
Development and illustration of a framework for computational thinking practices
in introductory physics

Daniel P. Weller ,1,2 Theodore E. Bott,1 Marcos D. Caballero ,1,3,4 and Paul W. Irving1
1Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

2School of Mathematical and Physical Sciences, University of New England,
Biddeford, Maine 04005, USA

3Department of Computational Mathematics, Science, and Engineering and CREATE for STEM Institute,
Michigan State University, East Lansing, Michigan 48824, USA

4Department of Physics and Center for Computing in Science Education, University of Oslo,
Oslo 0316, Norway

(Received 15 May 2021; revised 4 February 2022; accepted 8 June 2022; published 25 July 2022)

Physics classes with computation integrated into the curriculum are a fitting setting for investigating
computational thinking. In this paper, we present a framework for exploring this topic in introductory
physics courses. The framework, which was developed by reviewing relevant literature and acquiring
video data from high school classrooms, comprises 14 practices that students could engage in when
working with Glowscript VPython activities. For every practice, we provide in-class video data to
exemplify the practice. In doing this work, we hope to provide ways for teachers to assess their students’
development of computational thinking and give physics education researchers a foundation to study the
topic in greater depth.

DOI: 10.1103/PhysRevPhysEducRes.18.020106

I. INTRODUCTION

Computation has transformed from being a tool that
assisted scientific research to being fundamental to the very
meaningof doing science.Computational thinking (CT) is an
important emerging set of skills for students in the 21st
century [1]. It is the underlying set of practices that scaffold
the “doing” of computation. This topicwas first promulgated
in an influential 2006 article by JeanetteWingwho described
it as “thinking like a computer scientist” [2]. This seminal
work expounded the idea that computer science education
should be thought of as more than just programming; it is a
conceptualization of the fundamental skills required to solve
complex problems. More recently, CT has been defined as
“the thought processes involved in formulating a problem
and expressing its solution(s) in such a way that a computer
—human or machine—can effectively carry out” [3].
Recently, global education efforts have focused on providing
students experience with CT [4–6]. The prevalence of
computational thinking in modern educational and profes-
sional spaces motivates our interest in this subject.
Although computational thinking was initially proposed

by the computer science community, it has since been

incorporated into disciplinary science education standards
[7,8]. For example, the Next Generation Science Standards
(NGSS), which have been adopted by a majority of states in
the United States, emphasize using mathematics and
computational thinking as one of the eight major scientific
practices that all students should encounter in their K–12
education [9]. For example, in grades 9–12, an example of
CT is when students “create/revise a computational model
or simulation of a phenomenon.” This is a broad ex-
pectation that could be applied to multiple disciplines.
However, expectations have also been formalized for
specific disciplines. For instance, in the case of high school
physical science, one performance expectation states,
“Students who demonstrate understanding can create a
computational model to calculate the change in the energy
of one component in a system when the change in energy of
the other component(s) and energy flows in and out of the
system are known” [9]. This benchmark provides one
example of how CT could manifest in high school physics
classrooms. The increased expectancy around CT learning
outcomes indicates a need to study it from a physics
education research (PER) perspective.
Computationally integrated physics courses are a rich

area for exploring CT. The repository of exercise sets
from the Partnership for Integration of Computation
in Undergraduate Physics features a plethora of com-
putational activities incorporating CT practices [10].
Additionally, the 2020 conference report about computa-
tional thinking from the AAPT headquarters [11]. Physics

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 18, 020106 (2022)

2469-9896=22=18(2)=020106(26) 020106-1 Published by the American Physical Society

https://orcid.org/0000-0003-3992-9450
https://orcid.org/0000-0003-0717-4583
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.18.020106&domain=pdf&date_stamp=2022-07-25
https://doi.org/10.1103/PhysRevPhysEducRes.18.020106
https://doi.org/10.1103/PhysRevPhysEducRes.18.020106
https://doi.org/10.1103/PhysRevPhysEducRes.18.020106
https://doi.org/10.1103/PhysRevPhysEducRes.18.020106
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

courses that utilize computational modeling activities
are often termed “integrated” courses because they do
not focus on programming as the primary objective.
Computationally integrated courses infuse computational
ideas within existing physics course content.
Preliminary work has been carried out to study integrating

computation within physics classes in primary school,
secondary school, and higher education levels. A theoretical
framework was proposed by Sengupta et al. in 2013, which
described a modeling cycle with CT ideas underlying the
entire sequence [12]. Their CT-infused modeling cycle
includes steps like scientific inquiry (i.e., developing under-
standing of scientific phenomena and modeling practices),
algorithm design (i.e., developing understanding of pro-
gramming techniques), and engineering (i.e., iteratively
refining a model). This cycle is underscored by CT because
it is iterative and involves developing computational proce-
dures to represent physicalmodels.More recently,Orban and
Teeling-Smith discussed the manifestation of CT in intro-
ductory physics classes [13]. Their work, as well as that of
Petter-Sand et al. [14], highlight the connection between
sense-making and computation in the physics classroom.
Computational modeling activities are apposite settings for
investigating CT at the introductory physics level.
There is still a lack of agreement around assessment

strategies for CT in introductory physics [15–17]. Some
work has been done by Swanson and colleagues to develop
an assessment framework for CT in secondary science
classrooms [18]. However, in an attempt to be broad and all
encompassing, this framework omits the nuanced details
required to explore CT in-depth for each specific discipline,
such as physics versus chemistry or biology. We claim that
the universality of one CT framework is problematic when
applying it to a different context, as every classroom is
unique. A primary goal of this manuscript is to develop a
framework specifically aimed at investigating CT at the
introductory physics level. We are interested in what the
students are doing in the classroom (i.e., practices) so that

research questions around activity design and integration can
be answered. At this stage in CT research, it is useful to
understand how design decisions around activities can
influence the CT practices that occur, rather than simply
assessing students’ development through a pre-post test
approach.
Herein, we lay the foundation for a computational

thinking framework specifically aimed at physics educators
and researchers interested in teaching and studying CT
when employing computational activities at the introduc-
tory physics level. For researchers, we give a detailed
description of the practices in our context and discuss some
preliminary results from its initial implementation. For
physics educators, we aim to vivify what CT practices can
look like in the classroom to guide future activity design
and assessment. We present the following research question
to elaborate on our goals:

• How do computational thinking practices manifest in
introductory physics classrooms?

Answering this research question involves blending two
perspectives. The first being a theoretical literature-based
one, the other being an empirical evidence-based one. This
report will review previous literature to develop a frame-
work specific to our context, and then wewill provide video
data from in-class interactions between students to serve as
evidence for these practices. Ultimately, we hope to high-
light the importance of context (i.e., discipline, class level,
pedagogical strategies, computational platform, etc.), while
also providing an actionable set of CT practices in
computationally integrated physics classrooms.

II. FRAMEWORK DESIGN AND RESEARCH
METHODOLOGY

A. Framework development timeline

The computational thinking framework proposed in this
report resulted from combination of reviewing previous

Review
literature

Propose
initial

framework

Analyze
classroom

videos

Critique
framework

with
research

group

Analyze
classroom

videos

Refine
framework

Critique
framework

with
research

group

Finalize
framework

(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 1. Timeline of the methodological steps that were taken to develop the CT framework proposed in this report. (a) First, a literature
review was conducted to identify works pertaining to computational thinking practices. (b) An initial list of practices was proposed with
17 uncategorized, standalone practices. (c) The initial practices were used to analyze in-class video data and find examples of the
practices from students working with computationally integrated physics activities. (d) An initial framework was constructed and shared
with external researchers to provide feedback on how the framework could be improved in terms of its relevance and precision of
definitions. (e) Classroom videos were analyzed again to find examples that served as evidence for the updated practices. (f) The
framework was refined based on findings from in-class data and feedback from researchers. (g) The framework was critiqued by a PER
group to discuss its relevance to physics, as well as any confusing language in the framework’s definitions. (h) The finalized framework
comprised 14 practices in 6 categories.

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-2

literature and analyzing of in-class video data. Figure 1
displays a timeline of the development process for our CT
framework. The process began with a review of the relevant
literature [Fig. 1(a)]. Although there are innumerable articles
that discuss computational thinking, we limited our selection
of articles to only include primary research articles that
proposed CT practices and descriptors of such practices. The
inclusion criteria for articles includedmentionof practices, or
the actions that students take when engaging in CT. Some
relevant search terms (combined interchangeably) were
computational thinking, computation, modeling, physics,
K–12, programming, debugging, coding, data, and problem-
solving. In total, 32 scholarly articles were initially reviewed.
Then, we narrowed our review to closely examineworks that
were frequently referenced among the literature. Works that
did not have clear categorization schemeswere excluded, and
we focused on studies that presented theoretical frameworks,
rather than empirical works. To better match our specific
context, we narrowed the articles to ones that only focused on
K–12 education rather than higher education. This reduction
resulted in the selected works discussed in Sec. II B. After
choosing these prominent CT studies as a basis for our initial
framework, we read the papers and identified major simi-
larities and differences among the papers. This process
helped to comprehend the critical aspects that we should
look for then informing our analysis process.
We decided to develop a framework for our specific

context [see Fig. 1(b)]. The goal of this development was
to encompass ideas that were highlighted in previous frame-
works while also sorting those ideas through the filters of
physics and high school classrooms. The intentionwas to use
the practices from previous frameworks as an initial analysis
tool, with the assumption that we would have to iterate, edit,
ignore, discover, and redefine the practices to be relevant to
introductory physics. At first, we were trying to apply some
of the previous frameworks directly to our context, but in
practice, this proved to bemore difficult than anticipated.We
found that many broad CT frameworks were not able to
capture the nuanced details of what we were observing in
video data or what was being discussed by teachers in
informal interviews [19]. At this stage, our goal was to be as
inclusive as possible, resulting in a large list of initial
practices. Our initial list consisted of 17 practices, and all
practiceswere standalone (i.e., no categorization schemewas
used to combine related practices).
The step in Fig. 1(c) was our first attempt at applying the

practices to in-class data. We watched 12 h of in-class video
data from 2 different classrooms (details of video analysis
techniques will be provided in Sec. II C). Our goal was to
notice which practices from the initial list were appearing
as we expected to see them, while also looking for
interesting moments that were not encapsulated within
our current set of practices. For example, systems thinking,
which is an entire category in other prominent CT frame-
works [20], was not coded at all in the data that we

analyzed. Similarly, modularity and parallelization were
difficult to find evidence for as well. After reviewing these
practices with our team, we found that some were not
appearing in our context because they were either too
complex, too broad, or overly specific to our programming
environment (Glowscript VPython). On the other hand, we
noticed many striking examples related to student affect
(e.g., positive attitudes, or moments of frustration), which
were not covered by our initial framework. These findings
provided evidence that supported the inclusion or exclusion
of practices in the future framework iterations.
The initial version of the framework was critiqued by a

group of computer education researchers [see Fig. 1(d)].
We initially provided descriptions of practices with video
examples for discussion. Their critique helped us realize
that our CT practices should be focused on moments when
students were working with computers or programming, so
as to not conflate CT practices with general problem
solving practices. Some practices seemed to be too broad
to be considered exclusively related to CT (e.g., planning,
iterative problem solving). They suggested that we elimi-
nate some practices that were too complex or high level
for introductory physics students (e.g., systems thinking,
modularity, and parallelization). It was recommended that
we use categories to link related practices together.
Instead, these practices might simply be considered
general problem-solving practices. By the end of this
process, 3 practices were removed (planning, systems
thinking, and parallelization), the definitions of several
practices were refined, and related practices were com-
bined into categories. After this critique, 14 practices
existed within 8 categories.
Subsequently, another round of video analysis was con-

ducted to identify instances of CT in our context with the
updated framework [Fig. 1(e)]. One interesting amendment
was our refining of the descriptor for the debugging practice.
In our initial video analysis, we only coded a practice as
debugging if the students were working through a fatal error
that caused the program to not execute the code entirely.
However, in our second round of video analysis, we found
that students were often spending a lot of time just trying to
make the code dowhat they wanted it to do, even though the
code did not necessarily exhibit a fatal error. This finding
supported our decision to redefine debugging as students
working through fatal errors or “unexpected behaviors.” The
language of unexpected behaviors for debugging is consis-
tent with some literature sources, and numerous instances of
video evidence were found to support this redefinition. An
updated framework resulted from this second pass at the
video data [Fig. 1(f)]. The updated framework still contained
14 practices, but in 6 different categories, and the practice
descriptors were updated to more closely match the experi-
ence of introductory physics students.
The refined framework was presented for another round

of critiquing to gain further insight about it application for

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-3

physics education researchers [Fig. 1(g)]. Many of these
individuals had experience integrating computation into
their own classrooms. We learned that the usability of our
framework could be improved by concisely defining prac-
tices and providing a wealth of examples to explain the
variation of CT practices. The researchers noted that data
practices did not make sense in its current state. Before this
critique, data practices were there own CT practice and it
was defined as “the ability to manipulate and analyze data
computationally through reducing, fitting, filtering, averag-
ing, organizing, or computing uncertainties.” Feedback in
this session described how this was too broad of definition to
find many meaningful examples of data practices in the
selection of examples that we provided. Instead, it was
proposed that data practices should be their own category of
practices, with more specific actions being contained within
that category. At this point, we also decided that a category
for affect-based practices should be created. This suggestion
led to our development of the practice of demonstrating
affective dispositions towards computation.
Finally, following multiple critiques and iterations of

video analysis, the finalized framework contained in this
report was proposed. The finalized framework consists of
14 practices in 6 different categories. The categories
encompass ideas related to thinking about computation
(i.e., extracting physical insight), working with computa-
tion (i.e., building computational models), and using
computation to make claims or draw conclusions about a
model (i.e., data practices). The framework also ended up
containing more broad practices like debugging, group
work, and affect-based ideas. The complete framework will
be discussed in Sec. III.

B. Review of computational thinking literature
employed in framework development

Due to the level of physics classroom we had access to
for this study, our literature review and presentation of in-
class evidence mostly revolves around the context of
introductory physics. An important point of emphasis is
that the literature included here is not meant to fully
encompass all research pertaining to CT. It is not our
intention to provide a comprehensive overview of previous
research on integrating computation into the discipline of
physics. Rather, we seek to present a contextually diverse
subset of CT frameworks. Our approach allows for the
emergence and transformation of CT skills from other
dissimilar contexts to our particular case.
Barr and Stephenson provide a commentary on integrat-

ing CT into K–12 education [21]. Difficulty arises because
there is no widely agreed upon definition of computational
thinking, which is discussed by nearly every framework
reviewed herein. The items in their framework are called
core computational thinking concepts and capabilities.
Many of these concepts or capabilities are evident in other
frameworks, namely, problem decomposition, abstraction,

algorithms and procedures, and simulation. Other concepts
or capabilities, such as automation, are less common in
other frameworks.
Berland and Lee explored how computational thinking

manifests when playing strategy-based board games [22].
The framework in this study is better described as a coding
mechanism, which is applied when observing student
groups playing the game together. The framework consists
of five core aspects of computational thinking. Each
category is presented in a table that includes descriptions,
rationale behind inclusion, and examples of student dia-
logue that was coded in each respective category.
Brennan and Resnick’s study focuses on CT in the

Scratch programming environment [23]. The framework is
organized along three dimensions: concepts, practices, and
perspectives. Their seven concepts resonate specifically
with programming environments. Their computational
practices section is heavily focused on students learning
to work with code. The computational perspectives cat-
egory focuses on students expressing themselves creatively
through computation, enriching computational experiences
through interaction with others, and questioning the com-
plicated nature of technology.
The framework proposed by Weintrop and colleagues is

a four-category taxonomy of computational thinking prac-
tices [20]. The categories include data practices, modeling
and simulating practices, computational problem-solving
practices, and systems thinking practices. Each category
contains five to seven CT practices. It is worth noting that
besides the set of recommendations presented in the next
article from AAPT, the Weintrop framework has been
utilized more often than other for the context of physics
[13,24]. Weintrop et al.’s work involved the analysis of 12
physics lesson plans and the perspectives of professional
physicists. This study successfully contextualized CT to
math and science contexts. In essence, our work builds
upon the work of Weintrop et al. but further contextualizes
CT practices to high school physics classrooms using
VPython.
The recommendations for computational physics from

the American Association of Physics Teachers (AAPT) was
written to increase emphasis on computation within intro-
ductory physics [25]. The paper establishes a set of skills,
which are organized into either technical computing skills
or computational physics skills. There are only three
technical computing skills: processing data, representing
data visually, and preparing documents and presentations
that are authentic to the discipline. As for the computational
physics skills, some of them are significantly different from
those included in other frameworks, such as “translating a
model into code” and “choosing scales and units.” The
majority of the other skills, including “subdividing a model
into a set of computational tasks” (i.e., decomposing) and
“debugging, testing, and validating code” (i.e., debugging)
matched well with existing CT literature [25].

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-4

Shute et al. aimed at examining literature around CT to
resolve conclusively the lack-of-definition issue that has
plagued CT researchers since its conception [26]. They
claim the four most common components of CT from the
literature are abstraction, decomposition, algorithms, and
debugging. The authors used these four practices as the
basis for their framework structure. Other practices that
are included in the framework are either standalone
practices alongside these four (e.g., iteration and gener-
alization) or they can be considered one element of the
primary four (e.g., modeling is a subcomponent under
abstraction).
Lyon and Magana that took a similar approach to

building their CT framework [27]. A key point made in
this work is that the specific context was chosen (“a
required upper-division senior engineering capstone course
on food and pharmaceutical processing within a biological
engineering department” [27]) for because (1) most stu-
dents in the course had limited computational experience,
(2) there was a more even distribution of males and females,
and (3) the research team was more closely involved with
the course content. These justifications highlight the
authors’ belief that CT could manifest differently in courses
that have varying computational experience or an uneven
gender distribution amongst participants. Their practices
consisted of abstraction, algorithmic thinking, evaluation,
generalization, and decomposition. They did not, however,
take these definitions verbatim from the work, but rather
refined them through thematic analysis and reflection
about the coding rubric in a similar process described in
this paper.
Of the studies reviewed, the work of Palts and Pedaste

resonates most with our work [28]. Their study is based on
a comprehensive literature review of previous CT studies,
which were then filtered through a lens of CT problem
solving. This results in ten CT skills within three catego-
ries: defining the problem, solving the problem, and
analyzing that solution. It includes several themes that
also occur in our framework (albeit with subtle naming
distinctions), such as decomposition, data collection or
analysis, algorithmic design, and generalization. One
notable deviation from other frameworks is the lack of
affect-based practices.
We would like to highlight the fact that context is an

influential factor on how CT manifests in all these studies.
Whereas there is a generalizability to most previous CT
frameworks, we are interested in the pieces that are
applicable to our specific context. Most of the frameworks
exhibit different structures, groupings, and grain sizes.
Whereas some frameworks utilize categorizations schemes,
others present CT as standalone practices. In our frame-
work, we grouped and tiered some but not all practices.
Grouping was based on patterns observed in our video
analysis. Moreover, many of the frameworks consider CT
on the scale of ideas, or actions, or dispositions. For our

work, we mostly focus on students’ behaviors or actions
that elicit CT so that practitioners can more clearly identify
CTwith actionable examples. Lastly, affect-based ideas are
especially relevant to activities where students are working
in groups or working through a particularly challenging
task (i.e., coding).

C. Research context, data collection, and
video analysis details

The context of this work is computationally integrated
high school physics classes in Michigan. The instructors
involved in our study participated in a professional devel-
opment series called Integrating Computation in Science
Across Michigan (ICSAM). This program is an NSF-
funded project where teachers learn to program and teach
computational modeling to their students. In ICSAM, the
curricular design is solely at the teacher’s discretion. There
is no set curriculum that the workshop intends to establish
in every participant’s classroom. Rather, each instructor
decides how computation will be integrated in their
respective environment.
The programming language that teachers use for all

computational modeling activities is Glowscript VPython
[29]. This language is particularly well designed for
modeling objects and events in a 3D environment, as it
was specifically designed for use in physics classrooms.
The ICSAM model makes use of “minimally working
programs” (MWPs) to simplify the more difficult aspects of
coding, to provide scaffolding for students, and to keep the
focus on physics even during computational activities [30].
Minimally working programs are beneficial because stu-
dents can start activities by interacting with the physics
immediately, while not being slowed down with creating a
computer program from scratch.
Overall, this research report examines 6 different com-

putational activities from 2 different classrooms. The project
as a whole gathered data from 15 teachers’ classrooms
totaling about 170 h of in-class audio or video data. We
focused on the activities fromMichael’s and Liam’s (pseud-
onyms) classrooms, and we chose activities where the
videos featured a large amount of interactions between
group members. Michael’s class was an AP physics (third
and fourth year students), and we looked at his projectile
motion, river crossing, and spring energy activities. Liam’s
classwas Physical Science 2 (first and secondyear students),
and we analyzed his colliding crates, momentum conserva-
tion, and block on a ramp activities. See the appendices A
and B for details about both classrooms and the activities
analyzed.
Audio and video data were gathered from high school

classrooms around the state of Michigan. Videos were
acquired by researchers visiting the classrooms of teachers
participating in our professional development series. To
gather data, a camera on a tripod was positioned to record
students’ discussions, body language, and equipment.

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-5

A microphone was placed in the middle of student groups
to record their conversations.
We coded video examples and conducted a thematic

analysis of in-class data using MAXQDA [31–33]. A mixed
a priori (i.e., predetermined) and a posteri (i.e., generative)
coding scheme was employed to analyze videos [34]. The
initial phase of our video analysis involved watching the data
and coding students’ behavior. For example, one behavior
that frequently occurred involved students deciding to focus
their attention on one small computational task. At first,
behaviors like breaking the code into segments and deciding
which segment to focus on were grouped together because
they fit a theme of trying to comprehend (i.e., gain insight
about) the task at hand. The breaking down of code into
sections (later to be termed decomposing) was determined to
be distinct from deciding on which of those sections was the
most important to focus on (later to be termed highlighting
and foregrounding). Once these two codes had been iden-
tified, we returned to the filtered framework and examined it
for alignment. If alignment was found, then the emergent
theme would be paired with the practice from our initial list
of practices. If no alignment was found, then the theme was
written up as an emergent CT practice.
In regards to the coding of individual CT practices in the

video data, we used behavioral markers to indicate the
beginning and end of practices. Markers that often indi-
cated the start or end of a CT practice were when students
moved on to the next portion of their assignment, when
students had a long period of silence in their discussion
(i.e., 10–15 sec or more of not talking), or when students
shifted their attention to a teacher or different group
member. A complication with the individual identification
of practices was that it was possible for some CT practices
to co-occur with each other, especially in the case of
debugging. For example, students would commonly
employ other practices like utilizing generalization (e.g.,
if it worked previously, the same resolution should work
here) or decomposing (e.g., breaking down different parts

of code to more precisely understand why an error is
occurring) while also debugging. We decided that co-
occurrences would be coded as such rather than trying
to discern distinguishable cutoffs for separate practices.
The thematic coding process was conducted by two

researchers, and themes went through a peer review and
negotiation process before being finalized. Once the pair of
researchers had constructed a framework from codes that
emerged from the data, it was tested for validity by giving it
to a third researcher. The third researcher coded the same
dataset, and the framework underwent a refinement process
based on this review. Refinement included making defi-
nitions more concise, providing examples in the codebook
for each different practice, and adding common markers for
the beginnings or ends of a practice. In the end, separate
raters came to agreement on more than 85% of the video
segments provided (approximately 1 h of the total 12 h of
data analyzed).

III. RESULTS: COMPUTATIONAL THINKING
PRACTICES IN INTRODUCTORY PHYSICS

Our computational thinking framework, shown in Fig. 2,
contains 14 practices within 6 different categories. When
working on a specific computational task, students engage
in the first three categories of CT practices: extracting
computational insight, building computational models, and
data practices. The other three practices (i.e., debugging,
working in groups on computational models, and demon-
strating affective dispositions with computation) exist as
their own categories of independent CT practices. We will
first discuss details about the categorization scheme before
discussing each practice.
Extracting computational insight means perceiving and

identifying the essential components of a computational
model. It involves viewing the model as an abstraction of a
real-world physical phenomena. Abstracting is included as
top-tier CT practice in a vast number of frameworks, and

Decomposing

Highlighting and foregrounding

Translating physics into code

Algorithm building

Adding complexity to a model

Applying conditional logic

Utilizing generalization

Choosing data representation forms

Generating data

Analyzing data

Manipulating data

Debugging

Extracting
Computational Insight

Data
Practices

Building
Computational Models

Working in groups on
computational models

Demonstrating affective dispositions
towards computation

FIG. 2. Outline of the practices in our computational thinking framework. The framework has 14 practices comprising 6 distinct
categories. The categories of extracting computational insight, building computational models, and data practices all contain several
practices within them. The categories of debugging, demonstrating dispositions towards computation, and working in groups on
computational models exist as standalone practices.

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-6

this category aims to address the large grain version of
abstraction. There are three practices within extracting
computational insight: decomposing, modular thinking,
and highlighting and foregrounding.
We define building computational models as using a

computer to create an abstract representation of a physical
system or phenomenon. For teachers administering com-
putationally integrated physics problems, computer simu-
lations will be the main modeling tool for students. An
important note is that this category is associated with
building computational models, and as such, all of the
practices contained in this category pertain to students
designing, enacting, and modifying their models. There are
five practices contained within building computational
models: translating physics into code, algorithm building,
applying conditional logic, utilizing generalization, and
adding complexity to a model.
Our category of data practices attempts to encapsulate

the many different ways that students can gather informa-
tion from computation. This includes creating or collecting
data, preparing data for analysis, making claims from data,
and producing data visualizations. Data practices as a
whole are discussed extensively in most of the references
included in our review. It is important to note the way that
Glowscript VPython is used limits the ability to produce
and store data. This is because students do not use arrays to
store data, as might be typical in other coding environ-
ments. Instead, variables store data at a specific instance of
the computational model, and much of the data is in the
form of a visual output (rather than numerical values).
The categories of debugging, working in groups on

computational models, and demonstrating affective dispo-
sitions towards computation are each in their own category
containing a single practice. Generally, debugging occurs
in many different forms, so it does not fit cleanly within any
other category. Working in groups on computational
models and demonstrating affective dispositions relate to
student attitudes and interpersonal skills, both of which
seem to be exhibited on a different grain size than all other
practices in the framework. These last two practices are
much more macroscopic, and thus, we have assigned them
to their own categories.

A. Decomposing—Separating a computational problem
into a series of manageable tasks

Numerous frameworks highlight the practice of breaking
down large problems, complex systems, or multifaceted
computational models into smaller pieces. The develop-
ment of a computational model can be a multistep process
and might incorporate many different concepts at one time.
As a result, decomposition is one of the most universal
practices included in CT frameworks. Most notably, Shute
et al. emphasize the connectedness of the decomposed
pieces that make up an entire model or solution [26]. Aside
from minor language distinctions, each framework appears

to generally agree on the meaning of decomposing.
Needless to say, the general notion of reducing complex
systems or problems to their simpler components is well
received as a core element of CT.
In the following episode, the students demonstrate

decomposing while troubleshooting some issues in their
model of colliding crates. They are trying to make the two
crates move toward each other simultaneously such that
they stop moving when they reach each other in the center
(see Fig. 3). Ultimately, this program will be used to model
an elastic collision between the two objects, but first, the
students are simply trying to get both cubes to move toward
each other at the same time and stop when they meet. When
the students run their program, it initially displays a blue
crate moving to the right [Fig. 3(b)]. Then, when the blue
crate reaches the right side of the platform, it stops its
motion, and a pink crate appears at the position where the
blue crate stopped [Fig. 3(c)]. Subsequently, the pink crate
moves to the left and continues its motion infinitely, even
after it extends beyond the platform object [Fig. 3(d)]. The
students call their teacher over for guidance.

B: So here’s where we are. [Student B runs the program
to show the teacher the output of their program.]
T: You have box 1 that flies across, and then box 2 comes

into play, and flies across.
A: And, off… [The animation shows the second (pink)

box moving infinitely to the left beyond the platform.]
B: And then it doesn’t stop.
T: No… Oh, it doesn’t stop!
B: Nope, we don’t really know why. So, there’s some

problems. So, there’s a delay, that’s problem number 1.
And, that is another problem. [Student B points at the
second (pink) box still moving farther off-screen.]
T: Yeah, yeah, so which problem do you want to fix first?
B: The time delay.

This is an example of decomposing problems because
the group is dividing one overall task (i.e., making both

FIG. 3. (a) A group of three students (pseudonyms A, B, and C)
discuss their computational model with the teacher (T). The
students’ model displays (b) first a blue box moving to the right,
(c) then the blue box stopping on the right side of the platform
and a pink box appearing after the blue box completes its motion,
and (d) lastly the pink box continuing its motion infinitely to the
left of the platform. Yellow arrows in (b), (c), and (d) have been
added to illustrate the direction of motion for each crate at
different instances.

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-7

crates appear at the same time and simultaneously move
toward each other) into two smaller tasks (i.e., fixing the time
delay before the pink crate appears, and stopping the motion
of the pink crate as it moves off the platform). In this case, the
students identify multiple issues with their simulation. They
choose to address the time delay first, and this serves as a
chance for the group to re-focus their efforts toward a more
manageable task. While the example provided here occurs
with the teacher being present, student B actually decom-
poses the problem without any specific prompting from his
instructor. This example provides some evidence that the
teacher’s presence could lead to students more easily
engaging in the practice of decomposing. It should be noted
that decomposing does not always occur in the context of
troubleshooting or debugging. Another easily conceivable
example could emergewhen students are first interpreting the
different lines of code in an MWP.

B. Highlighting and foregrounding—Perceiving the
most important features of a computational task to
enhance understanding, focus on essential aspects of

code, and recognize unexpected behaviors

Owing to the pervasiveness of abstraction in CT, we feel
it is worth looking at the subpractices that define abstrac-
tion. For example, the framework of Weintrop et al.
mentions the practice of creating computational abstrac-
tions, which is described as “The ability to conceptualize
and then represent an idea or a process in more general
terms by foregrounding the important aspects of the idea
while backgrounding less important features” [20].
Similarly, in Shute et al.’s framework [26], the practice
of abstraction contains pattern recognition. In defining this
practice, we aim for it to encompass ideas relating to
students focusing and planning where to go next.
In the following instance, we present a casewhere students

engage in highlighting and foregrounding. This example
takes place near the beginning of a computational activity
where students are modeling the motion of a block hanging
from a vertical spring. After the students dissect and interpret
the different parts of the code, they decide to focus on
correctly modeling the graphs of different forms of energy,
instead of correctly modeling the different forces in
their model.

C: Alright, so we need to add the forces of gravity and
the spring, and we need to graph the energies.
A: So which one should we do first?
B: He already gave us the code for the kinetic energy

graph, so maybe we should start with the graphs.
C: Okay, so just copy this line? [Student C points to the

line of code for the kinetic energy graph.]

This example is a demonstration of highlighting and
foregrounding because the students have perceived the
different features of the model (i.e., decomposing), and
then they decided to focus on coding the different graphs

into their model (i.e., highlighting and foregrounding). This
leads to the students experiencing difficulty because the
graphs will not appear correctly unless the forces have been
correctly coded. Regardless, the students could be focusing
on this aspect simply because their teacher had already
done part of the work for them. Ideally, students would be
able to engage in a practice like this on their own. This
practice is subtle and difficult to notice, but it is important
for computational thinking. As a result, we hope to
investigate it more in the future. In many ways, highlighting
and foregrounding is a form of planning that the group
negotiates among all of its members. For instance, after
successfully adding code to add a spring force to their
model, the students might go on to focus on graphing all of
the energies in their model. Contrastingly, they could
choose to focus on different aspects of the code, such as
adding friction or changing values in their model to observe
the relationships between variables. Most often, highlight-
ing and foregrounding exists as students focus on one
component of their model.

C. Translating physics into code—Adapting an
analytical model to a computational environment

Literary support for including this CT practice came
predominantly from two sources: Weintrop et al. and
AAPT. Weintrop et al.’s framework contains the practice
of preparing problems for computational solutions, which
is described as reframing problems “so that existing
computational tools—be they physical devices or software
packages—can be utilized” [20]. Moreover, AAPT’s rec-
ommendations include a computational physics skill called
translating a model into code. This action describes how
students should “translate a theoretical or algorithmic
model into code that enables computation,” which includes
constructing readable code, using language documentation,
and applying physics knowledge to make decisions [25].
We believe that translating analytical (e.g., written) ele-
ments of a problem into code is ubiquitous in computa-
tional activities, especially in our context where students
are expected to learn with written prompts before modeling
physics with the computer.
Translating physics into code can manifest itself in a

huge variety of different ways in our context. When
students program physics equations in code form, they
are directly translating physics concepts into something that
can be understood by a computer. An example of this is the
Euler-Cromer update equation, which states that a new
value is equal to the old value plus a change [35]. This is
typically seen when students need to update the position of
a moving object. When students are using a simulation to
analyze some unknown relationship, they must consider
how the computer is going to output the desired results.
Much of this practice stems from students consciously
deciding how physical relationships are not immediately
recognizable to the computer. One cannot simply tell the

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-8

computer to “exert a force” or “make these objects collide.”
Instead, one must program the changes by redefining
vectors after each iteration throughout a loop.
Below, we provide an example of translating physics into

code. Students are trying tomodify their code to calculate the
elastic potential energy of a vertical spring-mass system. The
teacher provided them the correct code to calculate and graph
kinetic energy, and now the students are taskedwith correctly
modeling the graph for elastic potential energy.

A: So I think we need to have, like, the formula for
kinetic energy. Oh wait, we already have kinetic energy.
B: Spring energy then?
A: Yeah.
B: Elastic energy equals 0.5 k…
C: Times k…
A: Oh, I forgot that I had to do that. [Student A adds an

asterisk between 0.5 and k in their computer code.]
B: Okay now times… um…
A: X squared, right?
C: But we need to use what the code uses instead of x.
B: Yeah, so, times “spring displacement”…
C: Times, again…
A: Oops! Sorry… [Student A adds an asterisk between k

and spring displacement in the computer code.]
B: And then put two asterisks and 2.
A: Because it’s x squared?
B: Yeah, that’s right.

The previous example is a straightforward case of students
translating the equation for elastic potential energy into code
form. The students identify the equation that they want to
translate, and they talk about the equation in code form.
Multiple times, student A forgets that she needs to include an
asterisk for multiplication between variables. A similar
instance occurs when student B instructs his teammate to
use two asterisks for carrying out exponential calculations,
because Glowscript VPython uses a double asterisk to carry
out exponential functions. Furthermore, student C acknowl-
edges that they cannot just use x as the spring’s displacement,
and instead, they need to use whatever variable name is
appropriate for this specific code. By some clever activity
design, the MWP provided explicitly defines a variable
named spring displacement, and the students use that in
their code instead of x. It is important to acknowledge that the
computational platform in our context requires students to
think carefully about mathematical symbols and variable
names when translating physics into code. Ultimately, trans-
lating physics into code is specific to introductory physics
because it involves bridging the gap between conceptual
physics and computational content.

D. Algorithm building—Planning and constructing a
series of ordered steps to model a physical phenomenon

Algorithms are commonly referred to when discussing
computational thinking. The Shute et al. framework gives

the most comprehensive coverage with respect to this
practice [26]. Although sometimes an entire computer
program could be considered an algorithm, we most
commonly focus on the example of an algorithm within
a position update loop because that is where this practice is
most easily observed in our data. This limited view of
algorithms might be different from what a computational
physicist would commonly think of as an algorithm
because it only covers a small range of possible situations
when an algorithm would be useful. Owing to our context,
we did not observe many of the potential ways that students
could engage in algorithm building.
The following transcript is an in-class example of students

discussing the algorithmic nature of computer codewith their
teacher. This students are experiencing the same problem
demonstrated in Fig. 3. At this moment, the students are
trying to get two box objects to move toward each other
simultaneously in the model. Currently, their simulation
displays one box moving to the right, and after the first box
completes its motion, the second box begins moving to the
left (see Fig. 3). The students call their teacher over for help.

T: So you have crate 1 and crate 2…
C: We got them both to move, but it does this…
B: The second one moves after the first one.
T: Oh yeah, so this is a little different. You’re familiar

with the while loop, right? So think about that. That tells
you that while this is true, it’s going to do this. So if we
think about coding as, like, step-by-step instructions for the
computer. You told it to create a box. You told it to create
another box. You gave box 1 an initial velocity. Then, you
said while this is true, start moving the first box. So when is
box 2 going to start moving? Where in your instruction list
do you have box 2 moving?
A: Oh, because it’s after all this? [Student A points to the

while loop, which only updates the position of the first
box.] So does it have to be in the same line?
B: Or do we just put it next to it?
T: Okay, so right now crate 2 doesn’t get a velocity until

after crate 1 moves. [The teacher points to the computer to
guide his students’ eyes.]
B: So we should put the velocity earlier in the code, like

up here, for crate 2?
T: Well, do you want crate 2 to start moving at the same

time as crate 1? Yeah, so when you give crate 1 a velocity,
give crate 2 a velocity at the same time. [The students look
confused.] What I’m saying is take line 19 and put it earlier
in your code.
A: So put it first, like before this? [Student A points to

above the while loop in their code.]
T: Like at line 14 or 15.
A: Yeah.
C: So then put everything else the same?
T: Sure, we can try that! That will at least get your second

box moving at the same time. Basically, it will say step 1,

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-9

move this box, step 2, move this other box. Instead of move
this box, and then once it’s done moving, start moving the
other box. Think order of operations, like a step-by-step
procedure.

After this discussion, the students try to rearrange their
code so that both of the crates move in the desired manner.
This is a demonstration of algorithm building because the
students are interacting with the stepwise nature of com-
puter programming, and they are thinking about the order
of commands that need to be executed to correctly model
the physics. The teacher sends explicit messages about the
sequential nature of programming by dissecting their code
and telling them how the computer runs each command. He
even describes it as a “step-by-step procedure,” and he
relates the idea to the mathematical order of operations.
After troubleshooting their code for about 5 min, the
students cannot figure out how to fix the same problem,
so they call the teacher over for help again.

B: It’s still moving after the first one.
T: Okay, I’m going to give you a hint on something.

Notice how some things are indented? What do you think
the indentation means?
C: Oh, yeah, huh… So, indentation means it falls under

the while loop.
A: Yeah, it means it does like all those things under the

while loop. [Student B deletes lines of code to combine
their two separate loops into one loop that will update the
positions of both crates at the same time.]
C: Okay, try running it now. [Student B runs the

program, and it displays both crates moving toward each
other at the same time.]
B: Ah, I see!

This example illustrates many of the different facets of
algorithm building. The idea of parallelism (i.e., carrying
out steps simultaneously in a computational model) is
demonstrated when the group realizes that indented lines
after the while statement will be executed together through-
out every iteration of the animation loop. Once the students
combined their two loops into a single loop that updated the
position of both crates, the students realized how to arrange
their code to model the two colliding crates correctly. The
most straightforward form of this practice occurs when
students are considering the control flow of a computer
program. Other variants of algorithm building related to
efficiency, redundancy, generalizability, and accuracy are
expected to occur, and investigation into this area of
research could be fruitful.

E. Applying conditional logic—Planning a logical
sequence of events and editing conditional statements

within a computational problem

Most commonly, the practice of applying conditional
logic exists when students are working with while/for logic
and if/then/else logic. This practice mostly relates to control

flow. Owing to the commonplace nature of looping and
conditionals in introductory physics, we value the ability to
construct a loop with logical statements. Another argument
for its inclusion is that, like if/then/else logic, while/for
logic is usually tied to the physics of the model (e.g.,
position updates within a while loop over time). This is
especially true for introductory programming in the
Glowscript VPython environment. Computers cannot rec-
ognize physical quantities such as “velocity,” and it is up to
the coder to redefine the code with different conditions.
In the next segment, students apply conditional logicwhen

modeling the motion of a boat crossing a river with a
perpendicular current (see Fig. 4). At this point, the students
have successfully added together the vectors for the river’s
current and the boat’smotion such that the boat is traveling in
a straight line across the river (i.e., the boat’s horizontal
velocity component is equal and opposite to the horizontal
velocity component of the river). However, the boat con-
tinues its motion even after it reaches the opposite shore. The
students know that their boat should stop (i.e., the program
should stop running, or the position of the boat object should
stop updating) side “B.”The students focus on the conditions
of their while loop in an attempt to achieve this.

D: We should make it not go onto the grass now.
B: Yeah so, uh, if boat position…
D: No, just while “boat.pos.y” is less than something.
B: While… boat.pos.y is less than… [Student B is

making changes to the conditional statement of the while
loop within the computer code.]
A: Do 120. That’s where the B label is at.
B: Oh, really? Okay.

FIG. 4. Computational model of a boat crossing a river. The
large yellow arrow represents the boat, the smaller yellow arrows
represent a motion map of the boat’s velocity at different time
instances, and the dark brown rectangle represents a log floating
in the river (i.e., only affected by the current). Panel (a) displays
the boat incorrectly continuing after it reaches the opposite
shoreline, and panel (b) displays the boat correctly stopping
when it reaches the opposite shoreline.

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-10

A: Or maybe, like, just before that. We’ll see. [Student B
runs the program, and it displays the boat moving across the
river and still moving beyond the destination shore, as seen
in Fig. 4a. Their teacher walks up as they see the outcome
of their computational model.]
T: How we doing? What’s up?
B: We just basically finished.
C: We’re just trying to figure out how to not go in the

grass. [Student B changes the value of their while loop to a
slightly different value and runs the model again.]
D: I’d say we did it… Well actually, it’s still barely

going.
B: Okay, how about 85? Let’s get some 85 up in here!

Run this program. [Student B changes the value in the
conditional statement and runs the program again. The
model shows the boat stopping as it reaches the shore on
the opposite side of the river (Fig. 4b).]
D: Nice! That’s good. It stops right when it gets there.

Here, we observe the students applying conditional logic
to get their model to stop running at the correct time. They
accomplish this goal by changing the conditions of the
while loop, which animates the boat’s motion depending on
its y position. At first, student B thinks about the dilemma
with an “if” statement approach, but shortly after this,
student D overrules him and decides to change something
in the “while” loop. Both of these pathways are valid forms
of applying conditional logic. Subsequently, student A
proposes using the value of 120 in their conditional
statement because that is where the B label is positioned.
Using the relative value of one object’s position as the
animation requirement of another object’s motion is a
higher level form of applying conditional logic than
random guessing and checking. Nevertheless, the students
make slight iterative adjustments to the conditional state-
ment in their while loop to get the boat to stop in the right
location.

F. Utilizing generalization—Importing previous
approaches, algorithms, or code into a model

We chose to name this practice “utilizing generaliza-
tion,” as opposed to just generalization, because we felt
that the latter was ambiguous as to whether the practice
meant utilizing generalized code or writing code in a
general way. Our MWP-based context focuses more on
the utilization of existing code. By contrast, one could
envision a distinct variant of building computational
models in a generalized way, such that the model
accommodates a wide range of circumstances. Most
MWPs have already made decisions on how the code is
structured, and so it is difficult to emphasize coding a
model such that it may be useful in future problems. For
our context, teachers valued getting students to reuse,
remix, and utilize general codes [19]. Thus, our focus is on
using general code as a resource for constructing a
computational model.

In the next example, students utilize generalization to
create a second box object by remixing the working code
from the first box within the same program. This occurs
through the simple act of copying and pasting one line of
code, and then making modifications to the replicated code.
The following conversation takes place after the students
are tasked with creating a second crate object with different
attributes than the first one.

A: Create a second crate with a different size and color,
and then place it on the far right side of the floor. [Student A
reads the prompt from their worksheet.] Okay, crate equals
box… Copy all that. [Student A highlights the entire line of
code.] Copy. I’m just going to put it right here. Paste. Okay.
So that’ll put it…
B: There will be a cube in the same place as the last one.
A: Same exact spot, same exact color, same everything.
C: Well, we need to change the size and color.
A: So let’s put the color back to red. Nah, let’s do

magenta. Magenta actually works, I tried it last time.
B: So magenta, and then change the size. Let’s just make

it 30. [Student A changes the code accordingly.]
A: Crate equals… Okay, so let’s change the position

vector to… So, negative 20 puts it on the same axis as the
first crate, so let’s try positive 50.
B: Let’s give this a shot. Boom! [The program displays

two crates of different size, color, and x-position.]
A: Wow, that was super easy. Different size, different

color, and it’s on the far right side. We did it!

This example vividly demonstrates utilizing generaliza-
tion because the students are copying (i.e., importing) a line
of code from elsewhere in their program, and then they are
modifying that line to easily create another box object.
After reading the worksheet prompt, student A begins by
simply copying the code for the first crate and pasting it
directly below the original line. The group also acknowl-
edges that the cube will be located at the same position with
the same characteristics as the original cube. Consequently,
they start the process of remixing the code by changing its
color, size, and initial position. By the end of the inter-
action, student A admits with glee that the entire process
was “super easy” because they had experience with utiliz-
ing generalization.

G. Adding complexity to a model—Iteratively making
computational models more complete, complicated, or

realistic by including new physical features

When teaching with MWPs, the models are typically
constructed for students, and they only have to add simple
features with significant scaffolding. By the time the model
is near completion, students should ask themselves, “How
can this model be improved?” Students make adjustments
that add even more complexity to the model. Examples of
these additions include color-coding arrows or objects,
adding titles, x and y labels, and legends to a graph,

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-11

incorporating air resistance or friction, and adding more
objects to a model. Sometimes, these improvements are
merely cosmetic and they focus on making the model easier
to comprehend. Other changes may be extensions of the
physics, such as incorporating realistic effects like damping
when it was not originally present. The major takeaway is
that this process is iterative. Students can run the code,
decide if an extension is called for, and then make the
necessary edits.
The following example of adding complexity to a model

emerges when students are working through an activity that
tasks them with modeling the motion of a vertical spring-
mass system. Once the students correctly program the
graphs for all of energies, they continue to read the next
task on their worksheet.

D: In a real situation, the spring would run out of energy.
As the spring bounces up and down some of the energy will
be lost to the surroundings as thermal energy. Add to your
forces a new force called “F damp.” This force will need to
slow the spring on each successive bounce so that it
eventually comes to a stop. The F damp should be
proportional to and opposite the velocity. [Student D reads
the prompt on their worksheet aloud.]
C: So for F damp, put in negative “cube.velocity,” and

then we also have to add in the damping coefficient.
A: This is going to be some very thick air. [The other

students in the group laugh at student A’s joke.]
D: Yeah, now in F net, do all of that plus F damp. Or

would it be minus F damp?
A: It’s already negative in the line above. [Student A runs

the program, and it displays the mass oscillating with the
damping force correctly added.]

Even though this case was specifically prompted by the
activity’s design, the students are still gaining experience
with adding complexity to their model. This instructor is
asking his students to comprehend that a computational
model can always be further developed to more closely
match reality. In the end, the students successfully added a
damping phenomenon to their model. They do this by
translating the equation for the damping force into the code,
and then adding the damping force to the net force
equation. We see that adding complexity to a model
emerges at a very large grain size over a gradual series
of interactions between computational thinkers. Over the
entire class session, the students successfully added new
calculations and graphs of the energies, as well as adding
complexity to the physics underlying the model (i.e.,
adding damping). The idea of making assumptions as a
way of simplifying models is paramount to engaging with
CT in a physics context.
In general, expanding on a computational model

is a complicated process that requires experience and
confidence with the computational medium. Because
computationally integrated physics courses focus less
on providing students experience with programming, they

might not have the self-efficacy that allows for effortless
communication and advanced ideas around model develop-
ment. On the other hand, this lessened focus on computer
science ideas would be expected to enable students to think
more readily about the physics modeled by a simulation.
Therefore, adding complexity to a model is a high-level CT
practice that can be demonstrated by adding new physical
features to a working computational model.

H. Choosing data representation forms—Implementing
the best approach, technique, or tool to convey

computational results

This practice most closely resembles the data visualiza-
tion practices in other CT frameworks. Since there are so
many methods of producing visualizations with different
IDEs (integrated development environments), this practice
is bound to occur in almost any computationally integrated
science course. When students use Glowscript VPython,
the code will almost always produce a visualization. These
visualizations are an integral part of computationally
integrated physics courses, because they allow the students
to visualize motion of objects. This practice places an
emphasis on the communicative ability of data visualiza-
tions. Students engage in choosing data representation
forms when they consider how to make data visualizations
more effective at conveying scientific results. Sometimes
this could mean creating graphs, printing values, or simply
visually inspecting the output of a simulation. The highest
form of this CT practice emerges when students are
evaluating the visualization for improvement. Ideally, it
is up to the students to decide the most illustrative and
effective route for presenting their data.
The next example is an illustration of students choosing a

data representation form for the quantities in their computa-
tional model. After successfully translating the equation for
Hooke’s law into their model, the simulation displays a
vertical spring-mass system with simple harmonic motion.
The students continue to add other forms of energy to the
graph provided in the MWP. Their teacher designed the
program to graph the kinetic energy correctly, and now the
students have to model the elastic, gravitational, and total
energies.

C: Alright, so right now we have energy versus time.
[The program displays a vertical spring-mass system
oscillating and the corresponding kinetic energy graph.]
B: It just keeps doing the same thing. There’s no friction

or anything. Are we going to have to add that later?
D: Yeah, that’s what we do at the bottom. [Student D is

refers to the last question on their worksheet, which tasks
them with adding a damping force to the model.] Right now
we have to graph all the energies. Kinetic energy is already
done. We need the gravitational potential, the elastic
potential, and the total energy.
B: We need to graph those all on the same graph?
D: Yeah.

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-12

This example shows the students choosing a data
representation form because they realize that the energy
versus time data can be effectively visualized with a line
graph. Moreover, they decide the data should all be
displayed on the same graph, which is a deliberate choice
of data representation that will affect the model’s clarity.
Although the previous example does exhibit students
engaging in this practice, it is a more passive form than
it would be if the students had actively made some decision
for themselves around data representation. Instead, the
teacher asks students to engage with this practice by
designing the activity so students must graph all the
energies. This could be because graphing is a difficult
technique to carry out in Glowscript VPython, which might
have been these students’ first experience with graphing in
a computational environment.

I. Generating data—Producing some form of data
through the enactment of a computational model

Given the nature of MWP-based computational physics
courses, generating data is hard to observe. When the code
is ran, data is generated, but the question becomes whether
or not the student is consciously considering the visuali-
zation output as data generation. Students are not typically
running laboratory experiments and using the computer as
amechanism to record raw data. Rather, everything is in the
realm of creating data. Students are given an MWP that
creates a unique set of data that pertains to one particular
physical model. The visual output of a model can serve as a
viable form of data, as opposed tomore traditional forms of
data like graphs or numerical values. Consequently, data
generation might look different in contexts that are less
visually dependent than Glowscript VPython models.
The following example showcases students generating

data when trying to graph the different forms of energy for a
vertical spring-mass oscillating system. After the spring
force has been correctly coded, the students move on to the
next task: adding graphs of kinetic, elastic, gravitational,
and total energies. The students begin to discuss what they
expect the energies to look like.

C: Kinetic energy is already done.
D: So, when the spring is at its lowest, it will be…
C: The energy will be all elastic…
D: At the end, it will be…Well, go back to the program.
B: For what? Just run it again?
D: Yeah, run it again. [Student B runs the code.] So,

that’s kinetic energy…
B: So, it’s just saying when it’s at the bottom, it has zero

kinetic energy, which makes sense.
A: Yeah, so what I expect to see for elastic potential is

like this… [Student A points her finger in a sinusoidal
fashion that is out-of-phase with the kinetic energy.] You
know what I mean?
C: Oh yeah. So how do we graph that?

This is a case of generating data because they purpose-
fully run their program to examine the output. They are
trying to predict what they expect to see for the graphs of
different energies. In many cases, students simply run a
computer simulation to gather information and to decide
what to do next. Whether students are running code to
remind themselves of where they are at, to hash out what
they expect to see, or to see if their changes achieved a
desired outcome, these are all cases of data generation. A
high-level form of this practice exists when students gen-
erate data with intentionality. If students specify a reason for
running their program, then they are engaging in this
practice with purpose, rather than passively generating data
by just clicking the run button. When data generation is
passive, students are still engaging in the action of generat-
ing data, but true computational thinking requires intention.

J. Manipulating data—Preparing for analysis by
processing, organizing, and cleaning the dataset

Data manipulation is associated with the handling and
managing of data in preparation for further investigation.
Datasets can be anything from lists coordinates to vector
arrows representing representing physical quantities. When
thinking about visual vector arrows as data, the arrows
might not be recognizable if they are not scaled properly,
despite the physics of the model being correct. Students
might use a scaling factor to display the vector arrows on a
similar size scale as the rest of the objects in their program.
Increasing the size of the arrows does not alter any physical
meaning of the model. In this hypothetical case, the data
that has been produced (e.g., the vector arrow sizes and
directions) needed to be manipulated (i.e., scaled to differ-
ent sizes) so that the data can be more effectively analyzed.
Data manipulation should not alter the physics or the
relationships within the data, but rather make these phe-
nomena more apparent.
We were not able to find a presentable example of

manipulating data within our video data. The closest case
we have is students changing the value of a damping
coefficient variable to make the damping more pronounced,
but this manipulation actually changes the physics at play in
the model. Changing the value of a parameter that signifi-
cantly alters the physics is not an ideal instance of manipu-
lating data.With that being said, we thought it was necessary
to include this practice in our framework, since it is included
in other prominentCT frameworks [20].Althoughwedid not
find evidence of this practice in our context, we could still
conceive ways that manipulating data occurs. Hopefully,
teachers and researchers will have some idea about what to
look for when studying manipulating data in the future.

K. Analyzing data—Extracting meaning from a dataset
or output of a computational model

Data analysis is the stage in which students will make
scientific claims based on what the data is telling them.

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-13

A computational model is capable of producing data that
could provide information to make a claim. Some behav-
iors that constitute analyzing data include observing
relationships, making claims, evaluating the validity of a
model, and drawing conclusions. If done thoroughly, the
data analysis stage provides evidence of whether or not the
scientific hypothesis was true or false. Analyzing data is
usually one of the last CT practices that students would
engage in before deciding that their computational task is
complete.
In the following video example, a group of students is

trying model the situation of a head-on collision between a
red Ferrari and a blue semi truck from Liam’s momentum
conservation computational activity. The truck has a mass 4
times that of the Ferrari, and they are moving at different
velocities. The computational model displays two cube
objects undergoing an elastic collision with conservation of
momentum correctly coded (Fig. 5).

A: Alright, let’s try this again. [Student A runs the code
and it displays the situation depicted in Fig. 5.]
D: Okay, that seems reasonable.
A: So blue barely moved after the collision, and red

completely shot off.
D: So the red Ferrari has a higher final velocity because it

has less mass?
A: Yeah, I think that’s right.

In this clip, we observe the students analyzing the output
of their model to draw conclusions about momentum
conservation. After entering the real-world parameters
provided by their teacher, the students generate data and
extract meaning from the data. There are many outcomes
that they could focus on, but they realized after the
collision, the lower mass object (the red Ferrari) will have
a greater final velocity. While this case does illustrate
students analyzing data, they could have gone further by
using their theoretical physics knowledge (e.g., equations
for momentum conservation) to verify the results of their
model. Analyzing data tended to occur often, and some of
the markers for this practice include students checking to
see if their model is behaving as expected, testing a scenario
to understand the outcome of a physical situation, or
inputting a physics equation to investigate the relationship
between variables.

L. Debugging—Remedying unexpected behaviors or
error messages when working with computation

Nearly every framework from our review makes mention
of troubleshooting associated with CT. Although many
frameworks contain a straightforward presentation of
debugging, there is still room for interpretation. One
example of this is whether or not debugging explicitly
includes an error message. Many frameworks include
language along the idea of remedying “errors,” without
specifying if these errors are uniquely code-breaking error
messages or, more broadly speaking, any sort of unex-
pected behavior encountered when developing a computa-
tional model. We include any sort of computational issue as
something to be remedied through debugging. Owing to the
fact that debugging often overlaps with many other
practices, it belongs in its own category. For example, a
student could engage in either algorithm building or
utilizing generalizations while debugging. The student
might have referenced a previously completed assignment
(one that was generally similar to the current assignment) to
fix a bug, or they may have realized that there was a control
flow issue in the code’s algorithm. This example highlights
that debugging is universal, and can occur alongside most
CT practices.
When applying debugging to our context specifically,

we say that the practice encapsulates everything from
the moment an unexpected behavior is identified to
when a remedy has been put in place. This not only
includes realizing that an error exists but also identify-
ing its location and its source, and deciding on the best
solution for the issue. Over time, students will likely
have developed a catalog of different computational
errors and have ideas on how to resolve them. As for
non-error-message unexpected behaviors, the process is
a bit more organic. Students have to recognize that an
issue is present, which is not always obvious. Then,
they have to consider the physics to make a decision on
whether or not the model is correct, and they have to
figure out where the issue is and why it is happening. If
a certain object is moving in an unexpected way, it is
likely because the physics that the computer is inter-
preting is incorrect. One effective approach to diagnos-
ing these types of unexpected behaviors is to question
what physical phenomena should be accounting for the
unexpected motion, and reviewing how that physics is
implemented in the code.
The following example features students debugging a

simulation of a hanging spring-mass system. After the
students successfully get their spring to oscillate, they are
tasked with producing graphs of the different energies of
the system. The students just added two lines of code to
produce a graphs of elastic potential energy and gravita-
tional potential energy over time. They run the program to
see if they correctly programmed the physics, and the
program displays Fig. 6(a).

FIG. 5. Computational model of two cubes colliding (a) before
and (b) after an elastic collision. The blue cube represents a semi
truck and the red cube represents a red Ferrari, with arrows
representing each object’s velocity.

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-14

A: Oh no! I don’t know! [Student A is distressed because
of the negative gravitational energy in their graph.]
C: Oh gosh! Energy can’t be negative.
A: And it’s still in phase…
C: Wait… It needs to be flipped because actually it’s just

upside down.
A: Yeah, it’s a sign error!
B: No, even if you flipped it, the gravitational potential

energy wouldn’t start at the right spot. It starts high… It
should start at zero, right?
C: No, it shouldn’t. Gravitational is the most at the

beginning because it’s all the way wound up.
A: Okay, let’s check this… [Student A changes the code,

runs the program. The model displays Fig. 6(b).]

The previous transcript provides a case where the
program runs without encountering a fatal error, but the
students identify an unexpected behavior in the gravita-
tional potential energy. The students express frustration
through exclamations of distress (“Oh no!” and “Oh
gosh!”). The group is analyzing data to inform them that
they need to debug the physics. They know that energy is a
scalar quantity, and it should not be negative in this case.
The unexpected behavior could be corrected by multiplying
by a negative, which is the simplest way to make their
model behave in the way they expected. While student A is
making changes to the code, student B and C discuss what
they expect the value of gravitational energy to be at the
beginning of the simulation. We observe that debugging
can be a group-oriented process of everyone contributing
their ideas.
Troubleshooting attempts do not always end with stu-

dents being successful. However, as students become more
familiar with the coding environment, they could more

readily resolve common issues. For example, students
would regularly encounter an error where the computer
program cannot add a vector and scalar quantity. In many
cases, this error can easily be fixed by using a magnitude
command [e.g., KE ¼ 0.5 "mass "magðvelocityÞ " "2] to
make vector quantities become scalars. After a few expe-
riences with coding in their physics classes, students will
immediately use this strategy to resolve the vector or scalar
addition error. Debugging is one of the most recurrent CT
practices because it applies when either the physics (lead-
ing to unexpected behaviors in the model) or the computer
code (leading to fatal errors in the computer program) are
incorrect. Furthermore, debugging can occur in both
systematic (i.e., planned) and nonsystematic (i.e., random
or guess-and-check) ways [36]. Although we value sys-
tematic debugging as a higher level practice, haphazard
debugging can be an effective approach to troubleshooting.
Further investigation is needed to explore the variation of
frequently occurring CT practices.

M. Working in groups on computational models—
Engaging as a member of a team to gain understanding,
develop creativity, and complete a computational task

Group work is not exclusive to programming, nor is it
easy to classify as a “thinking” practice. However, several
of the frameworks that we have drawn upon highlight the
social component of computational thinking and provide
justifications for its inclusion as a CT practice. Berland and
Lee discuss groupwork as distributed computation [22],
whereas Brennan and Resnick included “connecting” (i.e.,
sharing and communicating in computational environ-
ments) as a disposition in their framework [22,23].
Groups of people working together is inevitable in the
21st century, and cooperativity is important to CT. In
addition, it could be argued that teachers value group work
in our context because they are integrating computation
with a group-based approach. Initially, the inherent nature
of group work in our context was problematic from a
research perspective, as we wondered exactly what actions
constituted group work. If we simply coded videos for
times when students were talking as a group, we would
have coded the entire video as working in groups. Instead
of this broad coding scheme, we focused on behaviors that
required more than one participant. For example, the
positioning of the computer could result in both inclusive
and exclusionary group dynamics. Encouraging another
group member to speak up, or knowing when to reach out
to the teacher or peers could also constitute working in
groups.
Our video analysis found several instances of disunity

(i.e., negative group dynamics) and collaboration (i.e.,
positive group dynamics). For the following segments,
we will provide two examples from Liam’s classroom. The
first example demonstrates a team of students working in a
way that is not conducive to collaborative group work. In

FIG. 6. (a) Incorrect graph and (b) correct graph of energies in a
vertical spring-mass system simulation.

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-15

contrast, the second example will exhibit students working
through the same assignment with collaborative group
work practices. See Fig. 7 for images of the two contrasting
groups. From a cursory observation, group (a) clearly could
arrange themselves better to encourage good group work
such that student B does not need to lean in to see the
computer. On the other hand, group (b) is sitting in a
configuration that enables its members to all easily see the
computer. The transcripts in the following paragraphs will
provide further evidence to support our claims around
disunified versus collaborative approaches in computation.
In the first example, we focus on discussing disunity, as it

is much easier to observe. This case should serve as a
counterexample for what good group work looks like. This
video clip is from an early experience with computation in
Liam’s colliding crates activity. Student C has been told by
his instructor that he is not allowed to touch the keyboard
because he has much more experience with programming
than his group mates.

C: What if we just alternated these commands? So like
crate1, crate2, while, while, rate, rate, you know? Just like
alternate them…
A: No, I don’t know. [Student A sounds defeated.]
B: Yeah, I don’t really understand. I feel like I’m going to

mess it up. You can just do it. I don’t want to mess it up
because I don’t understand this.
C: I don’t really understand what we can do here. It’s

making me really mad that I can’t touch the computer.
B: Wait, so if they have to move at the same time… I

don’t know, I’m like the worst person to ask about this stuff.
I don’t get it. [The group members sit silently for
about 30 sec.]
A: [Student C] is about to have an aneurysm over here.

[Student A uses Student C’s real name in the video clip.]
He’s so mad.
C: I want to touch the keyboard, but I’m not allowed to.
B: Why not?
C: Because he told me I can’t. [Student C refers to their

teacher with this statement.]
B: Why?
C: I don’t know. Because he thinks I would do every-

thing if I did.

At the beginning of the above conversation, student C is
trying to guide his group to the correct solution. However,
students A and B have such a low self-efficacy with
computation, they are unable to make sense of student
C’s ideas. Student C does not make any attempts to
encourage his team members to persevere. Instead, the
students just express their discomfort throughout the entire
interaction. Student C is frustrated because their teacher,
made up a rule that he should not touch the keyboard at all.
Liam put this guideline in place so that the other students
would have the opportunity to actually do some of the
coding themselves. Unfortunately, this approach leads to
the group getting frustrated and stagnating. The above
example from in-class data demonstrates a snapshot of
disunity. The presence of disunity in the majority of groups
recorded is illustrative of the need to develop learning goals
around computational group work.
The next case shows aspects of positive collaboration

when working with computation. Liam’s students are
trying to fix a bug in their code, and they tended to exhibit
positive group interactions (e.g., students sharing the
computer amongst evenly, or keeping a positive attitude).
This episode of collaboration was captured the same day as
the previous example of disunity.

C: Okay, what’s with this floor line? Try indenting that
line because the box has the size and color under it.
B: Here, you can do it. I don’t understand what you

mean. [Student C passes the computer to student B.]
C: Like this, so that they’re indented. [Student C makes

the change to the code and then shows it to her group-
mates.] Because when we did the last activity, all the sizes
and colors were indented below the first lines.
B: Okay. [Student B runs the program to observe their

results, and the program experiences an error immediately
upon running.] Unexpected error still…
A: Can I see that real quick? [Student B passes the

computer to student A. Student A begins comparing their
computer code to the code given by their teacher on the
hand-out.] We’re missing some stuff. We’re missing
“t ¼ tþ dt,” and it’s indented. It’s the last line.
B: t ¼ tþ dt? No, it’s there, but it’s not indented.
A: Oh, it is?
B: Yeah, we do have it. See right there? So it should be

indented, you think? On a new line?
A: Yup. [Student B takes the computer back.]
B: What are the chances this will work? [Student B runs

the program, and it successfully runs without an error.]
Hey! It actually worked. Good stuff!

The above situation depicts positive collaboration in a
number of ways. First, the students are sharing the
computer and the assignment hand-out. They use these
resources to collaborate and try new ideas, rather than
simply giving up or thinking that they are powerless.
Moreover, the students show that they are encouraging
and feeling positive about the computation. They reinforce

FIG. 7. Images of two contrasting groups working on the
colliding crates activity from Liam’s classroom. Panel (a) shows
students A and C being able to easily see the computer, while
student B has to lean in to see the device. Panel (b) shows students
A, B, and C all with a line of sight to the computer so that they can
easily collaborate.

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-16

the idea that this is a collaborative space where everyone’s
ideas are welcome. Overall, student B is encouraging and
inquisitive when his group members suggest a new idea.
All of the actions discussed here can be indicators of
positive collaboration. The previous two episodes provide
evidence that shows how having only one computational
device or having the coding being dominated by one person
can lead to educational inequities.

N. Demonstrating affective dispositions towards
computation—Recognizing, expressing, and managing

emotions throughout computational thinking

Previously, our teachers indicated they wanted to inte-
grate computation into their curricula to impact students’
affect around computation [19]. These teachers are trying to
counteract fear and intimidation that computation brings
forward in students. These motivators agree with practices
outlined in the literature, like Brennan and Resnick’s CT
dispositions of expressing and persevering. Furthermore,
the goal that teachers are proposing can also be related to
the idea of computational grit, which has been defined by
Duckworth as the “ability to sustain long-term interest in an
effort to complete an ongoing task” [37]. The concept of
resilience also seems applicable as it is described as having
optimism to continue in the face of experienced failures
[38]. This connected tree of dispositions highlights the
complexity associated with student affect around compu-
tation. For our framework, we focus on CT dispositions
because there is previous work that has laid the groundwork
connecting CT to student affect. Perez refined CT dispo-
sitions into three dispositions: (1) tolerance for ambiguity;
(2) persistence on difficult problems; and (3) collaboration
with others to achieve a common goal [39]. In general,
demonstrating affective dispositions can be thought of as
recognizing and overcoming the trial-and-error nature of
computation.
The following vignette features students demonstrating

affective dispositions by persisting with computational
problems when working through the colliding crates
activity in Liam’s classroom (Fig. 8). In this situation,
the students’ simulation runs, but it is not behaving as they
expected (i.e., the students are engaging in debugging).

A: Well, that’s not what I expected to happen. [The
program displays one box moving across a platform, and
then another box appearing after the first box stops.]
B: Not at all. Are they moving at the same rate? Rate 50,

rate 50… I don’t know. I’m stumped.
A: I don’t know what to change. Maybe change that to a

negative 35?
B: This one right here? I wonder what that will do.

[Student B runs the program, and it remains unchanged.]
C: Maybe we should subtract dt in the t ¼ tþ dt line?

Like we are counting down to something.
B: So you’re saying, make that negative?
C: Yeah, try that.

B: Oh, okay. Let me just put this back to zero. [Student B
undoes the first change.] So t ¼ t-dt?
C: Yeah, try that.
B: That’s actually a really good idea! We can try it,

maybe… I like where your head is at!

We observe the students making multiple attempts to
address an unexpected behavior in their model. Throughout
the interaction, student B remains positive and encourag-
ing, and this attitude causes his group mates to feel
comfortable suggesting their ideas, even if they may not
work. Student B makes multiple utterances that indicate he
is maintaining a persistence with solving the problem (e.g.,
“I wonder what that will do,” and “that’s actually a really
good idea”). Even though the students are stuck on this part
of the assignment, they keep a positive attitude. Figure 8
displays the students celebrating after they have success-
fully debugged their code. The student on the left has her
hands raised and everyone is smiling, indicating that they
are pleased with their computational model. This could be
contrasted with a group that has a negative attitude toward
computational material where students are resigned to
feeling powerless when working with computation.
Typically, debugging is one of the most frustrating but

also one of the more prevalent parts of coding. In turn,
evidence of dispositions emerges when students are debug-
ging. This tells us that a deeper exploration of the markers
of dispositions needs to be completed. As the teachers
indicated, improving attitudes towards computation is an
important goal because it teaches students how to persevere
through adversity. Although this practice ideally aims for
students to have positive affect towards computation,
managing emotions of fear, intimidation, and frustration
would qualify as this practice.

IV. DISCUSSION

Generally, we observed that activity format, computa-
tional platform, and pedagogical approach all influenced
how CT emerged in the classroom. For example, when
including the instructor as a a part of the group, different

FIG. 8. Image of a group of students experiencing success
while working through a computational activity.

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-17

CT practices (or differing quality of the practices) tended to
emerge. Keeping track of teacher versus non teacher
interactions indicates that students clearly engaged in
practices differently when the teacher was present. This
finding makes sense, but it also opens up questions about
the teacher’s role in engaging students with CT practices.
Another example would be if computational activities were
framed as open-ended modeling activities versus confir-
mation-style demo activities. In these contrasting cases, we
found that different CT practices emerged depending on
how the activities were framed.
A consequence of our search for evidence of practices

within these learning environments was that we also were
able to investigate the emergence, frequency, and relation-
ships between CT practices. While this paper’s intention
was to focus on providing evidence for the existence of
these practices in action, the framework also allows us to
measure the frequency of codes emerging. Across different
teachers or classrooms, computational activities within one
classroom, and groups within one activity we observed
differences in CT practices that emerge. Such a top-level
analysis provides evidence that when we apply the frame-
work to different classrooms, it can yield different results.
At this stage in the research, we still do not know enough to
precisely explain the differences, but this tool can be used
to explore questions around how curricular design deci-
sions impact the variety and frequency of CT practices.
Some noteworthy trends were identified throughout our

video analysis. In general, translating physics into code was
the most commonly occurring practice. This is somewhat
expected given the nature of the MWP approach. When
using such programs, teachers eliminate more complicated
computer science ideas while instead prompting students to
engage in more physics-related tasks. Algorithm building
did not emerge in video data frequently. This result could be
either because teachers did not focus on algorithm building
as a practice or because algorithm building is a more
complex idea embedded within computation. Video data
around adding complexity to a model was scarce because
this practice tended to occur near the end of activities. For
example, if a computer simulation runs with an error
message or unexpected behavior, students usually were
not focusing on improving the physics of their model. They
simply focused on getting the model to work in the first
place. Overall, debugging was one of the most frequently
emerging CT practices in the videos analyzed. Typically,
debugging tended to follow after the data practices because
the easiest way for students to identify errors or observe
unexpected behaviors was by running the program.
CT practices occur at differing grain sizes. For instance,

decomposing may occur at several different grain sizes
such as decomposition at the model level or at line-of-code
level. Contrastingly, translating physics into code tended to
occur at a small grain size which did not frequently overlap
with other practices. When translating physics into code,

students were usually only thinking and discussing on the
level of individual lines of code. Algorithm building occurs
at multiple grain sizes. At the largest grain size, the entire
computer program can be considered a type of algorithm
because it is a series of sequential steps that models a
physics scenario. However, there is also a smaller grain
size, such as the algorithm of the animation loop itself.
Another example is the differing grain sizes of debugging,
especially as they pertain to our context, which uses
MWPs. When looking specifically at unexpected behav-
iors, one could argue that the entire process by which an
MWP is completed can be thought of as a debugging
process; students take an investigative approach to finding
bugs and they fix the bugs. Throughout this approach,
students might run into small-scale errors as well.
Therefore, we acknowledge that these practices occur at
different grain sizes, and further investigation is needed to
elucidate their variation.
Our investigation found co-occurrence between certain

CT practices, while others seemed to be exist exclusively.
For instance, decomposing and highlighting or foreground-
ing were closely related. Students might engage in high-
lighting and foregrounding at multiple points throughout a
computational activity. Often, this practice tended to follow
decomposition because after students have interpreted the
code, it naturally follows that they will choose a particular
piece of the model to focus on after that. Similarly, applying
conditional logic tended to overlap with algorithm building
because teachers seemed to value the enactment and
consequences of loops over simply the sequential nature
of coding, and both of these practices work with con-
trol flow.
Differences were observed in the CT practices that

emerged in Michael’s versus Liam’s classrooms. While
both classrooms were tagged with a similar frequency of
codes (approximately 5–10 codes per activity per group
over an hour long class session), we observed different CT
practices emerging. For example, debugging showed up in
Michael’s classroom much more than Liam’s. In Michael’s
activities, he would often have students build on the models
and change the code significantly, which may result in a
greater frequency of debugging. On the other hand, Liam
would sometimes use fully working codes to have students
engage in more of demonstration-style coding activities.
These different curricular choices could lead to an
increased presence of debugging. The initial extractions
from our analysis demonstrate the applicability of this
framework for investigating CT practices in different
classroom environments.
Within one classroom, we observed different CT

practices emerging over time. This implies that students
engage in different CT practices as their experiences
evolve over many computational learning activities. For
example, in Michael’s classroom, the amount of practices
appears to increase as students progress through the

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-18

computational unit. It is possible that as students gain more
experience with computation, they are able to engage in
more CT practices. Such a result could be used to make
claims about how a teacher should design activities as
reinforcement exercises rather than learning activities for
exploring new conceptual ideas. In a similar way, the
framework also yielded different results for differing
groups within the same activity. Hence, our CT framework
might be used to help teachers design activities and student
groups to best fit their specific learning goals.
The work presented in this report aligns well with

previous research. First, our framework comprises multiple
CT elements nested within several different categories,
similar to the structure and approach utilized by Weintrop
and coworkers [20]. We provide a taxonomy with clear
definitions inspired by past literature. For example, our
definition of decomposition utilizes similar language as that
proposed by Shute et al. [26]. Additionally, some previous
research has been done around computational thinking
dispositions, and we attempt to capture this aspect of the
literature through our inclusion of the “demonstrating
affective dispositions towards computation” practice. On
the other hand, there are also instances where our frame-
work differs from the literature due to our video analysis
results. In the case of debugging, we significantly altered
the definition to account for a wider range of scenarios by
incorporating the language about “unexpected behaviors”
in our definition. Thus, many of our definitions are aligned
with other CT researchers, but in some cases, our analysis
led to an alteration of previous definitions.
Our work is unique from the current body of literature

because our framework has been developed through a
hybridized theoretical and empirical approach. Our review
of previous research combined with the classroom obser-
vations helped us to develop the framework. This is in
contrast to many of the previous studies that are cited in
past literature. Some of the works emphasized literature
reviews [26], expert panels and interviews [23], and
classroom artifacts [20]. These pieces of evidence are
viable sources of data, but they are limited in scope. On
the other hand, our work provides illustrative vignettes with
a robust analysis to fully explore students’ actions and
speech in computationally integrated physics classes. In
doing this work, we provide actionable definitions and
examples of CT that are grounded in the behaviors of
students in real physics classrooms. This blended theoreti-
cal and empirical approach is unique to the field of physics
education research. Our data collection techniques and
video analysis provide a solid base to further explore CT in
computationally integrated physics courses.
Another distinction between our work and previous

research is our emphasis on context and how it impacts
computational thinking. Throughout this entire report we
have stressed the importance of contextual factors and
their effect on students’ experiences with computation.

Other literature, like that of Weintrop et al., is designed to
be universal across mathematics and science classrooms
[20]. As a result, they provide a good overview of the
general skills that constitute computational thinking.
However, it is difficult to apply such a broad framework
in a practical way. On the other hand, our work focuses
specifically on students in physics classes coding with
VPython. Our discussion provides a rich analysis of
frequency, grain size, relationships, and other factors
influencing the emergence of CT practices. We believe
that for a framework to be actionable, it should have clear
examples and definitions aimed at a particular setting. In
our future work, we intend to more deeply analyze the
relationships between curricular design features and com-
putational thinking. Hence, the development of this frame-
work is heavily influenced by our context of introductory
physics.

V. CONCLUSIONS

In conclusion, this research began with the question,
“How do computational thinking practices manifest in
introductory physics classrooms?” Our results in Sec. III
exemplify the variation of CT practices that emerged when
students worked through these computational activities.
Furthermore, our Sec. IV provides a deep explanation of
how these practices arose. Numerous contextual factors
including the activity format, computational platform, and
group composition influenced the manifestation of CT in
our data. Most interestingly, different CT practices
emerged depending on the role of the instructor. The
more involved that the instructor was with their students,
the easier it became to identify high-quality instances of
computational thinking. Lastly, the frequency and co-
occurrence of practices was also influenced by different
pedagogical choices. For example, demonstration-style
simulation activities caused students to encounter less
instances of debugging compared to activities where
students were tasked with constructing computational
models. Therefore, the work presented in this report
serves as a robust investigation of the manifestation of
CT in introductory physics classrooms.
This study presents some limitations that should be

carefully considered when studying CT practices in other
contexts. Our literature review did not include the entirety
of papers written on the topic of CT. Instead, we considered
sources that focused on frameworks with clearly catego-
rized practices that were relevant to the context of intro-
ductory physics. Some of these sources include ideas that
are akin to CTwithout actually being called CT, like where
the AAPT source describes these ideas as computational
physics skills or technical computing skills [25]. Another
limitation is that we did not include some of the more
advanced ideas that were discussed in other frameworks
such as systems thinking. We chose not to keep some of
these more advanced ideas because they were either not

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-19

relevant or too advanced for the context that we are
interested in exploring.
Introductory physics is a discipline well suited to explore

computational thinking practices because physics is
becoming increasingly computational in nature and stu-
dents are being encouraged to learn programming ideas in
core science disciplines. Science standards and recommen-
dations from professional physics organizations provide
motivation for teachers to integrate computation into their
courses. With the lack of clear guidelines around computa-
tional thinking, a CT framework like the one presented in
this report, can serve as a tool for further examining student
practices in computationally integrated physics courses.
This framework will help teachers by giving examples of
indicators of CT practices. This framework will also be
useful for researchers who would like to investigate how
various factors (e.g., activity design, student group com-
position, messaging from the teacher) can lead to the
emergence of different CT practices. Our future work
hopes to address the variation observed within each CT
practice and provide assessment strategies for CT in
introductory physics contexts. While there is more to be
understood about CT practices, the framework presented in
this report is a jumping off point for more closely
examining CT in introductory physics.

ACKNOWLEDGMENTS

We thank the National Science Foundation (DRL-
1741575) for funding. We also acknowledge Joe
Krajcik, Bob Geier, and Sue Carpenter for allowing us
to use the CREATE for STEM facilities.

APPENDIX A: DETAILS ABOUT BOTH
CLASSROOMS STUDIED

1. Classroom 1: Michael’s AP Physics classroom

The first classroom, taught by Michael, was an AP
physics C (i.e., mechanics) course for seniors. In this
classroom, computational activities took place every
Friday for the whole school year. Students were assigned
to groups of three to five students, and the group all shared
one desktop computer to build computational models on

the Glowscript platform. Typically, Michael’s MWPs
started with a model that would run without error but
would not model some aspect of the physics correctly.
These activities were often used as supplements to other lab
or lecture activities that students worked with earlier in the
week. Michael’s activity prompts gave students guidance
on how to complete the activities, without directly instruct-
ing them how to modify the code (e.g., “you’ll have to write
lines of code to designate the forces on the block; Fgrav and
Fspring”).
The three activities examined from Michael’s classroom

were a projectile problem, a river crossing problem, and a
spring energy problem which can be found in Appendix 2
(see Fig. 9). In the projectile problem, depicted in Fig. 9a,
the students are tasked with changing the initial conditions
of the model (cliff height, initial ball height, initial velocity,
and angle), modifying a while loop to make the program
stop when the ball hits the ground, and displaying the final
results (horizontal distance, max height, and final velocity)
with a print statement. This computational activity was
used to model an experimental projectile motion lab that
the students did earlier in the week.
For the river crossing problem, shown in Fig. 9(b), the

students first calculate (on a whiteboard) the angle that a
boat must move in to reach the other side of a river straight
across from where it started. Subsequently, the students
work with a computational model to simulate the scenario
that they calculated on the whiteboard. To complete
the computational portion, the students have to change the
boat’s angle and modify the boat’s velocity by adding the
velocity of the river’s current to the velocity of the boat.
Michael’s spring energy problem features a red block

hanging on a yellow spring by a black support. The
students have 3 primary tasks to complete this activity.
First, the students need to get the block to bounce up and
down by adding equations for the forces of gravity and the
spring. Second, the group is tasked with adding graphs for
gravitational, elastic, and total energy values; they are given
a working graph of kinetic energy by Michael in the MWP.
Lastly, if the students make it this far, they are prompted to
add a damping force to their computational model. Overall,
this activity was one of the more involved activities of

FIG. 9. Outputs displayed in Michael’s solutions for computational models of (a) projectile, (b) river crossing, and (c) spring energy
problems.

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-20

Michael’s classroom, which makes sense as it was posi-
tioned near the end of the students’ second semester of
working with computation.

2. Classroom 2: Liam’s Physical Science 2 classroom

The second classroom examined in this work was Liam’s
physical science 2 advanced classroom for sophomore
students. In this classroom, computational activities were
scattered into the curriculum about once every month,
giving the students about 4 total experiences with computa-
tional modeling per semester. Students were assigned to
groups of three to five students, and they all shared one
school-provided laptop per group. Students also worked at
desks that had whiteboard tops to facilitate easy writing and
sharing of ideas. Liam’s computational activities were
treated as introductory experiences to programming, rather
than a reinforcement of physics concepts or labs experi-
enced earlier in the course. This meant that students were
usually learning how to interpret code, modify simple
aspects of a computational model, and test or predict the
outcome of scenarios with their simulation. Typically,
Liam’s students were given fully working codes, and the
worksheets provided to students asked questions that
needed to be answered directly by interpreting the code.
First, students were given a day to simply change code in
Glowscript to spell their name by positioning objects and
changing their attributes (e.g., size, position, angle). Our
analysis focuses on three activities, following the afore-
mentioned introductory activity from Liam’s classroom: 1D
motion colliding crates, 1D momentum conservation, and a
block on a ramp. Figure 10 displays the output of computa-
tional models for activities from Liam’s classroom.
After their first experience with computation, students in

Liam’s classroom work with a computational model of two
crates moving toward each other. The final output of the
colliding crates activity is displayed in Fig. 10(a). In the
MWP, Liam provides his students with the correct code to
model 1D motion of one crate moving across a floor object.
Students are tasked with changing some parameters of the
model (e.g., “Give the crate a different constant velocity
moving to the right.”), interpreting the code (e.g., “Which
lines of code make the crates move?”), adding to the model
(e.g., “Create a second crate with a different size, color, and
position), and getting the simulation to stop when the two

crates meet in the center (e.g., “Figure out how to stop the
program once the crates collide.”). This activity provides
students with a more guided, in-depth activity to work with
computational modeling and thinking practices.
The second computational activity analyzed from Liam’s

classroom was the momentum conservation activity [see
Fig. 10(b)]. To give students experience with building on
previous models, the computational model of momentum
conservation used a code similar to the previous colliding
crates activity. Liam provided his students with a worksheet
that comprised several phases: analyzing the code, playing
around with the model, making predictions, modifying the
code, and testing predictions. Students were tasked with
explaining what different parts of the code meant to them,
changing the code to observe the effect of their changes,
and testing or predicting the outcome of different scenarios
when plugging in specific real-world values. In this activity,
Liam emphasizes the utility in being able to rapidly test
different situations with a computational model. By the end
of the momentum conservation activity, students used their
code to model elastic collisions between two boxes, a car
and a truck, and a dodgeball and a teacher.
The block on a ramp problem in Liam’s class was

students’ final experience with computational modeling in
the physical science course. Figure 10(c) illustrates the final
output of the block on a ramp computational model. The
MWP given to students begins with a block sliding down a
ramp with the normal force and gravity force vectors
depicted by green arrows. First, students are tasked with
extracting important details from the code (e.g., “What is
the angle of the ramp?”). Next, the students had to make
changes to the code and observe the effect (e.g., “What
happens if you increase the angle of the ramp?”). Lastly, if
the students got far enough, students were instructed to add
friction to their simulation. In the end, this activity was a
more involved and complicated activity than the previous
two assignments.

APPENDIX B: FULLY WORKING CODES FOR
COMPUTATIONAL ACTIVITIES STUDIED

1. Michael’s projectile motion computational model

GlowScript 3.0 VPython
scene.range = 100

FIG. 10. Outputs displayed in Liam’s solutions for computational models of (a) colliding crates, (b) momentum conservation (top
panel for before the collision and bottom panel for after the collision), and (c) block on a ramp activities.

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-21

scene.center = vector(0,0,0)
scene.width = 960
scene.height = 400
scene.background = vector(0.6,0.6,0.5)

cliffheight = 25
cliff = box(pos=vector(-25,cliffheight/2,0),
size = vector(50,cliffheight,0), color = vector(0,0,0))

ball = sphere(pos = vector(0,cliffheight,0), radius = 2,
color = vector(1,0,0), texture = textures.rough,
make_trail = True, trail_type = “points”,
trail_radius = 2, interval = 10, retain = 50)

v0 = 29
angle = 43.6
anglerad = angle*3.14/180

v1 = vector(-100,0,0)
v2 = vector(200,0,0)
ground = curve(pos = [v1,v2],color = vector(0,0,0))
vx = v0*cos(anglerad)
v0y = v0*sin(anglerad)
ballvelocity = vector(vx,v0y,0)
g = vector(0,-10,0)

t = 0
tf = 100
dt = 0.05

timetotop = v0y/mag(g)
maxheight = 0.5*mag(g)*(timetotop)**2+

v0y*timetotop

while t > 0:
rate(100)

ball.pos = ball.pos+ballvelocity*dt
ballvelocity = ballvelocity+g*dt

t ¼ tþ dt

print(“vx =”,vx)
print(“v0y =”,v0y)
print(“Time to Max Height =”,timetotop)
print(“Max Height =”,maxheight)
print(“Time to Ground =”,t)
print(“Horizontal Range =”,round(ball.pos.x))

2. Michael’s river crossing computational model

GlowScript 3.0 VPython
scene.center = vector(0,255,0)
scene.range = 480
scene.width = 640
scene.height = 500
scene.background = vector(0,0.4,0)

currentspeed = 8
boatspeed = 17
boatangledeg = 28.1
boatanglerad = boatangledeg*3.14/180

boat = arrow(pos = vector(0,0,0), color = vector(1,1,0),
axis = vector(-40*sin(boatanglerad),
40*cos(boatanglerad),0), shaftwidth = 5,
headwidth = 15)

water = box(pos = vector(0,255,0), color = vector(0,0,1),
size = vector(1280,510,2))

log = cylinder(pos = vector(20,255,10),
color = vector(0.7,0.5,0), size = vector(60,20,4))

A = label(text = ’A’, pos = vector(0,-30,0), align =
’center’, color = vector(1,1,1))
B = label(text = ’B’, pos = vector(0,540,0), align =

’center’, color = vector(1,1,1))

t = 0
tf = 100
dt = 0.01

currentvelocity = vector(currentspeed,0,0)
logvelocity = vector(currentspeed,0,0)
boatvelocity = vector(-boatspeed*sin(boatanglerad),
boatspeed*cos(boatanglerad),0)

resultantvelocity = boatvelocityþ currentvelocity

cts = label(pos = vector(300,600,0), text = ’Click to
Start’, space = 30, height = 16, border = 5, font = ’sans’,
box = False)

clicktostart = scene.waitfor(’click’)

while boat.pos.y <¼ 510:
rate(500)

boat.pos = boat.pos + resultantvelocity*dt
log.pos = log.pos + logvelocity*dt

t ¼ tþ dt

print(“Time =”, t)
print(“Resultant velocity =”, mag(resultantvelocity))

3. Michael’s spring energy computational model

GlowScript 2.7 VPython
scene.center = vector(0,-0.20,0)
scene.range = 1.2
scene.width = 640
scene.height = 400
scene.background = vector(0.3,0.3,0.3)

support = box(pos = vector(0,0.25,0), size = vector
(0.80,0.01,0.4), color = vector(0,0,0))

initialcubepos = 0
springdisplacement = 0

cubeside = 0.10
cube = box(pos = vector(0,initialcubepos,0), size =

vector(cubeside,cubeside,cubeside), color = vector(1,0,0))
cubemass = 0.5

spring = helix(pos = vector(0,support.pos.y,0), axis =
vector(0,cube.pos.y-support.pos.y,0), radius = 0.03, coils
= 5.5, thickness = 0.01, color = vector(1,1,0))

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-22

cubevelocity = vector(0,0,0)
g = vector(0,10,0)
k = 10
c = 0.5

zeroheight = 2*cubemass*mag(g)/k

t = 0
tf = 5
dt = 0.0001

xtgraph = graph(width = 640, height = 250,
title = ’Energy vs. Time’,xtitle = ’Time (s)’,
ytitle = ’Energy (J)’,
foreground = color.black, background = color.white,
xmin = 0, xmax = 5, ymin = -5, ymax = 10)

kineticcurve = gcurve(color = vector(1,0,0),
label = “Kinetic Energy”)
elastpotcurve = gcurve(color = vector(0,0,1),
label = “Elastic Potential Energy”)
gravpotcurve = gcurve(color = vector(0,1,0),
label = “Gravitational Potential Energy”)

while t < tf:

rate(5000)
Fgrav = cubemass*g
Fspring = -k*cube.pos
Fdamp = -c*cubevelocity
Fnet = -Fgrav+Fspring+Fdamp

cubeacceleration = Fnet/cubemass

cube.pos = cube.pos+cubevelocity*dt
cubevelocity = cubevelocity+cubeacceleration*dt
spring.axis = spring.axis+cubevelocity*dt

springdisplacement = abs(cube.pos.y)

kineticenergy = 0.5*cubemass*mag(cubevelocity)**2
elastpotenergy = 0.5*k*mag(cube.pos)**2
gravpotenergy = cubemass*mag(g)*(zeroheight-spring

displacement)
totenergy = kineticenergy+elastpotenergy+gravpotenergy

kineticcurve.plot(t,kineticenergy)
elastpotcurve.plot(t,elastpotenergy)
gravpotcurve.plot(t,gravpotenergy)

t ¼ tþ dt

4. Liam’s colliding crates computational model

GlowScript 3.0 VPython
scene.width = 1600
scene.height = 600

floor = box(pos = vector(0,-30,0), size = vector
(100,4,12), color = color.white)
crate = box(pos = vector(-35,-18,0), size = vector

(20,20,5), color = color.blue)

crate2 = box(pos = vector(35,-13,0), size = vector
(20,30,5), color = color.magenta)

t = 0
tf = 0.940
dt = 0.01

cratev = vector(10,0,0)
crate2v = vector(-10,0,0)

while crate.pos.x < 35:
rate(300)
if crate.pos.x+crate.size.x=2 >¼
crate2.pos.x-crate2.size.x/2:
cratev.x = 0
crate2v.x = 0
crate.pos = crate.pos+cratev*dt
crate2.pos = crate2.pos+crate2v*dt
t ¼ tþ dt

5. Liam’s momentum conservation
computational model

GlowScript 2.7 VPython
BlueBox = box(pos = vector(-6,1,0), length = 1,

width = 1, height = 1, color = color.blue)
RedBox = box(pos = vector(6,1,0), length = 1, width = 1,

height = 1, color = color.red)
Ground = box(pos = vector(0,0,0), length = 20,

width = 1, height = 1, color = color.white)

BlueBox.velocity = vector(10,0,0)
RedBox.velocity = vector(-10,0,0)
BlueBox.mass = 10
RedBox.mass = 10
BlueBox.momentum = BlueBox.mass * BlueBox.velocity
RedBox.momentum = RedBox.mass * RedBox.velocity
ScalingFactor = 0.5

BlueBoxVArrow = arrow(pos = BlueBox.pos,
axis = BlueBox.velocity*ScalingFactor, color = BlueBox

.color)
RedBoxVArrow = arrow(pos = RedBox.pos,
axis = RedBox.velocity*ScalingFactor, color = RedBox

.color)

dt = 0.01, t = 0, tf = 1.0

while t < tf:
rate(50)

NextPos_BlueBox = BlueBox.pos+BlueBox.velocity*dt
NextPos_RedBox = RedBox.pos+RedBox.velocity*dt

if mag(NextPos_RedBox-NextPos_BlueBox) <
(BlueBox.length/2+RedBox.length/2):

VelocityAfterCollision_BlueBox = ((BlueBox.mass-
RedBox.mass)*BlueBox.velocity+
2*RedBox.mass*RedBox.velocity) / (RedBox.mass
+BlueBox.mass)

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-23

VelocityAfterCollision_RedBox = (2*BlueBox.mass
*BlueBox.velocity+(RedBox.mass- BlueBox.mass)
*RedBox.velocity) / (BlueBox.mass+RedBox.mass)

BlueBox.velocity = VelocityAfterCollision_BlueBox
RedBox.velocity = VelocityAfterCollision_RedBox
BlueBox.pos = BlueBox.pos+BlueBox.velocity*dt
RedBox.pos = RedBox.pos+RedBox.velocity*dt
BlueBoxVArrow.pos = BlueBox.pos
BlueBoxVArrow.axis = BlueBox.velocity*ScalingFactor
RedBoxVArrow.pos = RedBox.pos
RedBoxVArrow.axis = RedBox.velocity*ScalingFactor

t ¼ tþ dt

6. Liam’s block on ramp computational model

GlowScript 3.0 VPython

scene.range = 15
scene.background = vector(1, 1, 0.8)

ramp_angle=23 * pi/180
ramp_depth = 6
ramp_width = 30
ramp_position = vec(-15, -10, 0)

ramp_color = color.gray(0.3)
edge_thickness = 0.05
edge_color = color.black

a = vertex(pos = vec(0, 0, 0)+ramp_position,
color = ramp_color, opacity = .5)

b = vertex(pos = vec(0, 0, ramp_depth)+ramp_position,
color = ramp_color, opacity = .5)

c = vertex(pos = vec(ramp_width, 0, 0)+ramp_position,
color = ramp_color, opacity = .5)

d = vertex(pos = vec(ramp_width, 0, ramp_depth)
+ramp_position, color = ramp_color, opacity = .5)

e = vertex(pos = vec(0, ramp_width * tan(ramp_angle),
0)+ramp_position, color = ramp_color, opacity = .5)

f = vertex(pos = vec(0, ramp_width * tan(ramp_angle),
ramp_depth)+ramp_position, color = ramp_color,
opacity = .5)

ramp_base = quad(v0 = a, v1 = b, v2 = d, v3 = c)
ramp_surface = quad(v0 = e, v1 = f, v2 = d, v3 = c)
ramp_back = quad(v0 = e, v1 = f, v2 = b, v3 = a)
ramp_side_near = triangle(vs = [a, c, e])

ramp_side_far = triangle(vs = [b, d, f])
def edge(v1, v2, r):
cylinder(pos = v1.pos, axis = v2.pos-v1.pos, radius = r,

color = edge_color)

ab = edge(a, b, edge_thickness)
ac = edge(a, c, edge_thickness)
bd = edge(b, d, edge_thickness)
cd = edge(c, d, edge_thickness)
ae = edge(a, e, edge_thickness)
bf = edge(b, f, edge_thickness)

ef = edge(e, f, edge_thickness)
df = edge(d, f, edge_thickness)
ec = edge(e, c, edge_thickness)

block_width = 3
block_height = 3
block_depth = 3

block = box (pos = vector(0.5*(block_width**2+
block_height**2)**0.5 * cos(atan(block_height
/block_width) - ramp_angle),
ramp_width * tan(ramp_angle)+
0.5*(block_width**2 +block_height**2)**0.5 *
sin(atan(block_height/block_width) - ramp_angle),
0.5*ramp_depth)+ramp_position,

axis = vector(ramp_width, -ramp_width
* tan(ramp_angle), 0),

size = vector(block_width,block_height,block_depth),
color = vector(0.65, 0.15, 0.15),
texture = textures.wood_old,
opacity = 0.7)

mblock = 50
vblock = vector(0, 0, 0)
g = vector(0,-9.8,0)
t = 0
tf = 1
dt = .001

Fgrav = mblock * g
Fnorm = vector(mag(Fgrav) *
cos(ramp_angle)*sin(ramp_angle), mag(Fgrav)
*cos(ramp_angle)*cos(ramp_angle), 0)
Fnet = Fgrav+Fnorm

FgravArrow = arrow(pos = block.pos,
axis = Fgrav/mblock, shaftwidth = 0.3, color =
color.green)

FnormArrow = arrow(pos = block.pos,
axis = Fnorm/mblock, shaftwidth=0.3, color =
color.green)

FgravLabel = label(pos = FgravArrow.pos, text = ‘Fg’,
xoffset = -20, yoffset = -50, space = 30, height = 16,
border = 4, font = ’sans’, line = False, color =
color.black)

FnormLabel = label(pos = FnormArrow.pos, text = ’Fn’,
xoffset = 20, yoffset = 50, space = 30, height = 16,
border = 4, font = ’sans’, line = False, color =
color.black)

while block.pos.y > (ramp_position.y+
0.5*(block_width**2+block_height**2)**0.5 *
cos(atan(block_width/block_height) - ramp_angle)):
rate(999)

block.pos = block.pos+vblock*dt+
0.5*(Fnet/mblock)*dt**2

FgravArrow.pos = FgravArrow.pos+vblock*dt+
0.5*(Fnet/mblock)*dt**2

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-24

FnormArrow.pos = FnormArrow.pos+vblock*dt+
0.5*(Fnet/mblock)*dt**2

FgravLabel.pos = FgravLabel.pos+vblock*dt+
0.5*(Fnet/mblock)*dt**2

FnormLabel.pos = FnormLabel.pos+vblock*dt+
0.5*(Fnet/mblock)*dt**2

vblock = vblock+(Fnet/mblock)*dt
t ¼ tþ dt

[1] D. Mohaghegh and M. McCauley, Computational thinking:
The skill set of the 21st century, Int. J. Comput. Sci. Inf.
Technol. 7, 1524 (2016), https://hdl.handle.net/10652/3422.

[2] J. M. Wing, Computational thinking, Commun. ACM 49,
33 (2006).

[3] J. M. Wing, Computational thinking’s influence on research
and education for all, Italian J. Educ. Technol. 25, 7 (2017).

[4] S. Bocconi, A. Chioccariello, G. Dettori, A. Ferrari,
K. Engelhardt, P. Kampylis, and Y. Punie, Developing
computational thinking in compulsory education—
implications for policy and practice, Joint Research Centre
(JRC), 1 (2016).

[5] C. Brackmann, D. Barone, A. Casali, R. Boucinha, and
S. Muñoz-Hernandez, Computational thinking: Panorama
of the Americas, 2016 International Symposium on Com-
puters in Education, SIIE 2016: Learning Analytics Tech-
nologies, 1 (2016), 10.1109/SIIE.2016.7751839.

[6] H. J. So, M. S. Y. Jong, and C. C. Liu, Computational
thinking education in the Asian pacific region, Asia-Pac.
Educ. Researcher 29, 1 (2020).

[7] D. Barr, J. Harrison, andL. Conery, Computational thinking:
A digital age skill for everyone, Learning Leading with
Technol. 38, 20 (2011), https://eric.ed.gov/?id=EJ918910.

[8] C. Sneider, C. Stephenson, B. Schafer, and L. Flick,
Exploring the science framework and the NGSS: Computa-
tional thinking elementary school classrooms, Science
and Children 52, 10 (2014), https://www.proquest
.com/openview/12c0a6c4a6f7cf012e173c3c8bc322bb/1?
pq-origsite=gscholar&cbl=41736.

[9] N. R. Council, A Framework for K–12 Science Education
(National Research Council, Washington, DC, 2012).

[10] Partnership for Integrating Computation into Undergradu-
ate Physics, https://www.compadre.org/PICUP/ (2020).

[11] S. Brophy, M. Caballero, K. Fisler, M. Hicks, R. Hilborn,
C. M. Romanowicz, K. Roos, and R. Vieyra, Advancing
Interdisciplinary Integration of Computational Thinking in
Science (American Association of Physics Teachers
Conference Report, College Park, MD, 2020).

[12] P. Sengupta, J. S. Kinnebrew, S. Basu, G. Biswas,
and D. Clark, Integrating computational thinking with
K–12 science education using agent-based computation:
A theoretical framework, Educ. Inf. Technol. 18, 351 (2013).

[13] C. M. Orban and R. M. Teeling-Smith, Computational
thinking in introductory physics, Phys. Teach. 58, 247
(2020).

[14] O. Sand, T. O. Odden, C. Lindstrøm, and M. Caballero,
How computation can facilitate sensemaking about
physics: A case study, presented at PER Conf. 2018,
Washington, DC, 10.1119/perc.2018.pr.Sand.

[15] S. Basu, K.W. McElhaney, S. Grover, C. J. Harris, and
G. Biswas, A principled approach to designing assess-
ments that integrate science and computational thinking,
Proc. Int. Conf. Learn. Sci., ICLS 1, 384 (2018), https://
repository.isls.org//handle/1/819.

[16] M. D. Caballero, M. A. Kohlmyer, and M. F. Schatz,
Fostering computational thinking in introductory mechan-
ics, AIP Conf. Proc. 1413, 15 (2012).

[17] D. Weintrop, E. Beheshti, M. S. Horn, K. Orton, L.
Trouille, K. Jona, and U. Wilensky, Interactive assessment
tools for computational thinking in high school STEM
classrooms, Lecture Notes Institute Comput. Sci. Social-
Informatics Telecom. Engin. 136, 22 (2014).

[18] H. Swanson, G. Anton, C. Bain, M. Horn, and U.
Wilensky, Computational Thinking Education (Springer,
Singapore, 2019).

[19] D. P. Weller, M. D. Caballero, and P.W. Irving, Teachers’
intended learning outcomes around computation in high
school physics, presented at PER Conf. 2019, Provo, UT,
10.1119/perc.2019.pr.Weller.

[20] D. Weintrop, E. Beheshti, M. Horn, K. Orton, K. Jona, L.
Trouille, and U. Wilensky, Defining computational think-
ing for mathematics and science classrooms, J. Sci. Educ.
Technol. 25, 127 (2016).

[21] V. Barr and C. Stephenson, Bringing computational think-
ing to K–12: What is involved and what is the role of the
computer science community?, ACM Inroads 2, 48 (2011).

[22] M. Berland and V. R. Lee, Collaborative strategic board
games as a site for distributed computational thinking, Int.
J. Game-Based Learn. 1, 65 (2011).

[23] K. Brennan and M. Resnick, New frameworks for studying
and assessing the development of computational thinking,
in Proceedings of the 2012 Annual Meeting of the
American Educational Research Association (2012),
Vol. 1, p. 135, https://www.media.mit.edu/publications/new-
frameworks-for-studying-and-assessing-the-development-of-
computational-thinking/.

[24] N. M. Hutchins, G. Biswas, M. Maróti, Á. Lédeczi, S.
Grover, R. Wolf, K. P. Blair, D. Chin, L. Conlin, S. Basu,
and K. McElhaney, C2STEM: A system for synergistic
learning of physics and computational thinking, J. Sci.
Educ. Technol. 29, 83 (2020).

[25] AAPT Undergraduate Curriculum Task Force, AAPT
Recommendations for Computational Physics in the
Undergraduate Physics Curriculum (American Associa-
tion of Physics Teachers, College Park, MD, 2016).

[26] V. J. Shute, C. Sun, and J. Asbell-Clarke, Demysti-
fying computational thinking, Educ. Res. Rev. 22, 142
(2017).

DEVELOPMENT AND ILLUSTRATION OF A … PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-25

https://hdl.handle.net/10652/3422
https://hdl.handle.net/10652/3422
https://hdl.handle.net/10652/3422
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.17471/2499-4324/922
https://doi.org/10.2791/792158
https://doi.org/10.2791/792158
https://doi.org/10.1109/SIIE.2016.7751839
https://doi.org/10.1007/s40299-019-00494-w
https://doi.org/10.1007/s40299-019-00494-w
https://eric.ed.gov/?id=EJ918910
https://eric.ed.gov/?id=EJ918910
https://eric.ed.gov/?id=EJ918910
https://www.proquest.com/openview/12c0a6c4a6f7cf012e173c3c8bc322bb/1?pq-origsite=gscholar&cbl=41736
https://www.proquest.com/openview/12c0a6c4a6f7cf012e173c3c8bc322bb/1?pq-origsite=gscholar&cbl=41736
https://www.proquest.com/openview/12c0a6c4a6f7cf012e173c3c8bc322bb/1?pq-origsite=gscholar&cbl=41736
https://www.proquest.com/openview/12c0a6c4a6f7cf012e173c3c8bc322bb/1?pq-origsite=gscholar&cbl=41736
https://www.compadre.org/PICUP/
https://www.compadre.org/PICUP/
https://www.compadre.org/PICUP/
https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1119/1.5145470
https://doi.org/10.1119/1.5145470
https://doi.org/10.1119/perc.2018.pr.Sand
https://repository.isls.org//handle/1/819
https://repository.isls.org//handle/1/819
https://repository.isls.org//handle/1/819
https://repository.isls.org//handle/1/819
https://doi.org/10.1063/1.3679982
https://doi.org/10.1007/978-3-319-08189-2_3
https://doi.org/10.1007/978-3-319-08189-2_3
https://doi.org/10.1119/perc.2019.pr.Weller
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.4018/ijgbl.2011040105
https://doi.org/10.4018/ijgbl.2011040105
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://doi.org/10.1007/s10956-019-09804-9
https://doi.org/10.1007/s10956-019-09804-9
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.edurev.2017.09.003

[27] J. Lyon and A. Magana, The use of engineering model-
building activities to elicit computational thinking: A
design-based research study, J. Engin. Educ. 110, 184
(2021).

[28] T. Palts and M. Pedaste, A model for developing computa-
tional thinking skills, Informatics Educ. 19, 113 (2020).

[29] VPython, https://vpython.org/.
[30] S. Weatherford and R. Chabay, Student predictions of

functional but incomplete example programs in introduc-
tory calculus-based physics, AIP Conf. Proc. 1513, 42
(2012).

[31] R. Boyatzis, Transforming Qualitative Information:
Thematic Analysis and Code Development (Sage
Publications Inc., 1998).

[32] V. Braun and V. Clarke, Using thematic analysis in
psychology, Qualitative Res. Psychol. 3, 77 (2006).

[33] R. E. Scherr, Gesture analysis for physics education
researchers, Phys. Rev. ST Phys. Educ. Res. 4, 010101
(2008).

[34] V. K. Otero, D. B. Harlow, and D. B. Harlowe, Getting
Started in Qualitative Physics Education Research, Rev.
Perinat. Med. 2, 1 (2009), https://www.compadre.org/per/
items/detail.cfm?ID=9122.

[35] A. Chromer, Stable solutions using the euler approxima-
tion, Am. J. Phys. 49, 455 (1981).

[36] M. J. Obsniuk, P. W. Irving, and M. D. Caballero, A Case
Study: Novel Group Interactions through Introductory
Computational Physics, presented at PER Conf., College
Park, MD 10.1119/perc.2015.pr.055.

[37] A. L. Duckworth and P. D. Quinn, Development and
validation of the short Grit Scale (Grit-S), J. Personality
Assess. 91, 166 (2009).

[38] K. Miller, 5+ Ways to Develop a Growth Mindset Using
Grit and Resilience (2021), https://positivepsychology
.com/5-ways-develop-grit-resilience/.

[39] A. Pérez, A framework for computational thinking dis-
positions in mathematics education, J. Res. Math. Educ.
49, 424 (2018).

DANIEL P. WELLER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020106 (2022)

020106-26

https://doi.org/10.1002/jee.20372
https://doi.org/10.1002/jee.20372
https://doi.org/10.15388/infedu.2020.06
https://vpython.org/
https://vpython.org/
https://doi.org/10.1063/1.4789647
https://doi.org/10.1063/1.4789647
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1103/PhysRevSTPER.4.010101
https://doi.org/10.1103/PhysRevSTPER.4.010101
https://www.compadre.org/per/items/detail.cfm?ID=9122
https://www.compadre.org/per/items/detail.cfm?ID=9122
https://www.compadre.org/per/items/detail.cfm?ID=9122
https://www.compadre.org/per/items/detail.cfm?ID=9122
https://www.compadre.org/per/items/detail.cfm?ID=9122
https://doi.org/10.1119/1.12478
https://doi.org/10.1119/perc.2015.pr.055
https://doi.org/10.1080/00223890802634290
https://doi.org/10.1080/00223890802634290
https://positivepsychology.com/5-ways-develop-grit-resilience/
https://positivepsychology.com/5-ways-develop-grit-resilience/
https://doi.org/10.5951/jresematheduc.49.4.0424
https://doi.org/10.5951/jresematheduc.49.4.0424

