
Algorithms and Systems for Manipulating Multiple Objects
Zherong Pan15, Andy Zeng2, Yunzhu Li3, Jingjin Yu4, and Kris Hauser5

Abstract—Robot manipulation of multiple objects is an im-
portant topic for applications including warehouse automation,
service robots performing cleaning, and large-scale object sorting.
Although problems can range in complexity from a few objects to
large disordered piles, autonomy remains a significant technical
challenge due to the high-dimensional joint configuration space
of the robot and all objects, the complex dynamics of object
interaction, and the ambiguity and occlusion caused by clutter.
This paper surveys a broad range of classical and state-of-the-
art research in multi-object manipulation and categorizes them
along the dimensions of tasks, perception, predictive models, and
decision-making algorithms. It also covers emerging trends and
open problems faced in the ongoing effort to realize robust multi-
object manipulation systems in practice.

Index Terms—Manipulators, Manufacturing Automation,
Robot Motion, Robot Vision Systems

I. INTRODUCTION

In the last decade, robotic grasping of single objects has
rapidly matured from lab demonstrations to industrial de-
ployments [110, 139]. As a result, many robotics researchers
have shifted their efforts toward studying how robots can
manipulate many objects in coordination. In some scenarios,
the objects’ poses obscure one another or interfere with
subsequent movements, so the robot must reason about the
relationships between multiple objects [99, 140]. In others, the
robot must reason about the stability of piles of objects [43,
135]. In yet other scenarios, a robot must move many objects
at once by pushing or scooping [31, 126]. Such problems arise
in a diverse range of application areas at factories, warehouses,
stocking, retail, and homes, in which robots are expected
to search in piles of objects, assemble or disassemble parts,
pack containers, stock shelves, clean clutters, and manipulate
granular materials.

Multi-object manipulation poses challenges for every stage
of autonomous system development. First, multi-functional
robots and end-effectors should be designed to implement
various manipulation skills, such as grasping, pushing, and
shifting [10, 104]. Second, robots must perceive the state of
objects in the world, in which object identity and pose may be
ambiguous due to severe occlusions and uncertainties [134].
Third, the dynamic behaviors of multiple interacting objects
must be predicted under stochastic contact mechanics [151]
and incomplete state information [86]. Fourth, a motion
planner must search in the space of manipulation orderings,
which has a high combinatorial complexity, as well as the
joint state space of the robot and all objects, which has
high dimensionality. Theoretical complexity bounds have been

1Tencent America. zrpan@tencent.com
2Google Research. andyzeng@google.com
3Department of Computer Science, Massachusetts Institute of Technology.

liyunzhu@mit.edu
4Department of Computer Science, Rutgers University.

jingjin.yu@cs.rutgers.edu
5Department of Computer Science, University of Illinois at Urbana-

Champaign. kkhauser@illinois.edu

established for various tasks [52, 62, 106] and practitioners
utilize simplifying assumptions to design tractable decision-
making algorithms. Finally, frequent re-planning and closed-
loop controllers are used to respond to perceptual uncertainty
and to close the gap between predictive models and real-world
behaviors [3].

Research on manipulation of multiple objects began decades
ago in the motion planning community, and was explored
both for theoretical interest as well as applications such as
assembly planning. The computational intractability of general
multi-object manipulation tasks and some assembly planning
tasks were proven during this era [52, 62]. Further progress in
motion planning led to practical algorithms for applications
such as navigation among moving obstacles [17, 123] and
rearrangement in logistics [101]. In the mid-2010s, progress
in robot perception and manipulation led to a rapid growth
in interest in robot rearrangement [68, 71], singulation [14],
and decluttering [61, 109] that has continued to this day. In
recent years, learning-based perception, predictive models, and
manipulation actions, have fundamentally changed the design
of robot systems [81]. Deep learning has made object recog-
nition in clutter far more reliable and accessible, and end-to-
end reinforcement learning has the potential to lift restrictive
assumptions in classical sense-plan-act architectures. These
trends have been adopted with great enthusiasm for multi-
object manipulation [10, 54, 126]. It should also be noted that
the robotics community has not just been a user of modern
AI techniques, as multi-object rearrangement has also been
identified as a benchmark for the embodied AI community [5].

It is an opportune time for the development of multi-object
manipulation research to address some high-level questions
that have been left unanswered despite decades of research.
For example, has perception and modeling uncertainty been
underappreciated in the multi-object planning community?
At what granularity should multiple objects be represented,
e.g., can we treat multiple objects as a single entity when
they stay in contact? How should we model the complex
stochastic contacts, and how much does the accuracy of a
contact model affect the accuracy of decision-making? In some
tasks, e.g., organizing a cluttered cabinet, the gap between
heuristics and optimal solutions is substantial, but other tasks,
e.g., singulation, can be solved relatively easily with heuristics.
Does the optimality gap relate to the sample complexity of
learning-based methods? With this survey, we hope not only
to describe the breadth of research in this field, but also to
inspire researchers to ponder these grand questions.

This survey focuses on algorithmic research related to multi-
object manipulation. It does not cover mechanical design,
because the vast majority of past works have focused on
moving a single object at a time or pushing multiple objects,
with only a few papers covering mechanical devices that move
multiple objects simultaneously [98, 108]. The paper does not
cover single-object grasping, and refers interested readers to
Billard and Kragic [11] for a survey on recent trends in the

manipulation of single objects, and Stüber et al. [125] for a
survey on pushing manipulations. The paper is organized by
manipulation tasks, perception methods, prediction methods,
and decision-making algorithms. Section II describes a tax-
onomy of manipulation tasks. Section III describes perception
components that process raw sensor inputs (e.g. RGBD images
[61] or thermal images [111]) into object locations and/or
identities. Section IV presents motion prediction methods,
which estimate the change of objects’ state due to a robot’s
action e.g., pushing, grasping, or poking. Section V dis-
cusses decision-making problems, which involve a motion (re-
)planner that calculates sequences of manipulation actions,
and a controller that compensates for disturbances. Finally,
we discuss open problems in Section VI.

II. MULTI-OBJECT MANIPULATION TASK TAXONOMY

In general, a multi-object manipulation task is mathemat-
ically specified as attempting to bring the state of the joint
state space of the robot and objects into a state that meets
specific goal conditions. Following King and Srinivasa [68],
we define the robot state space as xR ∈ CR, the state space of
each of m objects as x1(t) ∈ C1,⋯, xm(t) ∈ Cm, and the joint
state space as the Cartesian product C = CR×C1×⋯×Cm. We
further denote the workspace as X , the volume occupied by
the robot’s geometry as R(xR), and the volume occupied by
an object as Oi(xi). The objective of a particular manipulation
is to reach some goal subset Cgoal ⊂ C while keeping the state
within a free space Cfree ⊂ C. Different manipulation tasks are
characterized by their action sets, goal conditions, feasibility
conditions, observation spaces, or governing dynamic models
of objects. Past literature has categorized tasks primarily in
terms of differences in the goal set Cgoal ∈ C, as described
below.
● Singulation: A small extension of grasping in clutter, where

multiple objects may need to be moved in order for
a specified object to be grasped. The goal condition is
InGrasp(xR, x1) where x1 is, without loss of generality,
the target object. As illustrated in Figure 3, singulation can
be achieved by moving the target object away from the
clutter [63] or moving other objects out of the way [78].
A simplifying assumption taken by several prior works [14,
63] is the target object being a certain distance away from all
other objects. The distance-based definition provides a goal
condition that is straightforward to test, but it may require
moving objects farther than necessary. More recent research
tends to consider the problem solved when the final grasp
is acquired [99].

● Navigation: A mobile robot travels through a cluttered
environment to reach a target region, with a set of movable
objects blocking its path. The goal is specified only for the
robot but not for objects, i.e., xR ∈ CRgoal with CRgoal the
target region for the robot. Navigation has been studied as
a discrete search problem [29] or a Sokoban game, where
both the robot and the objects move along edges of an
axis-aligned grid. It can also be formulated as a continuous
motion planning problem [123] as illustrated in Figure 1.

● Declutter: Given a region Xclear to clear, a set of objects
are moved away from a target region [128], i.e., the goal

(a) (b)
Fig. 1. Stilman and Kuffner [123] considered a continuous navigation task
where the robot can move one object at a time in a cluttered environment in
order to move from start to goal position. (a): side view; (b): bird view.

(a) (b)
Fig. 2. (a): A 2D illustration of clutter removal problems [128], where
objects can overlap to form constraints on the order of removal. (b): Temtsin
and Degani [130] compared various heuristic strategies to remove a clutter of
3D bricks without disturbing the pile.

is Oi(xi) ∩ Xclear = ∅ for all i = 1, ...,m. The robot may
have payload limits preventing all objects from being moved
together, and/or objects may be entangled, making it difficult
to find a feasible order of removal. To avoid disturbing
a pile of objects, which would require re-sensing and re-
planning, constraints can be specified where objects must
remain quasi-statically force-balanced during manipulation
[130] (Figure 2). In cases with tightly entangled non-convex
objects, finding a feasible object motion may also be a
challenge. Decluttering is highly related to the disassembly
problem [77], a classical problem in operations research and
motion planning.

● Rearrangement: A set of objects are moved to take a set
of specified goal positions (Figure 4), i.e., xi ∈ Ci

goal,
i = 1, ...,m. Rearrangement tasks can be labeled where
each object has a single specified goal configuration, e.g.
in [71], or unlabeled where object-goal correspondences are
arbitrary, in [3, 5, 37, 146] for example. In both cases,
the objects’ manipulation order and manipulation paths can
be considered as two sub-problems, where the decision
space of the manipulation order is discrete and that of the
manipulation paths is continuous. Such discrete-continuous
decomposition allows efficient planning algorithms to be
developed [71].

● Packing: As a reverse of declutter, a set of objects are
moved into a goal region, i.e., Oi(xi) ⊂Xpack, i = 1, ...,m,
but the target configuration of each object in the region is
unspecified. Essentially, packing is a reverse of declutter.
There are two qualitative variants of packing: loose-packing
and dense-packing. In loose-packing, the goal region has a
much larger volume than the to-be-packed objects and so

(a) (b)

(c) (d)
Fig. 3. (a): Kiatos and Malassiotis [63] singulates a cylindrical target object
by moving it away from the clutter (b). (c): Lee et al. [78] singulates the
green target object by moving other objects away from the swept volume of
the robot (d).

(a) (b)
Fig. 4. In the rearrangement task, Krontiris and Bekris [71] moved a set of
unorganized bricks (a) to form letters “RSS” (b).

the focus is on transporting objects to the region. Therefore,
prior works [90, 147] use sequential single-object manipula-
tion in an arbitrary order with little dependence on already-
packed items. In dense-packing, the goal region’s volume is
approximately the same as the sum of the objects’ volumes
[135], and hence objects’ configurations must be planned to
improve the packing density (Figure 5).

● Placing: A new object is placed into a goal region, i.e.,
x1 ∈ Cplace with x1 the target object, which may involve
rearranging other objects to make room [20] (Figure 6).
Placing also has two qualitative variants: loose-placing and

(a) (b)
Fig. 5. (a): Mahler and Goldberg [90] considered loose-packing of unsorted
objects with a two-armed robot picking from a bin. (b): Wang and Hauser
[135] considered dense-packing, placing objects with varied shape tightly into
shipping boxes.

(a)

(b) (c)
Fig. 6. In order to place the paper towel on the table (a), the yellow box
(id=18) needs to be pushed away to make room. Cosgun et al. [20] proposed
a planner to search for the order of pushes (bc).

dense-placing. In loose-placing [7, 66, 67, 68], the density of
objects is low and placing can be achieved by moving other
objects out of the target region. In dense-placing [20], the
density of objects is high so that the obstructing objects may
interfere with other objects, and so the order and trajectories
of objects’ movements must be planned carefully to increase
the success rate. Placing is closely related to packing, which
can be achieved by repeatedly placing new objects, as done
in all existing works of object packing [90, 135, 147].

● Sorting: A set of objects, divided into classes (e.g.,
color, identity, or type), should be geometrically sep-
arated (Figure 7). There are two variants of sorting:
sorting-by-clustering and sorting-by-packing. In sorting-by-
clustering [120], the goal is to minimize the intra-class
distances and maximize the inter-class distances, similar to
a multi-class extension of singulation. If we define li as the
label of the ith object, then we require the intra-class distance
maxlj=li d(xi, xj) ≤ minlk≠li d(xi, xk) ∀i. In sorting-by-
packing [48], the goal is to move all objects of the same class
to a designated goal region, similar to a multi-class version
of packing. In other words, the goal set is Oi(xi) ⊂Xpack,l

for li = l.
Table I lists several prior works categorized by their ma-

nipulation tasks. Some works combine multiple tasks to solve
problems at a higher-level, so we put them into more than one
category. For example, a declutter task is followed by a loose-
packing task in [129] to place the dumped objects. In [66, 67,
68], a navigation task is implicitly involved in a placing task so
that the robot can clear the path for the to-be-packed object to
reach a goal region. In [31, 126], the goal is to move a cluster
of small objects to reach a target configuration, which can be
used for both declutter and sorting-by-clustering tasks.

There is a general commonality in multi-object manipu-
lation that most tasks can be modeled as a task-and-motion

Fig. 7. Gupta and Sukhatme [44] sorted bricks into bottles (at left) by color.

TABLE I
PRIOR WORKS CATEGORIZED ACCORDING TO THEIR TASKS.

Manipulation Task References

Singulation [10, 14, 26, 30, 54, 60, 63, 73, 78, 99, 145]
Navigation [17, 66, 67, 68, 95, 123, 124]
Declutter [12, 16, 31, 34, 61, 100, 109, 126, 128, 129, 130]
Rearrangement [3, 70, 71, 101, 114, 115, 117, 144]
Packing [90, 135, 136]
Placing [7, 20, 66, 67, 68]
Sorting-by-Packing [44, 48, 129]
Sorting-by-Clustering [31, 55, 93, 120, 126, 132, 133]

planning (TMP) problem encompassing discrete tasks, i.e.,
choices of an object to manipulate, and continuous motions,
i.e., choices of a target location and a manipulation movement.
However, general models are unlikely to be computationally
efficient. Instead, task-specific algorithms and heuristics are
preferred for their speed and solution quality. Some of the
key aspects used to categorize tasks can be found in Table II.
● Goal Specification (Robot / One Object / All Objects):

The singulation task requires the robot to acquire a
grasp of the target object, while the navigation task only
specifies the robot’s goal configuration. Placing is only
concerned with a single object. The other tasks typically

TABLE II
DISTINGUISHING TASKS ALONG FOUR CRITERIA AS DESCRIBED
IN TEXT. FOR THE GOAL SPECIFICATION COLUMN: R=ROBOT,
O=ONE OBJECT, A=ALL OBJECTS. FOR THE LABEL COLUMN:

L=LABELED, U=UNLABELED, C=CLASSIFIED.

Manipulation Task Goal Spec. O-O Contact Label Prioritized

Singulation RO Some U Yes
Navigation R No U Yes
Declutter A Yes U No
Rearrangement A No LU No
Packing A Yes U No
Placing O No U Yes
Sorting A No LUC No

assume to specify all the objects’ goal configurations.
● Object-Object Contact: Some tasks require the robot to

interact with multiple objects in contact simultaneously,
e.g., piles of objects in decluttering or packing. Some
prior works in singulation have used pushing to sweep
multiple objects away from the target object. Without
multiple objects in contact, pick and place manipulation is
essentially a geometric problem, but otherwise prediction
of the physics of object-object contact becomes more
challenging.

● Object Labeling (Labeled / Unlabeled / Classified): The
navigation, declutter, singulation, packing, and placing
tasks do not specify goals for individual objects, making
object identification less necessary to complete the task.
The rearrangement task can have labeled or unlabeled
variants. Objects in a sorting task can be labeled, un-
labeled, or classified, i.e., partially labeled, where some
object or group of objects must be moved to different,
specified regions.

● Prioritized (Yes / No): In many settings, the robot can fo-
cus on the pose of a prioritized object, while other objects
are auxiliary and treated as obstacles. For example, the
navigation task is divided into several stages, where the
robot focuses on the object blocking the way during each
stage. Prioritization can be utilized to simplify algorithm
design, e.g. using greedy heuristics or by eliminating the
need for identification and prediction of auxiliary objects.
However, even in such tasks there exist challenging
examples in which the robot must reason several steps
ahead about the manipulation of auxiliary objects (e.g.,
non-monotone navigation problems).

III. PERCEPTION ALGORITHMS

Perception — estimating the states of objects and their
physical attributes from sensor data — is needed before
initiating manipulation as well as during manipulation to cor-
rect for unexpected events. Accurate perception is especially
difficult in cluttered scenes due to occlusions. Moreover, it
is difficult to obtain an exact model of object geometries,
inertial characteristics, friction characteristics, and interaction
behaviors in unstructured settings. As a result, perception
for multi-object manipulation remains a significant research
challenge.

We note that research on perception for multi-object ma-
nipulation has garnered interest much more recently than
manipulation planning research. Early work such as [59] in
this area assumes occlusion-free, top-down views of known
and/or visually-distinctive, isolated objects. Only recently have
researchers begun to address perception under occlusion [27,
134], and to handle uncertainty and ambiguity [34, 118].
Sophisticated hypothesis generation algorithms that consider
sensor data fit [34], stability [135], and other criteria have been
used to determine likely hypothetical object arrangements.
There has also been significant recent growth in the use of deep
learning techniques that identify objects and their attributes
from camera images [129]. A related body of work such as [30,
145] addresses affordance detection, which is the problem

Fig. 8. Tanwani et al. [129] used off-the-shelf deep network architecture [88]
to recognize and localize well-separated objects, for each of which a grasping
action is proposed.

of predicting action choices available for manipulation (e.g.,
grasp candidates) directly from visual data. This area is gaining
attention due to the use of deep learning techniques that predict
high-quality actions or policies directly from a camera image.

In Table III, we summarize representative perception ap-
proaches according to the problem, algorithm, and scenarios
addressed.
● Problem (Recognition / Segmentation / Affordance Detection

/ Pose Estimation / Feature Extraction / Tracking): Object
recognition aims at predicting regions of an image (such as
a bounding box) in which an object is located (Figure 8).
Segmentation is a fine-grained variant of recognition where
the pixels of an image corresponding to an object are
identified (Figure 9). The goal of pose estimation is to
produce 2D/3D object poses for reference models of known
objects, often in addition to object recognition information
[73]. Affordance prediction provides information in the
form of an action selection policy [120] or predictions of
success rates of a manipulation operator [30, 60, 144, 145]
(Figure 10). Feature extraction summarizes the state of one
or more objects into a feature vector, which is used by
downstream machine learning algorithms. Unlike all other
methods that estimate objects’ states at temporally discrete
time instances, tracking algorithms maintain object poses
across multiple frames [25]. They run at real-time rates
during manipulation. Tracking can improve robustness to
occlusions and uncertainties by using temporal coherence
(Figure 11).

● Algorithm (Image Processing / (Classical) Machine Learn-
ing / Deep Learning): Low-level image processing operators
can detect simply connected components of masks or iden-
tify image features such as contours of a sand pile [18]. A
widely-used high-level operator extracts keypoints on rigid
objects, typically for recognition, estimation, and tracking
problems [14]. Keypoints may be passed to RANSAC,
ICP, or pose graph optimization methods. Other high-level
operators can summarize semantic information, e.g., whether
a pixel patch is a single object or not [15]. In the pre-
deep-learning era, machine learning relies on manually
designed features to solve classification and segmentation
problems using algorithms such as graph-cut and clustering.

Fig. 9. Boularias et al. [12] performed instance segmentation (segments the
pixels belonging to each object). For each instance, a set of push or grasp
actions are sampled.

(a) (b)
Fig. 10. Berscheid et al. [10] considered the object singulation tasks by
overhead shifting (a). They trained a neural network to predict the affordance
of shifting actions from all possible positions (b).

For example, Katz et al. [61] clustered object patches into
flat facets and further classified the affordance of each
facet using a support vector machine. By comparison, deep
neural networks work end-to-end by learning features from
data, whose outputs can represent object positions [129]
or affordances [144]. Using convolutional pyramids, deep
networks can efficiently process an entire image, which is
favorable for multiple objects with severe occlusions [90].

● Occlusion (None / 3D): Many works solve tabletop prob-
lems assuming objects do not overlap from the perspective
of an overhead camera. General 3D occlusions are more
challenging and require reasoning about hidden objects. For

Fig. 11. Combining a particle filter and a deep autoencoder to learn a
distribution over 3D rotations, Deng et al. [25] proposed a 6D object pose
tracking system that is reasonably stable under severe occlusions and changing
appearances.

TABLE III
PRIOR WORKS CATEGORIZED ACCORDING TO THEIR PERCEPTION

COMPONENT. FOR THE PROB. COLUMN: R=RECOGNITION,
S=SEGMENTATION, A=AFFORDANCE DETECTION, P=POSE

ESTIMATION, F=FEATURE EXTRACTION, T=TRACKING. ALG.
COLUMN: IP=IMAGE PROCESSING, ML=MACHINE LEARNING

(CLASSICAL), DL=DEEP LEARNING. OCC. COLUMN:
PL=PLANAR OCCLUSION, 3D=3D OCCLUSION. PRI. COLUMN:
S=SHAPE PRIOR, A=APPEARANCE PRIOR, P=PHYSICS PRIOR.

Task Ref Prob. Alg. Occ. Pri.

Declutter [61] S,A IP,ML 3D S,A
Declutter [12] S IP,ML 3D S,A

Singulation [14] S,F IP,ML 3D S,A,P
Singulation [73] P IP 3D S,P
Singulation [145] A DL PL S,A,P
Singulation [10] A DL PL S
Singulation [63] F IP PL S
Singulation [99] R,P DL 3D A
Singulation [30] A DL 3D S,A,P
Singulation [54] A DL PL S,A,P

Rearrangement [144] P,A DL PL S,A
Rearrangement [115, 117] P IP PL S,A

Sorting-by-Packing/
Declutter [129] R,P DL 3D A

Sorting-by-Clustering/
Declutter [31] S IP PL A

Sorting-by-Clustering [55] R,P IP PL S,A
Sorting-by-Clustering [120] A DL PL S
Sorting-by-Clustering/

Declutter [126] S DL PL A

example, tilted cameras can see a large portion of at least
one face of each object [61]. Object search tasks [27, 140]
use active perception to location entirely occluded targets.

● Prior Knowledge (Shape / Appearance / Physics): Percep-
tion problems are oftentimes ill-posed and under-determined
due to occlusions and partial observations, so prior knowl-
edge is used to yield better estimates. Shape priors re-
strict objects’ geometries to have certain qualities, e.g.,
rectangular, planar, convex, or use the knowledge that the
objects in the scene come from known 2D or 3D mod-
els. As an example, Katz et al. [61] used the prior that
objects have large planar facets. Appearance priors make
assumptions about objects’ materials, lighting conditions, or
colors. Physics priors model objects’ equation of motion to
be either rigid, elastic- or plastic-deformable. Training data
constructed using physics simulators such as [145] is also
considered a form of physics prior.

A. Trends and Open Problems

Overall, perception technology for multi-object manipula-
tion is maturing quickly, but the vast majority of experiments,
including all the works listed in Table III, have still taken
place only in lab environments. Results from lab setups
are likely to generalize fairly well to industrial applications
where the robot’s environment can be similarly controlled
and the perception algorithms specialized to the objects under
consideration. In automatic warehouses and fulfillment centers,
it is likely for a robot to encounter out-of-sample objects
and uncertain environmental conditions [19]. An important

direction for future work is to investigate how perception
generalizes to uncontrolled lab settings.

Task-dependent perception system design: We observe an
imbalanced distribution of manipulation tasks addressed by
perception algorithms, with most work in Table III solving
singulation tasks. This is presumably because grasping finds
a lot of application scenarios and singulation is a way to
improve grasping robustness. The packing and placing tasks
usually require perception under severe occlusions due to the
density of objects in contact in a confined space, which may
yield fruitful directions for future perception research. We
note that some tasks, such as navigation and decluttering, are
even difficult to set up in a lab because they require large
spaces. Moreover, due to the size of the area covered, they
cannot be addressed using a single camera viewpoint, and
instead may require map integration over multiple frames.
In addition, we are not aware of any work that uses object
tracking in the manipulation pipeline, until very recently
Morgan et al. [97] showed that tracking the 6D rigid pose can
improve the manipulation accuracy for peg-in-hole insertion
problems, which is single-object manipulation. All existing
methods listed in Table III choose to discretely estimate
objects’ states before and after actions, which is justified by
making quasistatic assumptions that objects move reasonably
slowly, and moreover that objects are not entirely hidden after
each action. On the other hand, it has been shown in [35, 91]
that tracking leads to better robustness in handling partial and
presumably full occlusion, although these works are limited to
a single object. A better understanding of occluded space in the
presence of clutter is another important issue to investigate for
future research. Although many tasks, such as planar problems
or sorting-by-packing, can be solved purely by addressing
the visible objects [134], other tasks such as placing require
reasoning about empty space behind occlusions. Tasks, such as
object search within piles, or decluttering / packing with stack
stability estimation, require reasoning about possible locations
of hidden objects. In these cases, perception algorithms can
use free-space to ensure that object pose estimates are non-
interfering, and they can use physical reasoning to understand
how objects support one another under gravity [94, 96].
However, prior work is still at an early stage and this remains
an open problem.

System integration for learning-based perception: Recent
trends show the popularity of deep neural networks for percep-
tion, which aligns with general trends in the computer vision
field. In manipulation, deep networks have enabled researchers
to investigate learning as a way to combine different system
components (e.g., affordance, prediction, and planning) more
closely. For example, image prediction methods combine per-
ception and prediction by modeling transitions in the image-
feature space [31, 126]. End-to-end reinforcement learning
in [145] couples perception, affordance models, and motion
planning. With an additional convenience in system design
comes increased difficulties in data generation, generalization,
system diagnosis, and analysis.

Object tracking: The vast majority of perception models
listed in Table III use vision and/or depth as the only sensor
modalities. We are aware of one exception [34], where the

forces exerted by the robot is formulated as a part of the
state space of the learned predictive model. Recent works
have shown that other modalities, such as force and tactile
information, can compensate for vision and depth to resolve
ambiguities [141] or handle contact-rich manipulation prob-
lems [28], but these methods have not been exploited in the
multi-object manipulation literature yet.

Uncertainty quantification and modeling: A final note is
that planning and prediction modules typically make the
assumption that perception is accurate. However, in the real
world, perception always suffers from errors. An error-tolerant
solution requires a co-design of perception and planning mod-
ules. A successful example is [35] where latent state features
and feature-space controllers are simultaneously optimized.
Downstream effects of these errors are also unclear. Perception
models should encode object states for downstream prediction
models to reliable estimate future states even under sensing
error and uncertainties. An inspiring recent work [38] encodes
an object’s state as a set of oriented keypoints, which can
interface with several downstream control algorithms such as
imitation learning and iterative model predictive control.

IV. PREDICTIVE MODELS

Predictive models are indispensable for some decision-
making algorithms such as model predictive control to estimate
the results of manipulation operations. Although predictive
models have garnered some interest in the single-object push-
ing setting [118, 150], the multi-object manipulation setting is
more complicated because objects often interact via contacts.
Not only does this make physics modeling more complex,
but it also reduces accuracy of predictions due to inherent
uncertainties in inter-object contact models as pointed out
in [125].

We can denote the robot’s predictive model as ẋR(t) =
f(xR(t), u(t)), where u(t) is the control signal, and
the corresponding objects’ predictive models are ẋi(t) =
f(xi(t), u(t)) [68]. Usually, only a single item is moved
at once while other objects are considered as obstacles, so
ẋi(t) = 0 for non-manipulated objects. If multiple objects are
moved as once, the predictive models for the robot and objects
are typically coupled via nonholonomic contact constraints
and jointly expressed as ẋR,S(t) = f(xR,S(t), u(t)) where
S ⊆ {1, . . . ,m} denotes the subset of moved objects and xR,S

denotes the joint state of the robot and moved objects.
The granularity of prediction is an important characteristic

distinguishing past researches. For tasks involving pick-and-
place actions on flat surfaces, prior researches [47, 71] ignore
the prediction problem entirely by assuming each action will
be successfully completed as specified. More sophisticated
models can predict grasp and placement stability [100, 135],
i.e., the conditions under which high-level actions are success-
ful. For example, when deciding how to extract objects from
piles or placing them on piles, the robot must predict the stabil-
ity of the pile [100]. On the other hand, low-level predictions
of object behaviors are necessary for problems involving multi-
object contacts, e.g., pushing [55, 120]. Here, predictions can
be challenging due to the prevalence of uncertainty in contact
states, object inertial parameters, and friction coefficients.

A. Rigid Body Predictive Model

We refer readers to [125] for a detailed discussion and
comparison of different predictive models for rigid bodies and
we follow their taxonomy as much as possible. We classify
predictive models using 4 criteria:

● Kinematic / Quasistatic / Dynamic: A kinematic model
ignores all forces on objects and only respect geometric
constraints such as collision constraints. Kinematic models
achieve high-fidelity when robots can immobilize objects by
grasping or fixtures and object motions are not affected by
contact forces. A quasistatic model considers all forces but
ignores inertial and damping forces and assumes that objects
always move under external force equilibrium. This model
can make accurate predictions when objects are moved
slowly and accelerations are very small and quickly damped
to zero. A dynamic model considers all forces including
inertial forces. If the kinematic information of the object
is qi(t), then we have xi(t) ≜ qi(t) for a kinematic or
quasistatic model, and x(t) ≜ (qi(t) q̇i(t)) for a dynamic
model.

● Analytic / Learning-Based: An analytic model is derived
from classical mechanics, although some parameters might
be predicted from data [58]. A learning-based model mimics
the motion of objects solely from observations (e.g., videos
or object features). Analytic models of well-understood
phenomena can achieve reasonable overall fidelity and do
not require costly data collection and learning steps. On the
other hand, learning can achieve higher fidelity, when subtle
interactions between multiple objects cannot be captured by
analytic methods. On the downside, the fidelity of learning-
based models can suffer due to over-fitting or insufficient
data coverage.

● Planar / 3D: A planar model assumes that movement /
forces along gravitational directions and horizontal direc-
tions are separable, and so that force balance along the grav-
itational direction may be ignored. A 3D model considers
coupled movements and forces along all directions. The use
of planar models requires object relationship assumptions,
e.g., objects are not on top of each other and objects are
moved slowly enough so they will not topple. With these
assumptions, planar models can reduce the dimension of an
object’s configuration space by half (SE(3) → SE(2)) and
significantly boost efficiency.

● Single-Object / Multiple-Object / Eulerian: A single-object
model assumes that objects can be manipulated sequentially
and inter-object interference is ignored. This assumption is
only valid in less cluttered scenarios, e.g., when objects
are well separated. A multi-object model considers possible
inter-object interference. Although such models are more
general, it is more challenging to handle multi-object con-
tacts, which typically reduce both efficiency and fidelity. In
contrast to standard object-based (Lagrangian) discretiza-
tions, Eulerian models use a spatial discretization, where
the representation of a scene is maintained as an image
or volumetric grid. We refer readers to [137] for a more
detailed discussion. Lagrangian models are generally more
popular due to their high fidelity, because Eulerian models

(a) (b)
Fig. 12. Suh and Tedrake [126] used Eulerian models to predict the motion
of small grains of carrots under pushing (a). The grains are discretized in
images (b) and motions after the push are predicted via linear models.

lose accuracy by blurring the boundaries between objects.
However, Eulerian models are gaining popularity due to the
use of deep networks to make predictions directly in image
space, and can be computationally more efficient when there
are many objects or when object-object interactions are
difficult to model. A recent work utilizing these features
is illustrated in Figure 12.

In Table IV, we categorize predictive models used in prior
works according to granularity of prediction as measured
by the four criteria above. Typically, a dynamic model is
more fine-grained by predicting the change of velocity as
compared with quasistatic and kinematic models. A learning-
based model such as [119] can learn subtle details such as
anisotropic, material-dependent frictions that are more diffi-
cult to model via analytic methods. Some works, e.g., [60,
145], use a learning-based or learning-assisted planner, where
different prediction models are used for data generation in
offline training and online planning, and we use two different
rows to label these two stages.

B. Contact Modeling

The classical contact models [122] use an Lagrangian
representation for each rigid body, i.e., the 6D configuration
of each rigid body is predicted. Contacts between a pair
of rigid bodies are assumed to happen on a discrete set of
points. For each contact point, the relative velocity of two
bodies and their interaction forces are modeled as two sets
of complementary conditions along the normal and tangential
directions, respectively. Variants of such contact models have
been implemented in various modern rigid body simulation
softwares and succeeded in predicting plausible motions in-
volving many objects [33].

Contact-rich physics simulation is extensively used offline
for validation and training learned multi-object manipulation
systems. Cosgun et al. [20] simulate pushes to detect contacts
between objects, which then is used to plan an order of
pushing actions. They reset the simulation immediately after
contacts are detected, so no objects are pushed indirectly in
the final motion plan. [117] learn a probabilistic transition
model for pushing by generating simulated pushes with a rigid
body simulator with mass and contact parameter uncertainty.
Reinforcement learning is also performed commonly within

TABLE IV
PRIOR WORKS CATEGORIZED ACCORDING TO THE TYPE OF

PREDICTIVE MODEL: K=KINEMATIC, Q=QUASISTATIC,
D=DYNAMIC, A=ANALYTIC, L=LEARNING-BASED, P=PLANAR,

S=SINGLE-OBJECT, M=MULTI-OBJECT, E=EULERIAN.

Task Ref K/Q/D A/L P/3D SO/MO/E

Navigation [17] Q A P MO
Navigation [123, 124] D A P SO
Navigation [95] K A P SO
Navigation/

Placing [66, 67, 68] Q A P M

Declutter [109] D A 3D M
Declutter [130] D A 3D M
Declutter [16] D A 3D M
Declutter [34] (Train) Q L 3D S
Declutter [128] K A 3D S

Singulation [26] D A 3D M
Singulation [60, 145] (Train) D A 3D M
Singulation [63] (Train) D A 3D M
Singulation [78, 99] K A P S
Singulation [54] (Train) D A 3D M

Rearrangement [101] K A P S
Rearrangement [70, 71, 114] K A 3D S
Rearrangement [3] (Train) D A P M
Rearrangement [3] (Test) Q L,A P M
Rearrangement [117] D A P M
Rearrangement [82] D L P M
Rearrangement [74] K L P E

Dense-Packing [135, 136] Q A 3D M

Placing [20] D A P M
Placing [7] D A P M

Sorting-by-Packing [44] K A 3D S
Sorting-by-Packing [48] K A 3D S
Sorting-by-Packing/

Declutter [129] D A 3D SO

Sorting-by-Clustering [93] K A P S
Sorting-by-Clustering [132, 133] D A P M
Sorting-by-Clustering/

Declutter [31] K L P E

Sorting-by-Clustering [55, 120] D A P M
Sorting-by-Clustering/

Declutter [126] K L P E

simulated environments [12, 16] involving many contacting
rigid bodies.

On the other hand, only a few prior works such as [55,
117] choose to perform online physics simulations within the
control loop. Simulation-in-the-loop control relies on highly
accurate and efficient predictions, which is still difficult to
achieve with off-the-shelf simulators. This is partly because
the solutions of Coulomb friction problems is non-unique in
general [45], and moreover depends on contact points, normals
and friction coefficients that are often noisy or unobservable
as pointed out in [76, 118]. In particular, the dynamics of
pushing on a flat surface is a topic of significant interest
because the distribution of contact pressure and friction over
the support surface is unknown and indeterminate, and the
overall movement of an object when pushed is difficult to
predict a priori [41, 118, 150]. Instead, the set of possible
resistant planar forces and torques on the object is modeled
by a limit surface [41] which can be learned from data [150].
Simplified planar contact models exhibit desirable properties

such as differential flatness [149] and can be exploited to
accelerate motion planning [22, 149], although these results
are limited to a single object. Probabilistic pushing models
may also be learned [118]. Finally, we note that accurate
contact modeling can be omitted in some cases. For example,
the declutter tasks considered in [31, 126] require predicting
the movement of a large cluster of tiny objects (e.g. diced
vegetables), which exhibit predictable gross motions even
without accurate contact modeling.

The recent research on cluttered objects and pile manip-
ulations [31, 61, 126] pose an ever increasing challenge on
the efficacy of simulators. The memory and computational
cost of conventional Lagrangian contact models [122] grow
superlinearly with the number of rigid bodies, limiting its
scalability to hundreds of objects. Therefore, recent works [31,
126] propose to use Eulerian representations. This method
models the gross motion of objects as a material flow, with
a complexity independent of the number of objects. A large
body of research in computational physics such as [9, 80] has
formulated contact models under Eulerian representations, but
they have not been exploited in manipulation systems yet.

C. Trends and Open Problems

Task-specific simulation benchmarks: The capabilities of
rigid body simulators have been exploited to their limits,
and the last several years have not witnessed major new
features introduced into these simulators. However, we are still
lacking effective metrics, datasets, and testbeds for comparing
the accuracy of predictive models in the object manipulation
context. Our comparison in Table IV is qualitative and based
on granularity. The two other crucial and quantitative metrics
are efficiency (the amount computational cost required to make
a prediction) and fidelity (the discrepancy between a predicted
result and the result in real-world). In a relatively recent
work, Erez et al. [33] compared several rigid body simulators
in terms of efficiency, while their benchmarks are passive
simulations of high-speed colliding objects. In a manipulation
context, however, objects are undergoing nearly quasistatic
manipulation actions such as pushing and grasping. It also
helps to benchmark simulators used by different decision-
making algorithms, some of which are designed to tolerate
high simulation bias and do not require accurate predictions.

Uncertainty quantification and modeling: One major omis-
sion in existing methods is to quantify the uncertainty of
predictions, which could help planners choose high-confidence
actions or feedback strategies. In pushing manipulation, for
example, the contact pressure and friction distribution over
the support surface is unobservable but affects the overall
movement of the object. Representing uncertainty is particu-
larly challenging when contact is involved. Belief propagation
with simple (e.g., Gaussian) distributions fails to capture the
multi-modal posterior beliefs when contact is made vs. not-
made during a motion [46]. Particle-based approaches [56,
79], i.e., Monte-Carlo sampling of simulation initial states
and parameters, have been employed for this purpose, but
these methods are often too computationally expensive for use
in planning. Perhaps surprisingly, uncertainty is not directly

Fig. 13. Li et al. [82] proposed a graph neural network with multi-round
message passing for learning complex object interactions. This architecture
can take partial observations, e.g., when the camera only sees the red
boxes on top of the pile. The learned neural dynamics model is inherently
differentiable. We can extract the gradient using off-the-shelf deep learning
packages [105] and solve the predictive control problems via the shooting
method. In this example, the pile of boxes are supposed to be pushed to the
target configuration on the left.

correlated with the number of objects in contact. If objects’
characteristic scale is much smaller than the end-effector,
the gross behavior of dozens or thousands of objects in
contact may exhibit strong uniformity, such as following the
movement of a broom when cleaning dust or small particles
[31, 126].

Learning-based prediction models under incomplete ob-
servations: Recently, semi- and non-parametric, structured,
learning-based models [6, 75, 82, 138] have emerged as a
promising method to acquire prediction capabilities without
painstaking discretization of complex governing equations.
These methods do not encode any physical rules, but model
physical constraints between objects as edges of a graph and
train random forests [75] or neural networks [82] to mimic be-
haviors of a constraint solver. Complex and realistic behaviors
of rigid, fluid, and visco-elastic objects have been reproduced.
Although their computational efficacy is not significantly
higher than analytical models, learning-based models can
make predictions under partial observations. This is achieved
by mapping the incomplete observations to a latent state space
and training the state-estimator as well as the latent transitional
model in a joint manner. Conceptually, an observation function
maps the state to a latent space, h(t) = o(x(t)), and the
latent transition model, ḣ(t) = f(h(t), u(t), θ), is optimized
by tuning the learnable parameters θ to mimic the observed
dynamics behavior of x(t). As compared with analytical
models that require complete state information, learning-based
models are favorable in multi-object settings where occlusions
are ubiquitous and contact mechanics are stochastic. Some
prior works, e.g., [82], have even used learning-based models
to perform predictive controls as illustrated in Figure 13.
However, these models have not been widely used to solve
any high-level planning tasks so far. We are only aware of
two recent works [34, 54] that use learned models to predict
the results of push and grasp actions in solving clutter removal
tasks.

V. DECISION-MAKING ALGORITHMS

Generating the robot’s behavior involves a motion planner
and a controller, where the planner determines the types
and parameters of manipulation operators and the controller
realizes them on the physical platform. Although manipulation

Tree Policy
Rollout
Policy

Selection Expansion Simulation Back-propagation
Repeat

Root Root Root Root

Fig. 14. We illustrate the MCTS procedure used in [120] for rearrangement
planning. To choose one of the 8 object-pushing directions (red arrows on
the bottom left), MCTS expands a tree with a branching factor equals 8 over
a short horizon. The tree is expanded by repeating the 4 steps: 1) select a
potential tree policy; 2) expand the tree policy; 3) evaluate the policy by
simulating with a separate, rollout policy; 4) back-propagating and update
the evaluation. Throughout this procedure, the contacts between objects are
considered as side-effects and not explicitly reasoned.

control is an area of interest in its own right, existing tech-
niques for single-object manipulation control typically suffice
in the multi-object setting. Rather, the main decision-making
challenge is in the motion planning stage. Unlike single-object
manipulation planning where the primary challenges are grasp
planning and inverse kinematics, multi-object manipulation
planning demands careful sequencing of which objects to
move, where to move them to [48, 70, 71, 100, 127], and
sometimes the use of simultaneous contacts to move multiple
objects at once [31, 55, 86, 104, 120, 126]. Due to the
large search space, finding (nearly) optimal motion plans is
intractable, even in a simplified setting [106], as we discuss
in Section V-B.

Conceptually, the goal of multi-object manipulation is to
compute control signals u(t) that efficiently bring the state
of the joint robot-objects system xinit to the goal set Cgoal,
possibly given partial and noisy observations of x [68]. The
typical setting is hierarchical, in which the motion planner
reasons about a reference trajectory x∗(t), t ∈ [0, T] and the
controller chooses u(t) to execute it. We note that, com-
pared to planning, the feedback control aspect of multi-object
manipulation is often a secondary consideration, making use
of standard grasping, trajectory following, and force control
strategies. In the vast majority of works, decision-making takes
place at a higher level in the planning hierarchy, where the task
divides the trajectory x∗ into multiple actions. Each action is
specified using a manipulation type, such as pick and place,
and a small set of parameters, such as a target location. In
this section, we first review major theoretic results on the
computational complexity of planning problems. Then, we
delve into practical solutions which often involve task-specific
heuristics to scale to more complex problems.

A. Formulations of the Planning Problem

Low-level planning: Given a predictive model, it is possi-
ble to formulate the multi-object manipulation problem as a
kinodynamic motion planning problem [66, 120] or Markov
decision process [3, 31] over low-level motions. The changes
in contacts are considered side-effects of the motion and are
not reasoned about explicitly. Breadth-first search, A* search,

rapidly-exploring random trees (RRT), and Monte-Carlo tree
search (MCTS illustrated in Figure 14) have been employed in
solving these problems. These approaches can be successful
for planar pushing, but for 3D manipulation or grasping,
each manipulation action has a low likelihood of succeeding,
leading to a minuscule chance of success in the task overall.
Instead, most authors formulate multi-object manipulation
problems as searching amongst high-level actions.

High-level planning: In high-level planning, a collection
of high-level actions is provided to the robot, such as pick
and place, each of which changes the contact state of the
system. Each action is further parameterized by some set
of parameters, e.g., pick(X) and place(X,Y) where X is an
object identity and Y is a location, and the domains of each
parameter may be discrete or continuous. The responsibility
of the planner is then to sequence the high level actions and
their parameter choices to accomplish the task. A key benefit
of this approach is that the predictive model can be drastically
simplified to ignore low-level physics, and can instead model
only the preconditions and postconditions of each action. For
example, an object placed on a flat surface clear of obstacles
will stay in the specified location.

Particularly for navigation, rearrangement, sorting, packing,
and declutter tasks, reducing the planning problem to action
sequencing is far more tractable than planning low-level ac-
tions, and can be solved through A* and MCTS techniques.
Nevertheless, common settings still pose significant compu-
tational challenges. We cover the computational complexity
of these problems and effective heuristics in the following
sections.

Task-and-motion planning: In certain problems, such as
tabletop rearrangement with overhead grasps, the feasibility of
every high-level action is guaranteed. But in other problems,
the feasibility of a high-level action depends on the existence
of a feasible low-level motion. Evaluating the existence re-
quires reasoning about the geometry and/or planning a path.
For example, navigation amongst movable obstacles requires
determining whether a robot can reach a target object. The
general problem of sequencing actions and finding feasible
motions has been studied for decades [1, 2, 13, 42] and is
now known as task-and-motion planning [39].

As illustrated in Figure 16, task-and-motion planning
(TAMP) leverages symbolic reasoning to select which high-
level actions (tasks) to sequence and how to plan motions
between them [13]. Each task (high-level action) is defined
with preconditions and postconditions that may hold over a
symbolic space (e.g., Held(X), Blocking(X,Y)) and the task
planner uses STRIPS-style reasoning to guide the search
towards valid task sequences [40]. Feasible motion plans for
such sequences will then be verified by calling a motion plan-
ner for each action. For example, a pick-and-place sequence
is broken into motion planning problems for the transit mode,
where no object is grasped, and the transfer mode, where an
object is moved to a target location. Moreover, as a high-level
action, a pick action requires choosing a grasp of the object as
well as the transit motion to reach that grasp. A place action
requires choosing a placement location for the grasped object
that is stable and has no collisions with either the robot or

other objects.
A key challenge in TAMP is to allocate task planning

and motion planning efforts when certain motion plans are
infeasible. One strategy is to plan a sequence of tasks,
perform motion planning, and incorporate the feedback of
failed motion plans to discourage similar task-level plans
in the future [23, 121]. However, modern motion planners
based on sampling-based planning are only probabilistically
complete, and it is challenging to decide upon a fixed time
limit. Multi-modal planning (MMP) addresses this problem by
reasoning explicitly about the joint multi-step motion planning
problem. Any combination of actions generates a discrete
graph of configuration spaces (modes), each with their own
motion constraints, that intersect at some common transition
configurations [1, 51]. Sampling-based planning effort is then
distributed across the modes.

Although TAMP is appealing as a general-purpose frame-
work, it has some drawbacks for multi-object manipula-
tion. The use of STRIPS-like symbolic information allows
TAMP solvers to automatically generate effective heuristics in
many cases [40], but it is challenging to represent geometric
interference constraints in a symbolic fashion suitable for
identifying conflict-free task sequences [32]. A special case
of geometric-logic constraints has been presented in [131],
where geometric constraints are piece-wise continuous with
a pre-specified, finite number of constraint-switching points.
Moreover, general-purpose heuristics are typically much less
effective than problem-specific heuristics. Second, for many
problems such as packing, the performance bottleneck is not
task sequencing, but rather finding optimized action param-
eters in continuous domains. Finally, it is worth noting that
decoupling the discrete-continuous subproblems can produce
sub-optimal motion plans. In the context of dual-arm rear-
rangement, Shome et al. [114] showed this sub-optimality gap
can be large with excessive transit/transfer cost.

B. Hardness of Multi-Object Manipulation

The computational complexity of multi-object manipulation
has been an area of great theoretical interest, and is closely
related to the multi-robot coordination problem. The problem
of coordinating moving rectangular objects in a plane is at
least PSPACE-hard [52]. Demaine et al. [24] showed that
solving navigation problems in general is NP-hard. Kavraki
and Kolountzakis [62] showed that finding the trajectory to
decompose two planar shapes is NP-complete. Some ma-
nipulation problems are not hard to solve but difficult to
achieve optimality. For example, Tang and Yu [128] showed
that finding an optimal declutter plan is NP-hard. Ratner
and Warmuth [106] showed that finding an optimal push
plan for the 15-puzzle is intractable and the problem in
general is NP-hard. Han et al. [48] speculated that finding the
optimal stack-rearrangement plan is NP-hard. Han et al. [49]
proved the NP-hardness of cost-optimal, (un)labeled, (non-
)overlapping, table-top rearrangement problems. Moreover, it
has been shown that a general collision-free trajectory planning
problem is PSPACE-hard [107]. This implies that the task-and-
motion planning formulation is at least PSPACE-hard.

(a) (b)
Fig. 15. (a): Krontiris and Bekris [69] considered a planar rearrangement
problem, where the solid circles are the current object positions and the hollow
circles are their target positions. (b): An illustration of the monotone (LP1)
assumption used in [69], in which case each object can move at most once
and the planner only needs to determine the order of object movements. The
size of a search tree becomes manageable under such an assumption.

Because these problems are intractable in the worst-case,
theoretical analysis has turned to identifying problem sub-
classes that admit tractable algorithms, and to identify struc-
tures to accelerate planning for easier problem instances. In the
context of arrangement, the problem classes of FP and LP [8]
lend themselves to efficient solvers. We define a motion plan,
for a specific object and target, to be feasible if the object
can be moved to its target, considering all other objects as
obstacles. The set of flat problems (FP) are defined as those
in which every sequence of motion plans is feasible. These
problems are easily solved by picking any ordering and calling
motion planners. The set of linear problems (LP) are defined
as problems in which there exists an ordering of objects that
admit a sequence of feasible plans. Such problems are also
known as monotone and are illustrated in Figure 15. The
LP problem class is more challenging than FP, because it
requires searching over m! potential permutations of object
orderings. To accelerate such a search, a dependency graph
structure can be defined over the m obstacles which marks
which obstacles block the plan of other obstacles, and the
search can be efficiently restricted to sequences that obey the
dependency structure [8, 70, 101].

For more general tasks, a similar problem class LP1 was
defined as the set of problems that can be solved by moving
each object at most once, and was proposed originally in a
navigation context [123]. Note that the target of each object is
not defined in navigation tasks, so the planner chooses both the
sequence and the final location of each object, and hence this
problem subclass involves placement and singulation tasks.
The object location should be chosen to change the connect-
edness of the feasible configuration space (C-space) of the
robot and subsequent objects. In low-dimensional problems,
the C-space connectivity for any given object arrangement
can be enumerated, and obstacles affecting the connectiv-
ity can be detected as well [123]. This concept also leads
to a dependency-graph-like structure that can accelerate the
efficiency of search-based solvers. Divide-and-conquer and
backchaining approaches can also be employed as in [95].

More complex non-monotone problems require moving
objects aside to intermediate locations, and Ben-Shahar and
Rivlin [8] introduced another rearrangement problem class LP-
ε in which each object can be moved at most a distance ε from
their original location. This problem class requires solving
two LP problems, one to move objects to their intermediate

targets, and second to move objects to their final targets. The
more general LPk problem class allows each object to be
moved up to k times, and Stilman and Kuffner [124] presented
a search-based planner to address these problems. Yet more
complex problems require the robot to move more than one
object simultaneously, but rigorous solutions to such problems
have received relatively little attention in the literature.

C. Task-Specific Solution Techniques

Despite pessimistic worst-case bounds, many tasks admit
heuristics and simplifying assumptions that lead to practical
solution techniques.

Analytical heuristics: Modern rearrangement planners ac-
celerate the process of generating a discrete rearrangement
plan using dependency graphs or other data structures [48, 69,
70, 71]. Krontiris et al. [70] use a pebble graph formulation
in which unlabeled rearrangement queries may be answered
via the linear-time feasibility test [4]. Krontiris and Bekris
[71] can solve non-monotone instances of labeled rearrange-
ment problems, where each object can be moved to multiple
intermediary positions but stays at their final position once
reached. This class of non-monotone instances is identified
with the classical “Tower of Hanoi” puzzle.

A heuristic search method for pushing (sweeping) many
dirt particles [31] used assignments to the closest goal as the
heuristic. When assignments are mutually exclusive, i.e., no
two objects can occupy the same goal, an assignment cost can
be calculated as a minimization of estimated costs over any
assignment of objects to goals, which can be solved using a
linear program (e.g., Hungarian algorithm). This heuristic was
applied for large-scale sorting-by-pushing in both randomized
local search [55] and receding-horizon search [102] to scale
to dozens of objects.

A heuristic for loose-packing [20] uses the overlapping vol-
ume as a heuristic for candidate object locations. A placement
with lower overlap is likely to move fewer objects aside and
with lower displacement than one with higher overlap.

A common heuristic for navigation problems is the use
of a guide path for the robot that avoids obstacles as much
as possible to identify a small set of objects that should be
moved aside [17, 123]. These objects can then be focused
on using heuristic manipulation strategies [17] or breadth-first
search [123].

Dense packing problems have a long history in both 2D [89]
and 3D bin packing [92], and are solved using search or var-
ious heuristics, such as the deepest-bottom-left-first (DBLF)
heuristic. Dense-packing using robot manipulators have been
considered recently with the key problem being the loading
location. A heuristic greedy search using a variant of DBLF
has been shown to pack more tightly given concavities found
in non-convex objects [135].

Divide-and-conquer and backchaining approaches: These
methods can be employed to speed up the search for ob-
ject orderings [95]. Backward reasoning has also been used
for placement planning to identify objects that need to be
moved aside for the target object [20]. Breadth-first search
is performed backward over a sequence of object pushes, and

Fetch Coke From
the Fridge

Take Out
the Coke

Open the
Fridge Door

Close the
Fridge Door

Door is
Closed

Door is
Open

Door is
Open

Door is
Closed

Coke is
Inside the

Fridge

Coke is
in human’s

hand

Task Planning

Atomic Actions

Fluent Change with
Actions (Causlity)

Motion Planning

Motion Primitives Grasp TransferGrasp Pull Grasp Push

Fig. 16. We re-draw the TAMP illustration from [87] for planning a drink-
fetching task. The task planner first determines the sequence of actions: open
door, take the coke, and close door. Each action has pre- and post-conditions,
which are input to the motion planner. The motion planner then seeks to
satisfy these conditions in the parametric space of motion primitives.

restricted to objects that overlap the target placement. If a push
makes a contact with another object, that the object is added
to the list of candidate objects. In the simplified setting of a
singulation problem where objects can be removed, recursive
backchaining can determine the order of obstacle removal to
reach a target object [78].

Greedy approaches are often successful in singulation and
declutter problems, i.e., repeatedly selecting the next object to
be moved by optimizing some value function, and then invok-
ing a low-level planner to compute the trajectory. For singula-
tion, prior works [14, 61, 73] rely on perception information to
evaluate affordance and value of singulation actions, and pick
the action with maximum value. For declutter, object selector
should take into account clutter/pile stability and/or low-level
planner feasibility. Prior works [100, 130] propose several
heuristic selection rules based on the geometric relationships
(e.g., height, contact normals) between objects. Sorting tasks,
in which singulation of piles is the primary concern, can
also be addressed by heuristics that determine whether to
spread out a pile or perform a pick-and-place action [44].
Simple clustering metrics can be used as value functions for
decluttering small particles, such as food pieces [126]. Han
et al. [47] study picking from objects placed on a conveyor
belt, and show that their optimal solution determined by an
exhaustive search is approximately 10% better than a first-
in-first-out heuristic. Another benefit of greedy approaches is
that they can be applied both for planning and for closed-
loop control. However, greedy approaches can get stuck in
local minima, particularly for problems that require multi-step
interactions.

Value and Q-function learning: To boost the performance
of greedy approaches, several researchers have considered
learning a value function or Q-function via reinforcement
learning, which can then be greedily ascended. Q-functions
Q(x, a) are highly related to value functions V (x) since they
predict the value of taking an action in a given state. For
example, decluttering has been cast as a reinforcement learning
(RL) problem that predicts the values of singulation actions
such as pushing, grasping, or sliding [10, 12, 16, 30, 60, 145].
Using simulation or real experience, rewards are awarded for

Fig. 17. Song et al. [120] proposed to cluster planar objects by their color.
They used only push actions and successfully solve these problem instances
within 200 actions.

successful grasps but penalties are awarded for unsuccessful
ones. A recent trend is the use of deep networks in end-to-
end methods, such as deep Q-learning, that predict values from
sensor images without an intermediate state representation [10,
30, 60, 145]. These methods can use images annotated in
the pixel space, e.g., with a segmentation mask [30], but
otherwise avoid a separate perception step. A closely related
notion to Q-functions is energy-based models, which learns
an energy E(x, a) such that the optimal action corresponds
to an extremum of E. It has been shown in [36] that energy-
based models out-perform RL on some multi-object, contact-
rich manipulation tasks.

Policy learning: RL has also been used to learn manipula-
tion policies directly. Recent works have used policy learning
to address robot packing problems [53, 148]. The policy
of MCTS rollout step can also be learned to improve the
assessment of the value function at non-terminal nodes [120].
This approach has been shown to have considerable boost the
success rate compared to random rollouts and is able to sort
dozens of objects (Figure 17). Instead of RL, learning from
demonstration has also been employed to learn the MCTS
rollout policy for pushing rearrangement tasks [67].

Tuning or learning the action sampling strategy: The distri-
bution of actions chosen by a sampling-based motion planner,
heuristic search, and MCTS can be tuned or learned for
better performance. We already discussed affordance predic-
tion in Section III, which limits the number of actions that
are explored in decision-making. Clustering heuristics were
employed to identify promising actions for search in the task
of decluttering dirt [31]. King et al. [65] employed a mixture
of robot- and object-centric action samplers in a sampling-
based motion planner and demonstrated superior performance
compared to either sampler alone. Prioritization of object
orientations that would be stable on a flat surface was shown
to greatly improve the speed of dense packing [135].

D. Common Design Choices

In Table V, we summarize the common assumptions or
design choices used across multiple tasks and analyze their im-
plications. We select prior works that have explicitly claimed
their assumptions. Some recent learning-based techniques
might implicitly rely on these assumptions in the constructing
of datasets or the design of experiments.
● Separation is widely used in rearrangement, decluttering,

and sorting-by-packing tasks, and it assumes objects are
sufficiently far from one another that grasping is always
feasible and no object-object interaction occurs.

● Finite state space assumes that objects can only take on a
discrete set of poses. This permits the use of combinatorial
search which can provide a completeness or optimality
guarantee within the set of allowed states.

● Finite action space assumes that the robot can only take
finitely many possible actions, e.g., push along 8 different
directions [120] or move in a grid [29]. This assumption en-
ables search-based planners (e.g., A*, MCTS) to be applied
directly without dynamic sampling of actions.

● The sequential assumption restricts the robot from moving
more than one object at the same time. This also disallows
multiple robots to operate simultaneously as in [114].

● The planar assumption restricts reasoning of robot and/or
object movement to a plane. Perception is also simplified,
since the state of the system is fully observed. In some
settings, overhead grasping is allowed but the objects always
return to a plane.

● The monotone assumption limits the number of times each
object can be moved to reach their goal positions, including
the LP∗ problem classes. The Hanoi tower assumption is
a special form that assumes objects can be moved multiple
times but they stay fixed after reaching their goals [71].

● Manipulation operator assumptions restrict the number of
possible high-level actions performed on objects. 3D Grasp
is the most general, and considers the full 3D geometry
of the object and gripper. Planar Grasp is often used in
navigation amongst movable obstacles, and allows the robot
to touch the object at a single point to achieve prehensile
contact. Planar Push uses non-prehensile pushing operations
in a plane. Shift is a special operator used in object singula-
tion in which the gripper touches an object from above and
slides it horizontally [10].

Table V reveals the two most effective assumptions being
sequential and planar, which have been used for all the tasks
in both early and recent works. Yet there is a trend in recent
research to lift the sequential assumption in sorting tasks and
consider simultaneous object motions using planar pushing
actions. Another effective way to simplify the problem is by
restricting the sub-class of problems to LPk or “Puzzle of
Hanoi”. Methods with such restrictions can typically provide
completeness guarantees. Other assumptions (separation, finite
states, and finite actions) are exclusively used for navigation
and rearrangement.

E. Trends and Open Problems

Heuristic versus complete planner: Since manipulation

TABLE V
SUMMARIZING COMMON DECISION-MAKING ALGORITHM CHARACTERISTICS. WE ADD A ∗ AFTER THE PROBLEM CLASS IF A METHOD
CAN FURTHER PROVIDE COMPLETENESS GUARANTEE, I.E., SOLVE ALL FEASIBLE PROBLEM INSTANCES IN THAT CLASS. THE POSSIBLE

MANIPULATION OPERATORS ARE: 3DG=3D GRASP, 3DGT=3D GRASP+TOSSING, PG=PLANAR GRASP, PP=PLANAR PUSH,
GP=GRASP+PUSH, GS=GRASP+SHIFT.

Manipulation Task Reference Separation Finite States Finite Actions Sequential Planar Problem Class Operator

Navigation [123] ✓ ✓ ✓ ✓ LP ∗1 PG
Navigation [124] ✓ ✓ ✓ ✓ LP ∗k PG
Declutter [100] ✓ 3DG
Declutter [128] ✓ ✓

Declutter [12] GP
Singulation [14] ✓ ✓ 3DG
Singulation [10] ✓ ✓ GS
Rearrangement [101] ✓ ✓ ✓ Hanoi PG
Rearrangement [71] ✓ ✓ ✓ ✓ ✓ Hanoi∗ 3DG
Rearrangement [114] ✓ ✓ ✓ ✓ ✓ LP ∗1 3DG
Loose-Packing [147] ✓ 3DGT
Dense-Packing [135] ✓ 3DG
Navigation/

Placing [66, 67, 68] ✓ PP

Placing [20] ✓ ✓ PP
Sorting-by-Packing/

Declutter [129] ✓ ✓ 3DG

Sorting-by-Clustering/
Declutter [31, 126] ✓ PP

Sorting-by-Clustering [120] ✓ ✓ PP

tasks are mostly NP-hard, relatively few prior works [47,
95, 114, 123, 124, 128] have analyzed planner optimality.
Other works are either heuristic or only provide probabilistic
completeness guarantee [65, 71, 136]. In practice, the benefits
of providing completeness or optimality guarantees are not
well understood. For example, MCTS can only approach
optimal actions in the sampling limit. The case is similar with
sampling-based motion planners. Due to the complexity of
the problem and dimensionality of search spaces, planners can
seldom get close to these limits in practice. On the other hand,
we lack a systematic comparison of the effectiveness of various
heuristics. The unanswered questions involve: Whether there
exists a polynomial-time approximation scheme for NP-hard
problem instances? To what extent a heuristic method performs
worse than a complete or optimal algorithm? We noticed recent
work [127] that shows the dynamic-programming heuristic has
close-to-optimal performance in declutter problems and [114]
compared the empirical performance of heuristic methods and
the optimal mixed-integer programming method on rearrange-
ment tasks, which are good starting points.

Reasoning about simultaneous object movements: The vast
majority of past works assume one object moved at once,
which leads to better tractability in combinatorial search, but
with limited efficiency. Problems that are solvable with k ob-
jects moved simultaneously have been denoted SP k [8]. Prior
works on sorting [55, 102, 120, 126] and placement [20, 117]
have enabled robots to push multiple objects simultaneously in
greedy or receding-horizon. But due to the limited prediction
horizon, completeness or optimality cannot be proven, leaving
an open question for future theoretical work.

Learning-based approaches: Most learning-based tech-
niques so far have used supervised learning from sampled
datasets, either trained via simulation or on real systems [120,
144, 147]. Pure reinforcement learning techniques have not
been extensively used in multi-object manipulations, except

for [60, 64, 145]. This is presumably due to the sensitiv-
ity of reinforcement learning to parameters, insufficient data
efficiency, and sim-to-real discrepancy. Moreover, end-to-end
visual-motor policies are less explainable and unfriendly to
parameter tuning as compared with training different sub-
network modules. Indeed, several works have shown that
learning can play an assistive role to guide an online planner,
such as learned rollout policies that guide MCTS [120].

Mechanism and behavior co-design: The vast majority of
research on multi-object manipulation assumes a fixed design
of robot and end-effectors. Multi-object push with non-end-
effector limbs [21] or grasp with a multi-fingered hand [50],
claw, or scoop could improve task efficiency. The tool choice
question is still underappreciated in the multi-object manipu-
lation literature, and would be interesting to explore since the
choice of tool geometry, material, and actuation characteristics
can influence the performance and completeness of planning.

Feedback control: The vast majority of decision-making
work does not explicitly reason about uncertainty and errors,
and if any approach is taken at all, it is likely to involve
reactive replanning. Greedy methods and receding-horizon
methods, such as MCTS, are well suited to replanning. To
improve the robustness of multi-object manipulation in real
systems, the robot can be augmented with operators to correct
for uncertainty [115], or reason explicitly about uncertainty in
prediction [3, 67, 73, 136].

VI. CONCLUDING DISCUSSIONS

From its roots in theoretical planning research, multi-object
manipulation has matured quickly in the last few years to
achieve practical demonstrations on physical robot systems.
Several open problems remain for multi-object manipulation
research, and overcoming these issues will help accelerate the
pace of innovation towards the goal of real-world deployment.

Combining learning and analytical approaches: Research
trends are increasingly integrating learning components into
perception, prediction, and decision making. End-to-end learn-
ing approaches represent one end of the spectrum, but analyt-
ical approaches still outperform learning in complex planning
problems and are more practical when experience is expensive
to collect. A major challenge for future work is combining
the two paradigms to build adaptive, scalable, and practical
systems.

Integration with open-world perception: Perception systems
for multi-object manipulation typically make strong assump-
tions, such as known objects and a top-down or nearly
occlusion-free view. To lift these assumptions and move robots
out of controlled settings, a perception algorithm needs to han-
dle a diverse range of objects and severely occluded scenarios.
In addition, the perceptor should be aware of outliers including
non-movable or irrelevant objects. A deeper understanding
of uncertainties can also be integrated into planning and
prediction. Prior works have the robot proactively push objects
to determine mobility [142] and change viewpoints to discover
unseen objects [57]. Another intriguing direction is to use
quasistatic force analysis to help infer states of unseen objects
[113]. Yet another topic that has been lightly explored is
incorporating human preferences into goals for planning, such
as rearranging objects to be more aesthetically pleasing in
retail applications, or to maximize accessibility of frequently
used items in kitchens.

Eulerian versus Lagrangian prediction: Lagrangian models
have predominated the many-object manipulation community
for decades, while Eulerian alternatives have been explored
only recently [31, 126]. Eulerian models are known to be
more efficient with a high number of objects while Lagrangian
models favor fidelity and allow modeling accurate contact
mechanics. However, it is unclear what is the best point
of switching between the two models and how to combine
their merits. A promising direction is to identify important
objects as done in [116] and then use different representations
for the important and less-important ones. Further, Eulerian
models can seamlessly work with a perceptor in image feature
space, but it is less amenable to planning algorithms that are
based on object-centric representations. Further investigations
of Eulerian models are needed to unlock their full potential in
terms of efficiency, fidelity, and amenability to planning and
perception.

Connections with continuum manipulation and scaling to
many objects: There is a recent surge of interest in continuum
manipulation such as liquid transfer [83, 103, 112], sand
paving [64], and shaping of plastic objects [18, 85, 143].
Indeed, a continuum manipulation can be approximated as a
multi-object manipulation problem by modeling the continuum
as a large number of particles stitched together via material-
specific constitutive laws [84, 85, 111]. With many particles,
it is not possible to reason about particles one by one, and in-
stead continuum manipulation approaches tend to use Eulerian
models (see e.g., [72]) and parameterized manipulation actions
(e.g., liquid transfer by pouring, sand paving by scooping, and
plastic shaping by pushing). Decision-making has been guided
by simple control rules such as PID control [111], trajectory

optimization [103] and heuristics [18]. Similar strategies have
been adopted in multi-object manipulation for declutter tasks
[31, 126].

The line between multi-object and continuum manipulation
problems becomes blurry as the number of objects m grows.
At first glance, complete planning appears intractable with
large m, unless the unit of reasoning is relaxed to include
groups of objects (e.g., clusters of particles that are simulta-
neously movable [55]). By reasoning about groups, the action
space and thus branching factor can be reduced. However,
it is unclear how to determine the best decision granularity
for all problems. Investigating the large m problem has the
potential to make novel contributions to both the multi-object
and continuum domains.

ACKNOWLEDGEMENT

This work is partially supported by an Amazon Research
Award and NSF Grant #1911087. We thank all the authors to
grant us the permission to use the figures in their papers.

REFERENCES

[1] R. Alami, J.-P. Laumond, and T. Siméon, “Two manipulation
planning algorithms,” in WAFR Proceedings of the workshop
on Algorithmic foundations of robotics, AK Peters, Ltd.,
1994, pp. 109–125.

[2] R. Alami, T. Simeon, and J.-P. Laumond, “A geometrical
approach to planning manipulation tasks. the case of dis-
crete placements and grasps,” in International Symposium on
Robotics Research, MIT Press, 1990, pp. 453–463.

[3] A. S. Anders, L. P. Kaelbling, and T. Lozano-Perez, “Reliably
arranging objects in uncertain domains,” in 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2018, pp. 1603–1610.

[4] V. Auletta, A. Monti, M. Parente, and P. Persiano, “A linear-
time algorithm for the feasibility of pebble motion on trees,”
Algorithmica, vol. 23, no. 3, pp. 223–245, 1999.

[5] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng,
V. Koltun, S. Levine, J. Malik, I. Mordatch, R. Mottaghi,
et al., “Rearrangement: A challenge for embodied AI,”
vol. abs/2011.01975, 2020.

[6] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, and
k. kavukcuoglu, “Interaction networks for learning about
objects, relations and physics,” in Advances in Neural In-
formation Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds., Curran
Associates, Inc., 2016, pp. 4502–4510.

[7] W. Bejjani, R. Papallas, M. Leonetti, and M. R. Dogar,
“Planning with a receding horizon for manipulation in clutter
using a learned value function,” in 2018 IEEE-RAS 18th
International Conference on Humanoid Robots (Humanoids),
2018, pp. 1–9.

[8] O. Ben-Shahar and E. Rivlin, “Practical pushing planning
for rearrangement tasks,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 4, pp. 549–565, 1998.

[9] D. J. Benson and S. Okazawa, “Contact in a multi-material
eulerian finite element formulation,” Computer Methods in
Applied Mechanics and Engineering, vol. 193, no. 39,
pp. 4277–4298, 2004, The Arbitrary Lagrangian-Eulerian
Formulation.

[10] L. Berscheid, P. Meißner, and T. Kröger, “Robot learning
of shifting objects for grasping in cluttered environments,”
in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 612–618.

[11] A. Billard and D. Kragic, “Trends and challenges in robot
manipulation,” Science, vol. 364, no. 6446, 2019.

[12] A. Boularias, J. A. Bagnell, and A. Stentz, “Learning to
manipulate unknown objects in clutter by reinforcement,”
in 29th AAAI Conference on Artificial Intelligence, AAAI
2015 and the 27th Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2015, AI Access Foundation, 2015,
pp. 1336–1342.

[13] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach
to intricate motion, manipulation and task planning,” The
International Journal of Robotics Research, vol. 28, no. 1,
pp. 104–126, 2009.

[14] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of
objects from a pile,” in 2012 IEEE International Conference
on Robotics and Automation (ICRA), 2012, pp. 3875–3882.

[15] L. Y. Chang, S. S. Srinivasa, and N. S. Pollard, “Planning
pre-grasp manipulation for transport tasks,” in 2010 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2010, pp. 2697–2704.

[16] J. Chen, T. Fujinami, and E. Li, “Deep Bin Picking with
Reinforcement Learning,” 2017.

[17] P. C. Chen and Y. K. Hwang, “Practical path planning among
movable obstacles,” in 1991 IEEE International Conference
on Robotics and Automation (ICRA), 1991, 444–449 vol.1.

[18] A. Cherubini, V. Ortenzi, A. Cosgun, R. Lee, and P. Corke,
“Model-free vision-based shaping of deformable plastic ma-
terials,” The International Journal of Robotics Research,
vol. 0, no. 0, p. 0 278 364 920 907 684, 0.

[19] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo,
K. Hauser, K. Okada, A. Rodriguez, J. M. Romano, and
P. R. Wurman, “Analysis and observations from the first ama-
zon picking challenge,” IEEE Transactions on Automation
Science and Engineering, vol. 15, no. 1, pp. 172–188, 2016.

[20] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push
planning for object placement on cluttered table surfaces,”
in 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2011, pp. 4627–4632.

[21] A. Cosgun, L. Ditria, S. D’Lima, and T. Drummond, “Em-
bracing contact: Pushing multiple objects with robot’s fore-
arm,” ArXiv, vol. abs/1906.06866, 2019.

[22] N. C. Dafle, R. Holladay, and A. Rodriguez, “In-hand ma-
nipulation via motion cones,” in Proceedings of Robotics:
Science and Systems, Pittsburgh, Pennsylvania, Jun. 2018.

[23] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and
L. E. Kavraki, “Incremental task and motion planning: A
constraint-based approach.,” in Robotics: Science and sys-
tems, Ann Arbor, MI, USA, vol. 12, 2016, p. 00 052.

[24] E. D. Demaine, M. L. Demaine, and J. O’Rourke, “PushPush
and Push-1 are NP-hard in 2D,” in Proceedings of the 12th
Annual Canadian Conference on Computational Geometry
(CCCG 2000), Fredericton, New Brunswick, Canada, Aug.
2000, pp. 211–219.

[25] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and
D. Fox, “Poserbpf: A rao-blackwellized particle filter for 6d
object pose tracking,” Robotics: Science and Systems (RSS),
2019.

[26] M. Dogar and S. Srinivasa, “A framework for push-grasping
in clutter,” Robotics: Science and Systems VII, pp. 65–72,
2011.

[27] M. R. Dogar, M. C. Koval, A. Tallavajhula, and S. S.
Srinivasa, “Object search by manipulation,” in 2013 IEEE
International Conference on Robotics and Automation, 2013,
pp. 4973–4980.

[28] S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski,
and A. Rodriguez, “Tactile-rl for insertion: Generalization
to objects of unknown geometry,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2021,
pp. 6437–6443.

[29] D. Dor and U. Zwick, “SOKOBAN and other motion
planning problems,” Computational Geometry: Theory and
Applications, 1999.

[30] A. Eitel, N. Hauff, and W. Burgard, “Learning to Sin-
gulate Objects Using a Push Proposal Network,” ArXiv,
vol. abs/1707.08101, 2020.

[31] S. Elliott and M. Cakmak, “Robotic cleaning through dirt
rearrangement planning with learned transition models,” in
2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2018, pp. 1623–1630.

[32] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and
T. Uras, “Combining high-level causal reasoning with low-
level geometric reasoning and motion planning for robotic
manipulation,” in 2011 IEEE International Conference on
Robotics and Automation, IEEE, 2011, pp. 4575–4581.

[33] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for
model-based robotics: Comparison of bullet, havok, mujoco,
ode and physx,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 4397–4404.

[34] N. Fazeli, M. Oller, J. Wu, Z. Wu, J. B. Tenenbaum, and
A. Rodriguez, “See, feel, act: Hierarchical learning for com-
plex manipulation skills with multisensory fusion,” Science
Robotics, 2019.

[35] P. Florence, L. Manuelli, and R. Tedrake, “Self-supervised
correspondence in visuomotor policy learning,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 492–499,
2020.

[36] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid,
L. Downs, A. Wong, J. Lee, I. Mordatch, and J. Tompson,
“Implicit behavioral cloning,” Conference on Robot Learning
(CoRL), Nov. 2021.

[37] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid,
L. Downs, A. Wong, J. Lee, I. Mordatch, and J. Tompson,
“Implicit behavioral cloning,” in Conference on Robot Learn-
ing, PMLR, 2022, pp. 158–168.

[38] W. Gao and R. Tedrake, “Kpam 2.0: Feedback control for
category-level robotic manipulation,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2962–2969, 2021.

[39] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver,
L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task and
motion planning,” Annual review of control, robotics, and
autonomous systems, vol. 4, pp. 265–293, 2021.

[40] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob:
An efficient heuristic for task and motion planning,” in
Algorithmic Foundations of Robotics XI, Springer, 2015,
pp. 179–195.

[41] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding
with dry friction. part 1. limit surface and moment function,”
Wear, no. 143, 307––330, 1991.

[42] F. Gravot, S. Cambon, and R. Alami, “Asymov: A planner
that deals with intricate symbolic and geometric problems,”
in Robotics Research. The Eleventh International Symposium,
Springer, 2005, pp. 100–110.

[43] O. Groth, F. B. Fuchs, I. Posner, and A. Vedaldi, “Shapes-
tacks: Learning vision-based physical intuition for gener-
alised object stacking,” in The European Conference on
Computer Vision (ECCV), Sep. 2018.

[44] M. Gupta and G. S. Sukhatme, “Using manipulation prim-
itives for brick sorting in clutter,” in 2012 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2012,
pp. 3883–3889.

[45] M. Halm and M. Posa, “Modeling and Analysis of
Non-unique Behaviors in Multiple Frictional Impacts,” in
Robotics: Science and Systems (RSS), Freiburg im Breisgau,
Germany, 2019.

[46] P. Hämäläinen, J. Rajamäki, and C. K. Liu, “Online control
of simulated humanoids using particle belief propagation,”
ACM Trans. Graph., vol. 34, no. 4, Jul. 2015.

[47] S. D. Han, S. W. Feng, and J. Yu, “Toward fast and op-
timal robotic pick-and-place on a moving conveyor,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 446–453,
2020.

[48] S. D. Han, N. M. Stiffler, K. E. Bekris, and J. Yu, “Effi-
cient, high-quality stack rearrangement,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1608–1615, 2018.

[49] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and
J. Yu, “Complexity results and fast methods for optimal
tabletop rearrangement with overhand grasps,” The Inter-
national Journal of Robotics Research, vol. 37, no. 13-14,
pp. 1775–1795, 2018.

[50] K. Harada and M. Kaneko, “Kinematics and internal force in
grasping multiple objects,” in 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 1,
1998, 298–303 vol.1.

[51] K. Hauser and J.-C. Latombe, “Multi-modal planning in non-
expansive spaces,” Intl. J. of Robotics Research, vol. 29,
no. 7, pp. 897–915, 2010.

[52] J. Hopcroft, J. Schwartz, and M. Sharir, “On the complexity
of motion planning for multiple independent objects; pspace-
hardness of the ”warehouseman’s problem”,” The Interna-
tional Journal of Robotics Research, vol. 3, no. 4, pp. 76–88,
1984.

[53] R. Hu, J. Xu, B. Chen, M. Gong, H. Zhang, and H. Huang,
“Tap-net: Transport-and-pack using reinforcement learning,”
ACM Trans. Graph., vol. 39, no. 6, Nov. 2020.

[54] B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep
interaction prediction network with application to clutter
removal,” ArXiv, vol. abs/2011.04692, 2020.

[55] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object
rearrangement,” in 2019 IEEE International Conference on
Robotics and Automation (ICRA), 2019, pp. 211–218.

[56] M Jaward, L Mihaylova, N Canagarajah, and D Bull, “Mul-
tiple object tracking using particle filters,” in 2006 IEEE
Aerospace Conference, IEEE, 2006, 8–pp.

[57] D. Jayaraman and K. Grauman, “Learning to look around:
Intelligently exploring unseen environments for unknown
tasks,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 1238–1247.

[58] Jiaji Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason,
“A convex polynomial force-motion model for planar slid-
ing: Identification and application,” in 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016,
pp. 372–377.

[59] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping
from rgbd images: Learning using a new rectangle represen-
tation,” in 2011 IEEE International Conference on Robotics
and Automation, 2011, pp. 3304–3311.

[60] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E.
Jang, D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke,
and S. Levine, “Scalable deep reinforcement learning for
vision-based robotic manipulation,” in Proceedings of The
2nd Conference on Robot Learning, A. Billard, A. Dragan,
J. Peters, and J. Morimoto, Eds., ser. Proceedings of Machine
Learning Research, vol. 87, PMLR, Oct. 2018, pp. 651–673.

[61] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and
A. Stentz, “Perceiving, learning, and exploiting object af-
fordances for autonomous pile manipulation,” Autonomous
Robots, vol. 37, no. 4, pp. 369–382, 2014.

[62] L. E. Kavraki and M. N. Kolountzakis, “Partitioning a
planar assembly into two connected parts is np-complete,”
Information Processing Letters, vol. 55, no. 3, pp. 159–165,
1995.

[63] M. Kiatos and S. Malassiotis, “Robust object grasping in clut-
ter via singulation,” in 2019 IEEE International Conference
on Robotics and Automation (ICRA), 2019, pp. 1596–1600.

[64] W. Kim, C. Pavlov, and A. M. Johnson, “Developing a
Simple Model for Sand-Tool Interaction and Autonomously
Shaping Sand,” ArXiv, vol. abs/1908.02745, 2019.

[65] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrange-
ment planning using object-centric and robot-centric action

spaces,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 3940–3947.

[66] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. As-
four, “Nonprehensile whole arm rearrangement planning on
physics manifolds,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 2508–2515.

[67] J. E. King, V. Ranganeni, and S. S. Srinivasa, “Unobservable
monte carlo planning for nonprehensile rearrangement tasks,”
in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 4681–4688.

[68] J. E. King and S. S. Srinivasa, “Rearrangement Planning via
Heuristic Search,” ArXiv, vol. abs/1603.08642, 2016.

[69] A. Krontiris and K. E. Bekris, “Efficiently solving general
rearrangement tasks: A fast extension primitive for an in-
cremental sampling-based planner,” in 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016,
pp. 3924–3931.

[70] A. Krontiris, R. Shome, A. Dobson, A. Kimmel, and K.
Bekris, “Rearranging similar objects with a manipulator using
pebble graphs,” in 2014 IEEE-RAS International Conference
on Humanoid Robots, 2014, pp. 1081–1087.

[71] A. Krontiris and K. E. Bekris, “Dealing with difficult in-
stances of object rearrangement,” Robotics: Science and
Systems (RSS), 2015.

[72] K.-S. Ku, C.-H. An, K.-C. Li, and M.-I. Kim, “An eulerian
model for the motion of granular material with a large stokes
number in fluid flow,” International Journal of Multiphase
Flow, vol. 92, pp. 140–149, 2017.

[73] N. B. Kumbla, S. Thakar, K. N. Kaipa, J. Marvel, and S. K.
Gupta, “Simulation based on-line evaluation of singulation
plans to handle perception uncertainty in robotic bin picking,”
in ASME 2017 12th International Manufacturing Science and
Engineering Conference, MSEC 2017 collocated with the
JSME/ASME 2017 6th International Conference on Materials
and Processing, 2017.

[74] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Car-
pentier, M. Aubry, and J. Sivic, “Monte-carlo tree search
for efficient visually guided rearrangement planning,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3715–
3722, 2020.

[75] L. Ladický, S. Jeong, B. Solenthaler, M. Pollefeys, and
M. Gross, “Data-driven fluid simulations using regression
forests,” ACM Trans. Graph., vol. 34, no. 6, Oct. 2015.

[76] A. S. Lambert, M. Mukadam, B. Sundaralingam, N. Ratliff,
B. Boots, and D. Fox, “Joint inference of kinematic and
force trajectories with visuo-tactile sensing,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), 2019,
pp. 3165–3171.

[77] D.-H. Lee, J. Kang, and P Xirouchakis, “Disassembly plan-
ning and scheduling: Review and further research,” Pro-
ceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, vol. 215, no. 5,
pp. 695–709, 2001.

[78] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obsta-
cle rearrangement for object manipulation tasks in cluttered
environments,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 183–189.

[79] I. Leizea, H. Álvarez, and D. Borro, “Real time non-rigid 3d
surface tracking using particle filter,” Computer Vision and
Image Understanding, vol. 133, pp. 51–65, 2015.

[80] D. I. W. Levin, J. Litven, G. L. Jones, S. Sueda, and D. K. Pai,
“Eulerian solid simulation with contact,” ACM Trans. Graph.,
vol. 30, no. 4, Jul. 2011.

[81] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end
training of deep visuomotor policies,” J. Mach. Learn. Res.,
vol. 17, no. 1, 1334–1373, Jan. 2016.

[82] Y. Li, J. Wu, J. Zhu, J. B. Tenenbaum, A. Torralba, and
R. Tedrake, “Propagation networks for model-based control
under partial observation,” in 2019 IEEE International Con-

ference on Robotics and Automation (ICRA), 2019, pp. 1205–
1211.

[83] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3d
neural scene representations for visuomotor control,” arXiv
preprint arXiv:2107.04004, 2021.

[84] Y. Li, T. Lin, K. Yi, D. Bear, D. Yamins, J. Wu, J. Tenen-
baum, and A. Torralba, “Visual grounding of learned physical
models,” in International conference on machine learning,
PMLR, 2020, pp. 5927–5936.

[85] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba,
“Learning particle dynamics for manipulating rigid bodies,
deformable objects, and fluids,” in International Conference
on Learning Representations, 2019.

[86] Y. Li, J. Wu, J.-Y. Zhu, J. B. Tenenbaum, A. Torralba, and
R. Tedrake, “Propagation networks for model-based control
under partial observation,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 1205–1211.

[87] J. Lin, X. Guo, J. Shao, C. Jiang, Y. Zhu, and S.-C. Zhu,
“A virtual reality platform for dynamic human-scene in-
teraction,” in SIGGRAPH ASIA 2016 virtual reality meets
physical reality: Modelling and simulating virtual humans
and environments, 2016, pp. 1–4.

[88] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg, “Ssd: Single shot multibox detector,”
in European conference on computer vision, Springer, 2016,
pp. 21–37.

[89] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional
packing problems: A survey,” European Journal of Opera-
tional Research, vol. 141, no. 2, pp. 241 –252, 2002.

[90] J. Mahler and K. Goldberg, “Learning deep policies for robot
bin picking by simulating robust grasping sequences,” in
Conference on Robot Learning (CoRL), 2017.

[91] L. Manuelli, Y. Li, P. Florence, and R. Tedrake, “Keypoints
into the future: Self-supervised correspondence in model-
based reinforcement learning,” in Conference on Robot
Learning (CoRL), 2020.

[92] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional
bin packing problem,” Operations Research, vol. 48, no. 2,
pp. 256–267, 2000.

[93] C. Melhuish, A. B. Sendova-Franks, S. Scholes, I. Hors-
field, and F. Welsby, “Ant-inspired sorting by robots: The
importance of initial clustering,” Journal of the Royal Society
Interface, vol. 3, no. 7, pp. 235–242, 2006.

[94] C. Mitash, A. Boularias, and K. Bekris, “Physics-based
scene-level reasoning for object pose estimation in clutter,”
The International Journal of Robotics Research, 2019.

[95] S. K. Moghaddam and E. Masehian, “Planning Robot Navi-
gation among Movable Obstacles (NAMO) through a Recur-
sive Approach,” Journal of Intelligent and Robotic Systems:
Theory and Applications, 2016.

[96] R. Mojtahedzadeh, A. Bouguerra, E. Schaffernicht, and A. J.
Lilienthal, “Support relation analysis and decision making for
safe robotic manipulation tasks,” Robotics and Autonomous
Systems, vol. 71, pp. 99–117, 2015.

[97] A. S. Morgan, B. Wen, J. Liang, A. Boularias, A. M. Dollar,
and K. Bekris, “Vision-driven Compliant Manipulation for
Reliable; High-Precision Assembly Tasks,” in Proceedings
of Robotics: Science and Systems, Virtual, Jul. 2021.

[98] C. Mucchiani and M. Yim, “A novel underactuated end-
effector for planar sequential grasping of multiple objects,”
in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 8935–8941.

[99] C. Nam, J. Lee, Y. Cho, J. Lee, D. H. Kim, and C.
Kim, “Planning for target retrieval using a robotic ma-
nipulator in cluttered and occluded environments,” ArXiv,
vol. abs/1907.03956,

[100] O. Ornan and A. Degani, “Toward autonomous disassem-
bling of randomly piled objects with minimal perturbation,”

in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013, pp. 4983–4989.

[101] J. Ota, “Rearrangement planning of multiple movable objects
by using real-time search methodology,” in 2002 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
vol. 1, 2002, 947–953 vol.1.

[102] Z. Pan and K. Hauser, “Decision making in joint push-grasp
action space for large-scale object sorting,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2021.

[103] Z. Pan and D. Manocha, “Motion planning for fluid ma-
nipulation using simplified dynamics,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 4224–4231.

[104] Z. Pan and K. Hauser, “Decision making in joint push-
grasp action space for large-scale object sorting,” in 2021
IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 6199–6205.

[105] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et
al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing
systems, vol. 32, pp. 8026–8037, 2019.

[106] D. Ratner and M. K. Warmuth, “Finding a shortest solution
for the nxn extension of the 15-puzzle is intractable.,” in
AAAI, 1986, pp. 168–172.

[107] J. H. Reif, “Complexity of the mover’s problem and gen-
eralizations,” in 20th Annual Symposium on Foundations of
Computer Science (sfcs 1979), 1979, pp. 421–427.

[108] D. Reznik and J. Canny, “A flat rigid plate is a univer-
sal planar manipulator,” in Proceedings. 1998 IEEE In-
ternational Conference on Robotics and Automation (Cat.
No.98CH36146), vol. 2, 1998, 1471–1477 vol.2.

[109] S. Rodriguez, M. Morales, and N. M. Amato, “Multi-agent
push behaviors for large sets of passive objects,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 4437–4442.

[110] R. Sarc, A. Curtis, L. Kandlbauer, K. Khodier, K. E. Lorber,
and R. Pomberger, “Digitalisation and intelligent robotics in
value chain of circular economy oriented waste management–
a review,” Waste Management, vol. 95, pp. 476–492, 2019.

[111] C. Schenck, “Liquids & Robots : An Investigation of Tech-
niques for Robotic Interaction with Liquids,” PhD thesis,
2018.

[112] C. Schenck, J. Tompson, S. Levine, and D. Fox, “Learning
robotic manipulation of granular media,” in Conference on
Robot Learning (CoRL), 2017.

[113] T. Shao, A. Monszpart, Y. Zheng, B. Koo, W. Xu, K. Zhou,
and N. J. Mitra, “Imagining the unseen: Stability-based
cuboid arrangements for scene understanding,” ACM Trans.
Graph., vol. 33, no. 6, Nov. 2014.

[114] R. Shome, K. Solovey, J. Yu, K. Bekris, and D. Halperin,
“Fast, high-quality two-arm rearrangement in synchronous,
monotone tabletop setups,” IEEE Transactions on Automation
Science and Engineering, 2021.

[115] R. Shome, W. N. Tang, C. Song, C. Mitash, H. Kourtev,
J. Yu, A. Boularias, and K. E. Bekris, “Tight robot packing
in the real world,” ArXiv, vol. 1903.0098, 2020.

[116] T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-
Pérez, and L. P. Kaelbling, “Planning with learned object
importance in large problem instances using graph neural
networks,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 13, pp. 11 962–11 971, May 2021.

[117] C. Song and A. Boularias, “Object rearrangement with nested
nonprehensile manipulation actions,” in 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 6578–6585.

[118] C. Song and A. Boularias, “A probabilistic model for planar
sliding of objects with unknown material properties: Identifi-
cation and robust planning,” in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 5311–5318.

[119] ——, “Learning to slide unknown objects with differentiable
physics simulations,” Robotics: Science and Systems (RSS),
2020.

[120] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang,
D. Kragic, and J. A. Stork, “Multi-Object Rearrangement
with Monte Carlo Tree Search: A Case Study on Planar
Nonprehensile Sorting,” ArXiv, vol. abs/1912.07024, 2019.

[121] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and
P. Abbeel, “Combined task and motion planning through an
extensible planner-independent interface layer,” in 2014 IEEE
international conference on robotics and automation (ICRA),
IEEE, 2014, pp. 639–646.

[122] D. E. Stewart, “Rigid-body dynamics with friction and im-
pact,” SIAM Review, vol. 42, no. 1, pp. 3–39, 2000.

[123] M. Stilman and J. Kuffner, “Navigation among movable
obstacles: Real-time reasoning in complex environments,”
in 4th IEEE/RAS International Conference on Humanoid
Robots, 2004., vol. 1, 2004, 322–341 Vol. 1.

[124] M. Stilman and J. Kuffner, “Planning among movable obsta-
cles with artificial constraints,” The International Journal of
Robotics Research, vol. 27, no. 11-12, pp. 1295–1307, 2008.

[125] J. Stüber, C. Zito, and R. Stolkin, Let’s Push Things Forward:
A Survey on Robot Pushing, 2020.

[126] H. J. T. Suh and R. Tedrake, “The surprising effectiveness
of linear models for visual foresight in object pile manipula-
tion,” Algorithmic Foundations of Robotics XIV, pp. 347–363,
Feb. 2021.

[127] W. N. Tang, S. D. Han, and J. Yu, “Computing high-
quality clutter removal solutions for multiple robots,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020.

[128] W. N. Tang and J. Yu, “Taming combinatorial challenges in
optimal clutter removal tasks,” ArXiv, vol. abs/1905.13530,
2019.

[129] A. K. Tanwani, N. Mor, J. Kubiatowicz, J. E. Gonzalez, and
K. Goldberg, “A fog robotics approach to deep robot learn-
ing: Application to object recognition and grasp planning in
surface decluttering,” in 2019 IEEE International Conference
on Robotics and Automation (ICRA), 2019, pp. 4559–4566.

[130] S. Temtsin and A. Degani, “Decision-making algorithms
for safe robotic disassembling of randomly piled objects,”
Advanced Robotics, 2017.

[131] M. Toussaint, “Logic-geometric programming: An
optimization-based approach to combined task and
motion planning,” in Proceedings of the 24th International
Conference on Artificial Intelligence, ser. IJCAI’15, Buenos
Aires, Argentina: AAAI Press, 2015, 1930–1936.

[132] A. Vardy, “Accelerated patch sorting by a robotic swarm,”
Proceedings of the 2012 9th Conference on Computer and
Robot Vision, CRV 2012, no. August, pp. 314–321, 2012.

[133] A. Vardy, G. Vorobyev, and W. Banzhaf, “Cache consensus:
Rapid object sorting by a robotic swarm,” Swarm Intelli-
gence, vol. 8, no. 1, pp. 61–87, 2014.

[134] K. Wada, S. Kitagawa, K. Okada, and M. Inaba, “Instance
segmentation of visible and occluded regions for finding and
picking target from a pile of objects,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2018, pp. 2048–2055.

[135] F. Wang and K. Hauser, “Stable bin packing of non-convex
3d objects with a robot manipulator,” in 2019 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2019,
pp. 8698–8704.

[136] F. Wang and K. Hauser, “Robot packing with known items
and nondeterministic arrival order,” Robotics: Science and
Systems (RSS), 2019.

[137] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu,
and A. Tacchetti, “Visual interaction networks: Learning

a physics simulator from video,” in Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, Eds., Curran Associates, Inc., 2017, pp. 4539–4547.

[138] ——, “Visual Interaction Networks: Learning a Physics
Simulator from Video,” in Advances in Neural Information
Processing Systems 30, I Guyon, U. V. Luxburg, S Bengio,
H Wallach, R Fergus, S Vishwanathan, and R Garnett, Eds.,
Curran Associates, Inc., 2017, pp. 4539–4547.

[139] M. Wilson, “Developments in robot applications for food
manufacturing,” Industrial Robot: An International Journal,
2010.

[140] L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez,
“Manipulation-based active search for occluded objects,”
in 2013 IEEE International Conference on Robotics and
Automation, 2013, pp. 2814–2819.

[141] K. Xu, H. Huang, Y. Shi, H. Li, P. Long, J. Caichen, W. Sun,
and B. Chen, “Autoscanning for coupled scene reconstruction
and proactive object analysis,” ACM Trans. Graph., vol. 34,
no. 6, Oct. 2015.

[142] ——, “Autoscanning for coupled scene reconstruction and
proactive object analysis,” ACM Trans. Graph., vol. 34, no. 6,
Oct. 2015.

[143] H. Yin, A. Varava, and D. Kragic, “Modeling, learning,
perception, and control methods for deformable object ma-
nipulation,” Science Robotics, vol. 6, no. 54, 2021.

[144] K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2fit: Learning
shape priors for generalizable assembly from disassembly,”
ArXiv, vol. abs/1910.13675, 2019.

[145] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and
T. Funkhouser, “Learning synergies between pushing and
grasping with self-supervised deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 4238–4245.

[146] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M.
Attarian, T. Armstrong, I. Krasin, D. Duong, V. Sindhwani,
et al., “Transporter networks: Rearranging the visual world
for robotic manipulation,” arXiv preprint arXiv:2010.14406,
2020.

[147] A. Zeng, S. Song, J. Lee, A. Rodriquez, and T. A.Funkouser,
“Tossingbot: Learning to throw arbitrary objects with residual
physics,” Robotics: Science and Systems (RSS), 2019.

[148] H. Zhao, Q. She, C. Zhu, Y. Yang, and K. Xu, “Online 3d
bin packing with constrained deep reinforcement learning,” in
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, AAAI Press, 2021,
pp. 741–749.

[149] J. Zhou, Y. Hou, and M. T. Mason, “Pushing revisited:
Differential flatness, trajectory planning, and stabilization,”
The International Journal of Robotics Research, vol. 38,
no. 12-13, pp. 1477–1489, 2019.

[150] J. Zhou, M. T. Mason, R. Paolini, and D. Bagnell, “A convex
polynomial model for planar sliding mechanics: Theory,
application, and experimental validation,” The International
Journal of Robotics Research, vol. 37, no. 2-3, pp. 249–265,
2018.

[151] J. Zhou, R. Paolini, A. M. Johnson, J. A. Bagnell, and
M. T. Mason, “A probabilistic planning framework for planar
grasping under uncertainty,” IEEE Robotics and Automation
Letters, vol. 2, no. 4, pp. 2111–2118, 2017.

	Introduction
	Multi-Object Manipulation Task Taxonomy
	Perception Algorithms
	Trends and Open Problems

	Predictive Models
	Rigid Body Predictive Model
	Contact Modeling
	Trends and Open Problems

	Decision-Making Algorithms
	Formulations of the Planning Problem
	Hardness of Multi-Object Manipulation
	Task-Specific Solution Techniques
	Common Design Choices
	Trends and Open Problems

	 Concluding Discussions

