BOUNDARY UNIQUE CONTINUATION ON C!-DINI DOMAINS
AND THE SIZE OF THE SINGULAR SET

CARLOS KENIG AND ZIHUI ZHAO

ABsTRACT. Let u be a harmonic function in a C'-Dini domain D C R? such that u vanishes
on a boundary surface ball D N Bsg(0). We consider an effective version of its singular set
(up to boundary) S(u) := {X € D : u(X) = [Vu(X)| = 0} and give an estimate of its (d — 2)-
dimensional Minkowski content, which only depends on the upper bound of some modified
frequency function of u centered at 0. Such results are already known in the interior and
at the boundary of convex domains, when the standard frequency function is monotone at
every point. The novelty of our work on Dini domains is how to compensate for the lack of
such monotone quantities at boundary as well as interior points.
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1. INTRODUCTION

In this paper, we study the size of the singular set when u is a harmonic function in
the Dini domain D ¢ R?, such that u vanishes on an open set of the boundary. (Dini
domains are C' domains given locally by graphs of functions whose gradient has a Dini
modulus of continuity, see Definition 2.1.) More precisely, suppose u = 0 on the surface
ball Bsg(0) N dD with 0 € dD, we show that inside a smaller ball B Kl #(0), the singular set
Sw) = {X € D : u(X) = |[Vu(X)| = 0} is (d — 2)-rectifiable, and moreover its (d — 2)-
dimensional Minkowski content is bounded by a constant depending on the upper bound of
No(4R), the frequency function of u centered at 0.

Theorem 1.1. Let R, A > 0 be fixed. There exists r. > 0 such that for any (u, D) € H(R, A)
(see Definition 2.4) and any ro € (0,r.), the effective singular set C,(u) N N(u) (see the
definitions in Section 2) has the (d — 2)-dimensional Minkowski bound

Md=2 (éro(u) AN N BI%(O)> < C(d,R, ).
In particular the singular set satisfies
MI2(Sw) N Bg (0)) < CA,R,A),

and S(u) N BI%(O) is (d — 2)-rectifiable.

Let us first give some historical background for the result in Theorem 1.1. It seems that
such results originate in problems in optimization and control theory, as is described in
[Wec, SW], where the authors proved that when D is a smooth domain S(z) N dD has zero
(d—1)-dimensional Hausdorff measure. The authors of [SW] were inspired by the following
problems:

Consider a harmonic function # in D, with 0 < # < 1 in D. Fix two points Xo
and X; in D. We wish to minimize #(X;) among all such u with u(Xy) = %

and

Conjecture ([SW]): The Bang-Bang Property. There exists a unique min-
imizer i to the above problem, and moreover i is “Bang-Bang”, namely
itlpp = xr for some F C dD.
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It can be proven (see [SW, Ken]) that in order to establish the conjecture in a domain D,
it suffices to show that, with u as in Theorem 1.1, the set S(u) N dD N B I3 (0) has zero

(d — 1)-dimensional Hausdorff measure, as was proved for smooth domains in [Wec, SW].

Another problem that arises in control theory, this time in the study of exact boundary
controllability, is the following:

Suppose that u is the (Dirichlet) Laplacian eigenfunction in D with eigen-
value 4 > O (that is to say —Av = Avin D and v = 0 on dD). Assume
that the normal derivative of v is zero on E c dD, with H Y(E) > 0. Is v
identically zero?

By considering the harmonic lifting u(x,t) = e~ Var v(x) on D X R of v, the above problem
reduces again to the fact that for a non-zero u, the set S(u) N (0D X R) has zero surface
measure on D X R. So this problem again has a positive answer in smooth domains by
[Wec, SW]. The result was extended to C"! domains by Lin in [Lin, Theorem 2.3], using
a reflection argument and the interior unique continuation result for elliptic equations with
Lipschitz coefficient matrices, proven in [AKS] and [GL] using different methods (see also
[Kaz]). In fact, Lin was able to go further, using Federer’s dimension reduction argument,
and show that S(z) N dD has Hausdorff dimension (d — 2).

Another historical source for problems of this kind is a classical question of L. Bers.

Consider a harmonic function u in the upper half-plane R%, which is in C'(R%). Assume
that there exists E ¢ R9™! = 9R? such that u = 0 and dyu = 0 on E. Is it true that if u is
not identically zero, the Lebesgue measure of E must be zero? It is not hard to see that for
planar domains this is indeed the case because the logarithm of the modulus of the gradient
of a harmonic function is sub-harmonic. However for d > 2, Wolff [Wol] showed this to
be false, and Bourgain and Wolff [BW] showed this to be false even under the assumption

that u € C*(R%) for some @ > 0. Given this failure, it then became of interest to study the
“intermediate” case where, in the notation of Theorem 1.1, u = 0 on an open set Bsg(0)NdD
of the boundary and attempt to show that S(u) N dD N B & (0) has zero (d — 1)-dimensional
Hausdorff measure unless u = 0. As mentioned earlier, this was proved in [Wec, SW]
in smooth domains and in [Lin] for C"' domains, where it was also proved that it was a
(d — 2)-dimensional set.

The next progress in these problems (always assuming that u vanishes on a surface ball)
was due to Adolfsson, Escauriaza and Kenig [AEK] (see also Kenig-Wang [KW] for an
alternative proof) who proved that for convex domains S(#)NdD has zero (d—1)-dimensional
Hausdorff measure. This was then followed by works of Adolfsson-Escauriaza [AE] and
Kukavica-Nystrom [KN], who proved (using different methods) the result for Dini domains.
In fact, Adolfsson and Escauriaza [AE] proved that for Dini domains, the set S(u) N dD has
Hausdorff dimension (d—2), using the Federer dimension reduction argument as in Lin [Lin].
Recently, after many years without progress, Tolsa [Tol] proved that for all C' domains (and
even Lipschitz domains with small constant) and non-identically-zero harmonic functions u,
the set S(u) N D has zero (d — 1)-dimensional Hausdorff measure. The proof of this result
was influenced by very important new methods developed by Logunov and Malinnikova in
[Logl, Log2, LM].
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In the interior, using the expansion of harmonic functions by homogeneous harmonic
polynomials, Han [Han] proved the (d — 2)-rectifiability of S(u); moreover Naber and Val-
torta [NVO] estimated the (d — 2)-dimensional Minkowski content of an effective version
of S(u) and C(u). These two results also hold for elliptic equations with Lipschitz coeffi-
cients, by a perturbation of the harmonic case. The same argument does not seem to apply
easily to the boundary. Instead, inspired by the quantitative stratification method developed
by Naber and Valtorta (see [NV 1, NV3]) to study regularity results in geometric variational
problems, McCurdy [McC] took up the study of S(u) and proved the analogue of Theorem
1.1 for convex domains, thus establishing the (d — 2)-rectifiability of S(x) and a bound on its
(d—-2)-dimensional Minkowski content. Recall that it had been established before using Fed-
erer’s dimension reduction argument that S(u) N dD has Hausdorft dimension at most (d —2)
(see [Lin, AE] for C LI domains and Dini domains, respectively), but it was not even known
that H92(S(u) N dD) < +co. So it was a big improvement to prove (d — 2)-rectifiability
and find an upper bound on the Minkowski content, not just for the singular set restricted to
the boundary, but also as the singular set approaches the boundary from the interior. For the
difference between the Minkowski content and Hausdorff measure, see Definition 2.7.

Our approach is also based on the techniques introduced by Naber and Valtorta in [NV 1].
These techniques have been found useful in many problems in geometric measure theory
and geometric analysis, as long as symmetry in the problem can be somewhat quantified by
a monotone quantity ([CN, NV2, FS, EE] to name just a few examples). For the convenience
of the reader, we highlight the main differences between our argument with that of Naber
and Valtorta as well as other prior work using the method.

e Unlike the interior case (see [NVO0]) or the boundary case for convex domains (see
[McC]), the standard Almgren’s frequency function is not monotone for boundary
points in Dini domains. Instead fixing each boundary point X € 0D, we use the
transformation map Wy : QQx — D introduced in [AE] so that the domain becomes
almost convex at that point. This way we get a monotone quantity for X, which
measures how close the harmonic function « is to be homogeneous near X.

e Not only do we study the singular set on the boundary, we also want to study how
the singular set approaches the boundary from the interior. To bring interior points
(which are very close to the boundary) in the picture, we also study Almgren’s
frequency function N(X,r) for interior points, especially when the scale r is big
so that B,(X) intersects the boundary. The standard frequency function N(X,r) is
monotone increasing up to some critical scale r.4(X), which depends on dist(X, D).
Outside of this monotonic interval, we replace N(X, r) by the frequency function (of
the same scale) centered at a boundary point closest to X, and justify that we only
need to pay a small price for this modification. This is mainly treated in Section 6.

e For different points X, X’ € D, the degrees of homogeneity may be different. (Espe-
cially recall that the monotone quantities for boundary points are defined in different
domains Qy and Qy-.) This creates a difficulty when we need to quantitatively mea-
sure how far u is from being homogeneous (see Section 9) and when we study off-
spinal points in the dimension reduction argument (see Proposition 7.3). So we need
to study the variation of the monotone quantity (in small scales) as X changes. This
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is dealt with mainly in Section 8. (We remark that various degrees of homogeneity
also appear in the earlier work of [DMSV, FS].)

e As discussed above, for both interior and boundary points we have found some
alternatives in place of Almgren’s frequency function to measure how close u is
from being homogeneous near that point. For a boundary point X we use a monotone
quantity defined in the reduced almost-convex domain Qy; for an interior point X
we use the frequency function centered at a boundary point closest to X. We need
to show the errors accrued by these alternatives do not accumulate when we count
across possibly an infinite number of dyadic scales, see Theorem 9.7.

Lastly, we remark that Dini domains seem to be the optimal class of domains for which
one can prove the (d —2)-dimensional quantitative estimate of the singular set as in Theorem
1.1. In fact, in order to show S(u#) N dD has zero boundary surface measure (see for example
the work of [Tol]), one needs to at least know that Vu exists %! almost everywhere at the
boundary. On the other hand, the {4~ almost everywhere existence of Vu at the boundary is
not enough to measure the (d — 2)-dimensional size of the same set S(u) N dD. In particular
when d = 2, we need Vu to be defined pointwise at the boundary in order to count the
number of singular points (namely H 0(S(u) N dD)). Dini domains are the optimal class of
domains to guarantee that harmonic functions vanishing on an open set of the boundary are
continuously differentiable up to the boundary.

After introducing preliminary notation and definitions in Section 2, we will define the
modified frequency function and prove its monotonicity for boundary points in Sections 3
and 4, and for interior points in Section 6. More precisely, for boundary points we first use
the transformation map to change the Laplacian operator in a Dini domain D to a divergence-
form elliptic operator in an almost convex domain Q (see Section 4). (Here almost convex
is with respect to the elliptic operator and a single boundary point, see (3.1).) Then we use
boundary convexity to define the frequency function for solutions to a non-constant elliptic
operator and prove its monotonicity as well as quantitative rigidity (see Section 3). For inte-
rior points we establish the monotonicity and quantitative rigidity of the standard Almgren’s
frequency function up to some scale. We also state a closeness result between the frequency
function centered at X € D and the modified frequency function centered at X, which is a
boundary point closest to X. In Section 5, we first analyze the frequency function and use
quantitative rigidity to characterize the tangent functions as homogeneous harmonic poly-
nomials in the upper half-space. We also use the uniform bound of the frequency function
to prove compactness for rescalings of the harmonic function. Section 7 proves quantitative
versions of the following two principles for harmonic functions: if the frequency function
centered at a point X is constant, then the harmonic function is homogeneous with respect to
X; if the frequency functions centered at two distinct points X, X’ are both constant, then the
harmonic function is invariant along the line connecting X and X’, and it is homogeneous
with respect to any point on the line (with the same degree of homogeneity). These two
principles are used extensively throughout the paper. In Section 8 we estimate the spatial
variation of the (modified) frequency function for both boundary and interior points. In the
beginning of Section 9, we state two Reifenberg theorems, which are generalizations of the
classical Reifenberg theorem and which connect the estimate of the L? S-number with pack-
ing estimates and rectifiability. The reason why Reifenberg-type theorem is relevant is that
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we can relate the (d — 2)-dimensional S-number to the change of the frequency functions
centered at effective singular points, as proven in Theorem 9.7. Finally in Section 10, we
cover the effective singular set N (u) N C~,(u) inductively, with the stopping criterion being
that every point in the ball has a definite frequency drop. By Proposition 7.3, in a fixed ball
all such points with small frequency drop are either clustered to a small set (small means of
dimension < (d — 3)), or they must lie in a tubular neighborhood of a (d — 2)-dimensional
affine plane. In the second case, we control their volume using the Reifenberg-type theorem.

2. PRELIMINARIES

Definition 2.1. Let 0 : [0, +o0) — (0, +o0) be a nondecreasing function verifying

/ 00 2.2)
0

r

A connected domain D in RY is a Dini domain with parameter 6 if for each point Xy on the
boundary of D there is a coordinate system X = (x,xg),x € R?-! x; € R such that with
respect to this coordinate system Xo = (0,0), and there are a ball B centered at X and a
Lipschitz function ¢ : R%! — R verifying the following

(D) IVl oga-1) < Co for some Cy > 0;
(2) IVe(x) = Vo)l < 6(lx - y)) for all x,y € R,
(3) DN B ={(x,xg) € B:xq> ¢@(x)}.

Remark 2.3. By shrinking the ball B if necessary, we may modify the coordinate system so
that V(0) = 0.

Definition 2.4. Let R, A > 0 be finite. For any domain D and any function u, we say
(u, D) € H(R, A\) if

e D is a Dini domain in R with parameter 6, and it satisfies D 3 0, D is graphical
inside the ball Bsg(0) and
16R
O(8R) < i, / 8(s) ds < 1; (2.5)
72 0 N
e 11 is a non-trivial harmonic function in D N Bsz(0),
e 1 =0on dD N Bsg(0),
o the frequency function for v := u o Wy satisfies Ny(4R) < A < +oo (see Section 4 for
the definitions of ¥ and the frequency function).

Remark 2.6. In the above definition we indicate how (u, D) depends on R, but we do not
explicitly indicate its dependence on the Dini parameter 6. This is an absuse of notation.
In fact, throughout the paper we allow 6 to vary as long as it is bounded from above by a
given Dini function 6. We use the quantifier R, which is determined by the Dini parameter
6, in the notation above because R will appear explicitly in the statements of lemmas and
theorems.

For any compact set K and 7 > 0, we use
B.(K) = {X : dist(X,K) < 7}
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to denote the 7-neighborhood of K.

Definition 2.7 (Minkowski content). Let A be a bounded subset of R?. The s-dimensional
upper and lower Minkowski contents of A are defined as

M**(A) = lim sup(2r)*~|B,(A),

r—0+
ME(A) = lim (i)nf(2r)s_d |B-(A)|.

r—0+

Moreover the upper and lower Minkowski dimensions of A are defined as
dimp A = inf{s > 0 : M**(A) = 0} = sup{s > 0 : M**(A) > 0},
dimy A = inf{s > 0 : MJ(A) = 0} = sup{s > 0 : Mi(A) > 0}.

Remark 2.8. It is not hard to see that H*(A) < MZ(A) < M>*(A), where strict inequalities
are possible. In other words, bounding the Minkowki content is stronger than bounding the
Hausdorff measure of the same dimension. In fact let Q¢ c R? be the d-dimensional rational

lattice, its Hausdorft dimension is O and yet its Minkowski dimension is d. See [Mat, Chapter
5] for more about Hausdorff measure, Minkowski content and packing measure.

For a harmonic function u in DN Bsg(0) with vanishing boundary data and D being a Dini
domain, we have that u is continuously differentiable up to boundary (see [DEK]). Let

N(u) := {X € DN Bsg(0) : u(X) = 0} (2.9)

be the nodal set of u. In particular by the above definition dD N Bsg(0) c N(u). We also
define the critical set of u by

C(u) := {X € DN Bsg(0) : Vu(X) = 0},
and define the singular set of u by
S(u) := Nw) N C(u) = {X € DN Bsg(0) : u(X) = [Vu(X)| = 0} . (2.10)

Definition 2.11. Let u be an arbitrary non-trivial L? function. We use the following notation
to denote its rescalings centered at X € D with scale r > 0:

uX +rY) — u(X) u(rY) — u(0)

, T,u(Y) = T-
(% // lu — u(X)P? dZ) <§ // lu — u(0)]? dz)
B (X)nD B,(0)nD

Remark 2.12. Clearly the above rescaling satisfies

ITx  ul>dY = 1.
BO)n2X

Remark 2.13. We also remark that for any X € N(u), the above rescaling satisfies
uX +rY) B uX +rY)

1 = 1°
2 2
(%// u? dZ) (%// u? dZ)
B,(X)ND B.(X)

Since u vanishes on the boundary dD N Bsg(0), it is convenient to simply extend u by zero
outside of D N Bsg(0). This is what we did in the second equality.

Tx,,u( Y) =

[SIE

Ty, u(Y) =
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In this paper we work with a quantitative version of the critical set, defined as follows.
Let B8, ap > 0 be two small constants to be determined later” (whose values depend on d, A).
For any r > 0 we set

Cr(u) := {X €D : inf |VTx,ul < ao}
Bg(0)

_ 1
—lXeD: inf r2vuzsa2.—// u—uX2dZ}. 2.14
{ i Pl <ot ] e-aco 2.14)

Clearly C(u) € C.(u) for every r > 0, and X € D\ C.(u) means that [Vu| has a uniform lower
bound centered at X at scale r. Heuristically, near X one of the following two scenarios
happen. Either u blows up to a homogeneous harmonic polynomial of degree N > 2, in
which case X € C(u) and VTx,u(0) = O for any r > 0. Or u blows up to a homogeneous
harmonic polynomial of degree N = 1, which is just a linear function. Since the gradient of
a linear function with unit Z?>-norm has constant modulus, by choosing g sufficiently small
X € Cr(u) \ C(u) just means that even though u blows up to a linear function, but at the scale
r, u is a fixed distance away from linear functions.” Moreover, we define

5,(14) = {X €D : inf |VTxu| < agforany r < s < rc} = ﬂ Cs(u) (2.15)
Bg(0)

r<s<re
to make sure C, (1) is monotone with respect to r, i.e.

C(u) C Cyr, () C Cpy(u), forany 0 < ry < r,. (2.16)
The value of r, is determined (depending on d, R, A) as in the end of Section 10.

Lemma 2.17. Let h be a harmonic function in RY. Suppose h is Ni-homogeneous with
respect to the origin, and it is also No-homogeneous with respect to X € R¢ \ {0}*. Then
N1 =N, €N, and

e cither h is linear, i.e. Ny = Ny = 1;
e or his invariant in the X-direction, i.e.

htX +Y)=hY), foranyY € RY and t € R.

*see Proposition 7.3 as well as Lemma 9.50. Heuristically as r — 0+, Tx,u converges to a homogeneous
harmonic polynomial Py of degree N € N, and it satisfies [[, o IPv* dZ = 1. In particular it implies that
1, 510) |VPy|> dZ = 2N +d. In the special case when N = 1 and Py is linear, |V Py| equals a dimensional constant,
denoted by «,. Here a is chosen to be strictly smaller than a,. On the other hand when the degree N > 1, by
homogeneity |[VPy(rw)| = O(r¥~") grows polynomially in the radial direction. Since |, 510) IVPy|? dZ = 2N +d
and it has a uniform upper bound when N < C(A), the polynomial growth of |[VPy| implies that we can choose
B < 1 so that for any degree N < C(A), SUP, ) [VPy| is also strictly smaller than @,. (It’s certainly not the case
that |[VPy| < a4 on all of B;(0).)

This can be made rigorous in the interior case. By [Han, Theorem 3.1] the harmonic function has an

expansion of the form u(X + Y) — u(X) = Py(Y) + ¥Y(Y), where Py is a homogeneous harmonic polynomial of
degree N € N and ¥(Y) = O(|Y|"*€); moreover ||[VTx,u — VPyllo, 0y = O(r‘*%’l) — 0 for any p € (1,d].
*For any X € R?, we say h is N-homogeneous with respect to X if # — 4(X) is N-homogeneous, namely

h(X + AZ) = h(X) = AN (W(X + Z) — k(X)) for any Z € R and 1 € R,
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Proof. Lett € [0, 1]. By the assumption, we have
h((1 = DX) = h(0) = (1 = )™ [A(X) — h(0)],
and
h((1 =0X) — h(X) = £ [h(0) — h(X)].
Combining these two equalities we get
h(0) + (1 = M [h(X) = h(0)] = h(X) + I [1(0) — h(X)],

or equivalently
(1 =™ + ] - [h(X) = h(0)] = h(X) - h(0).

Since 4 is a harmonic function, the degrees of homogeneity N, N, must be positive integers.

Therefore either Ny = N, = 1, or i(X) — h(0) = 0.

Assume we are in the second case where h(X) = h(0). In particular we have h(tX) = h(0)
for every ¢ € R. By the assumption % is Nj-homogeneous with respect to the origin, so

(VI(Z),Z) = N1 [I(Z) — h(O0)].

Similarly we also have
(VW(Z),Z - X) = N> [W(Z) — i(X)].
Subtracting (2.19) from (2.18), we get

(Vi(Z), X) = (N1 = N2) [I(Z) - h(O)] .

Let r > 0 be fixed and we define
rD(X,r)

=1 X, r) = log ———~
g(1) =log N(tX,r) = log HOX.D)

where
D(X,r) = // \Vh> dZ, H@X,r) = / lh — h(tX))? dH ",
B,(tX) dB,(tX)

We want to show that g’(r) = 0. To that end, we compute

iD(zx, r) = 4 // IVh(:X + Y)> dY =2 // (VW(Z),V*I(Z)(X)) dZ
dt dt JJ 8,0 B,(1X)

=2 // (Vh,V(Vh,X)) dZ
B, (tX)

=2 // div ((Vh, X)Vh) dZ
B,(tX)
h
=2 / (Vh, X)a— dH,
OB, (tX) on

And

iH(zX, r) = 4 / |h(tX + Y) — h(tX)|* dH(Y)
dt dt aB,(O)

=2 / (Vh, X) (h — h(tX)) dH*!
0B, (tX)

(2.18)

(2.19)

(2.20)
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— AVh(X), X) - (h — h(tX)) dH*!
0B, (tX)

=2 / (Vh, X) (h — h(tX)) dH* ",
0B, (tX)

where we use the mean value property in the last equality. Combined with (2.20), A(tX) =
h(0) and the equality

// VA dZ = / (h — h(tX)) oh dH!,
B,(1X) OB, (tX) on

4p@X,r)  LH(X,r)

’ _ 4t _
§0="pixn ~ HX.7

2 fam (VA X) G dH! 2 Jop,ux0(VA X) (h = h(0)) dH!

we obtain

_ (2.21)
Jop,x (h = 1(0)) o a1 Jom,x0 1 = h(0)]> dHa-1

=2(N1 = N2) = 2(N1 = NV>)

=0. (2.22)

Therefore the map t — N(zX, r) is a constant. In particular
N, =N(X,r) =N(@X,r) = NO,r) = Ny,

and /4 is Nj-homogeneous with respect to the vertex ¢X, for any t € R. Moreover, by (2.20)
we have that for every Y € R? and 7 € R,

h(tX+Y)-h() = / %h(sX +Y)ds= / (VA(sX +7Y),X)ds =0
0 0

The above theorem also has an analogue in the upper half-space:

Lemma 2.23. Let h be a harmonic function in R% and h = 0 on OR%. Suppose h is N;-
homogeneous with respect to the origin, and it is also Ny-homogeneous with respect to the
vertex X € 6Rﬂ \ {0}. Then h is invariant in the X-direction, i.e.

WX +Y)=h(Y) foranyY e R%andteR.
Moreover Ny = N> € N.

Proof. Using h(0) = h(X) = 0, the proof of N; = N, is similar to that of Lemma 2.17. The
only difference is that when we integrate by parts, we have an extra term on the boundary
B, (tX) N B]Rirl. However, since /& vanishes on the boundary and X € aRgf, we have that
(Vh,X) = 0. To prove the invariance in the X-direction, it suffices to study the first alter-
native when £ is linear. Suppose # is linear and the invariant hyperplane is denoted by V.
Either V = dRY, then £ is invariant in the X-direction since X € V; or V intersects R?
transversally, in which case & = 0 trivially and there is nothing to prove.
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3. MONOTONICITY FORMULA FOR ELLIPTIC OPERATORS
Let Q be a Lipschitz domain with 0 € 9€, and let A be a symmetric elliptic matrix defined
on R satisfying the following assumptions (c.f. [AE, Theorem 1.1]):
e A(0) =1Id and
(AX)X,n(X)) >0, forallX € A; =B NoQ, (3.1)

where n(X) denotes the unit outer normal to QQ at X;
e There is a non-decreasing function 6 : [0, +00) — [0, +00) such that

AX) — A < 0(X]), [VAX)| < 6(1X])/IX]| (3.2)
and .
/ @dr < 400, 3.3)
0 r

Let v be a non-trivial solution to Lv = div(A(X)Vv) satisfying v = 0 on the surface ball
Ay := B1(0) N 9Q. The assumption (3.1) means that the domain Q is L-convex with respect
to the boundary point 0 € 9Q. Inspired by Almgren’s frequency function for harmonic
functions, we want to define the frequency function for v centered at 0, and prove that it is
almost monotone.

We first define a metric tensor g = g;;(X) dX; ® dX; by setting
(&ij(X)) := (detA(X))ﬁA(X)_l, where the indices i, j are in {1, -- - ,d};

and its inverse metric is denoted by (g") = (g;;)”!. We are interested in a neighborhood of

the origin, so we define
or or

r(X)? = g (00X - 0)(X - 0); and n(X):=g"0)———.

oxy 0x;

Now we define a new metric tensor g = g;;(X) dX; ® dX; by setting

1 _
gij(X) := n(X)g;j(X) = (det AX)) T2 n(X) (A(X) l)ij-
The advantage of modifying the metric g by n(X) is that under the new metric, the geodesic
distance from O to any X is the same as r(X); moreover, under polar coordinates (r, w) the
metric g is simply
g(r,w) =dredr+ rzbkl(r, w)dw' ® dw’, where ije{l,---,d—-1}. (3.4)

We refer interested readers to [AKS, Section 3] or [GL, Section 2]. We denote the in-
verse metric of g as (g(X)) = (g,-j(X))‘l, and write [g(X)| = |detg;;(X)|. Let i(X) =
(detA(X))ﬁ n(X), and simple computations show
(A(X)X, X)

DG
By ellipticity and the assumption (3.2), we know that for all X in a small neighborhood of
the origin we have

n(X) = 2(X) = XA
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VXl IVgij(Xl, [Vhu(X)| < [VAX)I < 6(X1)/1X] (3.6)
where the constants depend on n and the ellipticity of the matrix A.
Under the metric g, we can write the divergence-form elliptic operator Lv = div(A(X)Vv)

as
Lgv = divg(u(X)Vgev),  where u(X) = n(X)_#. 3.7

Here we denote by Vv and div, Y the intrinsic gradient of a function v and the intrinsic
divergence of a vector field Y in the metric g, 1.e.

ov 0

Vv =gl ———,
§ & 6)61'6)6]‘

- 1 -
div, ¥ = — div ( |g|Y>
¢ Vigl

For a solution v to (3.7), we define

Dy(r) = // pIVVzdVe,  Hy(r) = / u*dV,. (3.8)
B,NQ dB,NQ

Here B, denotes the geodesic ball centered at O in the metric g. But by the above discussion
it is the same as the Euclidean ball centered at O of the same radius. Now we define the
frequency function of u as

rDg(r)
Hg(r ) .
For simplicity we often omit the dependence on the metric g and just write D(r), H(r) and
N(r). We will show the following:

Ny(r) = (3.9)

Proposition 3.10. There exists some ro < 1, such that the frequency function satisfies

N'(r)=0 (@) N(r) + Rp(r) + Rp(r), 3.11)

forallr < ry. Here

2r 2 2
Ry(r) = TV </ uvz dVBB,) . (/ u (vp) dVaB,) - (/ Hvv, dVaB,) >0,
H=(r) 9B,nQ 9B,nQ 9B,NQ

1 Opv)?
Ry(r) = —— (~nv)
H(r) Ja, 7(X)
where v, = (V,v, X/|X|) denotes the radial differentiation.” (We use (-, -) to denote Euclidean
inner product, and use (-, -)q to denote inner product with the metric g.)

(AX)X, no(X)}AX)na(X), no(X))dH*" > 0,

In particular, there exists a constant C > 0 depending on n and the ellipticity of the matrix
A, such that the modified frequency function

~ "o
N(r) := N(r)exp (C / st) is monotone increasing with respect to r. (3.12)
0 S

. . L e . 1V IXP
*Let ¥ be an arbitrary vector, then its projection onto the radial direction can be written as <)7, AZLd > =

I
vV X
<Y,m>.
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Remark 3.13. e Written in Euclidean metric, we have
D(r) = // (AX)Vv, VV)dX, H(r) = / XV X)dH (X)), (3.14)
B,NQ 0B,NQ

with 7(X) = (AX)X, X)/IX|*.
e For convenience, we can also write Rj(r) as

2r V|2
R, ‘ _N —‘ dVp . 3.15
(1) = HO) aBm,u Vo (r) p 9B, (3.15)

Proof. We first compute H'(r). Let |b(r, w)| = | det (b (r, w)) |, then
dVe(X) = 1gX) dX, dVyp () = r'"" \/Ib(r, ) dH (w).

By extending u by zero in Q°, we can rewrite H(r) as
H(r) = / p? dVop, = r"! / pr, ) V/1b(r, )V (r, )dH ().
9B, 9B
Taking the derivative in r, we get

d-1
H'(r) = TH(r) + 2/ uvwodVsp, +

<,U \/_) V2dVg,.

9B, " Jos, \/_
By (3.5) and (3.6), we can bound the last term and get
-1
H(r) = (d_ +0 (9@))) H(r) + 2/ (v, dVsp,. (3.16)
r r OB,

Moreover, since div,(uVgv) = 0 we have

// dive(uVev?) dV, =2 // HIVvl; dV.
B,NQ B,NQ

On the other hand by the divergence theorem and the assumption v = 0 on A,, we also have

// divy(uVev?) dV, =2 / uvv, dVap,.
B,NQ dB,NQ

D(r) = // pulVvl; dV, = / v, dVg,. (3.17)
NQ 0B,NQ

Therefore we have

Now we compute D’(r). Since D(r) is a solid integral in B,, we easily get the formula

D'(r) = / KVl Vs,
0B,NQ

We need the following Rellich identity: if the function v satisfies divy(uV,v) = 0, then

. 1 . 1 . 1
div, <,u|ng|§ . 5Vg|X|2> = 2div, <<§Vg|X|2,ng> .,quv> + divg <§Vg|X|2> .’u|ng|§
4

= 20V v; + OO(XI) - UVl (3.18)
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For comparison we remind the readers of the standard Rellich identity
div(|VvI2X) = 2 div((X, Vv)Vv) + div(X)|Vv[* = 2|Vv]2,

(Notice that in Euclidean metric, the position vector X is pointing to the radial direction; but
under the metric g, the radial direction at the point X is computed by %VgIX >.) We claim
the identity (3.18) holds, and show why it helps in the computation of D’(r). We integrate
the above identity in the domain B, N €, and see what each term becomes.

By the divergence theorem,

: 1 1 _
I:= // div, (mvgv@ : Evgmz) dV, = / V18l 1Vl <§Vg|X|2,n> dH!,
B,NQ A(B,NQ)

1
1l .= // div, <<§Vg|X|2’ng> -'quv> dV,
B,NQ g
1 _
= / Vgl <§vg|X|2,vgv> (Vv n) dH.
A(B,NQ) g
On 0B, N Q, the unit outer normal is n(X) = X/|X| and
1 X 1 (AX)X, X)
<5vg|X|2 —> = =Xl =r,

"X (X) IX]
lV X%,V = L(A(X)V Xy =1|X|v, = \Y XN
5 VelXI%, gV g_ﬁ(X) v, X) =|X|v, =71V, gv,|X| =V,
On A, := B, N 0Q, the unit outer normal vector is that of the domain Q, denoted by ng(X).
And
1 2 _ (AX)X, na(X))
<5Vg'X' ’”> = a2
18l IV gvl; = (A)VY, Vv) = (8,v)* (AX)na(X), na(X)) = 0,
1 0,v
(Vgv,ng) = 70 (AX)Vv, no(X)) = ﬁ(X)<A(X)nQ(X),nQ(X)>,
1 ) 1 Oy
<§Vg|X| ,ng>g 35T (AX)Vv, X) = ﬁ(X)<A(X)X’ no(X)).

Here we have used v = 0 on A,, and thus Vv only has normal component and Vv = 9,,v - ng.
Combined we conclude

2
I=r / uIVgvlzdVis, + (‘?"V) (AX)X, no(X)NAX)na(X), na(X))dH*", (3.19)
8B,NQ A, T1(X)
2
I=r / w1 () @Vas, ++ [ P AGOX, na (XA na(X), na(X))dH .
4B,nQ A, 1(X)

(3.20)

On the other hand,

. (1 N L (Vg
divg <§Vg|X| ) = —\/@ div (F](X)A(X)X>
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| 1 VIgI) >
= div(A(X)X —(V JAXH)X
o) AV (AGOX) + v@< <f7(X) *)

tr A(X)
= — + 0 (6(1X1)), (3.21)
7(X)
where in the last equality we have used the bounds (3.5) and (3.6). It follows from |A(X) —
Id| < 6(|X]) that

trA(X) = d + O(6(IX])),

and
AX)X, X AX) - 1d)X, X
X = % — 14 & )|X|2 X0 14 O(1X1)).
Plugging into (3.21) we get
div, (%ngz) = d + O(8(X))). (3.22)

Combining (3.19), (3.20), (3.22) and the Rellich identity (3.18), we obtain

2
r / plVvl; dVas, =2r / w(vp)” dVap, +(d =2+ OO(r))) // ulVvlz dVg
0B,NQ 0B,NQ B,NQ

(On V)2
A, (X))
In other words, we get the desired quantity D’(r):

SR pgy ez [ ) aves
r 0B,NQ

(AX)X, na(X)NAX)na(X), na(X))dH*".

D'(r) =

L[ @wr
rJa, 70

Combining (3.16), (3.23) and (3.17), we get
N'(r)y 1 D'(r) _ H'(r)

=—+
N(r) r D) H(r)

(AX)X, no(X)}AX)na(X), na(X)ydH". (3.23)

2 2 2
_0 o(r) ) (faB,nQ/W dVﬁB:—) ) (faB,nQ:“ ("p) dVﬂBr) - (faB,nQ Hvvp dVﬁB:—)
- (T) - D(HH()

1 (0v)? d-1
+ — o (AXX, na(X)KAXna(X), na(X))dH".
rD(r) Ja, 71(X)
Notice that the second term is non-negative by the Cauchy-Scharz inequality, and it equals
zero if and only if

vy, = A,y ondB, N Q.
The last terms is also non-negative by the assumption on the matrix A(X). And since d,v # 0,
it equals zero if and only if (A(X)X, no(X)) = 0 on A,. To sum up we get
N(r) r
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and hence
_ o) |\ o
N(r)=N(r)exp | C —a’s is monotone increasing with respect to r.
0

This finishes the proof of the proposition.

Now we return to the proof of the Rellich identity (3.18). We will use two abstract formu-
lae:

divg(a¥) = adivy(Y) + (Vea, V), = adivy(Y) + (Va, ), (3.24)
614 a 6ng
<Vg<A B>g, C>g = <V<A B>g, C> —g]kBkCl + Ajgjk (9 C[ + A 8 BkCI. (325)

By (3.24) the left hand side of (3.18) becomes

: 1 . (1 1
div, (mvgv@ : Evgmz) = div, (Evgmz) plVvl; + <Vg<uvgv, Ve 5Vg|X|2> :
8

The first term on the right hand side also appears in the right hand side of (3.18), so it suffices
to compute the second term. By (3.25) we compute

1 2\ 0 (,quv) 1 5
<vg<yvgv, Vev)gs 5 VelX >g = ngk (Vev), (Evgm )l
d(Vev), (1 a8 ji 1
+ (V). g,,{# <§Vg|X|2>l+u(vgv) aj (Vev), (—Vg|X|2>l

B(V v)j 1 0 1 1
= 2= 8ik(VaVk (ivg|X|2>l+a—fjl|vgv|§ <5vg|X|2) + H(Vgv), g”‘(v vk (Evgmz)

=: E0+E1 +E2.

l

In the second equality we use the symmetry of the matrix g, which follows from the sym-
metry of the elliptic matrix A. On the other hand, by (3.24) and div,(uV,v) = 0 we have

1 1
divg <<§Vg|X|2’ng> .ﬂng> = <Vg <§Vg|X|2,ng> ,,quu>
g g

9 (3V4IXP), AV V)

1
= ngk(vgv)k,u(vgv)l+ (2 g|X|2>J o — —u(Vgv)

8

1
+ (Evgu{ﬁ) %8k L (Vn)u(Vv);
J

=: E3 +E6+E4.

By the symmetry of g it is not hard to see Ey = 2 - E{,. Therefore

: 1 . 1 . 1
div, (mvgv@ : Evgmz) - 2div, <<§Vg|X|2,Vgu> -quv> ~ div, (Evgp(ﬁ) Vvl
8

=E1+E2—2~E3—2~E4.
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By (3.5) and (3.6) we can easily get
E1, Ez, E4 = O (6(XD) - ulVgvl;.
On the other hand, the product rule, (3.5), (3.6) and the symmetry of g yield
E3 = 0(0(X)) - ulV gVl + p(V )61 (V )y
(AVv, AVv)
f]2
= UV I3 + OB(XD) - UV VI3,

where we use the assumption (3.2) in the last equality. This finishes the proof of the Rellich
identity. o

= 00(1XD) - uVvl; + 1

To get an idea of the quantitative rigidity, we look at the sharp case.

Corollary 3.26 (Rigidity of the monotonicity formula). Suppose A(X) = 1d and 6(r) = 0.
Then N(r) is a constant (denoted by N) if and only if

(1) v(r,w) = v(w) is a homogeneous harmonic function of degree N in Q;
(2) Q is a cone with vertex at the origin.

Remark 3.27. So far we do not know if N is a positive integer or not, so it is perhaps a
misnomer to call it N. But in Subsection 5.1 we will show that if the domain Q is C', it
blows up to an upper half-space and thus the homogeneity N of a harmonic function must
be a positive integer.

Proof. By (3.11) and since 6(r) = 0, N(r) is a constant if and only if both R;(r) and Rp(r)
vanish for all . By (3.15) Ry,(r) equals zero if and only if

vy — N(r); = 0on dB, N Q.

When A(X) = 1d, we have v, = (V,v, 37) = (Vv, 7). Hence it follows that v(r, ) = r¥v(w)
is a homogeneous harmonic function of degree N. Recall that we assume v is a non-trivial
function, hence Ry (r) equals zero if and only if

(AX)X, na(X)) =0,
that is to say, 2 is a cone (not necessarily convex) with vertex at the origin. O

Corollary 3.28 (The doubling property of H(r)). The quantity

~ H
H(r) := %
satisfies
AN(r)exp(—C [i2 %9 g r H
(:2) ( )exp (—c / 8(s) a’s) < ) (3.29)
1 rno S H(ry)
H(rp) < (r—2>2N(r2)exp<_Cﬁ;I g ds) exp (C /rz w ds> (3.30)
H(r)) ~ \ri no S '

for any two radii r1, rp sufficiently small satisfying 0 < r; < rj.
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Proof. Combining (3.16) and (3.17) we get

H'(r) B d-1 o(r) 2D(r) B d-1 @ 2N(r)
H(r)  r +0(T>+H(r)_ r +0(r>+ ro

Therefore there exists a constant C > 0 such that

ilog (@exp (C/r@ds)> > 2N(r) — 2NG) exp (—C/r@ds).
dr ré-1 0o S r r o S

Integrating the above differential inequality on the interval [r}, ;] and using the monotonic-
ity of N(r), we obtain

~ - 79 72N "6
log H(ry) — log H(ry) + C/ Q ds > / ) exp (—C/ Q ds) dr
no S . r 0o S

~ r2
> 2N(ry) exp (—C/ @ ds) (log ry —log r1) .
0 S

The desired inequality (3.29) follows from taking the exponential of the above. The proof
of (3.30) is similar, except that we use the upper bound N(r) < N(rp). O

3.31)

4. REDUCTION FROM A DINI DOMAIN TO AN ALMOST CONVEX DOMAIN

In this section, we recall the reduction in [AE] of the Laplacian operator in a Dini domain
D to a divergence-form elliptic operator in a Lipschitz domain €, so that the elliptic operator
satisfies the assumptions in the beginning of Section 3. We focus on how the reduction map
changes relevant quantities of the solution, and in particular how the frequency function
discussed in Section 3 controls the symmetry of the original harmonic function, modulo a
Dini-type error term.

Let D be a Dini domain (see Definition 2.1) with parameter 6. We set
5 1 2r 1 2t 9
0(r) = — / —/ @ds dt 4.1)
logc2 J, tJ, s

to be a smoothed-out alternative function of (-), and

d , -
a(r) = 35 (rQ(r)) .
Simple computations show that
0(r) < 6(r) < 6(4r), 36(r) < a(r) < 136(4r).

Thus we can use 6(-) and 6(-) interchangeably, modulo multiplying the variable by a constant.
Let u be a non-trivial solution to Au = 0 in the domain D. Assume that 0 € 9D, D is
graphical inside the ball Bsg(0) and O(8R) < 1/13 for some R > 0." Suppose u satisfies
u = 0 on Bsg(0) N dD. We consider the following map

VX =(xx)eRTTXR - (x, x4 + 31X10(X])) € RY. 4.2)

*Throughout the paper we will often require the scale to be sufficiently small. Unless otherwise specified it
always means that the radius is less or equal to R satisfying the assumption here.
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Let Xo = (x0, ¢(x0)) € Br(0) N D be arbitrary, and we define Wy, (X) := Xo + P(X). Then

1
D¥yx,(X) = D¥(X) = - X = 1d+0(a(X])). (4.3)
In particular
R0
1 —a(X|) <detD¥(X) =1 + xg < 1+ a(X)), 4.4)

X
and hence YV is invertible in Byz(0). Set v(X) = u(‘I’;IgO (IX)) and
Qx, = {X = (6x0) €RY 2 xg > p(x + x0) = p(x0) = 3IXIB(XD } -
We have that u is a solution to Au = 0 in D N Byp(Xp) if and only if v is a solution to
div(A(X)Vv) = 0 in Qx, N Byg(0), where
A(X) = det D¥(X) - (D¥(X)™" (DY) ™)' (4.5)

is a symmetric, elliptic matrix whose ellipticity constants are 1 + O(a(|X])). Moreover, fol-
lowing the same computation as in [AE] we know that A(X) satisfies the desired assumption
(3.2) (with a constant multiple of 8(4r) in place of 6(r)) and that

(AX)X, noy (X)) 2 1X16(1X]) = 0.

To summarize Section 3 and the discussion above, we have proven the following. For
any Xo € Bg(0) N dD, after the transformation map Wy, the function vy, := u o Wy, satisfies
the divergence-form elliptic operator with coefficient matrix A(X), and A(X) satisfies the
assumptions in the beginning of Section 3. Therefore the frequency function for vy, centered
at0 = ‘P}}é (Xp) is almost monotone. We set the notation

Ny, = lim N(x,,r) and Ny, (r) := N(vx,.r) (4.6)
r—0+
to emphasize the dependence of the modified frequency function N on the corresponding

base point Xy € Bg(0) N dD.

Recall that we studied the divergence-form elliptic operator in Section 3 using an intrinsic
metric g. We will show that

(Veu(Y), Y = 0) = (Vu(Z), Z = Xo)| 5 [YIOAYDIVV(Y)!. 4.7)

where Z = Wx,(Y) € D is the image of Y € Qy,. This estimate will be used in Section 9. By
definitions

2
(DY) ™)'y
Y) = % = detD‘I’(Y)‘( P ) ‘ =detDY(Y) - (1 + O(a(]Y]))), (4.8)
Y —W(Y)| < 3|YI6(Y]), 4.9)

Vu(Y) = (DY(Y)) Vu(Z) = (1d +0(a(Y))) Vu(Z)
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Finally,
Vou(Y) = %A(Y)W(Y)
= (1+ 0@@(YD)) - (DF@) ™ (D¥X)™) - (D¥(Y)Y Vu(2)
= (1 + O(a(IY])) - (D¥(Y))™' Vu(Z)
= (1 + 0(a(|Y1)) - Ad +0(a(|Y ) Vu(Z)
and thus

(Veu(Y), Yy = ((1 + O(a(Y])) - (I +O0(@(Y))Vu(Z), ¥(Y) + O(YI6(IY]))
=(Vu(2),Z - Xo) + O (IY16(4IY]) - [Vu(Z)|
=(Vu(2),Z - Xo) + O (|Y|6(4]Y1])) - [Vv(Y)] .

5. BLOW UP ANALYSIS AND COMPACTNESS FOR BOUNDARY POINTS

The main goal of this section is to show that the frequency function centered at Xy € 0D
carries a lot of information about the local behavior of the harmonic function u near X.
We also remark that the same analysis can also be carried out for interior points, after we
establish the monotonicity formula of the frequency function in Proposition 6.3.

We first prove the following lemma, which essentially says the frequency function of
scale r takes comparable values in an r-neighborhood. In particular, we get a upper bound
on the frequency function.

Lemma 5.1. There exist constants C»,C3 > 0 such that the following holds. Let Xy, X, €
Br(0) N AD be arbitrary. Suppose they satisfy |Xo — Xg| < 55 for some r sufficiently small
(or to be precise, r small enough so that r < 3R and 6(4r) < 1/30). Then

Ny, (2) <y +CiNy, (431) :

as long as the right hand side is finite.

In particular, suppose the frequency function at the origin satisfies No(4R) < A < +oo,
then

3
Nx, (ZR) <Cr+C3A, forany Xy € B%R(O) N oD. (5.2)

Proof. We claim that

1
- // u? dX < // ik, dV, <2 // W2 dX, (53)
2 By B,nQy, Bay(Xo)ND

for all Xy € Br(0) N 3D and all s > 0 small enough. By (4.8), a change of variables and
(4.4),

// vy, dVe = // vy, dY = (1 + 0 (6(4s))) // w*(Px, (V) dY
BanXO meQXO BstXO
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= (1 + 0 (6(4s))) // u*(X)(1+ 0 (0(45)7" dX.
Wy (B)ND
(5.4)

Notice that for any p > O sufficiently small, the transformation ¥ maps the sphere 9B,
bijectively to the sphere B, + 3pf(p)eq, which is the sphere 4B, shifted upwards by 3pd(p)
in the positive e;-direction. Hence

W, (Bs) = Xo +¥(By) C Bys45(Xo) © Bt (Xo)

as long as s is sufficiently small (so that 8(4s) < 1/30). On the other hand, recall that ¥ is
invertible in Byg(0). That is to say for any X’ € B o g Wecan find some X in the neighborhood

of the origin such that ¥(X) = X’. Moreover, such X satisfies

9 9
X < (DY) X < (1 o <ﬁs>> Oyen
That is to say B 9 C Y(B;), and hence
Bo (Xo) € Xo +¥(By) = ¥, (By).

Plugging back into (5.4), we conclude that

1
= // u* dX < // vy, dVg <2 // wdX,  (5.5)
2 ))a 1, 9 (Xo)ND A%, NQx, Ag 11 (Xo)ND

20"70"

where we use A,, ,,(Xo) with 0 < r| < r; to denote the annulus B,,(Xo) \ B, (Xo).

Let p > 0 be sufficiently small, and let a > 1 be a constant to be chosen later. By Corollary
3.28, we have that

HXO(ap) = a"_] —I:]}(o(ap) < an_ICZZNXO(ap) exp(—C fé’ 8(?) dS) exXp <C /ap o) dS)
HXo(p) HXo(p) P

< Cid" ' a®Nxolap) (5.6)

where we write C; = exp (C fO4R @ ds) < 400. Similarly, we also have the lower bound

ay S 2
Hyx,(ap) S & aZNXO(P)eXP<—Cf0pﬂs) ds) exp <_C / ? 6(4s) ds) > Cila" 1 a N @/C
HXo(p) P s (5 7)

Using (5.5) twice, we get

// ,uvg(0 dV,
A%,rﬂgxo
Il

9, 2,23
< 4 20710 < 4 5°20

,uvg(o dVy //
NQx, A

rr
)
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2
// Hvy, dV,
Ag 253 _ﬁQX/
<16 25"200" 0

// #ng) dVg
A& 9 AﬂQX/
40025

Using the lower bound in (5.7) with a = 2 and the monotonicity of Nx,(-), we have

2 " 2
Hvx, dVg / Hx,(p)dp 2 / Hx,(2p) dp
A5 5 i

A —
// Hx, 4V / Hy,(p) dp / Hx,(p) dp
4557 § :

Similarly, we want to use the upper bound in (5.6) to bound the right hand side of (5.8).
However, since the integral region of the numerator is not exactly a rescaling of the integral

region of the denominator, we need to first break down the integral on top. To do that we

denote ¢ := %r 143, 1

(5.8)

> C7'2m MG (5.9)

~ 300" = 200"
ri 144

=R vEd

9
rlzgr and ay=a:=

and inductively

rio 144 144
ri=ri+al-(j-1) and aj= 5=+ (- 1)
13,7143 7 143

for j=1,---,361 (since r3¢; is the last one to be smaller than %r). For each j we can use

the upper bound in (5.6) with coefficient a; to bound

5 Tj+1
//A Ky, AV Hy,(p) dp

. 2Ny (ris1)
r X\t
= <Cdja; °

// ,uvg(, dV, %rH d
Algz 9 NQyr 0 143 X(’)(P) P

00"25" 0 700"

4
< C 4?67,

4
i < 361C;4"4° M 5"

(5.10)

Combining (5.8), (5.9) and (5.10), we conclude
Ny, () <Co+ Gy, (4r> :
4 0\ 3
where the constants C;, C3 depends on n and the value of C;. O

Following the proof of Lemma 5.1 and the bound (5.2) of the frequency function, we get
the following lemma which will become useful later.



BOUNDARY UNIQUE CONTINUATION ON DINI DOMAINS 23

Lemma 5.11. Assume Nyo(4R) < A < +oo. For any Xy € 0D N Bg(0), we have

// yvf(o dv,
Brp(0B,)NQx,
// ,uvg(0 dV,
BmeXo

In particular if | Xo| < %R and p < %R,

// ,uvg(o dv,
Brp(0B,)NQx,
// ,uvg(O dV,
BmeXO

Proof. Using polar coordinates, we have

5 (1+1)p
// uvx, dVy / Hx,(s) ds
Brp(0B,)NQx, < Ja-p (5.13)

) = (I-1)p ’
vy, dv, / Hyx,(s)ds
Bpﬂon 0

— +1p _ 147
Leta = (T—op = 1ot > 1, then

(1-1)p ai(1-1)p
/ Hy(s)ds o / Hi(s) ds
0 a

<C(C;

d+2Nx, ((1+71)p)
1 - 0
1- ( T) ] . (5.12)

1+7

as T — 0, the ratio converges to 0 uniformly for Xo and p.

B ~G*D(1=7)p - 1
(1+7)p - Z (1+7)p z Z Cia J[d+2Nxy (1+7)p]
/ Hx,(s)ds =0 / Hyx,(s) ds j=0 *1
(I-1)p (I-1)p
- ! (5.14)
o _\d+2Nx ((1+7)p) :
Cri- ()™
Combining (5.13) and (5.14) we get the desired inequality (5.12).
By the assumption and (5.2), we have that the exponent
d+2Nx,((1 + 1)p) < C(d,A) < 400
for 7 sufficiently small. Therefore the ratio tends to zero as 7 — 0. O

In the rest of this section, we first study what the monotonicity formula in Proposition
3.10 tells us about the tangent function of v. Then we switch gears to the harmonic function
u in the Dini domain and study its tangent function, by looking at the transformation maps
between u and v.
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5.1. Blow up analysis in Qy, using the monotonicity formula. Let Xo € Br(0) N 0D be
fixed. Since vy, has boundary value zero, we may extend it by zero across Qy,. For any
r > 0 we define

VXO(}’Y)

()

The normalizing factor in the denominator guarantees that

Q
. forYe X nBs. (5.15)

v(Y) = TrVXo = .

(ST

2

vy dX

a // v dy = ffozX < €151 < C(d, A) < +eo, (5.16)
2 NBs s, vx, X

by (3.30) and (5.2), as long as |Xp| < %R and r < %R. In particular ||v,||;> is uniformly
bounded. Heuristically if the function v can be written as the sum of homogeneous functions,
then as r — 0+ we have v, approaches the leading order homogeneous function (modulo a
normalization factor). We first look at how the above rescaling by r affects the frequency
function. Notice that not only is v, defined in the domain % which is different from the
domain Q of v, it also satisfies a different divergence-form elliptic operator:

Q
div(A,(Y)Vy,) =0in —, where the matrix A,(Y) := A(Y).
r

So when we write the frequency function for v, at the scale s > 0, to be more rigorous we
should write N(Q/r,A,,v,, s). But for the sake of simplicity we will just write N(v,, s) and
keep in mind that the definition depends on the domain and elliptic operator (and thus the
corresponding intrinsic metric) for the function v, . By (3.14) and a change of variables, we
get

SD(V,«, S) _ %D(VXQ’FS) _ rSD(V, rs)

NW,,s) = = =
(v, $) H(®,,s) %H(vxo,rs) H(v,rs)

= N(vx,,rs). (5.17)

Fix the scale s > 0, we get

- rs 9 4 .
N(vx,,rs) = N(vx,,rs)exp <—C/ ) d‘r) — lir(r)l N(vx,,p) =: Nx,, asr— 0.
0 T p—0+
Hence
N(,,s) > Nx, asr—0. (5.18)

On the other hand, we have the following lemma:

Lemma 5.19. Assume that Ny(4R) < A + oo. Then there exists a universal constant C' > 0

. Lo 3
(depending on the values of d,Cy and M), such that for any Xo € 9D satisfying |Xo| < 35R
and any r < 3—16R, we have

Q
ﬂmBS.
r

Vv.(Y)| < C’, forallY e
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Proof. By (4.3) and the chain rule,
V@ + YY)l _ Vu(2)|

] ~
2
1 2 1 2
= vy dX —// vy dX
(rd //BrﬂQXO %o ) (Vd BrﬁQXO i )

where Z = Xo +¥Y(rY) € B 16 ~(Xo). (The elliptic variant of [CK, Theorem 1.4.10] shows that

Vu e C (5 N B5R(O)), with a modulus of continuity depending on the Dini parameter. In
fact, the parabolic theorems in [CK] imply the elliptic ones by extending the elliptic solution
independent of the #-variable.) We then use the gradient estimate in [CK, Theorem 1.4.3].
(In [CK] the authors work with a Dini-type elliptic operator in the upper half-space, and
we work with the Laplacian in a Dini domain. These two settings are related by a simple
change of variables (x,x;) € D — (x,x4 — ¢(x)) € Rﬁrl, and the Laplacian in D becomes

Vv, (Y)] =

, (5.20)

[STE

. . . . . . Id -V
. d
a divergence-form elliptic operator in R% with coefficient matrix ( (-Vo) 1+ |Vg0|2> 2

After a rescaling, [CK, Theorem 1.4.3] implies

1 1
2 2
1
]5[ ) u2dX> s;<]§[ Wl dvg> (5.21)
B(Xo, 5. r)nD Be, Ny,

1
sup  Vul < — <

B(Xo,%8nD r

By the doubling property (3.30) and (5.2),

// uvg(o dv,

BeNQy,

// yvg(o dVy
B,QQXO

if | Xo| < Z%R and r < %. Finally combining (5.20), (5.21), (4.8) and (5.22) we conclude that

// ,uvg(c dv,
BerNQy,

// vg(o dx
Brﬁon

Let r; be a sequence such that r; — 0+. Since
Qx, = {(x, Xq) : X4 > @(x + x0) — @(x0) — 3IXIA(XD)},
with Xy = (xo, ¢(xp)), it is not hard to see that inside Bs,

< 1692560 < C(Cy, A) < +o0 (5.22)

Vv.(Y)[ < C <C’' <400, forall|Y|<5.

Xo

converges graphically to the half-space Qs := {(y,yq) : ya > Vo(xp) - y}.

rj
Throughout the paper, we say a sequence of domains D; := {(x, xg) : x4 > ¢i(x)} converges
graphically to a domain D, if i; converges locally uniformly to a function o, and D, is
the domain above the graph of Yo, i.6. Do = {(X, Xg) : Xg > Yeo(X)}.
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Since we also have v,,(0) = 0, it follows from the Arzela-Ascoli Theorem that modulo
passing to a subsequence

vy, converges uniformly to a function v, in Bs,

and v, = 0 on Bs \ Q. Note that vo, # 0 because of (5.16). Moreover we also have
Vv,, = Vve in L? and thus v, is a harmonic function in Q. In fact, we also have that Vv,,
converges to Vv, strongly in L2, Firstly let K be a compact set in Q. N Bs. Then K is also

P! . . . .
compactly contained in % for all i sufficiently large. In K, the function v,, — v, satisfies
the differential equation

div (A, (V)V(vy, — veo)) = div (Id —A,,(Y)VVeo )

where A,,(Y) = A(r;Y). We apply the interior gradient estimate in [CK, Corollary 1.2.22],
but this time with non-trivial right hand side (see the general form of the differential equation
in [CK, (1.2.1)]). And we get

Vv,, — Vv converges to O uniformly in K.

On the other hand, let 7 > 0 and we set B-(0Q) := {X : dist(X, 0Qs) < 7}. Since Vy,, is
uniformly bounded, we may choose 7 small enough so that

// Vo, dX < .
B(0Qc0)NBs

Then for an arbitrary s € (0, 5), we have

lim sup // oo Vv [7dX < lim // o Vv P dX +e< // [Vveol® dX + €.
ri—0+ JJBn=0 1120+ ) B\B(@e)n 30 BNQe

Combined with Fatou’s Lemma we conclude that

// Vv, dX > // Vveol? dX.
Bsné B,NQ

In particular, it implies that
N, s) = NV, s) as r; = 0.
Combined with (5.18), we obtain
N(e,s) =Ny, forall0<s<35.

By the rigidity of the monotonicity formula in Corollary 3.26, this implies that the harmonic
function veo(r, w) = Mov(w) is homogeneous of degree Nx,. Hence A := Ny, (Nx, +d —2)
is an eigenvalue for the Laplace-Beltrami operator of the half-sphere Q. N S$"~'. We notice
that any odd extension of a Dirichlet eigenfunction on the half-sphere is an eigenfunction on
the entire sphere, which vanishes on the equator. Additionally, recall that eigenfunctions on
the entire sphere are restrictions of harmonic polynomials. Therefore we have proven:

Lemma 5.23. Ny, := lim, 04+ N (vx,. r) must take positive integer values.
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5.2. Compactness. In this subsection, we will make sense of the following observation: if
we blow up at a point in p € Br(0) N dD, the configuration at the limit is the same as the
blow-up limit for the corresponding reduced domain €,,. In fact the observation also holds
true for pseudo blow-ups, i.e. we zoom in not at a fixed point, but at a sequence of points
contained in a compact set. To be more precise,

Proposition 5.24. Let R, A > 0 be fixed, and (u;, D;) € H(R, ). Let p; be a sequence of
points in B Kl #(0) N AD; and r; be a sequence that converges to zero. Modulo passing to a

subsequence,

(1) the sequence of domains D'r;'p’ converges graphically to Dy, where Do = {(y,V4) :
Ya > Vo(xoo) - y} is an upper half-space and peo = (X0, P(Xo0)) is a limit point of the
sequence {p;};

(2) inside Bs(0) the sequence T, ,,u; converges uniformly and in W2 t0 a Sfunction u,

which satisfies Aus = 0 in Do N Bs(0) and us = 0 in Bs(0) \ Deo.
Moreover, consider the functions vp, = u; o ¥, in domains Q,, respectively. We have

Q,. . o
that = also converges graphically to D, and inside Bs the sequence T,,v,, also converges
uniformly and in W'? to u,.

ri

Remark 5.25. In fact, in the proof we will see that to get compactness, it suffices to assume
r;’s are bounded (in that case the limiting domain D, is no longer the upper half-space).
We need r; — O to get that T, ,,u; and T,,v), converge to the same limiting function, and
in particular to get that T}, v, converges to a harmonic function. (Note that 7,,v,, solves
an elliptic equation with coefficient matrix A,,(Y), which does not converge to the identity
matrix if r; /A 0.)

Proof. By the assumption D; N Bsg(0) is above the graph of a C'-Dini function ¢;, which
satisfies ¢;(0) = 0, Vy;(0) = 0 (since dD; is tangent to R4! x {0} at the origin) and

IVei(x) = Vei(y)l < 0(1x = y). (5.26)

By Arzela-Ascoli Theorem ¢; converges in C! to a function ¢ : R“"! — R, which also

satisifes (5.26). We write p; = (x;, ¢i(x;)). Since each x; is contained in B”{i‘;(O), modulo
20

taking a subsequence x; converges to some X € R41, Hence pi = (xi, pi(x;)) converges to

SOME Poo = (Xoo, P(Xo0)) satisfying |poo| < Z%R. We let D denote the domain above the graph

of ¢. Clearly it is also a Dini domain with parameter 6, D 3 0, p,, and dD is tangent to

R4 x {0} at the origin.
It follows that D'r;'p’ is locally above the graph of a function @; : R“! — R, where
. 1
i) = — [@(xi + riy) — o(x)],  for |yl <5.
l
By the properties of ¢ in (5.26), we have
18i(y) = (Vei(xeo), M| < 18i(y) = (Vei(xi), W) + KVei(xi), ) = (Vi(Xeo), Y
< O(rilyDIyl + 6(1xi — xeoDIyl
< 5(0(5ri) + 0(1xi — X)) -
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The last term tends to zero uniformly in |y| < 5. Therefore @;(y) converges uniformly to a
linear function ¢«(y) = (Ve(x),y). Moreover, inside Bs(0) the domain D"r_ip L converges
graphically to the domain

Doo :={(y, 1) : Yn > 0o () = (Vp(xc0), Y2}

which is the region above a hyperplane {(y, y,) : y» = (V@(xs), y)}. This finishes the proof
of (1).

For simplicity of notation we write it; = T, ,u; and ¥; = T,,v,,. Notice that the uniform
gradient bound proved in Lemma 5.19 is independent of the base point Xy, or as in the
current notation, the base points p;’s. So we can use similar argument as in the previous
subsection to show that ii; converges uniformly and in W'? to a function u., in Bs(0), such
that 1, = 01in B5(0) \ Q. and Aus = 0 in Q N Bs5(0).

On the other hand, as in Section 4 setting
Vpi(X) = ui(¥p, (X)) = ui (pi + ¥(X)), forX eQ,,

we know it satisfies div(A(X)Vv;) = 0 where the matrix A(X) is defined as in (4.5). Notice
that the matrix A(X) is independent of the base point p;. Recall that for each p; = (x;, (x;)),
the domain €2, is above the graph of an implicit function ¢; : R4-! — R defined as

$i(x) := @i(x; + X) — i(x;) = 3|XI6(X]),  where X = (x, ¢i(x)).

Qrf’ L is locally above the graph of the implicit function

Therefore

- 1 ~ -
$i(y) := — [@i(xi + riy) — @i(x)) = 3rlYI0(r|YD],  where Y = (v, $i(y)).

ri

On the compact set [y| < 5, the function ¢; converges uniformly to a linear function ¢e(y) =
(Vo(x),y), which is the same as ¢ (y). Hence inside Bs,

QPi

also converges graphically to the domain D,.

rl
Besides, for any test function ¢ compactly supported in Do, N Bs, using a change of variables
several times we know

/ﬁp, (A(rY)V5(Y), Vi(Y)) dY

i

I X
- - // (AX) Vv, (X), V(X)) dX vi(X) == (_)
rld Qp, r

<// u? dX) -1

_ A\YB(pnD; % /ﬁ _,(V(2), VU(Z) dZ, G2 =y (w
2 dX !
(//}%m()m " )

) . (5.27)
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By the definition of ¥, we know that

B (o, L) c ¥ 1(B,(0)) c B (0, L) .
1+ 36(s) 1 - 36(s)
Hence

2 2
uvy, dV, // uvy, dV, N
//(‘P“(B,i)AB,}.)nQpi pee < 2 Bun@B,)0Q, pee 36(r;)

where 7; =

ﬂ /lvlzji dVg // IJV%I_ dVg 1—30(rl)
BriﬂQPi B,A’.ﬂQpi

By Lemma 5.19, the right hand side tends to zero as r; — 0 (and thus 7; — 0). Using this
and the definitions of Q,, and v,,, we conclude the factor

%
// ul2 1704
Br«(Pi)nDi
1
// v2 dx
B,,NQ,

Lety = & ("Z) , then by the definition (4.2) of the map ¥ we have
Z = (y,y4 = 3YI6(r|Y])) = Y = 3|YIB(ri|Yeq.
Since i is a smooth function whose support is contained in on Bs, it follows that
IVJi(Z) = V(Y| < 1Babilles (36(rilY]) + 3rilYI6 (YD) »
VU(2Z) = V(D] < IV2YlIslY = Z| < 3IY IV leobiril YD)

— lasr,— 0. (5.28)

Hence
[Vy(Z) — Vii(Z)| — 0 uniformly for |Z| < 5.
Therefore

‘ﬂ) (Vitj(2), Vigi(Z)) dZ—/ (Vuw(2),Vy(2)) dZ
Sk De

oy (VEA(Z), ViFi(2)) dZ — /ﬁ_p, (Viui(2), Vy(2)) dZ

+ /ﬁ,_ (Vi (Z), Vi (2)) dZ—/ Vuw(2),Vy(Z2)) dZ
— De

also converges to zero. Combined with (5.27) and (5.28) we get
[, Ao vuwy av - | Gun@.vo@y iz
- Do

Since A(r;Y) converges to the identity map uniformly in |Y] < 5, it follows that 7; also
converges uniformly and in W'? to the function u.,. In particular i; and #; converge to the
same harmonic function uy in Dy, N Bs.
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6. FREQUENCY FUNCTION FOR INTERIOR POINTS

6.1. Monotonicity formula of the frequency function. For any interior point p in a C!
domain D, we will show that the frequency function N(p, r) is monotone increasing for
radius r in a finite interval, the length of which depends on dist(p, D). More precisely, for
any r > 0 let

D(p,r) = // IVu? dX and H(p,r) = / u? dH, 6.1)
By(p)nD dB,(p)nND
and let the frequency function centered at p be defined as
rD(p,r)
N(p,r) = ———. (6.2)
20 Hp.n

For simplicity of notation, when there is no confusion we often drop the dependence on p
and simply write D(r), H(r) and N(r).

Proposition 6.3. Let D be a C' domain, in the sense that
D N Bsg(0) = {(x, xa) € R? X R : x4 > ¢(x)} N Bsg(0)

where ¢ is a C' function and 0 € OD. Let u be a harmonic function in D such that u = 0 on
0D N Bsg(0). Then for any p € D N Byg(0), the frequency function N(p, r) satisfies

N'(r) = Ru(r) + Ry(r),

where 5
2r N(r) d-1
Ry(r) := u——ul dH",
" Hr) Jop,yon | © r
Ry(r) := (Ont) (X — p,np(X))y dH*",

H(r) J,(pynoD
Here 0,u denotes the radial derivative of u with center p, and 0,u denotes the normal
derivative of u pointing away from D.

In particular N(r) is monotone increasing with respect to r, as long as
ré(r) < dist(p, dD), (6.4)

where 0(-) is the modulus of continuity for the function V.

Proof. The proof is similar to the proof of Proposition 3.10 for the case of the Laplacian op-
erator, so we will just sketch the proof emphasizing the differences. Using the assumptions
that Au = 0 and u vanishes on the boundary, we get

H' (r) = d—;lH(r) + 2/

d-1
u dpu dH*' = ——H(r) + 2D(r), (6.5)
OB, (p)ND r

and

d-2 1
D'(r)= ——D(r)+2 / (@pu)* dH™" + = / (@)X — p,np(X)y dH.
r 8B,(p)ND T JB,(p)ndD
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Therefore
N'(r)y 1 D(r) H(r)

= + —
N(r) r D(r) H(r)

2 N(r) ‘2 d-1 2 d-1
= — ool — u| dH" + —— Ou) (X — p,np(X)y dH .
D(r) Jogpyop | © r rD(r) J,(pnap b
Or equivalently,
, N [P 1 2 d-1
N'(r) = opu — u| dH" + — (Ouu) (X — p,np(X)y dH .
H(r) Jop,yon | © r H(r) JB,(p)noD

(6.6)

We claim that if the condition (6.4) holds, then
(X - p,np(X)y >0, forevery X € B,(p)NaD.

It then follows that R,(r) > 0. In fact, we denote p = (xo, z9), Where xg € R! and zp € R
satisfies zg — ¢(xg) > dist(p, dD). Let X = (x, ¢(x)) be an arbitrary boundary point in B,(p).
then

(X = p,np(X))

<(x — X0, (%) — 20), M>
1+[Ve(x)P
1
T (0 x ok 20 — 9]

1
m [(ZO — (x0)) + (p(x0) — (x) — (Vep(x), X9 — x))]

> ; [dist(p, oD) — 9(r)r]

V 1+ (Voo

> 0.

Since we also have Ry(r) > 0, by (6.6) we know N(r) is monotone increasing with respect
tor. [m|

As in the purely interior case, the limit of the frequency function N(p, 0) := lim,_+ N(p, r)
measures the vanishing order of u at p. By the blow up analysis similar to Subsection 5.1,
when p € N(u) we know that N(p,0) € N. *

Since A(-) > 0 is a nondecreasing and continuous function, the map r € [0,R] > rf(r) €
[0, RA(R)] is bijective. In particular it gives a decomposition of the interval [0, RA(R)], and
for any real number x € [0, RA(R)] we can find r € [0, R] such that x = r8(r). Thus for any
p € D N Byr(0) sufficiently close to the boundary, we can always find a unique r > 0 such
that

dist(p, dD) = rd(r). 6.7)

“If u(p) # 0, then the leading order of u near p is simply the non-trivial constant u(p). In this case, we need
to define the frequency function centered at p using the harmonic function u — u(p), so as to capture the leading
order term of u — u(p).
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Thus we will refer to such r as the critical scale for p and denote it by r.4(p), and say that
[0, rc5(p)] is the monotonic interval for p. To unify the notation we use the convention that
res(p) = 0if p € AD.

6.2. Doubling property and frequency function beyond the critical scale. For interior
points, similar to Lemma 5.1 we also get a uniform bound (depending on d, A) on the fre-
quency function.

Lemma 6.8. Assume that Ng(4R) < A < +oco. Suppose X € DN B 13 (0) is such that
dist(X, dD) < %Ré(%R). Then for any r < %R, we have

N(X,r) < C(A)Ny (ZR) < C'(N), (6.9)

where X € D satisfies |X — X| = dist(X, D).

Remark 6.10. Notice that the above upper bound holds even outside of the monotonic inter-
val [0, r.5(X)], as long as we have r < %R.

Proof. Since the frequency function N(X, -) is monotone increasing on the interval [0, r.4(X)],

it suffices to prove (6.9) for r.4(X) < r < %R. By (2.5), we have

reX) _r
4 4
By the sub-harmonicity of #* and the doubling property of H(X, -), we have

1 1 5 5
HX,r) > — // u? dZ > ~ // u?dZ > / u? dH 20 H <X, —r) .
"JA 0 rJja, ;s & 9B (%) 4

Therefore

IX — X| = dist(X, D) <

r

R[]

r
7

. // VuPdz " // VuP dz
5,00 D

HX,r) = HEX,3r

N(X,r) =

IA
3
R
1
<
~——
A
3
N
1w
=
S~

The above frequency bound yields the doubling property for the L? norm, similar to the
boundary case in Corollary 3.28.

Corollary 6.11. Assume that Noy(4R) < A < +oco. Then for any X € DN B 13 (0) such that
dist(X, dD) < %Ré(%R), and any p > 0, a > 1 such that ap < %R, we have

// u* dZ

Bap(X) < gd+ew
// u* dz

B,y(X)

fe

(6.12)
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Proof. Recall we have computed the derivative of H(X, s) in (6.5), which can be reformu-
lated into

( H(X, s))’ 2N(X, s)
log = .

sd-1 s

Integrating the above equality and by the upper bound of the frequency function, we get

HX.as) e [ /as 2N(X, 1) dr] < gd-1Hcm). (6.13)

H(X,s) T

0
// u* dZ a/ H(X,as) ds
Byp(X) _ Jo < grew).

=T
// u?dz / H(X, s)ds
B,(X) 0

Lemma 6.14. Assume that No(4R) < A + oco. Forany X € DN B 3 (0) N N(u) such that
dist(R, dD) < %Ré(%R), and any r < %R, we have

Therefore

O

|VTx,u(Y)| <C, forallY e N Bs.

Proof. Recalling the definition of T’y ,u in Definition 2.11, we have

(rVu(X + rY)|)?

% // u? dz
B,(X)

We first consider the purely interior case when 6r < dist(X, dD). In this case, by the interior
gradient estimate, u(X) = 0 and the doubling property in Corollary 6.11, we have

IVTxu(Y)* =

2dz

Vul)? // "

VTu(r)| < supp,x) (rVul) < MBex) < g+
1

- // u* dzZ // u* dzZ
B,(X) B/(X)

is uniformly bounded. Now assume dist(X,dD) < 6r. Let X € 9D such that |X — X| =
dist(X, dD). We bound the numerator by the boundary gradient estimate of u:

1
AVuX +rY)D)? < sup  (rVul)* < = // u* dZ. (6.15)
Be(X)ND M B,

To bound the denominator, we use the doubling property (6.13) and |X — X| < 6r, and get

— W dZ 2p — W dZ > — W dZ. (6.16)
)], A oo )] ,x)
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Therefore combining (6.15) and (6.16), it follows from Corollary 3.28 and the bound on the

frequency function that
// u? dzZ
B1.(X)

// u? dzZ
B.(X)

For an interior point X € D, since the frequency function N(X,-) is only monotone in-
creasing in the interval [0, r.s(X)], for large radius we will replace N(X,r) by the corre-
sponding frequency function centered at a boundary point X € 9D, which satisfies |X — X| =
dist(X, dD). The following lemma justifies this choice.

VT ul < < 792500 < C(A).

O

Lemma 6.17. Let R,A > 0, p € (0, 1/6] and 6;, > 0 be fixed. There exists ri, = rin(6in, p) >
0 such that the following holds for any (u, D) € H(R, A). Suppose p € DOB% O)NN(u) with
pres(p) < rin. Let g € 0D satisfy |q—p| < 2dist(p, dD). Then for any radius pr.s(p) < r < riy
we have

IN(p,r) = Ny(r)| < 6in-

Proof. We argue by contradiction. To that end we assume there exist sequences (u;, D;) €
DR, A), pi € Di N Br (0) N N(u;) with preg(pi) < ri — 0 and

. ~ ris(Fi
dpi = dist(p;, OD;) = res(pi)8(res(pi)) < /_;6 (j) > (6.18)
and g; € dD; with |p; — gi| < 2d,,, such that
|N(pi,ri) = Ng,(ri)| > 6in > 0. (6.19)

By assumption
D; 0 Bsg(0) € {(x,xa) € RT X R : xg > ¢i(x))
for some C! function ¢; with Dini parameter 6. Without loss of generality we assume ¢;(0) =
0 and V¢;(0) = 0. Hence
IVei(0)] = [Vei(x) — Vi(0)] < 6(1x]) < 6(5R)
is uniformly bounded, and by Arzela-Ascoli ¢; converges uniformly to a function ¢ which
satisfies the same properties as ;.

We denote p; = (x;,z;) € R4 x R. By assumption we have |p;| < %. Simple geometry

shows that
dy, < 7 — @i(x;) < dp, \/ 1 + 1R + O(R)d,, < 2d,,. (6.20)

Simple computations show that Di=pi 1 B5(0) corresponds to the region above the graph of

i

the function ; : R4-! 5 R, defined as

1
Yi(y) = - [@i(xi + riy) — 0i(xi) — (zi — @i(x))] .
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By (6.20) and the assumption (6.18), we have that ;(y), modulo passing to a subsequence,
converges uniformly to a linear function ¢ (y) := (Vo(xw), y), Where x is a cluster point
for {x;} € Bg(0). In other words, inside Bs(0) the sequence of domains

D; — p;
Pi converges to the upper half space D := {(,v4) € R X R @ ys > @ (1)}

1

By Lemma 6.14, T, ,,u;(0) = 0 and compactness, we get that the sequence
ui(pi + riY)

1
2
l// u? dZ
(’7 Bup)

converges uniformly and in W2 to a harmonic function ue in Do N Bs(0). On the other
hand, by Proposition 5.24 the sequence

Tpi,r‘.l/ti(Y) =

ui(qi +riY)

3
L// u?dz
(’fd Bya)

(and the sequence T,v,,) also converges uniformly and in W2 to a harmonic function fc,
in the same upper half space Do,. Moreover we claim there exists some a; ~ 1 such that

la;Tp, rui(Y) =Ty, ,ui(Y)| — 0 uniformly for ¥ € Bs(0). (6.21)

Assuming the claim is true, then fi, = Ue. (A priori i, is a constant multiple of u., and
the constant must be 1 since they both have unit L? norm on B;(0).) Hence

Typrti(Y) 1=

N(l/ti, Di, ri) - ﬁ(vq," ri)

e
N(T p, 152 0, 1) = N(T,v,,, 0, 1) exp (C / (4s) ds)‘
0 S
- |N(MOO,O9 1) - N(ﬁOO’O’ I)I = O’

which contradicts the assumption (6.19).

Proof of the claim (6.21). By the assumption (6.18) and |g; — p;| < 2d,, < r;, we know

1 // ) 1 // 2
— uy dZ =~ — uj dZ.
rzd B (pi) rzd B (qi)

1

)
% // u? dZ
i JJB,.(p)
% // ui2 dz
i JJ B,

By the boundary gradient estimate in [CK, Theorem 1.4.3], the doubling property (3.30) at
gi, and the assumption (6.18), we get

[ui(pi + 1Y) — ui(q; + r;Y)| < Ipi — qil

We denote

a; = ~ 1.

< sup |Vl

1
2 Buy, (@)nDi
# // u,2 dz % // u,2 dz
't JJ By (qi) ' JJ Br(qi)

[SIE
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1
— 1 (1 ’
Ipi = gi 2 (?// ude)
| 5 Ti i JJ Ber,(q:)
ﬁ// I/ll- dz
" JJB,.(g)

1
2
% // u? dZ
lpi —qil | 7" B, @)
i % // ul-z dZ
i Br,—(qi)

<

=

<

< @ .6N(111,6r1)
T
<9 (r—> 6 5 0, (6.22)
Ie;
This finishes the proof of (6.21). O

The above lemma means that for any interior point p € D close enough to the boundary,
whenever r is out of the monotonic interval for p, we can always replace the frequency
function N(p, r) by that of a nearby boundary point ¢, with a small price to pay. Therefore
we define 1) -

| N(p,n), r<re(p
N { Nyr) = N, 1> res(p)
where g € dD is such that |g — p| = dist(p, dD). Hence N,(r) is monotone increasing in the
disjoint intervals [0, r.5(p)] and (r.4(p), +o0), with a possible jump of §;, since Lemma 6.17
and the monotonicity of N,(-) imply that

Np(rcs(p)) =N(p,res(p)) < Nq(rcs(p)) +0in < Nq (res(p)+) + 6in = Np (res(p)+) + Gin.

To summarize Sections 4 and 6, for any (u, D) € H(R, A) we have defined the frequency
function for any point X € D as follows:

N(vy,r), if X € 0D
Nx(r) = Nx(r) = ¢ N(X,n), if X € D and r < r5(X) (6.23)
Nz(r) = N(vg,r), ifX e Dandr > r.(X)

where X € 0D is such that |X — X| = dist(X, D).

7. QUANTITATIVE SYMMETRY

In this section, we use compactness to prove quantitative cone-splitting and dimension
reduction.

Heuristically, the intuition for dimension reduction is the following simple observation.
Suppose C is a cone in R which is translation-invariant along a k-dimensional linear sub-
space V. In other words we may identify V with {0} x R¥ and identify C with a cylindrical
cone Cy X R¥, where Cy is a cone in R?“*, Then any point X away from the spine {0} x R is
symmetric in (k+ 1) directions (i.e. along the direction of the spine V and the radial direction
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in Cyp). To prove quantitative cone-splitting and dimension reduction in our setting requires
two non-trivial adaptations of the above observation. Firstly at each boundary point X the
frequency function is only monotone for vy, = u o ¥x,, and we need to combine the infor-
mation of vy;’s with different base points X;’s to produce an invariant subspace. Secondly,
along the radial direction the limit function is not constant, but grows polynomially. So we
need a different approach to distinguish points on the spine and away from the spine.

Definition 7.1. Let Yy, - - -, Y} be arbitrary points in B,(p) C Rk Ifforalli=1,--- ,k, they
satisfy

Y; ¢ By, (Yo +span{Y; — Yo, ,Yii1 — Yo})
we say that these points 7r-effectively span the k-dimensional affine subspace V := Yy +
span{Yy — Yo, -+, Yi — Yo} in B,(p).

Given a set F C B,(p), we say that F tr-effectively spans a k-dimensional affine subspace
if there exists a (k + 1)-tuple {Yo, -, Y3} € F which tr-effectively spans a k-dimensional
affine subspace.

Remark 7.2. Unlike the notion of linear independence, the above effective notion is pre-
served under limits.

Proposition 7.3. Let R, A > 0 and 6o,p, 7T € (0,1) be fixed. There exist 6 > 0, § > 0 and
I < rin(0) (Where ri,(6) denotes the radius in Lemma 6.17 if we take 6;,, = 6 and p = 1/6)
such that the following holds for any (u, D) € $H(R, A) and r < ry,. Suppose

sup  Nx(r) <A < C(A). (7.4)
XeBo (0NN (u)

If the set 3
F ={X € By (0)NN(u): Nx(pr) > A -9}
2tr-effectively spans a (d — 2)-dimensional affine subspace V, then
for every X € Bog,(V) N B (0) N N(u), Nx(pr) > A - 6; (7.5)
and
Cr(u) N By,(0) N N(u) C Bogr(V). (7.6)
Proof. Proof of (7.5). We remark that B,g,(V) N By,(0) N N(u) can not be empty, since it
contains at least (d — 1) points generating the subspace V. We also remark that
F c{X € B,,(0) N N(u) : [INx(r) — Nx(pr)| < d}. .7
Indeed it is clearly true if X € 9D, since
0 < Nx(r) = Nx(pr) <A - (A= 6) = 6.
When X € D, (7.7) is true if Nx(r) > Nx(or). If not (which can only happen when pr <
res(X) < r), by the definition (6.23), r.s(X) < r < r;,,(6) and Lemma 6.17 we have
Nx(r) = Nx(pr) = N(r) = N(X, pr) > Nx(r) — (Ng(pr) + 6) > =6,

where X € 8D is such that |X — X| = dist(X, D). By the assumption (7.4) and the definition
of F,
Nx(r) — Nx(pr) < A — (A - 6) = 6.
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Hence (7.7) is true.

We argue by contradiction. That is, we assume there are (i;, D;) € H(R, A) and 6;, r, B; —
0 satisfying r; < r;,,(6;), such that

sup NY(r) < Aj < C(A),
X€Bay, (0NN ()

the set
Fi = {X € B,(0) N N(u;) : Ny (pri) =2 Aj = 6;}
27r;-effectively spans a (d — 2)-dimensional affine subspace, denoted by
Vi = X2 +span(X! = X0, x%2 - x?), with X/ € F; forall j€{0,---,d -2};
and yet there exists X; € Bag,,, (Vi) N By,,(0) N N(u;) such that N;’I',(pri) < A; = 6.

_ Step 1. Since 0 < A; < C(A), modulo passing to a subsequence A; converges to some
A € [0,C(A)]. By Proposition 5.24 for each j € {0,--- ,d — 2} fixed, the sequence Ty, ui

converges uniformly and in W2 to some harmonic function uZ, in DL, N Bs(0), which van-
ishes on the boundary. With j fixed, we consider two cases. Case (i): there are infinitely

many boundary points in the sequence {X,j };. Then we throw away all interior points in
the sequence. By Proposition 5.24 T,,v,; also converges to the same function ul. Since

Xl-j € B»,,(0), we have
Xij — 0asi— +oo, foreach j fixed.

Hence the domain DY is in fact the upper half-space R?. Let p € (0, 1) be arbitrary. Then
for any i sufficiently large so that p; < p, by the scale-invariance of the frequency function
we have

N(Trivxfa 1) - N(Tr,-VXj’p)
= N(injv ri) - N(inj’pri)

~ ri 0 4 _ or; 6
= N(vyj, ri) exp (‘C/ (TT) dT) = N(vyj, pri) exp (—C/ (47) d‘r)
i 0 ; 0

T

= N(vy). 1) [exp <—C /ri 9(;11) d‘r) —exp (—C /prf H(iT) drﬂ
i 0 0
~ ~ I o4
+ |:N(inj,rl‘) - N(in,-,pr,-)} exp <—C/O (TT) dT)

- 0, asr; — 0.

In the last line we used the assumption Xl-j € Fj, the fact that N,,;(r;)’s are uniformly bounded
by C(A) and fori @ dt — 0 (see Remark 2.6). Hence
NGy, 1) = Ny, p) = im N(Ty,vyi, 1) = N(Tyvy5,0) = 0.
ri—0 i i

Since ul, is a harmonic function in the upper half-space, by the rigidity of the monotonicity

formula in Corollary 3.26 ul, is a homogeneous harmonic polynomial in B{(0). Thus by
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the unique continuation theorem ul, is a homogeneous harmonic polynomial in the upper

half-space.

Otherwise, we fall into Case (ii): there are infinitely many interior points in the sequence

X/} Then we throw away the finitely many boundary points (if they exist) in the sequence.
Since X/ € By,,(0), we know that

dist(X/,0D;) < X/ - 0] < 2r;.

In particular, modulo passing to a subsequence, the sequence of real numbers dist(Xij ,0D))/r;
—X!
converges to some d; € [0, 2]. A simple computation then shows that DX converges graph-

i
ically to the domain
DL = {(v.ya) € R xR yg > ~dj},

which is the upper half-space (when d; = 0), or the upper half-space shifted down by d; in
the direction of —ey.

We claim that

1

N(Ty 4,0, 1) = N(Ty , 13,0, p)‘ - ‘N(ui,Xij, r) = N, X2 pr)| = 0., (7.8)

This does not follow obviously from the assumption Xl-j € F; and the observation (7.7):
Recalling the definition (6.23), the frequency function N;’("j(-) that appears in F; is not always

the same as N(u;, Xl.j ,-) straightforwardly; it is defined as follows

N;’IJ (7.9)

N(Ml-’Xl.j,r), r< rcs(Xij)
(r) = N;;(r) =N (VX,I, = lPX’{ o ui,r> r> rcs(Xij)

where rcs(Xij ) denotes the critical scale for u; at the interior point Xl.j , and f(l’ € 0D is such
that ’X{ ~ %! ’ = dist(X/, aD)).

In fact, if r; < rcs(Xl-j ), then by the definition (7.9), Xl-j € F; and the observation (7.7), we
have
<

‘N(ui, X,j, ri) — N(u;, X,-j,pri) <0i;

N;Zj(ri) - N)Lz;(Pri)

if pr; < res(X!) < r;, then by the definition (7.9), res(X/) < r; < rin(6;), Lemma 6.17, X/ € F;
and the observation (7.7), we have

1 J

i

NG X 1) = N, X], pri

= ’N(uianja ri) - N:i'(prl')

< [NQui, X],r) - N;?(Fi) +

N;;!‘(ri) - N;gj(pri)

< 2(5[;
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if pri > re(X)), then by re(X)) < pr; < r; < rip(6i), Lemma 6.17, the definition (7.9),
Xij € F; and the observation (7.7) we have

1

NG X7 ) = N, X/, pri

< |NGui, X/, ri) - Ni(ri)| + |Ngi(ri) = Ngi(pri)| + [Ngi(pri) — N, X{, pry)
< 206; + N;’j(rl) - N;’j(pr,)
< 36;.
So for each i we always have
(NG, X)) = NG X pri)| <36 = 0, (7.10)

which finishes the proof of the claim (7.8). Therefore

NG, 0,1) = N(uk, 0,p)| = lim ‘N(Txg,riui,(), )= N(Ty , ui,0.p)| =0.  (7.11)

Ifdj = 0and thus0 € oD%, we appeal to the rigidity of the monotonicity formula for bound-
ary points (Corollary 3.26) to conclude that uly is homogeneous with respect to the origin.
Alternatively if d; > 0, then 0 € D{;O and moreover dist(0, 8D£o) = d;. Since u!,; vanishes
on the boundary of DL, by the rigidity of the monotonicity formula for interior points (see
Proposition 6.3) we conclude that uly is homogeneous with respect to 0. Since u{;o(O) =0,
by homogeneity and the unique continuation property uly = 0, which is impossible since
W0 lulo]* dZ = 1. Therefore we can only have d; = 0 and DL, = RY.

Moreover, in both cases, since A; — A and §; — 0 we can show that
N@l,0,1) = lim N(u;, X, 73) < A,
and
N(@ul,,0,p) = lim N(u;, Xi. pri) 2 A.
Therefore the degree of homogeneity of uly with respect to the origin satisfies
N(ul,,0,0) = N(ul,,0,1) = N(ul,,0,p) = A. (7.12)

Step 2. Let

] 0 D 0
i X=X} _Di-x}

' ri ri

By the assumption of effective spanning, we have
X7 - X7 |

T

2r<|¥/l<4 and |Y/-Y/|= > 2rif j# .
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Modulo passing to a subsequence we have that {Yl-o, Yhoo, Y,-d‘2} convergesto {0, Y', -, Y42},
which 27-effectively spans a (d — 2)-dimensional linear subspace V. Moreover, since

;oD — X"\ dist(X/,aD;
dist(Y,-j, ! ) - S0P
ri ri
it follows that
A . OD; — XV
dist(Y/,D%) = lim dist (Yl’ #> =d;=0, (7.13)
1—00 ri
ie Y/ eoDl.
We claim that for any j € {1,---,d — 2}, there is a constants a; ~ 1 (depending on the
values of d, R and A) such that
udi(Y/ +Y) = ajul(Y), foreveryY e DL, (7.14)
For simplicity of notation we just write down the proof of the claim when j = 1. Recall that
(X! + 1Y
TX.l r-ui(Y) = ul( : il ) 1>
il 3
1 2
= u; dX
(’”5[ //B,,.<X,-') l )
and
ul-(X? + riYil + I”iY) u; (Xi] + r,'Y)

Ty, ui(Y} +Y) = -

I 1*
3 2
1 2 1 2
1 u? dXx —// u; dX
(’?’ //B,I(x,o) : ) (’7 B0 >

Since |X} — X?| < 4r;, using the assumption X, X! € N(u;) and the doubling property in
(3.30) (for boundary points) and (6.12) (for interior points), we get

// u? dX ~ // u? dX, (7.15)
B, (x}) By, (X))

where the constant depends on d, A. Hence modulo passing to a subsequence their ratio
converges to a positive number. This implies the claim (7.14). Recall that each ul is a
homogeneous polynomial with respect to the origin. The claim then implies that 0, is a

homogeneous polynomial with respect to Y'!, - -, Y¢~2. Therefore either 1, is linear, or 1%,
is invariant along the (d — 2)-dimensional linear subspace Vo, = 0 + span{Yl, S i N
oD

Step 3. On the other hand, let

Then modulo passing to a subsequence Y; converges to some point Y, € @ N B4(0). By
compactness we have Ty, ,u; converges to some harmonic function (not necessarily homo-
geneous) Ug, in Rﬁ — Yo N Bs(0). Moreover, let

Vii=0+ span{Yil, ‘e ,Yl-d_z}
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be a (d — 2)-dimensional linear subspace. Since X; € Bag,,(V;), we have
dist(X;, V))

1

dist(Y;, Vi) = < 2B — 0.

Since V; — Vi, this implies that Y., € Vo, € JR?. Hence the domain R? — Y, is exactly the
upper half-space RY. This in particular implies that dist(X;, dD;)/r; — 0, and similar to the
proof of (7.14), we can show there is a constant a ~ 1 such that

W.(Yeo +Y) = a ueo(Y). (7.16)

Since u?, is invariant along the plane Vo, and Yo, € V.., it follows from (7.16) that i, is

homogeneous with respect to the origin, and moreover
N(ttoo, 0, p) = N(ttoo, 0,0) = N2, Yoo, 0) = N2, 0,0) = A, (7.17)
where we use (7.12) in the last equality. However, by the assumption on X; and Lemma 6.17
N(ui, Xi, pri) < Ny (pry) + 6; < (A = 60) + 6,
and thus
N(tte, 0,p) = im N(Tyx, i, 0, p) = lim N(u;, X, pri) < A = 6.

This is in contradiction with (7.17). Therefore we have proven (7.5).

Proof of (7.6). Notice that if the set on the left hand side is empty, there is nothing to
prove. So we assume that is not the case. We argue by contradiction as before, but this time
with 8 fixed to be the value we just found. That is, we assume there are (u;, D;) € H(R, A)
and &;, r; — 0 and r; < r;,,(6;) such that

sup Ny (r) < A < C(A),
X€Bay, (0NN ()

the set

F; = {X € B,,(0) N N(u;) : Ny (pr;) > A; — 6}
2tr;-effectively spans a (d — 2)-dimensional linear subspace V;, and yet there exists some
X; € C,,(u;) N By, (0) N N(u;) which satisfies dist(X], V;) > 2fr;.

The first part of the proof is the same as in Step 1 and Step 2 above, and we obtain that
Tyo ,.u; converges to u%, which is a harmonic homogeneous polynomial and is invariant
along a (d — 2)-dimensional linear subspace V..

Similarly to Step 3 above, we let

zx—wea—w

ri ri

Y/

1

Di=X} |

Recall we have shown in Step 1 in the proof of (7.5) that the sequence of domains

i

@. Then modulo passing to a subsequence Y; converges to some point Y’ € @ N B4(0);
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and TX;,,,.u,- converges to some harmonic function (not necessarily homogeneous) u., in
(R? - Y’) N Bs(0). Additionally, since dist(X/, V;) > 28r;, we have
diSt(X;, Vi) >

dist(Y, V;) =
ry

2B,

and thus
dist(Y’, Vo) =2 28> 0. (7.18)
Moreover, similarly to the proof before we can show there is a constant @’ ~ 1 such that
(Y +Y) =a u/(Y), and thus
Vil (Y +Y) = a' Vil (Y). (7.19)

Since 1, is invariant along the (d — 2)-dimensional linear subspace V., C dR?, by iden-

tifying the coordinate system in V& x V., with R? x R?~2 we have

e either u, is a harmonic function in one variable, and then necessarily %, is linear in
that variable and (modulo a change of coordinates in V)
ugo(xl,xz,y) =c(x1);, Where x| € Volo N Rﬁr’,xz € Vjo N BR‘i andy € V.

e or 1, is a harmonic function in two variables, and then necessarily we have (modulo
a change of coordinates in V%) in polar coordinates

W (r,w,y) = &V sin(Nw), where r > 0,w € [0,7],y € Ve. (7.20)
Here the degree of homogeneity is determined as N = N@2, 1) = N@u2,0) and
N >2.
Since 1Y, satisfies 1, B,(0) ul > dY = 1, the constant ¢ = af}i only depends on the dimension

d, where “}1 satisfies wd—1|(1¢11|2 fol 21— 1‘2)[{2;1 dt = 1 with wy-; being the volume of (d — 1)-
dimensional unit ball. And the constant ¢ satisfies

1
f|5|2wd_2/ A1 -2 dr=1,
2 0
and thus it depends on the dimension as well as the degree N. However ¢ has a uniform
lower bound independent of N, which we denote by |¢| > a/fl.
The assumption X; € C,,(u;) implies that

inf |VTX{,r’.I/l[| < .
B(0)
Recall that VTy; ,u; — Vu, in L?, then modulo passing to a subsequence we have almost
everywhere convergence. This, combined with the continuity of VTx: ,,u; and Vu(,, implies
that

inf |Vul | < ap.
By(0)

By (7.19), it follows that

inf |Vil| = |a'| inf |Vily| < do, (7.21)
Bs(Y") Bs(0)



44 CARLOS KENIG AND ZIHUI ZHAO

where & is a¢ multiplied by the upper bound of |a’|, which is a dimensional constant. In
the first case we have [Vul | = a},. So by choosing @ < a/[ll, we can guarantee the first case
does not happen. In the second case, we have that for any (7, w) € Ry X [0, 7]

IVul,|* = & [INFY sin(Nw)l* + INFY ! cos(Nw)*] = NP0,
We identify Y’ € RY with (o, wo,Y0). (The angle wy = 0 or 7 if ¥’ € AR?, and wy € (0, 7) if
Y’ € R%.) Then by (7.18), we have
ro = dist(Y’, Vo) > 28 > 0.

Therefore
inf |Vul,| = [eIN(ro — BV > 2a3 - pEN1,
By(Y")
By choosing @y < 222 - B€™~!, we get a contradiction with the bound in (7.21). O

8. SPATIAL VARIATIONS OF THE FREQUENCY FUNCTION

The following lemma gives an estimate of the spatial variation of the frequency function
(at the same scale) for harmonic functions on the upper half space. It can be viewed as a
quantitative version of Lemma 2.23.

Lemma 8.1. Let u be a harmonic function in R% such that u vanishes on 0R?. Let N(X,r)
denote the frequency function of u centered at X € 6R§’r and at scale r > 0. Suppose
N(0,3) < A. Then there exists a constant C (depending on d and A), such that for any
0<r<1landanyX;,X, € Bi(0)N (9Rﬂ{ with | X1 — Xo| < r/2, we have

INXy,r) = N(Xp,r)| < C (W%(Xl, r)+ W%(Xz, r)) , 8.2)
where W(X;,r) = N(X;,3r/2) = N(X;,r/2) for j = 1,2.

Proof. Let Y = X, — X;. Any point on the line segment [X], X»] can be written as X =
X1 + 1Y € 9R%, where ¢ € [0, 1]. Let

Z-X
IZ - X]|
denote the radial direction with center X. Similarly to (2.21), we have

px(Z) =

d
—N(X; + 1Y,
7 (X1 +1Y,r)

d
= ElogN(Xl +tY,r)- N(X| +tY,r)
2

T HX, P

[r / (Vu(Z), Y)0pu(Z) dH = N(X, ) - (Vu(Z), Yyu(Z) dH* | .
0Bx(X) 9B-(X) €.3)

Recall that u € C'(R?) and we extend u by zero in its complement, so for simplicity we drop
R< in the integration region. Let

E/(Z) = (Vu(Z),Z - X;) - NX;,|Z - X;) - w(Z), for j=1,2.
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Then
Vu(2),Y) = E1(2) - E(Z2) + N(X1,|Z - Xi]) - w(Z) = N(X2,1Z — Xa|) - u(Z).

Inserting this into the equality (8.3) we get

d
—N(X| +1tY,
7 (X r)
B 2
H(X,r) Jop.x)
2

H(X,r) Jap,x)
= LX)+ LX) (8.4)

(E1(Z) = E2(2)) [rdpu(Z) = N(X, 1) - w(Z)] dH*!

+ (N(X1,1Z = Xi1) = N(X2,1Z = X)) [rOpyu(Z) = N(X, 7) - u(Z)] w(Z)dH*™!

We write

N(X1,1Z - Xi]) = N(X2,|Z - Xa|)

= (N(X1,1Z - X4]) = N(X1, ) + (N(X1,r) = N(X2, 1) + (N(X2, 1) = N(X2,1Z — X2)

=: Sl(Z) +S + SZ(Z),
where the middle term S = N(X;,r) — N(X», r) is independent of Z. For any X on the line
segment [X;, X»] and any Z € dB,(X), we have

3
§g|z—xj|s Sro forj=1.2.

Hence
1S/(2)| = |N(X;,1Z - X)) - N(X;, )| < W(X;, 7).
On the other hand, plugging S into the second term of (8.4) we get

S [ / rudpu dHNZ) - N(X, r) u? d?’{"‘l(Z)}
0B,(X) 0B,(X)
=S[rDX,r) - NX,r)H(X,r)] = 0.

Notice that the above argument is exactly the same as the proof (2.22), with S = N; — N>.
We can estimate the remaining terms of I>(X) as follows:

LX) < (W(X1,r) + W(Xa, 7)) [(r + N(X, r)) W dHE + 7 / |Vu|? dﬂd‘l]
H(X,r) dB,(X) 3B, (X)
\v, 2 7.{(1—1
<2(W(X1,7) + W(Xa, 1) |CA) + ') 63"2(';1) ] 8.5)

We estimate I (X) by Cauchy-Schwartz inequality, and obtain

1
f |Vu|2 d?‘(d_l 2
LX) s r( f’Bf(X)H(X 5 +N(X, r) (

1

ELDP +1Ex2)P dﬂ"‘l) :

H(X,r) Jop.x)
(8.6)
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To further estimate I;(X) and I>(X), we make the following observation. Since u is a
harmonic function which vanishes on the boundary, we have u? is sub-harmonic in R%.
Hence

][ u? dH " is increasing with respect to p.
9B,(X)

It follows that

2
H(Xj,r) = / w dH < = // u* dzZ
dB.(X;) r Ar%r(xj)

2
< - // u? dz
P AL L00

<3 / u? dH = 3H(X, 2r).
0B, (X)

On the other hand by the monotonicity formula (or (3.30) for the Laplacian) we have

H(X, 21") . (4)d—l+N(X,2r)

H(T%r} S| 3 < C(d, A).

3

In the second inequality we use Lemma 5.1 (for the Laplacian operator in the upper half-
space) to bound N(X, 2r) from above by N(0, 3). Therefore

3
HX,r)>c(d,AN) H (Xj, Er) for j=1,2. (8.7)
Now we allow X = X, to move in the line segment [X;, X»], as ¢ varies in [0, 1]. Since
|X1 — X»| < r/2, the integration region satisfies

U dB.(x)ca
1€[0,1] ’

(X;).

r,%r

By (8.5) and (8.7), we have

1 1
C
/ | L(X)| dt < 2(W(X1,r) + W(Xa, r)) {cl + =2 / / [Vul? dH" dr
0 0 0B, (X;)

H(Xy,7)
<2W(X1,r)+ W(Xp, 1) |Cr + CZM
H(X;, 5")
< CA) WXy, 1)+ W(Xa,1). (8.8)

Next we use the Cauchy-Schwarz inequality to estimate

1

1 1 2 2
r
IT,(X,)| dt < {/ [ IVul? dH*! +N2(X,r)} dt}
/0 ! o LHX:.1) Jo,x,) '

1 1 2
X 1EL2)) + 1E(2)P dHE! dt}
{ /0 H(X;,r) JaB,x, : ?
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1

2 2

.
H(X1,3r)

~

- D(Xq, %r) + C(A)

2

1 // 2
E e &E(2)|" dzZ
3 J
j H(X’ Er) Agr,%r(xj)

=1

Recall Proposition 3.10 (for the Laplace operator), in particular (3.11) and (3.15). We have

1
— // \E/2)? dz
H(Xj,5r) Ja 5, x)

Zhar

1 2
= 73// ((Vu(Z),Z - Xj) = N(Xj,|1Z - Xj) - w(Z)|” dzZ
H(Xj,51) JJa 5, x)
2 2!

, 2
o, N(X;,p) d-1
<r Op u(Z) = —"LZu@)| dH! dp
/gr H(Xj,p) 0By(X)) - P
3
57‘
<r /g,Rh(X"p) dp
S W(X7 r)'
Therefore 1
/ I11(X,)| dt < C(A) (W%(Xl’ ")+ W2 (X, r)) . (8.9)
0

Combining (8.4), (8.8) and (8.9), we get
1
1 1
N2, ) = N(X0, )] < / OO+ L] dr < Cyy (WA + WH (7).
0
where the constant Cy, depends on d and A. O
Next we estimate the spatial variation of the frequency function for harmonic functions

in Dini domains. Firstly, recall that for boundary points we define the frequency function
Nx(r) using the transformation Wy in Section 4, i.e.

Nx(r) = N(vx. ) = N(vy, r) exp (c / ' 9(‘:” ds) :
0

and the modified frequency function N(vy, r) is monotone increasing with respect to r. We
define the frequency drop accordingly as

Wx(r) := Nx(3r/2) — Nx(r/2).

Proposition 8.10. Let R, A > 0 be fixed. There exists a constant Cy, > 0 such that the
following holds. Suppose (u,D) € H(R,A) and X1, X, are two points in Br(0) N D with
X1 = X5| <r/3and 0 < r < 2R. Then we have

IN(x,, ) = N(vx,, )| < Cyy (W,%l ) + Wéz(r) + 0(4r)> . (8.11)
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Remark 8.12. In fact, for the purpose of this paper, it suffices to use the rough estimate
IN(x,, ) = N(vg,, )| < € (r% + 0(4r)> . (8.13)

The proof of (8.13) is similar to that of Lemma 8.21, where we simply bound each term in
(8.17) by taking absolute values inside. Here we include the proof of the sharper estimate
(8.11).

Proof. Notice that unlike the case of the upper half space in Lemma 8.1, here dD is not flat.
So we need to be more careful in defining the line in dD which connects X; to X,. Assume
X1 = (x1,9(x1)) and Xp = (xp,0(x2)). Lety = xp — x1 € R4-1 We define for any r € [0, 1]

X = (x, @(xp) := (x1 + 1y, o(x1 + 1y)) € 9D.

We also remark that

d
EXI = (y,(Veo(x;), y)) points in the tangential direction of dD at X;. (8.14)

Recall that for any X € dD, we define

D(vx,r) = // pIVvxl2 dVy = // \Vul? dZ =: D(X, r);
B,NQy ¥x(B)ND

and

H(vx,r) = / wy dHT = (1 + 0(6(4r))) W dH = (1 + 00@r)) HX, ),
OB, NQx Yx(0B,)ND

where we introduce the definition

HX,r) := / u? dH = / u? dH!,
¥x(6B,)ND ¥x(0By)

Let R
Nex,r) = PED
(X,r)
then the frequency function of vy satisfies
rD(vx,r) rD(X, r) .
Ny, r) = ———— = (1 + 0(6(4r))) —= =1+ 00@r))NX,r), 8.15
(vx,r) Hog.r) (6(4r)) X (6(4r)) N(X, r) (8.15)
We claim that

O¥x(B,) = 0B.(X + 3r8(r)eq) = Yx(0B,). (8.16)

In fact by the definition of the transformation map ¥ (see (4.2)), it is clear that
W(dB,) = 0B, + 3rf(r)eq = IB,(3rd(r)eq).
To understand what the set d¥(B,) is, we first study the set W(B,). Clearly
B = | w08, = |J 9B, (3p8(p)ea) .
0€l0,r) pel0,r)
Consider the function

f:pe[o’r)H_p+3pé(p)5
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which corresponds to the height of the lower-most point of the (shifted) ball 6B, + 3p0(p)ey.
A simple computation shows that f is a continuous function, and

3 /2'0 0(2s) — 6(s)
3 ds
0g"2 Jp s

F'(p) = =1+ 30(0) + 308 (0) = =1 + 30(0) + -

3
<-1+304 —— 04
<-1+ (p)+10g2(p)
< —1+ 13 6(4r).

By choosing r sufficiently small so that 8(4r) < 1/26, we can guarantee that f is a monotone
decreasing function. In particular, this implies that the balls ¥(dB,) = dB, (3p§(p)ed) with
p € [0, r) are nested, i.e.

B,(3p8(p)eq) C By (3p'0(0")ea), ifp<p’.

In fact, let X € Bp(3p9(p)ed) be arbitrary. Then

X = 3p"8(0")eal < |X = 3pb(p)eal + (3p8(0") — 3pb(p))
<p+f)+p = (flp)+p)
=0 +(f(p") - f(p)
<p.
Hence X € Bp/(3p’§(p’)ed). Moreover by the intermediate value theorem f(p) assumes all

values between lim,,_,,_ f(p) = —r + 3r6(r) and lim, 0+ f(p) = 0. This finishes the proof of
the claim (8.16).

As in (8.3) in the proof of Lemma 8.1, we have
4
dt

= %log N(X,,r) - N(X;, 7)

N(X,,r)

= — —D(X,,r) - NX,,r)- —H(X,,
A [rdt (X:,7) (X:,7) 7 ( tr)]

2 d
= — [r / <vu(2), —xt> O,u(Z) dH!
HX.,r) L Jx+ov,) dt

d
+r / <Vu(Z), —x,> Opu(Z) dH!
X,+¥(B,)NOD dt

- N(X,,7) - <Vu(Z), ix,> u(Z) dﬂd‘l}
X, +¥(9B,) dt

- : [f / <Vu(Z), iXt> Au(Z) dH!
H(X;,r) L Jx+¥@8,) dt

d
+r / <vu(2), —x,> O,u(Z) dH!
X,+¥(B,)NAD dt
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- N(X,,7)- <Vu(Z) X,> w(Z) dH 1}

X,+¥(3B,)
= [1(Xy) + L(Xy) + 3(X)). (8.17)
In the second to last equality we simply use (8.16).

Since u vanishes on the boundary and at any Z = (x, ¢(x)) € dD, the vector (y, (Vi(x), y))
points in the tangential direction of 9D, we have

(Vu(2), (v, (Vp(x), y))) =
Hence by (8.14), we know

d d
<VM(Z), EXr> = <VM(Z), R <V<P(X),y>)> = (Vu(2), 0, (Vo(x1) = Ve(x), y))) -

Thus
<Vu(Z) >

Therefore we can estimate I(X;) as follows

/ DauPOIXs = X,| dH
Wy, (B)NID

< 0qu(2)] - 6(1x; — xDlyl < 10qu(Z)] - 6(r)|X2 — X,

LX) < =
LX)l < A0

r20(r)
T HX,, 1) Jwy,000
0
D gpa-ipy By 0 oD) - W2 dzZ
T HX,, 1) W, (B3r/2)
< 6(r). (8.18)

[Vul? dH*!

2

Since u~ is subharmonic (after extending by zero) and

5
X = Xil < (1 + 6(R)IX2 — Xi| < "

~ 12
H(X,,r) = / w? dH > — // u?dz
OB, (X,+3rf(req) Llr JJa £ Xe3rie)

11 ],
L1r s7x,>

=10 ),
L1r 2 . Xl)

we have

J>I
£

.;:.
.;:.

> W dHE!, (8.19)
22 335()(1)

An elementary computation shows that
X2 - Xl - (ye (Vgo(xt)a )’>) = (-x2 - X1, QD(X2) - ‘P(xl)) - (x2 - X1, (Vgo(xt)e X2 — X1 >)
= (x2 = x1,(Ve(x) = Vo(xp), X2 — x1)),
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where x is some point on the line segment [x1, x,] € R%"!. Therefore by the assumption of
¢ in Definition 2.1, we have

X2 = X1 — (0, (Ve(x), YD) < 0122 — x1) - [x2 = 2
Hence
(Vu(Z), (v, (Vp(x,), y))) = (Vu(Z), Xo — X1) — (Vu(Z), X2 — X1 — (0, (Vep(x,), Y))
= (Vu(Z), X> - X1) + O(*0(r)) - [Vu(Z)|

Inserting (Vu(Z), X» — X) into the equality (8.17), we can use the same argument as in the
proof of Lemma 8.1 (as well as (8.19)) for the estimate, so we will not repeat the argument
here.

The remaining term satisfies

2
E(X,) <r26(r) [A . / Vul? dH!
H(X;,r) Jx,+¥@B,)

1 1
C A 2 2
H(X;,r) \Jx,+¥©8B,) X,+¥(9B,)

2r / [Vul? dH! r / [Vul? dH!
X, +¥(dB,) X;+¥(0B,)

2
/ u? dHa-1 / u? dHa-1
BB%(XI) 5B%(X1)

Hence by integrating on the interval 7 € [0, 1], we get

] N
2 // VP dH-! r // WVl dHé1
A r(Xl) A X1)

1 r r3,
/ E(X,) dt < r20(r) > + C(A) 22
0 / w2 dHd-1 / W2 dHA-1
BB%(XI) 6B%(X1)

< C'(N)r26(r). (8.20)
Finally, combining (8.17), (8.30) and (8.20) we conclude that

+ C(A)

3
2

1 1 1
IN(X2,7) - N(X1,r)| < C (ng (r)+ W (r) + 9(r)> + / &(X;) dr
0

1 1
<C’ (W;1 (r) + W§2(r) + 6(r)> .
Therefore by (8.15), we get
IN(vx,, ) = N(vx,, )| < IN(Xa,7) = N(X1, )| + CO(4r) (Nwx,, ) + N(vx,, )

<C"(N) (W}(I ) + W,%z(r) + 6(4r)> .



52 CARLOS KENIG AND ZIHUI ZHAO

Next we estimate the spatial variation for interior points. Compared to the spatial varia-
tion for boundary points in Proposition 8.10, here we use a similar idea but it suffices to get
a rough estimate.

Lemma 8.21. Let R, A > 0 be fixed. Suppose (u, D) € H(R,A) and p € DN B%(O) N N(u)

satisfies dist(p, 0D) < %Ré(%R). Then for any r < %R we have

IN(vg.r) = N(p,r)| <C (r% + 9(4r)) . foreveryqe B:(p)NdDNNw);  (8.22)
and
IN(q.7) = N(p,P)| < Cr?,  for every q € Bz(p) N D N N(u). (8.23)
Here the constant C > 0 depends on d and A.

Proof. The idea of the proof is similar to that of Proposition 8.10, with p € D playing the
role of X; and

~._ ) 4 ifgeD
1= g +3rB(r)eq, if g€ oD

playing the role of X;. This way it suffices to estimate |N(g, r) — N(p, r)| for both the interior
and boundary cases.

For ¢ € [0, 1] we first define X? := p + #(§ — p). However, the line segment [§, p] may not
be completely contained in D. Let A = {r € [0, 1] : X; ¢ D}. Since dD is a c! graph, A is a
finite union of closed intervals and can be written as

m
A= U [f2k—1, 12k ].
k=1

To unify the notation at the endpoints, we also set fp = 0 and fp,,+1 = 1. We revise the
definition of X? for all 7 € A by replacing X" by its projection onto 9D, i.e.

X0 = (x1 + 1(x2 — x1), p(x1 + 1(x2 — x1))) € D,

where we denote p = (x1,z;) € D and § = (x3,22) € D. Notice that for every ¢, € [0, 1],
we have

X = XP1 < | ((t = )2 = x1), (1 + 102 = x1)) = @(x1 + 1 (52 = x1))) |
<lt=11VIx = x12 + (OR) - |x2 — x11)2

< ) ey -
< —t=rtfx—x
9 2 1

< ) rlg - p

=79 q — pl.
Finally we let

X0, t=0orl
X, =< X +3r6(r)ey, treA

L ) ) _
Xoo + 520 (X1 — Xow2) 1 € [tap2, 1211
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After such modification we guarantee that X; € D. It is not hard to see that the total length £
of the curve {X;}sco,17 satisfies

10 i
£< 5l pl+2-3rd() < 4—2.

We then reparametrize it (still denoted by {X;}[0,17) so that it has unit speed, and thus

d r
—X, | <t < —. 8.24
7 (8.24)
Moreover, for every t,1’ € [0, 1] we have
Xi-Xel < €< 7. (8.25)

As in (8.17), we have

d
EN(XH r)

1 d d
= ) [rED(X,, r)—NX;,r)- EH(X,, r)]

2 / < d > -1 / < d > -1
= r Vu, —X; ) OuudH*" +r Vu, —X; ) 0,u dH"
H(X;,r) [ OB (X)) ' B,(X,)NdD dt’

- N(X,, r) - <Vu, ix,> u d?—(""}
9B,(X,) dt
= LI(Xy) + (X)) + I3(X)). (8.26)

(There is a slight abuse of notation in the last equality, where d,u denotes the derivative
pointing away from the sphere dB,(X;) in the first integral, and d,u denotes the normal de-
rivative pointing away from dD in the second integral.) We remark that the main difference
with the boundary case (8.17) is that (8.17) does not have the second term I,(X;) since there
%X, is in the tangential direction on dD and thus (Vu, %X,) = 0. Here, on the other hand,
the vector %X, does not always point in the tangential direction of dD. We first estimate this
term using an idea similar to the Rellich identity.

It is not hard to see that
div(IVulzed) = 2V (04u), Vu)y = 2 (div(dqu - Vu) — 0qu - Au) = 2div(Oqu - Vu).  (8.27)

Integrating both sides of (8.27) on the region B,(X;) N D and using the divergence theorem,
we get

Z-X
/ [Vul? <ed, ! > dHE + / \Vul*(eq, np(Z)) dH!
9B.(X) 1Z - Xyl B.(X)NAD

Z-X
=2 / dqu <Vu, ! > dH 42 / Aqut - Dpu dH, (8.28)
8B,(X,) 1Z - Xi| B,(X,)NAD
On every boundary point Z = (x, ¢(x)) € 0D, we have Vu(Z) = (0,u)np(Z), where
V ) —1 . .
np(Z) = (Vo) —1) is the unit outer normal vector.

V1 +IVe(x)P
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Hence
—(0y u)2

V1+ Vo)l

At - Ot = (Vit, e)0u = |0,ul*(np(Z), e4) =

and (8.28) is simplified to

[ aw
B,xpndD /1 + [V(x)|?

Z-X Z-X
= 2/ Oqu <Vu, ! > dH! —/ [Vul? <ed, ! > dH!
OB,(X,) |Z - X OB,(X,) |Z - X

<3 / [Vul?> dH. (8.29)
0B.(X;)

On the other hand by (8.24), for every Z € dD we have

d d 10,
Vu, =X, )| = |0,u { np(2), X> S e S
< dr >‘ < PR A | T T NeP

I

d
<(V‘,0(X), _l)a EXI‘> ‘

T |0l
T4 /T + Ve
Therefore
2r d
IL(X,)| = <Vu,—x>anu dH!
2T X, B, (X,)NdD ™"
< r (anu)Z d—1
~ 2H(X1, 1) JB.xprop /1 + [Ve(x)|?
272 2 gqqd-1
|Vul dH". (8.30)

<
H(X;, 1) Jop,x,)
Notice that

,
IX;—pl=1X; - X1l <€ < 1

By the sub-harmonicity of u?, we have

1 1
H(X,,r)z—// MZde—//
rhar ) "JJA,

2

ude2H<p,£>.
») 2

r

Bl

Therefore it follows from (8.24), (8.30) and Holder’s inequality that
2

T (X)L 1 (X)) < \Vul* dH,

H(p,5) Jos,x,)

and

|—

1

C(A)r N 2 i1’
1(X)| < (/ IVl dH 12 dH
S H(X:,r) \JoB,x) AB(X,)
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r/ [Vul> dH!
aBr(Xt)

< C(A)r? _
H (p.5)

Integrating on the interval ¢ € [0, 1] and using the fact that

U aB.x) c Bs,(p),
te[0,1]

we get

IN(g.7) = N(p, )|

1
< /0 [T (XD + [ T2(X)| + | 13(X))| dt

1
p
r // \Vul* dH*!
2 | Bs (p)
2 5 3"
S — // |Vul* dZ + C(A)r2 p
H(p.2) Jsg,w) H (p.5)
1
(M2,
where we use the doubling property and the upper bound of N(p, f—lr) in the last inequality.

In the case of ¢ € dD, it remains to estimate |N(g,r) — N(vy4, 7). By (8.15) and the
properties of the transformation map Wy, we know

N(vg,r) = (1 + 0(6(4r))) ﬁ(q, r) = (1 +0(6(4r))) N@g,r).
Therefore
|N(q’ r) - N(an r)| SA 6(4"'),

and it follows that
1
IN(vg, ) = N(p, )| Sa r2 + 6(4r).

9. L2-BEST APPROXIMATION THEOREM AND THE FREQUENCY FUNCTION

Let 1 be a Radon measure. We define the k-dimensional L? beta-number of y in B,(p) as

1
1 2
k o ) k
Bilp.r) = inf <—r2+k /B r(p)dlst (Y,L)d,u(Y)) , 9.1)

where the infimum is taken over all k-dimensional affine planes. We remark that the scaling
factor r>** is to make sure the above definition is scale-invariant, when the measure y is
k-dimensional. In Section 10 we will use the following Reifenberg theorem with dimension
k = d — 2 to give uniform volume bounds on C,(u) N N (u).
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Theorem 9.2 (Discrete Reifenberg Theorem [NV1] ). There exist constants ng. > 0 and
Cyr > 0 depending only on the dimension such that the following holds. Let {B,,/5(X)}xecz C
B3(0) ¢ R? be a collection of pairwise disjoint balls with their centers X € B1(0), and let
U=y Xe@ wkr])‘(é x be the associated packing measure. Assume that for each By(pg) C B2(0)

S d
//B o /0 I,B,'i(p,r)l2 Trdu(p)srmrs".
s(Po

Then we have the uniform estimate
> K < Car 9.3)
Xe?

Remark 9.4. For the discrete measure above associated to the covering, we notice that for
any X € € C spty, if r < rx/5 then B,(X) N sptu = {X}, and thus by deﬁnitionﬂfl(X, r) = 0.

We will also need a variant of it, the Rectifiable Reifenberg Theorem.

Theorem 9.5 (Rectifiable Reifenberg Theorem [NV1]). There exist constants n,, > 0 and
C, > 0 depending only on the dimension such that the following holds. Let E C B>(0) be a
H*-measurable set, and assume that for each Bs(py) C B2(0)

Bl

Then E is k-rectifiable, and for each po € E N B1(0) and 0 < s < 1 we have H*(By(po)) <
C,,sk.

2 dr
B’;{k L, (P, r)‘ 7d7’(k LE < s,

Remark 9.6. There have been many generalizations of the classical Reifenberg theorem, see
for instance [Tol, DT]. Reifenberg theorems of the form in Theorems 9.2 and 9.5 first appear
in [NV1, Theorems 3.4 and 3.3] (see also [NV3, Theorems 40 and 42]). We refer interested
readers to [ENV] for a review and generalization of Reifenberg-type theorems.

The main goal of this section is to control the (d — 2)-dimensional beta number BZ‘Z( p,T)
by the drop of the frequency function inside the ball B,(p).

Theorem 9.7. Let R, A > 0 and 6, € (0, 1) be fixed. Let rp := min{ry,, ry, 1%} > 0 where ryy,
is given in Lemma 6.17 with parameters 6;, and p = %, and ry is given in Lemma 9.50. Then
for any (u, D) € H(R, A), any p € C(u) N N(u) N B%(O) with dist(p, dD) < 6r;,0(6r;,), and
any 0 < r < rp, the (d — 2)-dimensional L? B-number in B,(p) satisfies

_ 2 1 &
B2 (p.1)|” < Cy [E / <Wx(r) + Gin -er<x>/6<rsrm<X>) dp(X)
B/(p)

H(Bx(p))
)
where u is an arbitrary Radon measure such that

Spt/l - N(u) N B6rin9(6r,-,,)(aD)’

+

(r+ 9(24r))} ; 9.8)

and Wx(r) := Nx(6r) — Nx(r). The constant Cp, depends on d, the uniform frequency bound
C(A) and Cy in Lemma 9.50. (In particular it is independent of the choice of 6;y.)
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Remark 9.9. o Heuristically, the above estimate (9.8) says the following. Suppose
the right hand side is small, that is to say, (on an average sense) points on the sup-
ports of the measure p have small frequency drop at scale r (i.e. if Wx(r) < 1
when X € sptu). Then spty must be distributed in a small neighborhood of a
(d — 2)-dimensional affine subspace. (In particular sptu can be distributed near a
k-dimensional affine subspace with k < d — 2.) Intuitively, the reason is that if we
look at the tangent function centered at any singular point p € C,.(u) N N(u), it can
be almost invariant along an at most (d — 2)-dimensional affine subspace.

e The second term in the right of the inequality in (9.8) comes from Lemma 6.17.
Namely for an interior point X € D, its frequency function Nx(-) is monotone in the
intervals [0, r.4(X)] and (r.s(X), +c0), and changes by at most 9;, at the critical scale
Fes(X).

Step 1. Let C,, denote the center of mass of the measure ¢ on B,(p), i.e.

Cy:= ][ X du(X).
B(p)

To compute the beta-number ,Bﬁ(p, r) we consider the bilinear quadratic form Q(v, w) asso-
ciated to u L g,(p), which is defined as

1
o, w) = 2—+k/ W, Y = Cp)w,Y = Cp) du(Y).
r B.(p)

LetA; > --- > A4 > 0 be the eigenvalues of Q in decreasing order, and let wy, - - - , w; be the
corresponding eigenvectors with unit norm. Then

1
Ai=supd o [ [on Y =Co[* du(¥) st (Wl = 1 and (w,w;) = 0 foralli < jy.
2tk B.(p)

(9.10)
Then it is not hard to see that the affine k-plane L* := Cy + span{wy, - - -, w} achieves the
infimum in the definition (9.1) of the beta number, and moreover
k 2 1 c 2 k
Bip.n[" = 7 / dist? (Y, LYdp(Y) = At + -+ + A ©.11)
B.(p)

Step 2. Let (u, D) € H(R,A) and p € sptu. Without loss of generality we assume u is
normalized (with respect to the ball B,(p)) so that

1 // 2
- W2 dZ = 1. (9.12)
)],

Since a constant multiple of a function does not change its frequency function, this normal-
ization does not affect (9.8).

e Suppose X € B,(p) N D and p € [r, 6r]. We consider two cases: either 10r < r.4(p)
so that we can use the monotonicity formula for p, or 10r > r.s(p). In the first case,
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we use (9.12) and the monotonicity formula for p, and get

2 1
H(X,p) < = // wdzZ < - // u? dz < rl. (9.13)
p 4, 3,00nD " JJBio(p)nD

In the second case, let ¢ € dD so that |g — p| = dist(p, dD). By the definition of the
critical scale we know dist(p, dD) < r.s(p) < 10r. In particular by choosing the
scale sufficiently small we can guarantee that |g — p| = dist(p, dD) < r/2. Then by
the monotonicity formula centered at g, we have

2 1
H(X,p)S—// ude$—// u? dZ
P A,3,3ND " JJ Bior(g)nD

// u? dz
Byja(@)ND

1

-

1

- // > dz = e, (9.14)
" JJB.(p)nD

e Suppose X € By, (p) N dD and p € [r,6r]. Since B.(X) C Bs,(p), similar as above
we consider the cases 3r < r.(p) and 3r > r.(p). Then using (9.12) and the
monotonicity formulae centered at X and p in the first case, and the monotonicity
formulae centered at X and ¢ € dD in the second case, we deduce that

// wk dV, by (3.30)
A% p(O)ﬂQx

3
2

< - // u* dzZ
r JJB.(X)nD
1

< - // u? dz
r JJB.(p)nD

= 41 9.15)

We omit some details here since the arguments in the two cases are very similar to
the above.

A

IA

1
H(vx,p) = —
P
1

The constants in the above inequalities depend on A (in fact, the constant grows exponen-
tially as A grows).

ForanyZe Dand j=1,---,d we have
1
Aiw;j, Vu(Z))y = Qw;, Vu(Z)) = m/ wj, X = C,X(Vu(2), X — Cp) du(X).  (9.16)
B.(p)
Since
/ (X -Cy) duX) =0,
B:(p)

we may add the term

1
3k ( / wj, X = Cp) le(X)> - ((Vu(2),Cy - Z) + cu(2))
r B,(p)
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to the right hand side of (9.16) without changing the equality:
1
Aiw;, Vu(Z)) = prs / W, X =Cp)(Vu(2), X = Z) + cu(Z)] du(X).
B.(p)

Here c is a constant whose value is to be determined later. Thus by Hoélder’s inequality and
(9.10),

| ), Vuz)y)|?
1 X — o (L Xy 2
< (W /B r()|<wj,X Cy| d,u(X)> (rm /B " (Vu(Z),Z - X) — cu(Z)| dy(X))

1
=4 (m/ KVu(Z),Z - Xy - cu(Z)? d,u(X)) )
=" JBi(p)
Assume A; > 0, otherwise there is nothing to prove. It then simplifies to

1
4 |(Vu@.wp|* < /B V@) Z=X) = cu@)F du(X).
r(p

Next we integrate this inequality on the annulus region Az,4,(p) N D ={Z € D : 3r <
|Z — p| < 4r}. We get

/l.
L // (V@) wp|* dz
rd A3r,4r(p)mD

o ), 2
<— > KVu(2),Z - X) — cu(Z)|” du(X) dZ
2 J) asvaroron 2 I B,0)

1 1

<3 — // (Vu(Z),Z - Xy — cu(Z)]® dZ du(X). 9.17)
™ JB.(p) r Az s (X)ND

Now we fix the constant ¢ as

N(Vpa 6}"), lfp € 0D
c=4 N(p,6r), if pe Dand6r<r.(p) 9.18)
N(vy,6r), if p€ D and 6r > rq4(p)

where in the last line g € dD is such that |p — g| = dist(p, dD). (Notice that ¢ can not depend
on X € sptu N B,(p), but it can depend on the fixed point p.)

We start with the more complicated case (i): when X € dD. Recall (4.7), we have
(Vu(Z),Z - X) — cu(Z)| < [(Veux(Y),Y) = cvx(Y)| + CIY[0(4]Y]) - [Vvx (V)]

where Y = ‘I’)‘(l (Z) € Qy is the preimage of Z € D and vx(Y) = u(¥Yx(Y)) = u(Z). (The
constant C is independent of the choice of X € dD.) Hence by a change of variable and
(4.4), (4.9), the integrand becomes

1 // (Vu(Z),Z — X) — cu(Z)]> dZ
rd A2r,5r(X)mD

1
< (14 0(624r) //A o (Veux(¥), ¥) = cvx(V)|* dY
r6r Ny
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9 24
( Ar) // Vyx (V)P dY. (9.19)
r6r(0)mQX
We denote the second term as &, and we have
624
GBS ’(fd_zr)D(Vx, 6r) < id )Nx(6r) H(vy, 6r) < 6(24r), (9.20)

with constants depending on d, r,. and A. We have used (9.15) in the last inequality.
We rewrite the leading order term in the right hand side of (9.19) as follows

1
» // (Vvx(¥), ¥) = cvx(V)|* dY
Ar,ﬁr(o)mQX

1 6r
A
rd r 6BpﬂQx

6r 1
< (1+0(0(241)) / —3 / Il
r P dB,NQy

Recall we have shown in (3.15) that

2
Bpvx - cV—X’ dH\(Y) dp
yel

2
Bpvx - cV—X‘ Vg, dp (9.21)
0

2p
H(vx,p) Jo,nay

Nx(r). (9.22)

2
v d
Ru(vx,p) = 1t |8,vx = N(vx, p) —;" dVp, <

dr|,-,

If p € D, we fix the constant ¢ to be N(v,, 6r). We need to estimate the difference
IN(vx,p) — c| < IN(vx,p) — N(vx, 6r)| + IN(vx, 6r) = N(v), 67)|. (9.23)
By (8.13) in Proposition 8.10, we have
IN(vy, 6r) — N(vy, 6r)] < C (r% + 0(24r)> , (9.24)

where the constant C depends on A. On the other hand, by the monotonicity of the modified
frequency function, for any p € [r, 6r] we have

IN(vx,p) = N(vx, 6r)|

6r
= |Nx(p)exp <—C /P ftn) d‘r) — Nx(6r) exp (—C/ far) d‘r)
0 T 0 T

6r
exp (—C /p g(iﬂ dT) —exp (—C/ g(jﬂ dr>‘
0 0

6r 0( T)

< INx(p) — Nx(6r)| + Nx(6r)

< Nx(6r) — Nx(r) + C(A)/
< Nx(6r) — Nx(r) + C’ (A)0(24r). (9.25)

Combining (9.23), (9.24), (9.25) and using the monotonicity of the modified frequency func-
tion, we get

IN(vx p) — ¢l < Wx(r) + C (r% + 9(24r)) , (9.26)

where we use the notation Wx(r) := Nx(6r) — Nx(r) to denote the frequency drop.
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If pe D and r < re(p)/6, recall that we have fixed ¢ = N(p,6r) in (9.18). By Lemma
8.21 we have

IN(vx, 6r) = N(p, 6r)] < C(r2 + 6(24r)).
Therefore
IN(vx,p) — c| < [N(vx,p) = N(vx, 6r)| + [N(vx, 6r) — N(p, 6r)
< N(vy, 6r) = N(vy, 1) + C(r? + 6(247))
< Wx(r) + C(r? + 6(24r)). (9.27)

If p € D and r > r.4(p)/6, recall by (9.18) and (6.23) we have fixed ¢ = N(v,, 6r), where
q € 0D is such that |p — ¢g| = dist(p, dD). Since every X € B,(p) satisfies

IX—ql <|X—-pl+Ip—ql<2r,
by (8.13) in Proposition 8.10 we have
INGx, 6r) = N(vg, 61] < C (13 + 024r) ).
Hence

IN(vx,p) — c| < IN(vx,p) — N(vx, 6r)| + N(vx, 6r) — N(vy, 61)] < Wx(r) + C(r% + 6(24r)).

Combining any one of (9.26), (9.27) with (9.21) and (9.31), we conclude

1
afl e - enmf ay
Ar,6r(0)nQX

6r 1
s | =5 p
/r pd_z /('in NQy

6r 6r
H(vx, _ d
< / Ri(vx.p) ;Vd’f L) o+ (WX(r)+r+9(24r)) / ?p

< Wx(r) + r + 6(24r), (9.28)
where we have used (9.15) in the last two inequalities.
Finally, combining (9.17), (9.19), (9.20) and (9.28), we get

/1 .
A // KVu2) w)P dz
rd A3r,4r(p)mD

2 6r
H(x. p)
dVin, dp + / INGx.p) = o =22 dp
r

1%
dpvx — N(vx,p)f

S lk / [i // [(Vevx(Y), Y) = Np(@r) - vx(V)[* dY +624r) | du(X)
r Br(p) rd Ar,ﬁr(o)mQX

st [ ) dux + Y oy gaary) (9.29)
™ JB,(p) r

Case (i1): when X € D and r < r.4(X)/6. We bound the integrand in (9.17) by

1

1 Sr 2
— // Vu(Z),Z — X) — cu(Z)|* dZ < / — Opyll — C E‘ dH " dp
rd Asrs5,(X)ND 2r P dB,(X)ND P

(9.30)
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Recall we have shown in Proposition 6.3 that for any p < r.4(X), we have

2p PR
dH < — N(X,r). 9.31)
H(X,p) Jop,x)nD dri,_,

Hence to estimate the right hand side of (9.30) it suffices to bound the difference |[N(X, p)—c]|.

Ri(X,p) =

u
Opytt — N(X, p) /—)

If p € D, the constant ¢ = N(v,, 6r) by (9.18). Hence by Lemma 8.21 and the assump-
tion 6r < rq4(X), we have

IN(X, p) — c| <IN(X,p) = N(X, 6r)| + IN(X, 6r) — N(v,, 6r)|
< N(X, 6r) — N(X, r) + C(r* + 0(24r))
= Wx(r) + C(r7 + 0(24r)). (9.32)
If pe Dand r < r.5(p)/6, the constant ¢ = N(p, 6r) by (9.18). By Lemma 8.21 we have
IN(X, p) — c| < IN(X, p) = N(X, 6r)| + IN(X, 6r) — N(p, 6r)|
< N(X,6r)—-NX,r)+ C(r% + 6(24r))
= Wx(r) + C(r? + 6(24r)). (9.33)

On the other hand if p € D and r > r.(p)/6, by (9.18) and (6.23) the constant is fixed at
¢ = N(vy, 6r), where g € dD is such that |p — ¢g| = dist(p, D). By Lemma 8.21, we have

IN(X, p) — c| < IN(X,p) = N(X, 6r)| + IN(X, 6r) — N(vy, 67)|
< V~Vx(r) + C(r% + 6(24r)). (9.34)
Plugging back any one of (9.33), (9.32), (9.34) into (9.30), we obtain

L // Vu(Z),Z - X) — cu(Z)|> dZ
rd A2r,5r(X)mD

5 2 -
< / —> dH" dp
2r P 3B, (X)ND

Sr 2
N(X,p) - _
+/ | ( P3 Cl / u2 dq_{d ldp
2r P AB,(X)ND

Sr Sr

H(X,p) H(X,p)

< / Ru(X, )22 dp + / INX.p) — P2 dp
2r P 2r P

< Wx(r) + r + 6(24r), (9.35)
where we have used (9.13) or (9.14) in the last inequality.

Case (iii): when X € D and r > r.4(X)/6. Let X € 0D be such that |[X — X| = dist(X, D).
By the definition of the critical value, we know that

dist(X, OD) = res(X)0(re5(X)) < res(X) < 67 (9.36)

u
Opytt = N(X, p) >

In particular since A(6r) < é(%R) is chosen sufficiently small, we can guarantee

IX — X| = dist(X, dD) < g
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and thus 6
|p—X’|S|p—X|+|X—X'|< gr. 9.37)

This time we bound the integrand in (9.17) by

1 // (Vu(Z),Z — X) — cu(Z)|* dZ
rd AZr,Sr(X)mD

< 1 // Vu(Z),Z - Xy — cu(Z)]* dZ
rd Arer(X)ND

1 . X - XP?

- // ((Vu(2).Z - %) - cuz)|? dz+ X=X // Vul? dz

rd Ar,ﬁr(X)mD rd AI‘,6I‘(X)

=L+I. (938)

|

We can bound the error term I, very easily as follows

X - XI? X - XP
< XX // Vul? dz < e XX / w? dH!
r Bsr(X) r 3Bs(X)

’ IXv_)’ZI2
SCN—3;

< 6(24r), (9.39)

where we have used (9.15) and X € dDn B»,(p) in the second to last inequality, and we used
(9.36), the assumption r.4(X) < 6r and 8(s) < 6(4s) < 1 in the last inequality. To bound the
main term I;, we need to estimate |[N(vg, p) — ¢| for p € [r, 6r]. Again we divide into three
cases.

If p € 0D, then the constant ¢ = N(v,, 6r) by (9.18). By (8.13) in Proposition 8.10, we
have

IN(vg,p) —c| < IN(vg,p) = N(vg, 6r)[ + IN(vg, 6r) — N(vp, 61)|
< We(r) + C(r2 + 6(24r)). (9.40)
If p e D and r < r.5(p)/6, the constant ¢ = N(p, 6r) by (9.18). By Lemma 8.21, we have
INOg.p) = | < IN(g. ) = N(vg. 61)| + [N(vg, 6r) = N(p, 61)]
< We(r) + C(r2 + 6(24r)). 9.41)

If p € Dand r > r.(p)/6, we fix the constant ¢ to be N(v,, 6r), where g € 4D is such that
|p — ¢| = dist(p, dD). Hence

lg — p| = dist(p, D) < r.s(p) < 6r.
In particular by choosing sufficiently small radius we can guarantee that
- . 4 6
lg—X|<lg-pl+Ip-X| < §r+ §r=2r.
Hence by (8.13) in Proposition 8.10, we have
IN(vg,p) — ¢l < IN(vg, p) = N(vg, 6r)] + IN(vg, 6r) — N(vg, 61)
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~ 1
< Wi(r) + C(r2 + 6(24r)).

Lastly, we claim that
Wi (r) < Wx(r) + din.
In fact, if r > r.((X), by the definition (6.23) we have
Wy (r) = N(vg, 6r) = N(vg, ) = Nx(6r) = Nx(r) = Wx(r);
if 7.5(X)/6 < r < re5(X), by the definition (6.23) and Lemma 6.17

Wg(r) = N¢(6r) — Ng(r) < Nx(6r) — (N(X, 1) — Sin) = Wx(r) + Sin.

Similar to (9.19) in Case (i), we have

I = % // (Vu(Z),Z - X) - cu2)|* dz
Ar,Gr(X)mD

1
< (1+0(6241) // o (Vevg(V), ¥y = evg(D)[* aY
r,6r N X

0(24r) // | )
C IVvo(V)1? dY
M2 Jaeoneg

// o (Vg (1), Y) = cvg(N)|* dY + 6(24r).
r,6r N X

<

-

Moreover

L=

// o [(Vevg(X),Y) — ch(Y)| dy

I

6r 2
INWg, p) —cl
- / —T— uvg dVap, dp
r P dB,NQy

6r 6r
< 0) H(vg,p)
< / Ri(vg.p) P2 gp 1 / |N<v,~(,p)—c|2% dp
r r

< W) +r+ 9(24r)

2
dVp, dp

Ve
0pvg — N(vg,p) FX

< Wx(r) + 1+ 6(24r) + 63y X res(X)/6<r<rog(X)-

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

9.47)

where we used (9.15) in the penultimate inequality and (9.43) in the last inequality. Here
we include the characteristic function to make sure when we sum them up in dyadic scales
of r, the small constant ¢;, appears at most finitely many times. Finally, combining (9.38),

(9.39), (9.46) and (9.47), we obtain

1 // (Vu(Z),Z - X) — cu(Z)]* dZ
rd AZr,Sr(X)mD

< Wx(r) + r + 624r) + 63y X e (X)/6<r<res(X) -

(9.48)
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Plugging (9.35) (in case (ii)) or (9.48) (in case (iii)) back into (9.17), we get

/l.
L // (Vuz), wp|* dz
rd A3r,4r(p)mD

= lk / 4 // (Vu(Z),Z — X) — cu(Z)]* dZ du(X)
™ I,y Az5,(X)ND

H(B(p))
7k

1 -
<7 [ (W) + 6 dracorosreracn) duCo + (r+604). (949

B:(p)

Step 3. The inequalities (9.29) and (9.49) are helpful in our estimate of the beta number,
because of the expression (9.11) and the following lemma.

Lemma 9.50. Let R, A > 0 be fixed. There exist Cy > 0 and rg > 0 such that the following
holds for all 0 < r < rs. For any (u,D) € H(R,A) and any p € C.(u) N N(u) N Bl_%(O)

satisfying dist(p, dD) < %Ré(%R), assume u is normalized so that

1 // )
— W2 dzZ = 1. 9.51)
r Br(p)

d-1
: // 2
— E (Vu(Z),w;)|” dZ > C,
ri=2 Azrar(P)ND 5 ‘ ! |

for any (d — 1)-orthonormal vectors {wy,- - ,wg_1}.

Then we have

Proof. Assume the statement is false. Then there exist sequences d;,r; — 0, (u;, D;) €

SR, N), p; € C,.(u;) N N(u;) N D; and (d — 1)-orthonormal vectors {a)} o ,wf‘l }, such that
| d-1 .
— (Vui(Z), w))? dZ < ;. (9.52)
rid 2 //A3r,-.4r,-(Pi)ﬂDi ]Z:; l l l

We consider the rescalings T'p, ,,u; of u;’s, see Definition 2.11. Then it follows from (9.52)
and the normalization (9.51) that

d-1
// - > KTy, uil2). whi* dZ < 6. (9.53)
A34ON=27

We claim that modulo passing to a subsequence
T, u; converges uniformly and in W2 to a harmonic function ue in Deo N B5(0).

In fact, if infinitely many p;’s are boundary points (i.e. p; € dD;) we appeal to Proposition
5.24, and D is an (possibly tilted) upper half-space. If infinitely many p;’s are interior
points, then compactness follows from the estimate in Lemma 6.14 and the assumption

Tp,.r;ui(0) = u(pi) = 0.
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Moreover, the limit domain D is an upper half-space with 0 € D, an upper half-space
with 0 € D, or the entire space R, depending on

dist(p;, dD; f i
dist(pi, 0Di) converges to 0, a positive number, or oo, respectively.

i
On the other hand, since for each i the vectors {w}, cee w,‘-"l} form a (d — 1)-orthonormal
basis, modulo passing to a subsequence, they converge to a (d — 1)-tuple of orthonormal
vectors, denoted by {wy, -+ ,wg_1}.

Therefore passing the inequality (9.53) to the limit, we get

d-1
// > KVue(2), wj)l* dZ = 0. (9.54)
A34(0)NDy j=1

This implies that (Vu(Z),w;) = 0 in the annulus A34(0), for every j = 1,--- ,d — 1. Since
(Vu(Z),w;j) is also a harmonic function in D, N As5(0), by unique continuation theorem
it vanishes everywhere. In other words u. is invariant in the w;-direction, for every j =
1,---,d — 1. Since us is a harmonic function in D, with ffBl(O) u> dZ = 1, it follows
that u., is a (non-trivial) linear function. In particular u. is homogeneous with respect to
the origin of degree 1. The second case where D is an upper half-space with 0 € Dy, is
impossible. Indeed u, vanishes on Bs(0) N dDo and u(0) = 0 at an interior point O imply
that u,, must be a trivial function. In the first case where Do, is an upper half-space with
0 € 0D, by the same computation as in the proof of (7.6) we have [Vug,| = a/cll. In the third
1

case where Do, = RY, by 1, (0) = 0 and symmetry we similarly get |Vio| = a—\/‘%

On the other hand, recall that p; € C,,(#;) means that

inf |VT, ,.u;| < ag.
B/g(O)| Disti 1| 0

1
By choosing aq sufficiently small so that ag < a_\% < a/b, we get a contradiction.

Finally, combining (9.17), Lemma 9.50 and (depending on whether X € dD or X € D)
(9.29) or (9.49), we obtain

|,3,‘f_2(19, r)‘z =Ag-1+ A

2 1&
<= 3L // KVu(Z), ) dz
d - 1 CS jz:: rd_2 A3r,4r(p)mD /
1 & (B/(p))
S a3 (Wx(r ) + Bin 'Xr(,s(X)/6<r§r(.S(X)> du(X) + % (r +6(24r))
B(p)

which finishes the proof of Theorem 9.7.
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10. COVERING OF THE QUANTITATIVE STRATUM

Lemma 10.1. Let R,A > 0 and €,p € (0, 1/2) be fixed. There exist 8,r. > 0 such that the
following holds. For any (u, D) € $(R, A), any radii ry, r. satisfying 0 < ro < r. < r., and
any subset S C 5,0 wWyNNm)N Brfé(rc)(aD)’ let A, := supycgn B () V. x(r:).” There exists a
finite covering of S N B, (0) such that

SN B0 c | B X). withry = ro;

Xe?€
By s(X)N By, 5(X") =@,  for every distinct pair X,X' € € (10.2)
and
d iy (10.3)

Xe¥

Here Cy > 0 is a dimensional constant, and C| > 0 depends on the dimension as well as p.
Moreover, for each center point X € €, one of the following alternatives holds:

(i) terminal ball: ry = ry;
(ii) small dimension: rx > ro and moreover, the set of points

Fx ={Y € SN By (X) : Ny(prx/10) > A, =6}

is contained in By, 5(Vx), where Vy is some (d — 3)-dimensional affine subspace;
(iii) definite frequency drop:

Ny(rx/10) < A, =9, foranyY € §N By (X). (10.4)

Remark 10.5. For convenience and without loss of generality, we assume that both ry, r,. are
some integer power of p, i.e.

ro=p”?, r.=p’, where jy> j. are positive integers.

Proof. We choose the parameters in the following order:

e Let op > 0 be fixed whose value is to be determined later in (10.22).

e Let 0,1y, 8 be the values determined in Proposition 7.3 with given values of R, A
and 99, p/10, p/10 (that is, we take p/10 in place of p and 7 in the statement).

e Let 0;, € (0,00/2] be fixed whose value is to be determined later in (10.23), and r;,
as given in Lemma 6.17 with parameters p/10 and 6;,,.

e Let r, = rp(e, 0;,) be the radius determined in Theorem 9.7.

o Finally, let

1
Fe := min {rm, Tins Vb %R} S (10.6)

and we will determine the value of r. < 7. later in (10.21).

*By Lemmas 5.1 and 6.8 we know the bound A, < C(A).
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By Lemmas 5.1 and 6.8, the assumption 27, < f;o guarantees the uniform upper bound

Nx, (%) < C(A,R),  for any X € Bz (0) N 4D.

Construction of the covering. To start let
Fo:={X €SN By (0): Nx(or./10) > A, — 5}.
The case when Fy = @ is trivial: We just cover SN B, (0) by a finite number of balls centered
at X € SN B, (0) and with radius ry = pr., and label the collection of centers as 6. Clearly
> = (or) T #, < 10972 = 0 (10.7)
Xety
and for any ¥ € S N By, (X) € SN By, (0),
Ny(rx/10) = Ny(pr./10) < A, — 6.

Now we assume Fy # @. If Fy is contained in B, ;5(Vo) N By, (0), where Vj is some
(d - 3)-dimensional affine subspace, then the trivial cover B, (0) satisfies alternative (ii). We
say the center 0 € %4, where the subindex is to indicate the small dimension alternative. If
not, then Fy pr,/5-effectively spans a (at least) (d — 2)-dimensional aﬁine subspace (denoted
by Ly) in By, (0). Then by Proposition 7.3 as well as the inclusion C,,(u) C C,(u) for any
ro <r<r.weget

SN By, (0) € Bogy, (L), (10.8)
and
Nx(pr./10) > A, — ¢ for every X € Bog. (Lo) N By, (0) N N(u). (10.9)
We cover SN B, (0) by a collection of balls centered at X € S N B, (0) with radius r} = pr.
and label the collection of centers ‘5;1):
SNnB,.0)cC U B, (X), withXeSnB, (0) (10.10)
Xe(rf;l)

and they satisfy
By, /5(X) N By, 5(X') =@,  for any distinct X, X’ € ‘Kg(l).

By (10.8) and (10.9) each X € %" has small frequency drop, in the sense that
Nx(pr./10) > A, — do.
Because of this we call these balls the good balls of level 1.

Now we state the construction inductively. Let i be an integer with 0 < i < jo — Jj.
(see Remark 10.5). Let X € %g(’) be fixed, and we consider the good ball B,i (X) with

ri = p'r. > ro and the set
FY :={Y € 80 By (X) : Ny(prig/10) > A, - 6).

(We use the convention that ‘5350) = {0} and thus B, (0) is the ball in the base case.) Our goal
is to cover SN BVS} (X).
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e %y If the ball Br& (X) satisfies that Fg? = (), then we cover S N Br& (X) trivially
by finitely many balls {B,,(Y)} centered at Y € SN Brg( (X) with radius ry = pré( =
p*1r,, and label the collection of centers %gﬂ)(X). These balls satisfy the definite
frequency drop alternative (iii). Moreover, similarly to (10.7) we have

> T (10.11)
Ye€it D x)

e Cyq: If the ball B,;-( (X) is such that F g) satisfies the small dimension alternative (i.e.
Fgé) is contained in a prg(/S—tubular neighborhood of a (d — 3)-dimensional affine
subspace), then we simply cover S N B,;-( (X) by B,g( (X). In this case we say

X e %S(;“) and ry = r§( = pir*.

e ©C,: Alternatively, the non-empty set F g) pri /5-effectively span a (d—2)-dimennsional
affine subspace, denoted by Ly. Then as in (10.10) we cover S N Brg( (X) by a col-
lection of balls centered at Y € %;Hl)(X) with radius r’;“ I = prg( =ptlp,:

SnB;X)c (] B, (Y), withYeSnB, X); (10.12)
Yez P (x)
and they satisfy
Brfy+1(Y) N Br,-;,l(Y) =@, foranydistinct Y, Y’ € %;i+1)(X).

Moreover, each Y € %{é””(X) has small frequency drop, in the sense that
Nx(pri/10) > A, — 6.

If rif! = ry, we call these balls the terminal balls and denote Y € € and ry = rif! =
ro. Otherwise, for any Y € ‘za”;'ﬂ)(X) we call Br,-y+1 (Y) a good ball of level (i+1). We
repeat this argument and keep subdividing the good balls.

By the above construction, after at most (jo — j.) levels all the remaining balls B, (X) fall
into one of the three categories:

e Xe (fg) for some i € {1,---, jo — j«}, rx = p'r. and B, (X) satisfies (iii).
o Xe @\ forsomeie{l, -, jo— j), rx = p'r. and B, (X) satisfies (ii).
e X € 6y with rx = ro, and thus B, (X) satisfies (i).

At each level, by considering all the coverings as a whole, we can guarantee they are almost
disjoint (as in (10.2)); by taking p < 2/3 and removing redundant new balls if necessary, we
can guarantee they are also almost disjoint from all the previous balls with centers in 63 or
%©sq. It remains to prove the packing estimate (10.3). We denote

Jo=J« Jo=J
%= % %u=J%8 ¢=%J%J%

i=1 i=1
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and we denote the intermediate balls
Jo—J«—1

%= ) ¢
i=1

Moreover, for every point Y € %, or Y € %y, there must exist a precursor X € ‘5;[_1) with
i—-1=0,---,jo— j« such that Y € ‘fg)(X) orY € ‘é?g(X), respectively. In that case we
denote 7y = r§( > rg. We let ). be the collection of all such X’s and let €” := 6, U 6.
We denote 7x = rg if X € %). In particular we have the sets By, /5(X) with X € ¢ are
pairwise disjoint. Moreover, every X € ¢’ satisfies

Nx(7x/10) > A, — do. (10.13)

By the above construction, we have

P A I e N L SN (' ke

Xe? Xeby XeCya Xe%)
<max{Cy, 1} Y ()7 + Y ()
X€Cpre Xe6
<Cp Y
Xe¢’
since the constant C| defined in (10.7) is greater than 1. Therefore it suffices to show

> o< Cy ) (10.14)
Xe¥’

for some universal constant Cy. This way, we reduce the packing estimates to center points
with small frequency drop, which are good points for our purpose.

Packing estimate. We first make the following remark: for any X € €, we have the
rough estimate

d-2
. . , : 10 ;
> Y = k)46 < (prig™ - (—) = Cotrh™2 (10.15)
YE(g;H-l) p
Using this estimate we get

D=0 Y0 D s P

Xe? Xeby, XeCsa Xe%)

but the constant Céo_j * grows polynomially with the ratio r../ry.

Instead, we prove (10.14) inductively. Let €/ = {X € €’ : 7x < t}, where the relevant

cases for us are t = ry, r9/p, ro/pz, -+, r./6". Here we denote 7y = ro if X € 4. We also let

U= wg-—2 Z(?X)d_25x and  p; = wg-2 Z () 26x < pr, = .
Xe¢' Xe¢!

*If r./6 # ro/p' for any integer i € N, we just replace it by ro/p’* where i, is the largest integer such
ro/p' < 1./6.
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We will prove the following estimate inductively on the level of t = ry, ro/p, - - - , 7+/6: there
exists a universal constant
Ciy = max{119wy_, 2972 C w2} > 0
such that
w(B(X)) < Cy, - 172, for every X € B,.(0).
Here Cy, is the dimensional constant in the Discrete Reifenberg Theorem 9.2. It is easy to
see the above statement follows from

w(By(X)) < Cyy - 1972, forevery X € B,.(0) N spt ;. (10.16)
We start from the base case t = ro. In this case ¢ consists entirely of points in %, and

they satisfy
By, s(Y)N By 5(Y') =@  forevery distinct ¥, Y’ € 4.

Hence
Hry(Bary (X)) < wa—a(ro) 72 - # of € inside By, (X)
< llda)d_g(ro)d_z.
Now assuming we have proven the claim (10.16) for ¢ = rg, - - - , ro/p', and we shall prove

it for t = ro/p"*!. Let 7 = ro/p™*!'. We can split the measure as follows
i =g+ = wgn Y (O x v waa Y (Fx) 0y
Xet,; Xe b pi<iy<i
We first have a rough estimate
Hi(Bar(X)) = ppi(Boi(X)) + fir(B2i( X))
<pd Cl 2+t (T
= C,CY - (D2, (10.17)

where the constant C; depends on the dimension and the value of p. The same rough esti-
mate in fact holds for all p7 < t < /p.

Next we use the Discrete Reifenberg Theorem 9.2 to give the desired bound in (10.16).
To simplify the notation we let

=il Byi(X), where X € spty; is fixed.
Now let g € sptfz and 0 < s < 27 be arbitrary, and let p € Bs(q) Nsptfi and 0 < r < 5. Since
spti C ¢’ cSc Nu),”

by Theorem 9.7 we can bound the S-number as follows
_ 2 1 ~ _
B2 ()| < Cy [—rd_z / (Wy(r) + Gin 'chs(Y)/6<rSVcs(Y)) dp(Y)
Br(p)

A(B/(p))

=

(r+ 6(24r))]

“The only exception is that it is possible in our covering argument (at the top level) that 0 € sptji even
though 0 ¢ S. But we ignore this case since this can only happen at a single point.
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<G [m /B ” (WY(F) + Oin 'Xr”(Y)/6<r§r”(Y)> du(Y)
+ CoCy - (r +6(24r))] . (10.18)

In the second inequality, we use the rough estimate (10.17) when pf < r < 2t; and when
r < pt we use the inductive hypothesis for y,, the observations that i1 = y, + uL{X € € :
r<¥x <tyandr > 7,/5 (see Remark 9.4).

Next we want to estimate the following integral

d
/t/W<wﬂ—ww)/ / B2, | = dia(p).
By(q) (q) J 7y r

Firstly, to estimate the integral of the second term in (10.18) we claim that

dr
/ / ( / Xres(V)/6<r<res(Y) dﬁ(Y)) — dji(p) < i(Bas(q)). (10.19)
By(q) J7p B:(p) r

In fact, since the variables of integration satisfy Y € B,(p),p € Bs(q) and r < s, it follows
that p € B.(Y) and Y € B,,4(q) C Bss(q). Hence we may change the order of integrations
using Fubini theorem and get

/ / ( 1 / d_(y))drd_()
) Xres(Y)]6<r<re(Y) QM (p
By(q) J7p/5 rd=2 r(p ’
- dr _
) 2X’”(Y>/6<r<rm<Y> di(p) | — dp(Y)
BZ:(‘]) r r(Y) .
(BA(Y)) i
=/ / (,u rdr 2 Xr“(y)/6<,<,“(y)) T da(y)
Bas(q) /' 7p/5

’ dr
S Xreo(¥)[6<r<ros(v)— AR(Y)
BZA'((]) 7’1;/5 r
< f(Bas(q)),

where we use the rough estimate (10.17) and the inductive hypothesis, similar as in (10.18),
to get the penultimate inequality. This finishes the proof of the claim (10.19). Therefore

s d
/ / 182(p, P < di(p)
By(q) r
d
=[] Jewnl S di)
q r

1 ~ __dr
$/ / E/ (Wy(r) + Oin 'XrCS(Y)/6<rSrC_;(Y)> dp(Y)— dp(p)
Bs(q) JFp/5 B.(p) r

s d
+ 5 fi(Bys(q)) + / 9(24r)—r dp(p)
By(q) r

~ dr
< / / s [ W o dap)
s(q) JFp/S B,(p) r
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§ dr
+ / . /O 024 Y df(p) + 5 F(B.(a) + 01 iBs(a)
s\q
=L+hLh+I3+14.

By Fubini theorem, we get

$ 1 ~ dr
I < / / (E/ XF,/5<r dﬂ(P)) Wy(r)— du(Y).
Bas(q) JO B.(Y)

Let Y € Bys(q) N sptj be fixed. If the radius r < 7y/5, then by almost-disjointness (as in
(10.2)) we have

B,(Y) Nspti = {Y},
and thus
r>7,/5="y/5.

This contradicts the assumption r < 7y/5. Therefore we always have r > 7y /5. It follows

that
N 1 - dr
I $/ / (E/ dﬁ(P)) Wy(r)— di(Y)
Bas(q) J7y/S B.(Y) r

B,.(Y
/ / (#( ( ))) W () d,u(Y)
Bas(q) rY/5

< / Wy(r)— dia(Y) by the rough estimate (10.17)
Bas(q) JFy/5

< Ny(6s) — Ny(7y/10) da(Y) by telescoping on ﬁ/y(r)
Bis(q)

< 80(2s)*% by 65 < 1y, (10.13),(10.17) and a simple covering

= C4(50Sd_2.

Besides we have

24 s 245
L < ( / o) dr) A(By(@)) =: Cs ( / 8r) dr) g2
0 r 0 r

Clearly by the rough estimate (10.17) and s < r./6, we have

I < ros®™2 = Coros?™2, 1y < 6in(25)%72 =1 C76m5%72.

Let 14, be the constant in Theorem 9.2. Let

24t
2]
Te 1= sup {T>OZ / ﬂdrSr]a;r/Scs}, (10.20)
0 r
and we choose
re = min {76,476, ;’éé } . (10.21)

We also choose ¢¢ (depending on d, A, €, p) so that

. Ndr MNar
0y = —_—, 10.22
0= min {503 5C, } (10.22)
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and choose
. o0 na
Sin = min {7, 5'7C7 } . (10.23)
This way, we guarantee
I; < %sd_z, forevery j=1,---,5.

Therefore S J
_ 2dr _
/ / B3 2(p.n)|” = dii(p) < mars™>.
By(q) JO r

Therefore by applying the Discrete Reifenberg Theorem 9.2 to the ball B»7(X) and the Radon
measure fi, we obtain

i(Bo(X)) = wa2 ) ()" < wa2Car 2D < €y - (D2,
Yesptin

This finishes the proof of the claim (10.16). This in turn finishes the proof of the packing
estimate (10.14) with Cy = ¢/,Cy,, where c/; is some dimensional constant to account for a
covering of By, (0) by almost-disjoint balls of radius /6.

O

By Lemma 10.1 and a purely geometric argument, we get

Lemma 10.24. Let R, A, € > 0 be fixed. There exist 6,r. > 0 such that the following holds.
For any (u,D) € H(R,N), any radii ry,r. satisfying 0 < ro < r. < r., and any subset
S c C~,0(u) N N@) N B, 4, (0D), let A, := Supxesng,, ) Nx(ro). There exists a finite
covering of S N B, (0) such that

SN B0 c | B(X). withry = ro;

Xe?
By s(X)N By, 5(X') =@,  forevery X, X' € € distinct, (10.25)
> ot scicy (10.26)

Xe¥
Here both Ci,Cy > 0 are dimensional constants. Moreover, for each center point X € €,
one of the following holds:

(i) terminal ball: rx = ro;
(ii) definite frequency drop: rx > ro, and Ny(rx/10) < A — 6 for any Y € 8 N By (X).

Proof. Since the proof is a standard argument, we only sketch the idea here and in particular,
state how we choose the value p. It is clear that we only need to improve on balls B, (X)
which fall the alternative (ii) of Lemma 10.1. Firstly, we cover S N B, (X) \ By (Fx) by
balls of radius prx, then each ball falls into alternative (iii) in Lemma 10.1, i.e. we have
a o-frequency drop. Secondly we cover the set S N B, (X) N B, (Fx) by balls of radius
Fy = prx:

SNB(X)NBy(Fx) € ) By(¥),  with Y € SN B, (X)N By (Fx) € SN Ba (Vi)
Yet(X) ‘
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where Vy is a (d — 3)-dimensional affine subspace. Moreover

B, ;s(Y)N By, 5(Y') =@, forevery YY" € €(X) distinct. (10.27)
Hence 3
(%)
#6,(X) < Cy o d <Cy-p*.
Therefore i
D )T = (o)™ H#E(X) < C- ()™,
YE%,(X)
By choosing p so that

Chop<l, (10.28)

this subdivision do not increase the total packing measure, and we repeat this argument
until all the balls are either terminal (i.e. it has radius rg) or have definite frequency drop.
Eventually, we get the packing estimate (10.26) with constant C; - C;Cy = C:Cy, where Cy
is the constant in Lemma 10.1 and C; = 10%p=2 for the p already chosen. O

We summarize the order in which we choose the constants. We always fix the dimension
d, the constants R, A > 0 and € > 0.

We determine the value of the purely dimensional constant Cy in Lemma 10.1, and
the value Cp, in Theorem 9.7 (recall that its value is independent of 6;;,);

e we fix the value of p to satisfy (10.28) in Lemma 10.24;
e with p and C}, fixed, we determine the values of C; and 7., 8, d;, in Lemma 10.1,

by (10.7), (10.20), (10.22) and (10.23), respectively;

with p and ¢y fixed, we determine the values of r;,, 6 and 8 in Proposition 7.3 (using
7 =p/10);

with p and ¢;, fixed, we determine the value of r;, in Lemma 6.17, and determine
the value of r;, in Theorem 9.7;

with g fixed, by the proof of (7.6) as well as Lemma 9.50, we determine the value
of @ in the definition of C, () in (2.14);

finally, with ry,, r;,, 7, T, chosen, we determine the value of . by (10.6) and (10.21).

11. Proor oF THEOREM 1.1

The proof of the main theorem 1.1 follows easily from the covering lemma (Lemma
10.24) in Section 10. Let S := Cy,(u) N N(u) N B, 4,.,(0D), Xo € D N B (0), and

A, = sup Nx(rs).
XeSNBy,, (Xo)

By Lemma 10.24, we can cover SN B, (Xp) by a collection of balls {B,, (X)}xccm, such that

X € 8N B,.(Xo) and B,,;5(X) N B, /5(X’") = @ for every X, X’ € C';
either ry = ry, or ry € (rp, r«] and

Ny(rx/10) < A, =06, forevery Y € SN By (X); (11.1)
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e and
> P scicy (11.2)
Xec)

For each ball B,, (X) in the covering such that ry > ro, we first cover S N B, (X) by finitely
many balls centered at ¥ € S N B,, (X) with radius ry = rx/10, and label the collection of

centers Cf)l)(X). Clearly

,
> At <weon)-(55) < Cat (11.3)
vec(x)

ForeachZ € SN By, (Y) € SN By (X), by (11.1) we have
Nz(l"y) = Nz(rx/l()) <A, -0.

Hence

sup  Nz(ry) < AL —6.
ZeSNBy,, (V)

We apply Lemma 10.24 again, with A, — ¢ in place of A,, to find a covering of the ball
By, (Y)

SnB,"c J BL@,

ZeC(Y)
The covering satisfies either rz = rg, or rz > rg and
Nw(rz/10) < (A —9) -0, forevery W e SN By, (2); (11.4)
and we have the packing estimate
Y ot scicy - (11.5)

ZeCA(Y)
Denote
c? = {z eCOr): v eCP(X)and X € c<1>} .
Combining (11.5), (11.3), and (11.2), we get

ng‘zs Z Z Z r§_2SC%CV— Z Z r)d;_z

ZeC® XeCW yec(x) ZeCO(Y) XeCW yec(x)
< C CiCy- Y 1§
XeCc®
< ¢y (CIey) 2.
Foreach j = 1,---,j. := [%] — 1, we apply the above argument inductively to balls

B,,(Z) with rz > ro, with uniform frequency bound A. — jé. This induction stops after j.
many steps, since for j = j. + 1 the alternative (ii) of Lemma 10.24 can not happen because

A.
A= (et 1o = A — [71530.
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Moreover, for each j we have the packing estimate

d-2 J (2 g2
E r7 ~<Cy (CICV) re .
ZeCU+Dh

Finally let

C:= Oc(j),
j=1

and we have the packing estimate

j* j*
d-2 d-2 J (2 J+l a2
E rz SE E rz © < E :Cd(CICV) Ty
J=0

ZeC Jj=0 zecU+D
Ax
< Ca[ | (C2cy) [ ]+ -2
< Cprf_2,

where the constant Cj, only depends on d, A (since A, < C(A)) and 6 (which in turn depends
on R, A and €). We remark that since we do not know how ¢ depends on A, we can not say
that C, depends on A exponentially.

Since all balls in the covering have the same radius rg, the above packing estimate implies

that
#HOIET2 <> <t
ZeC

r d-2
#C) < C) (r—()) )

Therefore for any Xy € DN B 13 (0) and any ry < r. < r., we have the volume estimate

and thus

By (Coa0) 1 NG 0 B, 3, (0D) 1 B, (X)) | < #(C) -1 < =213,

On the other hand, for any interior point X such that dist(X, dD) > r.6(r.), its critical scale
res(X) = re. In other words, the frequency function N(X, -) is monotone increasing on the
interval [0, r.]. Therefore the same proof applies to this much simpler case. (This case
is similar to that of [NVO]: Even though the balls in the covering may still intersect the
boundary, they are nonetheless well in the monotonic interval and should be considered
interior balls in the application of the argument.) Finally we conclude that

By (Coo() AN N B (X)) | < € 147212,
In particular, by the definition of (d — 2)-dimensional Minkowski content, we have
M2 (Cpyu) N 0 B (Xo) ) < Cré2,

and
MI2 (Cr) O N N B (0)) < CR'7Z2 = CA,R, A o).
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Since the above bound is independent of ry, we conclude that the singular set satisfies the
Minkowski bound

M2 (S(u) N B%(O)) < M2 <C~r0(u) AN N B%(O)) < C(d,R, A, e).

To prove the rectifiability, we apply a similar argument as in the proof of the packing
estimate in Lemma 10.1. But this time we appeal to Theorem 9.5, in place of Theorem 9.2,
to the (d — 2)-measurable set C~,0(u) NN N B,cg(,c)((')D) N B, (Xp). The rectifiability of
S(u) follows from (2.16) and the countable additivity of rectifiable sets.
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