EXPANSION OF HARMONIC FUNCTIONS NEAR THE BOUNDARY
OF DINI DOMAINS

CARLOS KENIG AND ZIHUI ZHAO

AssTrACT. Let u be a harmonic function in a C'-Dini domain, such that u vanishes on an
open set of the boundary. We show that near every point in the open set, u can be written
uniquely as the sum of a non-trivial homogeneous harmonic polynomial and an error term
of higher degree (depending on the Dini parameter). In particular, this implies that u has
a unique tangent function at every such point, and that the convergence rate to the tangent
function can be estimated. We also study the relationship of tangent functions at nearby
points in a special case.

1. INTRODUCTION AND MAIN RESULTS

A harmonic function can be decomposed into the summation of homogeneous harmonic
polynomials of integer degrees. In particular, it can be written as a homogeneous harmonic
polynomial plus a higher-order error term. In [Han], the author proved that a similar ex-
pansion holds for solutions to elliptic operators whose coefficients are Lipschitz. This is
optimal: there are examples of elliptic operators with Holder coefficients for which the so-
lution does not have finite order of vanishing (see [Plis] for an example of non-divergence
form operator, and [Miller] for an example of divergence form operator), so one cannot ex-
pect an expansion in homogeneous harmonic polynomials of finite degrees. On the other
hand, if a solution of an elliptic operator with Holder-continuous coefficient does have a
finite order of vanishing at a point, Han’s argument works and he gets a similar expansion
near that point.

In a C'-Dini domain, consider a non-trivial harmonic function u which vanishes on an
open set of the boundary dD N Bsg(0). Then u has a finite order of vanishing in Bg(0), which
follows from a doubling property proven in [AE] and later in [KN] using a different method.
Moreover, in a previous paper [KZ], we proved a more precise decay rate for such function
(see Lemma 2.10); more importantly, we gave an estimate of the size of the singular set

S(u) :={X € DN Bg(0) : u(X) = 0 = |[Vu(X)|}.

Combining the arguments in [KZ] and [Han], we are able to show that # has a similar
expansion at the boundary of a Dini domain:

Theorem 1.1. Let D ¢ R? be a Dini domain with parameter 6 (see Definition 2.1) and
0D > 0. Let Ry, A > 0 be finite. Suppose that u is a non-trivial harmonic function in
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D N Bsg,(0), u = 0 on 0D N Bsg,(0), and the (modified) frequency function (defined in [KZ,
Sections 4 and 3], and restated in (2.9)) at the origin satisfies No(4Rg) < A.

Then for any boundary point Xo € 0D N Bg,(0), there exists R > 0 such that u has a
unique expansion

u(X) = Py(X = Xo) + ¥(X = Xo) in  Br(Xo), (1.2)

where Py is a non-trivial homogeneous harmonic polynomial of degree N € N, and the
error term \ satisfies
() < ClYINEIY), (1.3)
and
Vg (V)| < ClYM 821y, (1.4)
Here

o N agrees with the vanishing order of u at X, i.e. N = Nx, = lim,_,o Nx,(r), where
Nx, () is the (modified) frequency function of u centered at Xy;

e the radius R is determined by the frequency function at Xy and the Dini parameter
0 (see (4.9));

o 0 is determined by the Dini parameter 6 as in (5.19) and it satisfies 0(r) — 0 as
r—0;

e O is determined by 0 as in (6.13) and (6.10), and it satisfies é(r) —0asr—0.

Remark 1.5. We remark that when D is a C® domain with a € (0, 1) (that is, when 6(r) ~
%), the upper bounds of the error term satisfy that (r), 6(r) < r®.

The significance of the above theorem is that we get a higher-order expansion of u even
though u only has regularity up to C! at the boundary. Moreover, it is more difficult to
estimate the gradient of the error term compared to [Han]. This is not only because of
difficulties at the boundary, but also due to regularity issues. Recall that (because of a
different regularity and structure of the coefficient matrix) the solutions in the setting of
[Han] are in the Sobolev space W>” for any p > 1, i.e. they are strong solutions. So the
LP estimates of Vi as well as V2 follows directly from the estimate of i in (1.3), using
interior L? estimates for strong solutions, see [GT, Theorem 9.11]. But more work is needed
here to obtain the gradient estimate in (1.4).

We also remind the readers that for an interior point Xo € D, we can simply use the
decomposition of u (into homogeneous harmonic polynomials of integer degrees) near Xy
to obtain the expansion

u(X) = u(Xo) = Py(X — Xo) + (X — Xo)
for any X € D such that |X — Xo| < dist(Xo, dD), where the error term  satisfies |/(Y)| <
C|Y|¥*! as well as higher regularity estimates.

Recall that in [KZ], we have studied the blow up of the function « at a boundary point as

follows. For any X € 0D N Bg,(0) and r > 0, let

Xo+r1rZ D-X
Tx, u(Z) = uXo +r2) -, foranyZe O.

3
(% ffB,(Xo)mD ”2dY>

(1.6)
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Since D is a C! domain (i.e. the domain above the graph of a C! function ¢ : R¥~! — R),
clearly % converges locally graphically to a half space, above the hyperplane determined
by Ve(xg), where x¢ € R4 is such that Xo = (xo,¢(x0)) € D. Assuming without loss
of generality that Ve(xo) = 0, then 2 _rXO converges graphically to the upper half space R?.
Then for any sequence r; — 0, there exists a homogeneous harmonic polynomial P in R4
(possibly depending on the sequence {r;}) of degree Ny,, such that modulo passing to a

subsequence

Tx,.r;u — P locally uniformly and locally strongly in L2, and weakly in W'2,

// PZ)PAZ = 1,
B (0)

where we denote B (0) := B;(0) N Rﬁf. We say that P is a tangent function of u at the point
Xo. A priori for different sequences {r;}, we may get different tangent functions. However,
using the expansion in (1.2), we can prove the following corollary:

and

Corollary 1.7. For any Xo € 0D N Bg,(0), we have
Tx,.,u(Z) = cPN(Z) + O(B(r)), (1.8)

where Py is the homogeneous harmonic polynomial as in (1.2), ¢ is a normalizing constant
so that P = c¢Py has unit L* norm in B{(0), and 0 is as in Theorem 1.1. In particular, the
polynomial cPy is the unique tangent function of u at Xy, and the convergence rate to the
tangent function is bounded by a constant multiple of O(r).

We remark that the global estimate we obtained in [KZ, Theorem 1.1] does not imply the
above result. In Corollary 1.7, not only do we know that there is a unique tangent function at
every point, we also know the convergence rate. The result in the current paper complements
the main theorem in [KZ] and uses the frequency function and purely PDE arguments.

By the monotonicity of the frequency function Nx,(-) and the fact that its limit Ny, =
lim,_,g Nx,(r) is integer-valued, we can show that

Xo € 8D N Bg,(0) — Ny, € N

is upper semi-continuous. The proof uses a standard argument adapted to the modified
frequency function we introduced in [KZ]. Since this fact is tangential to the main topic
of this paper, we defer the proof to the appendix. In general, the vanishing order could
jump up, and we give a simple example in the footnote.” But in the particular case where
a sequence X; € 0D N Bg,(0) converges to X is such that Nx; — Nx,, since the vanishing
order is integer-valued, we have Ny, = Nx, for j sufficiently large. We can then show that
the leading order polynomials in the expansion also converge:

*Consider the upper-half space Ri =A{(x1,x2,1) : x1,xp € R, ¢t > 0}. The function u : Ri — R defined as
u(xy, x2,8) = (X1 + x2) - ¢

is harmonic. Let L := {(x{, x2,0) : x; + x, = 0} be a subset of 6Ri. It is an easy exercise to show that for any
Xy € L, the vanishing order Ny, is 2; and for any X, € 6R1 \ L, the vanishing order Ny, is 1.
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Proposition 1.9. Let {X;}, Xo be points in 0D N Bg,(0) satisfying X; — Xo. Suppose that
Nx; = Nx, for each j. Let Px;, Px, denote the homogeneous harmonic polynomials in the
expansions (1.2) near X, Xo, respectively. Then Px; converges to Px, in the Ck-topology for
any k € N.

The paper is organized as follows. In Section 2 we introduce some notation, recall how
we defined the modified frequency function in [KZ], and use that to estimate the ratio of the
L? norm of u in two concentric balls of different radii. In Sections 3 and 4, we reduce the
problem from a harmonic function u in a C'-Dini domain to a solution v in the upper half-
space to a divergence-form elliptic operator, whose coefficient matrix is the identity matrix
at the center point and is Dini-continuous everywhere. Then in Section 5, we write down
the expansion of v, estimate the error term using Dini-continuity of the coefficient matrix
and show the leading-order homogeneous harmonic polynomial is non-trivial. Moreover in
Section 6, we estimate the gradient of the error term in LP and L. These are combined
to give us the expansion of the original function u (i.e. Theorem 1.1) in Section 7. The
convergence rate to the (unique) tangent function is just a simple corollary of that expansion.
Finally in Section 8 we prove Proposition 1.9, namely the tangent functions are continuous
at the boundary point where the vanishing orders do not jump up.

2. PRELIMINARIES

Definition 2.1 (Dini domains). Let 6 : [0, +c0) — [0, +c0) be a nondecreasing function

verifying
/ o) < 00." 2.2)
0

r

In particular, (2.2) implies that (r) — 0 as r — 0. A connected domain D in R is a
C'-Dini domain with parameter @ if for each point Xy on the boundary of D there is a
coordinate system X = (x, x4),x € R4 x; € R such that with respect to this coordinate
system Xy = (0,0), and there are a ball B centered at X and a continuously differentiable
function ¢ : R*! — R verifying the following

(D) IVl o@ga-1y < Co for some Cy > 0;
(2) [Vep(x) = Vo)l < 6(|x — y]) for all x,y € R
B) DN B ={(x,xg) € B: x4 > @(x)}.

Remark 2.3. By shrinking the ball B if necessary, we may modify the coordinate system so
that Vp(0) = 0.

Under the assumptions of Theorem 1.1, we have u € C IDn Byg,(0)) by the work of
[DEK]. Note that in [DEK], the Dini parameter is required to be doubling, in the sense that
there exists a constant C > 1 such that

6(2r) < CO(r) forallr, (2.4)

*In particular, we can choose Ry > 0 so that 6(8R,) < =5 and [ 8Ro &:) ds < 1.
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see [DEK, (1.4)]. This is not necessarily satisfied by all 8 above verifying (2.2), in which
case we just replace 6(r) by
a(r):= sup [Vo(x) = Vo(y)|.

x,yeJRd -1
[x—yl<r

(For a general bounded Dini domain D, by Definition 2.1 it is characterized by finitely many
coordinate systems and C' functions ¢;’s. In this case we take a(r) to be the maximum of
the above value for all ¢;’s in their respective domains.) We claim that a(-) is doubling. In
fact, assume that a(2r) = |Vo(x) — V()| for some x,y € R4 with |x — y| < 2r. Let z be the
middle point on the line segment [x, y]. Clearly |x — z|, |z — y| < r. Thus

a(2r) = |[Ve(x) = Vo)l < [Veo(x) = Vo) + [Ve(2) = Vel < 2a(r).

Besides a also verifies the Dini condition (2.2), since a(r) < 6(r) by the property of V.
Therefore without loss of generality, we assume the above Dini parameter 6 satisfies (2.4).
Moreover, we remark that an example in [JMS] seems to indicate that Dini regularity is the
optimal condition to guarantee continuous differentiability of u.”

When D is not a convex domain, the standard Almgren’s frequency function for u cen-
tered at a boundary point X, defined as

o 5,0 IVul® dX
- faB,(X) u* dH!

may not be monotone. (In the above definition, we assume we have extended u by zero
across the boundary, to simplify the notation.) However in [KZ], for a Dini domain D and
for every boundary point Xy € Bg,(0) N 0D, we were able to define a modified frequency
function for u, denoted by Ny,(-), using a special transformation Wy,, and prove that the
map r — Nx,(r) is monotone. More precisely, using the notation in [KZ, Sections 3 and 4],
we recall the definition of the transformation

Wy, : X = (1, x9) e RV X R - Xo + (x, x4 + 3|1X10(X])) € RY (2.6)

R 1 2r 1 2t 0
o) = — / = / %) g5 2.7)
logc2 J, tJ, s

is a smoothed version of the Dini parameter 6, and it satisfies 6(r) < 8(r) < 6(4r). Then
uo Wy, satisfies a divergence-form elliptic equation in the domain ‘I’)}; (D), see [KZ, Section
4]. As in [KZ, Section 3], we may define the frequency function

rD(u o ¥x,, r)

H@woY¥y,,r)

for non-homogeneous elliptic operator satisfying certain assumptions, see [KZ, (3.8)] or

the proof of Lemma A.9 for the details. Finally, in [KZ, Proposition 3.10] we proved the
following:

r— Nu,X,r): 2.5)

where

N(uo¥y,,r) =

*In [JMS], the authors gives a divergence-form elliptic operator L = — div(A(-)V), where coefficient matrix
A(+) is continuous but its modulus of continuity fails the Dini condition (2.2), and a solution u to L which satisfies
ue WS forevery p> 1butug Whe.

loc
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Proposition 2.8. The map

r+— Nx(r) := N(u o Wx,r)exp <C /r g(ss)ds> 2.9)
0

is monotone nondecreasing.

The following doubling property essentially follows from [KZ, Corollary 3.28] and the
monotonicity of the (modified) frequency function for u o Wy, . (Recall that u is extended by
zero outside of D.)

Lemma 2.10 (Lz—doubling property). Let Xo = (xo,¢(x0)) € Bg,(0) be a boundary point of
D. Then for any pair of radii 0 < s < r sufficiently small, we have

<f)d+21\/x0(2r) < W < <§)d+2Nx0 eXp(—Cf(;" @ds)
ffBr(X()) u=dX

where Nx,(-) = N (Xo, ) is the monotone frequency function centered at Xy, as is defined in
[KZ, Sections 3 and 4], and Nx, = lim,_,o Nx,(r) € N.

, (2.11)

r r

Remark 2.12. We follow the convention in [KZ] and call the above a doubling property. But
we point out that it is actually a misnomer. In fact, under the same assumption it has already
been proven in [AE, Theorem 0.4] and [KN, Theorem 2.2] that there exists a constant C > 0

such that
// wdX <C // u’dX (2.13)
Bzr(Xo) B (Xo)

for every Xo € 0D N Bg,(0) and r sufficiently small. And (2.13) is what is usually referred to
as an L*-doubling property. In Lemma 2.10, not only do we compare the L?-norm of u for
a pair of balls of any radii 0 < s < r, we also get a precise estimate on the decay rate, which
is very close to d + 2Ny, the decay rate for homogeneous harmonic polynomials of degree
Nx,. So Lemma 2.10 is much stronger than a doubling property.

Proof. By [KZ, (8.16)], for r sufficiently small we have
B/(Xo) € Boy(Xo + 6r8(2r)eq) = ¥x,(B2r),

and similarly
3r./r
B,(Xo) > By (Xo +20(3) ed> = Wy, (By),

where 6 is defined as in (2.7). Hence

2r
// WdX < // uoWyx|*dY < [ H(o ¥, p)dp, (2.14)
Br(XO) B, 0

%
// 2dX > // \uoqfxo\zdyz/ H(u o ¥y, . p)dp, 2.15)
B, (Xo) 5 0

and
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where H(u o Wy,, p) is defined as in [KZ, (3.8)] and it is essentially the [?-surface integral
of u o Wy, in B,(0), adapted to a certain elliptic coefficient matrix. By (2.14), (2.15), [KZ,
(3.30)], (2.2) and the monotonicity of Nx,(-), we have

Iz, 0x0 w'dX < Jo H(uo¥x,,p)dp 4r Jo H(u o Wx,, “p)dp < <4F)d+2NX°(2 )
Wi, oxpy w?aX = Je Huwo¥xp,pddo 5 [ Huwo Py, p)dp  \ 3
Since Nx,(2r) is uniformly bounded depending on A (see [KZ, Lemma 5.1]), in particular it

follows that
// 2dX <p // W2dX. (2.16)
B4, (Xo) B(Xo)

On the other hand, by [KZ, (3.29)] and the monotonicity of Nx,(-), we have
I, B, (Xo) wrdX S I, Buy(Xo) wdX S fozr H(u o ¥x,, p)dp
Wt 24X ™ [fg, ) #2dX ™ [ H(u 0 Wy, p)dp

r Jy HGwo ¥y, tp)dp

S Jo" H(wo Wy, p)dp

N ( r ) d+2Nx, exp(=C [ %2ds)

>

s
where we have used (2.16) in the first inequality. This finishes the proof of the lemma. O

The next lemma about matrices will be needed in Section 8. If not specified otherwise,
for any n X n matrix M we always use the matrix norm

|Mx|
M| := sup ITI (2.17)
xeR?
x#0

that is compatible with the £ vector norms in R”.

Lemma 2.18. Suppose S 1, S are nxXn symmetric matrices such that |S 1|,1S 2| < 1. Suppose
that A and B are n X n symmetric, positive semi-definite matrices” such that

A’ =1d,+S;, B>=1d,+S,. (2.19)
Then A and B are invertible, and moreover,
AT - B 5 |A* - B = IS - Sal. (2.20)

Proof. Foreachi = 1,2, since |§;| < 1, all the eigenvalues of the symmetric matrix Id, +S;
are real-valued and close to 1. By the diagonalization of symmetric matrices and (2.19), it
follows that all the eigenvalues of A and B are real-valued and close to 1. More precisely, by
choosing |S;| small, we can guarantee that all the eigenvalues of A and B lie in the interval
[1/2,2]. The same statements hold for the eigenvalues of their inverse matrices A~! and
B~!. Hence by the sub-multiplicativity of matrix norms, we have

A" -B ' =|A""A-B)B'| < |A- B

*The positive square root of the matrix Id, +S; always exists, by considering the diagonalization of the
symmetric matrix Id, +S; whose eigenvalues are all strictly positive (since |S;| < 1).
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Therefore to prove (2.20) it suffices to show that

A - B| < |A% - B|.

Suppose that ey, --- , e, are eigenvectors of the matrix A (with respective eigenvalues
Ay, -+, g € [1/2,2]) which form an orthonormal basis of R?. Let | - |. denote the maximum
norm of matrices, i.e. |[M|. := max; ;|m;;| for any matrix M = (m;;). Suppose that under the
orthonormal basis {ey, - - - , e4}, the matrix A — B is written as (m;;), and that |A — B, = |m;|
for some i, j € {1,--- ,d}.

Since

A>—B>=(A-B)A + B(A - B),

when we multiply both matrices above by the vector e; we get that

(A> — B?)ej = (A — B)Aej + B(A — B)ej = /(A — B)ej + B(A — B)e;
= (1;1dg +B)(A - B)e,. 2.21)

Consider the diagonalization of the symmetric matrix B in the form

H1
B=UDU™", where U is an orthogonal matrix, and D =
Hd
Notice that each yy is an eigenvalue of B, and thus ;. € [1/2,2]. It follows that A; + uy €
[1,4] for all k € {1,---,d}. Because orthogonal matrices do not change vector norms, we
have that

|(4;1dg +B)(A - B)ej| = |U(A;1d, +D)U™" - (A - B)e,|
|(4;1dg +D)U™" - (A - B)e/

Aj+
= U YA - Be;
Aj + pa

> U (A - B)ej]

=|(A - B)ejl. (2.22)
Because A — B = (m;;) under the orthonormal basis {ey,- -, e4}, we have by the choice of
ej that

(A = B)ej| = |(myj, -+ ,mgj)| > Imijl = |A = Bl ~ |A - B, (2.23)

where we used the equivalence of all matrix norms in the last inequality. Combining (2.23),
(2.22) and (2.21), we have that

|A - Bl S I(A — B)ej| < |(4;1d, +B)(A — B)ej| = |(A” — BYej| < |A* - B,
which finishes the proof of (2.20). O
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3. ORTHOGONAL TRANSFORMATION

Let (x9, ¢(xg)) be a boundary point such that Vo(xg) # 0. We want to find an orthogonal
transformation O = O,, : R? — R¢ and a function § = @y, : R¢"! — R such that

O maps graph(e) — (xo, ¢(x0)) to graph(¢), and $(0) = 0, Vg(0) = 0.

We first determine the orthogonal matrix O. We write O in the form of a block matrix

O b
o=(a ¢)

where O is a (d—1)x(d— 1) matrix, b,d € R*! and ¢ € R. Since O should be an orthogonal
matrix, the block matrices ought to satisfy

00" + bb" =1dy_y,
Od + ¢cb =0, 3.1
|d* + ¢* = 1.

Moreover, in order to guarantee that

¢ (<¢a)) - <90é?0)>) - (&Zy)) ’

{ O(x = x0) + (¢(x) = ¢(x0))b = y
d - (x = x0) + c(p(x) = ¢(x0)) = &(y)

and the property that V@(0) = 0, the matrix should satisfy

or equivalently,

3.2)

d + cVe(x0) = OTVE(0) + (b - V@(0)Vep(xo) = 0.
Combined with (3.1), we just need

= (1+[Vexo)P?) ™" %0,

d = —cVp(xp),

b = OVg(xo),

O (Idg— +Ve(x0)Ve(x0)") O =1dg-

(3.3)

Modulo the sign, ¢ € R is uniquely determined. Since for any non-zero vector z € R%~! we
have

2" (Idg-1 +Ve(x0)Ve(x0)") z = IzI* + (2 Ve(x0))* = Iz > 0, (3.4)

the matrix Id;_; +Ve(x0)Ve(xp)! is symmetric and positive semi-definite. We can find a
solution to the last equation in (3.3), for example by letting O be a symmetric, positive
semi-definite matrix whose inverse matrix O~ is the square root of Id,_; +Ve(xo)Ve(xg)! .
In particular

1 1
det (Idg_1 +Ve(x0)Ve(x0)T) ~ 1+ [Ve(xo)2’

|det O =
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besides, by (3.4) and by choosing x sufficiently close to the origin so that [Ve(xg)| < 1, we
can guarantee that the eigenvalues of O are bounded from below and above (and the bounds
are uniform for all xp near the origin). To sum up, the orthogonal matrix is of the form

_ 0, OV(xo),
0‘((—cV¢<xo))T, ¢ ) (3-5)

where ¢ € R and the block matrix O satisfies (3.3).

Next we show that the image of graph(¢) — (xo, ¢(xp)) under O is indeed graphical. First,
considering (3.2) we look at the map

g:xeR 5 O(x — xp) + (@(x) — @(x0)b =: y € R, (3.6)
Clearly g(xp) = 0. We compute
Dg(x) = 0 + b (Ve(x))" = 0+ OVe(xo) (Ve(x)" . 3.7)

Hence in particular
Dg(0)lx=x, = O + OVep(xo) (Vep(x0))"
= 0 (Idg-1 +Ve(x0) (Ve(x0))")
= (0"
=0,

where we use (3.3) and the symmetry of O in the second to last and last equalities, respec-
tively. By the inverse function theorem, near xq the function g has an inverse function g~!,
which is defined in a neighborhood of the origin and satisfies

Dg™' () = (Dg (s7'»)) - (3.8)
Therefore by defining
P() = ~cVe(x0) - (87 (1) = x0) + ¢ (p(g™' 1)) — ¢(x0)) (3.9)
in a neighborhood of the origin, it satisfies the equality (3.2). Moreover
0,60) =Y (8ip(g™ ) - dip(x0)) 8; (871 ), »

or equivalently

- _ T _
Ve =c(Dg™' ) (Velg™ ) = Ve(xo)) - (3.10)
Moreover, we claim that for y, y” sufficiently close to the origin, we have
V@) = Vel < 6C2ly = '], (3.11)

where 6 is the modulus of continuity for V. In fact, (3.7) implies that
’ A NV ’ /
IDg(x) = Dg(¥)| = |O¥p(x0) (Vi) = Vox)) | < |Vept) = V)] < 0l = ). (3.12)

Here we use the boundedness of [V¢(xg)| and the maximum norm |O|. In particular, since
the eigenvalues of the matrix Dg(xy) = O~' are bounded from above and below, it follows
from (3.12) that for x sufficiently close to xp, the eigenvalues of Dg(x) are also uniformly
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bounded from above and below, and thus the same holds for its inverse Dg™!(y) (by (3.8)),
for any y sufficiently close to 0 = g(xp). Moreover, let x = g~'(y), x’ = g7'(y’). Since

Dg() (g™ - (Dg)) '] D)

= |Dg(x') — Dg(x)| < 6(1x - X)),

we get
D) = Dg™0")| = |(De) ™! = (D)) ™| < IDg™ VI 60k = ¥D - 1Dg™ )
< 0(x — X')). (3.13)
Additionally,
= x1=1g7' 0 - g 'O < IDg M lwly — ¥ < 2ly = ¥, (3.14)

Therefore, by combining (3.10), (3.13) and (3.14), we get
[V&0) - Va0
¢ (D7) (Velg™ () = Vetxo)) = (D™ (") (Tlg™ 0/)) = Ve(xo))|
<c|(Dg™' W) [Velg™ ) - Vg™ "))
[Dg™' 0= Dg™' 6] (Velg™ ') = Vi)

S0 ) -7 0D +1Dg™ ) = Dg”' "I - 6g™" ) = xol)
< 62ly =D,
which finishes the proof of the claim (3.11).

+c

4. FLATTENING AND EXTENSION OF ¥ ACROSS THE BOUNDARY

By the previous section, we may assume that near any boundary point (xg, ¢(xg)) € 9D N
Bg,(0), we have Vo(xg) = 0. If not, we just apply the orthogonal transformation Oy,
under which the domain D (locally) becomes the region above the graph @ = @,,, which
satisfies ¢(0) = 0, V@(0) = 0 and the modulus of continuity becomes 6(2-) (modulo uniform
constants). Hence it suffices to consider D near the boundary point Xy = (0, 0) with a flat
tangent, i.e. Vi(0) = 0.

Let u be a harmonic function in D. We consider the map
©:(,5) €R b (.5 +¢() =t (x,1) € D, 4.1

and v : R — R defined by v(y, s) := u o ®(y, s). A simple computation shows that v is
the solution to the elliptic operator — div(A(y, s)Vv) = 0 in Rﬁ’r, where the coefficient matrix
A(y, s) is given by

A(y, 5) = (det DD) - (DD(y, )" (DD (y, )" :( 1da-1 —Vel) > (4.2)

Vo))" 1+[Ve)?
In particular A(y, s) is independent of the s-variable, so we will denote it by A(y). By the
properties of ¢, we know that A(0) = Id and |A(y) — AQ')| < 6Qly — Y').
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Since v = u o ® vanishes on B4g,(0) N (’)R‘i, we can extend v by odd reflection, i.e. we let

v(y, $), (v, s) € Rﬁ

V0, ) = { —(y,-s), (7,5) € R “.3)

We also define
3 Idg— =Vo(y) d
A(ya S) - <(_V(P(y))T 1+ |V(p(y)|2) 5 ()’, S) € R+,

AGSD =Y g,
- @(y) .
<(V¢(y))T 1+ |V(p(y)|2> ’ (v, s) € RY.

A simple computation shows that the co-normal derivatives of ¥(y, s) from above (i.e. Rﬁ)
and below (i.e. R?) cancel each other out, or more precisely,

lim A(y. $)Vv(. ) 0.~1) + lim A 5)V7(y,5) - (0,1) = 0.
s—0+ s—0-

Using integration by parts, the newly-defined function ¥ satisfies — div(A(y, s)V#) = 0 in
B4r(0). For simplicity we still denote ¥ as v.

To summarize, by an orthogonal transformation (in Section 3), flattening the domain,
and an odd reflection, we have modified the original harmonic function u near any bound-
ary point Xo € Bg,(0) N D into a solution v to a divergence-form elliptic operator Lv :=
- diV(A(y, 5)Vv) in an entire ball B4g,(0), where the coeflicient matrix A is the identity ma-
trix at the origin, and it is Dini continuous in the upper and lower half space, respectively.
We emphasize that A is not even continuous across 9R¢. In general, solutions to operators
of the form L may not have finite vanishing order at an interior point. In fact, even if the co-
efficient matrix is Holder continuous with exponent less than 1, the corresponding solution
may still have infinite vanishing order, for example see [Miller]. However, since v comes
from the harmonic function u in a C'-Dini domain, with vanishing boundary data, we can
show v does have finite vanishing order.

By the doubling property of u in Lemma 2.10, we can easily show the following doubling
property of v:

Lemma 4.4. For any pair of radii 0 < r| < r; sufficiently small, we have

b _ 4ry 0(s)
<r] >d+2N"0(2r2) < HB,. (0 vV dyds < <r1 >d+2NXO exp(C fo" *ds)

<———"—+———X 4.5)
1, B,,(0) v2dyds

) )

Proof. Recall we defined v by v = u o ® and reflection across dR¢. Hence

// vidyds = 2 // u o D(y, 5)*dyds ~ // u’dxdt.
B,(0) B (0) O(B(0)

For any (y, s) € B} (0), since ¢(0) = 0 and V¢(0) = 0, it follows that

leWI = le(y) = ¢(0)] < SSE)p] IVe(E)] - 1€l < r0(2r).
€[0,y
Hence

1D, 9| = (v, s + )] < r(1 + CH2r)),
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// Vidyds ~ // uldxdt < // u?dX.

B,(0) O(Bf(0)) B> (Xo)

// Vidyds ~ // wdxdt > // u’dX.
B,(0) O(B;(0)) B (Xo)

On the other hand, in Lemma 2.10 we have shown that

// uw?dX ~ // uwrdX ~ // u?dX,
B (Xo) B, (Xo) B L (Xo)

with constants depending on A. Therefore we conclude that

// vzdyds ~ // ude,
B,(0) B (Xo)

and the estimates (4.5) follows from (2.11). O

and

Similarly

Corollary 4.6. For any pair of radii 0 < r| < ry sufficiently small, we have

_ 4ry s 7.
<r1>Nx0(2r2) B supBrl(o) V| B <,,1>NX0 exp( Clo?5 ds)

— < < 4.7
Supg, () V|

L) )

Proof. Recall that solutions to elliptic PDEs with vanishing boundary data satisfy the fol-
lowing boundary L* bound:

1 1/2
sup v < (d // vzdyds> ,
B,(0) r B>,(0)

see for instance [Kenig, Lemma 1.1.22]. Combined with the doubling property (4.5), we

have that
| 12 | 1/2
sup |v| < (d// v2dyds> < (d// v2dyds> .
B(0) r B-(0) r B,(0)
On the other hand
1 12
(// vzdyds) < sup |v|.
rd B (0) B,(0)
Therefore

1 1/2
sup |v| = (rd // vzdyds>
B,(0) B (0)

and the L™-doubling property follows from the L?>-doubling property in Corollary 4.4. O

Let R € (0, Rp) be sufficiently small such that Corollary 4.6 holds up to scale 2R. Then
for any 0 < r < 2R we have

8R 0(s) ;.
Ci(R) - "B < sup |v| < CH(R) - V%o eXP(—Cfo Tdé)_

B.(0)

(4.8)
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For any « € (0, 1) sufficiently small, we may choose R small enough such that

8R
o N
exp <c / (s)ds> < X Ny, (4R) < Ny, +a. (4.9)
0o S Ny, —a

Note that in order to satisfy the second inequality, the choice of R is Xy-dependent. It then
follows from (4.8) that

Mot < sup v 5 Mo (4.10)
B,(0)

In particular, since a < 1, it follows that
X091
IYINX0+1 -

lim sup
Y—0

On the other hand, by the boundary gradient estimate with Dini-continuous coeflicient in
R4 and in R¢ (see [DEK, Proposition 2.7], or more precisely [DEK, Lemma 2.11]), for any
Y € Bg(0) we have

Y 1/1 12
v < sup [Vy| € — (d // vzdyds> < 400,
Yl ™ Bro) R \R® JJBr(0)

Hence ¥
su %
0™ ¢ oR) < +oo.
,
This estimate, combined with (4.10), implies that forany k = 1,--- ,Nx, — 1 (orfor k = 1

when Ny, = 1) we have
W(Y)| < CilY[F forany Y € Bg(0).

We consider two cases

Y Y
either lim sup |V(N)I — o0 or limsup |V(N)|
y—o  [Y[T y—o |
(When Ny, = 1 we can only have the second case.) In both cases, there exists N € N such

that

< 400

W) < CylYIY  for any Y € Byr(0), (4.11)
nd ()
. 1%
B e 12

We call N the vanishing order of v (at the origin). Notice that the integer N = Ny, — 1 in the
first case, and N = Ny, in the second case. A priori we can not rule out the first case, but at
the end of the paper we will show it is impossible and v does have vanishing order exactly
Ny, .

We remark that a priori, we only know there exist R = R’(Xj), possibly smaller than R
chosen in (4.9), and C}; > 0, such that

W(Y)| < CylYIN  forany Y € By (0), (4.13)

i.e. the inequality (4.11) holds in a smaller ball. When Y € Byg(0) \ By (0), by the upper
bound in (4.10), we have

W(Y) < ClYM%~ < C'RM~* < C(R, R, Nx,) RN < CnlYIV.
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Therefore (4.13) holds for all Y € Byg(0), possibly with a bigger constant Cy > C),.

5. PROOF OF THE EXPANSION

In this section, we will prove that there exists a non-trivial homogeneous harmonic poly-
nomial Py of degree N, such that in Bg/»(0) v has the expansion

V(y’ S) = PN()’, S)"'lﬂ(y, S), (51)
where

W (. )l < CCwI(y, )N, 9D, (5.2)
and 6(-) is defined in (5.19) and it satisfies that 8(r) — 0 as r — 0.

For simplicity, we denote r := |(y, s)|. Assume that 0 < r < R/2. We rewrite the equation
—div(A(y, s)Vv) = 0 as
—Av = div ((A(y, 5) - 1d)Vv) .
Note that the coefficient matrix satisfies A(0) = A(0) = Id. We denote
F0.9) = (AG. 5) = I)V¥(y, 9).

In [DEK, Proposition 2.7] (or more precisely [DEK, Lemma 2.11]) the authors proved that
a solution to an elliptic operator with Dini-continuous coefficients and which vanishes on an
open set of the boundary satisfies the boundary gradient estimate. Applying it to R? and R¢
respectively, we get

1/1 2
Vv(y, )l < — ( // v dZ) < — sup vl (5.3)
r\rd B,(0) " By:(0)

Combined with the estimate (4.11), we get
S - 6(2r) -
FG 91 < [AQ, ) = 1d] - [V(y, ) § == - sup ] < 620r" T, (5.4)
B(0)
where the constant is just a constant multiple of the constant Cy in the estimate (4.11).

Let £ be a smooth cut-off function, such that 0 < <1, { = 1 on Bg/2(0), { is compactly
supported in Bg(0). Let I'(€) = c4lé [>~? be the fundamental solution of the Laplacian in R4
with d > 3. (The proof for the planar case d = 2 with I'(€) = clog|£] is similar.) In the ball
Br(0) we define

w(Y) = // LY - 2) div(f)(Z) dZ. (5.5)
{IZI<R}

By the divergence theorem, we have

w(Y) = // I(Y - 2) div(f(2) dZ = - // V(Y - 2) - f22) dz
{IZI<R} {1Z|<R}

- // VI(Y - 2) - fL(Z) dZ.
(1ZI<R)

By considering the above integral in the regions {|Z| < 2|Y|} and {2|Y| < |Z| < R}, one can
show it is well-defined, and hence w(Y) is well-defined. Moreover, it satisfies

—Aw(Y) = div(fO)(Y) = —=Aw(Y), for Y € Bg)»(0),
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i.e. v—wis a harmonic function in Bg/»(0). Hence v — w(Y) can be written as the infinite
sum of homogeneous harmonic polynomials. In particular, we have

v—w(Y) = Pi(Y)+ (), (5.6)

where P; is a harmonic polynomial of degree at most N, and the error term y; satisfies
(V)] < C1]Y|V*!, where C; only depends on the radius R and the constant Cy in (4.11).

Next we consider the Taylor expansion of VI'(- — Z) near the origin. Let 8 = (81, - ,84)
denote a d-index. For each k € {0, - - - , N}, we define an R%-valued function as follows

~ Y5
T(Y,2) =) DBVF(—Z)E.
1BI=k
For fixed Z € R?\ {0}, the function fk(-, Z) is a harmonic homogeneous polynomial of degree

k. Besides, since
IDPVI(-2)| < |Z'" P,

we have
. 2)| <z 5.7)
where the constant Cy, depends on k as well as the dimension d.
Let
N ~ =,
py= | SRz i@z (5:8)
{IZI<R} k=0

Since I is not well defined at Z = 0, we first need to justify that the above integral is
well-defined. In fact, for any ¢ € (0, R), let

N
Y) ::// (Y, Z) - f2(Z) dZ.
fs {(KW}; p fZ

By (5.7) and (5.4), we have

()] < kZN; //{5 o 2| |f2)| az

N R
<> Ik / sN K 1o2s) dss
0

=0
1

=

2R

)
< ST IYFRY*02R) + Y / ) 4
P 26 S

>

=]

which is uniformly bounded as § — 0. Moreover, let y = (y1,- -+ ,Y4) be a d-index, such
that |y| = j € {0,1,---, N}. Notice that when we take the Y-derivative of fk, it does not
affect the coefficients which just depend on Z. Then similarly we obtain
N-1 B ~ » 2R H(S)
D7 /5N > [YTRYF92R) + ¥V / ——d
26

k=j

>
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which is also uniformly bounded as 6 — 0. (When j = N the first term on the right hand
side does not appear.) Since f5(Y) is a polynomial of degree at most N, it is completely
determined by DY f5(0) with indices |y| € {0, 1, -, N}. Therefore as 6 — 0 (modulo pass-
ing to a subsequence), the sequence f5(Y) converges to P»(Y) in C{OC(Rd), for any j € N.
Therefore P, is well-defined. Moreover, since f5(Y) is a harmonic function for any ¢ > 0,
the limit function P,(Y) is a harmonic polynomial of degree less than or equal to N.

We will estimate the error

N
YY) := w() = Py(Y) = //“ - (vm ~2)- Y Tu. Z>> ft@dz.  (59)

k=0
For each 7 > 0 we denote

V(T) := sup |v|. (5.10)
B-(0)

By the estimate (4.11), we know that #(t) < 7 whenever 0 < 7 < 2R. Denote r = |Y| < R/2.
We split the integral in (5.9) into three parts:

I:= // VI(Y - 2Z)- fL(Z) dZ,
{1Z|<2r}

N

I = // L(Y.2)- f1(2) dz.
(ZI<2r) kz=0: ¢

N
Il := // <VF(Y -2)- ) Tu, Z)) - FL(2) dZ.
{2r<|ZI<R) =0

By (5.4) and the bound on the fundamental solution I', we can easily estimate
s | ezl
{1ZI<2r)

04
<" san- [ witax
r {IX1<3r}

<S 0(4r) - v(4r) (5.11)
< 0. (5.12)
Combining (5.7) and (5.4), we get

N

DY // f@lz'~"* dz
=0 {1Z|<2r}
N

2r
62
< rk/ rl-d=k. 7( ) -v(27) - lar
k=0 0 T

o /2’ 027) v(27)
0

T ™

4r
< (/ 0(s) ds) N (5.14)
0 S

dr (5.13)
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Lastly, since VI'(-) is smooth away from the origin, on the set {|Z] > 2r} we have the expan-

sion
= vy
VI(Y-2)- Y Tu¥Z)= > DPVI(@Y - Z)F
k=0 IBI=N+1
for some 6 € [0, 1]. Hence by the decay of the fundamental solution, we have
N B N+l
-2-5T _z|\-d-e
V(Y -2)-) TW¥2)|< > oy -2 a1 S ZEw
k=0 BI=N+1

where in the last inequality the constant multiple also depends on N. Therefore

PN
I < —— | f(D)| dZ
< //{2r§|Z|<R} |Z|d+N 7@

R
16
< AV / R
r T

Td+N ’
R _
012 2
. rN+l/ (ZT) Bt NT) dr (5.15)
27r T T
2R
0
<V (r/ —(;) ds) ) (5.16)
4r S
We claim that
2R g(s5)
r/ —st—>0 asr — 0. (5.17)
4r S

In fact, we split into two cases: either fOZR @ ds < +oco (which happens if 6(s) decays faster
than s), or fFZR @ ds — +oco as r — 0+. In the first case,

2R 2R
el 6
r/ (ZS)dsS</ (2s)ds>r—>0 asr — 0;
4r s 0 s

and in the second case, applying 1’Hospital rule we get

2R 0(4r)
el - 64
lim r/ —(;) ds = lim 74]’2 = lim (@r) =0,
r—0+ 4r S r—0+ -2 r—0+ 4

which also proves the claim (5.17). Combining (5.9), (5.12), (5.14), (5.16) and (5.17), we
conclude that

4r 2R
oY) s Y <9(4r) + / @ ds + r/ % ds) = N, (5.18)
0 4

7

with

4r 2R

- 0 0

0(r) = 6(4r) + / 7(;) ds + r/ —g) ds—0 asr—0. (5.19)
0 4r

Finally, combining (5.6) and (5.9), we have the following expansion in Bg/>(0):
v(Y) = Pi(Y) + Po(Y) + 4 (Y) + yn(Y), (5.20)
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where P + P; is a harmonic polynomial of degree less or equal to N, |y (Y)| < C 1N+ and
o (Y)| < CorVO(r). In the special case when 6(s) ~ s* with a € (0, 1), it is easy to see that
9(r) ~ r?. By the estimate (4.11), we know that either P; + P, = 0, or it is nontrivial and
homogeneous of degree exactly N. In the special case when 6(s) ~ s, it is easy to rule out
the first case, as is shown in [Han]. However, the proof is more delicate for general Dini
parameters.

Assume for the sake of contradiction that P; + P, = 0, then (5.20) implies that
v(Y) = ¢ (Y) + oY), (5.21)

where |y (Y)| < CirN*!. Recall that we split ¥»(Y) into three terms I, II, III. Combining
(5.21) and (5.11), (5.13), (5.15), we get

W)l < [T] + [II] + [II] + |1 (V)

2r
< 64r) - 9(4r) + Y / 0(21) v(er) N / 9(2;) V2T e
T 277 T ™
(5.22)

Now let p € (0,R/2) be fixed, and we let Y vary in the annulus B,(0) \ B,/2(0). Then
r=1Y| € [p/2,p), and (5.22) implies

2 627) 7(27) dr+ N / 6(27) v(ZT)
P

dr+Ci Nt (5.23
T ™ 2 e )

W(Y)| < 0(4p)-(4p) +p" /O

Similarly to (5.10), we define

vr):= sup |v, foranyr>0.
B(0)\B:/2(0)
We claim that
W(7) < ¥(7) < W(1). (5.24)

The second equality is simply because of the inclusion B-(0) \ B;2(0) C B-(0). To prove
the first inequality, we note that

(1) = sup (2 *7). (5.25)
keNy
For each k € N, as in the proof of Corollary 4.6 and Lemma 4.4 (applying the same argument
to annulii instead of solid balls), we get
P(27*7)
(1)
To get the exponent Ny, — a in the first inequality, we have used the choice of R in (4.9).
Combined with (5.25), we get

< @M= < 27817 forany 0 < 7 < 2R.

(1) = sup ¥27%1) < ¥(1),
kENo

with a constant depending on @. This finishes the proof of the claim. Applying the doubling
property in Corollary 4.6 and (5.24) to the estimate (5.23), we get

2 = R 5
P 0(21) ‘ v(21\;') dr + ! / 027) v(27)
0

: drt + C N+l
T 72 ™ P

(p) < 6(4p) - v(4p) + PV /0
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% 9(27) . \:/(T/2)dT + M /R 6(27) . (77)5[7- +CpN*!
72 ™
o

<l

< 0(4p) - 5(0) + P /

0 T ™

_ P o4ty Y(r Roor) %
< 9(4p)-17(p)+pN/0 (T ) T(N)deN“/ (7'2 ) %dT+C1pNH. (5.26)
p

We choose R sufficiently small so that
C-02R) < 1/2

where C > 0 denotes the constant in front of the first term in (5.26). This way, we can move
the first term to the left hand side for any p < R/2, and (5.26) becomes

_ P O4T) b Roer)
5(p) spN/ o) V@ 4y +pN+1/ GO YD s (5.27)
0 T T P T T
By setting
(T)
h(r) = —+
(7) "

and dividing both sides of (5.27) by p", we get

R
h(p) < /p 860 - h(t)dt +p/ 9(22T) -h(t)dt + Cp. (5.28)
0 T p T
For every € > 0, let )
ey = MO VO 1,

T+e ™V T+e€
By (4.11), each g(+) is bounded from above (with a constant depending on €):

C C
gE(T)S—N<—N<+oo.
T+E€ €

Let pe := p+ € and 7. := T + €. Dividing both sides of (5.28) by pe and plugging in g.(-),
the inequality becomes

1 [* 04 R .
ge(p) = he) < / 47) - ge(T)TedT + p/ 27) -gE(T)T—dT+ C.
Pe PeJo T pPelp T T

Notice that 7. < p when 7 < p, and
fe,

-
Z . £ <1whent>p.
Pe T

It then follows that

R
ge(0) < /0 ’ M (o + / P20 g + (5.29)
o

R
04
< Cz/ (47) - ge(n)dt + C]
0 T

R
o4
<C sup ge-/ Sopsves (5.30)
0

7€[0,R] T
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where C; is chosen to be the larger constants in front of the first two terms in the right hand
side of (5.29). Since (5.30) holds for any p < R/2, we can take the supremum of p € [0, R/2]
and obtain

R
04
sup g < (2 sup ge'/ ( T)dT+C’1. (5.31)
7€[0,R/2] 7€[0,R] 0 T

For any 7 satisfying R/2 < 7 < R, by the doubling property of v we have
= = (R
o e (3)

TEra TR (B e

8e(1) =

R
=C3-ge <2) <C; sup g
) 7€[0,R/2]

Hence (5.31) can be rewritten as

R
04
sup ge < CrC3 sup  ge / ( T)d‘['+ Ci. (5.32)
7€[0,R/2] 7€[0,R/2] o T
We can choose R sufficiently small so that
R
0(4 1
C2C3/ ( T)dT< =,
0 T 2
and thus (5.32) implies that
sup  ge < 2C] < +oo.
7€[0,R/2]
Since each g, has a uniform upper bound independent of the parameter €, we conclude that
vr) . ,
N T ll_r}(l)ge(T) <2C) < +oo.
In particular
(p)
lim sup < 2C| < +oo.
o0 PN+ 1
On the other hand, by (5.24) and (4.12) we also know
lim sup ‘z)l(\f))l ~ lim sup vl(f)l = lim sup lV(AI,/)'l =
p—0 P * -0 P * Y—0 |Y| *

This is a contradiction. Therefore we have shown that in the expansion (5.20), it is im-
possible that Py + P is trivial, and thus it must be a non-trivial homogeneous harmonic
polynomial of degree exactly N. This finishes the proof of (5.1) with the desired decay.
We remark that if N = Ny, — 1, by the expansion (5.1) it is impossible that
sup [v| < V%™,
B,(0)

as is shown in (4.10). Therefore we must have that the degree N is exactly Nx,, and in
particular

W(Y)| < CylY[Mo  for any Y € Bg>(0), (5.33)
and
lim su 7IV(Y)| =
Y—>0p |Y|NX0+1
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6. GRADIENT ESTIMATE FOR THE ERROR TERM

In this section we estimate the gradient of the error term . We first remark that ¢ also
satisfies

¥ = 0 on Bg(0) N dRY.

Since v vanishes on the boundary, it suffices to show that Py vanishes as well on 8Rﬁf. If not,
since Py is a homogeneous function, there exists a unit vector € € BR‘J{ such that Py (&) # 0.
Moreover,

Pn(ré) = r"Py(@) forany r > 0. 6.1)
On the other hand, by the estimate (5.2) we have
W (rd)| < CCyrocr).
Hence for any 0 < r < R/2 we always have
|Pn(rd)| = |v - y(rd)| = [u(ré)| < 'V o). (6.2)

Combining (6.1), (6.2) and letting r — 0, we get Py(é) = 0, which is a contradiction.
Therefore Py = 0 on (')R‘i, and hence ¢ = 0 on (')R‘i N Br(0).

Since v satisfies — div(A(-)Vv) = 0 and Py is a harmonic function, we have

—div(A()VY) = —div(A(-)V(v — Py)) = —div(A()Vv) + APy + div((A(-) — Id)VPy)
= div((A(-) = Id)VPy).

That is to say, the error term ¢ satisfies

{ —div(A()Vy) = divg, in Bj(0) := Br(0) N R

¥ =0, on Bg(0) N oRY (©6.3)

where g is defined by
§(2) = (A(2) - 1) VPN(2)

in the upper half space. Notice that when N = 1, Py must be a linear function and thus VPy
is a constant vector; when N > 2, VPy is (at least) Lipschitz continuous. In both cases, it
follows that g is Dini continuous. Recall that the coefficient matrix A(-) in the equation (6.3)
is also Dini continuous in the upper half space. We will use the arguments in [DEK, Section
2] (more precisely, [DEK, Lemma 2.11]) to estimate Vi.

Let r € (0,R/6) be fixed, and denote ¥,(Y) := ¢(rY) in By (0). Then it satisfies the
rescaled equation
—div(A,()y,) = divg,, in B3(0)
Y, =0, on B,(0) N dR?
where we denote
A(Y) = A(rY), g.(Y):=rg(rY). (6.4)
For each Y € B{(0) and 0 < ¢ < 2, we denote
wa (D)= sup IA(Y)-AM= sup |AZ)-AQ)

vy’ EB; 0) z’ ,ZeBgr(O)
Y/ -Y|<t 2! -Z)<tr

bl
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and
wg ()= sup |g(Y) =g =r sup [0Y)-guY)|.
y,y'eB;(O) y,y'eB;(O)
1Y -Y|<t Y’ -Y|<t
Since the modulus of continuity of A(-) is bounded above by 6(2-) (by (4.2)), it follows that
wa, (1) < 02tr). (6.5)

On the other hand, since Py is a homogeneous harmonic polynomial of degree N, its de-
rivative of any order is uniformly bounded in B3 (0) by a constant multiple of ||Py/||ze B} (0))-
Moreover,

|8(rY") = g0rY)| < [(AGrY) = 1d)(VPN(rY') = VPN (rY))| + [(A(rY') = A(rY))V Py (rY)|
< 02rY')) - PN VPN Y) = VPN(Y)| + 0Q2rY = Y]) - PN VPN (D)
sV odn - Y - Y+ A ey - Y),
where the constant depends on ||Pyl| LB} (0)- Hence
wg, () < N O@r) -t + V- 02tr). (6.6)

In particular wg, (+) is Dini continuous. Therefore [DEK, Lemma 2.11] implies that for any
Y € B{(0),
0

VY (D] < IVl ss o)) + /0 dt, (6.7)

where the constant depends on d, the ellipticity constants and w,4,, which we have shown
in (6.5) to be uniformly bounded. Moreover, following the notation in [DEK], @.(?) is
determined by w,.(?) as follows: let 5 € (0, 1), we define

Out) = Wa(t) + wa(d1) + Wi (41),* 6.8)
with
I\B
Wh(r) == sup (7) wa(5). (6.9)
h)

selt1]
It is also proven in [DEK] that if w,.(-) satisfies (2.1) and is doubling (i.e. (2.4)), then
wﬁ.(-) also verifies (2.1). By the above definitions (6.8) and (6.9), it is not hard to see if
w(t) < Q{w1(t) + Apwa (1), then O(F) < A w1(1) + 1207 (f). Besides, when w,(?) is taken to be
6(2tr), we have that

B B
Wh(t) = sup (;)ﬂH(er): sup <2”> 0(s) < sup (i”) o(s') = 6 2tr),

selr1] sear2r \ S s’e[2tr.R)
where, as in (6.9), we define
(1) := sup (5>ﬁ 0(s) (6.10)
se[t,R] NS
Hence
Qu(t) = 021r) + O(8tr) + w*(41) < 20(8tr) + 6°(8tr).

*In [DEK] they need the additional parameter @, (-) because they work with Dini continuous functions in the
average sense, i.e. functions with Dini-mean oscillation. When one works with uniform Dini function, which is
our case here, @, (-) can be simply taken the same as w.(-).
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When w,(?) is taken to be ¢, we have that
Qo) =t + 41 + Wh(4r) < .
Therefore (6.6) implies that

g (1) < Noar) £+ Y - [6(8”) + Gﬁ(8tr)} ,

% A 4r 4r ft
/ Lg’(t)dt < rVo@r) + V- [/ @ds + / 4 (s)ds] . (6.11)
o I o S o

On the other hand, by Hoélder’s inequality and the energy estimate with vanishing bound-
ary data (see, for example, [CK, Lemma 1 41]) we have

// IV, ldY < // IV, |2dY < // W 2dY + // g 1>dY
B}(0) B}(0) B3(0) B3(0)

< sup Y|+ r- sup |g]

and thus

12

B3,(0) B3,(0)
< ™No@3r), (6.12)
where we recall 8(-) is defined in (5.19). Inserting (6.11) and (6.12) back into (6.7), we
obtain,
Vi (Y)l < IV ldY + | ———dt
B (0) o !
4r 4r pft
- 0 0
< NoGr + Nodr) + N - [/ st + / (S)ds] .
0 S 0 S
Or equivalently,
4r 4r off
~ 0 o
wairre i eaan s [* % [7F0u.
0 S 0 S
Finally, let
4r 4r ot
o ~ &l 0
6(r) := 6(3r) + 6(4r) + / st + / (S)ds, (6.13)
0 S 0 S

where we recall Hﬁ(~) is defined in (6.10) and it verifies the Dini condition (2.2). We conclude
that

IVy(Y) < ClYIY'é(Y))  forany Y € Bj6(0), (6.14)
where
0(r) —» 0as r — 0.
We remark that exactly the same proof as above yields the gradient estimate of V¢ on the

lower half space. Moreover Viy = Vv — VP is continuous up to the boundary from above
and below, by [DEK, Proposition 2.7]. Therefore (6.14) holds in the entire ball Bg/(0).
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7. ProoOF OF THEOREM 1.1 AND COROLLARY 1.7

Now we are ready to prove the expansion of u by the expansion (5.1) for v which is proven
in the previous section. By the definition of v in Section 4, we have

u(x, 1) = v(x, 1 — (x)) = Pn(x, 1 = @(x)) + Y(x, 1 = @(x)). (7.1)

Let r = |(x, 1)|, then |p(x)| < 6(2r)r. Hence for r sufficiently small, we have

"t - gl <

2 2
By the error estimate (5.2), we have
W(x, t = @(x))] < C'Cnr8(2r). (7.2)
On the other hand
1
Pn(t, x — o(x)) = Py(x, 1) — @(x) - / 04Pn(x,t — To(x))dT. (7.3)
0

By (5.1), (5.33) and (5.2), we can estimate

1 // 9 1 // 9 1 2 1 9
— |Py|*dX = — v —yldX < — vidX + — YrdX
rd B, (0) r By (0) r By, (0) rd B, (0)

< C3r*N 4+ C3rPNa2r)?
S C,zerN ,

with a uniform constant (which only depends on the dimension d and the ellipticity). (The
r*N_decay clearly just follows from the homogeneity of Py. But here we want to emphasize
how the constant in front depends on the constant C from (4.11).) Since Py is a harmonic
function in R, we have

1/2
1 /1
sup |VPN|s(d /l |PN|2dX) <. (7.4)
By (0) P\ JJ By (0)

Moreover,
1 _
IV2PyllzeB,) < SIPILs,) < CyrV 2. (7.5)

Therefore

1
‘(p(x)- / AaPN(x,t — T@(x))dT| < sup |VPy|- o) < Cyr ™' - r0Q2r) = CarVo2r).
0

B3, (0)
2

Combined with (7.1), (7.2) and (7.3), we conclude that in Bg/3(0), u has the expansion
u(x, 1) = Py(x, 1) + J(x, 1), (7.6)
where the error term

1
U(x, 1) = Ylx,t — p(x)) — (x) - /0 9aPn(x, 1 = T(x))dT

satisfies
W (x, 1)l < CCxl(x, DINOQ2I(x, D))
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(For our purpose, the expansion (7.6) is meaningful only inside Bg/3(0) N D, i.e. when
t > ¢(x), but the expansion holds in the entire ball if we consider an extension of u across
the boundary by the odd reflection of v in (4.3) and the transformation as in (7.1).) Moreover,
by the gradient estimates in (6.14) and (7.5), we have

Vi (x, )| < CCplCx, DN 2I(x, D))

Recall that for any Xy = (xo,¢(xp)) € dD, we can apply a translation and orthogonal
transformation O,, as in Section 3 so that X, becomes the origin and the tangent plane to
0D at X is flat (i.e. Vo(xg) = 0). Taking into account the orthogonal transformation, we in
fact get

u(x,1) = Py (O, ((x,1) = X0)) + & (Ox, ((x,1) = Xo))
= Py((x.1) = Xo) + ¥((x, 1) = Xo),

where Py is still a non-trivial homogeneous harmonic polynomial of degree N = Nx,. For
simplicity we still denote it as Py, and simply write

u(x, 1) = Py((x,1) — Xo) + ¥((x,1) — Xp),  in Bg3(Xo) N D. .7

In order to prove the uniqueness of the expansion, we assume that u has two such expan-
sions
u(X) = Py(X = Xo) + (X — Xo)
and
u(X) = Py(X = Xo) + /(X = Xo),
such that
M) < CIYNaYD, ()] < ColY Ve Y. (7.8)
Notice that the degree of the homogeneous harmonic polynomial is uniquely determined by
Ny, . It follows that

Py(Y) = Py(Y) =/ (Y) = §(Y)  for Y € Bgs3(0).
Let Py := Py — P)y. Then it is also a homogeneous harmonic polynomial of degree N.

Assuming that Py # 0, then there exists a unit vector & € S9! such that Py(e) # 0. In
particular Py (r@) = r¥ Py(e) # 0. On the other hand by the estimates (7.8), we have

|Pn(rd)| = |0/ (rd) = §(rd)| < (C1 + C)No(r).
Hence it follows that
|Pn(@)| < (C1+C2)B(r) -0 asr— 0,

which contradicts the assumption that Py (&) # 0. Therefore it must be the case that Py = 0.
As aresult Py = P) and =/, i.e. the expansion is unique. This finishes the proof of
Theorem 1.1.

Now we set out to prove Corollary 1.7, or more precisely, prove (1.8). Denote Xy =
(x0, ¢(x0)). We recall that Tx, ,u is defined in the domain %, which is the region above
the graph of the function

. w(xo +ry) — so(xO).
r

@,y e R!
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D-Xy
r

Assuming without loss of generality that Vip(xg) = 0, we have that converges to the

D-X,

upper half space RY. Moreover, the Lebesgue measure of the set difference between r

and R? can be estimated as
D - X
‘Bl(O) N ( ; OA Rif)

Since Py is homogeneous of degree N, we have

1
= // |PnJ? dY = // \Pn(rZ)? dZ = r*N . // |PyI? dZ. (7.10)
™ JJBrO) B} (0) B (0)

Combined with the estimate of i, we have

1 |Py(Y) + :,Z(Y)|2 ay = - |PyI> dY + O (r*NE(r)) . (7.11)
s r /B 0)

< / o0y < sup Ve — VoGl < 6. (1.9)
B0 Bd=1(xp)

By a change of variable, the pointwise bounds of Py,  and the estimate (7.9), we have

1 - 1 -
d// |Py(Y) + 30| dY - rd// |Pv(Y) + 3| dY
= JJ B(0)n(D-Xo) Bt (0)
< // |PNGZ) + 3 2) | dZ
Bion(Z0ary)
< sup (1Pl +171) - |Bi(0) (D_XOARi’)‘
B,(0) r

< Vo). (7.12)

Therefore by combining (7.12), (7.11) and (7.10), we conclude

G war-gf [Par) + 0| ay
= JJ B.(Xo)nD rd B,(0)N(D-Xo)
_ 1 // IPyn + U12dY + 02N o(r))
r )]s o)
-1 // |PyI* aY + 0 (PVa(r))
™} o)

_ ,,14// Py dY - (1+ 0@(r))) .
B(0)

Hence
u(Xo + rZ)

(5 fyeio1PHE dY) - (1 + 0@

__ PNGD) + 962 (1 + 0G(r)

(% ffB,f(O) Pyl dY) 2

TXo,r”(Z) =
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] PUD L 6z).0 <’}N) (1+ 0@(r))

(% Hpz0)1PwE dY) 2
= cPN(Z) + O(@(r)),

c= // |PyldzZ )
B (0)

This finishes the proof of the claim (1.8).

where

=

8. Proor or ProrosiTION 1.9

We denote X; = (x;, ¢(x;)) for each j € Ny. Recall that in Section 3 we find an orthogonal
transformation Oy, which locally maps the domain D — X to a domain Dy, defined as the
region above the graph of a function .. Under this transformation, the harmonic function u
in D becomes a harmonic function & in D,;: for any Y € Dy, sufficiently close to the origin,
we have

i(Y) == u(X; + 0L Y). 8.1
Recall that in Section 4, we were able to study the harmonic function i using the flattening
map
Oy, (1,9) € RY b (0, 5+ @x,(0) € Dy,

and
vy, s) = i o Dy,(y, $). (8.2)
Combining (8.1) and (8.2), we get a function v; : Rﬂ — R defined as
V04 8) = 005 + 50 = u (X + OF 05+ 1,0)) (8.3)

To study how the functions v;’s are related, we need to study how the map O,; and @,
depend on the sub-index x;.

Recall that for any (x, ¢(x)) € 0D, the orthogonal matrix Oy is explicitly determined by
Vp(x), as in (3.5), where c, satisfies ¢, = (1 + IVgo(x)Iz)‘% and the block matrix O, is sym-
metric, positive semi-definite and satisfies O s the square root of Idy_; +Ve(x)Ve(x) .

Hence

X

lex = x| < |V = [Vo()I| < [Ve(x) = Ve(x)| < 0(1x - x'|); (8.4

and the block matrices O;! and O/ satisfy the assumptions of Lemma 2.18. Therefore we
have that

0= 0vl | ((©))" = (G07)
= |V )Ve(x) = Ve(x) Vo) |
< V()] - [Vo(x)T = Vep(x)| + [Ve(x) = V()| - [Ve(x) ]|

< Ve(x') = Vo(x)|
< 0(|x = X')). (8.5)
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Combining (3.5), (8.4) and (8.5), we get
|Ox — Ox| < 6(1x = X']). (8.6)
On the other hand, the map ¢ is defined as in (3.9), where the function g is defined as in
(3.6): that is, for any (x, ¢(x)) € dD
gx 1 Z€ R 5 04z = 1) — (9(2) = 9(0))0.Vep(x) = y e R
It follows that
2:(2) = gr (@) = O, [(¥' = 1) + ¢(2) (Ve(x') = Vep(x)) + (#(x) = (x)) Vep(x)
+ @(x) (Vo(x) = Vo(x))] + (0x = Ox) [ — ') + ((x') — 9(2)) Veo(x)] .
Hence by (8.5), we get
llgx — gx’”Loo(Btlf-l(())) < 0(x — x')).
Similarly by (3.7), we obtain
IDgy — Dgx’”Loo(Bfflfl(o)) < |Ox - O~x’| + |O~XV(/7(X) - O~x’V‘P(x,)| < O(lx - x,l)-
In the same fashion (and using (3.14)), we conclude that

1Py — ¢x’||Lw(3611721(0)) S O(x - xll)y A\ V¢x’|le(3111721(0)) S O(|x— x’l)- (8.7)

Recall that u is continuously differentiable near the boundary of the Dini domain (by the
work of [DEK]). Therefore combining (8.3), (8.6), (8.7) and X; — Xy, we conclude that
v; = vo (locally uniformly) in C I_topology.

Let N = Ny, = Nx/. € N. By Section 5, each v; has the expansion
vi(Y) = Pi(Y)+y;(Y)

in some ball Bg,(0), where P; is a non-trivial homogeneous harmonic polynomial of degree
N, and the error term y; satisfies |y ;(Y)| < C j|Y|N a(|Y)). By the proof in Section 7, it suffices
to show that P; converges to Py in the CN-topology. By the definitions of w jand Pj5in (5.5)
and (5.8), respectively, and Vv; — Vv locally uniformly”, we get that

wj = wo, Pja— Pop

uniformly. On the other hand, since v; — v¢ uniformly, the harmonic functions v; — w; also
converge uniformly to vog — wg. By the expansions of these harmonic functions to degree N
as in (5.6), the polynomials P;; also converge uniformly to Py ;. Thus

Pj = Pj,l +Pj’2 — P(),l +P0’2 = Py
locally uniformly. Since P, Py are homogeneous harmonic polynomials of the same degree

N, they also converge in CV-topology. This finishes the proof of Proposition 1.9.

*In fact, it suffices to know that Vv; — Vv, weakly in L? for some p > d.
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APPENDIX. PROOF OF UPPER SEMI-CONTINUITY OF THE VANISHING ORDER

The goal of this appendix is to prove the upper semi-continuity of the vanishing order.
Lemma A.8. Let D and u be as in Theorem 1.1. The map
X € D N Bg,(0) —» Nx € N
is upper semi-continuous. That is,

limsup Nx < Ny,.
XedDNBg (0)
X—)X()

Recall that in [KZ, Section 4], we define the modified frequency functions at different
boundary points by applying different transformation maps. To compare them, we need
to understand what the modified frequency function at each boundary point means in the
original domain D.

Lemma A.9. Let D and u be as in Theorem 1.1. For any X € D N Byg,(0) and r > 0 small
(so that 6(4r) < 1/26), we have

N(uo Wy, r) = [1 + O@@4r)] - N(u, X + 3rf(r)eq, ), (A.10)

where Wy and 0 are defined in (2.6) and (2.7), respectively; N(u, Y, r) denotes the standard
Almgren’s frequency function of u centered at Y € D and at scale r, see (2.5); and N(u o

Wy, r) denotes the frequency function for an elliptic equation (satisfied by u o Wx) in the
domain ‘I’}}l (D), see [KZ, Section 3].

Remark A.11. The formula (A.10) is related to an observation pointed out in [KN]: the Dini
domain is star-shaped near the boundary. To be more precise, let X € dD and r > 0 be
sufficiently small. Then the domain D N B,(X) is star-shaped with respect to some Y, € D.
(See the proof of [KN, Lemma 3.2].)

Proof. Recall that in [KZ, (3.8)], we define

Do Wy, r) = // V(o ¥x)I; dVy = // \Vul?> dZ =: D(X, r);
B,NQx Yx(B,)ND

and
HuoWen = [ o ? dVan = [ oWy dHt!
0B,NQx dOB,NQx
= (1 + 0(6(4r))) u? dH!
Yx (0B, )ND

= (1 + 06(4r)) HX, 1),

where we introduce the notation
HX,r) := / u? dH.
Wy (8B, )ND

Let
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then the frequency function satisfies

rD(uo¥x,r) rD(X,r) _ N
Hwo By, n) — (10O 222 = (14 0GUN) N, ). (A-12)

’

N(uoY¥x,r) =

By the definition of Wy in (2.6), it is clear that it can be written as X + ¥(-) for a map ¥
independent of X € dD. Besides, we have

¥(0B,) = 0B, + 3r8(r)eq = OB, (3rd(r)es).
To understand what the set 0'W(B,) is, we first study the set W(B,). Clearly
¥ = | w68, = | 9B, (3pb(p)ea) .

p€El0,r) p€[0,r)
Consider the function

fipel0,r) - —p+3p6(p),
which corresponds to the height of the lowest point of the (shifted) ball ﬁBp(3p9(p)ed).
Simple computation shows that f is a continuous function, and

3 /2P 0(2s) — 6(s)
3 ds
og=2 Jp s

() = =1 +38(p) + 3pF (p) = =1 + 30(p) + 1

3
< —1+36(4p) + ——06(4p)
log2
< -1+ 13 6(4r).
By choosing r sufficiently small so that 6(4r) < 1/26, we can guarantee that f is decreasing.
In particular, this implies that the balls ¥(dB,) = 4B, (3p9(p)ed) with p € [0, r) are nested,
ie.
B,(3pb(p)ea) € By (3p'0(p")ea), ifp<p’.
In fact, let Y € Bp(3p9(p)ed) be arbitrary. Then
¥ = 30'8(0")eal < 1Y = 3pblp)eal + (30'6(0") — 3pb(p))
<p+ [ +p" = (fp)+p)
=p" +(f(e") - flo)

<p.
Hence Y € Bp/(3p’9(p’)ed). Moreover by the intermediate value theorem f(p) assumes all
the values between lim,,_,,_ f(p) = —r + 3rf(r) and lim, o, f(0) = 0. Therefore we have
that

¥(B,) = B,(3rf(r)ey),
and

A¥(B,) = 0B,(3rB(r)eg) = Y(OB,). (A.13)
Therefore

HX,r) = / w? dH = / u? dH,
Yx(dB,)ND OB (X+3r0(res)ND
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DX, r) = // \Vul> dZ = // \Vul? dZ,
¥y (B,)ND B (X+3r0(r)eg)
and the proof is finished. O
Recall in [KZ, Proposition 3.10], we have shown that
" 0(s)
r—= Nx(r):=N@uo¥y,r)exp | C —ds (A.14)
0 N
is monotone nondecreasing. Since Ny, = lim,_,o Nx,(r), for r sufficiently small we have
1
Nx,(r) < Nx, + 5 (A.15)
By Lemma A.9 and (A.14), we have

Nx,(r) = N(u o ¥x,, r) exp <C /r e(ss)ds>
0

= [1 + OB@r)N (u, Xo + 3rf(r)eq, ) exp (C / r e(ss)ds) : (A.16)
0

Let r be sufficiently small, so that

Ny, + +
o(4r) s —2 "2,
NXO + 35

Then by (A.15) and (A.16) we get
N " 0(s) 1
N (u, Xo + 3rf(r)eq,r)exp (C | —=ds | < Ny, + 7 (A.17)
0 N
Suppose X s Xo € D satisfy X = Xo. Then the standard Almgren’s frequency function (see

(2.5)) satisfies
N(u,f(j,r) — N(u,f(o, r) asj— oo.

X — // \Vul>dY
B(X)

is continuous since u € W'2. By a change of variable, it is also easy to see the map

In fact, clearly the map

X — u2 d?_{d—l
B.(X)

is differentiable (and strictly positive for non-trivial harmonic function u). Therefore

r ) IVUPdY 1 [ g, IVuPay
H
o,y w2 dHET [ g0 dHE!

Nw,X;,r) = = N(u, Xo, r).

In particular, this combined with (A.17) and X; — X, gives

N r 1
N (u, X+ 3rf(r)eq, r) exp <C/ 9<s)ds> < Ny, + 3’ (A.18)
0 N
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for j sufficiently large. Again by Lemma A.9 and by taking r sufficiently small, we have
A "6 1
Nx,(r) = [1 + OO@&)IN (u, X + 3rf(r)eq, r) exp (c / (s)ds) < Ny, + 3
0 N
By the monotonicity of the frequency function r — Nx,(r), we finally conclude that

1
NXj < NXj(r) < Ny, + 5

Since Ny take integer values, this implies N x; < Nx,. This finishes the proof of Lemma A.8.
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