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High school science classrooms across the United States are answering calls to make computation a part
of science learning. The problem is that there is little known about the barriers to learning that computation
might bring to a science classroom or about how to help students overcome these challenges. This case
study explores these challenges from the perspectives of students in a high school physics classroom with
a newly revamped, computation-integrated curriculum. Focusing mainly on interviews to center the
perspectives of students, we found that computation is a double-edged sword: It can make science learning
more authentic for students who are familiar with it, but it can also generate frustration and an aversion
towards physics for students who are not.

DOI: 10.1103/PhysRevPhysEducRes.18.020109

I. INTRODUCTION AND BACKGROUND

There are increasing and widespread pushes to introduce
computation to high school students [1–3]. Integrating
computational practices with science, technology, engi-
neering, and mathematics (STEM) classrooms gives learn-
ers a more realistic view of what it means to do science, and
better prepares students for pursuing careers in a world
where computation is ubiquitous [4]. These pushes are also
associated with changing standards [5] to teach our high
school students how to “think computationally” [6]. As the
push for integrating computation into classrooms becomes
more prevalent, we must reckon with the problem that little
is known about how students will take to computation-
integrated science. This research study contributes to the
effort to find out more about the student perspective
towards computation when it is integrated into the science
classroom. Here, we focus on a case of students experi-
encing computational integration in their high school
physics class. By detailing what challenges and perspec-
tives students face in this context, we can start to identify
how to make computation-integrated K–12 physics more
equitable, enjoyable, and beneficial to learning.
For our purposes, we view computational integration as

the act of altering the curriculum of a STEM course to
incorporate computational modeling, specifically as a tool
to learn the STEM subject. In this way, students don’t learn

to program separately from learning science, but rather they
learn science in a new way, through computational model-
ing. This is a practice that STEM professionals are
intimately familiar with [7]; thus, integrating computation
makes STEM classes more authentic to future STEM
careers. Authenticity is important in the sense that compu-
tation provides a way for disciplinary science practices to
be featured and learned in the classroom [8,9].
Computational modeling can be integrated in a variety of

ways at the K–12 level. For instance, at the high school level,
teachers have created models for planetary motion in an
attempt to help students make predictions and discover
Newton’s law of gravitation through experimentation on the
model [7]. This approach involved the teacher creating the
computational model and the students interacting with it.
This integration focused on the practice of using computa-
tional models to explore physical phenomena. Separately, a
middle school chose to integrate computation into science
classes for fourth, fifth, and sixth graders [10]. The students
used SCRATCH programming [11] to create simple models of
situations of their choice. For example, one student modeled
a projectile launched from a seesaw and got real-time
feedback from the computer as they constructed the model.
Because SCRATCH uses code blocks rather than text, it was
easier for students to interpret errors and connect their
computational choices to the model they made. Another
example of computational integration, at the college level,
involved curricular transformation in an introductory under-
graduate lab-based course [12]. The labs in this course were
redesigned to include one part traditional lab with hands-on
equipment, and one part computational modeling with
VPYTHON [13]. The integration also included reflection
questions to help students make connections between the
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programming and the open-ended, hands-on experimenta-
tion. One benefit to the students was that by learning the
fundamentals of VPYTHON, they were able to better visualize
the relevant physics concepts in the lab course [12].
Despite the increasingly widespread adoption, what we

know about how students learn in computation-integrated
settings lags behind the speed of the changing curricula. As
stated in a recent report on the state of interdisciplinary
computation-integration-based education, “We still know
very little about students’ thinking and learning as it
unfolds with the use of computational tools. At the very
least, new tools for thinking and making sense of data call
for curriculum resources that consider students’ developing
computational literacy. With the introduction of this new
competency, novel effects might emerge concerning stu-
dent engagement, motivation, and identity in computation-
ally enhanced classrooms” [7] (p. 9). Essentially, Caballero
et al. call for researchers to develop an understanding of
how computation impacts the experiences of students, from
the perspectives of students.
To date, there has been no in-depth qualitative research

on the affective experiences of students in computation-
integrated STEM contexts in which to situate our study. We
therefore looked to similar work in other contexts. To start,
studies on affect and investigations of students’ perspec-
tives have been a major focus in the last 30 years in broader
STEM education research [14–33]. In particular, previous
research in math has examined the affective impact on
students when they engage in specific types of activities
such as problem solving [14–17]. An example of this is a
case study on affective responses during problem solving in
a middle school math context [17]. Hannula demonstrated
discipline-specific connections between affect and student
success, thereby suggesting that attending to student affect
in pedagogy offers a way to improve teaching and learning.
In the discipline of chemistry education, multiple studies
have been carried out that examine student affect or
constructs related to it, like self-efficacy [18–21]. In one
study on student affect in an undergraduate chemistry lab
[21], the authors observed lab classes and asked students
about their affective experiences. Galloway et al.’s [21]
findings and implications centered around students having
complex, multifaceted affective responses. The authors
offered several suggestions for teachers to cultivate positive
affect and imbue meaning into the oft-rote manner of
chemistry lab teaching. This study is important in that it
was the first to study affective experiences in chemistry labs
with an in-depth, qualitative approach, and the implications
had the potential to make a significant impact on student-
centered chemistry lab teaching. In particular, the authors
drew from Bretz [22] to demonstrate that affect-focused
research can provide insight into what students view as
“meaningful learning”—an enterprise that combines learn-
ing with relevance and represents part of students’ moti-
vation to maintain effort in school settings.

Similarly, in physics education, research abounds on
students’ affective experience, beliefs, and perspectives
[23–28,34]. One study points specifically to a gap we are
trying in part to address—Gupta et al. [23] argued that there
has been a lack of research in physics education on the role
of affect in modeling student learning, especially on fine-
grain interactions. They made the case that most research
on student-centered physics learning focuses on the content
they know rather than their feelings about what they are
experiencing [23]. To explore what role affect can play in
learning, Alsop and Watts [24] looked at how students
approached a physics topic (radiation and radioactivity)
according to their attitude and perception towards it. Their
study found that it was possible to balance “impassioned
knowledge and informed feeling” in the learning of
physics, which keeps students engaged but not off track.
Some affect-based strategies for how to achieve this
balance of engagement and learning were explored
by Häussler and Hoffman [25] and Erinosho [26], who
showed the importance (according to student perspectives)
of linking physics with nontraditional and/or out-of-
classroom situations [25], providing materials that had
concrete, relevant examples [25,26], and working on
physics problems where students could collaborate with
peers [26]. This set of affect-based, student-centered
physics education studies demonstrates the relevance of
affect to the field of physics education research, the need
for deeper affect-based work [23], and relevance of affect
for exploring student perspectives.
Additionally, there have been a number of studies that

center on students’ experiences in their computer science
classes. Gomes and Mendes [35] suggested that students
struggle in computer science because the necessary problem-
solving strategies are new to students, especially in lower-
level undergraduate courses, where a lot of students have
their first exposure to computation. On top of that, students
in these introductory courses are often experiencing the
psychological stress of their first year in college in tandem
with developing new ways of problem solving and thinking.
From a broader perspective on computation, a study by
Jenkins [36] highlighted specific barriers associated with the
computational tasks themselves. He described computational
difficulties in terms of a set of skills: coding (syntax,
semantics, structure, and style), algorithms, and recipes
for translating ideas into code. He argued that the hardest
part is the novelty of computation; compared to other
subjects, students need much more precision to achieve
meaningful progress. This requires mastery over coding
skills and some degree of expertise with translating ideas into
code, both of which are hard to build when it is so easy to
write imperfect code, to which the computer provides
convoluted feedback or outright rejects.
Much of the research on students’ experiences with

computation, like the studies from Gomes and Mendes and
Jenkins, focuses on the challenges that students face rather
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than their reactions to and perspectives on those challenges.
Bosse and Gerosa [29] built a compilation of research
studies centered around learning difficulties in program-
ming settings. Most of the results from their literature
review indicated students tend to be worried about learning
syntax, variables, error messages, and code comprehension.
Students also generally experienced nervousness with
unknown coding concepts like functions and parameters,
often resulting in students erecting affective barriers against
such challenges. For example, when a student realized
their code contained a semantic error, they were more
likely to give up and not finish the programming activity
because semantic errors take a lot of time and effort to
identify and fix [29].
In the last decade, computational education research has

begun to explore the relationship between affect and the
challenges that students face in computer science courses.
A relevant literature review focused on qualitative research
in computation education [37]; they identified self-efficacy
as a useful construct to examine students’ experiences in
these contexts. However, much of the existing qualitative
literature on students’ affective responses exists in
advanced, undergraduate course contexts rather than more
introductory levels. Additionally, they noticed that much of
the qualitative work was trying to develop theories about
how learning happens in computational settings rather than
explore and explain computational difficulties from the
perspectives of students. According to this review, there is a
need in computation education to research on how students
interpret their learning, especially at the introductory and/or
K–12 levels [37].
A handful of studies address similar needs, though they

are in short supply. Lishinski et al. [30] studied students’
affective responses to computational challenges and how
difficulties can elicit self-efficacy judgments resulting in
maladaptive learning strategies. They emphasize the impor-
tance of attending to affect in programming environments,
writing, “Emotional reactions contribute to a feedback loop
process in learning to program, and previous performance
impacts future performance both by virtue of the effect that
past experiences have on learning, but also via the effect
that past experiences have on emotions” [30] (p. 8). A study
from Kinnunen and Simon [31] similarly found that
students made assessments of their own self-efficacy
throughout the duration of computational tasks. Further,
they found that affective experiences were the primary
feature of computational work that students remembered
after class was over. This brought an urgency to studying
affect-based challenges in programming contexts.
The following year, Kinnunen and Simon [32] studied in

more detail how students’ affective responses were tied to
their self-efficacy judgments. They found that self-efficacy
was determined early in the course when students had their
initial failures or successes with computation. They rec-
ommended that instructors should deliberately ensure that

initial experiences with computation should include several
successes because it is so easy to “fail” by writing imperfect
code if you don’t know how to interpret feedback from the
computer, which is often inadvertently masked by confus-
ing error messages. The same authors further studied the
disconnect between affective responses and self-efficacy
with longitudinal interviews [33]. In their findings they
attributed the disconnect to a lack of reflective activi-
ties built into the course. They added to their previous
recommendations by suggesting that initial computational
experiences should incorporate feedback on the entire
experience, not just the correctness of the result.
Studies like those from Kinnunen and Simon [31–33]

and the recommendations that sprang from them demon-
strate the importance of exploring student affect in a given
type of learning environment. Eckerdal et al. [38] theo-
rized about why computer science learning elicits in
students the affective responses that it does. They framed
the initial experiences (where students form their self-
efficacy beliefs for the first time [32,33]) as comprising a
“liminal space.” In everyday terms, they asked, how do
computer science students cross the threshold to learning?
If it takes some persistence and confusion before students
find their bearings in a computer science course, what is
helping them get over the hump? The authors examined
affect and found that as students crossed over the thresh-
old, their feelings about learning computation transformed
from hate and fear to euphoria. This implies that teachers
can take clues from affect about where students are in the
learning process, and even tailor instruction to help them
cross the threshold to learning.
While there has been significant research into student

affect and experiences in STEM courses, including com-
puter science, this research has traditionally been siloed
into separate disciplines. As computation becomes inte-
grated into STEM courses [7,10,12,39–43], it is important
to understand the effects of this integration. Recently, there
has been some work that addresses the challenges asso-
ciated with computation-integrated STEM, though not
from a student-centered perspective. For example, one
study investigated the ways that computational activities
could be difficult in a middle school context [44]. The
authors justified doing this in a computation-integrated
STEM setting, writing, “learning a domain-general pro-
gramming language and then using it for domain-specific
scientific modeling involves a significant pedagogical
challenge.” They found that certain features, such as the
problem-solving process and the syntactic complexity of
programming languages, can be leveraged for learning by
eliciting reflection on work or alleviated by employing a
simpler programming language like Python. Overall, they
relied on identifying challenges through observation of
computational activities rather than through the perspec-
tives or affective responses of students. The same was true
in a study by Vieira et al. [45], where the authors evaluated
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a computation-integrated materials science and engineering
course. They found that it can be helpful to integrate
computation with student-facing challenges in mind. For
example, early in the curriculum students performed poorly
on framing and recognizing computational problems,
which could be addressed by providing extra scaffolding
for problem solving at the start of the course. This study,
like Basu et al. [44], based their investigation on perfor-
mance metrics and features of the computational activities
that could be construed as difficult rather than centering
student perspectives or affect.
Several more studies in computation-integrated physics

took up non-student-centered approaches but did allude to
students’ experiences at some point in their research
processes. Weber and Wilhelm [46] reviewed broadly
the history of computational modeling in physics educa-
tion, and they identified several implementation-based
hurdles, such as having students invest significant time
to familiarize themselves with the software. This is espe-
cially a hurdle in high school settings, where there might
not be time to learn a new programming language within an
existing curriculum and learning to program could be
harder at that level. Leary et al. [47] focused on imple-
mentation-based challenges from the perspectives of uni-
versity faculty. They found several faculty-perceived
challenges: students being resistant to learning a new
clunky tool, instructors not being able to devote enough
time for students to get used to a programming language,
instructors not having support from the department, instruc-
tors not being able to cover as much content, and instructors
not having time to prepare for the newmaterial. The authors
relayed from their participants that it was hard as an
instructor to prepare for computation because you must
learn a lot about the programming language, and it can be
hard to make sure it will be accessible to students who have
not used it before.
Other studies highlighted the challenges and benefits to

students of integrating computation into a physics setting.
Svensson et al. [48] viewed computation as a type of social
semiotic, meaning it can be used to describe many different
phenomena and it can produce many different answers to
many different questions. In their view, becoming skilled at
computation is like learning to communicate with a new
language. An example of this is when students comprehend
how a line of code that updates position is connected to the
physical relationship between velocity and position. The
authors argued the challenge lay in students having limited
use of computation: even if students are aware of compu-
tation’s affordances, they might not be able to use computa-
tional resources skillfully. On the other hand, with proper
guidance or computational experience, students can explore
questions and build semiotic resources with code (e.g.,
conceptual connections and syntactic understanding), and
those resources can launch further inquiries. In the authors’
view, we need to equip students to see the “affordances” of

computational integration. We see a worrying alternative,
which is that without an understanding of computation’s
benefit, students could adopt the view that they have
an inability to learn languages (like having a “fixed”
mindset [49]), and this could prevent them engaging with
computation.
There are additional studies that highlight the student-

perceived benefits that computation can bring to STEM
classrooms. In an investigation on the impact of a Python-
based, university-level computational integration [50], the
authors reported that students were excited about learning
computation, though the integration didn’t have a signifi-
cant benefit to learning until the second year of physics,
when students who had learned the computational tools
were able to leverage their proficiency with certain lab tools
and data analysis techniques. Caballero et al. [41] high-
lighted several other benefits that computation brings to
physics. They focused their work on high school settings
where Modeling Instruction [51] was in use, and they
argued that computation highlights relationships between
physics concepts, creates dynamic visual models, and can
be used to explore real-world, complex physics problems
because of its computing power. Furthermore, they
explained that students who use computation are learning
to use the tools that professional scientists use, which
makes physics learning more authentic.
Furthermore, Caballero [52] interviewed professional

physicists and physics graduates about how they use
computation in everyday work, in an effort to paint a
picture of what students should be taught in a computation-
integrated physics course. The relevant skills (based on the
interviews) were conceptual understanding of physics,
writing pseudocode, computational thinking, connecting
ideas between math, physics, and computation, under-
standing the purpose of using computation beyond analytic
problems, and learning professional programming practices
like writing comments in your code. The interviewees in
this study were self-taught programmers, which further
shows there is a need for these types of skills to be
introduced into physics curricula.
Caballero et al. [7] summarized the research on compu-

tation-integrated STEM classes and provided several rec-
ommendations for future research and implementations.
They argued for the need to (i) develop approachable
computational models that reflect modern science so that
students can do science using the computation tools,
(ii) study how computation changes student attitudes and
problem solving, (iii) promote proven learning standards
when implementing computational integration, and
(iv) support teachers as developers of their own content
and members of a computation-integrating community.
Thus, we see that research into computation-integrated

STEM classes has begun to address the challenges of
integration and the impacts on students; however, to our
knowledge, there has not been a study that focuses on
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students’ perceptions of the integration and the impacts on
their affect, despite its importance in other areas of STEM
and multiple calls for research. We intend for this study to
begin to fill this gap and to focus specifically on the
students’ perceptions, challenges, and experiences in a
computation-integrated physics course. With this setup in
mind, we orient our research question: What student-
perceived, affect-based challenges do high schoolers face
in computation-integrated physics?
In Sec. II, we describe the methodology that drives our

use of the analytic tool and our choice around research
design which is followed by a description of the study
context in Sec. III, including the teacher’s choices around
computational integration. In Sec. IV we describe our
methods for generating data, creating transcripts, and doing
analysis. In Sec. V we outline and describe our results,
specifically around student-perceived challenges, and we
connect our results to affective literature in Sec. VI. In
Sec. VII we outline some of the student-perceived benefits
of computation, and in Sec. VIII, we discuss our findings
and implications of our research. Finally, we conclude
in Sec. IX.

II. METHODOLOGY

Our focus on student perspectives motivates us to use an
interpretivist case study lens in this research. We describe
this work as a case study because of our variation in data
sources and because we aim to capture computational
experiences of students in their natural classroom setting.
In particular, we take an interpretivist lens because of our
focus on students and their perspectives. What defines
interpretivist case study [53–55] is how the participants use
language. Language constructs the case and shows how the
relevant participants interact with the case. Everything that
the participants view as meaningful is meaningful [54].
The interpretivist approach [54] lends itself well to

studies that focus on how people experience and interpret
a phenomenon, as opposed to the phenomenon itself.
Because we are aiming to open an exploration of how
students experience computation in their physics class, an
interpretivist case study is ideal for exploring this in an in-
depth, qualitative way. Using interpretivist case study, we
would describe the crux of this study as “how students
perceive and react to” affect-based challenges in compu-
tation-integrated high school physics with the case being a
single physics class taught by Mr. Buford (pseudonym).
In determining our data sources, we bounded the

“reality” of our case to the students themselves and class-
room occurrences [53,56–58]. For example, we did not
study the home life of any students to see how they dealt
with their physics obligations outside the classroom. The
reason for this bounding was to privilege data sources
closest to the phenomenon: student interviews and class-
room observations. Though students occasionally men-
tioned out-of-classroom experiences like school clubs or

homework, we trusted the student’s account of the expe-
rience rather than joining them for those experiences.
Most of the discussion during class and during interviews
revolved around in-class activities, which was the main
way Mr. Buford had integrated computation into his
physics class.
An important part of our methodology is to highlight

the perspectives of students, who experience computation-
integrated physics firsthand. It is their perspectives on
Mr. Buford’s curriculum that this paper is about. We intend
for our emphasis on participant interpretation to be coupled
with a detailed discussion of the research context in which
our participants operate. In the next section, we will outline
the context of our study and introduce the teacher in whose
classroom we generated our data. The rich contextual
description we believe is important for practitioners to
relate their own experience to and for researchers to
understand the setting in which our case study played out.

III. CONTEXT

Mr. Buford teaches physics at Mulberry High School
(pseudonym), a suburban, affluent, racially diverse public
high school. He has been teaching at Mulberry for 30 years.
In an interview with Mr. Buford, he commented that he
tends to try to lean his teaching style towards problem-
solving and exploration while still covering the material for
the AP physics exams, which he estimates around half of
his students elect to take for college credit. He said, “I like
to try new stuff,” and he confessed that he wishes he had
more time to do wide-open, curiosity-driven activities in
class: “I think I don’t do enough of, ‘Okay, so here’s this
principle that you’re responsible for. Today we’re going to
take some time, and you guys are going to brainstorm an
experimental design.’”
One of the recent initiatives that Mr. Buford tried to

introduce was computation. He was inspired in part by an
existing computation-integrated introductory physics cur-
riculum at Michigan State University (MSU) called Projects
and Practices in Physics (P-Cubed) [59]. He began near the
end of the 2017–18 academic year by going through the
major physics concepts after the AP Exam. For each
concept, he recalled, “I think about, does this one seem
like it’s compatible with writing code to illustrate. Then I try
to come up with a scenario, and this is just piggybacking on
the scenarios that are used in P-Cubed.” For him, the
computational activities were meant to be visual, and he
used the GLOWSCRIPT programming language [60] along
with a minimally working program to do this. A minimally
working program [61] is a piece of starter code that will
compile without errors and create a visual; however, there are
lines of code that need to be edited or added by students to
create a realistic physical model. For example, Mr. Buford
once introduced a program that showed particles passing
through an optical lens without refracting, shown in Fig. 1.
The task was for the students to break down their
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understanding of optics into steps so they could edit the
computer program accordingly and get the particles to
refract, shown in Fig. 2. Mr. Buford would generally begin
the computational activities by explaining the minimally
working program to the entire class. He would also explain
what the output of the code should look like when completed
by either running a solution code or drawing the output on
the whiteboard. After Mr. Buford finished this explanation,
he distributed the program and students were free to work
together to create computational solutions.
During the summer of 2018, Mr. Buford attended a

workshop at MSU entitled Integrating Computation in
Science Across Michigan (ICSAM), funded by an NSF
grant with the same name. The week-long workshop was
designed to support high school teachers who wish to
integrate computation into their physics classrooms.

During the workshop Mr. Buford collaborated with other
teachers and facilitators on learning to do physics with
GLOWSCRIPT, and by the end of the week, he made a
personalized plan for integrating computation into his
curriculum for the upcoming year. While Mr. Buford
had begun integrating computation at the end of the
previous year, he began using it on a regular monthly
basis in his AP Physics 1 and AP Physics 2 classes in
Fall 2018.
Mr. Buford described in his interview how the computa-

tional activities would unfold in class.
Mr. Buford: Grab a laptop and fire it up, and then I go
through maybe five minutes—I try to keep it as short
as possible—a little explanation of what we’re doing,
and tell [the students] where to get the starter code and
put it in GLOWSCRIPT and start working.

Generally, Mr. Buford would project the minimally
working program, or starter code, which he wrote himself,
up onto the whiteboard, so students could see as he read
through the program’s code. Then he explained how
important bits of the program worked, ran the program
to show the visual at its minimally working stage, and
described how it would need to change, occasionally
drawing parts of his explanation with diagrams on the
whiteboard. Sometimes, he will take a couple minutes near
the end of class to project his solution on the whiteboard, so
that he can explain a possible solution path. Even though
Mr. Buford was showing his own solution on the white-
board, he would always emphasize that many different
solutions exist to the coding projects.
When designing the computational activities,Mr. Buford’s

approach was to build in checkpoints that students can reach,
even if their solutions depart from what he might have in
mind. “The ideal to strive for is, ’Okay, now that you’ve done
that, now do this,’ and actually have several of those in the
bullpen waiting.” When he says this, he is talking about
progress students can see in the GLOWSCRIPT animation
window. In the optics activity for example, students can reach
these checkpoints first by causing a light particle to move on
screen, and then pass through the lens, and then refract, and
then add more particles to the animation. Mr. Buford’s aim is
for students to progress along these steps so nomatter how far
they go, they still have some sense of success. His main
difficultywith this approach has been, “students who struggle
can still beworking on that initial problem,”meaning the first
checkpoint that he described earlier. Some students are not
even getting past that first step, so they do not get to
experience the scaffolded nature of the activity, or even a
little bit of tangible progress.
The process by which Mr. Buford designs these activities

is to first write the solution himself, and then take out the
bits and pieces that he thinks the students should be able to
rewrite.

Mr. Buford: I’ll try to think of a scenario that’s amusing,
at least to me, but still is doable. The physics is right in

FIG. 1. Starter code and snapshot of the dynamic visualization
for Mr. Buford’s converging lens activity. Lines 4–10 of the code
initialize the lens, x axis, and light particles. Lines 12–16
initialize the focal points, give the particles a velocity, and define
a time step for each frame of the animation. Lines 18–24
iteratively move the particles using their velocity and the time
step. The snapshot of the visualization shows that the particles
pass through the lens in a straight line, indicating that the program
does not fully model the physics properly.

FIG. 2. Diagram of light particles passing through a converging
lens. This is similar to the diagram Mr. Buford drew on the
whiteboard during his explanation of the activity. Students
learned about how light travels through a converging lens during
a previous class period.
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the ballpark of the physics they’re supposed to under-
stand. Then the part that I’m not very good at is how
much code do I give them, because I give them some
starter code…I’ll write code that will do what I want it
to do, and then I have to try to pick the parts that I
would take out and change… and then have them try
to figure out how to make it work.

Thus, Mr. Buford tries to address multiple concerns
when writing these activities. He tries to balance how much
starter code to give students and how much to leave for
the students to do, while at the same time making sure that
the difficulty and physics content of the problems are
appropriate.
Mr. Buford also made some design choices around when

the computational activities feature in the curriculum.
Mr. Buford: Those coding activities are culminating
activities to studying a concept…It’s usually after
we’ve talked about something for a few days or
worked on something for a few days. We’ll do a
coding activity if it fits.

Interviewer: Is that intentional, to have it be after they’ve
learned the concept in part?

Mr. Buford: Yeah…could you use it as a way of
developing concepts? I think you probably could. I
just haven’t done that. I haven’t used it that way.

The computational activities in Mr. Buford’s class are
designed to wrap up a unit. Students have already spent
several days learning about a concept, and then Mr. Buford
inserts a computational activity. He does not use the
computation activities to introduce new ideas, rather they
are used to reinforce what students have already learned
and to apply those ideas in a new way.
When asked to expand on his views towards computa-

tion at the end of the unit, Mr. Buford talked about the
importance of visual modeling and coding skills:

Mr. Buford: Ihopeit justenhances themthinkingabout the
physics concept that we’re trying to learn, ideally…
I feel likewhenyou’rewriting thecode for this, youhave
tounderstandhowprojectilemotionworks, or youcan’t
write code that models that very well…
I guess my hope is that that’s what we’re doing is
reinforcing theconcepts,andat thesametimeI just think
writing code is just a skill that’s so valuable in lots of
other areas besides just physics.

Mr. Buford wanted the computation to serve as a way to
enhance and reinforce conceptual understanding of phys-
ics. His belief is that figuring out the computational activity
entails figuring out the physics within it.
On a separate thread, Mr. Buford wanted the computa-

tion to serve as a way for his students to learn a skill that is
widely applicable outside the realm of physics.

Mr. Buford: This computational modeling is so appeal-
ing to me. It’s new. I’m not an expert programmer. I
have students that are really good at it. It’s cool to see
what they come up with and how they come up with it.

From my perspective, the problem-solving aspect of
that I think is really valuable. The organization and the
logic behind it, oh, my gosh. I think those skills are
fantastic to have.

From Mr. Buford’s perspective, these activities were
about more than just physics; they were about building new
skills and letting his students’ creativity shine. Mr. Buford
chose to not grade the activities:

Mr. Buford: It’s okay to not have a grade assigned to
every activity in your class, especially with students
that are in advanced classes. You don’t have to get
something for every little bit of effort that you make,
so it can be its own reward.

He believed that the opportunity to play with the
program and create something intrinsically rewarding
was enough motivation for his students.
Overall, Mr. Buford designed the computational activ-

ities for the ends of units, when students could reinforce
their physics knowledge by applying it to something new
and exercise creativity by exploring the computational
environment without pressure to turn in a solution. He
viewed the computational activities as reinforcements of
conceptual knowledge but also opportunities to build
crucial computational skills for the future. The computa-
tional conditions that Mr. Buford created in his classroom
set up the environment that his students were working in
and informed the perspectives from students that follow in
this study. We include Mr. Buford’s perspective here to help
readers understand some of the driving forces behind the
development of this instance of computational integration.
In the sections below, we focus our investigation on the
perspectives of Mr. Buford’s students, who are the only
ones that can tell us how these newly integrated computa-
tional activities affect their feelings about themselves and
their learning in this context.

IV. METHODS

We begin our methods section by introducing our student
participants, who will be the main focus of our study. The
students were selected to represent a broad range of prior
experiences (in terms of physics classes and computational
exposure) and in-class experience (determined through in-
class observations). The aim was not to generalize our results
to any sort of population. Rather, we chose a diverse set of
research participants because we wanted to describe the
variety of challenges students faced in Mr. Buford’s class.
The class we focused on in this study was Mr. Buford’s AP
Physics 2 in the 2018–19 academic year. To ensure we
respected how the students wished to be represented in this
study [62,63], we asked the students after data generation to
select a pseudonym and self-describe their gender identity,
racial identity, and preferred pronouns.
Otto (he/him) was a junior at Mulberry High School, and

he took “regular” Physics 1 with a different teacher before
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enrolling in AP Physics 2 with Mr. Buford. He always felt
behind and that this put him at a disadvantage when it came
to the computational activities with GLOWSCRIPT, because
he did not have any background with the language. While
he did take AP Computer Science the year before, Otto
often felt frustrated that his computational background
did not seem to help rather than feeling prepared for
GLOWSCRIPT. Despite his difficulties with GLOWSCRIPT,
he did well in the class, and tended to approach computa-
tional activities with the stance that he could just ask Mr.
Buford as many questions as it took to figure it out. He
usually worked together with Blaine, who also did not take
AP Physics 1. Otto self-identified as a white man.
Circe (she/her) was a junior at Mulberry and took AP

Physics 1 with Mr. Buford the year before. She usually
worked in a large group of six to eight other students who
took AP Physics 1 together, including Beck and Ed, and felt
a strong sense of community in the class. Often, Circe felt
that the computational activities were too hard to authen-
tically engage in, so she usually ended up copying someone
else’s code toward the end of the period and passing on a
working program to someone else, calling it a “copy train.”
Other than AP Physics 1, Circe had no prior experience
with programming, and she did not feel like she was “cut
out” for programming or for physics. Despite this, she gave
a poster presentation with a couple other students at the
state capital about the cool things you can do in physics
with GLOWSCRIPT. Circe self-identified as a cisgender
Central Asian woman.
Beck (he/him) was a junior at Mulberry, and he took AP

Physics 1 with Mr. Buford the year before. He worked in
the same large group as Circe, which was usually formed
at the start of class with students dragging three tables
together. Beck was an avid coder, and he decided to learn
more GLOWSCRIPT and do Khan academy physics over the
summer after taking AP Physics 1. His dad was a computer
scientist. Beck felt that the computational activities helped
him understand physics concepts better because it was like
“explaining it to the computer.” Because he could finish
most or all a computational activity without help and he
liked to share his code and explain his thinking to other
students, Beck was often a resource for other students.
Because of his relatively uniform positivity with the
computational activities, he did not discuss challenges
with much depth. He did, however, describe many positive
aspects of computation. As a result, he does not feature in
the next section on challenges but does in later sections of
the paper. Beck self-identified as a white cisgender man.
Blaine (he/him) was a junior at Mulberry, and he took

“regular” Physics 1 together with Otto before enrolling in
Mr. Buford’s AP Physics 2. He took a helpless stance
towards the computational activities, and he was never able
to finish an activity during the class period. During one
class, he threw his hands up and said, “what’s the point of
learning code? I can draw this on a piece of paper in fifteen

seconds.” He often sat with Otto when doing computational
activities and he frequently expressed apathy towards
programming. His only prior experience working with
computer code was when he spent a summer in middle
school with his uncle, who worked at a university. Blaine
would try to work through programming tutorials while his
uncle worked, but he felt like he did not really understand
any of it. Blaine self-identified as a cisgender biracial
(Black and white) man.
Joyce (she/her) was a junior at Mulberry, and she took

AP Physics 1 with Mr. Buford the year before. She usually
worked by herself but she also socialized with the larger
table, especially after she was done working and ready to
share her solution or answer questions. Joyce always
finished the computational activity and was often the first
in the class to do so. As a result, she spent a lot of time
explaining her ideas to other students after she was done.
Despite this role, she viewed herself as an average pro-
grammer, arguing that she could not solve the problems “in
five minutes.” She was enrolled in AP Computer Science
at the same time and thought that the conceptual ideas
from her computer science class helped her when she was
using GLOWSCRIPT. Joyce self-identified as a cisgender
Asian woman.
Ed (she/they) was a junior at Mulberry, and she took AP

Physics 1 with Mr. Buford the year before. She had some
additional prior programming experience from participat-
ing in robotics club competitions and writing instructions in
code for the robots. Typically, she worked in the large
group with Circe and Beck, and she tried to figure out and
understand the computational activities, opting to ask for
help from Mr. Buford or peers rather than join the “copy
train” when she got stuck. She said in her interview that she
was able to figure out the computational activities around
one-third of the time, and this made her feel like she had the
ability to successfully program every time. She also felt a
strong sense of community in the class. Ed self-identified
as a Black agender person. She clarified that she goes by
she/they pronouns and suggested for us to pick one to use
or alternate between she and they. We opted to use she/her
pronouns alone for consistency.

A. Data generation and transcription

We developed interview protocols and conducted semi-
structured interviews [64] with the above six students in
Mr. Buford’s AP Physics 2 class. The interview questions
were aimed to elicit and discuss their feelings about physics
class and computational activities in accordance with our
research question. The original interview protocol for
students is provided in the Appendix. We also interviewed
Mr. Buford for the context in the previous section, we took
field notes during classroom observations, and we recorded
two groups of students working on a computational activity
during one class period. The data sources are summarized
in Table I. In this study we focused our analysis on excerpts
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from the six student interviews. It should be noted that we
sometimes used in-class occurrences and things that stu-
dents did or said during the computational activities as
prompts during the interviews. Each student’s interview
was treated as an “anchor point” [54] through which to
view challenges from a student’s perspective.
The interviews were transcribed for utterances. This

choice was driven by a focus on what participants said
about their experience, which aligns with our choice to use
interpretivist case study. The interviews were conducted to
ask about the perspectives of the research participants, and
their comments are taken to represent those perspectives.
We understand that interview comments can only represent
how someone feels about their experiences [65], but still we
foreground what the participants said, because their
responses were prompted verbally. We included nonverbal
communication in the interview transcripts when it added
meaning on its own to what a student said, such as a face
palm or eye roll.

B. Data analysis

To analyze the interview transcripts, we identified
episodes from each interview where the discussion centered
around computation, physics, or feelings the student had
towards the related classroom activities. It turned out that
each interview yielded ten to fifteen episodes of one to two
minutes each. The goal with chunking our data like this was
to group utterances together into comprehensive statements
from the students about their experiences with physics. We
carried out analysis on these episodes by taking notes on
the episodes one by one, and then tracing out patterns
across the different episodes and interviews, treating each
interview as a separate data source from which to view a
given pattern. We named each pattern according to the
common experience or challenge that it represented for
students. These names dictated our organization of the first
findings section (Sec. V). After outlining and describing
the student-perceived challenges, we discuss how the
challenges relate to affective constructs, such as mindset,
self-efficacy, and self-concept.

V. STUDENT-PERCEIVED CHALLENGES

We explore the question,What student-perceived, affect-
based challenges do high schoolers face in computation-
integrated physics? by presenting the interview data in
which our high school student participants described their
experiences and feelings around doing computation in their
physics class. In the results below, we describe patterns in
the data that constitute different affective challenges that
students faced when doing computation in Mr. Buford’s
class. The challenges listed below are in no way exhaustive,
nor are they necessarily confined to computation-based
settings, but instead represent an initial set of challenges
experienced by students in this context. In the order
presented, we address each challenge: Stress or frustration,
feeling worse at physics, unbelonging and stereotypes,
repeated confusion, interpreting code, and interpretations
of implementation.

A. Stress or frustration

One of the main challenges posed was the additional
stress that computational activities brought to students in
Mr. Buford’s class. Stress often accompanies new experi-
ences but what made this a challenge was that students
often saw the stress as uncalled for. They felt that they
already knew the relevant physics concepts, and compu-
tation was just forcing them to jump through hoops in order
to translate their physics knowledge into code. These
experiences were often accompanied by frustration when
difficulty was unexpected. The unexpected frustration and
the unnecessary stress combined to make some students
feel unprepared and inclined to give up.
When Circe talked about stress in the interview, she

spoke more generally about the stress she felt during
all computational activities and coping strategies she
employed.

Circe: I feel like it’s just unnecessary stress, and I’m not
about to put myself through that. So I just kind of sit
there with the people, and we just talk and wait for one
person to figure it out. Like I said, a copy train.

She felt stressed out during the computation, and her
reaction was to not “put herself through that.” Rather than
confront the difficulty and “unnecessary stress” head-on,
she opted to copy answers along with the rest of the group.
Her response was to disengage, indicating either that she
did not believe she could figure it out or that the stress of
sticking it out was not worth it.
At another point in her interview, Circe talked about how

the computational activities, or “code” as she put it,
frustrated her. During this discussion the interviewer asked
a question to get an explanation for what she meant.

Interviewer: What about the code frustrates you?
Circe: It’s like, you think that you should do a certain
thing, input a certain value, or a new part of the thing,
and you do that, and it’s just completely wrong.

TABLE I. Four types of data sources: Student interviews, a
teacher interview, field notes, and classroom recordings.

Data sources

Student interviews Six interviews and three follow-up
interviews (follow ups with Otto,
Circe, and Joyce)

Teacher interview One interview
Field notes Six class periods
Classroom recordings Two group recordings during one class

period, capturing all participants
except Circe and Joyce
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And you sit there and you’re like, okay, well, freak
you, coding!

Circe felt that even when she made everything right in
the computer program, or seemingly right, it ended up
being completely wrong. In this way, there was no middle
ground when it came to computation, and this made her
feel that she could not do anything right during the
activities. Her reaction was anger (“freak you!”) towards
computation. There was no resolution, only frustration and
giving up.
Another student, Ed, also discussed experiencing sig-

nificant stress, but she did not disengage as readily as Circe
did. Ed’s stress was also “undue” as she said below, and it
had to do with a tension between the computation and
Ed’s perceived physics knowledge.

Ed: I feel like [computation] causes me, sometimes, a lot
of undue stress, which is like ‘Oh, you don’t know this
and this and this.’ So it’s like, ‘you do, you just think
about it in a different way, but that’s not a way that can
be programmed on the platform.’

She felt stressed because of how the computation
challenged what she thought of her physics knowledge.
The stress was associated with the feeling of not knowing,
and she had to coach herself out of the difficult feeling
essentially by saying, “you do know physics, it’s the
computation that’s confusing.” The “undue”ness of the
stress made it seem as if Ed viewed computation-integrated
physics as unexpected in relation to the physics she was
used to, and the stress itself was tied to these expectations,
because she did feel like she got it when it was just physics
without computation.
Ed also felt some unpreparedness for the computational

activities. When asked about whether she saw herself as
“good at the coding activities,” she responded by comment-
ing on the frustrations of seeing the physics content being
stripped of its familiarity.

Interviewer: Do you think you’re good at the coding
activities?

Ed: Not really, actually, which is kind of sad for me to be
honest, because you have this interest in something,
but it’s back to why physics is so frustrating, because
it’s something that’s like “Oh, this is familiar, I know
this,” but then it’s just slightly slanted a little and just
becomes, because you expect it to be this way so
much, when it’s this way, it’s just, you can’t handle it.

She linked her negative self-evaluation to a frustration
about physics in general. She compared her computational
frustration to the common experience of learning physics
concepts that seem to defy intuition about how the every-
day physical world works. Computation made familiar
material confusing for her. Though the stress functioned in
a different way than it did for Circe, the common thread
was that it came from the computation. Ed felt like she
built expectations for how her ideas would play out in
GLOWSCRIPT, but it never seemed to work out—she could

not “handle it.” From this example, we see that Ed dealt
with her frustration by separating her conception of phy-
sics, which was familiar and understandable, from the
computational activities, which defied her expectations and
caused her stress.
For Circe and Ed, computation added an extra, needless

stress. Their reaction was to find ways to avoid the stress.
For Circe, this meant copying others’ solutions. For Ed, this
meant separating physics and computation mentally as a
defense to preserve her self-view as a competent physics
student. Other students also experienced stress but did not
articulate it in these terms, such as Blaine becoming
apathetic towards computation after repeatedly getting
stuck or Otto feeling stumped and behind because of his
lack of previous GLOWSCRIPT experience. Both of these
accounts are described further in the challenges below.

B. Feeling worse at physics

Another challenge students faced was the way that
computation seemed to test and even diminish the strength
of their perceived physics knowledge. This is not neces-
sarily a bad feature. After all, Mr. Buford wanted the
computation to “enhance them thinking about the physics
concept that we’re trying to learn… I guess my hope is that
that’s what we’re doing is reinforcing the concepts.” For
some students, the “enhancement” of physics thinking
instead meant that they had to reconsider what they knew
for the purposes of the computational activity, and this
reconsideration often led to feelings of incompetence at
either physics or computation. An example of this chal-
lenge is when Ed felt “undue stress” in the previous
subsection. She recalled thinking, “ ‘Oh, you don’t know
this and this and this…You do, you just think about it in a
different way, but that’s not a way that can be programmed
on the platform.’ ” She told herself that she did know the
relevant physics, just not in a computational way. In effect,
she separated the two domains (computation and physics)
in her mind, so that her difficulty with computation would
not affect her view of her physics competence.
Later in her interview, Ed reflected on how she viewed

the connection between computation and physics. She even
suggested that computation changed her view of her
physics knowledge.

Ed: I think coding definitely affects my perception of my
own knowledge about physics… GLOWSCRIPT espe-
cially, I feel like it caters to a very specific kind of
learner, a very specific way of learning physics…it
just requires you to take apart the numbers in a very
strange way. Well, it’s not a strange way, it’s a strange
way for me.

She felt that being good at computation (especially
GLOWSCRIPT-based computation) was like being good at
learning physics in a special way. Ed felt unable to learn in
this “strange way.” When she struggled with computation,
it felt like the class had been redesigned with a different
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type of physics learning, and Ed’s physics knowledge did
not line up with the “very specific way of learning physics.”
For Joyce, getting stuck during computational activities

is what made her question her physics ability. Her self-
doubts about her physics knowledge were rooted in not
being able to translate the formulas she knew into code.

Joyce: Sometimes it’s made me think that I’m not as
good at physics because when you do everything that
seems right on there, or if you use that equation, you
get the right answer on your own, but you can’t
program it, then that made me feel challenging.

Joyce linked her GLOWSCRIPT-based struggles to feeling
bad at physics. This happened when she felt like she
programmed everything right and she knew how to do the
problem on paper, but it still did not work on the computer.
The challenges that Joyce and Ed reference in the

interview excerpts are not necessarily a bad thing—in fact
it might be a sign of growth and learning that they are being
forced to reconsider their physics knowledge in a way that
aligns better with computational demands (assuming these
computational demands are part of an equitable learning
environment). However, these experiences are challenges
all the same and must be addressed because they pose real
concerns for students. For both Ed and Joyce, computation
forced them to reconsider their physics competency
because they felt incompetent when doing physics with
computation. We do not have the data to say whether or not
these feelings of incompetence were temporary, but it is
clear that they constituted real affect-based challenges
when doing computational activities. Some students who
experienced such feelings—or even stress and frustration
like in Sec. VA—struggled with a tension between their
self-views of their computational competence and physics
competence. For some students who found computation to
be unexpectedly hard, an appealing narrative could be, “I’m
good at physics already, this is just me being bad at
computation.” It is much harder to swallow the pill labeled,
“I’m not as good at physics as I thought.”

C. Unbelonging and stereotypes

The feeling of not belonging in computation and/or
physics was also present in Mr. Buford’s classroom. This
challenge is not necessarily brought on by the implemen-
tation of a new curriculum, but difficulty with the learning
materials can exacerbate existing feelings of exclusion.
Furthermore, computation-integrated physics is the inter-
section of two STEM fields (computing and physics) that
have struggled to achieve diverse participation from people
with different identities, such as women, people of color,
people with disabilities, LGBTQþ people, and people of
lower socioeconomic class [7,66]. As an example of a
student feeling out place, we look to Circe, who talked at
length about this when she thought about the computation
in Mr. Buford’s class. In the excerpt below, Circe noticed
patterns among her peers related to computation and

physics. She used the word “coding” to refer to the
computational activities.

Circe: I think I’ve noticed that there’s people who are
really good at physics that are also really good at
coding. I think there’s a pattern there. I have a lot of
friends who are really good at coding, and they’re
usually really good at physics, and vice versa. It’s like,
I don’t know. I guess it’s all the same kind of brain.

Circe compared being good at physics to being good at
computation. She had noticed that a lot of her friends were
good at both, and there seemed to be a connection. It is “the
same kind of brain,” she said, which indicates that she
viewed those peers’ academic abilities as intrinsic qualities
that they had. The language she used suggested that she
saw herself on the outside of this peer group: “I’ve noticed
that there’s people,” “friends,” “they.” By using otherizing
language, she positioned herself as not having the same
type of brain, indicating that she saw herself as not
naturally cut out for physics and computation like a lot
of her peers seemed to be.
Later in her interview, the conversation again turned to

her sense of belonging in physics. Circe had established
earlier that she was not interested in pursuing physics after
high school, but she went on to imply that computation
somewhat confirmed her thinking.

Circe: I don’t know if coding makes me feel like I don’t
belong in physics. It doesn’t make me feel like I do
belong in physics.

She was sure that computation was not making her want
to be a part of the physics community. Even though
computation might have been integrated into the course
as a way of making physics more authentic to students, its
effect on Circe was not beneficial to her sense of belonging.
In naming and characterizing the challenge of not feeling

cut out, we acknowledge that many students choose to
leave physics, and this choice can be in line with their
interests and based on a realistic understanding of what it
means to do physics and be a part of the physics
community. However, many students can build views of
physics or computation based on stereotypes of who does
physics and unrealistic views of what physicists do [67].
One possibility, based on Circe’s views about the “kind of
brain” that is made for physics, is that she bought into some
of these stereotypes, particularly to be good at physics you
must be an innate “physics genius” [68].
Similarly, we see stereotypes of programmers and pro-

gramming show up in the classroom. We say “program-
ming” here because often the students who adopt these
stereotypes do not distinguish between the computational
activities (where student program physics) and more general
programming. An episode that encapsulates this view is
when Joyce discussed why she felt like an average student
despite her repeated success at the computational activities.

Joyce: I think I’m better than average, which is someone
who doesn’t know how to code at all. But I’m not…
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I can’t just look at the scenario and just code it in five
minutes. I’m definitely not that kind of person. I don’t
know. Just average I guess.

Joyce believed she was average compared to all pro-
grammers, implying that people who can look at the
problem and do it in “five minutes” are the good pro-
grammers. None of her physics classmates were this fast,
but she compared herself against this imagined program-
ming genius anyways. This led Joyce to feel average
despite being one of the most competent programmers in
her class.
Stereotypes like the genius, five-minute coder can make

computation feel inaccessible, and it can make it hard for
students to build a sense of belonging in computation
and/or programming. The challenge of stereotypes lies in
this perception of unbelonging. The fact that some students
must overcome this perception and still perform well in
class in order to see themselves as computationally com-
petent is a significant barrier.
The integration of computation into physics leaves the

physics classroom open to stereotypes about programming
and computer science. Students have understandings of
what it means to contribute to computer code, and some-
times those understandings are built on unrealistic stereo-
types about who does programming, what programming
looks like, and how people become programmers. This is
on top of the stereotypes of what it means to do physics,
who gets to do physics [69], and how one can succeed at
physics (e.g., “physics genius”). The prospect of compu-
tation introducing even more stereotypes into the physics
classroom poses a significant challenge.

D. Repeated confusion

Because of the open-ended nature of the computational
problems in Mr. Buford’s class, many students had diffi-
culty working on them. For example, there were many
places where students were confused, encountered errors,
or did not know how to proceed. How students reacted in
these moments could lead them to interpret their experi-
ences as failures or could lead them to success with the
problem. The ways that students interpreted the successes
and failures outlined below constituted an affect-based
challenge for some students.
From Otto’s experience, he often found success with the

computational activities by working through his difficulties
and trying to simplify the problem. Even though the activity
was confusing to him, he felt like he could make sense out
of it after thinking about it. He walked us through his
general approach to computation in Mr. Buford’s class.

Otto: When I’m working through it, I’ll be like, “this is
confusing.” And I’ll start working through it. I’ll try to
simplify it to something that I can understand. Then
I’ll usually be able to think about it and be like, “Yeah,
that makes sense. I can implement that.”

Otto’s strategy to deal with confusion was to simplify the
problem until he understood what he needed to do. When
he said he was “usually” able to figure it out, he indicated
that there was a pattern in his approach to computational
activities. The phrase he told himself was, “I can implement
that.” Whether or not he succeeded, Otto usually came to a
point during computational activities when he at least
felt like he could, even if he started the problem feeling
confused. As a specific example, he remembered getting
stuck and eventually figuring out a complex computational
activity about the motion of charged particles in a mag-
netic field.

Otto: There’s a part where you had to use vector cross
products to show the direction in which it would be
moving, from like the direction of…the field and its
movement already. That clicked a little bit after
I realized how that function worked.

Though he encountered a confusing function, he figured
it out. The function in question was the cross product
function. His success in getting the function to work and
understanding it is evidence of Otto’s persistence in face of
his typical computation-based confusion.
For Ed, experiences of success were more rare but not

unheard of. When she did finish a computational problem it
made her feel like she could do any of them.

Ed: On like one out of the three times we coded, each of
those one times where I’ve actually finished the whole
thing, that always makes me feel like, “well you
finished that one, you can probably do all of these.”

Approximately one out of three times, Ed could figure
out the code, and it was a big confidence boost. For her, it
was the act of completing the program that made her feel
the sense of attainment. Though she usually did not finish,
on the times that she did, it was a reaffirmation that she had
the ability to succeed at doing the computational activities.
The intermittent successes sustained her.
Blaine, on the other hand, discussed how he had recently

given up on engaging with computational activities because
of his failures to achieve anything that he perceived as
progress.

Blaine: I mean, I would try if I could literally get like
anything. But since I literally can’t get anything but a
blank screen, I don’t really try to do any more cause
I’ll put in a hundred things and then I’ll just get a blank
screen or I’ll get some error.

No matter what he tried, Blaine always got the same
result: “a blank screen or some error.” Both results are
associated with a nonworking animation, a fate to which
Blaine had resigned himself. Not only was this a wholly
negative self-evaluation, but it was also a source of apathy
and disengagement for Blaine. He experienced repeated
roadblocks, and he came to associate his relationship to
computation with incompetence.

Blaine: I just, I just don’t even care. I’m like “whatever
dude. I can’t do this sh*t.”
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He felt like he could not do the activities to the point
that he just “[didn’t] even care” anymore. He provided
a sharply negative statement, saying, “I can’t do this sh*t.”
He had no successes with computation, and by the point
of the interview he had given up entirely. Blaine was one
of the two students who did not take AP Physics 1, so his
first exposure to computation-integrated physics was
Mr. Buford’s class. This points to the importance of
having positive experiences and moments of success when
learning a new curriculum as suggested by Kinnunen and
Simon [32]. Blaine had no memories of success and
articulated no hope that he would improve.
Some of these students experienced setbacks or confusion

in the computational activities. While Otto persisted through
such a moment and eventually figured it out, Blaine
interpreted his lack of computational success with feelings
of apathy and inability. Ed had enough positive experiences
to feel competent, but all the same it was concerning that
some of Mr. Buford’s students were not having any positive
experiences with computation. The prospect of students
developing negative views about computation after repeat-
edly failing at computational tasks presents a unique
challenge, especially when these failures are tied up with
their first impression of computation-integrated physics.

E. Interpreting code

Another common challenge was brought on by the need
to interpret code and errors in GLOWSCRIPT. This has been
previously documented with students learning physics
through VPYTHON [70]. Students in Mr. Buford’s class
often felt that they had a decent understanding of how to
use the relevant physics and apply it to the context in which
Mr. Buford set up the computational activity. The challenge
came when they received an error message or had to
interpret or write code to execute their ideas. The elusive
meaning of the error message or the challenge of using
GLOWSCRIPT syntax was enough to derail the activity for
these students.
For Blaine, the computational activity that he described

involved modeling rays of light passing through an optical
lens. He had trouble with the very first step because he
could not figure out how to use GLOWSCRIPT to animate a
line to represent the light ray.

Blaine: I feel like I’d like [the computational activities] if
I knew what I was doing. I literally wrote (laughing).
I literally wrote “line,” just like “line period,” to try
and get a straight line. I don’t know anything!

When he talked about what it was like to troubleshoot
after getting stuck, he laughed about how little he under-
stood GLOWSCRIPT. He guessed at what the proper syntax
would be because he did not know any GLOWSCRIPT
commands for creating something that looked like a line.
He attributed the whole experience to his lack of knowl-
edge: “I don’t know anything!” This admission was
reaffirmed below when Blaine described his inability to

interpret an error message because it referred to “line 17,”
or the seventeenth line of the computer program, which he
was unable to interpret.

Blaine: I’ll get some error. “Line 17.”Well I don’t know!
I don’t know what line 17 is, man.

In this case, Blaine could not interpret the error message
that the computer provided. His responses about “not
knowing what line 17 is” and “not knowing anything”
indicate that Blaine felt that he just did not know enough
about the GLOWSCRIPT language to do computation.
Otto had a similar, though less severe, reaction to getting

stuck on using GLOWSCRIPT. He discussed the process of
figuring out the relevant physics but not being able to
translate his ideas into code.

Otto: The electron moving through the magnetic field…
I know what direction it should be moving and
everything, how its velocity should be affecting
everything. But I don’t know how to put that into
computer words… Even when I know what should be
happening, it just wasn’t happening, because I don’t
know how to use GLOWSCRIPT that well.

He explained the roadblock: “I don’t know how to
use GLOWSCRIPT that well.” Though his programming
inexperience prevented him from succeeding, Otto
acknowledged that he did know the ins and outs of the
noncomputational part of the physics problem. He con-
trasted what he did and did not know, saying, “but I don’t
know how to put that into computer words.” Otto’s
experience was different from Blaine’s because Otto was
able to identify what he knew about the problem and what
exactly he got stuck on. This shows that the challenge of
interpreting code can present differently for different
student and different contexts, but in each case it can
present a barrier all the same.
Circe also described her challenges with understanding

the code. She recalled starting a computational activity and
immediately feeling lost.

Circe: I feel like something like coding can’t help you
understand physics better if you don’t understand
what the code means in general. He gives us the code
to start off with, but none of us really understand what
that means. So we look at [the starter code] and we’re
like, “what does any of that mean?” So then you add
things to that, but you don’t understand why.

She often felt that she did not understand the program, or
starter code, which Mr. Buford distributed to be worked on.
This had the perceived effect of preventing Circe from
learning physics through computation. She even described
attempting to engage with the activity and add her own
code but feeling confused and directionless. Her under-
standing of the computation was that success depended on
computational literacy of GLOWSCRIPT and that some
students did not have the tools to engage on that level.
Her use of “we” indicates that this experience of confusion
was shared among her peers and her.
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Even for students who had seen programming before,
using the GLOWSCRIPT language, structures, and syntax
was still a challenge. For example, Otto had taken a physics
class and a computer science class before enrolling in
Mr. Buford’s physics class. Despite these experiences with
the “ingredients” of computation-integrated physics, Otto
still felt like Mr. Buford’s version of computation was new.

Otto: It’s a lot more physical in GLOWSCRIPT because in
the other class I took with coding, it was more just data
and lists and whatever. But this you’re having a
particle moving through whatever so you have to
use like vectors and all that. That’s new to me.
I haven’t done anything involving movement and
displays and that.

He said GLOWSCRIPT physics was unique because of
the movement and the visual nature of the activity,
whereas computer science was about “data and lists.”
Computation in physics felt totally new to him, from the
language (GLOWSCRIPT) to the conceptual features (e.g.,
vectors, movement, animation). Doing computation with
GLOWSCRIPT was different from both physics and com-
puter science in Otto’s view, and this unfamiliarity made it
difficult for him. The difficulty manifested when he had to
combine physics with computation: “I know what direction
it should be moving and everything, how its velocity should
be affecting everything. But I don’t know how to put that
into computer words.”
For Otto, who had prior experience with both physics

and computer science, working with GLOWSCRIPT still felt
totally new, and he found it difficult to put what he knew
into “computer words.” This indicates that interpreting
code might be a significant challenge for all students to
some degree and that prior experiences with code do not
directly translate to success at computation-integrated
physics activities. Otto pointed to the specific features of
the integrated format (making particles move, using vec-
tors, making displayed simulations) that were still a
challenge for him. Just because he had the separate physics
and computation pieces, it did not mean that Otto felt able
to combine them, and he still struggled with translating the
ideas into the computer words.
Blaine, Otto, and Circe shared above how they got stuck

because of a difficulty with the computer program, not the
physics concepts. The impact was twofold. First, it stopped
these students in their tracks when they did not know how
to deal with code during a computational activity. Second,
it caused negative affective responses, like Blaine’s
self-evaluation (“I don’t know anything!”) and Circe’s
indictment of the activity itself (“coding can’t help you
understand physics better if you don’t understand what the
code means”).

F. Interpretations of implementation

There were also some implementation-based challenges
that students faced in Mr. Buford’s class. These were

related directly to the students’ interpretations of the
computational activities and pedagogical choices made
by Mr. Buford. We share these not as a critique of
Mr. Buford’s implementation but as a way to illustrate
the variety of challenges that can arise for students and how
those can depend on the context.

1. Assessment and motivation

In Mr. Buford’s class, the computational activities were
intentionally not graded. Mr. Buford felt that because the
activities were new and not explicitly a part of the AP
curriculum, they could go ungraded and simply serve as
opportunities for students to engage with physics concepts
more deeply than they normally would. He explicitly said
in his interview, “You don’t have to get something for every
little bit of effort that you make, so it can be its own
reward,” indicating that he viewed the computational
activities as intrinsically motivating.
In the interviews with students, we saw that students

understood this motivation and experienced it for them-
selves at times. For example, Ed expressed a similar view of
computation, that the purpose was to get a better grasp on
programming concepts, which in turn helped her see the
connection between formulas and actual physics phenom-
ena. We provide the excerpt below.

Ed: And just seeing how just changing a couple of
numbers could change the entirety of the coding was
interesting… That was helpful for me to get the whole
concept of coding.

However, at a different point in the interview, she
articulated a much bleaker view of what computation
was all about, referencing the grading policy.

Ed: [Coding activities] are just really tedious. When I’m
doing it, I just feel like there’s something else I could
be doing… I feel like coding is like something you
kind of know… and it just feels kind of like busy
work, but not busy work that he’s going to grade, so it
just feels useless.

The goal of computation, as Ed articulated here, was
nothing. In her view, because it was not graded, there was no
point in engaging. The computation was “tedious…busy
work”which made Edwant to disengage even more. Had the
activities been graded, she might still have found them
tedious, but the fact that they were ungraded meant they were
“useless,” at least in how Ed viewed them in this moment.
Ed’s frustration at computation did not last throughout

her interview, but the above excerpt demonstrates that the
ungraded nature of computation in Mr. Buford’s class can
contribute to a feeling that computational activities serve no
purpose. Feelings like this can impact students’ motivation
(“feels useless”), and given the open-ended, ungraded
design of many computational problems, motivation was
important for students to want to explore the activities.
As Mr. Buford indicated, it was reasonable to not have

every single activity be graded or externally motivated.
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In fact, we can imagine several arguments for leaving
computational activities ungraded. For example, teachers
might want to reduce the pressure and stress of grades while
students are doing a novel, unfamiliar task. However, as
Ed’s response indicates, there is a need for messaging about
why students are asked to complete an ungraded activity,
why the activity is not graded, and why engaging in the
activity can still provide benefits to students.

2. Solutions and “right” answers

When introducing the computational activities,Mr. Buford
would explain the minimally working program and
show students what the output of the code should be when
fully working (by either drawing it on the whiteboard or
showing the output from his solution code). He intended
this as a way to show students what the end product should
be in an otherwise open-ended activity. Mr. Buford was
careful in his explanations to emphasize that there could be
multiple right answers or solution paths to the computa-
tional activities.
Despite his caution and explanation of multiple paths,

knowing that Mr. Buford had a “correct solution” posed an
affective challenge for some of his students. For example,
Circe was a student who viewed “success” at the computa-
tional activity as “being right,” and she said that her own
ideas were always “wrong” when it came to computation.
Below, the interviewer asked her about this view.

Interviewer: How do you know it’s just wrong?
Circe: Because you see the answers. I guess there’s
multiple answers, so you might not be completely
wrong…but the one that we’re given, or the one that
the smartest kid in class figures out is different than
the ones that we had.

She articulated that the goal was to get the answer that
the teacher had or the smartest kid in class had. Anything
else she saw as wrong. She even acknowledged that there
could have been multiple solution paths, but she still
interpreted a mismatch in her answers as “not completely
wrong” and set up this comparison for her work versus a
“smartest” or “given” (teacher’s) solution. Circe reasoned
that “because you see the answers,” hers (which did not
match) must be wrong.
From this perspective, showing the final output to the

class might inhibit students’ ability to see paths beyond the
one they are shown and might pose an affective challenge
for students who need to reckon with the tension between
being right and engaging openly with the problem. This
desire to be right also can prevent students from exploring
the problem setting and making mistakes from which they
can learn important aspects of the problem.
That said, we do not know what would have happened if

Mr. Buford did not provide the output for the computation
problems. Without knowing the output, students could
potentially struggle more with interpreting the code or
might encounter more confusing moments as they work

through the open-ended problems. These implementation-
based challenges are directly related to choices that
Mr. Buford made in integrating computation into his physics
course; however, they do not represent all the challenges
related to implementation that students could face. More
studies should be done in a variety of contexts that look at
students’ other implementation-based challenges.

VI. CONNECTION BETWEEN CHALLENGES
AND THEORY

From students’ interviews, we showed that they faced
a variety of challenges when computation was integrated
into their physics class. While it was not the explicit
focus of this study, the students’ statements point to
theoretical constructs in education research that might help
better understand students’ experiences and how to help
address these challenges in the classroom. Specifically,
we found ties between students’ comments, their mindset,
self-concept, and self-efficacy.
Briefly, self-efficacy is a person’s belief in their own

ability to complete a task [71,72]. Within the context of a
computation-integrated physics classroom, self-efficacy
would address the question of “how well can I do
computation in this physics class?”Mindset, at its simplest,
is a person’s belief in their ability to change their own traits
or competencies [49]; thus, mindset would address the
question of “how much can I improve at doing computa-
tion?” In contrast, self-concept is “a person’s perception of
self…inferred from their responses to situations” [73]
(p. 411). Rather than being task related (as self-efficacy),
self-concept is in relation to an entire subject area. This
would address the question of “how is doing computation
related to me?” In the sections below, we define in more
detail each of these constructs and how they are related to
our data. We then discuss the overlaps in these constructs
and the implications for instructors and researchers.

A. Self-efficacy

Originally developed by Bandura, self-efficacy is “con-
cerned with judgments of how well one can execute courses
of action required to deal with prospective situations” [72].
In discussing how self-efficacy relates to students, Bandura
suggested that it contributes to motivation and confidence
within a given academic subject: “The higher the students’
beliefs in their efficacy to regulate their motivation and
learning activities, the more assured they are in their
efficacy to master academic subjects” [71] (p. 18).
Since its introduction, self-efficacy has been broken

down into four sources: mastery experiences, vicarious
learning, social persuasion, and physiological state [71].
We looked at how the four sources have been used in
STEM education research to gain a deeper view of what
they could mean for a computation-integrated physics
context [74,75]. Mastery experiences refer to the impact
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of successes and failure: “successes heighten perceived self-
efficacy; repeated failures lower it, especially if failures
occur early in the course of events and do not reflect lack
of effort or adverse external circumstances” [71]. In our case,
completing a coding task could count as a mastery expe-
rience, or receiving an error message from the coding
program could be seen as a “failure.” Vicarious learning
is when a student makes an adjustment to their self-efficacy
after witnessing a peer’s performance. For example, a peer’s
success at a computational task can raise self-efficacy if the
student then thinks they can succeed too, but seeing a peer
fail despite effort can lower the observer’s self-efficacy for
related computational tasks. Social persuasion is about
external appraisals of ability that a student then internalizes
into their self-efficacy. Evaluations can come from peers,
authority figures, or other participants in the domain
where the student must perform. Social persuasion need
not be verbal or direct, and its effect depends mainly on
how the student perceives it. Physiological state refers
mainly to stress “as an ominous sign of vulnerability to
dysfunction” [71]. Students, when they are stressed, expect
to perform worse, whereas when they are calm and clear-
headed they might feel a boost to self-efficacy.
A few examples from computation education research

show how self-efficacy can be used in computational settings
and how it can reveal information about student learning.
Self-efficacy was employed by Lishinski et al. [30], who
viewed self-efficacy as a reciprocal feedback loop, where
self-efficacy judgments based on affective responses can
have a long term effect on learning outcomes. The authors
found that previous programming experiences impacted
future performance in part due the effect that past experi-
ences had on self-efficacy, whether positive or negative.
Kinnunen and Simon [31] used self-efficacy to describe
students’ affective responses to a computational assignment
in an introductory-level university computer science class.
When students made an affective self-assessment, the
authors were able to describe it in terms of self-efficacy,
indicating a connection between self-efficacy and the act of
affect-based evaluations of oneself. In a follow-up study
[32], Kinnunen and Simon used the four sources [71] to
understand how self-efficacy was tied to experiences that
students had in the course. They also considered in their
framework how self-efficacy could evolve in response to
experiences and what could set this evolution in motion.
A year later, the same authors [33] returned to self-efficacy,
this time using it to describe emotionally charged events they
observed where students evaluated their own abilities and
consequently altered or reinforced their self-efficacy for
programming. The evolution of how Kinnunen and
Simon [31–33] used self-efficacy to explore programming
experiences demonstrates a precedent for connecting self-
efficacy (and its sources) to computation.
We can see these sources of self-efficacy in our data, with

examples that might be either contributing to or degrading

students’ self-efficacy in computation. For example, in
Sec. V D, we saw Blaine, Ed, and Otto take on very
different responses when faced with confusion and uncer-
tainty in the coding activities. Otto demonstrated a per-
sistence in his approach to the problems, experienced
multiple successes (mastery experiences) with the compu-
tation problems, and often said high self-efficacy state-
ments like “I can implement that.” In contrast, Blaine
experienced very few mastery experiences. This connects
to several of his statements which aligned with a lack of
computational self-efficacy. He said, “I can’t do this sh*t”
and “I don’t really try to do any more ‘cause I’ll put in a
hundred things and then I’ll just get a blank screen or I’ll
get some error,” which directly tie his lack of success
(“blank screen” or “get some error”) to his belief that he
cannot code or cannot make progress. That said, Ed’s
experience demonstrated that mastery experiences do not
have to be all or nothing. Ed had some moments of success
with the code, but she indicated that it was only one in three
activities. However, even those moments of success made
her feel like she could code and contributed to her belief
that “you finished that one, you can probably do all of
these.” All three of these students pointed to the importance
of mastery experiences in building views related to self-
efficacy, especially Ed’s case, which highlighted that not all
computational experiences need to be successful.
There were also indications of the other sources of self-

efficacy in our data. For example, Joyce referenced the
stereotype of a “fast coder” in her statements in Sec. V C,
saying that she was simply average because she could not
“just look at the scenario and just code it in five minutes.”
Even though Mr. Buford never set any expectations about
how fast students were expected to code, Joyce still had
this idea that the good coders were able to just look at
the code and do it. Research has shown that perceptions
like these can come from societal stereotypes, media
portrayals of programmers, interactions with peers, and
other forms of social persuasion [69,76–78]. Social com-
parison of programming speed has been shown to reduce
self-efficacy [76]. Ultimately, this perception encompassed
how Joyce saw herself and how she evaluated her skill. We
also showed that Circe and Ed described computation as a
stressful, frustrating activity in Sec. VA. This outlines one
of the physiological states that can contribute to self-
efficacy. If a student’s experiences of coding are all taking
place in a highly stressful, tense physiological state, then
that reduces their self-efficacy and garners a feeling of
inability to complete the task. We saw this with Circe, who
directly stated that she’s “not going to put [herself] through
that” because the programming is “just unnecessary stress.”
The sources of self-efficacy open questions for addi-

tional research in computation-integrated classrooms. For
example, what tasks and what grain-size lead to mastery
experiences? Does interpreting an error message success-
fully count as a mastery experience or does the whole
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program have to be completed for students to feel suc-
cessful? How can we as instructors and facilitators help
students see their success in each of these moments? How
can we help students approach computation without a
stressful physiological response, while at the same time not
seeing computation as “useless” or “busy work?” At this
point, we do not have answers to these questions, but our
results from the challenges students face would indicate
that more research is needed in this area.

B. Mindset

Dweck [49] defined mindset in terms of self-beliefs
about the mutability of abilities and delineated between
fixed mindsets and growth mindsets. She argued that a
fixed mindset is detrimental to learning because students
who embrace this mindset lose motivation more easily and
they are harsher judges of self when faced with adversity.
On the other hand, students who embrace a growth mindset
build motivation to improve when they experience failures.
Blackwell et al. [79] provided a review of perspectives a
student would hold depending on how their statements
and actions aligned with mindset. The most fundamental
perspective is that growth mindset aligns with a belief that
one can improve their intelligence through effort, whereas
fixed mindset relates to believing that intelligence is
unchangeable. Growth mindset is about studying to learn,
seeing mistakes as learning opportunities, believing that
effort is good because it makes you smarter, and seeing
knowledge as something that can be worked for [49,79].
Fixed mindset is about studying to prove smarts or
superiority, avoiding mistakes for fear of being seen as
stupid, believing that too much effort signifies lack of
intelligence, and seeing knowledge as something that
comes from authority figures [49,79]. When students fail,
some may react in ways aligned with growth mindset,
believing they need to change their studying strategies.
Some students may react to failure in ways aligned with
fixed mindset, believing they failed because they are stupid
or because the assessment was unfair. As a disclaimer, the
theory of mindset is flexible, meaning that reacting in a
“fixed mindset”way does not mean one will always react in
that fashion [49]. Also, mindsets can vary between contexts
or even within a single context, meaning people can hold
views related to both growth and fixed mindset about
different subject matters or even at the same time [49].
From the literature, mindset has been used in some initial

studies to describe students’ approaches to computation.
In one study, Scott and Ghinea [80] set out to discover
whether programming-specific mindset could be differ-
entiated from general mindset for school. They discovered
that the unique nature of programming activities led
students to embrace a specific mindset for programming,
different from a more general, school-based mindset. To
track learning in connection with mindset, an intervention
study was devised by Cutts et al. [81]. They intervened in

an introductory university programming class by having
tutors teach mindset-related strategies. The issue of getting
stuck was focal: the students’mindset-related views hinged
on whether they attributed being stuck to internal factors
(leading to an embrace of fixed mindset) or external factors
(leading to an embrace of growth mindset). These findings
suggest that mindset-related views could change or even
develop anew when computation gets introduced into a
physics curriculum. Lodi [82] performed a similar study to
Cutts et al. [81], but he focused on high school students and
sought to understand how the computer science curriculum
impacted mindset-related views. He argued that students
with learning-oriented goals (e.g., aiming to learn and be
challenged) aligned their views with growth mindset,
whereas students with performance oriented goals (e.g.,
aiming to score well and avoid challenges) aligned their
views with fixed mindset. These studies highlighted
some of the same features of mindset that emerged from
Dweck [49] and Blackwell et al. [79], which gives us
precedent for applying these theories to a computational
education setting.
In our data, we saw similar perspectives mirrored in how

students articulated challenges in Mr. Buford’s class. For
example, in Sec. V F, Circe recognized certain answers as
“right,” and those answers came from the teacher or the
smartest students in class. This aligns with the fixed
mindset tendency to look to authority or expert figures
(like teachers) as the only trusted source of knowledge.
Tendencies of people to value accomplishments and grades
because they signify high intelligence align with aspects of
fixed mindset, whereas tendencies to value learning
because of its connection to improving intelligence align
with aspects of growth mindset. Circe articulated a ten-
dency to consult the teacher’s solution to see if hers was
right, which represents a potential challenge in other
settings where computational activities are designed to
have multiple solutions and unanswered questions built
into the learning process. For students who embrace a fixed
mindset at times, this design could present significant
barriers to success.
Another example comes from Secs. V C and V B, where

we observed Circe and Ed provide similar views about
feeling out of place or not knowing how to proceed when
confronted with computational challenges. For Circe, feel-
ing out of place was tied with her belief that being “really
good at physics and coding” meant having “the same kind
of brain.”When students take up the view that they need to
be built a certain way in order to succeed at physics and/or
computation, they align their views with fixed mindset,
which at its core says that intelligence is an inherent
characteristic and impossible to change. For Ed, she felt
that her understanding of physics was questioned or
alienated when she had to do physics with computational
tools, to the point that she believed she “just [thought]
about [the material] in a different way,” and she emphasized
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the computation was only strange for her. This distancing
that Ed does indicates that the challengewas related to fixed
mindset, because she attributed her difficulties to her self-
perceived faulty way of thinking, and she viewed computa-
tional learning as “catered to a specific kind of learner,”
distancing herself from the opportunity for her to learn
during those activities.
Lastly, we return to Sec. V D to compare the mindsets

that described what Otto and Blaine said when faced with
confusion. We focus on their difference in persistence. Both
students articulated getting confused or stuck, but Otto’s
response was to embrace the challenge (“I’ll start working
through it, I’ll try to simplify it”), whereas Blaine’s
response was to give up (“I don’t really try to do any
more”). For Otto, the setback was an opportunity to learn,
which aligns with growth mindset, whereas for Blaine, the
setback was paralyzing, which aligns with fixed mindset.
The contrast between how students respond to these
challenges is closely aligned with mindset theory, which
indicates that mindset can be key in explaining whether
students succeed at overcoming challenges in Mr. Buford’s
computational activities.
Our work suggests building on the premise that mindset

is linked to how students respond to computational chal-
lenges. A follow-up study to this one found that mindset
described students’ statements and actions in far more
detail than we can articulate here [83]. Other questions
could take this work further, for example, how do students
develop views related to mindset theory in their computa-
tional work? Are there pivotal experiences (like mastery
experiences for self-efficacy) that impact students’ mind-
sets in significant ways? Our data would also suggest
observing how students treat computational challenges
differently in the wake of mindset interventions, similar
to many others’ recommendations [84–88]. We also rec-
ommend studies on designing opportunities for students to
embrace growth mindset could help students in other ways
in a computation-integrated physics context. We do not
have the answers, but our results from the challenges
students face would indicate that more research is needed
in this area.

C. Self-concept

Shavelson et al. [73] emphasized that self-concept is
organized, or structured by domain, meaning that a person
can have a different self-view depending on the context
(e.g., physics class) and focus (e.g., computational activ-
ities). It is developmental, in that a person builds or
develops a narrative about oneself in a particular set of
contexts. Though it was at first used to describe broad self-
views (i.e., self-esteem), self-concept was only later used to
examine academic realms. Marsh and Craven [89] argued
that what distinguishes academic self-concept is that
students evaluate their performance in comparison to their
performance in other domains, their peers’ performances,

and their internal standards of performance quality. Though
focused on evaluation, it is distinguished from self-efficacy
because the evaluation of performance is stabilized by
previous evaluations and exists broadly for an entire school
subject, whereas a self-efficacy judgment has more to do
with prospective situations in a given academic domain.
This would make the difference between self-concept and
self-efficacy threefold: (i) domain-level versus task-level
evaluation, (ii) evaluation of past performance versus
prospective performance, and (iii) incorporation of evalu-
ation into a sense of self versus a sense of ability.
In a theory-building paper by Brunner et al. [90], they

propose and evaluate the effectiveness of a model for self-
concept. The authors suggest using a first-order model
(e.g., focusing broadly on academic self-concept) or a
nested model (e.g., considering broad academic self-
concept and math self-concept). They emphasize that
self-concept can be split into separate self-concepts for
each academic domain when using the nested model. In our
context, this would indicate that this model of self-concept
would be appropriate for the students who perceive
computation as a separate domain from physics (not
integrated into the domain of physics as a learning tool).
This is in opposition to how Mr. Buford, the teacher,
framed computation in his classroom.
While self-concept has not been used in computation

research, there have been examples in other areas of
education research. For instance, Chen and Xu [91] studied
self-concept for junior high school English and its compo-
nents: listening, speaking, reading, and writing. The quali-
tative case study of multiple students demonstrated how
students with different self-concepts for different compo-
nents can have drastically different trajectories in class,
pointing to the complicated nature of self-concept for
specific academic domains and activities. Espinosa [92]
produced a quantitative study about cataloguing a variety of
factors that build into academic STEM self-concept for
college students. The core of her methods addressed self-
concept from its most basic definition: evaluation of
oneself. Mardiningrum [93] produced a case study on
two participants in a university student theater club. The
collaborative nature of this environment made social
interaction a focal aspect of the participants’ self-concepts.
In a learning environment that uses group-based compu-
tation activities, we would expect social interaction to
contribute to self-concept.
The studies above provide insight for how we might

apply self-concept to a computation-integrated physics
setting. The construct has not been used in this type of
environment before, but we know that to apply it we need to
focus on moments of self-evaluation [92], accounts of
social interactions [93], and nuances in how students see
themselves in relation to computational activities, compu-
tation, and physics as a whole [90,91]. This construct adds
to our study because it can help us frame the way students
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discuss their feelings about computational experiences in a
way that involves perceiving their role, as opposed to
perceiving their ability (self-efficacy) or perceiving the
malleability (or rigidity, in the case of fixed mindset) of
their role and/or ability (mindset).
For example, in Sec. V C, Circe articulated that compu-

tation “doesn’t make [her] feel like [she] belongs in
physics.” When students feel that they do not belong in
a computation-integrated physics environment, they can
also feel that they were not meant to belong there, as
evidenced by Circe’s later reflection on not having the brain
for computation: “there’s people who are really good at
physics that are also really good at coding…I guess it’s all
the same kind of brain.” This feeling is related to compu-
tation and/or physics self-concept because it could be
framed as a perception of self in relation to a school
subject. Feeling out of place in comparison to peers is part
of self-concept [73]. The challenge lies in the potential for
students to feel this way and lose interest in physics before
gaining a realistic view of what it means to do physics.
Another challenge tied up with self-concept is interpret-

ing code. Blaine lamented in Sec. V E about his feeling of
inability to understand what the code meant. For Blaine, it
was about feeling unable to make any progress on the
activity and unable to interpret error messages. These
roadblocks produced an affective response: Blaine said,
“I don’t know anything!” This evaluation of self in relation
to computation indicates a self-concept judgment. Blaine
felt stupid when doing computation.
Similarly, Blaine’s made statements related to low self-

concept in Sec. V D. Here, he outlined accumulation of
negative experiences. Accumulations and patterns of expe-
rience are part of how a student builds self-concept for a
school subject [73,89]. Blaine is a student who identified a
pattern in his computational experiences: “I don’t really try
to do any more cause I’ll put in a hundred things and then
I’ll just get a blank screen or I’ll get some error.” The
repeated roadblocks with no success at overcoming them
led Blaine to believe he “literally can’t get anything but a
blank screen.” He suggested that he had experienced
computation enough already to develop and hold this
belief. Self-concept is tied to this challenge because the
way Blaine’s statements align with negative self-concept is
tied to this pattern of experiences. It is important to
acknowledge the ramifications when students deal with
challenges unsuccessfully like this, one consequence being
a development of self-views aligned with low self-concept.
As a final example, we look at Ed’s delineation between

physics and computation in Secs. VA and V B. In these
sections, Ed said that the way she thought about physics
“can’t be programmed.” This sends the message that not all
physics knowledge is meant for a computer program; in
particular, Ed’s physics knowledge was not meant for a
computer program. One possible theory-based explanation
for this belief is that when Ed encountered a new method

for representing and applying physics ideas (i.e., physics
through computation), and when she found this new
method to be uniquely difficult compared to her prior
experience with physics, Ed protected her physics self-
concept by building a separate, low self-concept for
computational endeavors (or “GLOWSCRIPT,” “coding,”
etc.). This separation can mean that some students do
not let themselves develop as doers of computation, and it
can prevent them from learning on days when this is an
aspect of their physics class.
Self-concept suggests that students can develop a view of

themselves in physics that is different from the view of
themselves when doing computational activities, which
validates the possibility of Ed’s experience with separating
her interpretation of the two domains. Because self-concept
has not been applied to computation-integrated physics
before, our work indicates it might be a viable lens for
understanding how students are internalizing their experi-
ences in computation. For example, future work could point
to the process by which self-views related to self-concept
develop in these settings, how students reconcile their
views of the two different domains (physics and compu-
tation), and how that fits in with the theory of broader
academic self-concept.

D. Intersection of self-efficacy, mindset,
and self-concept

In talking about the challenges that they faced, the
students in our data made statements that point to their
views related to the theories of self-efficacy, mindset, and
self-concept. While we previously discussed these con-
structs as separate ideas, we want to emphasize that these
are not independent theories or constructs. In fact, the
overlap between these constructs illuminates avenues for
future research, curriculum design, and pedagogy.
For example, we can see aspects of all three constructs in

how Blaine faces the repeated confusion challenge. Blaine
described how he experienced a series of failures related to
doing computation: “I literally can’t get anything but a
blank screen…I’ll put in a hundred things and then I’ll just
get a blank screen or I’ll get some error.” These failures fit
narratives about the reduction of self-efficacy and negative
impact on self-concept, and the way Blaine articulates them
aligns with the language of fixed mindset. Each framing
provides a different insight into Blaine’s description of his
experience. The self-efficacy framing shows the impact of
serial mastery experiences on views related to self-efficacy,
as shown when Blaine described how he felt that he
“literally can’t get anything but a blank screen” after
repeatedly failing to make progress in the computational
activity. The self-concept framing shows how a pattern of
negative experiences can come to define what computation
means to a student in the moment, as shown when Blaine
expressed apathy when describing his relationship with
computation: “I just don’t even care. I’m like ‘whatever
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dude. I can’t do this sh*t.’ ” The mindset framing brings
focus to the parts of Blaine’s behavior related to aspects of
mindset, specifically the reduction of effort in response to
his failures, which relates to fixed mindset: “I don’t really
try to do any more cause I’ll put in a hundred things and
then I’ll just get a blank screen or I’ll get some error.” From
this one example, we can see that the three frameworks
overlap and build into one another. Blaine’s repeated
failures to make progress with the computation led to a
reduction of effort and no other change in strategy, aligning
with aspects of fixed mindset. This accumulation of failures
also ties to his statements about his work and of himself—
statements which align with having a lack of self-efficacy
and/or a low self-concept for computation.
This illustrates how the theoretical lenses can overlap and

provide a fuller picture of the impact that the affect-based
challenges can have on students. We use all three to highlight
different views on the same individual experiences, but they
provide varied angles from which to understand what is
going on with the students in our study. That said, this study
only provides an initial window into how these frameworks
relate to one another, and we suggest future research
specifically focus on how each framework fits with one
another in this context, how theory-based interventions
might impact students’ perceptions, and how these frame-
works might be leveraged to better understand computation-
integrated classrooms. We view the presence of many angles
as a way to identify jumping-off points for further research
on affect-based learning and challenges, which is sorely
needed and which we highlight in the discussion section.
However, we first highlight some positive experiences that
students recounted in their interviews. These did not fit in
with our challenges, but still provide a unique perspective on
what students experience and how computation can be
beneficial, according to students.

VII. POSITIVE STUDENT EXPERIENCES

Along with the challenges students faced and recalled in
their interviews, there were also indications of positive
experiences brought on by computation. In this section,
we outline a handful of beneficial impacts of computational
integration that students interpreted. Afterwards, we discuss
how they relate to someof thegoals thatMr. Buford set out to
achieve by introducing computational activities to his class.
We begin with a comment fromEd that demonstrates how

she learned about using computation to see physics. She
describes getting “the whole concept of coding” through
engaging in a computational activity about collision physics.

Ed: We were doing momentum, and we were looking at
elastic and elastic collisions, and we actually coded
something where two blocks had to collide. And just
seeing how just changing a couple of numbers could
change the entirety of the coding was interesting…
That was helpful for me to get the whole concept of
coding.

Interviewer: What concept did it help you understand
better?

Ed: Momentum itself, its maximum velocity. I don’t
know. Seeing the effects typing in different numbers
had on each block, and making it go faster, or making
it go slower, changing the masses of the box. It just
helped me with the concept of it.

Ed came to understand how changing numbers in the
program is connected to seeing the physical consequence
in the animation. Computation allowed her to make small
changes to the program and to see the relationship between
momentum and the actual movement of objects. Ed’s
articulation of this and engagement at this level suggests
an orientation towards learning physics through computa-
tion rather than just trying to get through the activity.
Though she outlined many challenges in the previous
section, this comment shows that students also see benefits
to computation, and one of those benefits is the visuali-
zation and strengthening of physics concepts.
Joyce expressed a similar perspective, which was that the

process of translating ideas into code was a way of learning
physics concepts. While Ed focused on the benefits
of interacting with the dynamic, completed code, Joyce
discussed how creating code was constructive for her.

Joyce: By actually coding the formula and what vari-
ables go in, I think it helps in learning the concepts.
It’s just you might not catch [an error] at first and you
might mess up because we were supposed to put other
stuff in [the program].

Joyce shared how she felt like she learned the physics
concepts better by coding the formulas and variables. In the
second part of her quote, Joyce talked about the experience
of accidentally letting a bug, or coding error, get into the
program (“we were supposed to put other stuff in the
program”) and prevent it from running properly. By relating
learning physics concepts to the debugging process, Joyce
demonstrated that she understood there was value in
meticulously translating physics formulas into code and
incorporating the computer’s feedback. This awareness
allowed her to engage with the activities in a way where
she felt that they helped her learn physics.
Finally, we found computation can help some students

build interest in physics. Beck discussed at length how he
viewed computation as an opportunity to connect with
physics in a more authentic way. Below, he talked about
how a visual world of physics opened up when he used
GLOWSCRIPT.

Beck: GLOWSCRIPT provided even more visuals and
stuff to actually connect with, which is what made me
understand physics and like it even better. The visuals,
the demonstrations, that ability to see the things in real
life… they just helped provide even more for that,
and they even strengthened my liking for physics
even more.
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He connected with the visuals and felt as though he was
seeing the phenomenon in real life. Beck went on to say
more about the benefit of computation, describing how it
provided an opportunity to do some of the same activities
that physicists do professionally.

Beck: [Coding] allows you to apply stuff that you’ve
learned in a way that’s different from just solving a
problem on paper, because you actually get to see the
result of what you’ve solved in real life. I mean it’s a
computer, but you get to see it actually work. It gives
you a view of what physicists do, I suppose. Like you
get a problem and you use physics to solve the
problem, then you see it actually work… I like the
coding in physics because of that.

In this excerpt, Beck saw the purpose of computation as
seeing a physics problem at work in a simulation of the real
world. It was a way for him to connect what he was learning
to what was relevant to him. It was also a way to understand
the type of work that actual physicists do. In Beck’s case,
this engendered an interest in him saying “I like the coding
in physics” and “strengthened my liking for physics even
more.” This shows that computation has the potential to
help students build an interest in authentic physics as well
as help with learning.
The benefits that Ed, Joyce, and Beck described are

similar to some of the goals that Mr. Buford had for his
computational integration. In particular, he wanted students
to strengthen their understanding of physics concepts
through computation, saying, “I hope it just enhances them
thinking about the physics concept that we’re trying to
learn, ideally….I feel like when you’re writing the code for
this, you have to understand how projectile motion works,
or you can’t write code that models that very well.” Both Ed
and Joyce described the benefit to conceptual understand-
ing, though it is not clear whether Mr. Buford envisioned
the same mechanisms of learning. For Ed, she learned
through interacting with the completed code, and for Joyce,
learning happened through creating the code itself and
working through bugs. The benefit that Beck described
goes beyond what Mr. Buford said, namely the computa-
tion helps him do real physics and builds his interest in
the subject.
There were also some ideas that were missing from

student interviews, benefits that Mr. Buford envisioned but
that did not seem to bear out in our data. Mr. Buford hoped
that the open-ended nature of the computational activities
and the choice to not grade them would spur students to
be more creative, given that a lot of the constraints on
traditional physics projects were stripped away. Students
did not seem to latch onto the creative freedom in their
interviews, so it is unclear to what degree this goal was
realized in the actual implementation. Also, there remains
the question of what benefits could exist in other imple-
mentations. For example, Mr. Buford wondered whether
“you could use [computation] as a way of developing

concepts” rather than just reinforcing. With different design
goals and in different contexts, this might be entirely
possible, which could chain into students seeing different
benefits to the computational integration.

VIII. DISCUSSION

From students’ interviews, we see that they faced a
variety of challenges when computation was integrated
into their physics class. Some of these challenges were
related specifically to code (e.g., interpreting code, repeated
confusion), while others were related to the pedagogy and
culture of the classroom (e.g., interpretations of implemen-
tation), but many of them were unique or had unique
components due to the integrated physics classroom con-
text (e.g., feeling worse at physics, unbelonging and
stereotypes, stress or frustration).
The challenges that we found specifically related to code

(interpreting code and repeated confusion) are similar to the
student challenges reported from computer science con-
texts. Jenkins [36] highlighted barriers in introductory
level computer science learning, mainly focusing on the
extra skills that students need to learn to engage with
computation, such as syntax, semantics, and algorithms.
He argued that what made computation hard was chiefly
the novelty of it. This aligns with what we found in
Mr. Buford’s computation-integrated physics class. For
example, a part of interpreting code is understanding syntax
and how it pieces together as well as error messages and
strategies for addressing them. These are new skills that
students did not encounter before unless they took a
computer science class. Even then, we found that students
who had taken a computer science course still struggled
with the syntax and idiosyncrasies of GLOWSCRIPT.
Previous research by Bumler et al. [94] found that students
with prior computational experiences did not view mini-
mally working programs using the GLOWSCRIPT platform
as authentic computation. The conflict between their
previous experiences and the lack of utility of students’
previous experiences in the context of this research implies
there are difficulties transferring practice to the
GLOWSCRIPT platform. The basis for this disconnect
between platforms and contexts needs to be studied in
greater detail. This also speaks to the repeated confusion
challenge because the process of learning a programming
language (especially debugging) requires persisting
through many mistakes and learning from them. This
parallels another study, in which Bosse and Gerosa [29]
cataloged some of the main worries that students tend to
have in programming settings, including trouble with
syntax, variables, error messages, and code comprehension.
The worries were sometimes so overwhelming that when a
student realized their code contained an error, they were
more likely to give up. We saw a similar case with Blaine,
who gave up after encountering numerous errors and no
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longer proceeded with the activity. From another perspec-
tive, Svensson et al. [48] viewed computation as a social
semiotic, or a way of communicating about and exploring
phenomena. They saw challenges emerge when students
had limited skill with using the semiotic resources, even
when students did see the benefit of communicating and
exploring through computation. This mirrors the experi-
ences of Ed and Otto, who both saw the usefulness of
computation and often even knew the relevant physics
concepts, but they ran into roadblocks because they had
limited experience and comfort with computation itself
and/or GLOWSCRIPT. The fact that we saw the same
challenges and barriers in the computation-integrated envi-
ronment that are seen in computer science contexts indicates
that students’ interpretation of code is a broader challenge
for any type of coding activity. Given the common challenge
between contexts, this would indicate a place where
computer science educators and physics educators can learn
from one another about how to best support students.
However, we also found several challenges that were

unique to the computation-integrated physics environment.
For example, in Sec. V B, Ed separated the domains of
computation and physics, so that her difficulty with
computation would not affect her view of her physics
competence. She reassured herself, “You know [the phys-
ics], you just think about it in a different way, but that’s not
a way that can be programmed on the platform.” This
challenge was unique to the computation-integrated phys-
ics environment, specifically because the curriculum
merges two subjects that for these students can sometimes
be viewed as two separate domains. In a separate computer
science course, students’ perceived physics competencies
and self-views would typically not be threatened or
involved at all. However, because of the integration, some
students protected one view of themselves, potentially at
the cost of the other. In the case of Circe, the integration of
computation led to statements of unbelonging and a
distancing of herself from physics as a whole. In the case
of Blaine, we saw that multiple failures at the computa-
tional activities led to statements aligned with lack of self-
efficacy and low self-concept when he said, “I don’t know
anything!” This is similar to what Lishinski et al. [30]
found during computational activities (and what Caballero
et al. [7] warned against), namely, that judgments aligned
with lack of self-efficacy can lead students to use tactics
that harm their learning rather than help.
The integration of computation into STEM is strongly

motivated, including arguments about preparation for
students’ future careers and making STEM courses more
relevant. However, we showed that students intentionally
separated the domains at times. This would indicate to
teachers, researchers, and curriculum developers that more
attention needs to be directed to how this integration occurs.
For example, as part of the ICSAM workshop, Mr. Buford
was altering an existing curriculum. He already had lesson

plans to teach all the necessary physics content, and perhaps
it made more sense to introduce computation at the transition
points in the curriculum rather than potentially disrupt the
material midconcept. Additionally, ICSAM teachers learned
how to program with GLOWSCRIPT during a summer work-
shop. They were already physics experts when they arrived,
but many were novices at computation, meaning they
learned to program as a way of modelling and exploring
what they already knew about physics. This process could
have transferred to how their students would go on to learn
computation in their classrooms: physics first, computation
later. Ultimately this could have contributed to the separation
of computation and physics as separate domains. That said,
there is certainly a precedent for integrating STEM domains.
After all, physics and math have been closely tied since the
foundation of the field. We do not think twice about whether
formulas and calculations are a part of physics, and for
students, learning to use math as a tool and learning physics
go hand in hand. In the same way, we envision a future
where computation is also treated as an everyday tool for
learning physics in classrooms and viewed as such by
students, but we need to learn more about what is happening
in these integrated classrooms. However, the math and
science domains are blended at a much earlier point in a
student’s schooling. Students perceiving computation and
physics as two different domains highlights the need to
investigate whether integrating at an earlier point in a
student’s science careers would impact their perceptions
of computation being a tool for doing science.
Another challenge that is unique to the computation-

integrated contexts is the balancing of content between
computation and physics. Given the other constraints that
teachers are under (time limitations, science standards that
must be met, etc.), it can be difficult to add computation to
an already packed schedule. Mr. Buford commented in his
interview that despite his natural curiosity for new ideas in
physics, it was hard to try new things when he had to cover
all the content on the AP Test. The year before he attended
ICSAM, he simply saved computation until after the test
was over in the last month of the school year. When he tried
to integrate computation into his curriculum throughout the
year, he was not able to let the students slow down enough
to wrestle with the computation and figure out how it could
help them learn physics. For some students, the purpose of
doing computation in physics did not stick with such little
time. Furthermore, there might be some influence from the
AP curriculum on what counts as “doing physics.”Without
changing the national expectations and standards to include
computation, it will be near impossible to create fully
integrated courses.
We also saw several challenges that were related to

pedagogical choices from Mr. Buford. For example,
Mr. Buford intentionally chose to not grade the computa-
tional activities, which led to Ed commenting that the
activities felt like “busy work.” He also chose to show the

020109-22

PATTI C. HAMERSKI et al. PHYS. REV. PHYS. EDUC. RES. 18, 020109 (2022)



final output to the class, and when Circe’s answers did not
match, this made her feel like her answers were “wrong.”
In Sec. VAwe highlighted how the students felt as though
the activities being after the concept had been covered
had framed them as causing undue stress. However, from
Mr. Buford’s perspective this was intentional because he
thought introducing concepts via a computation activity
would be too stressful. This “catch-22-like” outcome
highlights the struggle that teachers face when making
curriculum design decisions around integrating computa-
tion into their classrooms and highlights a desperate need
for research focused on curriculum design for such envi-
ronments. None of the above discussion points around
pedagogical choices is intended as a critique of Mr. Buford
(in fact he had strong pedagogical reasoning for his
choices), but this highlights that there might be unique
challenges depending on the specific implementation of
computation-integrated physics and the classroom struc-
tures that a teacher employs.
For example, Beck described a positive structure in his

interview from Mr. Buford’s class. Beck came upon a
roadblock and had to ask for help from Mr. Buford, who
pointed out to him a built-in GLOWSCRIPT function that did
exactly what he needed. In fact, having students ask for this
function was part of Mr. Buford’s plan—he confirmed after
class to the first author that part of the activity’s purpose
was to discover the need for a new function. The challenge
lies not in what we generated in the data, but in what was
absent: the students who did not think to ask for help or
who did not arrive at the point in the activity to realize the
need for a special function. Students might struggle to ask
for help for a variety of reasons; they might feel intimidated
by asking questions to an authority figure (their teacher in
this case), they might feel too embarrassed by their “lack of
progress” on the problem to ask for help, or they might
struggle with social anxiety. Alternatively, and especially in
a less collaborative context, students might have the
impression from classroom norms or social stereotypes
that they are supposed to be coding alone. Any of these
reasons might prevent students from asking for help, and in
turn, increase their frustration and perpetuate a negative
view of computation.
As Mr. Buford confirmed, a teacher might let students

struggle with an idea intentionally or might want students
to discover an idea as part of the computational activity.
With Beck, this worked well, and he was able to learn about
the unit vector from Mr. Buford. However, for this to
happen it was critical that Beck felt comfortable asking
Mr. Buford for help and that Mr. Buford promoted that in
his classroom. In another classroom context, with a differ-
ent classroom culture, we could envision “asking for help”
to be a challenge for students. This only points to the work
that needs to be done to build on this study and examine the
contextual challenges in other implementations of compu-
tation-integrated physics and other STEM courses.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the student-perceived,
affect-based challenges that high schoolers faced in a
computation-integrated physics class: Stress or frustration,
feeling worse at physics, unbelonging and stereotypes,
repeated confusion, interpreting code, and interpretations
of implementation. We also found connections between
students’ descriptions of the challenges and the theories of
self-efficacy, mindset, and self-concept. This work is laying
the foundation for identifying affective barriers and those
unique to computation-integrated STEM contexts, serving as
the first study in this context to examine affective challenges
from students’ perspectives. While this study is an initial
step, more work needs to be done to understand the affective
challenges students face and how to best support them.
An example of the importance of student perspectives

from our data was when Joyce said she felt “just average” at
coding when we were fleshing out the unbelonging and
stereotypes challenge. She appeared to be one of the most
competent programmers in class, but she did not feel that
way about herself. It is only through asking students about
their experiences that we can find out how they feel about
the challenges they face in class, and sometimes their
answers can be unexpected.
In this study, students’ perspectives demonstrated that

for some students in an iteration of classroom computation,
challenges can overshadow positive experiences. These
challenges deserve to be addressed as curriculum devel-
opers continue to integrate computation into physics
courses. Though the context presented here did not
span beyond high school physics, we know that computa-
tional integration spans K–16 in disciplines from physics
and biology to language arts and social studies
[1–4,7,10,12,95,96]. Such integration is bringing modern
ways of understanding and applying disciplinary concepts
to the classroom. We believe such curricular transforma-
tions are necessary. In some cases, these transformations
can make disciplinary content relevant, nurture new curi-
osity, and lead to new modes of understanding, as shown in
Sec. VII. The question at this point is, how do we move
forward and structure computational opportunities to be
helpful, positive, equitable, and meaningful?
To researchers, this study is a call to action.

Computation-integrated physics courses continue to grow
as computation becomes synonymous with doing STEM.
With it come the complexities and difficulties of new
curriculum and the need to understand the experiences of
students in this new environment. We have found that the
lenses of mindset, self-efficacy, and self-concept might
offer meaningful insight into many student-centered proc-
esses, yet there is a need for more exploration, particularly
in how the integration takes form, how the protective
separation of computation from physics can be minimized,
and how the difficulties and frustrations of learning a new
programming tool affect students. We need studies on
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affect, self-beliefs, and perceptions in computation-inte-
grated contexts where computational learning is supported
by design, where the curriculum is less constrained institu-
tionally (e.g., “regular” instead of AP), where computa-
tional tools are the focus of the course, and where features
of implementation support underrepresented students.
To practitioners, this study is a call to consider many

factors when designing or altering curriculum for computa-
tional integration. We call for attending to the affect of
students who take part in the curriculum, the tools being
used to integrate computation, the pedagogical strategies
for teaching computation, what it means to redesign
existing curriculum, the curriculum’s potential effect on
students’ perceptions of computation and physics, and the
role computation can play pedagogically. We acknowledge
that figuring out how computation best fits into the context
of one’s physics course is an immense task. We need to
teach students authentic physics by using computational
tools, but we also need to find ways to ease the burden on
physics teachers who are often saddled with altering
curriculum to meet new educational demands, of which
computational integration is the latest [47].
In conclusion, we highlight that the computational chal-

lenges raised in this paper need to be studied in more depth
in the computation-integrated context as opposed to trying to
understand them by only applying knowledge from physics
or computer science education research. This type of
curriculum is unique enough to warrant further studies,
especially when considering the issues that arose when
students had to deal with computation and physics at the
same time in the same context. Computation in our physics
courses is essential for the next generation of scientists, and it
is imperative that we learn how to best apply computation as
an educational tool to the benefit of our students.
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APPENDIX

This is the original interview protocol used to conduct
semi-structured interviews with the student participants.

1. Tell me about yourself.
(a) What year are you in school?
(b) Why did you choose to take this physics course?
(c) Have you taken a physics course before this one?

(d) What do you want to do after high school?
2. Tell me about what you do in physics class.

(a) Are there different sorts of activities you do? Can
you describe them for me?
i. Do you always solve for a number? Do you

have to design things?
ii. Do you ever work with equipment?
iii. Do you always work by yourself, or do you

work with your classmates?
iv How do you interact with your classmates?
v How do you interact with the instructor?

(b) How is this class different from prior physics
classes?

(c) Do you think you’re good at physics?
(d) Are there times you struggle more than others?
(e) Are there things you do in class that make you

feel as if you can or can’t do physics?
(f) Are there times in class when you feel more like

a scientist/physicist?
3. About the computational activities in Mr. Buford’s

class…
(a) Why do you think Mr. Buford added computa-

tional activities to the class?
(b) Haveyoudone anythingwith computation before?
(c) Was there anything new or exciting that you

were able to do with computation? Can you give
an example?

(d) Do you like the computational activities? Why
or why not?

(e) Do you ever get frustrated in class? What has
frustrated you and why?

(f) Do you think you’re good at computation?
(g) Are there things you do in class that make you

feel as if you can or can’t do computation?
4. When you get stuck with computation, what do

you do?
(a) Do you wait until Mr. Buford can help?
(b) Do you try to consult with your group mates?

5. What do you learn/gain during the coding days?
(a) What about regular days?
(b) What do you learn? How do they differ?

6. How do you tend to participate in class?
(a) When Mr. Buford is talking to the class?
(b) When you areworking together in a small group?
(c) Does this change when you are doing computa-

tional activities as a group?
i. What role do you take on when the group

doing computation?
7. What if you were told that computation is a big part

of what you want to do in the future?
8. What is a subject you really like (or really don’t) and

how does your experience in that class compare to
physics class?

9. Have you done computation before Mr. Buford’s
class? How did you feel about it?
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