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How cells regulate their cell cycles is a central question for cell biology.

Models of cell size homeostasis have been proposed for bacteria,

archaea, yeast, plant and mammalian cells. New experiments bring

forth high volumes of data suitable for testing existing models of

cell size regulation and proposing new mechanisms. In this paper,

we use conditional independence tests in conjunction with data of

cell size at key cell cycle events (birth, initiation of DNA replication

and constriction) in the model bacterium Escherichia coli to select

between the competing cell cycle models. We find that in all growth

conditions that we study the division event is controlled by the onset

of constriction at mid-cell. In slow growth, we corroborate a model

where replication-related processes control the onset of constriction

at mid-cell. In faster growth, we find that the onset of constriction is

affected by additional cues beyond DNA replication. Finally, we also

find evidence for the presence of additional cues triggering initiations

apart from the conventional notion where the mother cells solely

determine the initiation event in the daughter cells via an adder per

origin model. The use of conditional independence tests are a novel

approach in the context of understanding cell cycle regulation and

it can be used in future studies to further explore the causal links

between cell events.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Conditional independence ♣ Cell cycle ♣ Escherichia coli

Cell size is regulated across all forms of life. The advent of1

single-cell experiments has advanced our understanding2

of these regulatory mechanisms over the past decade (1Ű3).3

Single cells growing in microĆuidic channels when combined4

with Ćuorescence microscopy can be used to track the size and5

the timing of cell-cycle events such as birth, DNA replication6

initiation, termination, septum formation and division (4Ű10).7

Existing models of cell-cycle regulation can be tested against8

the high-throughput data obtained from these experiments9

and the data can be used to hypothesize new models.10

Previous studies have proposed cell cycle models where11

cells are assumed to initiate a round of DNA replication upon12

adding a constant size per origin, on average, from the previous13

initiation (8, 9, 11Ű13). This model of replication initiation14

control, referred to as Şadder per originŤ, predicts that the15

size added per origin between successive initiations of DNA16

replication is uncorrelated with the size at initiation for single-17

cells which has been observed experimentally (8, 9).18

However, the proposed cell cycle models differ in how the19

division event is controlled by the DNA replication process20

(8, 9, 11, 12, 14). Cooper and Helmstetter proposed that cell21

division follows the initiation of DNA replication after a con-22

stant time has elapsed (14) (we will refer to this as the CH23

model). Within this model, this constant time is the sum of24

the time taken for DNA replication (the C period) and the25

time from termination of DNA replication to division (the D 26

period), see Figure 1. In the parallel adder model proposed for 27

Mycobacterium smegmatis, cell division occurs after the cell 28

has increased by a constant size per origin from replication 29

initiation (15). This model was later proposed for E. coli, 30

where it was referred to as Şdouble adderŤ (9). We will use the 31

term, parallel adder (PA), in this paper to describe two adders 32

working in parallel (initiation to initiation and initiation to 33

division). In both CH and PA models, division is controlled 34

solely by the replication initiation event. A competing model 35

suggests that division happens independently of the DNA repli- 36

cation process (8). In this model, the division is controlled by 37

accumulation of a key protein to a threshold level, starting 38

from cell birth. A middle ground is the concurrent processes 39

model where division is controlled by a combination of cues, 40

some of which originate from cell birth and others from the ini- 41

tiation of DNA replication (13, 16, 17). Identifying the correct 42

statistical analysis method and model has been contentious. 43

Much of the support for the models hypothesized above 44

comes from absence or presence of correlations between two 45

variables describing cell cycle. Recent studies have found 46

different models described above to be consistent with the 47

same data using the same analysis method (18Ű20). There is 48

a lack of consensus on the use of a statistical method to study 49

cell cycle regulation which leads to a lack of consensus on the 50

underlying cell cycle model. To address this, we will go beyond 51

two-variable correlations in this paper and use concepts of 52

Significance Statement

Cells across all domains of life grow and divide such that their
sizes are tightly regulated, yet the coordination of these pro-
cesses remains poorly understood. Previous works proposed
different models for this coupling in bacteria, in some of which
division is controlled by DNA replication processes while in
others it is uncoupled from it. We combine experimental data
on single-cell E. coli growth with the powerful methodology
of causal inference to show that constriction is a cell cycle
checkpoint controlled exclusively by DNA replication processes
in slow-growth conditions, while additional cues are at play in
faster growth conditions. We also show that control of the DNA
replication cycles is more complex than previously thought,
paving the way for future studies.

The authors declare that they have no competing interests.

1 E-mail: jmannik@utk.edu; phone: +1 (865) 974 6018; 2 Email: arielamir@seas.harvard.edu;
phone: +1 (617) 495 5818

PNAS | January 21, 2023 | vol. XXX | no. XX | 1±11



Fig. 1. Key cell cycle events analyzed. A. At slower
growth rates, cells are born with a single origin of repli-
cation. B. In faster growth conditions, cells are born with
multiple origins. In the case of cells with two origins at
birth, the initiation starts in the mother cell. The C period
is the time taken for DNA replication and the D period is
the time between termination of DNA replication and cell
division. The lengths at these events considered in the
data analysis are also shown.

causal inference relying on conditional correlations involving53

more than two variables to study causal statements.54

While causal inference is widely used in epidemiology, soci-55

ology, economics, and computer science (21), it has not been56

utilized previously in testing cell cycle models. SpeciĄcally,57

we study the relation between replication and the onset of58

constriction and Ąnd that in the slowest growth conditions,59

replication is the limiting factor controlling the onset of con-60

striction, but in faster growth conditions additional regulatory61

cues need to be invoked to explain the data. Furthermore, we62

Ąnd that the onset of constriction directly leads to division63

without the involvement of any additional regulatory mecha-64

nisms that retain the memory of birth size. Finally, the data65

suggest that replication initiation in the mother cell is not the66

sole factor controlling the initiation in the daughter cell, as was67

suggested previously (8, 9, 11Ű13). While the casual inference68

methodology we are using is agnostic to the details of the un-69

derlying molecular mechanisms, it allows us to gain important70

insights on the possible regulatory network architecture and71

narrow down the potential biological pathways.72

Results73

Replication control on division is growth rate dependent. To74

investigate how the cell cycle events are controlled in E. coli,75

we used data from recent experiments in 6 different growth76

media (10). These data have been collected at slow (average77

number of origins at birth ∼ 1) and moderately fast growth78

rates (average number of origins at birth > 1). The experi-79

ments were conducted at 28°C where the growth rates were80

about twice as slow as that in 37°C (22). The data contains81

the timings of cell cycle events such as birth, initiation of 82

DNA replication, termination, start of septum formation and 83

division for hundreds of cell cycles and the corresponding cell 84

lengths for those events. 85

Previous works have considered correlations between cell 86

cycle variables such as the size at birth (Lb) and size at division 87

(Ld) to infer cell cycle models (2). Using linear regression, we 88

show the best linear Ąt between Lb and Ld for a fast growth 89

condition in Figure 2A and a slow growth condition in Figure 90

2B. For cells growing in fast growth conditions (Figure 2A), 91

the underlying equation is close to Ld = Lb + ∆L and cells 92

are assumed to be following an adder model where cells divide 93

on addition of constant size from birth (5, 8, 9). In slower 94

growth conditions, the cells have been shown to follow a near- 95

adder (Figure 2B and Ref (6)). Ref (23) provided a general 96

framework to infer the cell cycle regulation strategy from Ld vs 97

Lb plots. In this model, a cell born at size Lb divides at size Ld 98

by employing a regulatory mechanism f(Lb) (a deterministic 99

element), to which noise is added. Mathematically, for the case 100

of size-additive noise this corresponds to the equation Ld = 101

f(Lb)+η, where η is the noise in division size independent of Lb. 102

This is an example of a structural causal model (SCM), widely 103

used in causal inference (24). The SCMs can be visualized 104

using directed acyclic graphs. The nodes in the graph are 105

connected via directed edges with the direction of the arrows 106

going from cause (variables on right side of the SCM) to 107

effect (variable on left side of the SCM). Each node in the 108

graph represents a variable which may either correspond to 109

an observable quantity obtained in the experiments or to an 110

unobserved variable. In the graphs that we will study in the 111
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Fig. 2. Correlation between birth and division: A-B. Ld vs Lb graphs are
plotted for data from Ref (10) in A. Glucose-cas medium (generation time (⟨Td⟩)
= 70 min, N = 409 cells). The best linear fit has a slope = 1.08 (0.97, 1.19). B.

Acetate medium (generation time (⟨Td⟩) = 660 min, N = 401 cells). The best linear
fit has a slope = 0.77 (0.65, 0.89). The numbers in the parenthesis here represent
the 95% confidence interval. In Figures 2A-2B, the blue dots represent the raw
data, the red dots the binned data and the yellow line the best linear fit.

paper, the nodes will correspond to cell lengths at cell cycle112

events (see Section S2 in SI text for an explanation as to why113

using lengths is advantageous compared to using the timing114

of the events). In the graphs, the absence of an edge between115

two nodes shows that there is no direct causal effect between116

the two variables. In the case of cell cycle regulation models,117

the SCMs and the graphs are independent of the nature of118

noise, and so will be our conclusions. The latter can be either119

size or time additive (25).120

The linear relation between Lb and Ld can also be explained121

by other cell cycle models such as the CH and PA models. Next,122

we construct causal graphs for these E. coli cell-cycle models.123

In the CH and PA models, initiation of DNA replication124

controls when division happens. In slow-growth conditions125

where the number of origins at birth is 1, initiation and division126

occur in the same cell cycle (Figure 1A). However, in the127

faster-growth conditions used in the experiments, replication128

initiation could start in the mother cell and the number of129

origins at birth is 2 (Figure 1B). Mathematically, the size130

at division is determined by Ld = 2(Li + ∆id) + η for the131

PA model, where Li is the initiation size per origin number132

taken right after initiation, ∆id is the size per origin added133

between initiation and division and η is a size additive noise. In134

the CH model where cells are undergoing exponential growth135

with growth rate λ, Ld = 2Lie
λ(C+D) + ηt, where ηt is a136

size additive noise. This is shown as an arrow from Li to Ld137

(Figure 3A). In these models, initiation size Li =
Li−1+∆ii

2
+ξ,138

where Li−1 is the previous initiation size per origin, ∆ii is139

the size per origin added between the consecutive initiations140

and ξ is a size additive noise. This is shown as an arrow from141

Li−1 to Li in Figure 3A. The previous initiation event (Li−1)142

also controls the division event in the mother cell (Ld−1) or143

equivalently the birth event of the current cell cycle (arrow144

from Li−1 to Lb). Li−1 is a confounder which means that it145

is a common cause of two events, in this case, Lb and Li. In146

a second class of models referred to as Şconcurrent processesŤ147

(13, 16, 17), the division size is determined by the slowest of two148

processes- 1. constant size addition from birth (adder) at Ąxed149

growth rate 2. a time C+D from initiation of DNA replication150

(where each of the two processes is also subject to noise).151

The corresponding SCM for exponentially growing cells with152

growth rate λ is Ld = max(Lb + ∆′

bd + δ′

bd, Lie
λ(C

′+D
′+δ

′

C+D
))153

and it is represented by arrows from Lb to Ld and Li to Ld,154

in the graph shown in Figure 3B. Ld is a common effect of155

Lb and Li and in this case, Ld is said to be a collider. Note 156

that the measured average C+D period will be determined 157

by the competition between the two processes, and therefore 158

could be different than C′ + D′. Similarly, the measured 159

average size added between birth and division will be different 160

than ∆′

bd. In the concurrent processes modelŠs SCM, δ′

bd and 161

δ′

C+D are the noise terms in ∆′

bd and C′ + D′, respectively. 162

The noise terms are independent of each other and are also 163

uncorrelated with Lb and Li. Similar to CH and PA models, 164

birth (Lb) and initiation (Li) are associated by a common 165

cause, the initiation in the previous cell cycle (Li−1) (Figure 166

3B). Note that the birth event in previous cell cycle (Lb−1) 167

also controls the division event in mother cell (Ld−1) according 168

to the concurrent process model and hence, it controls birth 169

in current cell cycle (Lb). We do not show the Lb−1 to Lb 170

causal link here as the omission of the link will have no effect 171

on our analysis. For complete causal diagrams, see Section 172

S3 in the SI text. A third model, the independent adder (IA) 173

model is also shown in Figure 3C where the division length 174

is solely controlled by the birth length (arrow from Lb to 175

Ld) independently of the initiation length (7, 8, 26). The 176

initiation is controlled by the previous initiation as in the 177

CH, PA and concurrent processes models (arrow from Li−1 to 178

Li). Importantly, the links between Li and Lb, and Li and 179

Ld are absent as initiation is independently controlled from 180

division. Directed acyclic graphs (DAGs) such as the ones 181

shown in Figures 3A-3C can be used to determine correlations 182

and conditional correlations. 183

Correlations and conditional correlations are determined 184

from the DAGs using a set of rules known as d-separation 185

(21). These rules will be brieĆy explained below. In graph 186

3A, since Li controls Ld, they will be correlated. Lb and Li 187

are correlated via the confounder, Li−1. Only under speciĄc 188

conditions where the effects of the two links cancel each other, 189

Lb and Li will be uncorrelated. Directed acyclic graphs encode 190

information beyond two-variable correlations, namely, condi- 191

tional independencies (CI). Conditional correlation r(Lb, Ld 192

♣Li) means Ąnding the correlation between two variables, Lb 193

and Ld upon Ąxing the value of a third variable, Li. In graph 194

3A, Lb and Ld are uncorrelated upon Ąxing the value of Li 195

and the path between Lb and Ld is then closed (in contrast, a 196

path connecting two variables and leading to their correlations 197

is deĄned as open, for example, the path between Lb and Ld 198

without conditioning in graph 3A). In graph 3B, the collider 199
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Ld blocks the path between Lb and Li and the path between200

Lb and Li via Ld is closed. The path opens upon conditioning201

on a collider or any descendant of a collider: for instance,202

in graph 3B upon conditioning on the variable Ld, the path203

between Lb and Li via Ld will be open. To summarize, a path204

is closed if a non-collider in the path is conditioned upon or if205

a collider and its descendants are not conditioned on. In the206

case of multiple paths between two variables, the variables are207

uncorrelated if all the paths between those variables are closed208

(Section S1 in SI text). In this paper, we will go beyond the209

previously used methodology of using two variable correlations210

(Figures 2A-2B) and use CI tests to select cell cycle models.211

The model corresponding to graph 3C (IA model) predicts212

that Li will be uncorrelated with Lb and Ld (prediction shown213

below the graph in panel 3C), as initiation is not linked to214

either birth or division. We Ąnd using experimental data215

that the Pearson correlation coefficients between Lb and Li216

(r(Lb, Li)), and Li and Ld (r(Li, Ld)) are non-zero in all six217

measured growth conditions (Table S1). Note that we have218

excluded the two fastest growth conditions from (10) because219

of incomplete tracking of DNA replication initiation in these220

data sets. The result rules out IA model as a viable model221

for cell cycle regulation, as was previously argued in Ref (9).222

In contrast, both models shown in graphs 3A and 3B predict223

that Li will be correlated with Lb and Ld. Thus, we have224

to go beyond two variable correlations and use CI tests to225

distinguish between the two graphs.226

To distinguish the models in graph 3A and 3B, we will227

condition on the initiation length, Li, and calculate the con-228

ditional correlation (r(Lb, Ld♣Li)) between Lb and Ld. We229

predict using d-separation that Lb and Ld are uncorrelated230

on Ąxing Li in graph 3A. However, they are predicted to be231

correlated in graph 3B as there is a direct causal link between232

Lb and Ld. We validated the method using synthetic data gen-233

erated by existing models following the methodology outlined234

in Ref (25) (Section S4 in SI text).235

The simplest way of calculating r(Lb, Ld♣Li) using experi-236

mental data is by calculating the correlation between Lb and237

Ld in the small interval (Li − dL, Li + dL). We do not use238

this method because the number of data points of Lb and239

Ld corresponding to each interval in the available datasets is240

too small making the conditional correlations hard to inter-241

pret (see Supplementary Figure 5). In order to obtain the242

conditional correlation, we will instead remove the inĆuence243

of Li from Lb and Ld using linear regression. To that end,244

we assume linear dependence of Lb and Ld on Li. The linear245

relations can be rationalized as Taylor expansions around the246

mean of the non-linear relations between Lb and Li, and Ld247

and Li. The residuals obtained upon carrying out the linear248

regression of Lb on Li (Lb♣Li) and Ld on Li (Ld♣Li) represent249

the effect of sources other than Li on Lb and Ld, respectively.250

The correlation r(Lb, Ld♣Li) is calculated by obtaining the251

Pearson correlation coefficient between the residuals Lb♣Li252

and Ld♣Li (see Materials and Methods, (27)). In this method253

of calculating the conditional correlation, we use the complete254

dataset available for each growth medium. Note that when we255

refer to conditional correlations as vanishing throughout the256

paper we mean that the Pearson correlation coefficient is not257

statistically signiĄcant when using a p-value as the metric at258

a signiĄcance level of 0.05.259

Next, we use the experimental data to test whether260

r(Lb, Ld♣Li) is zero or not. We plot the residuals obtained us- 261

ing linear regression of Ld on Li (Ld♣Li) and Lb on Li (Lb♣Li). 262

We Ąnd the correlation coefficients between the residuals to 263

be negligible for the two slowest growth media (Figure 3D and 264

Supplementary Figure 1A) and non-zero for the other growth 265

conditions (Figure 3E and Supplementary Figures 1B-1D). 266

Thus, graph 3A is consistent with the data in the two slowest 267

growth conditions while the model in graph 3B is consistent 268

with data in the faster growth conditions. The correlations 269

are tabulated for each growth medium in Table S2. Account- 270

ing for possible outliers in the data (keeping the middle 95% 271

percentile data of both axes), we Ąnd the p-value to be above 272

signiĄcance level of 0.05 in the three slowest growth condition 273

(Supplementary Figure 1E). This Ąnding is still in agreement 274

with the hypothesis of the replication process becoming more 275

limiting for determining division in slower growth conditions. 276

We also checked whether growth rate λ = 1
Td

ln( Ld

Lb
) affected 277

the correlations between the residuals. The correlation coeffi- 278

cients between the residuals obtained using linear regression of 279

Ld on Li and λ (Ld♣(Li, λ)) and Lb on Li and λ (Lb♣(Li, λ)) 280

are shown in Table S2. We still Ąnd the correlations to be close 281

to zero for the two slowest growth conditions and non-zero for 282

the others. We also analyzed previously published datasets 283

(8, 9, 13) and found that they were consistent with a model 284

where both birth and replication processes limit division in 285

fast growth, and replication becomes more limiting in slower 286

growth conditions (Section S5 in SI text). 287

To conclude, in two slowest experimental growth condi- 288

tions, division is solely controlled by replication (consistent 289

with CH/PA models). However, in faster four growth condi- 290

tions, additional processes starting from cell birth also control 291

division (consistent with concurrent processes model). 292

The onset of constriction solely controls the division size. 293

Previous studies propose the start of septum formation at 294

mid-cell as an important checkpoint involved in length control 295

(7, 10). However, most of the previous cell cycle models, 296

including the aforementioned ones, did not explicitly contain 297

this checkpoint, but only considered the division event. In this 298

section, we show that cells exert size control at the start of 299

constriction at mid-cell and the constriction process ultimately 300

culminates in division, without additional regulation on the 301

division timing. We will use cell lengths at birth, the onset of 302

constriction (Ln) and division as a proxy to denote the events. 303

The onset of constriction can be determined by labeling FtsN 304

with a Ćuorescent fusion protein; FtsN is the last known 305

essential component of the E. coli divisome to assemble at the 306

mid-cell before constriction starts (28Ű33). The accumulation 307

of FtsN at the mid-cell thus indicates the start of septum 308

formation, as was validated in Ref. (10). 309

We hypothesize a causal graph based on our prior knowledge 310

about the start of septum formation at mid-cell. Previous 311

works suggest that an accumulation of a threshold amount of 312

cell division proteins such as FtsZ (8), or cell wall precursors 313

(7) starting from birth is responsible for triggering constriction 314

at mid-cell. For both scenarios and assuming also a balanced 315

growth, we expect Ln = Lb + ∆bn + ξ, where ∆bn is the size 316

added between birth and the onset of constriction and ξ is a 317

size additive noise. This relation is depicted by an arrow from 318

Lb to Ln in the graph of Figure 4A, where the arrow from Ln 319

to Ld represents commitment to division upon the onset of 320

constriction. A competing model is shown in Figure 4B, where 321
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Fig. 3. Causal graphs and CI tests linking birth, initi-

ation and division: A. A causal graph linking lengths at
birth (Lb), initiation (Li) and division (Ld). In this graph,
the replication initiation controls the division event. We
predict r(Lb, Ld♣Li) =0 for the graph. B. Both birth and
initiation simultaneously control the division event. We
predict r(Lb, Ld♣Li) ̸= 0 for the graph. C. A graph cor-
responding to the independent adder (IA) model. Here, the
division process is independent of the replication process.
Lb and Ld are uncorrelated from Li. D-E. Residuals
obtained on linear regression of Ld on Li (Ld♣Li) and
Lb on Li (Lb♣Li) are plotted for data from Ref. (10)
in D. Alanine medium (generation time = 213 min, N =
215 cells, average number of origins at birth, ⟨nori⟩ =
1.07). E. Glucose medium (generation time = 113 min, N
= 259 cells, ⟨nori⟩ = 1.98). The conditional correlation,
r(Lb, Ld♣Li) is negligible for the alanine medium (con-
sistent with graph 3A) while it is non-zero for the glucose
medium (consistent with graph 3B). In Figures 3D-3E, the
blue dots represent the raw data, the red dots the binned
data and the yellow line the best linear fit. r is the Pearson
correlation coefficient between the variables in the x and
y axes. p in the plots are the p-values. We reject the null
hypothesis that the correlation is zero if the p-value is less
the significance level set at 0.05.

in addition to the onset of constriction, another biochemical322

process starting at cell birth is limiting for the division event323

(for example, the accumulation of another key protein).324

We expect that the variables Lb, Ln and Ld will be cor-325

related with each other for both graphs 4A and 4B. This is326

because Ln shares a cause and effect relationship with Ld327

and Lb, respectively. This is indeed what we observe in the328

experimental data for all six growth media as shown in Ta-329

ble S3. Note that the relation between birth and the onset330

of constriction deviated from an adder model in all growth331

conditions.332

Next, we test the predictions of conditional independence333

obtained by applying d-separation on the graphs in Figure 4A334

and 4B. For the graph in Figure 4A, we predict r(Lb, Ld♣Ln)335

= 0 using d-separation while for Figure 4B, r(Lb, Ld♣Ln) is336

non-zero. To test these predictions, we Ąnd the correlation337

between the residuals obtained on linear regression of Lb on338

Ln (denoted as Lb♣Ln) and Ld on Ln (Ld♣Ln). The plots of339

the residuals are shown in Figure 4C and Figure 4D for cells340

growing in a slow growth medium (alanine, generation time341

= 213 min) and a fast growth medium (glucose, generation342

time = 113 min), respectively. In Figures 4C-4D, we show the343

correlation between the residuals to be close to zero. Similar344

negligible correlations are also obtained for four other growth345

media as shown in Supplementary Figures 2A-2D and Table346

S3 with the corresponding p-values (Supplementary Figure347

2E) above the signiĄcance level. Thus, the graph in Figure 4A348

is consistent with the experimental data.349

These results show that the onset of constriction can be350

regarded as a cell cycle checkpoint that solely controls the cell351

size at division without any additional cues from cell birth. 352

Cell cycle model involving the onset of constriction. In the 353

previous section, we veriĄed that the onset of constriction can 354

be regarded as a cell cycle checkpoint. Previously, we showed 355

that replication controls division in slow-growth conditions 356

and is one of the factors controlling division in fast growth 357

conditions. In this section, we combine these two results into a 358

single, coherent model and discuss models where replication is 359

coupled to constriction (which, in turn, is coupled to division). 360

To this end, we adapt the cell cycle models of graphs 3A 361

and 3B by hypothesizing that birth size and replication initi- 362

ation size control the size at onset of constriction instead of 363

division size. The graph in Figure 5A corresponds to a model 364

where initiation controls constriction (arrow from Li to Ln). 365

Such a control may be exerted by nucleoid occlusion, whereby 366

a chromosome blocks the formation of FtsZ ring via DNA 367

binding proteins(34) or sterically (35). Within this model, 368

constriction may start when the chromosome segregation is 369

underway, lowering the DNA density at the mid-cell and reliev- 370

ing the effects of nucleoid occlusion (10). Since termination 371

of DNA replication follows causally from initiation, within 372

the graph we may depict this mechanism by an arrow from 373

initiation of DNA replication to constriction. Thus, a limit- 374

ing factor that controls the start of constriction may be the 375

start of DNA replication (Figure 5A). A competing model 376

is shown in graph 5B where the size at onset of constriction 377

is simultaneously controlled by birth size (arrow from Lb to 378

Ln) and initiation size (arrow from Li to Ln). In this model, 379

accumulation of division proteins and nucleoid occlusion may 380
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Fig. 4. Linking birth, onset of constriction and division:

A. A causal graph linking the length at birth (Lb), onset of
constriction (Ln) and division (Ld). In this graph, division
is solely controlled by the onset of constriction. We predict
that r(Lb, Ld♣Ln) =0 for the graph. B. A causal graph
where multiple processes - from birth and from the onset
of constriction control division. We predict a non-zero
r(Lb, Ld♣Ln) for the graph. C-D. Residuals obtained on
linear regression of Ld on Ln (Ld♣Ln) and Lb on Ln

(Lb♣Ln) are plotted for C. Alanine medium (generation
time = 213 min, N = 215 cells, ⟨nori⟩ = 1.07). D. Glucose
medium (generation time = 113 min, N = 259 cells, ⟨nori⟩

= 1.98). The conditional correlations, r(Lb, Ld♣Ln) are
close to zero for both of the growth conditions (consistent
with graph 4A).

both play a limiting role on start of constriction (10). Based381

on the results in the previous section, constriction culminates382

in division. This is shown as arrows from Ln to Ld in Figures383

5A and 5B.384

Both models predict that Li and Ln will generally be cor-385

related (in contrast to models where protein accumulation386

from birth triggers constriction, independently of DNA repli-387

cation processes). We indeed Ąnd them to be correlated in388

experimental data in all 6 growth conditions (Table S4). Next,389

we use d-separation to predict correlations and conditional390

correlations between the cell cycle variables in graphs 5A and391

5B. Graph 5A predicts Lb and Ln to be uncorrelated when392

conditioned upon Li, while graph 5B predicts them to be393

correlated. To test these predictions, we plot the residuals394

Ln♣Li and Lb♣Li in Figures 5C-5D, Supplementary Figures 3A-395

3D. We Ąnd the correlations between the residuals to be zero396

for the two slowest growth conditions while it is non-zero for397

other growth conditions (see p-values in Supplementary Figure398

3E). We also considered the correlations r(Lb, Ln♣(Li, λ)) to399

control for the effects of growth rate. The results obtained400

are similar to that shown in Figures 5C-5D, Supplementary401

Figures 3A-3D. Thus, we Ąnd graph 5A to be consistent with402

data in the two slowest growth conditions while graph 5B to403

be consistent with data in faster growth conditions.404

Next, we show that our predictions of correlations and405

conditional correlations using graphs 5A-5B are in agreement406

with the conditional correlations discussed in the previous407

sections. Graph 5A predicts r(Lb, Ld♣Li) to be zero, while408

graph 5B predicts a non-zero correlation. These predictions409

are identical to those of graphs 3A and 3B, respectively. As410

previously discussed, r(Lb, Ld♣Li) is non-zero in the four faster 411

growth conditions while it is zero in the two slowest growth 412

conditions. Thus, we again Ąnd graph 5A to be consistent 413

with the two slower growth conditions while graph 5B is 414

consistent with the other four growth conditions. We also 415

showed that r(Lb, Ld♣Ln) = 0 in the experiments for all growth 416

conditions. This is consistent with our predictions obtained 417

using d-separation for both graphs 5A and 5B. 418

To probe the molecular mechanisms that might be involved 419

in coupling of the replication cycle to the division cycle, we 420

used mutants that lack proteins which link the replication and 421

division processes. The ∆zapA, ∆zapB, ∆matP , ∆slmA, 422

FtsK K997A and ∆minC mutants were grown in M9 glyc- 423

erol+trace elements medium (Td = 148 min in wildtype cells 424

(WT)) (10). In this growth condition, our analysis indicated 425

the onset of constriction is controlled by two concurrent path- 426

ways (graph 5B). If these proteins were to mediate the coupling 427

between the replication processes and the onset of constriction 428

then on removing these proteins in the mutants, we expect 429

the correlation between initiation and the onset of constric- 430

tion upon conditioning on birth to be zero. However, we Ąnd 431

that the correlation r(Li, Ln♣Lb) in both the WT and mutants 432

is non-zero except in the Min mutants which undergo polar 433

divisions (see Section S6 in SI text). One possible explanation 434

for the difference in the correlation r(Li, Ln♣Lb) between cells 435

undergoing mid-cell and polar divisions in the Min mutants is 436

nucleoid occlusion as proposed previously in this section and in 437

Ref (10). According to this idea, nucleoid density at mid-cell 438

blocks the formation of the Z-ring until the later stages of the 439

replication process, thus, coupling replication and the onset 440
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Fig. 5. Cell cycle regulation model: A. A causal graph
linking the lengths at birth (Lb), initiation (Li), onset of
constriction (Ln) and division (Ld). In this graph, con-
striction is controlled by the DNA replication process. We
predict r(Lb, Ln♣Li) = 0 for the graph. B. A causal graph
in which the size at the onset of constriction is simultane-
ously controlled by the birth size and the initiation size.
We predict a non-zero r(Lb, Ln♣Li) for the graph. C-

D. Residuals obtained on linear regression of Ln on Li

(Ln♣Li) and Lb on Li (Lb♣Li) are plotted for C. Ala-
nine medium (generation time = 213 min, N = 215 cells,
⟨nori⟩ = 1.07). D. Glucose medium (generation time =
113 min, N = 259 cells, ⟨nori⟩ = 1.98). The conditional
correlation, r(Lb, Ln♣Li) is close to zero for the alanine
medium (consistent with graph 5A) while it is non-zero for
the glucose medium (consistent with graph 5B).

of constriction while polar divisions are not inhibited by such441

factors and they can happen independently of replication, thus,442

leading to a lack of causal link between replication and the443

onset of constriction.444

To conclude, we showed that in slow-growth conditions445

replication initiation controls the onset of constriction and446

hence, division, while in fast growth conditions there are447

additional limiting factors.448

Initiation is not solely controlled by initiation in the previous449

cell cycle. So far, we have discussed the control of the division450

cycle and the link between the replication and division cycle. A451

question that arises is what controls the replication cycle. The452

main events in the DNA replication cycle are the initiation and453

termination of replication. As we discussed earlier, previous454

works suggested that the initiation happens via an adder per455

origin model (8, 9, 11, 16, 36). In the model, the initiation size456

per origin of the daughter cell (Li+1) is related to the initiation457

size per origin of the current cell cycle (Li) as Li+1 = Li+∆ii

2
+458

ξ, and r(Li, Li+1) is expected to be 0.5. The experimental459

data analyzed show the correlation to be close to 0.5 (Table460

S7).461

We also include replication termination in our model. Pre-462

vious analysis suggests termination occurs after a constant463

time from initiation (the C period) (11, 14), consistent with a464

constant speed of the replication forks as observed in single-465

molecule experiments (37, 38). We include this prior knowl-466

edge in graph 6A as a causal link between initiation and467

termination, where we denote the length at termination of468

DNA replication as Lt. Li, Lt and Li+1 are correlated with469

each other in graph 6A. These predictions are consistent with 470

the correlations in experimental data for all six growth condi- 471

tions (Table S7). Furthermore, we predict that Lt and Li+1 472

will be uncorrelated upon conditioning on Li in graph 6A. 473

However, we Ąnd that r(Lt, Li+1♣Li) is non-zero in all growth 474

conditions (Figures 6C-6D, Supplementary Figures 4A-4E, Ta- 475

ble S7). In fact, this result is consistent with a model proposed 476

in graph 6B which assumes that initiation in the daughter cell 477

is also controlled by termination along with initiation in the 478

current cell cycle. We predict using d-separation on graph 479

6B that r(Li, Li+1♣Lt) is non-zero which is consistent with 480

our experiments. Graph 6B was also consistent with the data 481

published in Ref (13) (Section S5 in SI text). 482

To further test the model proposed in graph 6B, we use 483

data from cells whose C period was longer as compared to 484

the WT cells (10). This was achieved by deleting thyA and 485

controlling the amount of thymine in the growth medium (39). 486

∆thyA cells grown in thymine concentrations of 500 µg/mL 487

at 28°C in glycerol + trace elements medium had identical 488

replication period as WT cells. However, on decreasing the 489

concentration to 15 µg/mL, the C period showed a step- 490

wise increase by approximately 40% (10). An increase in 491

the C period may lead to termination in the current cell 492

cycle happening after the initiation for the next cell cycle 493

has started. Such a temporal order will violate the model 494

presented in graph 6B where termination is a cause of initiation 495

in daughter cells. The variation in timings at termination 496

(Trt), division (Td) and initiation for the next cell cycle (Ti+1) 497

are shown in Figure 6E for the ∆thyA strain. Time t=0 on 498

the x-axis corresponds to the time when cells were shifted to 499
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Fig. 6. Control of replication initiation: A. A causal
graph linking the lengths at initiation per origin (Li), ter-
mination (Lt) and the lengths at initiation per origin in the
daughter cells (Li+1). In this graph, the initiation in the
daughter cells is solely controlled by initiation in the current
cell cycle. We predict r(Lt, Li+1♣Li) =0 for the graph.
B. A causal graph in which the initiation in the daughter
cells is controlled simultaneously by initiation and termi-
nation in the current cell cycle. We predict a non-zero
r(Lt, Li+1♣Li) for the graph. C-D. Residuals obtained
on linear regression of Li+1 on Li (Li+1♣Li) and Lt on
Li (Lt♣Li) are plotted for C. Alanine medium (generation
time = 212 min, N = 167 cells, ⟨nori⟩ = 1.08). D. Glucose
medium (generation time = 112 min, N = 255 cells, ⟨nori⟩

= 1.98). The conditional correlation, r(Lt, Li+1♣Li) is
non-zero for both alanine and glucose media (consistent
with graph 6B). E-F. ∆thyA cells are grown in a thymine
concentration of 500 µg/mL in M9 glycerol+trace ele-
ments medium at 28°C. The cells are then shifted to a
thymine concentration of 15 µg/mL. Upon shifting to
a lower thymine concentration, the C period of the cells
increases. We measure the timings at the termination of
DNA replication (Trt) and the DNA replication initiation for
the next cell cycle (Ti+1) in multiple cells throughout the
experiment (both before and after the shift). E. Variation
of timing (relative to cell birth) of termination, initiation for
next cell cycle and division is plotted. We show the binned
data where the cell events’ timings are averaged in each
bin based on the time when cell divides (x-axis). Time
t=0 in x axis represents the time when cells are shifted to
the lower thymine concentration. F. We plot the distribu-
tion of Ti+1 − Trt timings for all cells measured in the
experiment.

15 µg/mL thymine concentration. Strikingly, we Ąnd at the500

single-cell level that only few cells have the time Ti+1 −Trt ≤ 0501

and it is always greater than -6 min (Figure 6F). Since the502

measurement interval is 4 min, an error in the measurement503

of the initiation and termination events by one time frame can504

lead to a minimum time difference Ti+1 − Trt = -8 min even505

though the events coincide. Thus, the data is consistent with506

the temporal ordering of events in graph 6B even when the507

replication timings are perturbed. We note that graph 6B is508

unlikely to apply to faster growth conditions where overlapping509

rounds of replication have been reported (14, 40).510

To conclude, we rule out the model in which initiation in511

the next cycle is controlled solely by initiation in the current512

cycle, showing that control over replication initiation is more513

complex than previously thought.514

Discussion515

In the paper, we make use of causal inference i.e., conditional516

independence tests, to interrogate cell cycle models. An ideal517

cell-cycle model should be able to reproduce the joint prob-518

ability density of all cell cycle variables measured. Since the519

amount of data collected is Ąnite, previous cell cycle model-520

ing studies have relied on using certain correlations (or lack521

of correlations) between cell cycle variables to hypothesize522

models (6, 8, 9, 13, 17, 23, 41). The model simulations are523

then compared to experiments using speciĄc correlations. The524

model which agrees the most with these chosen correlations525

is accepted as the underlying model. However, multiple mod-526

els having different causal structures can agree with these527

limited correlations making it difficult to choose a particular528

causal model (20). Conditional independence tests allow us 529

to reject models in a robust manner that do not depend on 530

the Ąne-tuned details of the models but instead only relies 531

on the structure of the causal network (i.e., which variables 532

control which other variables). The framework relies on test- 533

ing whether conditional correlations are zero or not - without 534

resorting to their precise numerical values. 535

Our goal was to test several models previously proposed 536

for the bacterial cell cycle ranging from models in which DNA 537

replication was assumed to control cell division to models 538

where DNA replication cycles are independent of the cell 539

division cycles (and a class of models interpolating the two, in 540

which division couples not only to DNA replication but also 541

to additional cues). Note that, generally, this framework of 542

causal inference cannot determine the model structure de novo 543

but rather allows us (in certain cases) to rule out particular 544

models. 545

After validating our method on synthetic data, we used 546

causal inference methods on recently obtained data measur- 547

ing key cell cycle variables (length and time of cell birth and 548

division, initiation and termination of DNA replication and 549

constriction of the division ring) (10). We found that our 550

data agreed with replication being the sole limiting factor 551

for division in the two slowest growth conditions (Figure 3D, 552

Supplementary Figure 1A). In faster growth conditions, the 553

data agreed with a model in which birth size and replica- 554

tion initiation size both controlled division size (Figure 3E, 555

Supplementary Figures 1B-1D). 556

Although the onset of constriction has not been included in 557

previous cell cycle models, it can be expected to be an essential 558
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Fig. 7. Schematics of the proposed cell cycle model: In
slow growth conditions, replication related processes, pos-
sibly nucleoid occlusion, limits the onset of constriction.
In fast growth conditions, additional processes such as
accumulation of cell division proteins, FtsZ or cell wall
precursors, might also control the onset of constriction in-
dependent of replication. Finally, the constriction process
culminates in the division event. The start of the replication
cycle is controlled by the replication initiation event in the
previous cell cycle as well as an additional cue which is
linked with the termination event.

cell cycle checkpoint in E. coli. We tested this idea using559

conditional correlations. We Ąnd the conditional correlations560

between birth and division lengths to be zero when conditioned561

on constriction length (Figures 4C-4D, Supplementary Figures562

2A-2D). Note that we condition on the length at the start of563

constriction because of availability of data at that time point.564

However, a biochemical reaction leading to onset of constriction565

may occur at some prior time close to the start of constriction566

(with lengths highly correlated with Ln) which may result567

in zero r(Lb, Ld♣Ln). For example, the incorporation of one568

of the many proteins in the Z ring can be the limiting step.569

Once the protein is incorporated to form the Z ring, the570

constriction starts after a small time delay. The existing571

data is not sufficient to distinguish these molecular steps572

yet. Regardless of the nature of the biochemical processes,573

our analysis conĄrms that onset of constriction controls cell574

cycle progression from birth to division. Thus, including the575

constriction event into the cell cycle is important for theoretical576

and experimental studies involving cell cycle regulation.577

Combining these two results led us to envision a coarse-578

grained model for cell size regulation in which the constriction579

event is controlled by the DNA replication process alone in580

slow growth. In fast growth, the onset of constriction must581

be controlled by additional regulatory processes linked to cell582

birth and not controlling DNA replication initiation. In all583

growth conditions division is downstream of the onset of con-584

striction (Figure 7). We corroborated the model predictions585

for the conditional correlation r(Lb, Ln♣Li), predicted to be586

zero in slow growth conditions (Figure 5C, Supplementary587

Figure 3A) and non-zero in fast growth (Figure 5D, Supple-588

mentary Figures 3B-3D). An appealing molecular mechanism 589

that explains the causal control of replication initiation over 590

the onset of constriction is that of nucleoid occlusion, in which 591

septum formation is blocked by a replicating nucleoid (34). 592

The nucleoid occlusion or absence thereof at the cell poles 593

explains the lack of correlations between replication and con- 594

striction in Min mutants undergoing polar divisions. Previous 595

work also showed that in slow growth conditions increasing the 596

DNA replication time, using mutants where external thymine 597

levels determine the C period, delays the start of constric- 598

tion (10). In both the wild-type and the thymine mutants, 599

the constriction process does not start until the DNA den- 600

sity at the mid-cell has decreased. In fast growth conditions, 601

replication is not the sole limiting process, as evidenced by 602

the non-vanishing conditional correlations. One possible ad- 603

ditional mechanism is the accumulation of division proteins 604

such as FtsZ (8), or cell wall precursors (7) that controls the 605

trigger for constriction. The cell cycle regulation model dis- 606

cussed here are in agreement with the models proposed using 607

correlations between the timings of different cell cycle events 608

in Ref (10). Our analysis of data in Ref (6, 8, 9, 13) as well the 609

analysis in Ref (13) itself are consistent with a model where 610

the replication process becomes more limiting for determining 611

division in the slower growth conditions. 612

We also studied the DNA replication cycle using the CI 613

methodology. It has been suggested that accumulation of a 614

threshold amount of the initiator protein DnaA in its ATP 615

bound form is needed to initiate DNA replication (42, 43). 616

The accumulation starts from the previous initiation and the 617

initiation size of the previous replication cycle controls the 618
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initiation size in the current replication cycle via an adder per619

origin model (9, 11, 12, 44). Furthermore, the termination620

of DNA replication happens after a C period elapses since621

the initiation (14). The adder per origin model predicts that622

r(Li, Li+1) = 0.5. The correlations r(Li, Li+1) reported in623

previous studies (8, 9) and observed in the experiments ana-624

lyzed in this paper are close to 0.5, thus, lending support to an625

adder per origin model. However, such a model (Figure 6A)626

would also predict that the correlation between initiation in the627

daughter cell and termination event when conditioned upon628

the initiation event in the current cell cycle is zero. We Ąnd629

the conditional correlations to be non-zero in all six growth630

conditions (Figures 6C-6D, Supplementary Figures 4A-4D).631

This agrees with the graph shown in Figure 6B which suggests632

a more complicated model than previously thought. The cur-633

rent assumption is that DnaA accumulation triggers initiation.634

However, the availability of DnaA to initiate the next round of635

replication is not dependent on termination. One possibility is636

that replisome components other than DnaA are limiting for637

replication initiation. Note that, in our paper, the validity of638

these results are tested at growth rates that do not necessitate639

overlapping rounds of replication forks (doubling times less640

than the C period).641

The termination event was used for the conditional correla-642

tion analysis because of its availability from the experiments643

(10). However, we cannot rule out the possibility that other644

events (correlated with termination) instead of termination in645

graph 6B could also predict a non-zero correlation between Lt646

and Li+1 upon conditioning on Li. However, such an event647

cannot be cell division. The data from almost all available648

growth conditions studied in the paper show that at least some649

initiation events can precede cell division. Such time ordering650

violates the causality principle. Furthermore, replication ini-651

tiation can start without any division in Ąlamentous E. coli652

cells (45). The presence of more than a single initiation event653

per cell cycle was also the basis for rejecting a cell cycle model654

called the sequential adder, containing an adder from birth to655

initiation and another from initiation to division (15).656

A possible alternative event for termination controlling the657

next initiation can be related to some replication-dependent658

conformational change within the nucleoid. It has been hy-659

pothesized that nucleoid tethered to the midcell (called the660

progression control complex or the PCC) inhibits both the661

onset of constriction and the next initiation (46). Once the662

cell has completed certain growth requirements, the PCC un-663

dergoes conformational changes permitting the next initiation664

and constriction formation to occur. These conformational665

changes could potentially happen at termination or close to it.666

If this hypothesis is correct, termination and the next initia-667

tion would be correlated upon conditioning on the initiation668

of the current cell cycle and as such this scenario will be able669

to explain the data.670

It remains for future studies to determine at which growth671

rates the next initiation becomes uncorrelated from the pre-672

vious termination event. The future studies can also identify673

if some conformational change in the nucleoid precedes the674

initiation or if there is some rate-limiting component beyond675

DnaA that controls the initiation. In the latter experiments,676

up regulation of the limiting component could shift initiation677

earlier and lead to disappearance of correlations.678

To conclude, our analysis leads to a new cell cycle model in679

E. coli linking division and replication cycles, which extends 680

the previously developed concurrent processes model (Figure 681

7). To come to this result, we used a versatile method of infer- 682

ence involving conditional independence tests. The technique 683

may prove useful in analyzing and critically testing cell cycle 684

models also in other organisms. 685

Materials and Methods 686

Obtaining conditional correlations. The method used to calculate 687

conditional correlations throughout the paper was introduced in 688

Results section. In this section, we discuss the method from a 689

mathematical perspective. 690

Our aim is to calculate the correlation between variables A 691

and B when conditioned upon variables X = {X1, X2, X3..., Xn}. 692

Here, X is a set of n variables which are being conditioned upon. 693

Conditional correlation when conditioned upon X means Ąnding the 694

correlation on Ąxing the values of all variables in the set X. Fixing 695

X would remove the effects of variability in X on other variables. 696

We use a method based on partial regression to calculate the 697

conditional correlation (47). To achieve this, we try to Ąnd the 698

effect of X on variables A and B. The random variables A, B and 699

X will correspond to cell lengths at various events in the manuscript. 700

Since cell lengths are narrowly distributed about their means, we 701

need to know the dependence/effects of X on A and B around their 702

means. Hence, we can Taylor expand the non-linear dependence of 703

A, and B on X around the means and consider terms to Ąrst order. 704

We represent it as, 705

A =

n∑

i=1

aiXi + η, [1] 706

707

B =

n∑

i=1

biXi + ξ. [2] 708

ais and bis are calculated by multiple linear regression of A on 709

X and B on X, respectively. η and ξ capture the effects on A 710

and B, respectively, from sources other than X i.e., they represent 711

variability in A and B on removing the effects of X. η and ξ are 712

therefore the residuals obtained from the multiple linear regression 713

of A on X and B on X, respectively. The conditional correlation 714

between A and B when conditioned upon X (denoted as r(A, B|X)) 715

is obtained by Ąnding the Pearson correlation coefficient between 716

the residuals η and ξ. 717

ACKNOWLEDGMENTS. The authors thank Daniel Needleman, 718

Jane Kondev, Hanna Salman, Aleksandra Walczak, Marco Cosentino 719

Lagomarsino, and Sven van Teeffelen for the useful discussions and 720

feedback on the manuscript. This work has been supported by the 721

US-Israel BSF research grant 2017004 (JM), the National Institutes 722

of Health award under R01GM127413 (JM), NSF CAREER 1752024 723

(AA), NIH grant 103346 (AA) and NSF award 1806818 (PK). 724

1. L Willis, KC Huang, Sizing up the bacterial cell cycle. Nat. Rev. Microbiol. 15, 606±620 (2017). 725

2. PY Ho, J Lin, A Amir, Modeling cell size regulation: From single-cell-level statistics to molecular 726

mechanisms and population-level effects. Annu. Rev. Biophys. 47, 251±271 (2018). 727

3. S Jun, F Si, R Pugatch, M Scott, Fundamental principles in bacterial physiologyÐhistory, 728

recent progress, and the future with focus on cell size control: a review. Reports on Prog. 729

Phys. 81, 056601 (2018). 730

4. P Wang, et al., Robust growth of Escherichia coli. Curr. Biol. 20, 1099±1103 (2010). 731

5. M Campos, et al., A constant size extension drives bacterial cell size homeostasis. Cell 159, 732

1433±1446 (2014). 733

6. M Wallden, D Fange, EG Lundius, Ö Baltekin, J Elf, The synchronization of replication and 734

division cycles in individual E. coli cells. Cell 166, 729±739 (2016). 735

7. LK Harris, JA Theriot, Relative rates of surface and volume synthesis set bacterial cell size. 736

Cell 165, 1479±1492 (2016). 737

8. F Si, et al., Mechanistic origin of cell-size control and homeostasis in bacteria. Curr. Biol. 29, 738

1760±1770 (2019). 739

9. G Witz, E van Nimwegen, T Julou, Initiation of chromosome replication controls both division 740

and replication cycles in E. coli through a double-adder mechanism. eLife 8, e48063 (2019). 741

10. S Tiruvadi-Krishnan, et al., Coupling between DNA replication, segregation, and the onset of 742

constriction in Escherichia coli. Cell Reports 38, 110539 (2022). 743

11. PY Ho, A Amir, Simultaneous regulation of cell size and chromosome replication in bacteria. 744

Front. Microbiol. 6, 662 (2015). 745

10 | Kar et al.



12. M Berger, PRt Wolde, Replication initiation in E. coli is regulated via an origin-density sensor746

generating adder correlations. arXiv preprint arXiv:2106.03674 (2021).747

13. A Colin, G Micali, L Faure, MC Lagomarsino, S van Teeffelen, Two different cell-cycle processes748

determine the timing of cell division in Escherichia coli. eLife 10, e67495 (2021).749

14. S Cooper, CE Helmstetter, Chromosome replication and the division cycle of Escherichia coli750

br. J. Mol. Biol. 31, 519±540 (1968).751

15. MM Logsdon, et al., A parallel adder coordinates mycobacterial cell-cycle progression and752

cell-size homeostasis in the context of asymmetric growth and organization. Curr. Biol. 27,753

3367±3374 (2017).754

16. G Micali, J Grilli, M Osella, MC Lagomarsino, Concurrent processes set E. coli cell division.755

Sci. Adv. 4, eaau3324 (2018).756

17. G Micali, J Grilli, J Marchi, M Osella, MC Lagomarsino, Dissecting the control mechanisms for757

DNA replication and cell division in E. coli. Cell Reports 25, 761±771 (2018).758

18. G Le Treut, F Si, D Li, S Jun, Comment on ‘Initiation of chromosome replication controls both759

division and replication cycles in E. coli through a double-adder mechanism’. bioRxiv (2020).760

19. G Witz, T Julou, E van Nimwegen, Response to comment on ‘Initiation of chromosome761

replication controls both division and replication cycles in E. coli through a double-adder762

mechanism’. bioRxiv (2020).763

20. G Le Treut, F Si, D Li, S Jun, Quantitative examination of five stochastic cell-cycle and cell-size764

control models for Escherichia coli and Bacillus subtilis. Front. Microbiol. p. 3278 (2021).765

21. J Pearl, Causality. (Cambridge university press), (2009).766

22. SL Herendeen, RA VanBogelen, FC Neidhardt, Levels of major proteins of Escherichia coli767

during growth at different temperatures. J. Bacteriol. 139, 185±194 (1979).768

23. A Amir, Cell size regulation in bacteria. Phys. Rev. Lett. 112, 208102 (2014).769

24. J Peters, D Janzing, B Schölkopf, Elements of Causal Inference: Foundations and Learning770

Algorithms. (The MIT Press), (2017).771

25. P Kar, S Tiruvadi-Krishnan, J Männik, J Männik, A Amir, Distinguishing different modes of772

growth using single-cell data. eLife 10, e72565 (2021).773

26. S Taheri-Araghi, et al., Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385±391774

(2015).775

27. JP Guilford, Fundamental Statistics in Psychology and Education. (McGraw-Hill), (1950).776

28. DS Weiss, Last but not least: new insights into how FtsN triggers constriction during Es-777

cherichia coli cell division. Mol. Microbiol. 95, 903±909 (2015).778

29. B Liu, L Persons, L Lee, PA de Boer, Roles for both FtsA and the FtsBLQ subcomplex in779

FtsN-stimulated cell constriction in Escherichia coli. Mol. Microbiol. 95, 945±970 (2015).780

30. DP Haeusser, W Margolin, Splitsville: structural and functional insights into the dynamic781

bacterial Z ring. Nat. Rev. Microbiol. 14, 305±319 (2016).782

31. DO Daley, U Skoglund, B Söderström, FtsZ does not initiate membrane constriction at the783

onset of division. Sci. Reports 6, 1±6 (2016).784

32. S Du, J Lutkenhaus, At the heart of bacterial cytokinesis: The Z ring. Trends Microbiol. 27,785

781±791 (2019).786

33. A Boes, S Olatunji, E Breukink, M Terrak, Regulation of the peptidoglycan polymerase activity787

of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN. mBio 10,788

e01912±18 (2019).789

34. LJ Wu, J Errington, Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 10,790

8±12 (2012).791

35. CL Woldringh, The role of co-transcriptional translation and protein translocation (transertion)792

in bacterial chromosome segregation. Mol. Microbiol. 45, 17±29 (2002).793

36. H Zheng, et al., Interrogating the Escherichia coli cell cycle by cell dimension perturbations.794

Proc. Natl. Acad. Sci. 113, 15000±15005 (2016).795

37. NA Tanner, et al., Real-time single-molecule observation of rolling-circle DNA replication.796

Nucleic Acids Res. 37, e27±e27 (2009).797

38. TM Pham, et al., A single-molecule approach to DNA replication in Escherichia coli cells798

demonstrated that DNA polymerase III is a major determinant of fork speed. Mol. Microbiol.799

90, 584±596 (2013).800

39. R Pritchard, A Zaritsky, Effect of thymine concentration on the replication velocity of DNA in a801

thymineless mutant of Escherichia coli. Nature 226, 126±131 (1970).802

40. M Chandler, R Bird, L Caro, The replication time of the Escherichia coli K12 chromosome as803

a function of cell doubling time. J. Mol. Biol. 94, 127±132 (1975).804

41. I Soifer, L Robert, A Amir, Single-cell analysis of growth in budding yeast and bacteria reveals805

a common size regulation strategy. Curr. Biol. 26, 356±361 (2016).806

42. T Katayama, K Kasho, H Kawakami, The dnaa cycle in Escherichia coli : activation, function807

and inactivation of the initiator protein. Front. Microbiol. 8, 2496 (2017).808

43. R Reyes-Lamothe, DJ Sherratt, The bacterial cell cycle, chromosome inheritance and cell809

growth. Nat. Rev. Microbiol. 17, 467±478 (2019).810

44. F Barber, PY Ho, AW Murray, A Amir, Details matter: noise and model structure set the811

relationship between cell size and cell cycle timing. Front. Cell Dev. Biol. 5, 92 (2017).812

45. I Gelber, A Aranovich, M Feingold, I Fishov, Stochastic nucleoid segregation dynamics as a813

source of the phenotypic variability in E. coli. Biophys. J. 120, 5107±5123 (2021).814

46. NE Kleckner, K Chatzi, MA White, JK Fisher, M Stouf, Coordination of growth, chromosome815

replication/segregation, and cell division in E. coli. Front. Microbiol. 9, 1469 (2018).816

47. MP Allen, Understanding regression analysis. (Springer), (1997).817

Kar et al. PNAS | January 21, 2023 | vol. XXX | no. XX | 11



Using conditional independence tests to1

elucidate causal links in cell cycle regulation in2

Escherichia coli - Supplementary Information3

Prathitha Kar1,2, Sriram Tiruvadi-Krishnan3, Jaana Männik3, Jaan Männik∗3,4

and Ariel Amir²1
5

1School of Engineering and Applied Sciences, Harvard University, Cambridge,6

MA 02134, USA7

2Department of Chemistry and Chemical Biology, Harvard University,8

Cambridge, MA 02138, USA9

3Department of Physics and Astronomy, University of Tennessee, Knoxville,10

TN 37996, USA11

∗Corresponding author- email: jmannik@utk.edu; phone: +1 (865) 974 6018
²Corresponding author- email: arielamir@seas.harvard.edu; phone: +1 (617) 495 5818

1



Supplementary Figures12

13

2



Supplementary Figure 1: Linking birth, initiation and division: A-D. Residuals ob-
tained on linear regression of Ld on Li (Ld|Li) and Lb on Li (Lb|Li) are plotted for A.
Acetate medium (generation time = 660 min, N = 401 cells, average number of origins at
birth, ⟨nori⟩ = 1). B. Mannose medium (generation time = 196 min, N = 298 cells, ⟨nori⟩ =
1.30). C. Glycerol medium (generation time = 165 min, N = 419 cells, ⟨nori⟩ = 1.33). D.
Glycerol+trace elements medium (generation time = 148 min, N = 344 cells, ⟨nori⟩ = 1.60).
The conditional correlation, r(Lb, Ld|Li) is close to zero for the slowest growth condition
(consistent with graph 3A of main text) while the correlations are non-zero for the other
conditions shown here (consistent with graph 3B of main text). E. Using the data in Ref
[S1], we obtain p-values as a function of average doubling time (⟨Td⟩) for the null hypothesis
that the correlation r(Lb, Ld|Li) is zero and an alternate hypothesis that the correlations are
non-zero. Red dots represent the p-values obtained without removing any data points. Blue
represents the p-values obtained after the outliers are removed and the data points which are
in the middle 95% percentiles of both axes are kept. Dotted line represents the signiőcance
level which is set at 0.05.
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Supplementary Figure 2: Linking birth, onset of constriction and division: A-D.
Residuals obtained on linear regression of Ld on Ln (Ld|Ln) and Lb on Ln (Lb|Ln) are
plotted for A. Acetate medium (generation time = 660 min, N = 401 cells, ⟨nori⟩ = 1). B.
Mannose medium (generation time = 195 min, N = 302 cells, ⟨nori⟩ = 1.30). C. Glycerol
medium (generation time = 165 min, N = 420 cells, ⟨nori⟩ = 1.33). D. Glycerol+trace
elements medium (generation time = 148 min, N = 344 cells, ⟨nori⟩ = 1.60). The conditional
correlations, r(Lb, Ld|Ln) are close to zero for all growth conditions (consistent with graph
4A of main text). E. Using the data in Ref [S1], we obtain p-values as a function of average
doubling time (⟨Td⟩) for the null hypothesis that the correlation r(Lb, Ld|Ln) is zero and
an alternate hypothesis that the correlations are non-zero. Red dots represent the p-values
obtained without removing any data points. Blue represents the p-values obtained after the
outliers are removed and the data points which are in the middle 95% percentiles of both
axes are kept. Dotted line represents the signiőcance level which is set at 0.05.
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Supplementary Figure 3: Cell cycle regulation model: A-D. Residuals obtained on
linear regression of Ln on Li (Ln|Li) and Lb on Li (Lb|Li) are plotted for A. Acetate medium
(generation time = 660 min, N = 401 cells, ⟨nori⟩ = 1). B. Mannose medium (generation
time = 196 min, N = 298 cells, ⟨nori⟩ = 1.30). C. Glycerol medium (generation time =
165 min, N = 419 cells, ⟨nori⟩ = 1.33). D. Glycerol+trace elements medium (generation
time = 148 min, N = 344 cells, ⟨nori⟩ = 1.60). The conditional correlation, r(Lb, Ln|Li) is
close to zero for the slowest growth condition (consistent with graph 5A of main text) while
the correlations are non-zero for the other conditions shown here (consistent with graph 5B
of main text). E. Using the data in Ref [S1], we obtain p-values as a function of average
doubling time (⟨Td⟩) for the null hypothesis that the correlation r(Lb, Ln|Li) is zero and
an alternate hypothesis that the correlations are non-zero. Red dots represent the p-values
obtained without removing any data points. Blue represents the p-values obtained after the
outliers are removed and the data points which are in the middle 95% percentiles of both
axes are kept. Dotted line represents the signiőcance level which is set at 0.05.
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Supplementary Figure 4: Control of replication initiation: A-D. Residuals obtained
on linear regression of Li+1 on Li (Li+1|Li) and Lt on Li (Lt|Li) are plotted for A. Acetate
medium (generation time = 650 min, N = 233 cells, ⟨nori⟩ = 1). B. Mannose medium
(generation time = 196 min, N = 146 cells, ⟨nori⟩ = 1.38). C. Glycerol medium (genera-
tion time = 166 min, N = 324 cells, ⟨nori⟩ = 1.35). D. Glycerol+trace elements medium
(generation time = 148 min, N = 320 cells, ⟨nori⟩ = 1.62). The conditional correlations,
r(Lt, Li+1|Li) are non-zero for all growth conditions shown here (consistent with graph 6B
of main text). E. Using the data in Ref [S1], we obtain p-values as a function of average
doubling time (⟨Td⟩) for the null hypothesis that the correlation r(Lt, Li+1|Li) is zero and
an alternate hypothesis that the correlations are non-zero. Red dots represent the p-values
obtained without removing any data points. Blue represents the p-values obtained after the
outliers are removed and the data points which are in the middle 95% percentiles of both
axes are kept. Dotted line represents the signiőcance level which is set at 0.05.
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Supplementary Figure 5: A. Parallel adder model was simulated using parameters obtained
from alanine growth medium in Ref [S1]. The simulations were carried out for a single lineage
of 400 generations. The data was arranged in ascending order based on the initiation length
per origin and divided into 5 subsets with equal number of points in each subset. Each subset
has initiation lengths per origin in a small interval centered around Li. We show the average
initiation length per origin, Li, in each subset in µm. The binned data and best linear őt
for each of the subset is plotted. We őnd that, while most subsets have nearly zero slope
(horizontal best linear őt) in agreement with the parallel adder model (r(Lb, Ld|Li)= 0), the
smallest initiation length per origin subset deviates from a horizontal line. Such discrepancies
make it difficult to narrow down on the model by dividing the datasets into small subsets
and using binning. B. Concurrent processes model was simulated using parameters obtained
from glycerol growth medium in Ref [S1]. The simulations were carried out for a single lineage
of 419 generations. The data was again divided into 5 subsets based on the initiation length
per origin. The binned data and best linear őt for each of the subset is plotted. We show
the average initiation length per origin in each subset in µm. We őnd that all subsets have
a non-zero correlation between Lb and Ld.
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Supplementary Tables17

Media No. of
cells

⟨Td⟩
(min)

⟨nori⟩ (Lb, Ld) (Lb, Li) (Li, Ld)

Acetate 401 660 1 0.48 (0.40,
0.55)

0.63 (0.57,
0.68)

0.73 (0.68,
0.78)

Alanine 215 213 1.07 0.55 (0.45,
0.63)

0.76 (0.69,
0.81)

0.72 (0.65,
0.78)

Mannose 298 196 1.30 0.41 (0.31,
0.50)

0.54 (0.46,
0.62)

0.46 (0.37,
0.55)

Glycerol 419 165 1.33 0.37 (0.29,
0.45)

0.49 (0.41,
0.56)

0.44 (0.36,
0.52)

Glycerol
+trace
elements

344 148 1.60 0.25 (0.15,
0.35)

-0.06
(-0.17,
0.04)

0.37 (0.28,
0.46)

Glucose 259 113 1.98 0.30 (0.18,
0.40)

0.46 (0.36,
0.55)

0.24 (0.12,
0.35)

Table S1: Pearson correlation coefficients along with their 95% conődence intervals (CI) are
shown for six different growth media with generation times, ⟨Td⟩. Correlations are found for
cell length variables corresponding to cell birth (Lb), initiation of DNA replication (Li) and
cell division (Ld) events.
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Media No. of
cells

⟨Td⟩
(min)

⟨nori⟩ (Lb, Ld

|Li)
(Lb, Ld

|(Li, λ))
(Li, Ld

|Lb)
Acetate 401 660 1 0.03 (-0.07,

0.13)
0.03 (-0.07,
0.13)

0.63 (0.57,
0.69)

Alanine 215 213 1.07 0.01 (-0.13,
0.14)

0.03 (-0.11,
0.16)

0.56 (0.46,
0.64)

Mannose 298 196 1.30 0.22 (0.11,
0.32)

0.37 (0.26,
0.46)

0.31 (0.20,
0.41)

Glycerol 419 165 1.33 0.20 (0.10,
0.29)

0.14 (0.05,
0.24)

0.32 (0.24,
0.41)

Glycerol
+trace
elements

344 148 1.60 0.30 (0.20,
0.39)

0.29 (0.19,
0.39)

0.40 (0.31,
0.49)

Glucose 259 113 1.98 0.21 (0.09,
0.33)

0.17 (0.05,
0.29)

0.13 (0,
0.24)

Table S2: Pearson correlation coefficients along with their 95% CI are shown for six differ-
ent growth media. Conditional correlations are found for growth rate (λ), cell birth (Lb),
initiation (Li) and cell division (Ld) events.
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Media No. of
cells

⟨Td⟩
(min)

⟨nori⟩ (Lb, Ld) (Lb, Ln) (Ln, Ld) (Lb, Ld

|Ln)
(Ln, Ld

|Lb)
Acetate 401 660 1 0.48

(0.40,
0.55)

0.50
(0.43,
0.57)

0.85
(0.82,
0.88)

0.10
(0.01,
0.2)

0.81
(0.77,
0.84)

Alanine 215 213 1.07 0.55
(0.45,
0.63)

0.62
(0.53,
0.69)

0.89
(0.86,
0.91)

-0.01
(-0.14,
0.13)

0.84
(0.79,
0.87)

Mannose 302 195 1.30 0.41
(0.31,
0.50)

0.46
(0.37,
0.54)

0.79
(0.74,
0.83)

0.09
(-0.03,
0.2)

0.74
(0.69,
0.79)

Glycerol 420 165 1.33 0.37
(0.28,
0.45)

0.45
(0.37,
0.52)

0.79
(0.75,
0.83)

0.03
(-0.07,
0.12)

0.75
(0.71,
0.79)

Glycerol
+trace
ele-
ments

344 148 1.60 0.25
(0.15,
0.35)

0.29
(0.19,
0.38)

0.75
(0.70,
0.79)

0.06
(-0.05,
0.16)

0.73
(0.68,
0.78)

Glucose 259 113 1.98 0.30
(0.18,
0.40)

0.47
(0.37,
0.56)

0.70
(0.63,
0.76)

-0.06
(-0.18,
0.07)

0.67
(0.59,
0.73)

Table S3: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Correlations and conditional correlations are found for cell length variables
corresponding to cell birth (Lb), onset of constriction (Ln) and cell division (Ld) events.
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Media No. of
cells

⟨Td⟩
(min)

⟨nori⟩ (Li, Ln) (Lb, Ln

|Li)
(Lb, Ln

|(Li, λ))
(Li, Ln

|Lb)
Acetate 401 660 1 0.75

(0.70,
0.79)

0.06
(-0.04,
0.16)

0.06
(-0.04,
0.16)

0.65
(0.59,
0.70)

Alanine 215 213 1.07 0.80
(0.74,
0.84)

0.04
(-0.09,
0.17)

0.05
(-0.09,
0.18)

0.64
(0.55,
0.71)

Mannose 298 196 1.30 0.54
(0.45,
0.61)

0.23
(0.12,
0.34)

0.31
(0.21,
0.41)

0.39
(0.28,
0.48)

Glycerol 419 165 1.33 0.61
(0.55,
0.67)

0.21
(0.11,
0.30)

0.17
(0.07,
0.26)

0.51
(0.43,
0.57)

Glycerol
+trace
elements

344 148 1.60 0.55
(0.47,
0.62)

0.39
(0.30,
0.48)

0.39
(0.29,
0.47)

0.60
(0.52,
0.66)

Glucose 259 113 1.98 0.42
(0.31,
0.51)

0.35
(0.24,
0.45)

0.32
(0.21,
0.43)

0.26
(0.14,
0.37)

Table S4: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Correlations and conditional correlations are found for growth rate (λ), cell
birth (Lb), initiation (Li), and onset of constriction (Ln) events.
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Media No. of
cells

⟨Td⟩
(min)

⟨nori⟩ (Li, Ld

|Ln)
(Ln, Ld

|Lb)
(Ln, Ld

|Li)
Acetate 401 660 1 0.27 (0.18,

0.36)
0.81 (0.77,
0.84)

0.67 (0.62,
0.72)

Alanine 215 213 1.07 0.05 (-0.09,
0.18)

0.84 (0.79,
0.87)

0.75 (0.69,
0.81)

Mannose 298 196 1.30 0.07 (-0.4,
0.18)

0.74 (0.68,
0.79)

0.72 (0.66,
0.77)

Glycerol 419 165 1.33 -0.09 (-0.18,
0.01)

0.76 (0.71,
0.79)

0.74 (0.69,
0.78)

Glycerol
+trace
elements

344 148 1.60 -0.07 (-0.18,
0.03)

0.73 (0.68,
0.78)

0.70 (0.64,
0.75)

Glucose 259 113 1.98 -0.08 (-0.2,
0.04)

0.67 (0.59,
0.73)

0.68 (0.61,
0.74)

Table S5: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Conditional correlations are found for initiation (Li), onset of constriction
(Ln) and cell division (Ld) events.

Media No. of
cells

⟨Td⟩
(min)

⟨nori⟩ (Lb, Ld

|(Li, Ln))
(Li, Ld

|(Lb, Ln))
(Ln, Ld

|(Lb, Li))
Acetate 401 660 1 -0.02 (-0.11,

0.08)
0.25 (0.16,
0.34)

0.67 (0.62,
0.72)

Alanine 215 213 1.07 -0.04 (-0.17,
0.10)

0.06 (-0.07,
0.19)

0.75 (0.69,
0.81)

Mannose 298 196 1.30 0.07 (-0.04,
0.18)

0.04 (-0.08,
0.15)

0.71 (0.65,
0.76)

Glycerol 419 165 1.33 0.07 (-0.03,
0.16)

-0.10 (-0.20,
-0.01)

0.73 (0.68,
0.77)

Glycerol
+trace
elements

344 148 1.60 0.04 (-0.07,
0.14)

-0.06 (-0.16,
0.05)

0.67 (0.60,
0.72)

Glucose 259 113 1.98 -0.03 (-0.15,
0.09)

-0.06 (-0.18,
0.06)

0.66 (0.59,
0.73)

Table S6: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Conditional correlations when conditioned upon two variables are found for
variables involving cell birth (Lb), initiation (Li), onset of constriction (Ln), and cell division
(Ld) events.
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Media No.
of
cells

⟨Td⟩
(min)

⟨nori⟩ (Li, Li+1)(Li, Lt) (Lt, Li+1)(Lt, Li+1

|Li)
(Li, Li+1

|Lt)

Acetate 233 650 1 0.58
(0.49,
0.66)

0.86
(0.82,
0.89)

0.64
(0.55,
0.71)

0.33
(0.21,
0.44)

0.09
(-0.04,
0.22)

Alanine 167 212 1.08 0.64
(0.54,
0.72)

0.88
(0.84,
0.91)

0.67
(0.58,
0.75)

0.30
(0.15,
0.43)

0.14
(-0.02,
0.28)

Mannose 146 196 1.38 0.49
(0.36,
0.61)

0.59
(0.48,
0.69)

0.64
(0.54,
0.73)

0.50
(0.37,
0.62)

0.18
(0.02,
0.33)

Glycerol 324 166 1.35 0.45
(0.36,
0.53)

0.71
(0.65,
0.76)

0.52
(0.43,
0.59)

0.32
(0.21,
0.41)

0.14
(0.03,
0.24)

Glycerol
+trace
ele-
ments

320 148 1.62 0.56
(0.48,
0.63)

0.76
(0.71,
0.80)

0.63
(0.56,
0.70)

0.38
(0.29,
0.47)

0.16
(0.05,
0.27)

Glucose 255 112 1.98 0.55
(0.46,
0.63)

0.65
(0.58,
0.72)

0.55
(0.45,
0.63)

0.29
(0.17,
0.40)

0.31
(0.20,
0.42)

Table S7: Pearson correlation coefficients along with their 95% CI are shown for six different
growth media. Correlations and conditional correlations are found for variables involving
initiation (Li), termination (Lt), and initiation in the next cell cycle (Li+1) events.
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S1 D-separation in the context of cell cycle18

In the main text, we use directed acyclic graphs (DAG) to show causal relations. The edges19

are directed from cause to effect. Two vertices in the graph are connected by a path when20

there is a sequence of distinct vertices with an edge between them. We apply d-separation21

[S2, S3] to DAGs (Figures 3-6 of the main text) to predict correlations and conditional22

correlations. In this section, we will discuss in detail several examples of predicting the23

correlations and conditional correlations using d-separation.24

Consider the graph in Figure 5B of the main text. We will choose two variables and25

check whether they are correlated or not when we condition upon other variables.26

• Lb and Ld - There are two paths between Lb and Ld, path 1 - Lb → Ln → Ld, path 227

- Lb ← Li−1 → Li → Ln → Ld..28

ś Without conditioning - Both paths 1 and 2 are open as there is no collider. So,29

Lb and Ld are d-connected and correlated.30

ś Conditioning on Li - Path 2 is blocked as we conditioned on a non-collider. How-31

ever, path 1 is still open as we are not conditioning on any variables on the path.32

Hence, Lb and Ld are still d-connected and correlated.33

ś Conditioning on Ln - Path 1 and 2 are both blocked as we are conditioning on34

the non-collider Ln. Hence, Lb and Ld are d-separated and uncorrelated.35

ś Conditioning Li and Ln - Path 1 and 2 are both blocked as we are conditioning36

on non-colliders Li and Ln. Hence, Lb and Ld are d-separated and uncorrelated.37

S2 Length is used to denote cell cycle events38

In this section, we will discuss why cell lengths (L) and not the corresponding timings (T )39

are used as a proxy to denote the cell cycle events. We will illustrate this on a concrete40

17



example, and then discuss its generalization.41

Consider events X and Y in the cell cycle, assuming that Y occurs after a constant length42

addition from event X (i.e., we are assuming an adder model). A possible mechanistic mech-43

anism for this phenomenological model is the accumulation of an initiator protein starting44

from X [S4]. We assume that the protein amount (P ) when event X happens is zero and it45

undergoes balanced biosynthesis i.e. dP
dL

is constant. The event Y happens when a threshold46

amount of P has been reached. Mathematically, length at event Y (Ly) is related to length47

at event X (Lx) by,48

Ly = Lx + Lxy + ηxy, (S1)

where Lxy is the average size added between X and Y and ηxy is a size additive noise49

independent of Lx. The DAG for the structural causal model (SCM) in Eq. S1 is shown in50

Figure S1A-1. Assuming exponential growth with rate λ and the adder model, the timing51

of event Y (Ty) is related to Tx and Lx as,52

Ty = Tx +
1

λ
ln(1 +

Lxy + ηxy
Lx

). (S2)

Therefore, we őnd the timing of the event Y is determined by the timing of the event X (Tx)53

and the length at event X (Lx). The timing of the events X and Y have a relation as shown in54

Figure S1A-2 where Tx and Lx both inŕuence when Y happens. If X was also determined by55

an adder, the timing of events (Tx and Ty) are associated with each other via a direct causal56

link as well as through cell lengths (Lx). Thus, graphs involving the timing of events will57

also need to include cell lengths. More generally, the DAGs in Figure S1A are identical when58

the length at Y is determined by a general regulatory mechanism, Ly = αxLx + Lxy + ηxy59

(the adder model for Y corresponds to the particular case αx = 1 [S5]).60

Next, we will consider the timer model where Y happens after an average time Txy of61

event X. A possible underlying mechanism is that a biochemical process starts at event X62
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Figure S1: DAGs for the adder and timer model: A-B. We show DAGs involving the
sizes (in graph 1) and the timings (graph 2) at cell events X, and Y for A. An adder model.
B. A timer model.

and proceeds at a constant rate. In this case, the timing of event Y is,63

Ty = Tx + Txy + ηt,xy, (S3)

where Tx is the timing of event X and ηt,xy is the time additive noise. The DAG for the64

SCM is an arrow from Tx to Ty (Figure S1B-2). Assuming exponential growth, the length65

at event Y (Ly) is related to length at event X (Lx) as,66

Ly = Lxe
λ(Txy+ηt,xy). (S4)

Lx is independent of ηt,xy in the timer model. If Lx is independent of growth rate (λ), the67

DAG involving the lengths, Lx and Ly will be as shown in Figure S1B-1.68

Therefore in both adder and timer like models, causal relations between events cannot69

be solely represented using their timings (Figure S1A-2) but they can be solely denoted by70

their lengths (Figures S1A-1, S1B-1).71

Recent experiments on E. coli have shown that single cell lengths grows super-exponentially72

(faster than exponential growth) [S6, S7]. Next, we discuss whether using lengths to denote73

cell cycle events is appropriate in case of super-exponential growth.74
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Consider event Y was determined by a timer from X. Assuming super-exponential growth,75

the lengths at X and Y are related as,76

Ly = Lxe
∫ Ty

Tx
λ(t′)dt′ . (S5)

λ(t) shows the variation of growth rate with time. The lengths at events X and Y following77

Eq. S5 cannot be represented by DAGs containing just the lengths of events X and Y. The78

causal diagrams might also have to include growth rate parameters which are not directly79

observed in the experiments.80

However, for an adder between X and Y, the lengths at events X and Y will be related81

by Eq. S1 assuming balanced biosynthesis. The resulting DAG for the SCM is identical to82

that for exponential growth (Figure S1A-1). Thus, cell lengths seem to be the appropriate83

cell characteristic to represent the cell events in many biologically relevant cases.84

S3 Representing cell cycles as causal graphs85

In this section, we will show the complete causal graphs of various cell cycle models discussed86

in the main text.87

Causal graphs discussed in the main text are assumed to follow the Causal Markov88

condition which states that, when conditioned upon all direct causes, the nodes of a causal89

graph are independent of its non-descendants. In causal graphs which follow the Causal90

Markov assumption, all variables which are the common causes of the variables in the graphs91

must also be in that graph [S3]. Note that all common causes for any pair of variables in92

graphs 3A-3C, 4A-4B, 5A-5B and 6A-6B of the main text are already included in the graphs.93

94

Next, we will discuss the recursive nature of the causal graphs over multiple generations.95
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Figure S2: A-C. Causal graphs are shown spanning multiple generations. A. In this model,
division is controlled by both birth and replication related processes. This is an extension
of graph 3B in the main text. B. Division is solely controlled by replication. This is an
extension of graph 3A in the main text. C. Division occurs independent of replication. This
is an extension of graph 3C in the main text.
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In the causal graph where birth and replication both control division or birth event of next96

cell cycle (Figures 3B and 5B of the main text), we do not show birth in the previous cell97

cycle (Lb−1) as a cause of Lb. Omitting Lb−1 from graphs 3B and 5B does not change our98

predictions for the conditional correlation between the variables in those graphs because Lb−199

is not a common cause of any pair of variables in the graph. Here, however, we will extend100

causal graphs 3B and 5B to include both causes of Lb i.e., Lb−1 and Li−1 are included in the101

causal graphs.102

We show the graph where both birth and replication control division in Figure S2A103

(extension of graph 3B in the main text). If we replace Ld by Ln which then causes Ld, we104

will get an extension for the graph 5B in the main text. In Figure S2A, we have a causal link105

from Lb−1 to Lb in addition to Li−1 → Lb link. Upon including both Lb−1 and Li−1 into the106

graph, we have to include its common cause - initiation previous to that of Li−1 i.e., Li−2.107

Lb−1 is also controlled by two events - Li−2 and previous birth event Lb−2. Thus, we obtain108

a recursive pattern which is shown in Figure S2A. For solely replication limited division, we109

show the causal graph in Figure S2B where birth size j generations before the current cell110

cycle (Lb−j) does not inŕuence the birth size directly in the next cell cycle (Lb−j+1). Graph111

S2C shows a model where the division cycle is independent of the replication cycle.112

S4 Conditional independence tests on synthetic data113

Kar et al. showed that data analysis methods should be validated against synthetic data114

before being applied to experimental data [S6]. This prevents ambiguity and provides con-115

sensus about the use of the method. In this section, we validate the conditional independence116

tests using synthetic data generated by existing models.117

We simulated a lineage of 1000 generations using the parallel adder (PA) model with118

exponentially growing single cells and perfectly symmetric division. According to the PA119
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model, the division event happens upon addition of constant size per origin from replication120

initiation. The DNA replication initiates upon adding a constant cell length per origin121

from the previous initiation [S8, S9]. Figure S3A shows the Ld vs Lb plot obtained from122

simulations of the PA model. The best linear őt is very close to the equation Ld = Lb+∆L.123

A similar equation is also obtained for simulations of concurrent processes model where single124

cells are undergoing exponential growth and perfectly symmetric division (Figure S3C). In125

this model, division is limited by slower of the two processes - 1. constant size addition on126

average from birth (adder) 2. a time C+D elapses from initiation of DNA replication (with127

both processes subject to noise). The replication initiation is controlled in the same manner128

as in the PA model.129

In the main text, we showed that the conditional correlation r(Lb, Ld|Li) can be used to130

distinguish between two classes of model- 1. replication initiation solely controls division size131

shown in graph 3A (e.g. - PA model) and 2. birth and replication simultaneously control132

division as shown in graph 3B (e.g. - concurrent process model). Using d-separation, we133

predict Lb and Ld to be uncorrelated on őxing Li in graph 3A. However, they are predicted134

to be correlated in graph 3B.135

Next, we use the synthetic data to test the prediction that conditional correlation between136

Lb and Ld on őxing Li (r(Lb, Ld|Li)) is zero for the PA model and non-zero for the concurrent137

process model. We őnd r(Lb, Ld|Li) to be close to zero in the synthetic data generated138

using the PA model and the p-value to be not statistically signiőcant at signiőcance level139

of 0.05 (Figure S3B). This is consistent with our prediction of r(Lb, Ld|Li) = 0 for the PA140

model. We also show the non-zero conditional correlation r(Lb, Ld|Li) for simulations of the141

concurrent process model (Figure S3D). The conditional correlations are in agreement with142

our predictions made using the directed acyclic graphs and d-separation. Hence, conditional143

independence tests can be used to differentiate between cell cycle models.144
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Figure S3: Tests on synthetic data: A-B. Simulations of cells undergoing exponential
growth and following a parallel adder model are carried out and data is collected for 1000 cell
cycles. For the synthetic data generated, we show A. Ld vs Lb plot. B. Residuals obtained
on linear regression of Ld on Li (Ld|Li) and Lb on Li (Lb|Li) are plotted. The correlation,
r(Lb, Ld|Li) is close to zero.C-D. Simulations of cells undergoing exponential growth and
following a concurrent process model are carried out and data is collected for 1000 cell cycles.
For the synthetic data generated, we show C. Ld vs Lb plot. D. Residuals obtained on linear
regression of Ld on Li (Ld|Li) and Lb on Li (Lb|Li) are plotted. The correlation, r(Lb, Ld|Li)
is non-zero. Here, the blue dots represent the raw data, the red dots represent the binned
data and the yellow line represents the best linear őt.
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Figure S4: Testing conditional independence tests: A,B. Simulations of cells under-
going exponential growth and following a parallel adder model are carried out and data is
collected for N = A. 150 cells. B. 400 cells. We őnd that even for the smaller datasets, our
method of calculating conditional correlations is consistent with the predictions obtained
using d-separation (zero for PA model). C. Parallel adder was simulated for different growth
medium (different colors) over a single lineage of N generations. For the 2000 iterations
carried out, we found the fraction of cases where r(Lb, Ld|Li) was non-zero (p-value was less
than 0.05). This fraction (fraction false positive) is plotted for varying values of N. The
shaded region shows the range of N for the faster growth conditions in Ref [S1]. D-F, H-J.
Simulations of cells undergoing exponential growth and following a concurrent process model
are carried out for N cells. We simulate a concurrent processes model where the replication
related processes are limiting for division in x% cells. We plot Ld|Li vs Lb|Li for D. N = 150,
x = 75%. E. N = 400, x = 75%. F. N = 1000, x = 75%. H. N = 150, x = 25%. I. N = 400,
x = 25%. J. N = 1000, x = 25%. In all of the plots, r(Lb, Ld|Li) are non-zero irrespective
of the amount of data (N) and the strength of causal link between replication initiation and
division (x). G, K. For the concurrent processes model with parameters chosen using the
acetate and alanine growth condition in Ref [S1], G. Probability that the p-value is greater
than 0.05 is plotted as a function of number of cell cycles (N). The dotted lines mark the val-
ues of N in acetate and alanine growth medium of Ref [S1]. K. Probability that the p-value
is greater than 0.05 is plotted as a function of % of cells in which the replication process
is limiting. The two dotted lines denote the quantity in case of experiments in acetate and
alanine growth media [S1].

In the simulations in Figure S3, the correlation r(Lb, Ld|Li) was obtained for N = 1000147

cells. However, in the experiments analyzed in the main text of the paper, the value of N is148

between 150 and 400 cells. We plot Ld|Li vs Lb|Li for the simulations of PA model with N149

= 150, and 400 cells in Figures S4A, and S4B, respectively. The correlations are negligible150

and the p-values are not statistically signiőcant (signiőcance level α = 0.05) in agreement151

with the predictions of PA model.152

Next, we quantify the accuracy of rejecting the parallel adder model using the conditional153

independence tests. In our paper, we use p-values to classify a correlation as zero or non-154

zero. Under the null hypothesis that r(Lb, Ld|Li)=0 with the alternate hypothesis being155

r(Lb, Ld|Li) ̸= 0, we reject the null hypothesis if the p-value is signiőcant (less than the156

threshold ,α = 0.05). In such a case, we classify the data to follow a model where both birth157

and replication related processes are likely inŕuencing the division event (e.g., the concurrent158
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process model). If the p-value is greater than 0.05, we cannot reject a model where replication159

solely limits division. Note that a p-value greater than 0.05 does not imply accepting the160

null hypothesis. In other words, a concurrent process model can also have a p-value greater161

than 0.05. Later, we will provide an estimate of the chances that a concurrent process model162

has p-value greater than 0.05. However, őrst, we will use simulations of the parallel adder163

model over a single lineage of N generations. We repeat the simulations over 2000 iterations164

and őnd the number of cases where we reject the parallel adder model (p-value< 0.05). The165

fraction of cases where the p-value is less than 0.05 for the parallel adder model is our error166

metric (false positive error). If the fraction of false positive is high, then there are greater167

chances of rejecting the parallel adder model and incorrectly classifying it as a concurrent168

process model.169

We carried out the simulation of the parallel adder model for a varying number of cell170

cycles N for all growth rates in Ref [S1] where we őnd a non-zero r(Lb, Ld|Li). For the171

2000 iterations of the parallel adder model, we calculate the p-value and compare it to the172

signiőcance threshold. We explain the calculation of p-value brieŕy. The p-value is the173

probability that the test statistic has a value as extreme as the one we őnd using the data.174

The test statistic in our case is r
√

N−2
1−r2

, where r is the sample Pearson correlation coefficient175

which has a variance of
√

1−r2

N−2
. The test statistic is assumed to follow a t-distribution with176

N-2 degrees of freedom under the null hypothesis that the actual underlying correlation is 0.177

From the deőnition of signiőcance threshold (set at 0.05 in our case) which is the probability178

of rejecting models when the null hypothesis is true (in this case, r(Lb, Ld|Li) = 0), we expect179

the false positive error to be 5%. The calculation of a p-value assumes that the correlation180

is found for two normally distributed variables [S10]. However, if the normality assumption181

of the data does not hold one might expect an error different from the expected 5%. Such182

deviations from normality in cell cycle variables might arise when simulating a model of183

exponentially growing cells with time additive noise. Therefore, we use simulations to show184
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that the error is still close to 5% even in case of time additive noise (low noise regime). Using185

the p-values in the 2000 iterations, we őnd the fraction of false positive cases for different N186

to be ≈ 5% in all growth conditions (Figure S4C). So, to conclude, the signiőcance threshold187

sets the error rate of rejecting a replication controlled division model (e.g., parallel adder)188

even if it is the actual underlying model.189

Similar to the parallel adder model, we checked that the correlations r(Lb, Ld|Li) are190

non-zero for different N in the case of concurrent processes model. For simulations of the191

concurrent processes model, we őnd r(Lb, Ld|Li) to be non-zero when N = 150 cells (Figures192

S4D, S4H) and N=400 cells (Figures S4E, S4I). We also estimated the fraction of cases in193

which the p-value is greater than 0.05 when the underlying model is concurrent processes194

model. Note that the null and alternate hypothesis is the same as before. We simulated 200195

iterations of the concurrent processes model with parameters chosen using the experimental196

data in the alanine (Td = 213 min) and acetate (Td = 660 min) growth media of Ref [S1].197

We chose these slow-growth conditions because we őnd p-values > 0.05 (null hypothesis:198

r(Lb, Ld|Li)=0, alternate: r(Lb, Ld|Li) ̸= 0) in these growth conditions. In Figure S4G, we199

show for a varying N that there are nearly zero cases where the p-value>0.05. The values200

of N in the slower growth conditions of Ref [S1] are marked as dotted lines. While p-values201

greater than 0.05 does not imply that the underlying model is replication solely controls202

division, we show using simulations that it is unlikely to be a model where both birth and203

replication related processes control division.204

In the case of concurrent processes model, r(Lb, Ld|Li) is non-zero because there is a205

direct causal link between Lb and Ld (see Figure 3B in main text). The value of r(Lb, Ld|Li)206

will also depend on the strength of this causal link: making replication related processes207

more limiting for the division event compared with the birth-related processes (i.e., they208

limit division in a larger fraction of cells) will lead to a smaller value of r(Lb, Ld|Li). We209

wanted to test that our method of calculating conditional correlation behaves as expected210
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on changing the strength of the causal links. To make the replication process more limiting211

for division, we change the parameters of the concurrent processes model i.e., decrease the212

length added between birth and division. We őnd that r(Lb, Ld|Li) is still non-zero even if213

replication is the limiting process in 75% of cells (Figures S4D-S4F). As carried out previously214

for varying N, we calculate the probability that the p-values are greater than 0.05 for varying215

strengths of causal links in the concurrent processes model. We simulate 250 iterations of216

the concurrent processes model with parameters chosen using the experimental data in the217

alanine (Td = 213 min) and acetate (Td = 660 min) growth media of Ref [S1]. We control218

the % of cells where replication limits division by varying the size added between birth and219

division as explained previously. Assuming that the cells growing in slow-growth conditions220

in Ref [S1] follow the concurrent processes model, we can also estimate the % of cells where221

replication controls division in the case of experiments [S11]. The experimental values are222

shown as dotted lines for the alanine and acetate growth medium. We őnd that the fraction223

of cases where the p-value is greater than 0.05 is small for a wide range of values (Figure224

S4K). Thus, the underlying model is unlikely to be a concurrent processes model for a p-value225

greater than 0.05 (null hypothesis: r(Lb, Ld|Li)=0, alternate: r(Lb, Ld|Li) ̸= 0).226

To conclude, we show that the conditional independence tests can be applied to ex-227

perimental data even if the number of cells, N is relatively small in the dataset (≈ 150).228

The conditional correlations obtained were found to be consistent with our predictions from229

d-separation even when the causal link between two cell cycle events was weak.230

S5 Consistency with published results231

In this section, we apply conditional independence tests to already published datasets and232

compare the results to that obtained in the main text. A signiőcant difference between233

the datasets analyzed here and that in the main text is that the onset of constriction is234
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not measured in these datasets. Thus, we cannot examine cell cycle models with the on-235

set of constriction as a checkpoint. However, we can still test the predictions of PA and236

Cooper-Helmstetter (CH) model (Figure 3A), the concurrent processes model (Figure 3B)237

and the adder per origin between initiations (Figures 6A-6B in main text). We use the238

datasets published in Ref [S12] because it contains cell length data at replication initiation239

and termination events, which we use in Figure 6 of the main text.240

In Ref [S12], E. coli cells were grown in microŕuidic devices and the single-cell character-241

istics at cell replication and division were measured for multiple cells. The cells were grown242

in minimal media (M9+NH4Cl+glycerol) with an average doubling time, ⟨Td⟩ = 75 min.243

This growth condition is comparable to the faster growth conditions in the main text (note244

that the doubling time for experiments in the main text is roughly twice that of presented245

here as those were conducted at 28°C). Using the data in this growth condition, we will test246

whether the replication process is the sole limiting process controlling division. In the main247

text, this class of models is represented in Figure 3A. A competing model is the concurrent248

processes model where multiple processes from birth, and replication initiation control di-249

vision (Figure 3B). We predict r(Lb, Ld|Li) to be zero for Figure 3A and it is non-zero for250

the class of models represented by Figure 3B. Using experimental data, we őnd a non-zero251

r(Lb, Ld|Li) as shown in Figure S5A. This is in agreement with the model proposed in the252

main text as well as Ref [S12]. Next, we test if the initiation in the next cell cycle is con-253

trolled solely by initiation in the current cell cycle. The two competing models proposed are254

presented in Figures 6A and 6B. For the model with adder per origin between initiations as255

the sole control for initiations, we expect r(Lt, Li+1|Li) to be zero (Figure 6A). Using the256

experimental data in Ref [S12], we őnd that r(Lt, Li+1|Li) is non-zero (Figure S5B) which is257

in agreement with our results in the main text. We obtain same qualitative results for ex-258

perimental replicates. Thus, DNA replication initiation is controlled by additional processes259

apart from replication initiation in the previous cell cycle.260
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To test the concurrent processes model, the birth related processes were made more261

limiting by increasing the D period (time between replication termination and division) in262

Ref [S12]. Cells were treated with sub-inhibitory concentrations of MreB-polymerization263

inhibitor A22 which led to an increase in the width of cells and also an increase in D period264

[S13]. We tested the replication control over division and the adder per origin control between265

initiations for A22 treated cells (concentration = 50 µg/mL). We found r(Lb, Ld|Li) to be266

non-zero (Figure S5C) and greater than that of untreated cells (Figure S5A), thus, favoring267

a concurrent processes model where birth related processes are more limiting for division.268

We also found r(Lt, Li+1|Li) to be non-zero (Figure S5D), in agreement with the results in269

the main text and also for untreated cells. The concurrent processes model for division and270

additional processes apart from DNA replication start controlling the next initiation were271

also consistent with the data obtained from different concentrations of A22 treated cells.272

We also analyzed datasets published in Ref [S9] and Ref [S14] where E. coli cells were273

grown in microŕuidic devices. In these datasets, DNA replication termination was not274

marked but the length at birth, the length at replication initiation and the length at di-275

vision were collected. Using these data, we could test the replication control over division.276

For the experiments in Ref [S9], r(Lb, Ld|Li) was found to be non-zero (Figures S5E-S5F).277

The growth conditions in these datasets were comparable to the faster growth conditions278

in the main text which also showed a non-zero r(Lb, Ld|Li) and was consistent with the279

concurrent processes model. Upon analyzing the datasets in Ref [S14], we őnd a non-zero280

r(Lb, Ld|Li) for both faster growth condition (Figure S5H) and slower growth condition (Fig-281

ure S5G). The non-zero r(Lb, Ld|Li) in fast growth conditions is consistent with our results282

in main text and the experiments analyzed in this section. For the slow growth condition283

shown in Figure S5G, we őnd that r(Lb, Ld|Li) is lower in value than that of the faster284

growth condition (Figure S5H), with the binned relation showing a nearly ŕat region in the285

regime where the data is most abundant. We also compared the correlations in Figure S5G286

31



to the data on slow-growing cells in Ref [S15]. Both experiments were conducted at 37°C287

with similar E. coli strains. We őnd for the slower growth condition (Td = 223 min) in288

Figure S5I, the correlation r(Lb, Ld|Li) is lower in value than that in Figure S5G (Td = 197289

min). Note that a bias in the data in Ref [S15] because the initiation is always in the same290

cell cycle as division (or C+D < Td) might explain the non-zero r(Lb, Ld|Li) in slow-growth291

conditions. To conclude, birth related processes are less limiting for determining division in292

slower growth conditions in agreement with our results in the main text.293
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Figure S5: Consistency with published results: We analyze conditional correlations
using previously published datasets on E. coli. A,B. Using data from Ref [S12] for N = 1380
cells (⟨nori⟩ = 1.30) growing in minimal media (M9+NH4Cl+glycerol), we plot A. Ld|Li vs
Lb|Li. We obtain a non-zero r(Lb, Ld|Li) consistent with the concurrent processes model.
B. Li+1|Li vs Lt|Li. We obtain a non-zero r(Lt, Li+1|Li) consistent with the predictions of
Graph 6B in the main text. This rules out adder per origin between initiations as the sole
control for DNA replication initiation. C,D. We use data from Ref [S12] where cells are
treated with 50µg/mL of A22, a MreB polymerization inhibitor. These cells have a larger D
period. We plot for N = 506 cells (⟨nori⟩ = 1.98), C. Ld|Li vs Lb|Li. We obtain a non-zero
r(Lb, Ld|Li) which is again consistent with the concurrent processes model. D. Li+1|Li vs
Lt|Li. The non-zero r(Lt, Li+1|Li) also rules out adder per origin between initiations being
the sole control for initiation. E-F. Data was obtained from Ref [S9] and Ld|Li vs Lb|Li

was plotted. Cells were grown in E. glycerol (N = 777 cells, ⟨nori⟩ = 1.7). We obtain a
non-zero r(Lb, Ld|Li) consistent with the concurrent processes model. F. glucose and eight
amino acids (N = 1039 cells, ⟨nori⟩ = 2). We also obtain a non-zero r(Lb, Ld|Li) consistent
with the concurrent processes model. G, H: Data was obtained from Ref [S14] and Ld|Li

vs Lb|Li was plotted. Cells were grown in G. M9 minimal medium with sodium acetate as
the carbon source (N=1554 cells, ⟨nori⟩ = 1.2). We obtain a non-zero r(Lb, Ld|Li) consistent
with the concurrent processes model. H. MOPS medium with glucose as the carbon source
(N=1807 cells, ⟨nori⟩ = 2). We obtain a non-zero r(Lb, Ld|Li) consistent with the concurrent
processes model. I. Data was obtained from Ref [S15] and Ld|Li vs Lb|Li was plotted. Cells
were grown in M9 minimal medium and 0.4% acetate (N=401 cells, ⟨nori⟩ = 1).
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Figure S6: A A possible causal graph depicting the cell cycle in the Min mutants which
undergo polar divisions. The mutants are hypothesized to lack mechanisms which couple
the replication process to the onset of constriction. This is shown as a lack of arrow from Li

to Ln. Since the mutants are grown in glycerol+trace elements medium (Td ≈ 148 min in
wildtype (WT)), birth related processes might still control the start of constriction. B. For
WT, ∆zapB, ∆matP , ∆zapA, ∆slmA, ∆minC undergoing polar divisions, ∆minC under-
going midcell divisions, and the FtsK K997A strains, we show the conditional correlations
r(Li, Ln|Lb).

S6 Analyzing mutants296

In this section, we will probe the molecular mechanisms that might link the replication cycle297

and the onset of constriction using mutants studied in Ref [S1]. One such molecular system is298

the nucleoid occlusion factor, SlmA, which prevents the Z-ring formation until the Ter region299

of the chromosome moves to the mid-cell. Other proteins such as ZapA, ZapB and MatP300

are responsible for linking the Ter region of the chromosome to the Z-ring, thus, promoting301

Z-ring formation and constriction. The protein FtSK is part of the divisome and is involved302

in chromosome segregation at the mid-cell [S16].303

If these proteins link the replication process to the onset of constriction, then removing304

them might start the constriction independent of the replication process. We expect Li and305

Ln to be uncorrelated when Lb is conditioned upon. However, we őnd that the correlation306

r(Li, Ln|Lb) is non-zero for mutants obtained by removing SlmA (∆slmA), ZapA (∆zapA),307
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ZapB (∆zapB), MatP (∆matP ) and on using a translocation defective FtsK K997A mutant308

(Figure S6B). This reiterates the conclusions reached in Ref [S1] that these molecular systems309

seem unlikely to be involved in the coupling between replication and the start of constriction.310

We also analyzed Min mutants which have a defective Min system. Min proteins are311

responsible for the positioning of the Z-ring at the mid-cell [S16]. A defective Min system312

can lead to cell divisions occurring near the poles in addition to the symmetrical divisions313

at the mid-cell. We őnd that the conditional correlation r(Li, Ln|Lb) in Min mutant cells314

which undergo divisions at the mid-cell is also non-zero (Figure S6B). Next, we analyze315

only those Min mutant cells which undergo polar divisions. The proposed cell cycle for316

these mutants is shown in Figure S6A where the causal link between Li and Ln is absent.317

Note that a link between Lb and Li−1 might still exist in these cells as their mother cells318

undergo divisions at mid-cell where we found replication and constriction (hence, division319

and birth in the next cell cycle) to be coupled. Cells which undergo polar divisions have a320

negligible r(Li, Ln|Lb) (Figure S6B) pointing to the lack of replication control over division321

(agreeing with the correlation in graph S6A). Ref [S1] proposed nucleoid occlusion as a322

possible mechanism for explaining the difference between cells undergoing polar and mid-323

cell divisions. Substantial nucleoid density at the mid-cell during the replication process324

hinders the formation of the Z-ring, thus, coupling replication and the start of constriction.325

However, the lower nuclear density at cell poles does not inhibit the Z-ring formation and326

constriction can start independently of the replication.327
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