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Abstract

We investigate the importance of accounting for uncertainty a priori in production
scheduling in the presence of feedback. First, we examine different optimization models
(deterministic, robust, and stochastic programming), used to generate the open-loop schedules
and describe the modeling of uncertainty in each case. Second, we present a formal procedure
for carrying out closed-loop simulations in order to study and compare the closed-loop
performance across the models as attributes such as the demand uncertainty observation
horizon, order size max-mean relative difference, and load on the process network are varied.
Finally, we analyze the results of the simulations to draw insights on how the above attributes
affect the closed-loop performance of the different models across networks and expound on
the paradoxes observed.
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1 Introduction

Scheduling plays an important role in chemical production facilities, from batch
production of fine chemicals to the continuous production of bulk chemicals (Harjunkoski
et al., 2014). When a schedule is computed, disruptions or the arrival of new information can
render the incumbent schedule sub-optimal or even infeasible, thereby necessitating online
(re)scheduling (Subramanian et al. (2012); Maravelias (2021)). Rescheduling as an ongoing
process in which decisions are made and revised in real-time during the execution of the
schedule is termed as online scheduling.

In a chemical production environment, there can be uncertainties associated with
the processing times of batches, batch yields, unit operating status, and demand for products.
An important consideration when computing schedules is to account for these uncertainties
in the scheduling model. To account for the uncertainties in a pre-emptive manner as the
scheduling problem is solved offline, researchers have proposed various models based on
robust optimization (Lin et al., 2004) and stochastic programming (Bonfill et al., 2005).
However, whether the presence of feedback (through the online scheduling procedure) sufficient
to account for the uncertainties, remains an open question. In the online scheduling procedure
that employs a deterministic model, the uncertainty is not explicitly modeled and it relies on
recourse based solely on feedback (Gupta and Maravelias, 2020). With a robust optimization
model, the focus is on maintaining feasibility and typically, bounds on the uncertain parameters
are used, resulting in optimization decisions in the open-loop solution, that are conservative
irrespective of the actual uncertainty realization. While, using the stochastic programming
model, a set of scenarios is determined based on the probability distributions of the uncertain
parameters and a recourse strategy is computed through maximizing or minimizing an
expectation function.

In this work, we investigate the significance of accounting for demand uncertainty
a priori in the presence of feedback (i.e., using robust optimization, stochastic programming)

compared to online scheduling based solely on feedback (i.e., using deterministic optimization).



The demand is expressed in the form of orders with the order sizes being drawn from
a probability distribution. We carry out closed-loop simulations for different values of
attributes such as the demand uncertainty observation horizon, order size max-mean relative
difference, and the load on the process network. We explain why choosing the best model to
mitigate demand uncertainty for any given process network is non-trivial and expound on the
closed-loop performance of the different models, draw useful insights, and clarify observed
paradoxes.
The paper is structured as follows. In Section 2, we provide the necessary background.

In Section 3, we describe the simulations that are carried out to evaluate the closed-loop
performance of the models as attributes are varied. In Section 4, we present the results of
the closed-loop simulations. In Section 5, we draw insights, and in Section 6, we analyze
the paradoxes observed in the closed-loop performance. Throughout the text, we use lower
case italic letters for indices, uppercase boldface letters for sets, uppercase italic letters for

variables, and greek letters for parameters.

2 Background

First, we present the general chemical production scheduling problem statement,
problem representation, and model classification. Second, we describe what online scheduling
is and review the literature. Third, we present the state-space resource task network (RTN)
scheduling model used in this work. Finally, we review research that deals with scheduling

under demand uncertainty.

2.1 Chemical production scheduling

2.1.1 Problem statement
The general chemical production scheduling problem can be stated as follows.
Given:

(i) production facility data (e.g., unit capacities);



(ii) production recipes (e.g., processing times);

(iii) production costs (e.g., inventory holding costs and batch processing costs);
(iv) material availability (e.g., material delivery amounts and dates);

(v) resource availability (e.g., utility levels); and

(vi) production targets or orders with due-times;
scheduling seeks to determine:

(i) selection and sizing of batches to be processed;
(ii) assignment of these batches to units; and

(ili) sequencing and timing of these batches;
so as to meet the production targets at minimum cost, maximize profit by allowing excess
sales, or optimize any other suitable objective. There can be problem features such as
time-varying utility costs, sequence dependent changeovers, storage constraints, etc., which
can be appropriately handled through existing scheduling models (Méndez et al. (2006);
Harjunkoski et al. (2014)).

2.1.2 Problem representation

We represent the problem using a resource task network (RTN) (Pantelides, 1994),
which primarily comprises of resources r € R and tasks ¢ € I. The set of resources is
composed of continuous, RY (includes material, energy supplies), and discrete, R (includes
labor, equipment units) resources with: R = R® U R” and a task is an operation that
consumes and/or generates resources during its execution. Given a scheduling problem,
the RTN representation is constructed by identifying the relevant resources and tasks. An
example RTN is shown in Figure 1, where tasks I1 and I2 are carried out in equipment Ul.
The tasks engage the equipment resource at the start of execution and disengage it at the
end. Tasks I1 and I2 consume the material resource MO and produce material resource M1

and M2, respectively. Here, I = {I1,12}, R = {M0, M1, M2}, and R” = {U1}.



Figure 1: Example RTN representation. Blue arrows represent continuous resource
interactions, while orange dashed arrows indicate discrete resource interactions. Tasks are
denoted by rectangles, and resources by circles.

2.1.3 Model classification

Scheduling models can be classified on the basis of (i) optimization decisions, (ii)
modeling elements, and (iii) modeling of time (Maravelias, 2012). With respect to the
modeling of time, they can be classified, first, as sequence-based or time grid-based models
and, second, as continuous or discrete time models. Discrete time grid-based models lend
themselves to online scheduling approaches because the fixed model grid facilitates the
synchronization with the re-optimization frequency. The discussion in this paper will be
based on the most commonly used models, namely, models based on a single uniform grid,
where the time horizon is discretized into periods of uniform length (denoted by ¢) and tasks
start and end at the time (grid) points. To ensure feasibility, time-related data are rounded,
for example, processing times are adjusted as 7; = [771/§], where 7/ is the actual processing
time of task i. Although there could be discretization errors when using discrete time models,
they have several advantages over continuous time models. For example, in discrete time
models, accounting for inventory and utility costs as well as time varying prices and resource
availabilities, does not introduce non-linearities nor does it require the introduction of new
variables and constraints (Velez and Maravelias, 2014). Moreover, Sundaramoorthy and
Maravelias (2011) showed that discrete time models are, in general, at least as effective as
continuous time models and are better suited for large-scale instances with several additional
processing features. For the purpose of all simulations in this work, we use 6 = 1 h. Although

we use this specific discrete time model, the analysis presented is applicable to all discrete



time models and can be extended to continuous time models.

2.2  Online scheduling

Rescheduling as an ongoing process, wherein optimization problems are solved
periodically in order to account for the feedback and new information is termed as online
scheduling (Gupta et al. (2016); Gupta and Maravelias (2016)). Recently, Rawlings et al.
(2019) proposed a novel approach to incorporate knowledge of the automation system in a
chemical plant into the online scheduling problem. Building upon that, Avadiappan and
Maravelias (2021) presented methods to incorporate real-time data in online scheduling
through state estimation using a deterministic optimization model.

In each online scheduling iteration, an open-loop optimization problem is solved, to
determine the current and future decisions. Every open-loop problem is associated with
a prediction horizon denoted by H. When the current decisions are implemented, the
prediction horizon is moved forward by a fixed number of periods denoted by A (i.e., the
re-optimization time-step), and the next set of decisions are computed (i.e., the next open-
loop problem is solved). The re-optimization time step should not be confused with d, which
denotes the time-grid spacing in discrete time models. The actual implemented schedule,
determined based on the solution to a series of open-loop problems, is called the closed-loop
schedule.

Researchers in the past have proposed various rescheduling strategies in response
to disruptions or unexpected events (Vieira et al. (2003); Ave et al. (2019)). Méndez
and Cerda (2003) proposed a novel mixed integer linear programming (MILP) formulation
for rescheduling, which can update schedules in response to unforeseen events. Janak
et al. (2006) proposed partial rescheduling by identifying and fixing tasks not directly
affected by an observed disturbance. Bonfill et al. (2008) demonstrated a proactive-reactive
approach with a stochastic model used in a reactive framework for batch scheduling. Novas
and Henning (2010) formulated a constraint programming model to compute rescheduling

decisions, based on the occurrence of disruptive events. Kopanos and Pistikopoulos



(2014) proposed a rescheduling approach using the rolling horizon framework that relies
on multiparametric programming techniques. Silvente et al. (2015) used a rolling horizon
framework for the simultaneous optimization of energy supply and demand planning in
microgrids. Touretzky et al. (2017) proposed a methodology to detect faults in the process
that act as trigger for rescheduling. Pattison et al. (2017) proposed a feedback rescheduling
mechanism consisting of periodic schedule updates that account for demand forecasts and
event driven updates to account for process and market disturbances. Mathur et al.
(2020) presented an online scheduling scheme, implemented in a rolling horizon fashion to
account for uncertainties in electricity prices and water inflows in the operation of cascaded
hydropower systems.

Researchers have also developed closed-loop approaches that integrate
scheduling and control decisions (Burnak et al. (2019); Remigio and Swartz (2020);
Andrés-Martinez and Ricardez-Sandoval (2022)). The interested reader is directed
to reviews by Engell and Harjunkoski (2012), Baldea and Harjunkoski (2014), and
Dias and Ierapetritou (2016).  Zhuge and Ierapetritou (2012) proposed a closed-loop
strategy to reschedule so as to mitigate disturbances at the control level. Chu and
You (2014) solved a reduced integrated scheduling-control problem online, achieving
computationally tractable schedules. McAllister et al. (2020) proposed potential choices for
rescheduling penalties for economic model predictive control and closed-loop scheduling in
response to practical rescheduling concerns. Kumar et al. (2019) presented a framework
to compare the performance of deterministic and stochastic model predictive control
using a battery management case study. While both the present work and the work of
Kumar et al. (2019) are based on the same concept, scheduling involves discrete decisions

which can lead to different relative performance across methods.

2.3 State-space resource task network model

In the context of production scheduling, a procedure to transform a MILP scheduling

problem into state-space form was first proposed by Subramanian et al. (2012). Nie et al.
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(2014) reformulated an extended RTN model into state-space form in order to facilitate
reactive schedule design. The state-space form is advantageous as it offers a natural (re)formulation
for models used in online scheduling. Although, we use the RTN based discrete time state-
space model (adapted from Avadiappan and Maravelias (2021)), the ideas and conclusions
presented in this work are general and not model specific. They are also applicable to state
task network (STN) (Kondili et al., 1993) based discrete and continuous time models.

We define set T to represent the open-loop iterations and set N, whose elements
n € N represent the time points and periods. A time period n is the time interval between
points n — 1 and n. A time grid starting from 0 and ending at |[N| (consisting of |N*|
periods) is used in each open-loop iteration ¢ € T. Here, subset N C N, denotes the
time points in the prediction horizon of the open-loop problem. The progress of a batch of
task ¢ € I is tracked through its progress status k € K;, which increases from k£ = 0 at the
start of a batch, to k = 7; at its end, where 7; is the processing time of task i expressed
in time periods The main decision variables are X, € {0,1}, which equal 1, when task i
starts at time n, and B;, > 0, that denotes its batch-size. The lifted state variables X*
and BF represent the status and size of the batches under execution at a given point in
time, respectively. Effectively, the status k is represented using the binary state variables
Xk

&, wherein a batch of task ¢ has status k= )"},_, k’Xi";';. Here, uppercase italic letters

with a bar represent the state variables.

Eqgs. 1-4 represent the lifting equations for the evolution of the status of a batch.
Eq. 1 assigns k = 0 (i.e., X) = 1) when the batch of task i starts at time point n and
Eq. 2 represents the linear evolution of the status k with time point n. Egs. 1- 2 together
effectively represent the relation: XF = Xitn—ry Vi,ne N ke {0,1,..1;}. Similarly, for

the batch size variables, Eqs. 3 and 4 are the state evolution equations and they together



effectively represent the relation: B, = Bj,—y) Vi,n € N7 k€ {0,1,..1}.

X)) =Xy, Vi,ne N (1)
Xy =X VineN" ke{l,2 .5} (2)
B% = B;, Vi,ne N (3)
Bl =Bt VineN" ke {l,2.7} (4)

Eq. 5 enforces that the batch size of a task is between -8 and pY5.

B Xin < Bin < B Xin Vi,n € N¥ (5)

Egs. 6 and 7 represent the resource balances, where R,, is the level of resource
r during period n and R is the terminal resource level. The consumption/production of
resource r by task ¢ at status k is denoted by parameters p;., and v;,.,. Note that negative
values of the parameters indicate consumption while positive values denote production. The

outgoing shipment of resource r at time n is given by V,.,.

i

Rr(n—i—l) = Ry + Z Z{,uzrszkn + Virszkn} — Vin VT7 n < |NH| (6)
i€l k=0
RT = Ryt 303 {pini XE 4+ vint B} — Vi Wrn = [N (7)
i€l k=0

Eq. 8 ensures that the resource level is within the lower bound, AXZ| and upper

bound, \V5.

MNeB < R, < AVB v n e N# (8)

Egs. 9 and 10 represent the backorder balance, where U,, is the backlog level for

product » € R? during period n and U! is the terminal backlog level. The demand for



product r at time n is given by &,.,.

Ur(n—{—l) - Urn - V;‘n + grn vr S RPa n < |NH| (9)

Ul =Upy — Vi + &a Vr € RP,n=|N7| (10)

Eqgs. 11-14 represent the update equations, enforced at n = 0 in the current iteration
t. Using these equations, we carryover the scheduling decisions, resource and backlog levels
from the previous (open-loop) iteration ¢ — 1 to the current iteration ¢. The prescripts ¢t — 1
is used to denote variables from the previous iteration. Note that in each iteration we reset

the time grid to begin from 0.

Xfo =g-1 XIg' Vike{1,2,.7} (11)
Bfy =¢-1 Bfg" Vi ke {1,2,.7} (12)
Reo =@-1) Ren V7 (13)
Uno =@—1) U V7 (14)

The objective function as given in Eq. 15, is to minimize the sum of backlog cost,
inventory cost, and fixed cost of executing the tasks. Here, vV is the backlog cost for product
resource r € RP, 4! is the inventory cost for material resource r, and ¥;* is the fixed cost of

executing a batch of task i.

minZ%{](Z Um—i-UTT)—i-Z%{%(Z Rm—i-R,:«F)"‘ZZ%XXm (15)

reRP neNH reR neNH i€l neNH

Figure 2 shows the generation of a closed-loop schedule from a series of open-loop
iterations for the example RTN shown in Figure 1. Batches of tasks I1 and I2 are scheduled
over a prediction horizon consisting of five time periods. In iteration ¢ = 0, the batches of
the two tasks are slotted to occur with an idle time of one period in between them. However,

in iteration t = 1, as the horizon is rolled forward, information about a rush order for one
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batch of the product from task 12 is obtained. Therefore, the batch of 12 starts immediately
after the end of the I1 batch and is followed by another 12 batch in order to satisfy the
demand, as shown by the open-loop schedule. This decision is also reflected in the resulting

closed-loop schedule given in the bottom row of Figure 2.

[teration

t=0 .

 J l
Closed loop (N | |

schedule I ' * L

B Batchof 11 ¥M1 demand
1 Batch of 12 M2 demand

Figure 2: An example of closed-loop schedule generation. Only current decisions from each
open-loop iteration are implemented (shown as blue arrows). Faded block in iterations ¢ = 1
and t = 2 indicate past time. Red and green arrows denote the demand for products M1
and M2, respectively.

2.4 Scheduling under demand uncertainty

In chemical production scheduling, there can be uncertainties associated with demand
or changes in product orders, processing time variability, equipment failures, recipe variations
(Sand and Engell (2004); Li and Ierapetritou (2008); Engell (2009); Lappas and Gounaris
(2016)). Researchers in the past have proposed various strategies to handle demand uncertainty.
Petkov and Maranas (1997) addressed the multiperiod planning and scheduling of multiproduct
plants under demand uncertainty using chance constraints. Balasubramanian and Grossmann
(2004) presented an approximation strategy that consists of solving a series of two-stage
stochastic programming models within a shrinking horizon framework to account for the

uncertain demand, while overcoming the large computational times associated with the
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solution of a multi-stage stochastic MILP model. Bonfill et al. (2004) proposed a stochastic
optimization approach to manage risk in the short-term scheduling of multiproduct batch
plants with uncertain demand. Cui and Engell (2010) presented a rescheduling approach
based on the application of a two-stage stochastic programming model in a moving horizon
framework, to handle uncertainties in demand, plant capacity, and yields. Vin and Ierapetritou
(2001) addressed the problem of quantifying the schedule robustness under demand uncertainty.
Lin et al. (2004) proposed a robust optimization method, wherein worst-case values of the
uncertain parameters associated with processing times and market demands are used in the

scheduling model.

3 Simulations

First, we describe the attributes that capture the uncertainty in demand. Second,
we outline the procedure to compute the load on a process network which plays a pivotal role
in closed-loop performance. Third, we describe how the demand uncertainty is accounted for
in the models we consider. Finally, we discuss the generation of instances and the closed-loop

evaluation procedure.

3.1 Uncertainty in demand

We analyze the closed-loop performance of different scheduling models under demand
uncertainty, wherein demand is modeled in the form of orders with the order sizes being
drawn from a symmetric triangular probability distribution. The uncertainty in demand
is represented by two attributes: (i) observation horizon (), and (ii) order size max-mean
relative difference (¢) (Gupta and Maravelias, 2019). The observation horizon is the length of
the horizon within which demand is deterministically known. In other words, order sizes are
deterministically known within the observation horizon, from n = 0 to n = 1, while the sizes
of orders due at time points between 1 and H (prediction horizon length, H = |[N#|) are
estimated based on the optimization model used (refer to Section 3.3). When the prediction

horizon is rolled forward, for the next online iteration, the order sizes are updated as per
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the new observations (refer to Figure 3(A)). Note that when n > H, there is no demand
uncertainty, since the size of all the orders within the prediction horizon is known beforehand.
The order sizes for a product can vary from one time point to another. The order size max-
mean relative difference (¢) captures the difference between the maximum and mean order
size relative to the mean order size, as shown in Figure 3(B). Without loss of generality, we
model the order sizes to follow a symmetrical triangular distribution, i.e., the maximum and

minimum possible order sizes are equidistant from the mean, ¢ = “TH’ in Figure 3(B).

(A)

Iteration

Figure 3: Attributes of demand uncertainty. (A) Two online scheduling iterations showing
how the observation horizon of length n moves along as the prediction horizon is rolled
forward. Block arrows denote orders (length proportional to order size). Deterministically
known order sizes are shown in red color and the estimated sizes are shown in blue color.
(B) Triangular probability distribution function from which demands are sampled and order
size max-mean relative difference is calculated.

3.2 Load on network

The load on a process network (A) is an attribute that is calculated based on the
production capacity of the network (¥) and the demand profile. In general, it is not obvious
how to compute the production capacity of a network when multiple batches of different
tasks are to be executed depending on the product-mix (i.e., ratio of different products to be

produced). Gupta and Maravelias (2019) introduced a systematic procedure to determine
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the production capacity of a network, by solving a modified profit maximization problem
with periodicity constraints, that results in schedules with peak capacity utilization. Using
this procedure, we compute ¥ as the sum of the production quantities of all products per
unit time. The load on network is then given by A = £/¥, where ¢ is the sum of orders over

all products per unit time.

3.3 Optimization models

3.3.1 Deterministic

In deterministic optimization, the demand uncertainty is not explicitly modeled.
The scheduling decisions are computed using the state-space RTN model given in Section 2.3,
considering that the order sizes are deterministically known for time points within the
observation horizon 7, while the mean of the triangular probability distribution from which
demands are sampled, is used for order sizes at time points beyond 7. The model mitigates
the effect of demand uncertainty by treating them as disturbances and solely relies on
feedback provided by the online scheduling procedure. Note that feedback in the context of
demand uncertainty, is based on information about the future orders. The main advantage
of deterministic optimization is that the online computations are typically inexpensive, for

small to medium scale scheduling instances.

3.3.2 Robust

In the robust optimization approach that we employ in this work, an order size
near the maximum order size is assumed for the orders at time points beyond 7. In reality,
the worst-case demand (i.e., maximum order size) rarely occurs and scheduling based on the
worst-case value of the uncertain parameters leads to conservative solutions (Moradi and
MirHassani, 2016). In this work, we choose the 95" percentile value from the triangular
distribution as the near maximum order size. Note that the robust model formulation is
same as the deterministic formulation given in Section 2.3, except for the value of the demand

parameter &,.,,. Hence, the robust optimization model retains the advantage of having similar
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computational tractability as the deterministic model.

3.3.3 Stochastic programming

The stochastic programming formulations can accommodate decision making at
different stages according to the sequence in which uncertainty is revealed. The evolution of
the paths due to the uncertainty in parameters is represented using a scenario tree (Birge
and Louveaux, 2011). In multi-stage stochastic programming, the uncertainty is modeled by
a scenario tree with multiple stages. At each stage, the decisions are based on the realized
values of the parameters until that point in the tree, while the values of the uncertain
parameters are only known probabilistically. Multi-stage problems inherently have a complex
nested structure, hence, they are approximated to two-stage problems. In a two-stage
problem, the decision variables are divided into the first and second stage variables. The
first stage variables represent "here and now” decisions that are made before uncertainty is
revealed and thus, have to be identical for all scenarios. The second stage variables represent
"wait and see” decisions, which are recourse variables that are independent for each scenario.

In this work, we initially consider three different stochastic programming formulations
based on: (i) multi-stage; (ii) two-stage; and (iii) reduced two-stage approach (see illustration,
using an example, in Figure 4). For the multi-stage approach, we see, in Figure 4(A), that
the scenarios branch out at n = 6,8 where the demand is uncertain. While, using the two-
stage approach in Figure 4(B), all scenarios branch out at n = 6. In the reduced two-stage
approach in Figure 4(C), fewer scenarios branch out at n = 6 since a mean order size (based
on probability distribution) is assumed at n = 8 to limit the total number of scenarios and
keep the problem tractable. In other words, the more distant future is represented by only
one deterministic scenario with the expected values of the uncertain parameters, whereas the
immediate future is modeled by a tree of scenarios that represent different order sizes (Cui
and Engell, 2010).

We find that the closed-loop performance of the different stochastic programming

formulations are similar (refer to Supplementary Information), so we choose the reduced two-
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Figure 4: Illustration of scenario trees for stochastic programming (A) multi-stage, (B) two-
stage, and (C) reduced two-stage approaches. Deterministically known order sizes are shown
in red color and orders are due every alternate time point.

stage approach to keep the problem tractable. In this approach, a set of finite scenarios s € S
and the associated probabilities are determined from the continuous probability distribution
using a moment matching technique (Hgyland and Wallace, 2001). Here, an optimization
problem is solved to determine an approximating distribution composed of ten scenarios such
that the first three moments of the approximating distribution match (as well as possible)
the moments of the given continuous probability distribution. The model formulation for
the reduced two-stage stochastic programming approach is given in Appendix A. Note that
the online solution of the reduced two-stage stochastic programming model for medium to
large-scale instances requires large computational times since each closed-loop simulation
requires the solution of tens of open-loop optimizations. Moreover, to generate results in this
work, we solve millions of models that leads to scalability issues, thereby making it highly

challenging to use large-scale networks.

3.4 Instances
We investigate the closed-loop performance of the optimization models as a function

of load (A), order size max-mean relative difference (¢), and observation horizon (n), by
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varying one of these attributes at a time, while keeping the others fixed. For a given
process network (say, network NT1 shown in Figure 5), we use a long prediction horizon
(e.g., H = 24 periods, for the networks used in this work) for the open-loop problem
and choose a value for the time between orders {2, and the re-optimization time-step A.
Note that the prediction horizon length is chosen such that using a horizon longer than the
chosen value would not change results of the closed-loop simulations. Re-optimization time
step A is chosen based on the criteria outlined in Gupta and Maravelias (2019). Moreover,
re-optimizing more frequently than the greatest common factor of time-related data does
not yield any additional benefit towards closed-loop performance. We consider observation
horizon, n = 6,10, 14 periods such that, on average, it corresponds to different number
of orders that are deterministically known during each open-loop iteration. Moreover,
we consider load, A = 0.25,0.5,0.75,1, and order size max-mean relative difference, ¢ =

0.375,0.75, and simulation horizon of 48 periods.

A 15 3 6
B 10 2
C 5 1

Figure 5: Network NT1 with 3 tasks, 4 material resources, and 2 units, with 3 different cases
(parameter values) denoted by A, B, and C.

To start with, we determine the production capacity ¥ of a process network for a
given demand ratio of the products. In this work, for every network, we assume a relative
demand ratio of 1 across all the end products, but other ratios can be trivially handled using

the same approach. We then select load A at different levels and for each one of them, we find
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the demand to be met per unit time for each of the products. Based on time between orders
2, we calculate the mean order size of the symmetric triangular distribution from which
demands are sampled (every () periods). Using order size max-mean relative difference e
and the mean order size, the symmetric triangular probability distribution at each A, can
be identified. A demand sample consists of order quantities for all products drawn from
their respective distributions, at specified time points over the simulation horizon. For a
given network, we draw 50 such samples leading to the generation of 50 instances. This
number of demand samples was chosen so that the relative closed-loop performance of the
different optimization models remains practically the same if another set of 50 samples were
used. Finding the closed-loop solution for a given instance, using the tuple (model, A, €, n),
wherein model refers to the choice of deterministic, robust, stochastic programming model,
is referred to as a run. Each run requires solution to several open-loop problems to find the
closed-loop schedule. Note that we use the same set of 50 demand samples for a given A

across different models, €, and 7.

3.5 Closed-loop evaluation

Through the online scheduling procedure using optimization models (described in
Section 3.3) and given A, €, 7, a closed-loop schedule is obtained for the simulation horizon of
48 periods. To avoid any initial schedule ramp-up from affecting our conclusions, the closed-
loop cost is evaluated only from periods 10 to 48. For each instance, we obtain multiple
closed-loop solutions over the space of the attributes A, e, 7 and evaluate the corresponding
closed-loop costs. We then average over the 50 instances (i.e., demand samples), to find
the mean closed-loop cost, which is used to compare the closed-loop performance across the
models. Note that the closed-loop framework can also be used with other objective functions
such as profit maximization, which can be reduced to a per period (stage) metric (e.g., $/hr).
To obtain a closed-loop schedule, the requisite number of open-loop optimizations are solved
using a termination criterion of 1% relative optimality gap unless specified otherwise (though

most instances were indeed solved to optimality), using default solver options in CPLEX
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12.10.0 via GAMS 32.2.0, using the Della cluster at Princeton University. MATLAB R2018b
was used to import and analyze data from GAMS gdx files, that contained the scheduling

decisions and closed-loop costs.

4 Results

We carry out closed-loop simulations on network N'T1 shown in Figure 5 by varying
A, €, and 7 for the different models with H = 24 periods, €2 = 10, and A = 1. In Figure 6,
we show the results of the simulations for the parameter values corresponding to case A in
network NT1. Note that cases A, B, and C differ from each other only in the processing
times of tasks and the maximum unit capacity (refer to Figure 5). In the panels, each data
point denotes the mean closed-loop cost over 50 demand samples and is scaled by the least
(mean) closed-loop cost within that panel. Note that in Figure 6, the schedule costs are
different across different loads, hence, a cost of 1, in the panel corresponding to A = 0.25 is
not the same as cost of 1 in the panel corresponding to A = 0.5. We carry out a two-way
analysis of variance (ANOVA) on the results to discern statistical significance (Wonnacott
and Wonnacott, 1984). We perform ANOVA on the closed-loop cost over 50 demand samples
to ascertain whether there is a statistically significant difference between the closed-loop
performance of the different optimization models. We find the panova values (shown in
top-left of each panel in Figure 6), that denote the probability of realization of observed
data if the null hypothesis was true. We define our null hypothesis to be that the attributes
under consideration (i.e., € and choice of model) have no effect on closed-loop costs. If
panova values are less than 0.05 (i.e., 5%), it indicates a statistically significant effect of the
attributes, while in the faded panels in Figure 6, there is no statistically significant effect of
the choice of model on closed-loop costs since the corresponding panova values are greater
than 0.05. The best choice of model for a given set of attributes is the one that incurs the
least mean closed-loop cost.

In Figure 7, we show the results of the simulations with n = 6, for network NT'1
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Figure 6: Effect of A, €, and 1 on closed-loop cost using deterministic, robust, and stochastic
programming models for network NT1 case A. The panova value is given at the top-left

of each panel and faded panels indicate that there is no statistically significant effect of the
choice of model on the closed-loop cost at those values of A and 7.
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cases B and C (refer to Supplementary Information for results of n = 10,14, for NT1
cases B and C). From A to C, the processing times and maximum unit capacity are
decreased proportionally such that the production capacity of the networks remains the same.
Qualitatively, we claim that the "speed” of the network N'T'1 increases from A to C, since the
network is able to respond quickly as batches of smaller sizes with shorter processing times
can be scheduled to meet the demand. When we compare the closed-loop performance of
the deterministic and robust models, we observe that, in general, as the speed of the network
increases, the deterministic models start performing relatively better than the robust models
(refer to Figure 7C). This is due to the larger inventory cost incurred in the robust model,
since multiple batches are required to meet the demand for a given load in network NT1
case C as compared to case A. However, at lower speeds and a shorter observation horizon
n (refer to the first row in Figure 6), the deterministic model performs poorly due to the
large backlog cost incurred, as batches start before the demand is deterministically known
since the processing times are large. The stochastic programming model does not follow any
general trend as the speed of the network is increased. Therefore, even for a relatively simple
network NT1, we observe that changing the speed of the network (from A to C) changes the
relative closed-loop performance of the models (compare the individual panels in Figure 6
and 7) for a given set of attributes A, €, and 1. Moreover, we find that changing the time
between orders (2), the ratio of unit backlog to inventory cost (Y /4%) also changes the
relative closed-loop performance of the models (shown in Supplementary Information).

We carry out simulations on a more complex network N'T2 shown in Figure 8 and
obtain the results shown in Figure 9. Due to the increased computational burden encountered
during the solution of the open-loop optimizations, we set the termination criterion to 5%
relative optimality gap. We also carry out simulations on two other networks and show the
results in Supplementary Information. We observe trends and obtain useful insights that are
applicable across most networks for specific ranges of attributes, as explained in the following

section.
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Figure 7: Effect of A, € on closed-loop cost using deterministic, robust,
programming models with n = 6 for network N'T1 cases B and C.

Figure 8:
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Network NT2 with 4 tasks, 5 material resources, and 2 units.

and stochastic
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Figure 9: Effect of A, ¢, and 7 on closed-loop cost using deterministic, robust, and stochastic
programming models for network NT2.

5 Discussion

In this section, we discuss the closed-loop performance of models as A, €, and 7
are varied. We also explain the importance of accounting for uncertainty a priori through
the stochastic programming model compared to scheduling based solely on feedback using a

deterministic model.

5.1 Model performance

On analyzing the closed-loop performance of the deterministic, robust, and stochastic
programming models across multiple networks (refer to Figures 6,7, and 9), we present trends
that are observed for specific ranges of attributes and draw useful insights.

First, we observe that at very low loads (say, A < 0.25), given order size max-mean

relative difference €, and a long enough observation horizon 1 (depends on the network),
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closed-loop performances of the deterministic, robust, and stochastic programming models
are similar as seen by the coincident nature of the plots of closed-loop cost versus e (refer
to first column in Figures 6,7, and 9). Moreover, based on two-way ANOVA tests, we
find that there is no statistically significant effect of the choice of model on the closed-loop
cost. This implies that the deterministic model can perform as well as a computationally
expensive stochastic programming model for these set of attributes (refer to Supplementary
Information for model statistics). This is because at very low loads and a long enough
observation horizon, batches start in the schedule to meet a given demand only after it
is deterministically known and they are aligned to finish coinciding with the due-times to
reduce the inventory costs. Though the demand is uncertain at time points beyond 7, the
initial decisions (i.e., batch start times and sizes) in the open-loop schedules using different
models are similar, resulting in similar closed-loop performance.

Second, we see that at low or intermediate loads (say, A < 0.75), given € and a short
observation horizon 7, the best choice of model solely depends on the network characteristics.
For example, at A = 0.5 and 1 = 6 in network NT1 case A (shown in Figure 6), the robust
and stochastic programming model perform much better than the deterministic model. In
all models, the batches start before the demand is deterministically known (since batch
processing times are large and 7 is short). In the deterministic model, batches of sizes
corresponding to the mean order size start, resulting in heavy backlog costs when there are
larger than mean orders. However, at A = 0.5 and 7 = 6 in network NT1 case C (shown
in Figure 7), we find that the deterministic model performs much better since it results
in lower backlog and inventory costs compared to the other models. Here, surprisingly, the
deterministic model also outperforms the stochastic programming model (explained in detail
in Section 6.2). Typically, at intermediate loads and short observation horizons, across most
networks, the stochastic programming model gives better closed-loop performance and would
be a safer choice (refer to third column in Figures 6,7, and 9), since it incurs lower inventory

cost than the robust model and lower backlog cost than the deterministic model.
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Third, for high loads (say, A ~ 1), irrespective of € and 7, the closed-loop performances
of the models are similar based on the two-way ANOVA test (refer to fourth column in
Figures 6,7, and 9). This is because a high load requires the network to be operated close
to its production capacity, and there is not enough slack in the ”packed” schedule to fit in
additional batches, thus, large order sizes will lead to a backlog, regardless of the observation
horizon. Consequently, even the robust models that assume a near maximum order size at
due-times beyond 7, do not perform better than the deterministic model. Moreover, note
that the notion of very low, intermediate, and high loads are qualitative and may not exactly
correspond to the ranges of A specified in this section.

Fourth, we find that the mean closed-loop cost for all models increases as € increases,
at loads greater than a threshold (say, A > 0.25 for network NT1 cases A, B, C, and NT2).
A larger € implies many orders larger than the mean as well as many orders smaller than the
mean (since we use a symmetric triangular distribution). The unit backlog cost is 10 times
as expensive as the unit inventory cost, thus, the backlog cost incurred when the order sizes
are large predominantly influences the closed-loop cost. However, at loads lesser than the
threshold and a long enough observation horizon (refer to Figure 6 at A = 0.25 and n = 10),
the mean closed-loop cost for all models decreases as € increases. This is because at low
loads, the backlog costs are negligible and the inventory cost decreases as the bigger batches
are aligned to finish coinciding with the due-times of larger than mean orders. Hence, the
inventory cost for other smaller batches is reduced, when ¢ is larger.

Fifth, for a long enough observation horizon 7, across all A and ¢, the closed-loop
performances of the models are similar based on the two-way ANOVA test. In Figure 10, we
see that for network NT1 case A at 1 = 14, the mean closed-loop costs for the models seem
to coincide in each panel, for different A. This is because the demand is deterministically
known at many time points in the prediction horizon (given H = 24), and when 1 > H, the
open-loop problem becomes deterministic as there is no uncertainty in demand. Therefore,

the closed-loop performances of the models are similar for a long enough observation horizon.
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Figure 10: Effect of n on closed-loop cost for € = 0.75 across different A using deterministic,
robust, and stochastic programming models for network NT1 case A.

Sixth, we note that for intermediate loads (say, 0.25 < A < 0.75), as 7 increases,
the deterministic and stochastic programming models lead to a larger reduction in closed-
loop cost in comparison to the robust model. This can be clearly seen by the slope of the
different lines in the panels corresponding to A = 0.5,0.75 in Figure 10. The slope of the
line representing the robust model (indicated in blue color) is less compared to the other
lines as 7 increases from 6 to 10. As the observation horizon increases, the backlog costs
reduce considerably in the deterministic and stochastic programming models since batches
start after demand is deterministically known. However, in the robust model, batches always
start early irrespective of 7 since a near maximum order size is assumed for the uncertain
demand parameters, resulting in low backlog and high inventory costs. Thus, the decrease
in closed-loop cost as 7 increases is mainly due to the decrease in inventory cost. In general,
at intermediate loads, as n increases, the decrease in backlog costs in the deterministic and
stochastic programming model is much larger compared to the decrease in inventory cost in

the robust model.

5.2 Importance of accounting for uncertainty a priori

The stochastic programming model accounts for demand uncertainty a priori by
modeling the uncertain demand by a set of scenarios and, in addition, uses feedback to
revise the decisions. In other words, it is both a proactive as well as a reactive approach,

while the deterministic model is a purely reactive approach that relies solely on feedback
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to mitigate uncertainty in demand. To compare the closed-loop performance between these
models and understand the importance of accounting for uncertainty a priori, we carry out
simulations for network NT1 case A, by varying the re-optimization time-step A. The
results are shown in Figure 11, wherein, we observe that at intermediate and high loads (say,
A > 0.25), for a short observation horizon, the stochastic programming model at a higher
A (i.e., model is re-optimized less frequently) outperforms the deterministic model with a
lower A (i.e., model is re-optimized more frequently). For example, at A = 0.75, stochastic

programming model with A = 6 outperforms the deterministic model with A = 1.
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Figure 11: Effect of A on closed-loop cost for € = 0.75 and n = 6 across different A using
deterministic, robust, and stochastic programming models for network N'T'1 case A.

In the deterministic model at intermediate and high loads, a smaller batch may
start resulting in lost production, that cannot be overcome by more frequent re-optimization.
While in the stochastic programming model, the batch sizes are larger, thereby resulting in
better closed-loop performance, though the model may not be re-optimized as frequently.
Consequently, the overall computational time for the (online) stochastic programming approach
could be reduced through infrequent re-optimization. Furthermore, as A increases, a closed-
loop schedule tends to approximate an open-loop schedule (due to infrequent feedback),
and naturally, the stochastic programming model starts to perform much better than the
deterministic model.

In closing, we note that another approach to generate high quality robust schedules
is through the addition of terminal constraints (Risbeck et al., 2019). Recently, McAllister

et al. (2021) proposed an inherently robust closed-loop algorithm using terminal constraints
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to track a reference trajectory. However, when there is large variability in demand, identifying
such periodic reference trajectories (of high quality) is non-trivial. In that respect, the
methods presented in this paper provide guidelines that are readily applicable to all problems
though the proposed methods do not provide the theoretical guarantees derived in McAllister
et al. (2021).

6 Paradoxes
In this section, we present certain paradoxes that are observed based on the results

of the simulations across different networks and explain the reasoning behind them.

6.1 Closed-loop cost increases as 1 increases
In general, the closed-loop cost for all models is expected to decrease as the observation

horizon 7 increases, for all demand samples across A and e. This is because in an online
scheme, the future demands become deterministically known at an earlier point of time,
leading to processing of batches of appropriate sizes. However, we observe that at high loads
(say, A ~ 1), for certain demand samples, the closed-loop cost increases as 1 increases. For
example, in Figure 12, we show the closed-loop schedules for a specific demand sample using
the deterministic model as 7 is varied. We note that in Figure 12(B) when n = 10, the
closed-loop cost is higher than that at n = 6 because of the increase in backlog cost. While
computing decisions at iteration ¢ = 0 with n = 6, a mean order size is assumed at due-time
10, whereas when n = 10, the actual demand at time 10 (which is lesser than mean order
size for this sample) is deterministically known, hence, a smaller batch of task I3 is executed
in unit U2 at time 6 in Figure 12(B). This results in a lost production opportunity, leading
to backlogs as the (higher than mean) demand at time 20 cannot be met. These trends are
also observed for demand samples using the robust and stochastic programming models at
high loads. Note that though these trends are observed for 10 of the 50 demand samples at
A =1 and € = 0.375 in network NT1 case A, the mean closed-loop cost over 50 samples

does not necessarily increase as 7 increases.
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Figure 12: Gantt chart showing closed-loop schedules with A = 1 and ¢ = 0.375 using
deterministic model for network NT'1 case A. Batches are color coded and sizes are indicated
within, demand for products is shown on top of the red arrows at due-times, and closed-loop
cost is given towards the right of schedule. The observation horizons are (A) n = 6, and (B)
n = 10.

6.2 Deterministic model outperforms stochastic programming model

In most of the panels in Figures 6,7, and 9, we see that the stochastic programming
model performs atleast as well as the deterministic model. This is because the uncertainty
in demand is modeled by a set of scenarios compared to using a mean order size and the
scenarios effectively capture the underlying probability distribution. However, in Figure 13(A),
we see that the deterministic model outperforms the stochastic programming model based
on the two-way ANOVA test, at A = 0.5 and n = 6 for network NT1 case C. Moreover,
all the 50 demand samples follow this trend. In Figure 13(B) and (C), we show a part
of the closed-loop schedule for one of the samples using the deterministic and stochastic
programming model, respectively. The processing times of tasks in network NT1 case C are
smaller, hence, the batches can start after the demand is deterministically known. In this
example, in the deterministic model, batches start at time 4 when the actual demand at time
10 is known, since n = 6. While in the stochastic programming model, smaller batches start
at time 3, resulting in low production amounts, and leading to backlogs since the demand
at time 10 is not satisfied.

Furthermore, we know that as € increases, the mean order size used in the deterministic
model is still the same while a higher maximum order size is used in the robust model and

a new set of scenarios associated with the triangular distribution is used in the stochastic
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Figure 13: (A) Closed-loop performance of the models for network NT1 case C at A = 0.5
and n = 6. Gantt chart showing the first 20 periods of simulation horizon for the closed-loop
schedules using (B) deterministic model, and (C) stochastic programming model. Batches
are color coded and sizes are indicated within, demand for products is shown on top of the
red arrows at due-times.

programming model. However, this does not imply that the deterministic model performs
relatively worse as e increases. Here, in Figure 13(A), as € increases, we see that the
deterministic model performs relatively better because the increase in backlog cost for the
deterministic model is lesser than the increase in inventory costs for the other models for

network NT1 case C.

7 Conclusions

While demand uncertainty has been studied extensively in the context of the open-
loop problem, the impact of accounting for it in the presence of feedback, which has been
shown to be so powerful, has not been considered. Accordingly, the goal of this work was
to investigate the importance of accounting for demand uncertainty a priori in production
scheduling in the presence of feedback. The contributions of the work are three-fold: (i) we
introduced new concepts necessary to understand how feedback in scheduling impacts closed-
loop performance; (ii) we developed guidelines in terms of characteristics and attributes that
impact the selection of the most appropriate model; and (iii) we drew new insights regarding
the behavior of closed-loop scheduling solutions.

In terms of concepts, we first presented different optimization models (deterministic,

robust, and stochastic programming) used to generate the open-loop schedules and described

30



how the demand uncertainty is modeled in each case. Second, we introduced two attributes
that can be used to describe demand uncertainty in the context of online scheduling: the
order size max-mean relative difference (¢), the impact of which, as a metric of demand
variation, is understood, alas not widely studied; and the observation horizon (7), whose
importance was, to our knowledge for the first time, recognized and studied. Third, we
introduced the concept of “speed of a network” which is a metric of how fast a production
system can react which, in that respect, fills a gap in the analogies that have been drawn
between scheduling and dynamic optimization. Fourth, we identified the key attributes and
instance characteristics (e.g., network load) that impact the selection of the most appropriate
model.

In terms of guidelines, we derived the following: (i) At very low and high loads or
when the observation horizon is long enough, the closed-loop performances of the models
are similar, thus, a deterministic model which is computationally inexpensive, could be the
preferred choice. (ii) At intermediate loads or when the observation horizon is small, the
best choice of model depends on the network characteristics. However, for most networks,
the stochastic programming model would be a safer choice in terms of closed-loop solution
quality. (iii) At intermediate or high loads, and when the observation horizon is short,
we showcased the importance of accounting for uncertainty a priori compared to feedback,
since the stochastic programming model that is re-optimized infrequently performs much
better than the deterministic model that is re-optimized frequently. Note that the closed-
loop framework employed in this work can also be used to handle endogenous uncertainty.
However, drawing useful insights based on how effectively the different optimization models
account, for endogenous uncertainty might be non-trivial.

It is important to clarify that we did not derive any theoretical results regarding
the relative performance of the three models. Though we note that the available theoretical
results for MPC provide guarantees with respect to a nominal solution and not performance

ranking across competing approaches. Nevertheless, the derived guidelines appear to be
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broadly applicable because they remained consistent across the different networks we studied
(see Supplementary Information); and, most importantly, because we were able to explain,
intuitively, why they hold true. Finally, using a set of what, on the surface, appear to be
paradoxes, such as the increase in closed-loop cost as the observation horizon increases, we
showed that predicting the best model to be used for a given network and set of attributes
is non-trivial. This is important because it goes against the conventional wisdom according
to which accounting for uncertainty always leads to better results.

To the best of our knowledge, the work presented herein is the first of its kind in
understanding the importance of accounting for demand uncertainty a priori compared to

closed-loop batch scheduling based solely on feedback (i.e., using deterministic model).
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Appendix A. Stochastic programming model

The variables and constraints (Egs. 16-29) of the reduced two-stage stochastic
programming model are similar to those of the state-space RTN model in Section 2.3 but are
replicated across the set of scenarios s € S. Here, the subset S,, represents the scenarios at
time point n. For time points in the first stage (i.e., n < o, where o is the duration of first
stage), S,, is composed of only one scenario, i.e., s € S,, = {1}, and for n > o, S,, is composed
of the ten scenarios that branch out. Note that in Eqs. 26-29, variables corresponding to the

only scenario (i.e., s = 1) from the previous iteration ¢ — 1, is used to assign initial values to
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the variables at iteration ¢.

X0 =X, ViineNH se8,
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(16)
(17)
(18)
(19)
(20)

(21)

The non-anticipativity constraints (Egs. 30-34) enforce that the first stage variables

are equal across different scenarios since these decisions have to be made before the demand

uncertainty is realized. Note that in Eqs. 30 and 31, the first stage decisions Xj,s, Bins

indirectly affect the second stage lifted state variables X*  B¥

ms? ms?

hence, the equations are
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written for time points n’ = n + k with n < o.

Xiyo=Xy, Vike{0,1,.5},n<on =n+ks#l (30)
B, = ijnﬂl Vi,k € {0,1,.s},n<on =n+ks#1 (31)
Ryps=Rypn1 Vron<o,s#1 (32)
Upns =Upna Vron<o,s#1 (33)
Vins = Ven1 Vron<o,s#1 (34)

The objective function is given in Eq. 35, wherein p; is the probability of scenario s.

reRP s€S neNH reR seS neNH i€l s€S neNH
(35)
Nomenclature
Indices/sets
1el Tasks
ke K Progress status
neN Time points or periods
reR Resources
seS Scenarios
teT Open-loop iterations
Subsets
N# Time points in open-loop horizon
R” Product resources
S, Scenarios at time point n
Parameters
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Binary variables
Xi

Xt

Continuous variables
Bin
B,
RTTL

Lower /upper bound on batch size of task i

Inventory cost for material resource r

Backlog cost for product resource r

Fixed cost of executing batch of task ¢

Re-optimization time-step

Discretization of time grid

Order size max-mean difference relative to mean

Observation horizon — time ahead for which the order sizes are
deterministically known

Load

Lower /upper bound on level of resource r

Resource-task interactions of resource r with task i at status k
independent of batch size

Resource-task interactions of resource r with task ¢ at status k that
depend on batch size

Demand amount for product resource r at time point n
Probability of scenario s

Processing time of task ¢ in time periods

Time between orders

Task start variable, equals 1, when task i starts at time point n
Lifted task start variable, equals 1, when task ¢ has status k at time

n

Batch size of task i starting at time n
Lifted batch size variables

Level of resource r during period n
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Urn Backlog level for product resource r during period n

Vin Shipment quantity of product resource r at time n
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