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How cells regulate their cell cycles is a central question for cell biology.
Models of cell size homeostasis have been proposed for bacteria,
archaea, yeast, plant and mammalian cells. New experiments bring
forth high volumes of data suitable for testing existing models of
cell size regulation and proposing new mechanisms. In this paper,
we use conditional independence tests in conjunction with data of
cell size at key cell cycle events (birth, initiation of DNA replication
and constriction) in the model bacterium Escherichia coli to select
between the competing cell cycle models. We find that in all growth
conditions that we study the division event is controlled by the onset
of constriction at mid-cell. In slow growth, we corroborate a model
where replication-related processes control the onset of constriction
at mid-cell. In faster growth, we find that the onset of constriction is
affected by additional cues beyond DNA replication. Finally, we also
find evidence for the presence of additional cues triggering initiations
apart from the conventional notion where the mother cells solely
determine the initiation event in the daughter cells via an adder per
origin model. The use of conditional independence tests are a novel
approach in the context of understanding cell cycle regulation and
it can be used in future studies to further explore the causal links
between cell events.

Conditional independence | Cell cycle | Escherichia coli

C ell size is regulated across all forms of life. The advent of
single-cell experiments has advanced our understanding
of these regulatory mechanisms over the past decade (1-3).
Single cells growing in microfluidic channels when combined
with fluorescence microscopy can be used to track the size and
the timing of cell-cycle events such as birth, DNA replication
initiation, termination, septum formation and division (4-10).
Existing models of cell-cycle regulation can be tested against
the high-throughput data obtained from these experiments
and the data can be used to hypothesize new models.
Previous studies have proposed cell cycle models where
cells are assumed to initiate a round of DNA replication upon
adding a constant size per origin, on average, from the previous
initiation (8, 9, 11-13). This model of replication initiation
control, referred to as “adder per origin”, predicts that the
size added per origin between successive initiations of DNA
replication is uncorrelated with the size at initiation for single-
cells which has been observed experimentally (8, 9).
However, the proposed cell cycle models differ in how the
division event is controlled by the DNA replication process
(8,9, 11, 12, 14). Cooper and Helmstetter proposed that cell
division follows the initiation of DNA replication after a con-
stant time has elapsed (14) (we will refer to this as the CH
model). Within this model, this constant time is the sum of
the time taken for DNA replication (the C period) and the

time from termination of DNA replication to division (the D
period), see Figure 1. In the parallel adder model proposed for
Mycobacterium smegmatis, cell division occurs after the cell
has increased by a constant size per origin from replication
initiation (15). This model was later proposed for E. coli,
where it was referred to as “double adder” (9). We will use the
term, parallel adder (PA), in this paper to describe two adders
working in parallel (initiation to initiation and initiation to
division). In both CH and PA models, division is controlled
solely by the replication initiation event. A competing model
suggests that division happens independently of the DNA repli-
cation process (8). In this model, the division is controlled by
accumulation of a key protein to a threshold level, starting
from cell birth. A middle ground is the concurrent processes
model where division is controlled by a combination of cues,
some of which originate from cell birth and others from the ini-
tiation of DNA replication (13, 16, 17). Identifying the correct
statistical analysis method and model has been contentious.

Much of the support for the models hypothesized above
comes from absence or presence of correlations between two
variables describing cell cycle. Recent studies have found
different models described above to be consistent with the
same data using the same analysis method (18-20). There is
a lack of consensus on the use of a statistical method to study
cell cycle regulation which leads to a lack of consensus on the
underlying cell cycle model. To address this, we will go beyond
two-variable correlations in this paper and use concepts of
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causal inference relying on conditional correlations involving
more than two variables to study causal statements.

While causal inference is widely used in epidemiology, soci-
ology, economics, and computer science (21), it has not been
utilized previously in testing cell cycle models. Specifically,
we study the relation between replication and the onset of
constriction and find that in the slowest growth conditions,
replication is the limiting factor controlling the onset of con-
striction, but in faster growth conditions additional regulatory
cues need to be invoked to explain the data. Furthermore, we
find that the onset of constriction directly leads to division
without the involvement of any additional regulatory mecha-
nisms that retain the memory of birth size. Finally, the data
suggest that replication initiation in the mother cell is not the
sole factor controlling the initiation in the daughter cell, as was
suggested previously (8, 9, 11-13). While the casual inference
methodology we are using is agnostic to the details of the un-
derlying molecular mechanisms, it allows us to gain important
insights on the possible regulatory network architecture and
narrow down the potential biological pathways.

Results

Replication control on division is growth rate dependent. To
investigate how the cell cycle events are controlled in E. col,
we used data from recent experiments in 6 different growth
media (10). These data have been collected at slow (average
number of origins at birth ~ 1) and moderately fast growth
rates (average number of origins at birth > 1). The experi-
ments were conducted at 28°C where the growth rates were
about twice as slow as that in 37°C (22). The data contains

the timings of cell cycle events such as birth, initiation of
DNA replication, termination, start of septum formation and
division for hundreds of cell cycles and the corresponding cell
lengths for those events.

Previous works have considered correlations between cell
cycle variables such as the size at birth (L) and size at division
(Lq) to infer cell cycle models (2). Using linear regression, we
show the best linear fit between L; and L4 for a fast growth
condition in Figure 2A and a slow growth condition in Figure
2B. For cells growing in fast growth conditions (Figure 2A),
the underlying equation is close to Lq = Ly + AL and cells
are assumed to be following an adder model where cells divide
on addition of constant size from birth (5, 8, 9). In slower
growth conditions, the cells have been shown to follow a near-
adder (Figure 2B and Ref (6)). Ref (23) provided a general
framework to infer the cell cycle regulation strategy from L4 vs
Ly plots. In this model, a cell born at size L; divides at size Lg
by employing a regulatory mechanism f (L) (a deterministic
element), to which noise is added. Mathematically, for the case
of size-additive noise this corresponds to the equation L4 =
f(Ly)+n, where 7 is the noise in division size independent of Lj.
This is an example of a structural causal model (SCM), widely
used in causal inference (24). The SCMs can be visualized
using directed acyclic graphs. The nodes in the graph are
connected via directed edges with the direction of the arrows
going from cause (variables on right side of the SCM) to
effect (variable on left side of the SCM). Each node in the
graph represents a variable which may either correspond to
an observable quantity obtained in the experiments or to an
unobserved variable. In the graphs that we will study in the
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paper, the nodes will correspond to cell lengths at cell cycle
events (see Section S2 in SI text for an explanation as to why
using lengths is advantageous compared to using the timing
of the events). In the graphs, the absence of an edge between
two nodes shows that there is no direct causal effect between
the two variables. In the case of cell cycle regulation models,
the SCMs and the graphs are independent of the nature of
noise, and so will be our conclusions. The latter can be either
size or time additive (25).

The linear relation between L, and Ly can also be explained
by other cell cycle models such as the CH and PA models. Next,
we construct causal graphs for these E. coli cell-cycle models.
In the CH and PA models, initiation of DNA replication
controls when division happens. In slow-growth conditions
where the number of origins at birth is 1, initiation and division
occur in the same cell cycle (Figure 1A). However, in the
faster-growth conditions used in the experiments, replication
initiation could start in the mother cell and the number of
origins at birth is 2 (Figure 1B). Mathematically, the size
at division is determined by Lq = 2(L; + Asq) + n for the
PA model, where L; is the initiation size per origin number
taken right after initiation, A4 is the size per origin added
between initiation and division and 7 is a size additive noise. In
the CH model where cells are undergoing exponential growth
with growth rate A, Lqg = 2L;eM“tP) 4 5, where 7 is a
size additive noise. This is shown as an arrow from L; to Ly
(Figure 3A). In these models, initiation size L; = % +¢,
where L;_; is the previous initiation size per origin, A;; is
the size per origin added between the consecutive initiations
and ¢ is a size additive noise. This is shown as an arrow from
L;—1 to L; in Figure 3A. The previous initiation event (L;—1)
also controls the division event in the mother cell (Lq—1) or
equivalently the birth event of the current cell cycle (arrow
from L;_1 to Lp). L;—1 is a confounder which means that it
is a common cause of two events, in this case, L, and L;. In
a second class of models referred to as “concurrent processes”
(13, 16, 17), the division size is determined by the slowest of two
processes- 1. constant size addition from birth (adder) at fixed
growth rate 2. a time C+D from initiation of DNA replication
(where each of the two processes is also subject to noise).
The corresponding SCM for exponentially growing cells with
growth rate X is Lq = maz(Ly + Apy + 0y, Lie)‘(C/+Dl+5,C+D))
and it is represented by arrows from L; to Lq and L; to Lg,
in the graph shown in Figure 3B. Ly is a common effect of
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Fig. 2. Correlation between birth and division: A-B. L, vs L; graphs are
plotted for data from Ref (10) in A. Glucose-cas medium (generation time ((T4))
=70 min, N = 409 cells). The best linear fit has a slope = 1.08 (0.97, 1.19). B.
Acetate medium (generation time ((7%;)) = 660 min, N = 401 cells). The best linear
fit has a slope = 0.77 (0.65, 0.89). The numbers in the parenthesis here represent
the 95% confidence interval. In Figures 2A-2B, the blue dots represent the raw
data, the red dots the binned data and the yellow line the best linear fit.

Ly and L; and in this case, Lq is said to be a collider. Note
that the measured average C+D period will be determined
by the competition between the two processes, and therefore
could be different than C’ + D’. Similarly, the measured
average size added between birth and division will be different
than Aj,. In the concurrent processes model’s SCM, §&;, and
3¢, p are the noise terms in Ay; and C’ + D', respectively.
The noise terms are independent of each other and are also
uncorrelated with Ly and L;. Similar to CH and PA models,
birth (Lp) and initiation (L;) are associated by a common
cause, the initiation in the previous cell cycle (L;—1) (Figure
3B). Note that the birth event in previous cell cycle (Ly—1)
also controls the division event in mother cell (Lq—1) according
to the concurrent process model and hence, it controls birth
in current cell cycle (Ly). We do not show the Ly_1 to Ls
causal link here as the omission of the link will have no effect
on our analysis. For complete causal diagrams, see Section
S3 in the SI text. A third model, the independent adder (IA)
model is also shown in Figure 3C where the division length
is solely controlled by the birth length (arrow from L; to
Lq) independently of the initiation length (7, 8, 26). The
initiation is controlled by the previous initiation as in the
CH, PA and concurrent processes models (arrow from L;_1 to
L;). Importantly, the links between L; and L, and L; and
L4 are absent as initiation is independently controlled from
division. Directed acyclic graphs (DAGs) such as the ones
shown in Figures 3A-3C can be used to determine correlations
and conditional correlations.

Correlations and conditional correlations are determined
from the DAGs using a set of rules known as d-separation
(21). These rules will be briefly explained below. In graph
3A, since L; controls Ly, they will be correlated. L, and L;
are correlated via the confounder, L;_1. Only under specific
conditions where the effects of the two links cancel each other,
Ly and L; will be uncorrelated. Directed acyclic graphs encode
information beyond two-variable correlations, namely, condi-
tional independencies (CI). Conditional correlation r(Lsy, Lqg
|L;) means finding the correlation between two variables, Ly
and L4 upon fixing the value of a third variable, L;. In graph
3A, Ly and L4 are uncorrelated upon fixing the value of L;
and the path between L, and Ly is then closed (in contrast, a
path connecting two variables and leading to their correlations
is defined as open, for example, the path between L; and Ly
without conditioning in graph 3A). In graph 3B, the collider
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L4 blocks the path between L, and L; and the path between
Ly and L; via Lg is closed. The path opens upon conditioning
on a collider or any descendant of a collider: for instance,
in graph 3B upon conditioning on the variable Lg4, the path
between L, and L; via Lg will be open. To summarize, a path
is closed if a non-collider in the path is conditioned upon or if
a collider and its descendants are not conditioned on. In the
case of multiple paths between two variables, the variables are
uncorrelated if all the paths between those variables are closed
(Section S1 in SI text). In this paper, we will go beyond the
previously used methodology of using two variable correlations
(Figures 2A-2B) and use CI tests to select cell cycle models.

The model corresponding to graph 3C (IA model) predicts
that L; will be uncorrelated with L and Ly (prediction shown
below the graph in panel 3C), as initiation is not linked to
either birth or division. We find using experimental data
that the Pearson correlation coefficients between L; and L;
(r(Ls, Li)), and L; and Lg (r(L;, Lq)) are non-zero in all six
measured growth conditions (Table S1). Note that we have
excluded the two fastest growth conditions from (10) because
of incomplete tracking of DNA replication initiation in these
data sets. The result rules out TA model as a viable model
for cell cycle regulation, as was previously argued in Ref (9).
In contrast, both models shown in graphs 3A and 3B predict
that L; will be correlated with L, and Lg. Thus, we have
to go beyond two variable correlations and use CI tests to
distinguish between the two graphs.

To distinguish the models in graph 3A and 3B, we will
condition on the initiation length, L;, and calculate the con-
ditional correlation (r(Ly, L4|L;)) between Ly and Lgq. We
predict using d-separation that L, and Lg4 are uncorrelated
on fixing L; in graph 3A. However, they are predicted to be
correlated in graph 3B as there is a direct causal link between
Ly and Lg. We validated the method using synthetic data gen-
erated by existing models following the methodology outlined
in Ref (25) (Section S4 in SI text).

The simplest way of calculating r(Ly, Lq|L;) using experi-
mental data is by calculating the correlation between L; and
L4 in the small interval (L; — dL, L; + dL). We do not use
this method because the number of data points of L; and
L4 corresponding to each interval in the available datasets is
too small making the conditional correlations hard to inter-
pret (see Supplementary Figure 5). In order to obtain the
conditional correlation, we will instead remove the influence
of L; from L, and L4 using linear regression. To that end,
we assume linear dependence of Ly and Ly on L;. The linear
relations can be rationalized as Taylor expansions around the
mean of the non-linear relations between L, and L;, and Ly
and L;. The residuals obtained upon carrying out the linear
regression of Ly on L; (Ly|L;) and Lq on L; (Lg|L;) represent
the effect of sources other than L; on L, and Lg, respectively.
The correlation r(Ly, Lq|L;) is calculated by obtaining the
Pearson correlation coefficient between the residuals Ly|L;
and Lg|L; (see Materials and Methods, (27)). In this method
of calculating the conditional correlation, we use the complete
dataset available for each growth medium. Note that when we
refer to conditional correlations as vanishing throughout the
paper we mean that the Pearson correlation coefficient is not
statistically significant when using a p-value as the metric at
a significance level of 0.05.

Next, we use the experimental data to test whether

r(Lp, La|L;) is zero or not. We plot the residuals obtained us-
ing linear regression of Lg on L; (Lq|L;) and Ly on L; (Ls|L;).
We find the correlation coefficients between the residuals to
be negligible for the two slowest growth media (Figure 3D and
Supplementary Figure 1A) and non-zero for the other growth
conditions (Figure 3E and Supplementary Figures 1B-1D).
Thus, graph 3A is consistent with the data in the two slowest
growth conditions while the model in graph 3B is consistent
with data in the faster growth conditions. The correlations
are tabulated for each growth medium in Table S2. Account-
ing for possible outliers in the data (keeping the middle 95%
percentile data of both axes), we find the p-value to be above
significance level of 0.05 in the three slowest growth condition
(Supplementary Figure 1E). This finding is still in agreement
with the hypothesis of the replication process becoming more
limiting for determining division in slower growth conditions.
We also checked whether growth rate A = T% ln(i—i) affected
the correlations between the residuals. The correlation coeffi-
cients between the residuals obtained using linear regression of
Lgon L; and A (La|(Li,\)) and Ly on L; and A (Ls|(Li, \))
are shown in Table S2. We still find the correlations to be close
to zero for the two slowest growth conditions and non-zero for
the others. We also analyzed previously published datasets
(8, 9, 13) and found that they were consistent with a model
where both birth and replication processes limit division in
fast growth, and replication becomes more limiting in slower
growth conditions (Section S5 in SI text).

To conclude, in two slowest experimental growth condi-
tions, division is solely controlled by replication (consistent
with CH/PA models). However, in faster four growth condi-
tions, additional processes starting from cell birth also control
division (consistent with concurrent processes model).

The onset of constriction solely controls the division size.
Previous studies propose the start of septum formation at
mid-cell as an important checkpoint involved in length control
(7, 10). However, most of the previous cell cycle models,
including the aforementioned ones, did not explicitly contain
this checkpoint, but only considered the division event. In this
section, we show that cells exert size control at the start of
constriction at mid-cell and the constriction process ultimately
culminates in division, without additional regulation on the
division timing. We will use cell lengths at birth, the onset of
constriction (L,) and division as a proxy to denote the events.
The onset of constriction can be determined by labeling FtsN
with a fluorescent fusion protein; FtsN is the last known
essential component of the E. coli divisome to assemble at the
mid-cell before constriction starts (28-33). The accumulation
of FtsN at the mid-cell thus indicates the start of septum
formation, as was validated in Ref. (10).

We hypothesize a causal graph based on our prior knowledge
about the start of septum formation at mid-cell. Previous
works suggest that an accumulation of a threshold amount of
cell division proteins such as FtsZ (8), or cell wall precursors
(7) starting from birth is responsible for triggering constriction
at mid-cell. For both scenarios and assuming also a balanced
growth, we expect L, = Ly + Ap, + &, where Ay, is the size
added between birth and the onset of constriction and £ is a
size additive noise. This relation is depicted by an arrow from
Ly to Ly, in the graph of Figure 4A, where the arrow from L,
to Lg4 represents commitment to division upon the onset of
constriction. A competing model is shown in Figure 4B, where
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Fig. 3. Causal graphs and ClI tests linking birth, initi-
ation and division: A. A causal graph linking lengths at
birth (L), initiation (L ;) and division (L ). In this graph,
the replication initiation controls the division event. We
predict (Ly,, Lq|L;) =0 for the graph. B. Both birth and
initiation simultaneously control the division event. We
predict r(Ly, Lq|L;) # 0 for the graph. C. A graph cor-
responding to the independent adder (IA) model. Here, the
division process is independent of the replication process.
Ly and L4 are uncorrelated from L;. D-E. Residuals
obtained on linear regression of L4 on L; (Lg|L;) and
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L. Ly on L; (Ly|L;) are plotted for data from Ref. (10)
l in D. Alanine medium (generation time = 213 min, N =
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1.07). E. Glucose medium (generation time = 113 min, N
=259 cells, (nor;) = 1.98). The conditional correlation,
r(Ly, Lq|L;) is negligible for the alanine medium (con-
sistent with graph 3A) while it is non-zero for the glucose
medium (consistent with graph 3B). In Figures 3D-3E, the
blue dots represent the raw data, the red dots the binned
data and the yellow line the best linear fit. r is the Pearson
correlation coefficient between the variables in the x and
y axes. p in the plots are the p-values. We reject the null
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in addition to the onset of constriction, another biochemical
process starting at cell birth is limiting for the division event
(for example, the accumulation of another key protein).

We expect that the variables Ly, L, and L4 will be cor-
related with each other for both graphs 4A and 4B. This is
because L, shares a cause and effect relationship with Lg
and Ly, respectively. This is indeed what we observe in the
experimental data for all six growth media as shown in Ta-
ble S3. Note that the relation between birth and the onset
of constriction deviated from an adder model in all growth
conditions.

Next, we test the predictions of conditional independence
obtained by applying d-separation on the graphs in Figure 4A
and 4B. For the graph in Figure 4A, we predict r(Ly, La|L»)
= 0 using d-separation while for Figure 4B, r(Ly, Lq|Ly) is
non-zero. To test these predictions, we find the correlation
between the residuals obtained on linear regression of L; on
L, (denoted as Ly|L,) and Lg on L, (L4|Ly). The plots of
the residuals are shown in Figure 4C and Figure 4D for cells
growing in a slow growth medium (alanine, generation time
= 213 min) and a fast growth medium (glucose, generation
time = 113 min), respectively. In Figures 4C-4D, we show the
correlation between the residuals to be close to zero. Similar
negligible correlations are also obtained for four other growth
media as shown in Supplementary Figures 2A-2D and Table
S3 with the corresponding p-values (Supplementary Figure
2E) above the significance level. Thus, the graph in Figure 4A
is consistent with the experimental data.

These results show that the onset of constriction can be
regarded as a cell cycle checkpoint that solely controls the cell
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0 0.5 hypothesis that the correlation is zero if the p-value is less

the significance level set at 0.05.

size at division without any additional cues from cell birth.

Cell cycle model involving the onset of constriction. In the
previous section, we verified that the onset of constriction can
be regarded as a cell cycle checkpoint. Previously, we showed
that replication controls division in slow-growth conditions
and is one of the factors controlling division in fast growth
conditions. In this section, we combine these two results into a
single, coherent model and discuss models where replication is
coupled to constriction (which, in turn, is coupled to division).

To this end, we adapt the cell cycle models of graphs 3A
and 3B by hypothesizing that birth size and replication initi-
ation size control the size at onset of constriction instead of
division size. The graph in Figure 5A corresponds to a model
where initiation controls constriction (arrow from L; to Ly).
Such a control may be exerted by nucleoid occlusion, whereby
a chromosome blocks the formation of FtsZ ring via DNA
binding proteins(34) or sterically (35). Within this model,
constriction may start when the chromosome segregation is
underway, lowering the DNA density at the mid-cell and reliev-
ing the effects of nucleoid occlusion (10). Since termination
of DNA replication follows causally from initiation, within
the graph we may depict this mechanism by an arrow from
initiation of DNA replication to constriction. Thus, a limit-
ing factor that controls the start of constriction may be the
start of DNA replication (Figure 5A). A competing model
is shown in graph 5B where the size at onset of constriction
is simultaneously controlled by birth size (arrow from Ly to
L,) and initiation size (arrow from L; to Ly,). In this model,
accumulation of division proteins and nucleoid occlusion may
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A. A causal graph linking the length at birth (L), onset of
constriction (L.,) and division (L g). In this graph, division
is solely controlled by the onset of constriction. We predict
that r(Ly, Lq|Ly,) =0 for the graph. B. A causal graph
where multiple processes - from birth and from the onset
of constriction control division. We predict a non-zero
r(Lp, Lq|Ly) for the graph. C-D. Residuals obtained on
linear regression of Ly on L,, (Lq|Ly) and Ly on L,
(Ly|Ly,) are plotted for C. Alanine medium (generation
time = 213 min, N = 215 cells, (n,;) = 1.07). D. Glucose
medium (generation time = 113 min, N = 259 cells, (n,.;)
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both play a limiting role on start of constriction (10). Based
on the results in the previous section, constriction culminates
in division. This is shown as arrows from L,, to Ly in Figures
5A and 5B.

Both models predict that L; and L, will generally be cor-
related (in contrast to models where protein accumulation
from birth triggers constriction, independently of DNA repli-
cation processes). We indeed find them to be correlated in
experimental data in all 6 growth conditions (Table S4). Next,
we use d-separation to predict correlations and conditional
correlations between the cell cycle variables in graphs 5A and
5B. Graph 5A predicts Ly and L, to be uncorrelated when
conditioned upon L;, while graph 5B predicts them to be
correlated. To test these predictions, we plot the residuals
L,|L; and Ly|L; in Figures 5C-5D, Supplementary Figures 3A-
3D. We find the correlations between the residuals to be zero
for the two slowest growth conditions while it is non-zero for
other growth conditions (see p-values in Supplementary Figure
3E). We also considered the correlations r(Ly, Ln|(Lsi, X)) to
control for the effects of growth rate. The results obtained
are similar to that shown in Figures 5C-5D, Supplementary
Figures 3A-3D. Thus, we find graph 5A to be consistent with
data in the two slowest growth conditions while graph 5B to
be consistent with data in faster growth conditions.

Next, we show that our predictions of correlations and
conditional correlations using graphs 5A-5B are in agreement
with the conditional correlations discussed in the previous
sections. Graph 5A predicts r(Ls, Lg|L;) to be zero, while
graph 5B predicts a non-zero correlation. These predictions
are identical to those of graphs 3A and 3B, respectively. As

LylL, (um)

= 1.98). The conditional correlations, (L, Lq|Ly, ) are
close to zero for both of the growth conditions (consistent
with graph 4A).

02 04 06

previously discussed, 7(Ls, Lq|L;) is non-zero in the four faster
growth conditions while it is zero in the two slowest growth
conditions. Thus, we again find graph 5A to be consistent
with the two slower growth conditions while graph 5B is
consistent with the other four growth conditions. We also
showed that r(Ly, Lq|Ln) = 0 in the experiments for all growth
conditions. This is consistent with our predictions obtained
using d-separation for both graphs 5A and 5B.

To probe the molecular mechanisms that might be involved
in coupling of the replication cycle to the division cycle, we
used mutants that lack proteins which link the replication and
division processes. The AzapA, AzapB, AmatP, AslmA,
FtsK K997A and AminC mutants were grown in M9 glyc-
erol+trace elements medium (7; = 148 min in wildtype cells
(WT)) (10). In this growth condition, our analysis indicated
the onset of constriction is controlled by two concurrent path-
ways (graph 5B). If these proteins were to mediate the coupling
between the replication processes and the onset of constriction
then on removing these proteins in the mutants, we expect
the correlation between initiation and the onset of constric-
tion upon conditioning on birth to be zero. However, we find
that the correlation r(L;, L, |Ly) in both the WT and mutants
is non-zero except in the Min mutants which undergo polar
divisions (see Section S6 in SI text). One possible explanation
for the difference in the correlation r(L;i, Lyn|Ls) between cells
undergoing mid-cell and polar divisions in the Min mutants is
nucleoid occlusion as proposed previously in this section and in
Ref (10). According to this idea, nucleoid density at mid-cell
blocks the formation of the Z-ring until the later stages of the
replication process, thus, coupling replication and the onset
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of constriction while polar divisions are not inhibited by such
factors and they can happen independently of replication, thus,
leading to a lack of causal link between replication and the
onset of constriction.

To conclude, we showed that in slow-growth conditions
replication initiation controls the onset of constriction and
hence, division, while in fast growth conditions there are
additional limiting factors.

Initiation is not solely controlled by initiation in the previous
cell cycle. So far, we have discussed the control of the division
cycle and the link between the replication and division cycle. A
question that arises is what controls the replication cycle. The
main events in the DNA replication cycle are the initiation and
termination of replication. As we discussed earlier, previous
works suggested that the initiation happens via an adder per
origin model (8, 9, 11, 16, 36). In the model, the initiation size
per origin of the daughter cell (L;1) is related to the initiation
size per origin of the current cell cycle (L;) as Lit1 = Li +A“ +
&, and r(L;, Liy1) is expected to be 0.5. The experlmental
data analyzed show the correlation to be close to 0.5 (Table
ST).

We also include replication termination in our model. Pre-
vious analysis suggests termination occurs after a constant
time from initiation (the C period) (11, 14), consistent with a
constant speed of the replication forks as observed in single-
molecule experiments (37, 38). We include this prior knowl-
edge in graph 6A as a causal link between initiation and
termination, where we denote the length at termination of
DNA replication as L¢. L;, Ly and L;;1 are correlated with
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each other in graph 6A. These predictions are consistent with
the correlations in experimental data for all six growth condi-
tions (Table S7). Furthermore, we predict that L; and L;+1
will be uncorrelated upon conditioning on L; in graph 6A.
However, we find that r(Ly, Li+1|L;i) is non-zero in all growth
conditions (Figures 6C-6D, Supplementary Figures 4A-4E, Ta-
ble S7). In fact, this result is consistent with a model proposed
in graph 6B which assumes that initiation in the daughter cell
is also controlled by termination along with initiation in the
current cell cycle. We predict using d-separation on graph
6B that r(L;, Li+1|L:) is non-zero which is consistent with
our experiments. Graph 6B was also consistent with the data
published in Ref (13) (Section S5 in SI text).

To further test the model proposed in graph 6B, we use
data from cells whose C period was longer as compared to
the WT cells (10). This was achieved by deleting thyA and
controlling the amount of thymine in the growth medium (39).
AthyA cells grown in thymine concentrations of 500 ug/mL
at 28°C in glycerol + trace elements medium had identical
replication period as WT cells. However, on decreasing the
concentration to 15 ug/mL, the C period showed a step-
wise increase by approximately 40% (10). An increase in
the C period may lead to termination in the current cell
cycle happening after the initiation for the next cell cycle
has started. Such a temporal order will violate the model
presented in graph 6B where termination is a cause of initiation
in daughter cells. The variation in timings at termination
(Tr+), division (Ty) and initiation for the next cell cycle (Ti+1)
are shown in Figure 6E for the AthyA strain. Time t=0 on
the x-axis corresponds to the time when cells were shifted to
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Fig. 6. Control of replication initiation: A. A causal
graph linking the lengths at initiation per origin (L;), ter-
mination (L) and the lengths at initiation per origin in the
daughter cells (L;+1). In this graph, the initiation in the
daughter cells is solely controlled by initiation in the current
1 cell cycle. We predict (L, L;41|L;) =0 for the graph.

B. A causal graph in which the initiation in the daughter
cells is controlled simultaneously by initiation and termi-
nation in the current cell cycle. We predict a non-zero
r(Ly¢, Li4+1|L;) for the graph. C-D. Residuals obtained
on linear regression of L; 11 on L; (L;4+1|L;)and Ly on
L; (L¢|L;) are plotted for C. Alanine medium (generation
time = 212 min, N = 167 cells, (nor;) = 1.08). D. Glucose
medium (generation time = 112 min, N = 255 cells, (no.;)
= 1.98). The conditional correlation, (L, L;+1|L;) is
non-zero for both alanine and glucose media (consistent
with graph 6B). E-F. AthyA cells are grown in a thymine
concentration of 500 pg/mL in M9 glycerol+trace ele-
ments medium at 28°C. The cells are then shifted to a
thymine concentration of 15 pg/mL. Upon shifting to
a lower thymine concentration, the C period of the cells
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15 pg/mL thymine concentration. Strikingly, we find at the
single-cell level that only few cells have the time T541 — T < 0
and it is always greater than -6 min (Figure 6F). Since the
measurement interval is 4 min, an error in the measurement
of the initiation and termination events by one time frame can
lead to a minimum time difference T;+1 — T+ = -8 min even
though the events coincide. Thus, the data is consistent with
the temporal ordering of events in graph 6B even when the
replication timings are perturbed. We note that graph 6B is
unlikely to apply to faster growth conditions where overlapping
rounds of replication have been reported (14, 40).

To conclude, we rule out the model in which initiation in
the next cycle is controlled solely by initiation in the current
cycle, showing that control over replication initiation is more
complex than previously thought.

Discussion

In the paper, we make use of causal inference i.e., conditional
independence tests, to interrogate cell cycle models. An ideal
cell-cycle model should be able to reproduce the joint prob-
ability density of all cell cycle variables measured. Since the
amount of data collected is finite, previous cell cycle model-
ing studies have relied on using certain correlations (or lack
of correlations) between cell cycle variables to hypothesize
models (6, 8, 9, 13, 17, 23, 41). The model simulations are
then compared to experiments using specific correlations. The
model which agrees the most with these chosen correlations
is accepted as the underlying model. However, multiple mod-
els having different causal structures can agree with these
limited correlations making it difficult to choose a particular

a 1 T,
50 100
Tipq7T ¢ (min)

150 tion of T;41 — T+ timings for all cells measured in the

experiment.

causal model (20). Conditional independence tests allow us
to reject models in a robust manner that do not depend on
the fine-tuned details of the models but instead only relies
on the structure of the causal network (i.e., which variables
control which other variables). The framework relies on test-
ing whether conditional correlations are zero or not - without
resorting to their precise numerical values.

Our goal was to test several models previously proposed
for the bacterial cell cycle ranging from models in which DNA
replication was assumed to control cell division to models
where DNA replication cycles are independent of the cell
division cycles (and a class of models interpolating the two, in
which division couples not only to DNA replication but also
to additional cues). Note that, generally, this framework of
causal inference cannot determine the model structure de novo
but rather allows us (in certain cases) to rule out particular
models.

After validating our method on synthetic data, we used
causal inference methods on recently obtained data measur-
ing key cell cycle variables (length and time of cell birth and
division, initiation and termination of DNA replication and
constriction of the division ring) (10). We found that our
data agreed with replication being the sole limiting factor
for division in the two slowest growth conditions (Figure 3D,
Supplementary Figure 1A). In faster growth conditions, the
data agreed with a model in which birth size and replica-
tion initiation size both controlled division size (Figure 3E,
Supplementary Figures 1B-1D).

Although the onset of constriction has not been included in
previous cell cycle models, it can be expected to be an essential
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cell cycle checkpoint in E. coli. We tested this idea using
conditional correlations. We find the conditional correlations
between birth and division lengths to be zero when conditioned
on constriction length (Figures 4C-4D, Supplementary Figures
2A-2D). Note that we condition on the length at the start of
constriction because of availability of data at that time point.
However, a biochemical reaction leading to onset of constriction
may occur at some prior time close to the start of constriction
(with lengths highly correlated with L,) which may result
in zero r(Ly, La|Ly). For example, the incorporation of one
of the many proteins in the Z ring can be the limiting step.
Once the protein is incorporated to form the Z ring, the
constriction starts after a small time delay. The existing
data is not sufficient to distinguish these molecular steps
yet. Regardless of the nature of the biochemical processes,
our analysis confirms that onset of constriction controls cell
cycle progression from birth to division. Thus, including the
constriction event into the cell cycle is important for theoretical
and experimental studies involving cell cycle regulation.

Combining these two results led us to envision a coarse-
grained model for cell size regulation in which the constriction
event is controlled by the DNA replication process alone in
slow growth. In fast growth, the onset of constriction must
be controlled by additional regulatory processes linked to cell
birth and not controlling DNA replication initiation. In all
growth conditions division is downstream of the onset of con-
striction (Figure 7). We corroborated the model predictions
for the conditional correlation r(Ls, Ln|L;), predicted to be
zero in slow growth conditions (Figure 5C, Supplementary
Figure 3A) and non-zero in fast growth (Figure 5D, Supple-
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accumulation of cell division proteins, FtsZ or cell wall
precursors, might also control the onset of constriction in-
dependent of replication. Finally, the constriction process
culminates in the division event. The start of the replication
cycle is controlled by the replication initiation event in the
previous cell cycle as well as an additional cue which is
linked with the termination event.

mentary Figures 3B-3D). An appealing molecular mechanism
that explains the causal control of replication initiation over
the onset of constriction is that of nucleoid occlusion, in which
septum formation is blocked by a replicating nucleoid (34).
The nucleoid occlusion or absence thereof at the cell poles
explains the lack of correlations between replication and con-
striction in Min mutants undergoing polar divisions. Previous
work also showed that in slow growth conditions increasing the
DNA replication time, using mutants where external thymine
levels determine the C period, delays the start of constric-
tion (10). In both the wild-type and the thymine mutants,
the constriction process does not start until the DNA den-
sity at the mid-cell has decreased. In fast growth conditions,
replication is not the sole limiting process, as evidenced by
the non-vanishing conditional correlations. One possible ad-
ditional mechanism is the accumulation of division proteins
such as FtsZ (8), or cell wall precursors (7) that controls the
trigger for constriction. The cell cycle regulation model dis-
cussed here are in agreement with the models proposed using
correlations between the timings of different cell cycle events
in Ref (10). Our analysis of data in Ref (6, 8, 9, 13) as well the
analysis in Ref (13) itself are consistent with a model where
the replication process becomes more limiting for determining
division in the slower growth conditions.

We also studied the DNA replication cycle using the CI
methodology. It has been suggested that accumulation of a
threshold amount of the initiator protein DnaA in its ATP
bound form is needed to initiate DNA replication (42, 43).
The accumulation starts from the previous initiation and the
initiation size of the previous replication cycle controls the
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initiation size in the current replication cycle via an adder per
origin model (9, 11, 12, 44). Furthermore, the termination
of DNA replication happens after a C period elapses since
the initiation (14). The adder per origin model predicts that
r(Li, Li+1) = 0.5. The correlations r(L;, L;+1) reported in
previous studies (8, 9) and observed in the experiments ana-
lyzed in this paper are close to 0.5, thus, lending support to an
adder per origin model. However, such a model (Figure 6A)
would also predict that the correlation between initiation in the
daughter cell and termination event when conditioned upon
the initiation event in the current cell cycle is zero. We find
the conditional correlations to be non-zero in all six growth
conditions (Figures 6C-6D, Supplementary Figures 4A-4D).
This agrees with the graph shown in Figure 6B which suggests
a more complicated model than previously thought. The cur-
rent assumption is that DnaA accumulation triggers initiation.
However, the availability of DnaA to initiate the next round of
replication is not dependent on termination. One possibility is
that replisome components other than DnaA are limiting for
replication initiation. Note that, in our paper, the validity of
these results are tested at growth rates that do not necessitate
overlapping rounds of replication forks (doubling times less
than the C period).

The termination event was used for the conditional correla-
tion analysis because of its availability from the experiments
(10). However, we cannot rule out the possibility that other
events (correlated with termination) instead of termination in
graph 6B could also predict a non-zero correlation between L.
and L;+1 upon conditioning on L;. However, such an event
cannot be cell division. The data from almost all available
growth conditions studied in the paper show that at least some
initiation events can precede cell division. Such time ordering
violates the causality principle. Furthermore, replication ini-
tiation can start without any division in filamentous E. coli
cells (45). The presence of more than a single initiation event
per cell cycle was also the basis for rejecting a cell cycle model
called the sequential adder, containing an adder from birth to
initiation and another from initiation to division (15).

A possible alternative event for termination controlling the
next initiation can be related to some replication-dependent
conformational change within the nucleoid. It has been hy-
pothesized that nucleoid tethered to the midcell (called the
progression control complex or the PCC) inhibits both the
onset of constriction and the next initiation (46). Once the
cell has completed certain growth requirements, the PCC un-
dergoes conformational changes permitting the next initiation
and constriction formation to occur. These conformational
changes could potentially happen at termination or close to it.
If this hypothesis is correct, termination and the next initia-
tion would be correlated upon conditioning on the initiation
of the current cell cycle and as such this scenario will be able
to explain the data.

It remains for future studies to determine at which growth
rates the next initiation becomes uncorrelated from the pre-
vious termination event. The future studies can also identify
if some conformational change in the nucleoid precedes the
initiation or if there is some rate-limiting component beyond
DnaA that controls the initiation. In the latter experiments,
up regulation of the limiting component could shift initiation
earlier and lead to disappearance of correlations.

To conclude, our analysis leads to a new cell cycle model in

10 |

E. coli linking division and replication cycles, which extends
the previously developed concurrent processes model (Figure
7). To come to this result, we used a versatile method of infer-
ence involving conditional independence tests. The technique
may prove useful in analyzing and critically testing cell cycle
models also in other organisms.

Materials and Methods

Obtaining conditional correlations. The method used to calculate
conditional correlations throughout the paper was introduced in
Results section. In this section, we discuss the method from a
mathematical perspective.

Our aim is to calculate the correlation between variables A
and B when conditioned upon variables X = {X1, X2, X3..., Xn }.
Here, X is a set of n variables which are being conditioned upon.
Conditional correlation when conditioned upon X means finding the
correlation on fixing the values of all variables in the set X. Fixing
X would remove the effects of variability in X on other variables.

We use a method based on partial regression to calculate the
conditional correlation (47). To achieve this, we try to find the
effect of X on variables A and B. The random variables A, B and
X will correspond to cell lengths at various events in the manuscript.
Since cell lengths are narrowly distributed about their means, we
need to know the dependence/effects of X on A and B around their
means. Hence, we can Taylor expand the non-linear dependence of
A, and B on X around the means and consider terms to first order.
‘We represent it as,

A= Z a; X; + n, [1]
i=1

B= Z biX; + €. 2]
=1

a;s and b;s are calculated by multiple linear regression of A on
X and B on X, respectively. n and £ capture the effects on A
and B, respectively, from sources other than X i.e., they represent
variability in A and B on removing the effects of X. n and £ are
therefore the residuals obtained from the multiple linear regression
of A on X and B on X, respectively. The conditional correlation
between A and B when conditioned upon X (denoted as r(A, B|X))
is obtained by finding the Pearson correlation coefficient between
the residuals 7 and &.
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Supplementary Figure 1: Linking birth, initiation and division: A-D. Residuals ob-
tained on linear regression of Ly on L; (L4|L;) and L, on L; (Ly|L;) are plotted for A.
Acetate medium (generation time = 660 min, N = 401 cells, average number of origins at
birth, (ny-) = 1). B. Mannose medium (generation time = 196 min, N = 298 cells, (n,.;) =
1.30). C. Glycerol medium (generation time = 165 min, N = 419 cells, (n,) = 1.33). D.
Glycerol+trace elements medium (generation time = 148 min, N = 344 cells, (n,.;) = 1.60).
The conditional correlation, r(Ly, Lq|L;) is close to zero for the slowest growth condition
(consistent with graph 3A of main text) while the correlations are non-zero for the other
conditions shown here (consistent with graph 3B of main text). E. Using the data in Ref
[S1], we obtain p-values as a function of average doubling time ((7})) for the null hypothesis
that the correlation r(Ly, Lq|L;) is zero and an alternate hypothesis that the correlations are
non-zero. Red dots represent the p-values obtained without removing any data points. Blue
represents the p-values obtained after the outliers are removed and the data points which are
in the middle 95% percentiles of both axes are kept. Dotted line represents the significance
level which is set at 0.05.
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Supplementary Figure 2: Linking birth, onset of constriction and division: A-D.
Residuals obtained on linear regression of Lg on L, (L4|L,) and L, on L, (L,|L,) are
plotted for A. Acetate medium (generation time = 660 min, N = 401 cells, (n,;) = 1). B.
Mannose medium (generation time = 195 min, N = 302 cells, (n,;) = 1.30). C. Glycerol
medium (generation time = 165 min, N = 420 cells, (n,.;) = 1.33). D. Glycerol+trace
elements medium (generation time = 148 min, N = 344 cells, (n,.;) = 1.60). The conditional
correlations, r(Ly, Lq|L,) are close to zero for all growth conditions (consistent with graph
4A of main text). E. Using the data in Ref [S1]|, we obtain p-values as a function of average
doubling time ((7})) for the null hypothesis that the correlation r(Ly, Ly4|L,) is zero and
an alternate hypothesis that the correlations are non-zero. Red dots represent the p-values
obtained without removing any data points. Blue represents the p-values obtained after the
outliers are removed and the data points which are in the middle 95% percentiles of both
axes are kept. Dotted line represents the significance level which is set at 0.05.
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Supplementary Figure 3: Cell cycle regulation model: A-D. Residuals obtained on
linear regression of L,, on L; (L,|L;) and L, on L; (Ly|L;) are plotted for A. Acetate medium
(generation time = 660 min, N = 401 cells, (n,,) = 1). B. Mannose medium (generation
time = 196 min, N = 298 cells, (n,;) = 1.30). C. Glycerol medium (generation time =
165 min, N = 419 cells, (ny;) = 1.33). D. Glycerol+trace elements medium (generation
time = 148 min, N = 344 cells, (n,;) = 1.60). The conditional correlation, r(Ly, L,,|L;) is
close to zero for the slowest growth condition (consistent with graph 5A of main text) while
the correlations are non-zero for the other conditions shown here (consistent with graph 5B
of main text). E. Using the data in Ref [S1|, we obtain p-values as a function of average
doubling time ((73)) for the null hypothesis that the correlation r(Ly, L,|L;) is zero and
an alternate hypothesis that the correlations are non-zero. Red dots represent the p-values
obtained without removing any data points. Blue represents the p-values obtained after the
outliers are removed and the data points which are in the middle 95% percentiles of both
axes are kept. Dotted line represents the significance level which is set at 0.05.
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Supplementary Figure 4: Control of replication initiation: A-D. Residuals obtained
on linear regression of L,y on L; (L 1|L;) and L; on L; (Li|L;) are plotted for A. Acetate
medium (generation time = 650 min, N = 233 cells, (n,;) = 1). B. Mannose medium
(generation time = 196 min, N = 146 cells, (n,;) = 1.38). C. Glycerol medium (genera-
tion time = 166 min, N = 324 cells, (n,;) = 1.35). D. Glycerol+trace elements medium
(generation time = 148 min, N = 320 cells, (n,;) = 1.62). The conditional correlations,
r(L¢, Liy1]L;) are non-zero for all growth conditions shown here (consistent with graph 6B
of main text). E. Using the data in Ref [S1|, we obtain p-values as a function of average
doubling time ((T})) for the null hypothesis that the correlation r(Ls, L;11|L;) is zero and
an alternate hypothesis that the correlations are non-zero. Red dots represent the p-values
obtained without removing any data points. Blue represents the p-values obtained after the
outliers are removed and the data points which are in the middle 95% percentiles of both
axes are kept. Dotted line represents the significance level which is set at 0.05.
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Supplementary Figure 5: A. Parallel adder model was simulated using parameters obtained
from alanine growth medium in Ref [S1]. The simulations were carried out for a single lineage
of 400 generations. The data was arranged in ascending order based on the initiation length
per origin and divided into 5 subsets with equal number of points in each subset. Each subset
has initiation lengths per origin in a small interval centered around L;. We show the average
initiation length per origin, L;, in each subset in ym. The binned data and best linear fit
for each of the subset is plotted. We find that, while most subsets have nearly zero slope
(horizontal best linear fit) in agreement with the parallel adder model (r(Ly, Lq|L;)= 0), the
smallest initiation length per origin subset deviates from a horizontal line. Such discrepancies
make it difficult to narrow down on the model by dividing the datasets into small subsets
and using binning. B. Concurrent processes model was simulated using parameters obtained
from glycerol growth medium in Ref [S1]|. The simulations were carried out for a single lineage
of 419 generations. The data was again divided into 5 subsets based on the initiation length
per origin. The binned data and best linear fit for each of the subset is plotted. We show
the average initiation length per origin in each subset in pm. We find that all subsets have
a non-zero correlation between L; and L.
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» Supplementary Tables

Media No. of <Td> <TLOH‘> (Lb, Ld) (Lb, Lz) (Lz, Ld)
cells (min)

Acetate 401 660 1 0.48 (0.40, | 0.63 (0.57, | 0.73 (0.68,
0.55) 0.68) 0.78)

Alanine | 215 213 1.07 0.55 (0.45, | 0.76 (0.69, | 0.72 (0.65,
0.63) 0.81) 0.78)

Mannose 298 196 1.30 0.41 (0.31, | 0.54 (0.46, | 0.46 (0.37,
0.50) 0.62) 0.55)

Glycerol 419 165 1.33 0.37 (0.29, | 0.49 (0.41, | 0.44 (0.36,
0.45) 0.56) 0.52)

Glycerol 344 148 1.60 0.25 (0.15, | -0.06 0.37 (0.28,

+trace 0.35) (-0.17, 0.46)

elements 0.04)

Glucose | 250 113 1.98 0.30 (0.18, | 0.46 (0.36, | 0.24 (0.12,
0.40) 0.55) 0.35)

Table S1: Pearson correlation coefficients along with their 95% confidence intervals (CI) are
shown for six different growth media with generation times, (T;). Correlations are found for
cell length variables corresponding to cell birth (L), initiation of DNA replication (L;) and
cell division (Lg4) events.
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Media No. of <Td> (nm> (Lb, Ld (Lb, Ld (L,L, Ld
cells (min) |L;) [(Li, N)) |Ly)
Acetate 401 660 1 0.03 (-0.07, | 0.03 (-0.07, | 0.63 (0.57,
0.13) 0.13) 0.69)
Alanine 215 213 1.07 0.01 (-0.13, | 0.03 (-0.11, | 0.56  (0.46,
0.14) 0.16) 0.64)
Mannose 298 196 1.30 0.22 (0.11, | 0.37 (0.26, | 0.31  (0.20,
0.32) 0.46) 0.41)
Glycerol 419 165 1.33 0.20 (0.10, | 0.14 (0.05, | 0.32  (0.24,
0.29) 0.24) 0.41)
Glycerol 344 148 1.60 0.30 (0.20, | 0.29 (0.19, | 0.40 (0.31,
+trace 0.39) 0.39) 0.49)
elements
Glucose 259 113 1.98 0.21  (0.09, | 0.17 (0.05, | 0.13 (0,
0.33) 0.29) 0.24)

Table S2: Pearson correlation coefficients along with their 95% CI are shown for six differ-
ent growth media. Conditional correlations are found for growth rate (), cell birth (L),
initiation (L;) and cell division (Lg) events.
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Media No. of <Td> <TLOM'> (Lb,Ld) (Lb,Ln) (Ln,Ld (Lb,Ld (Ln,Ld
cells (min) | L) |Lp)
Acetate | 401 660 1 0.48 0.50 0.85 0.10 0.81
(0.40, | (0.43, | (0.82, | (0.01, | (0.77,
0.55) | 0.57) |0.88) |0.2) 0.84)
Alanine | 215 213 1.07 0.55 0.62 0.89 -0.01 0.84
(0.45, | (0.53, | (0.86, | (-0.14, | (0.79,
0.63) 10.69) |091) |0.13) |0.87)
Mannose| 302 195 1.30 0.41 0.46 0.79 0.09 0.74
(0.31, | (0.37, | (0.74, | (-0.03, | (0.69,
0.50) | 0.54) |083) |0.2) 0.79)
Glycerol | 420 165 1.33 0.37 0.45 0.79 0.03 0.75
(0.28, | (0.37, | (0.75, | (-0.07, | (0.71,
0.45) |0.52) |083) |0.12) |0.79)
Glycerol | 344 148 1.60 0.25 0.29 0.75 0.06 0.73
+trace (0.15, | (0.19, | (0.70, | (-0.05, | (0.68,
ele- 0.35) 10.38) |0.79) |0.16) |0.78)
ments
Glucose | 259 113 1.98 0.30 0.47 0.70 -0.06 0.67
(0.18, | (0.37, | (0.63, | (-0.18, | (0.59,
0.40) |0.56) |0.76) |0.07) |0.73)

Table S3: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Correlations and conditional correlations are found for cell length variables
corresponding to cell birth (L), onset of constriction (L,,) and cell division (Lg) events.
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Media No. of <Td> <nori> (Lz,Ln) (Lb, Ln (Lb,Ln (Lz, Ln
cells (min) |L;) [(Liy A)) | |Ls)
Acetate | 401 660 1 0.75 0.06 0.06 0.65
(070, | (-0.04, | (-0.04, | (0.59,
0.79) 0.16) 0.16) 0.70)
Alanine | 215 213 1.07 0.80 0.04 0.05 0.64
(0.74, (-0.09, (-0.09, (0.55,
0.84) 0.17) 0.18) 0.71)
Mannose | 298 196 1.30 0.54 0.23 0.31 0.39
(045, | (0.12, | (0.21, | (0.28,
0.61) 0.34) 0.41) 0.48)
Glycerol | 419 165 1.33 0.61 0.21 0.17 0.51
055, | (011, | (007, | (0.43,
0.67) 0.30) 0.26) 0.57)
Glycerol | 344 148 1.60 0.55 0.39 0.39 0.60
+trace (0.47, (0.30, (0.29, (0.52,
elements 0.62) 0.48) 0.47) 0.66)
Glucose | 259 113 1.98 0.42 0.35 0.32 0.26
(031, | (0.24, | (021, | (0.14,
0.51) 0.45) 0.43) 0.37)

Table S4: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Correlations and conditional correlations are found for growth rate ()), cell

birth (L), initiation (L;), and onset of constriction (L,,) events.
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Media No. of <Td> <nori> (Lza Ld (Ln, Ld (Lna Ld
cells (min) | L) |Ly) |L;)
Acetate 401 660 1 0.27 (0.18, ] 0.81 (0.77, | 0.67 (0.62,
0.36) 0.84) 0.72)
Alanine 215 213 1.07 0.05 (-0.09, | 0.84 (0.79, | 0.75 (0.69,
0.18) 0.87) 0.81)
Mannose 298 196 1.30 0.07 (-0.4, | 0.74 (0.68, | 0.72  (0.66,
0.18) 0.79) 0.77)
Glycerol 419 165 1.33 -0.09 (-0.18, ] 0.76 (0.71, | 0.74  (0.69,
0.01) 0.79) 0.78)
Glycerol 344 148 1.60 -0.07 (-0.18, | 0.73  (0.68, | 0.70  (0.64,
+trace 0.03) 0.78) 0.75)
elements
Glucose 259 113 1.98 -0.08 (-0.2, | 0.67 (0.59, | 0.68 (0.61,
0.04) 0.73) 0.74)

Table S5: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Conditional correlations are found for initiation (L;), onset of constriction
(Ly) and cell division (L) events.

Media No. of <Td> (nm> (Lb, Ld (L,L, Ld (Ln, Ld
cells (min) |(Liy Ln)) |(Lys L)) |(Ly, Li))
Acetate 401 660 1 -0.02 (-0.11, | 0.25 (0.16, | 0.67 (0.62,
0.08) 0.34) 0.72)
Alanine 215 213 1.07 -0.04 (-0.17, 1 0.06 (-0.07, | 0.75  (0.69,
0.10) 0.19) 0.81)
Mannose 298 196 1.30 0.07 (-0.04, | 0.04 (-0.08, | 0.71 (0.65,
0.18) 0.15) 0.76)
Glycerol 419 165 1.33 0.07 (-0.03, | -0.10 (-0.20, | 0.73  (0.68,
0.16) -0.01) 0.77)
Glycerol 344 148 1.60 0.04 (-0.07, | -0.06 (-0.16, | 0.67 (0.60,
+trace 0.14) 0.05) 0.72)
elements
Glucose 259 113 1.98 -0.03 (-0.15, | -0.06 (-0.18, | 0.66 (0.59,
0.09) 0.06) 0.73)

Table S6: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Conditional correlations when conditioned upon two variables are found for
variables involving cell birth (L), initiation (L;), onset of constriction (L,,), and cell division
(Lq) events.
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Media | No. <Td> <no7"i> (Li, Li—i—]t)(Lia Lt) (Lt,Li+JL)(Lt7Li+JL (LiaLz’—H
of (min) IL;) |L)
cells

Acetate | 233 650 1 0.58 0.86 0.64 0.33 0.09

(0.49, (0.82, (0.55, (0.21, (-0.04,
0.66) 0.89) 0.71) 0.44) 0.22)
Alanine | 167 212 1.08 0.64 0.88 0.67 0.30 0.14
(0.54, (0.84, (0.58, (0.15, (-0.02,
0.72) 0.91) 0.75) 0.43) 0.28)
Mannose| 146 196 1.38 0.49 0.59 0.64 0.50 0.18
(0.36, (0.48, (0.54, (0.37, (0.02,
0.61) 0.69) 0.73) 0.62) 0.33)
Glycerol | 324 166 1.35 0.45 0.71 0.52 0.32 0.14
(0.36, (0.65, (0.43, (0.21, (0.03,
0.53) 0.76) 0.59) 0.41) 0.24)

Glycerol | 320 148 1.62 0.56 0.76 0.63 0.38 0.16

-+trace (0.48, (0.71, (0.56, (0.29, (0.05,

ele- 0.63) 0.80) 0.70) 0.47) 0.27)

ments

Glucose | 255 112 1.98 0.55 0.65 0.55 0.29 0.31

(0.46, (0.58, (0.45, (0.17, (0.20,
0.63) 0.72) 0.63) 0.40) 0.42)

Table S7: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Correlations and conditional correlations are found for variables involving

initiation (L;), termination (L;), and initiation in the next cell cycle (L;;1) events.
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S1 D-separation in the context of cell cycle

In the main text, we use directed acyclic graphs (DAG) to show causal relations. The edges
are directed from cause to effect. Two vertices in the graph are connected by a path when
there is a sequence of distinct vertices with an edge between them. We apply d-separation
[S2, S3| to DAGs (Figures 3-6 of the main text) to predict correlations and conditional
correlations. In this section, we will discuss in detail several examples of predicting the
correlations and conditional correlations using d-separation.

Consider the graph in Figure 5B of the main text. We will choose two variables and

check whether they are correlated or not when we condition upon other variables.

e [, and L, - There are two paths between L, and L4, path 1 - L, — L,, — L4, path 2

-Ly+— L,y —>L;,— L, — Ly..

Without conditioning - Both paths 1 and 2 are open as there is no collider. So,

Ly, and L, are d-connected and correlated.

— Conditioning on L; - Path 2 is blocked as we conditioned on a non-collider. How-
ever, path 1 is still open as we are not conditioning on any variables on the path.

Hence, L, and L, are still d-connected and correlated.

Conditioning on L, - Path 1 and 2 are both blocked as we are conditioning on

the non-collider L,,. Hence, L, and L, are d-separated and uncorrelated.

— Conditioning L; and L,, - Path 1 and 2 are both blocked as we are conditioning

on non-colliders L; and L,. Hence, L; and L, are d-separated and uncorrelated.

S2 Length is used to denote cell cycle events

In this section, we will discuss why cell lengths (L) and not the corresponding timings (7°)

are used as a proxy to denote the cell cycle events. We will illustrate this on a concrete
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example, and then discuss its generalization.

Consider events X and Y in the cell cycle, assuming that Y occurs after a constant length
addition from event X (i.e., we are assuming an adder model). A possible mechanistic mech-
anism for this phenomenological model is the accumulation of an initiator protein starting
from X [S4]. We assume that the protein amount (P) when event X happens is zero and it
undergoes balanced biosynthesis i.e. % is constant. The event Y happens when a threshold
amount of P has been reached. Mathematically, length at event Y (L,) is related to length
at event X (L) by,

Ly = L$ + Lwy + 77363/7 (Sl)

where L,, is the average size added between X and Y and 7,, is a size additive noise
independent of L,. The DAG for the structural causal model (SCM) in Eq. S1 is shown in
Figure S1A-1. Assuming exponential growth with rate A\ and the adder model, the timing

of event Y (7)) is related to T}, and L, as,

Ly + nay

1
T,=T,+-In(1+ 7

- ) (52)

Therefore, we find the timing of the event Y is determined by the timing of the event X (7})
and the length at event X (L,). The timing of the events X and Y have a relation as shown in
Figure S1A-2 where T, and L, both influence when Y happens. If X was also determined by
an adder, the timing of events (7}, and T}) are associated with each other via a direct causal
link as well as through cell lengths (L,). Thus, graphs involving the timing of events will
also need to include cell lengths. More generally, the DAGs in Figure S1A are identical when
the length at Y is determined by a general regulatory mechanism, L, = o, Ly + Lgy + 7y
(the adder model for Y corresponds to the particular case o, = 1 [SH]).

Next, we will consider the timer model where Y happens after an average time 7, of

event X. A possible underlying mechanism is that a biochemical process starts at event X
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1 L, — L, 1 [, — L,
2 Tx _— Ty 2 Tx e Ty
L, /
Adder Timer

Figure S1: DAGs for the adder and timer model: A-B. We show DAGs involving the
sizes (in graph 1) and the timings (graph 2) at cell events X, and Y for A. An adder model.
B. A timer model.

and proceeds at a constant rate. In this case, the timing of event Y is,

Ty =Ty + Ty + My, (S3)

where T, is the timing of event X and 7, is the time additive noise. The DAG for the
SCM is an arrow from 7T}, to T, (Figure S1B-2). Assuming exponential growth, the length

at event Y (L,) is related to length at event X (L) as,

L, = LyeM vty (S4)

L, is independent of 7 4, in the timer model. If L, is independent of growth rate (\), the
DAG involving the lengths, L, and L, will be as shown in Figure S1B-1.

Therefore in both adder and timer like models, causal relations between events cannot
be solely represented using their timings (Figure S1A-2) but they can be solely denoted by
their lengths (Figures SIA-1, S1B-1).

Recent experiments on E. coli have shown that single cell lengths grows super-exponentially
(faster than exponential growth) [S6, S7]. Next, we discuss whether using lengths to denote

cell cycle events is appropriate in case of super-exponential growth.
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Consider event Y was determined by a timer from X. Assuming super-exponential growth,

the lengths at X and Y are related as,
L, = Lyelr Xt (S5)

A(t) shows the variation of growth rate with time. The lengths at events X and Y following
Eq. S5 cannot be represented by DAGs containing just the lengths of events X and Y. The
causal diagrams might also have to include growth rate parameters which are not directly
observed in the experiments.

However, for an adder between X and Y, the lengths at events X and Y will be related
by Eq. S1 assuming balanced biosynthesis. The resulting DAG for the SCM is identical to
that for exponential growth (Figure S1A-1). Thus, cell lengths seem to be the appropriate

cell characteristic to represent the cell events in many biologically relevant cases.

S3 Representing cell cycles as causal graphs

In this section, we will show the complete causal graphs of various cell cycle models discussed
in the main text.

Causal graphs discussed in the main text are assumed to follow the Causal Markov
condition which states that, when conditioned upon all direct causes, the nodes of a causal
graph are independent of its non-descendants. In causal graphs which follow the Causal
Markov assumption, all variables which are the common causes of the variables in the graphs
must also be in that graph [S3|. Note that all common causes for any pair of variables in

graphs 3A-3C, 4A-4B, 5A-5B and 6A-6B of the main text are already included in the graphs.

Next, we will discuss the recursive nature of the causal graphs over multiple generations.
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A Birth and replication cues control division
Lqg Or Lpyq
Ly_ Ly 0
= b—2 Lp—1 = , & JLb+2 5
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B Replication solely controls division
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Figure S2: A-C. Causal graphs are shown spanning multiple generations. A. In this model,
division is controlled by both birth and replication related processes. This is an extension
of graph 3B in the main text. B. Division is solely controlled by replication. This is an
extension of graph 3A in the main text. C. Division occurs independent of replication. This
is an extension of graph 3C in the main text.
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In the causal graph where birth and replication both control division or birth event of next
cell cycle (Figures 3B and 5B of the main text), we do not show birth in the previous cell
cycle (Ly_1) as a cause of L,. Omitting L, ; from graphs 3B and 5B does not change our
predictions for the conditional correlation between the variables in those graphs because L;_4
is not a common cause of any pair of variables in the graph. Here, however, we will extend
causal graphs 3B and 5B to include both causes of L i.e., L,_; and L;_; are included in the
causal graphs.

We show the graph where both birth and replication control division in Figure S2A
(extension of graph 3B in the main text). If we replace Ly by L, which then causes L4, we
will get an extension for the graph 5B in the main text. In Figure S2A, we have a causal link
from L;_; to L; in addition to L;_1 — L; link. Upon including both L;,_; and L;_; into the
graph, we have to include its common cause - initiation previous to that of L; i i.e., L; 5.
L, is also controlled by two events - L;_o and previous birth event L, . Thus, we obtain
a recursive pattern which is shown in Figure S2A. For solely replication limited division, we
show the causal graph in Figure S2B where birth size j generations before the current cell
cycle (Ly—;) does not influence the birth size directly in the next cell cycle (Ly—;11). Graph

S2C shows a model where the division cycle is independent of the replication cycle.

S4 Conditional independence tests on synthetic data

Kar et al. showed that data analysis methods should be validated against synthetic data
before being applied to experimental data [S6|. This prevents ambiguity and provides con-
sensus about the use of the method. In this section, we validate the conditional independence
tests using synthetic data generated by existing models.

We simulated a lineage of 1000 generations using the parallel adder (PA) model with

exponentially growing single cells and perfectly symmetric division. According to the PA
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model, the division event happens upon addition of constant size per origin from replication
initiation. The DNA replication initiates upon adding a constant cell length per origin
from the previous initiation [S8, S9|. Figure S3A shows the L; vs L; plot obtained from
simulations of the PA model. The best linear fit is very close to the equation Ly = L, + AL.
A similar equation is also obtained for simulations of concurrent processes model where single
cells are undergoing exponential growth and perfectly symmetric division (Figure S3C). In
this model, division is limited by slower of the two processes - 1. constant size addition on
average from birth (adder) 2. a time C+D elapses from initiation of DNA replication (with
both processes subject to noise). The replication initiation is controlled in the same manner
as in the PA model.

In the main text, we showed that the conditional correlation r(Ly, Ly|L;) can be used to
distinguish between two classes of model- 1. replication initiation solely controls division size
shown in graph 3A (e.g. - PA model) and 2. birth and replication simultaneously control
division as shown in graph 3B (e.g. - concurrent process model). Using d-separation, we
predict L, and Ly to be uncorrelated on fixing L; in graph 3A. However, they are predicted
to be correlated in graph 3B.

Next, we use the synthetic data to test the prediction that conditional correlation between
Ly and Ly on fixing L; (r(Ly, Lg|L;)) is zero for the PA model and non-zero for the concurrent
process model. We find r(Ly, Ly4|L;) to be close to zero in the synthetic data generated
using the PA model and the p-value to be not statistically significant at significance level
of 0.05 (Figure S3B). This is consistent with our prediction of r(Ly, Lq|L;) = 0 for the PA
model. We also show the non-zero conditional correlation r(Ly, Lg|L;) for simulations of the
concurrent process model (Figure S3D). The conditional correlations are in agreement with
our predictions made using the directed acyclic graphs and d-separation. Hence, conditional

independence tests can be used to differentiate between cell cycle models.
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Figure S3: Tests on synthetic data: A-B. Simulations of cells undergoing exponential
growth and following a parallel adder model are carried out and data is collected for 1000 cell
cycles. For the synthetic data generated, we show A. Ly vs L; plot. B. Residuals obtained
on linear regression of Ly on L; (L4|L;) and L, on L; (Ly|L;) are plotted. The correlation,
r(Lp, Lg|L;) is close to zero.C-D. Simulations of cells undergoing exponential growth and
following a concurrent process model are carried out and data is collected for 1000 cell cycles.
For the synthetic data generated, we show C. Ly vs Ly plot. D. Residuals obtained on linear
regression of Ly on L; (Lg4|L;) and Ly on L; (Ly|L;) are plotted. The correlation, r(Ly, Ly|L;)
is non-zero. Here, the blue dots represent the raw data, the red dots represent the binned
data and the yellow line represents the best linear fit.
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Figure S4: Testing conditional independence tests: A,B. Simulations of cells under-
going exponential growth and following a parallel adder model are carried out and data is
collected for N = A. 150 cells. B. 400 cells. We find that even for the smaller datasets, our
method of calculating conditional correlations is consistent with the predictions obtained
using d-separation (zero for PA model). C. Parallel adder was simulated for different growth
medium (different colors) over a single lineage of N generations. For the 2000 iterations
carried out, we found the fraction of cases where r(L;, Ly|L;) was non-zero (p-value was less
than 0.05). This fraction (fraction false positive) is plotted for varying values of N. The
shaded region shows the range of N for the faster growth conditions in Ref [S1|. D-F, H-J.
Simulations of cells undergoing exponential growth and following a concurrent process model
are carried out for N cells. We simulate a concurrent processes model where the replication
related processes are limiting for division in x% cells. We plot Ly|L; vs Ly|L; for D. N = 150,
x = 75%. E. N =400, x = 75%. F. N = 1000, x = 75%. H. N = 150, x = 25%. I. N = 400,
x = 25%. J. N = 1000, x = 25%. In all of the plots, r(Ly, Lq|L;) are non-zero irrespective
of the amount of data (N) and the strength of causal link between replication initiation and
division (x). G, K. For the concurrent processes model with parameters chosen using the
acetate and alanine growth condition in Ref [S1], G. Probability that the p-value is greater
than 0.05 is plotted as a function of number of cell cycles (N). The dotted lines mark the val-
ues of N in acetate and alanine growth medium of Ref [S1]. K. Probability that the p-value
is greater than 0.05 is plotted as a function of % of cells in which the replication process
is limiting. The two dotted lines denote the quantity in case of experiments in acetate and
alanine growth media [S1].

In the simulations in Figure S3, the correlation r(Ly, Lq|L;) was obtained for N = 1000
cells. However, in the experiments analyzed in the main text of the paper, the value of N is
between 150 and 400 cells. We plot L4|L; vs Ly|L; for the simulations of PA model with N
= 150, and 400 cells in Figures S4A, and S4B, respectively. The correlations are negligible
and the p-values are not statistically significant (significance level & = 0.05) in agreement
with the predictions of PA model.

Next, we quantify the accuracy of rejecting the parallel adder model using the conditional
independence tests. In our paper, we use p-values to classify a correlation as zero or non-
zero. Under the null hypothesis that (L, Lg|L;)=0 with the alternate hypothesis being
(L, La|L;) # 0, we reject the null hypothesis if the p-value is significant (less than the
threshold ,a = 0.05). In such a case, we classify the data to follow a model where both birth

and replication related processes are likely influencing the division event (e.g., the concurrent
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process model). If the p-value is greater than 0.05, we cannot reject a model where replication
solely limits division. Note that a p-value greater than 0.05 does not imply accepting the
null hypothesis. In other words, a concurrent process model can also have a p-value greater
than 0.05. Later, we will provide an estimate of the chances that a concurrent process model
has p-value greater than 0.05. However, first, we will use simulations of the parallel adder
model over a single lineage of N generations. We repeat the simulations over 2000 iterations
and find the number of cases where we reject the parallel adder model (p-value< 0.05). The
fraction of cases where the p-value is less than 0.05 for the parallel adder model is our error
metric (false positive error). If the fraction of false positive is high, then there are greater
chances of rejecting the parallel adder model and incorrectly classifying it as a concurrent
process model.

We carried out the simulation of the parallel adder model for a varying number of cell
cycles N for all growth rates in Ref [S1| where we find a non-zero r(Ly, L4|L;). For the
2000 iterations of the parallel adder model, we calculate the p-value and compare it to the
significance threshold. We explain the calculation of p-value briefly. The p-value is the
probability that the test statistic has a value as extreme as the one we find using the data.

The test statistic in our case is r ﬁ—;ﬁ, where r is the sample Pearson correlation coefficient

which has a variance of \/E . The test statistic is assumed to follow a t-distribution with
N-2 degrees of freedom under the null hypothesis that the actual underlying correlation is 0.
From the definition of significance threshold (set at 0.05 in our case) which is the probability
of rejecting models when the null hypothesis is true (in this case, (L, Lq|L;) = 0), we expect
the false positive error to be 5%. The calculation of a p-value assumes that the correlation
is found for two normally distributed variables [S10]. However, if the normality assumption
of the data does not hold one might expect an error different from the expected 5%. Such
deviations from normality in cell cycle variables might arise when simulating a model of

exponentially growing cells with time additive noise. Therefore, we use simulations to show

27



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

that the error is still close to 5% even in case of time additive noise (low noise regime). Using
the p-values in the 2000 iterations, we find the fraction of false positive cases for different N
to be &~ 5% in all growth conditions (Figure S4C). So, to conclude, the significance threshold
sets the error rate of rejecting a replication controlled division model (e.g., parallel adder)
even if it is the actual underlying model.

Similar to the parallel adder model, we checked that the correlations r(Ly, L4|L;) are
non-zero for different N in the case of concurrent processes model. For simulations of the
concurrent processes model, we find 7(Ly, Lg|L;) to be non-zero when N = 150 cells (Figures
S4D, S4H) and N=400 cells (Figures S4E, S4I). We also estimated the fraction of cases in
which the p-value is greater than 0.05 when the underlying model is concurrent processes
model. Note that the null and alternate hypothesis is the same as before. We simulated 200
iterations of the concurrent processes model with parameters chosen using the experimental
data in the alanine (7; = 213 min) and acetate (T; = 660 min) growth media of Ref [S1].
We chose these slow-growth conditions because we find p-values > 0.05 (null hypothesis:
r(Lp, La|L;)=0, alternate: r(Ly, L4|L;) # 0) in these growth conditions. In Figure S4G, we
show for a varying N that there are nearly zero cases where the p-value>0.05. The values
of N in the slower growth conditions of Ref [S1| are marked as dotted lines. While p-values
greater than 0.05 does not imply that the underlying model is replication solely controls
division, we show using simulations that it is unlikely to be a model where both birth and
replication related processes control division.

In the case of concurrent processes model, r(Ly, Lq|L;) is non-zero because there is a
direct causal link between L, and L4 (see Figure 3B in main text). The value of r(Ly, L4|L;)
will also depend on the strength of this causal link: making replication related processes
more limiting for the division event compared with the birth-related processes (i.e., they
limit division in a larger fraction of cells) will lead to a smaller value of r(Ly, Lq|L;). We

wanted to test that our method of calculating conditional correlation behaves as expected
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on changing the strength of the causal links. To make the replication process more limiting
for division, we change the parameters of the concurrent processes model i.e., decrease the
length added between birth and division. We find that r(Ly, Lg|L;) is still non-zero even if
replication is the limiting process in 75% of cells (Figures S4D-S4F). As carried out previously
for varying N, we calculate the probability that the p-values are greater than 0.05 for varying
strengths of causal links in the concurrent processes model. We simulate 250 iterations of
the concurrent processes model with parameters chosen using the experimental data in the
alanine (7; = 213 min) and acetate (7; = 660 min) growth media of Ref [S1]. We control
the % of cells where replication limits division by varying the size added between birth and
division as explained previously. Assuming that the cells growing in slow-growth conditions
in Ref [S1] follow the concurrent processes model, we can also estimate the % of cells where
replication controls division in the case of experiments [S11]. The experimental values are
shown as dotted lines for the alanine and acetate growth medium. We find that the fraction
of cases where the p-value is greater than 0.05 is small for a wide range of values (Figure
S4K). Thus, the underlying model is unlikely to be a concurrent processes model for a p-value
greater than 0.05 (null hypothesis: r(Ly, Ly|L;)=0, alternate: r(Ly, L4|L;) # 0).

To conclude, we show that the conditional independence tests can be applied to ex-
perimental data even if the number of cells, N is relatively small in the dataset (=~ 150).
The conditional correlations obtained were found to be consistent with our predictions from

d-separation even when the causal link between two cell cycle events was weak.

S5 Consistency with published results

In this section, we apply conditional independence tests to already published datasets and
compare the results to that obtained in the main text. A significant difference between

the datasets analyzed here and that in the main text is that the onset of constriction is
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not measured in these datasets. Thus, we cannot examine cell cycle models with the on-
set of constriction as a checkpoint. However, we can still test the predictions of PA and
Cooper-Helmstetter (CH) model (Figure 3A), the concurrent processes model (Figure 3B)
and the adder per origin between initiations (Figures 6A-6B in main text). We use the
datasets published in Ref [S12] because it contains cell length data at replication initiation
and termination events, which we use in Figure 6 of the main text.

In Ref [S12|, E. coli cells were grown in microfluidic devices and the single-cell character-
istics at cell replication and division were measured for multiple cells. The cells were grown
in minimal media (M9+NH4Cl+glycerol) with an average doubling time, (T,) = 75 min.
This growth condition is comparable to the faster growth conditions in the main text (note
that the doubling time for experiments in the main text is roughly twice that of presented
here as those were conducted at 28°C). Using the data in this growth condition, we will test
whether the replication process is the sole limiting process controlling division. In the main
text, this class of models is represented in Figure 3A. A competing model is the concurrent
processes model where multiple processes from birth, and replication initiation control di-
vision (Figure 3B). We predict r(Ly, Lq|L;) to be zero for Figure 3A and it is non-zero for
the class of models represented by Figure 3B. Using experimental data, we find a non-zero
r(Lp, La|L;) as shown in Figure S5A. This is in agreement with the model proposed in the
main text as well as Ref [S12]. Next, we test if the initiation in the next cell cycle is con-
trolled solely by initiation in the current cell cycle. The two competing models proposed are
presented in Figures 6A and 6B. For the model with adder per origin between initiations as
the sole control for initiations, we expect r(Ly, L;i11|L;) to be zero (Figure 6A). Using the
experimental data in Ref [S12], we find that r(L;, L;11|L;) is non-zero (Figure S5B) which is
in agreement with our results in the main text. We obtain same qualitative results for ex-
perimental replicates. Thus, DNA replication initiation is controlled by additional processes

apart from replication initiation in the previous cell cycle.
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To test the concurrent processes model, the birth related processes were made more
limiting by increasing the D period (time between replication termination and division) in
Ref [S12]. Cells were treated with sub-inhibitory concentrations of MreB-polymerization
inhibitor A22 which led to an increase in the width of cells and also an increase in D period
[S13]. We tested the replication control over division and the adder per origin control between
initiations for A22 treated cells (concentration = 50 pug/mL). We found r(Ly, La|L;) to be
non-zero (Figure S5C) and greater than that of untreated cells (Figure S5A), thus, favoring
a concurrent processes model where birth related processes are more limiting for division.
We also found r(Ly, Li+1|L;) to be non-zero (Figure S5D), in agreement with the results in
the main text and also for untreated cells. The concurrent processes model for division and
additional processes apart from DNA replication start controlling the next initiation were
also consistent with the data obtained from different concentrations of A22 treated cells.

We also analyzed datasets published in Ref [S9] and Ref [S14]| where E. coli cells were
grown in microfluidic devices. In these datasets, DNA replication termination was not
marked but the length at birth, the length at replication initiation and the length at di-
vision were collected. Using these data, we could test the replication control over division.
For the experiments in Ref [S9]|, r(Ly, Lq|L;) was found to be non-zero (Figures S5E-S5F).
The growth conditions in these datasets were comparable to the faster growth conditions
in the main text which also showed a non-zero r(Ly, Ly|L;) and was consistent with the
concurrent processes model. Upon analyzing the datasets in Ref [S14], we find a non-zero
r(Lp, Lg|L;) for both faster growth condition (Figure S5H) and slower growth condition (Fig-
ure S5G). The non-zero r(Ly, Lq|L;) in fast growth conditions is consistent with our results
in main text and the experiments analyzed in this section. For the slow growth condition
shown in Figure S5G, we find that r(Ly, Ly|L;) is lower in value than that of the faster
growth condition (Figure S5H), with the binned relation showing a nearly flat region in the

regime where the data is most abundant. We also compared the correlations in Figure S5G
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to the data on slow-growing cells in Ref [S15]. Both experiments were conducted at 37°C
with similar E. coli strains. We find for the slower growth condition (7; = 223 min) in
Figure S5I, the correlation 7(Ly, Lg|L;) is lower in value than that in Figure S5G (T = 197
min). Note that a bias in the data in Ref [S15] because the initiation is always in the same
cell cycle as division (or C+D < T}) might explain the non-zero r(Ly, Lg|L;) in slow-growth
conditions. To conclude, birth related processes are less limiting for determining division in

slower growth conditions in agreement with our results in the main text.
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Figure S5: Consistency with published results: We analyze conditional correlations
using previously published datasets on E. coli. A,B. Using data from Ref [S12] for N = 1380
cells ({(ny-;) = 1.30) growing in minimal media (M9+NH4Cl+glycerol), we plot A. Ly|L; vs
Ly|L;. We obtain a non-zero 7(Ly, Lg|L;) consistent with the concurrent processes model.
B. L;11|L; vs Ly|L;. We obtain a non-zero r(Ly, L;11|L;) consistent with the predictions of
Graph 6B in the main text. This rules out adder per origin between initiations as the sole
control for DNA replication initiation. C,D. We use data from Ref [S12]| where cells are
treated with 50ug/mL of A22, a MreB polymerization inhibitor. These cells have a larger D
period. We plot for N = 506 cells ((ny;) = 1.98), C. Ly4|L; vs Ly|L;. We obtain a non-zero
r(Lp, Lg|L;) which is again consistent with the concurrent processes model. D. L;1|L; vs
Li|L;. The non-zero r(L, L;y1]L;) also rules out adder per origin between initiations being
the sole control for initiation. E-F. Data was obtained from Ref [S9] and L4|L; vs Ly|L;
was plotted. Cells were grown in E. glycerol (N = 777 cells, (n,.;) = 1.7). We obtain a
non-zero r(Ly, Lyg|L;) consistent with the concurrent processes model. F. glucose and eight
amino acids (N = 1039 cells, (n,) = 2). We also obtain a non-zero r(Ly, L4|L;) consistent
with the concurrent processes model. G, H: Data was obtained from Ref [S14]| and Lg4|L;
vs Ly|L; was plotted. Cells were grown in G. M9 minimal medium with sodium acetate as
the carbon source (N=1554 cells, (n,.;) = 1.2). We obtain a non-zero r(Ly, L4|L;) consistent
with the concurrent processes model. H. MOPS medium with glucose as the carbon source
(N=1807 cells, (ny;) = 2). We obtain a non-zero r(Ly, Lq4|L;) consistent with the concurrent
processes model. I. Data was obtained from Ref [S15] and Ly4|L; vs Ly|L; was plotted. Cells
were grown in M9 minimal medium and 0.4% acetate (N=401 cells, (ny;) = 1).
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Figure S6: A A possible causal graph depicting the cell cycle in the Min mutants which
undergo polar divisions. The mutants are hypothesized to lack mechanisms which couple
the replication process to the onset of constriction. This is shown as a lack of arrow from L;
to L,. Since the mutants are grown in glycerol+trace elements medium (7, ~ 148 min in
wildtype (WT)), birth related processes might still control the start of constriction. B. For
WT, AzapB, AmatP, AzapA, AslmA, AminC undergoing polar divisions, AminC' under-
going midcell divisions, and the FtsK K997A strains, we show the conditional correlations
r(Li, Ly|Ly).

S6 Analyzing mutants

In this section, we will probe the molecular mechanisms that might link the replication cycle
and the onset of constriction using mutants studied in Ref [S1]. One such molecular system is
the nucleoid occlusion factor, SImA, which prevents the Z-ring formation until the Ter region
of the chromosome moves to the mid-cell. Other proteins such as ZapA, ZapB and MatP
are responsible for linking the Ter region of the chromosome to the Z-ring, thus, promoting
Z-ring formation and constriction. The protein FtSK is part of the divisome and is involved
in chromosome segregation at the mid-cell [S16].

If these proteins link the replication process to the onset of constriction, then removing
them might start the constriction independent of the replication process. We expect L; and
L,, to be uncorrelated when L, is conditioned upon. However, we find that the correlation

r(L;, L,|Ly) is non-zero for mutants obtained by removing SImA (AslmA), ZapA (AzapA),
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ZapB (AzapB), MatP (AmatP) and on using a translocation defective FtsK K997A mutant
(Figure S6B). This reiterates the conclusions reached in Ref [S1] that these molecular systems
seem unlikely to be involved in the coupling between replication and the start of constriction.

We also analyzed Min mutants which have a defective Min system. Min proteins are
responsible for the positioning of the Z-ring at the mid-cell [S16]. A defective Min system
can lead to cell divisions occurring near the poles in addition to the symmetrical divisions
at the mid-cell. We find that the conditional correlation r(L;, L,|Ly) in Min mutant cells
which undergo divisions at the mid-cell is also non-zero (Figure S6B). Next, we analyze
only those Min mutant cells which undergo polar divisions. The proposed cell cycle for
these mutants is shown in Figure S6A where the causal link between L; and L, is absent.
Note that a link between L, and L; ; might still exist in these cells as their mother cells
undergo divisions at mid-cell where we found replication and constriction (hence, division
and birth in the next cell cycle) to be coupled. Cells which undergo polar divisions have a
negligible r(L;, L,,|L;) (Figure S6B) pointing to the lack of replication control over division
(agreeing with the correlation in graph S6A). Ref [S1]| proposed nucleoid occlusion as a
possible mechanism for explaining the difference between cells undergoing polar and mid-
cell divisions. Substantial nucleoid density at the mid-cell during the replication process
hinders the formation of the Z-ring, thus, coupling replication and the start of constriction.
However, the lower nuclear density at cell poles does not inhibit the Z-ring formation and

constriction can start independently of the replication.
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