as part of the supplementary materials.
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making it easier to understand, and second, it reduces the likelihood

of overfitting (i.e., generating an overly complex map after using

SI).

Following these qualitative evaluations, we ran the simulation

experiments again to compare both the basic model without reg-

ularization and the regularized model. For the purposes of this

simulation-based evaluation, we use the simplified version of the

Cuban protests data set with only 160 documents instead of the

full data set with 500 documents (i.e., the same data used in the

case study of Appendix C), as running the full-scale simulation is a

much more computationally expensive endeavor.

In this context, we first need to define a way to measure over-

fitting in the context of narrative map extraction. We do this by

measuring the change in complexity of the map after using SI. A

drastically higher complexity value is associated with a higher cog-

nitive load when analyzing the map (e.g., consider the difficulty

of using a map with triple the number of edges compared to the

baseline). To measure the complexity of the map we use the num-

ber of nodes and edges as our main metrics. We note that these

complexity values do not have an inherent target or optimal value

and their values depend on the map size parameter (𝐾) used in

the extraction. However, changes in these complexity measures

after interacting with the narrative map are related to our intuitive

understanding of changes in narrative complexity. Hence, their val-

ues must be evaluated relative to a baselineÐthe initial map before

using semantic interactions.

We summarize our results in Figure 12. Due to space constraints,

we only show one example per task for those tasks that had multiple

examples. The first column compares the error rate for the basic

model and the regularized model. The second and third columns

show the average number of nodes and edges, respectively, for each

model.

We note that the error rate converges to zero as expected in both

models. There are no apparent differences in the rate of convergence

between the two models. Thus, both models are able to capture user

intent, just like in the full-scale simulation with the larger version of

the data set. Regarding graph complexity, we note that, in general,

the basic model usually has a slightly higher base complexity. This

is expected, as regularization should reduce the model complexity

in general. However, the difference is not particularly significant.

Next, we note that in tasks T1 and T2 both models behave simi-

larly in terms of complexityÐthere are no significant changes in the

number of edges or nodes throughout the simulation. However, we

note that for T2 the regularized model converges significantly faster

compared to the basic model. This faster rate of convergence could

be due to the edge-based nature of task T2. Since the regularized

model tries to construct sparser maps, the maps are less likely to

contain inconsistent edges.

Regarding T3, we note that the basic model has overfitting issues.

The number of nodes increases compared to the initial map and

remains higher throughout the simulation. The number of edges

increases initially but then returns to lower levels. In contrast, the

regularized model only shows a mild increase compared to the basic

model.

For T4 and T5, we note that the basic model has drastic increases

in the number of nodes and edges even after a single iteration. The

regularized model also has an increase in these metrics, but the

changes are muchmilder. Thus, following our interpretation of com-

plexity, the basic extraction model with no regularization has over-

fitting issues for the clustering-based tasks, while the regularized

model is able to reduce the overfitting impacts of the interactions.

In general, we note that semantic interactions that only work on

the structure space level do not seem to lead to significant overfit-

ting issues when used in simple tasks (T1 and T2) and only mild

overfitting issues when used in more complex tasks (T3). However,

semantic interactions that work on the projection space can lead to

significant overfitting issues (T4 and T5). Nevertheless, the addition

of regularization minimizes the impact of semantic interactions

on narrative map complexity and solves most overfitting issues

under our complexity-based interpretation for all tasks, without

significantly increasing the convergence of the error rate.
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(b) T1 - Remove Irrelevant Events: Fox News/Breitbart
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(d) T2 - Removing Inconsistent Edges
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(e) T3 - Clean Up Storylines
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(g) T4 - Cluster Events: Breitbart vs. Unbiased News
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(h) T5 - Add Relevant Events: Florida/Miami
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Figure 12: Overfitting analysis for the basic model vs. the regularized model. The left column shows the error rate plots. The

middle column shows plots for the number of nodes throughout the simulation. The right column shows plots for the number

of edges throughout the simulation. Both models converge towards zero error rate, but the basic model has overfitting issues in

tasks T4 and T5 based on its drastic increases in graph complexity metrics (number of nodes and edges).
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