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Abstract

We investigate the importance of accounting for uncertainty a priori in production

scheduling in the presence of feedback. First, we examine different optimization models

(deterministic, robust, and stochastic programming), used to generate the open-loop schedules

and describe the modeling of uncertainty in each case. Second, we present a formal procedure

for carrying out closed-loop simulations in order to study and compare the closed-loop

performance across the models as attributes such as the demand uncertainty observation

horizon, order size max-mean relative difference, and load on the process network are varied.

Finally, we analyze the results of the simulations to draw insights on how the above attributes

affect the closed-loop performance of the different models across networks and expound on

the paradoxes observed.
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1 Introduction

Scheduling plays an important role in chemical production facilities, from batch

production of fine chemicals to the continuous production of bulk chemicals (Harjunkoski

et al., 2014). When a schedule is computed, disruptions or the arrival of new information can

render the incumbent schedule sub-optimal or even infeasible, thereby necessitating online

(re)scheduling (Subramanian et al. (2012); Maravelias (2021)). Rescheduling as an ongoing

process in which decisions are made and revised in real-time during the execution of the

schedule is termed as online scheduling.

In a chemical production environment, there can be uncertainties associated with

the processing times of batches, batch yields, unit operating status, and demand for products.

An important consideration when computing schedules is to account for these uncertainties

in the scheduling model. To account for the uncertainties in a pre-emptive manner as the

scheduling problem is solved offline, researchers have proposed various models based on

robust optimization (Lin et al., 2004) and stochastic programming (Bonfill et al., 2005).

However, whether the presence of feedback (through the online scheduling procedure) sufficient

to account for the uncertainties, remains an open question. In the online scheduling procedure

that employs a deterministic model, the uncertainty is not explicitly modeled and it relies on

recourse based solely on feedback (Gupta and Maravelias, 2020). With a robust optimization

model, the focus is on maintaining feasibility and typically, bounds on the uncertain parameters

are used, resulting in optimization decisions in the open-loop solution, that are conservative

irrespective of the actual uncertainty realization. While, using the stochastic programming

model, a set of scenarios is determined based on the probability distributions of the uncertain

parameters and a recourse strategy is computed through maximizing or minimizing an

expectation function.

In this work, we investigate the significance of accounting for demand uncertainty

a priori in the presence of feedback (i.e., using robust optimization, stochastic programming)

compared to online scheduling based solely on feedback (i.e., using deterministic optimization).
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The demand is expressed in the form of orders with the order sizes being drawn from

a probability distribution. We carry out closed-loop simulations for different values of

attributes such as the demand uncertainty observation horizon, order size max-mean relative

difference, and the load on the process network. We explain why choosing the best model to

mitigate demand uncertainty for any given process network is non-trivial and expound on the

closed-loop performance of the different models, draw useful insights, and clarify observed

paradoxes.

The paper is structured as follows. In Section 2, we provide the necessary background.

In Section 3, we describe the simulations that are carried out to evaluate the closed-loop

performance of the models as attributes are varied. In Section 4, we present the results of

the closed-loop simulations. In Section 5, we draw insights, and in Section 6, we analyze

the paradoxes observed in the closed-loop performance. Throughout the text, we use lower

case italic letters for indices, uppercase boldface letters for sets, uppercase italic letters for

variables, and greek letters for parameters.

2 Background

First, we present the general chemical production scheduling problem statement,

problem representation, and model classification. Second, we describe what online scheduling

is and review the literature. Third, we present the state-space resource task network (RTN)

scheduling model used in this work. Finally, we review research that deals with scheduling

under demand uncertainty.

2.1 Chemical production scheduling

2.1.1 Problem statement

The general chemical production scheduling problem can be stated as follows.

Given:

(i) production facility data (e.g., unit capacities);

3



(ii) production recipes (e.g., processing times);

(iii) production costs (e.g., inventory holding costs and batch processing costs);

(iv) material availability (e.g., material delivery amounts and dates);

(v) resource availability (e.g., utility levels); and

(vi) production targets or orders with due-times;

scheduling seeks to determine:

(i) selection and sizing of batches to be processed;

(ii) assignment of these batches to units; and

(iii) sequencing and timing of these batches;

so as to meet the production targets at minimum cost, maximize profit by allowing excess

sales, or optimize any other suitable objective. There can be problem features such as

time-varying utility costs, sequence dependent changeovers, storage constraints, etc., which

can be appropriately handled through existing scheduling models (Méndez et al. (2006);

Harjunkoski et al. (2014)).

2.1.2 Problem representation

We represent the problem using a resource task network (RTN) (Pantelides, 1994),

which primarily comprises of resources r ∈ R and tasks i ∈ I. The set of resources is

composed of continuous, RC (includes material, energy supplies), and discrete, RD (includes

labor, equipment units) resources with: R = RC ∪ RD and a task is an operation that

consumes and/or generates resources during its execution. Given a scheduling problem,

the RTN representation is constructed by identifying the relevant resources and tasks. An

example RTN is shown in Figure 1, where tasks I1 and I2 are carried out in equipment U1.

The tasks engage the equipment resource at the start of execution and disengage it at the

end. Tasks I1 and I2 consume the material resource M0 and produce material resource M1

and M2, respectively. Here, I = {I1, I2}, RC = {M0,M1,M2}, and RD = {U1}.
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Figure 1: Example RTN representation. Blue arrows represent continuous resource
interactions, while orange dashed arrows indicate discrete resource interactions. Tasks are
denoted by rectangles, and resources by circles.

2.1.3 Model classification

Scheduling models can be classified on the basis of (i) optimization decisions, (ii)

modeling elements, and (iii) modeling of time (Maravelias, 2012). With respect to the

modeling of time, they can be classified, first, as sequence-based or time grid-based models

and, second, as continuous or discrete time models. Discrete time grid-based models lend

themselves to online scheduling approaches because the fixed model grid facilitates the

synchronization with the re-optimization frequency. The discussion in this paper will be

based on the most commonly used models, namely, models based on a single uniform grid,

where the time horizon is discretized into periods of uniform length (denoted by δ) and tasks

start and end at the time (grid) points. To ensure feasibility, time-related data are rounded,

for example, processing times are adjusted as τi = dτAi /δe, where τAi is the actual processing

time of task i. Although there could be discretization errors when using discrete time models,

they have several advantages over continuous time models. For example, in discrete time

models, accounting for inventory and utility costs as well as time varying prices and resource

availabilities, does not introduce non-linearities nor does it require the introduction of new

variables and constraints (Velez and Maravelias, 2014). Moreover, Sundaramoorthy and

Maravelias (2011) showed that discrete time models are, in general, at least as effective as

continuous time models and are better suited for large-scale instances with several additional

processing features. For the purpose of all simulations in this work, we use δ = 1 h. Although

we use this specific discrete time model, the analysis presented is applicable to all discrete
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time models and can be extended to continuous time models.

2.2 Online scheduling

Rescheduling as an ongoing process, wherein optimization problems are solved

periodically in order to account for the feedback and new information is termed as online

scheduling (Gupta et al. (2016); Gupta and Maravelias (2016)). Recently, Rawlings et al.

(2019) proposed a novel approach to incorporate knowledge of the automation system in a

chemical plant into the online scheduling problem. Building upon that, Avadiappan and

Maravelias (2021) presented methods to incorporate real-time data in online scheduling

through state estimation using a deterministic optimization model.

In each online scheduling iteration, an open-loop optimization problem is solved, to

determine the current and future decisions. Every open-loop problem is associated with

a prediction horizon denoted by H. When the current decisions are implemented, the

prediction horizon is moved forward by a fixed number of periods denoted by ∆ (i.e., the

re-optimization time-step), and the next set of decisions are computed (i.e., the next open-

loop problem is solved). The re-optimization time step should not be confused with δ, which

denotes the time-grid spacing in discrete time models. The actual implemented schedule,

determined based on the solution to a series of open-loop problems, is called the closed-loop

schedule.

Researchers in the past have proposed various rescheduling strategies in response

to disruptions or unexpected events (Vieira et al. (2003); Ave et al. (2019)). Méndez

and Cerdá (2003) proposed a novel mixed integer linear programming (MILP) formulation

for rescheduling, which can update schedules in response to unforeseen events. Janak

et al. (2006) proposed partial rescheduling by identifying and fixing tasks not directly

affected by an observed disturbance. Bonfill et al. (2008) demonstrated a proactive-reactive

approach with a stochastic model used in a reactive framework for batch scheduling. Novas

and Henning (2010) formulated a constraint programming model to compute rescheduling

decisions, based on the occurrence of disruptive events. Kopanos and Pistikopoulos
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(2014) proposed a rescheduling approach using the rolling horizon framework that relies

on multiparametric programming techniques. Silvente et al. (2015) used a rolling horizon

framework for the simultaneous optimization of energy supply and demand planning in

microgrids. Touretzky et al. (2017) proposed a methodology to detect faults in the process

that act as trigger for rescheduling. Pattison et al. (2017) proposed a feedback rescheduling

mechanism consisting of periodic schedule updates that account for demand forecasts and

event driven updates to account for process and market disturbances. Mathur et al.

(2020) presented an online scheduling scheme, implemented in a rolling horizon fashion to

account for uncertainties in electricity prices and water inflows in the operation of cascaded

hydropower systems.

Researchers have also developed closed-loop approaches that integrate

scheduling and control decisions (Burnak et al. (2019); Remigio and Swartz (2020);

Andrés-Mart́ınez and Ricardez-Sandoval (2022)). The interested reader is directed

to reviews by Engell and Harjunkoski (2012), Baldea and Harjunkoski (2014), and

Dias and Ierapetritou (2016). Zhuge and Ierapetritou (2012) proposed a closed-loop

strategy to reschedule so as to mitigate disturbances at the control level. Chu and

You (2014) solved a reduced integrated scheduling-control problem online, achieving

computationally tractable schedules. McAllister et al. (2020) proposed potential choices for

rescheduling penalties for economic model predictive control and closed-loop scheduling in

response to practical rescheduling concerns. Kumar et al. (2019) presented a framework

to compare the performance of deterministic and stochastic model predictive control

using a battery management case study. While both the present work and the work of

Kumar et al. (2019) are based on the same concept, scheduling involves discrete decisions

which can lead to different relative performance across methods.

2.3 State-space resource task network model

In the context of production scheduling, a procedure to transform a MILP scheduling

problem into state-space form was first proposed by Subramanian et al. (2012). Nie et al.
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(2014) reformulated an extended RTN model into state-space form in order to facilitate

reactive schedule design. The state-space form is advantageous as it offers a natural (re)formulation

for models used in online scheduling. Although, we use the RTN based discrete time state-

space model (adapted from Avadiappan and Maravelias (2021)), the ideas and conclusions

presented in this work are general and not model specific. They are also applicable to state

task network (STN) (Kondili et al., 1993) based discrete and continuous time models.

We define set T to represent the open-loop iterations and set N, whose elements

n ∈ N represent the time points and periods. A time period n is the time interval between

points n − 1 and n. A time grid starting from 0 and ending at |NH | (consisting of |NH |

periods) is used in each open-loop iteration t ∈ T. Here, subset NH ⊆ N, denotes the

time points in the prediction horizon of the open-loop problem. The progress of a batch of

task i ∈ I is tracked through its progress status k ∈ Ki, which increases from k = 0 at the

start of a batch, to k = τi at its end, where τi is the processing time of task i expressed

in time periods The main decision variables are Xin ∈ {0, 1}, which equal 1, when task i

starts at time n, and Bin ≥ 0, that denotes its batch-size. The lifted state variables X̄k
in

and B̄k
in represent the status and size of the batches under execution at a given point in

time, respectively. Effectively, the status k is represented using the binary state variables

X̄k
in, wherein a batch of task i has status k =

∑τi
k′=0 k

′X̄k′
in. Here, uppercase italic letters

with a bar represent the state variables.

Eqs. 1-4 represent the lifting equations for the evolution of the status of a batch.

Eq. 1 assigns k = 0 (i.e., X̄0
in = 1) when the batch of task i starts at time point n and

Eq. 2 represents the linear evolution of the status k with time point n. Eqs. 1- 2 together

effectively represent the relation: X̄k
in = Xi(n−k) ∀i, n ∈ NH , k ∈ {0, 1, ..τi}. Similarly, for

the batch size variables, Eqs. 3 and 4 are the state evolution equations and they together
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effectively represent the relation: B̄k
in = Bi(n−k) ∀i, n ∈ NH , k ∈ {0, 1, ..τi}.

X̄0
in = Xin ∀i, n ∈ NH (1)

X̄k
i(n+1) = X̄k−1

in ∀i, n ∈ NH , k ∈ {1, 2, ..τi} (2)

B̄0
in = Bin ∀i, n ∈ NH (3)

B̄k
i(n+1) = B̄k−1

in ∀i, n ∈ NH , k ∈ {1, 2, ..τi} (4)

Eq. 5 enforces that the batch size of a task is between βLBi and βUBi .

βLBi Xin ≤ Bin ≤ βUBi Xin ∀i, n ∈ NH (5)

Eqs. 6 and 7 represent the resource balances, where Rrn is the level of resource

r during period n and RT
r is the terminal resource level. The consumption/production of

resource r by task i at status k is denoted by parameters µirk and νirk. Note that negative

values of the parameters indicate consumption while positive values denote production. The

outgoing shipment of resource r at time n is given by Vrn.

Rr(n+1) = Rrn +
∑
i∈I

τi∑
k=0

{µirkX̄k
in + νirkB̄

k
in} − Vrn ∀r, n < |NH | (6)

RT
r = Rrn +

∑
i∈I

τi∑
k=0

{µirkX̄k
in + νirkB̄

k
in} − Vrn ∀r, n = |NH | (7)

Eq. 8 ensures that the resource level is within the lower bound, λLBr , and upper

bound, λUBr .

λLBr ≤ Rrn ≤ λUBr ∀r, n ∈ NH (8)

Eqs. 9 and 10 represent the backorder balance, where Urn is the backlog level for

product r ∈ RP during period n and UT
r is the terminal backlog level. The demand for
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product r at time n is given by ξrn.

Ur(n+1) = Urn − Vrn + ξrn ∀r ∈ RP , n < |NH | (9)

UT
r = Urn − Vrn + ξrn ∀r ∈ RP , n = |NH | (10)

Eqs. 11-14 represent the update equations, enforced at n = 0 in the current iteration

t. Using these equations, we carryover the scheduling decisions, resource and backlog levels

from the previous (open-loop) iteration t− 1 to the current iteration t. The prescripts t− 1

is used to denote variables from the previous iteration. Note that in each iteration we reset

the time grid to begin from 0.

X̄k
i,0 =(t−1) X̄

k−1
i,0 ∀i, k ∈ {1, 2, ..τi} (11)

B̄k
i,0 =(t−1) B̄

k−1
i,0 ∀i, k ∈ {1, 2, ..τi} (12)

Rr,0 =(t−1) Rr,1 ∀r (13)

Ur,0 =(t−1) Ur,1 ∀r (14)

The objective function as given in Eq. 15, is to minimize the sum of backlog cost,

inventory cost, and fixed cost of executing the tasks. Here, γUr is the backlog cost for product

resource r ∈ RP , γRr is the inventory cost for material resource r, and γXi is the fixed cost of

executing a batch of task i.

min
∑
r∈RP

γUr (
∑
n∈NH

Urn + UT
r ) +

∑
r∈R

γRr (
∑
n∈NH

Rrn +RT
r ) +

∑
i∈I

∑
n∈NH

γXi Xin (15)

Figure 2 shows the generation of a closed-loop schedule from a series of open-loop

iterations for the example RTN shown in Figure 1. Batches of tasks I1 and I2 are scheduled

over a prediction horizon consisting of five time periods. In iteration t = 0, the batches of

the two tasks are slotted to occur with an idle time of one period in between them. However,

in iteration t = 1, as the horizon is rolled forward, information about a rush order for one
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batch of the product from task I2 is obtained. Therefore, the batch of I2 starts immediately

after the end of the I1 batch and is followed by another I2 batch in order to satisfy the

demand, as shown by the open-loop schedule. This decision is also reflected in the resulting

closed-loop schedule given in the bottom row of Figure 2.

Figure 2: An example of closed-loop schedule generation. Only current decisions from each
open-loop iteration are implemented (shown as blue arrows). Faded block in iterations t = 1
and t = 2 indicate past time. Red and green arrows denote the demand for products M1
and M2, respectively.

2.4 Scheduling under demand uncertainty

In chemical production scheduling, there can be uncertainties associated with demand

or changes in product orders, processing time variability, equipment failures, recipe variations

(Sand and Engell (2004); Li and Ierapetritou (2008); Engell (2009); Lappas and Gounaris

(2016)). Researchers in the past have proposed various strategies to handle demand uncertainty.

Petkov and Maranas (1997) addressed the multiperiod planning and scheduling of multiproduct

plants under demand uncertainty using chance constraints. Balasubramanian and Grossmann

(2004) presented an approximation strategy that consists of solving a series of two-stage

stochastic programming models within a shrinking horizon framework to account for the

uncertain demand, while overcoming the large computational times associated with the
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solution of a multi-stage stochastic MILP model. Bonfill et al. (2004) proposed a stochastic

optimization approach to manage risk in the short-term scheduling of multiproduct batch

plants with uncertain demand. Cui and Engell (2010) presented a rescheduling approach

based on the application of a two-stage stochastic programming model in a moving horizon

framework, to handle uncertainties in demand, plant capacity, and yields. Vin and Ierapetritou

(2001) addressed the problem of quantifying the schedule robustness under demand uncertainty.

Lin et al. (2004) proposed a robust optimization method, wherein worst-case values of the

uncertain parameters associated with processing times and market demands are used in the

scheduling model.

3 Simulations

First, we describe the attributes that capture the uncertainty in demand. Second,

we outline the procedure to compute the load on a process network which plays a pivotal role

in closed-loop performance. Third, we describe how the demand uncertainty is accounted for

in the models we consider. Finally, we discuss the generation of instances and the closed-loop

evaluation procedure.

3.1 Uncertainty in demand

We analyze the closed-loop performance of different scheduling models under demand

uncertainty, wherein demand is modeled in the form of orders with the order sizes being

drawn from a symmetric triangular probability distribution. The uncertainty in demand

is represented by two attributes: (i) observation horizon (η), and (ii) order size max-mean

relative difference (ε) (Gupta and Maravelias, 2019). The observation horizon is the length of

the horizon within which demand is deterministically known. In other words, order sizes are

deterministically known within the observation horizon, from n = 0 to n = η, while the sizes

of orders due at time points between η and H (prediction horizon length, H = |NH |) are

estimated based on the optimization model used (refer to Section 3.3). When the prediction

horizon is rolled forward, for the next online iteration, the order sizes are updated as per
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the new observations (refer to Figure 3(A)). Note that when η ≥ H, there is no demand

uncertainty, since the size of all the orders within the prediction horizon is known beforehand.

The order sizes for a product can vary from one time point to another. The order size max-

mean relative difference (ε) captures the difference between the maximum and mean order

size relative to the mean order size, as shown in Figure 3(B). Without loss of generality, we

model the order sizes to follow a symmetrical triangular distribution, i.e., the maximum and

minimum possible order sizes are equidistant from the mean, c = a+b
2

in Figure 3(B).

Figure 3: Attributes of demand uncertainty. (A) Two online scheduling iterations showing
how the observation horizon of length η moves along as the prediction horizon is rolled
forward. Block arrows denote orders (length proportional to order size). Deterministically
known order sizes are shown in red color and the estimated sizes are shown in blue color.
(B) Triangular probability distribution function from which demands are sampled and order
size max-mean relative difference is calculated.

3.2 Load on network

The load on a process network (Λ) is an attribute that is calculated based on the

production capacity of the network (Ψ) and the demand profile. In general, it is not obvious

how to compute the production capacity of a network when multiple batches of different

tasks are to be executed depending on the product-mix (i.e., ratio of different products to be

produced). Gupta and Maravelias (2019) introduced a systematic procedure to determine
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the production capacity of a network, by solving a modified profit maximization problem

with periodicity constraints, that results in schedules with peak capacity utilization. Using

this procedure, we compute Ψ as the sum of the production quantities of all products per

unit time. The load on network is then given by Λ = ξ/Ψ, where ξ is the sum of orders over

all products per unit time.

3.3 Optimization models

3.3.1 Deterministic

In deterministic optimization, the demand uncertainty is not explicitly modeled.

The scheduling decisions are computed using the state-space RTN model given in Section 2.3,

considering that the order sizes are deterministically known for time points within the

observation horizon η, while the mean of the triangular probability distribution from which

demands are sampled, is used for order sizes at time points beyond η. The model mitigates

the effect of demand uncertainty by treating them as disturbances and solely relies on

feedback provided by the online scheduling procedure. Note that feedback in the context of

demand uncertainty, is based on information about the future orders. The main advantage

of deterministic optimization is that the online computations are typically inexpensive, for

small to medium scale scheduling instances.

3.3.2 Robust

In the robust optimization approach that we employ in this work, an order size

near the maximum order size is assumed for the orders at time points beyond η. In reality,

the worst-case demand (i.e., maximum order size) rarely occurs and scheduling based on the

worst-case value of the uncertain parameters leads to conservative solutions (Moradi and

MirHassani, 2016). In this work, we choose the 95th percentile value from the triangular

distribution as the near maximum order size. Note that the robust model formulation is

same as the deterministic formulation given in Section 2.3, except for the value of the demand

parameter ξrn. Hence, the robust optimization model retains the advantage of having similar
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computational tractability as the deterministic model.

3.3.3 Stochastic programming

The stochastic programming formulations can accommodate decision making at

different stages according to the sequence in which uncertainty is revealed. The evolution of

the paths due to the uncertainty in parameters is represented using a scenario tree (Birge

and Louveaux, 2011). In multi-stage stochastic programming, the uncertainty is modeled by

a scenario tree with multiple stages. At each stage, the decisions are based on the realized

values of the parameters until that point in the tree, while the values of the uncertain

parameters are only known probabilistically. Multi-stage problems inherently have a complex

nested structure, hence, they are approximated to two-stage problems. In a two-stage

problem, the decision variables are divided into the first and second stage variables. The

first stage variables represent ”here and now” decisions that are made before uncertainty is

revealed and thus, have to be identical for all scenarios. The second stage variables represent

”wait and see” decisions, which are recourse variables that are independent for each scenario.

In this work, we initially consider three different stochastic programming formulations

based on: (i) multi-stage; (ii) two-stage; and (iii) reduced two-stage approach (see illustration,

using an example, in Figure 4). For the multi-stage approach, we see, in Figure 4(A), that

the scenarios branch out at n = 6, 8 where the demand is uncertain. While, using the two-

stage approach in Figure 4(B), all scenarios branch out at n = 6. In the reduced two-stage

approach in Figure 4(C), fewer scenarios branch out at n = 6 since a mean order size (based

on probability distribution) is assumed at n = 8 to limit the total number of scenarios and

keep the problem tractable. In other words, the more distant future is represented by only

one deterministic scenario with the expected values of the uncertain parameters, whereas the

immediate future is modeled by a tree of scenarios that represent different order sizes (Cui

and Engell, 2010).

We find that the closed-loop performance of the different stochastic programming

formulations are similar (refer to Supplementary Information), so we choose the reduced two-
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Figure 4: Illustration of scenario trees for stochastic programming (A) multi-stage, (B) two-
stage, and (C) reduced two-stage approaches. Deterministically known order sizes are shown
in red color and orders are due every alternate time point.

stage approach to keep the problem tractable. In this approach, a set of finite scenarios s ∈ S

and the associated probabilities are determined from the continuous probability distribution

using a moment matching technique (Høyland and Wallace, 2001). Here, an optimization

problem is solved to determine an approximating distribution composed of ten scenarios such

that the first three moments of the approximating distribution match (as well as possible)

the moments of the given continuous probability distribution. The model formulation for

the reduced two-stage stochastic programming approach is given in Appendix A. Note that

the online solution of the reduced two-stage stochastic programming model for medium to

large-scale instances requires large computational times since each closed-loop simulation

requires the solution of tens of open-loop optimizations. Moreover, to generate results in this

work, we solve millions of models that leads to scalability issues, thereby making it highly

challenging to use large-scale networks.

3.4 Instances

We investigate the closed-loop performance of the optimization models as a function

of load (Λ), order size max-mean relative difference (ε), and observation horizon (η), by
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varying one of these attributes at a time, while keeping the others fixed. For a given

process network (say, network NT1 shown in Figure 5), we use a long prediction horizon

(e.g., H = 24 periods, for the networks used in this work) for the open-loop problem

and choose a value for the time between orders Ω, and the re-optimization time-step ∆.

Note that the prediction horizon length is chosen such that using a horizon longer than the

chosen value would not change results of the closed-loop simulations. Re-optimization time

step ∆ is chosen based on the criteria outlined in Gupta and Maravelias (2019). Moreover,

re-optimizing more frequently than the greatest common factor of time-related data does

not yield any additional benefit towards closed-loop performance. We consider observation

horizon, η = 6, 10, 14 periods such that, on average, it corresponds to different number

of orders that are deterministically known during each open-loop iteration. Moreover,

we consider load, Λ = 0.25, 0.5, 0.75, 1, and order size max-mean relative difference, ε =

0.375, 0.75, and simulation horizon of 48 periods.

Figure 5: Network NT1 with 3 tasks, 4 material resources, and 2 units, with 3 different cases
(parameter values) denoted by A, B, and C.

To start with, we determine the production capacity Ψ of a process network for a

given demand ratio of the products. In this work, for every network, we assume a relative

demand ratio of 1 across all the end products, but other ratios can be trivially handled using

the same approach. We then select load Λ at different levels and for each one of them, we find
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the demand to be met per unit time for each of the products. Based on time between orders

Ω, we calculate the mean order size of the symmetric triangular distribution from which

demands are sampled (every Ω periods). Using order size max-mean relative difference ε

and the mean order size, the symmetric triangular probability distribution at each Λ, can

be identified. A demand sample consists of order quantities for all products drawn from

their respective distributions, at specified time points over the simulation horizon. For a

given network, we draw 50 such samples leading to the generation of 50 instances. This

number of demand samples was chosen so that the relative closed-loop performance of the

different optimization models remains practically the same if another set of 50 samples were

used. Finding the closed-loop solution for a given instance, using the tuple (model, Λ, ε, η),

wherein model refers to the choice of deterministic, robust, stochastic programming model,

is referred to as a run. Each run requires solution to several open-loop problems to find the

closed-loop schedule. Note that we use the same set of 50 demand samples for a given Λ

across different models, ε, and η.

3.5 Closed-loop evaluation

Through the online scheduling procedure using optimization models (described in

Section 3.3) and given Λ, ε, η, a closed-loop schedule is obtained for the simulation horizon of

48 periods. To avoid any initial schedule ramp-up from affecting our conclusions, the closed-

loop cost is evaluated only from periods 10 to 48. For each instance, we obtain multiple

closed-loop solutions over the space of the attributes Λ, ε, η and evaluate the corresponding

closed-loop costs. We then average over the 50 instances (i.e., demand samples), to find

the mean closed-loop cost, which is used to compare the closed-loop performance across the

models. Note that the closed-loop framework can also be used with other objective functions

such as profit maximization, which can be reduced to a per period (stage) metric (e.g., $/hr).

To obtain a closed-loop schedule, the requisite number of open-loop optimizations are solved

using a termination criterion of 1% relative optimality gap unless specified otherwise (though

most instances were indeed solved to optimality), using default solver options in CPLEX
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12.10.0 via GAMS 32.2.0, using the Della cluster at Princeton University. MATLAB R2018b

was used to import and analyze data from GAMS gdx files, that contained the scheduling

decisions and closed-loop costs.

4 Results

We carry out closed-loop simulations on network NT1 shown in Figure 5 by varying

Λ, ε, and η for the different models with H = 24 periods, Ω = 10, and ∆ = 1. In Figure 6,

we show the results of the simulations for the parameter values corresponding to case A in

network NT1. Note that cases A, B, and C differ from each other only in the processing

times of tasks and the maximum unit capacity (refer to Figure 5). In the panels, each data

point denotes the mean closed-loop cost over 50 demand samples and is scaled by the least

(mean) closed-loop cost within that panel. Note that in Figure 6, the schedule costs are

different across different loads, hence, a cost of 1, in the panel corresponding to Λ = 0.25 is

not the same as cost of 1 in the panel corresponding to Λ = 0.5. We carry out a two-way

analysis of variance (ANOVA) on the results to discern statistical significance (Wonnacott

and Wonnacott, 1984). We perform ANOVA on the closed-loop cost over 50 demand samples

to ascertain whether there is a statistically significant difference between the closed-loop

performance of the different optimization models. We find the pANOV A values (shown in

top-left of each panel in Figure 6), that denote the probability of realization of observed

data if the null hypothesis was true. We define our null hypothesis to be that the attributes

under consideration (i.e., ε and choice of model) have no effect on closed-loop costs. If

pANOV A values are less than 0.05 (i.e., 5%), it indicates a statistically significant effect of the

attributes, while in the faded panels in Figure 6, there is no statistically significant effect of

the choice of model on closed-loop costs since the corresponding pANOV A values are greater

than 0.05. The best choice of model for a given set of attributes is the one that incurs the

least mean closed-loop cost.

In Figure 7, we show the results of the simulations with η = 6, for network NT1
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Figure 6: Effect of Λ, ε, and η on closed-loop cost using deterministic, robust, and stochastic
programming models for network NT1 case A. The pANOV A value is given at the top-left
of each panel and faded panels indicate that there is no statistically significant effect of the
choice of model on the closed-loop cost at those values of Λ and η.
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cases B and C (refer to Supplementary Information for results of η = 10, 14, for NT1

cases B and C). From A to C, the processing times and maximum unit capacity are

decreased proportionally such that the production capacity of the networks remains the same.

Qualitatively, we claim that the ”speed” of the network NT1 increases from A to C, since the

network is able to respond quickly as batches of smaller sizes with shorter processing times

can be scheduled to meet the demand. When we compare the closed-loop performance of

the deterministic and robust models, we observe that, in general, as the speed of the network

increases, the deterministic models start performing relatively better than the robust models

(refer to Figure 7C). This is due to the larger inventory cost incurred in the robust model,

since multiple batches are required to meet the demand for a given load in network NT1

case C as compared to case A. However, at lower speeds and a shorter observation horizon

η (refer to the first row in Figure 6), the deterministic model performs poorly due to the

large backlog cost incurred, as batches start before the demand is deterministically known

since the processing times are large. The stochastic programming model does not follow any

general trend as the speed of the network is increased. Therefore, even for a relatively simple

network NT1, we observe that changing the speed of the network (from A to C) changes the

relative closed-loop performance of the models (compare the individual panels in Figure 6

and 7) for a given set of attributes Λ, ε, and η. Moreover, we find that changing the time

between orders (Ω), the ratio of unit backlog to inventory cost (γUr /γ
R
r ) also changes the

relative closed-loop performance of the models (shown in Supplementary Information).

We carry out simulations on a more complex network NT2 shown in Figure 8 and

obtain the results shown in Figure 9. Due to the increased computational burden encountered

during the solution of the open-loop optimizations, we set the termination criterion to 5%

relative optimality gap. We also carry out simulations on two other networks and show the

results in Supplementary Information. We observe trends and obtain useful insights that are

applicable across most networks for specific ranges of attributes, as explained in the following

section.
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Figure 7: Effect of Λ, ε on closed-loop cost using deterministic, robust, and stochastic
programming models with η = 6 for network NT1 cases B and C.

Figure 8: Network NT2 with 4 tasks, 5 material resources, and 2 units.
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Figure 9: Effect of Λ, ε, and η on closed-loop cost using deterministic, robust, and stochastic
programming models for network NT2.

5 Discussion

In this section, we discuss the closed-loop performance of models as Λ, ε, and η

are varied. We also explain the importance of accounting for uncertainty a priori through

the stochastic programming model compared to scheduling based solely on feedback using a

deterministic model.

5.1 Model performance

On analyzing the closed-loop performance of the deterministic, robust, and stochastic

programming models across multiple networks (refer to Figures 6,7, and 9), we present trends

that are observed for specific ranges of attributes and draw useful insights.

First, we observe that at very low loads (say, Λ ≤ 0.25), given order size max-mean

relative difference ε, and a long enough observation horizon η (depends on the network),
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closed-loop performances of the deterministic, robust, and stochastic programming models

are similar as seen by the coincident nature of the plots of closed-loop cost versus ε (refer

to first column in Figures 6,7, and 9). Moreover, based on two-way ANOVA tests, we

find that there is no statistically significant effect of the choice of model on the closed-loop

cost. This implies that the deterministic model can perform as well as a computationally

expensive stochastic programming model for these set of attributes (refer to Supplementary

Information for model statistics). This is because at very low loads and a long enough

observation horizon, batches start in the schedule to meet a given demand only after it

is deterministically known and they are aligned to finish coinciding with the due-times to

reduce the inventory costs. Though the demand is uncertain at time points beyond η, the

initial decisions (i.e., batch start times and sizes) in the open-loop schedules using different

models are similar, resulting in similar closed-loop performance.

Second, we see that at low or intermediate loads (say, Λ ≤ 0.75), given ε and a short

observation horizon η, the best choice of model solely depends on the network characteristics.

For example, at Λ = 0.5 and η = 6 in network NT1 case A (shown in Figure 6), the robust

and stochastic programming model perform much better than the deterministic model. In

all models, the batches start before the demand is deterministically known (since batch

processing times are large and η is short). In the deterministic model, batches of sizes

corresponding to the mean order size start, resulting in heavy backlog costs when there are

larger than mean orders. However, at Λ = 0.5 and η = 6 in network NT1 case C (shown

in Figure 7), we find that the deterministic model performs much better since it results

in lower backlog and inventory costs compared to the other models. Here, surprisingly, the

deterministic model also outperforms the stochastic programming model (explained in detail

in Section 6.2). Typically, at intermediate loads and short observation horizons, across most

networks, the stochastic programming model gives better closed-loop performance and would

be a safer choice (refer to third column in Figures 6,7, and 9), since it incurs lower inventory

cost than the robust model and lower backlog cost than the deterministic model.
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Third, for high loads (say, Λ ∼ 1), irrespective of ε and η, the closed-loop performances

of the models are similar based on the two-way ANOVA test (refer to fourth column in

Figures 6,7, and 9). This is because a high load requires the network to be operated close

to its production capacity, and there is not enough slack in the ”packed” schedule to fit in

additional batches, thus, large order sizes will lead to a backlog, regardless of the observation

horizon. Consequently, even the robust models that assume a near maximum order size at

due-times beyond η, do not perform better than the deterministic model. Moreover, note

that the notion of very low, intermediate, and high loads are qualitative and may not exactly

correspond to the ranges of Λ specified in this section.

Fourth, we find that the mean closed-loop cost for all models increases as ε increases,

at loads greater than a threshold (say, Λ > 0.25 for network NT1 cases A, B, C, and NT2).

A larger ε implies many orders larger than the mean as well as many orders smaller than the

mean (since we use a symmetric triangular distribution). The unit backlog cost is 10 times

as expensive as the unit inventory cost, thus, the backlog cost incurred when the order sizes

are large predominantly influences the closed-loop cost. However, at loads lesser than the

threshold and a long enough observation horizon (refer to Figure 6 at Λ = 0.25 and η = 10),

the mean closed-loop cost for all models decreases as ε increases. This is because at low

loads, the backlog costs are negligible and the inventory cost decreases as the bigger batches

are aligned to finish coinciding with the due-times of larger than mean orders. Hence, the

inventory cost for other smaller batches is reduced, when ε is larger.

Fifth, for a long enough observation horizon η, across all Λ and ε, the closed-loop

performances of the models are similar based on the two-way ANOVA test. In Figure 10, we

see that for network NT1 case A at η = 14, the mean closed-loop costs for the models seem

to coincide in each panel, for different Λ. This is because the demand is deterministically

known at many time points in the prediction horizon (given H = 24), and when η ≥ H, the

open-loop problem becomes deterministic as there is no uncertainty in demand. Therefore,

the closed-loop performances of the models are similar for a long enough observation horizon.
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Figure 10: Effect of η on closed-loop cost for ε = 0.75 across different Λ using deterministic,
robust, and stochastic programming models for network NT1 case A.

Sixth, we note that for intermediate loads (say, 0.25 < Λ ≤ 0.75), as η increases,

the deterministic and stochastic programming models lead to a larger reduction in closed-

loop cost in comparison to the robust model. This can be clearly seen by the slope of the

different lines in the panels corresponding to Λ = 0.5, 0.75 in Figure 10. The slope of the

line representing the robust model (indicated in blue color) is less compared to the other

lines as η increases from 6 to 10. As the observation horizon increases, the backlog costs

reduce considerably in the deterministic and stochastic programming models since batches

start after demand is deterministically known. However, in the robust model, batches always

start early irrespective of η since a near maximum order size is assumed for the uncertain

demand parameters, resulting in low backlog and high inventory costs. Thus, the decrease

in closed-loop cost as η increases is mainly due to the decrease in inventory cost. In general,

at intermediate loads, as η increases, the decrease in backlog costs in the deterministic and

stochastic programming model is much larger compared to the decrease in inventory cost in

the robust model.

5.2 Importance of accounting for uncertainty a priori

The stochastic programming model accounts for demand uncertainty a priori by

modeling the uncertain demand by a set of scenarios and, in addition, uses feedback to

revise the decisions. In other words, it is both a proactive as well as a reactive approach,

while the deterministic model is a purely reactive approach that relies solely on feedback
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to mitigate uncertainty in demand. To compare the closed-loop performance between these

models and understand the importance of accounting for uncertainty a priori, we carry out

simulations for network NT1 case A, by varying the re-optimization time-step ∆. The

results are shown in Figure 11, wherein, we observe that at intermediate and high loads (say,

Λ > 0.25), for a short observation horizon, the stochastic programming model at a higher

∆ (i.e., model is re-optimized less frequently) outperforms the deterministic model with a

lower ∆ (i.e., model is re-optimized more frequently). For example, at Λ = 0.75, stochastic

programming model with ∆ = 6 outperforms the deterministic model with ∆ = 1.

Figure 11: Effect of ∆ on closed-loop cost for ε = 0.75 and η = 6 across different Λ using
deterministic, robust, and stochastic programming models for network NT1 case A.

In the deterministic model at intermediate and high loads, a smaller batch may

start resulting in lost production, that cannot be overcome by more frequent re-optimization.

While in the stochastic programming model, the batch sizes are larger, thereby resulting in

better closed-loop performance, though the model may not be re-optimized as frequently.

Consequently, the overall computational time for the (online) stochastic programming approach

could be reduced through infrequent re-optimization. Furthermore, as ∆ increases, a closed-

loop schedule tends to approximate an open-loop schedule (due to infrequent feedback),

and naturally, the stochastic programming model starts to perform much better than the

deterministic model.

In closing, we note that another approach to generate high quality robust schedules

is through the addition of terminal constraints (Risbeck et al., 2019). Recently, McAllister

et al. (2021) proposed an inherently robust closed-loop algorithm using terminal constraints
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to track a reference trajectory. However, when there is large variability in demand, identifying

such periodic reference trajectories (of high quality) is non-trivial. In that respect, the

methods presented in this paper provide guidelines that are readily applicable to all problems

though the proposed methods do not provide the theoretical guarantees derived in McAllister

et al. (2021).

6 Paradoxes

In this section, we present certain paradoxes that are observed based on the results

of the simulations across different networks and explain the reasoning behind them.

6.1 Closed-loop cost increases as η increases

In general, the closed-loop cost for all models is expected to decrease as the observation

horizon η increases, for all demand samples across Λ and ε. This is because in an online

scheme, the future demands become deterministically known at an earlier point of time,

leading to processing of batches of appropriate sizes. However, we observe that at high loads

(say, Λ ∼ 1), for certain demand samples, the closed-loop cost increases as η increases. For

example, in Figure 12, we show the closed-loop schedules for a specific demand sample using

the deterministic model as η is varied. We note that in Figure 12(B) when η = 10, the

closed-loop cost is higher than that at η = 6 because of the increase in backlog cost. While

computing decisions at iteration t = 0 with η = 6, a mean order size is assumed at due-time

10, whereas when η = 10, the actual demand at time 10 (which is lesser than mean order

size for this sample) is deterministically known, hence, a smaller batch of task I3 is executed

in unit U2 at time 6 in Figure 12(B). This results in a lost production opportunity, leading

to backlogs as the (higher than mean) demand at time 20 cannot be met. These trends are

also observed for demand samples using the robust and stochastic programming models at

high loads. Note that though these trends are observed for 10 of the 50 demand samples at

Λ = 1 and ε = 0.375 in network NT1 case A, the mean closed-loop cost over 50 samples

does not necessarily increase as η increases.
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Figure 12: Gantt chart showing closed-loop schedules with Λ = 1 and ε = 0.375 using
deterministic model for network NT1 case A. Batches are color coded and sizes are indicated
within, demand for products is shown on top of the red arrows at due-times, and closed-loop
cost is given towards the right of schedule. The observation horizons are (A) η = 6, and (B)
η = 10.

6.2 Deterministic model outperforms stochastic programming model

In most of the panels in Figures 6,7, and 9, we see that the stochastic programming

model performs atleast as well as the deterministic model. This is because the uncertainty

in demand is modeled by a set of scenarios compared to using a mean order size and the

scenarios effectively capture the underlying probability distribution. However, in Figure 13(A),

we see that the deterministic model outperforms the stochastic programming model based

on the two-way ANOVA test, at Λ = 0.5 and η = 6 for network NT1 case C. Moreover,

all the 50 demand samples follow this trend. In Figure 13(B) and (C), we show a part

of the closed-loop schedule for one of the samples using the deterministic and stochastic

programming model, respectively. The processing times of tasks in network NT1 case C are

smaller, hence, the batches can start after the demand is deterministically known. In this

example, in the deterministic model, batches start at time 4 when the actual demand at time

10 is known, since η = 6. While in the stochastic programming model, smaller batches start

at time 3, resulting in low production amounts, and leading to backlogs since the demand

at time 10 is not satisfied.

Furthermore, we know that as ε increases, the mean order size used in the deterministic

model is still the same while a higher maximum order size is used in the robust model and

a new set of scenarios associated with the triangular distribution is used in the stochastic
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Figure 13: (A) Closed-loop performance of the models for network NT1 case C at Λ = 0.5
and η = 6. Gantt chart showing the first 20 periods of simulation horizon for the closed-loop
schedules using (B) deterministic model, and (C) stochastic programming model. Batches
are color coded and sizes are indicated within, demand for products is shown on top of the
red arrows at due-times.

programming model. However, this does not imply that the deterministic model performs

relatively worse as ε increases. Here, in Figure 13(A), as ε increases, we see that the

deterministic model performs relatively better because the increase in backlog cost for the

deterministic model is lesser than the increase in inventory costs for the other models for

network NT1 case C.

7 Conclusions

While demand uncertainty has been studied extensively in the context of the open-

loop problem, the impact of accounting for it in the presence of feedback, which has been

shown to be so powerful, has not been considered. Accordingly, the goal of this work was

to investigate the importance of accounting for demand uncertainty a priori in production

scheduling in the presence of feedback. The contributions of the work are three-fold: (i) we

introduced new concepts necessary to understand how feedback in scheduling impacts closed-

loop performance; (ii) we developed guidelines in terms of characteristics and attributes that

impact the selection of the most appropriate model; and (iii) we drew new insights regarding

the behavior of closed-loop scheduling solutions.

In terms of concepts, we first presented different optimization models (deterministic,

robust, and stochastic programming) used to generate the open-loop schedules and described
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how the demand uncertainty is modeled in each case. Second, we introduced two attributes

that can be used to describe demand uncertainty in the context of online scheduling: the

order size max-mean relative difference (ε), the impact of which, as a metric of demand

variation, is understood, alas not widely studied; and the observation horizon (η), whose

importance was, to our knowledge for the first time, recognized and studied. Third, we

introduced the concept of “speed of a network” which is a metric of how fast a production

system can react which, in that respect, fills a gap in the analogies that have been drawn

between scheduling and dynamic optimization. Fourth, we identified the key attributes and

instance characteristics (e.g., network load) that impact the selection of the most appropriate

model.

In terms of guidelines, we derived the following: (i) At very low and high loads or

when the observation horizon is long enough, the closed-loop performances of the models

are similar, thus, a deterministic model which is computationally inexpensive, could be the

preferred choice. (ii) At intermediate loads or when the observation horizon is small, the

best choice of model depends on the network characteristics. However, for most networks,

the stochastic programming model would be a safer choice in terms of closed-loop solution

quality. (iii) At intermediate or high loads, and when the observation horizon is short,

we showcased the importance of accounting for uncertainty a priori compared to feedback,

since the stochastic programming model that is re-optimized infrequently performs much

better than the deterministic model that is re-optimized frequently. Note that the closed-

loop framework employed in this work can also be used to handle endogenous uncertainty.

However, drawing useful insights based on how effectively the different optimization models

account for endogenous uncertainty might be non-trivial.

It is important to clarify that we did not derive any theoretical results regarding

the relative performance of the three models. Though we note that the available theoretical

results for MPC provide guarantees with respect to a nominal solution and not performance

ranking across competing approaches. Nevertheless, the derived guidelines appear to be
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broadly applicable because they remained consistent across the different networks we studied

(see Supplementary Information); and, most importantly, because we were able to explain,

intuitively, why they hold true. Finally, using a set of what, on the surface, appear to be

paradoxes, such as the increase in closed-loop cost as the observation horizon increases, we

showed that predicting the best model to be used for a given network and set of attributes

is non-trivial. This is important because it goes against the conventional wisdom according

to which accounting for uncertainty always leads to better results.

To the best of our knowledge, the work presented herein is the first of its kind in

understanding the importance of accounting for demand uncertainty a priori compared to

closed-loop batch scheduling based solely on feedback (i.e., using deterministic model).
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Appendix A. Stochastic programming model

The variables and constraints (Eqs. 16-29) of the reduced two-stage stochastic

programming model are similar to those of the state-space RTN model in Section 2.3 but are

replicated across the set of scenarios s ∈ S. Here, the subset Sn represents the scenarios at

time point n. For time points in the first stage (i.e., n ≤ σ, where σ is the duration of first

stage), Sn is composed of only one scenario, i.e., s ∈ Sn = {1}, and for n > σ, Sn is composed

of the ten scenarios that branch out. Note that in Eqs. 26-29, variables corresponding to the

only scenario (i.e., s = 1) from the previous iteration t− 1, is used to assign initial values to
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the variables at iteration t.

X̄0
ins = Xins ∀i, n ∈ NH , s ∈ Sn (16)

X̄k
i(n+1)s = X̄k−1

ins ∀i, n ∈ NH , k ∈ {1, 2, ..τi}, s ∈ Sn (17)

B̄0
ins = Bins ∀i, n ∈ NH , s ∈ Sn (18)

B̄k
i(n+1)s = B̄k−1

ins ∀i, n ∈ NH , k ∈ {1, 2, ..τi}, s ∈ Sn (19)

βLBi Xins ≤ Bins ≤ βUBi Xins ∀i, n ∈ NH , s ∈ Sn (20)

Rr(n+1)s = Rrns +
∑
i∈I

τi∑
k=0

{µirkX̄k
ins + νirkB̄

k
ins} − Vrns ∀r, n < |NH |, s ∈ Sn (21)

RT
rs = Rrns +

∑
i∈I

τi∑
k=0

{µirkX̄k
ins + νirkB̄

k
ins} − Vrns ∀r, n = |NH |, s ∈ Sn (22)

λLBr ≤ Rrns ≤ λUBr ∀r, n ∈ NH , s ∈ Sn (23)

Ur(n+1)s = Urns − Vrns + ξrns ∀r ∈ RP , n < |NH |, s ∈ Sn (24)

UT
rs = Urns − Vrns + ξrns ∀r ∈ RP , n = |NH |, s ∈ Sn (25)

X̄k
i,0,1 =(t−1) X̄

k−1
i,0,1 ∀i, k ∈ {1, 2, ..τi} (26)

B̄k
i,0,1 =(t−1) B̄

k−1
i,0,1 ∀i, k ∈ {1, 2, ..τi} (27)

Rr,0,1 =(t−1) Rr,1,1 ∀r (28)

Ur,0,1 =(t−1) Ur,1,1 ∀r (29)

The non-anticipativity constraints (Eqs. 30-34) enforce that the first stage variables

are equal across different scenarios since these decisions have to be made before the demand

uncertainty is realized. Note that in Eqs. 30 and 31, the first stage decisions Xins, Bins

indirectly affect the second stage lifted state variables X̄k
ins, B̄

k
ins, hence, the equations are
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written for time points n′ = n+ k with n ≤ σ.

X̄k
in′s = X̄k

i,n′,1 ∀i, k ∈ {0, 1, ..τi}, n ≤ σ, n′ = n+ k, s 6= 1 (30)

B̄k
in′s = B̄k

i,n′,1 ∀i, k ∈ {0, 1, ..τi}, n ≤ σ, n′ = n+ k, s 6= 1 (31)

Rrns = Rr,n,1 ∀r, n ≤ σ, s 6= 1 (32)

Urns = Ur,n,1 ∀r, n ≤ σ, s 6= 1 (33)

Vrns = Vr,n,1 ∀r, n ≤ σ, s 6= 1 (34)

The objective function is given in Eq. 35, wherein ρs is the probability of scenario s.

min
∑
r∈RP

∑
s∈S

γUr ρs(
∑
n∈NH

Urns + UT
rs) +

∑
r∈R

∑
s∈S

γRr ρs(
∑
n∈NH

Rrns +RT
rs) +

∑
i∈I

∑
s∈S

∑
n∈NH

γXi ρsX̄
0
ins

(35)

Nomenclature

Indices/sets

i ∈ I Tasks

k ∈ K Progress status

n ∈ N Time points or periods

r ∈ R Resources

s ∈ S Scenarios

t ∈ T Open-loop iterations

Subsets

NH Time points in open-loop horizon

RP Product resources

Sn Scenarios at time point n

Parameters
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βLBi /βUBi Lower/upper bound on batch size of task i

γRr Inventory cost for material resource r

γUr Backlog cost for product resource r

γXi Fixed cost of executing batch of task i

∆ Re-optimization time-step

δ Discretization of time grid

ε Order size max-mean difference relative to mean

η Observation horizon – time ahead for which the order sizes are

deterministically known

Λ Load

λLBr /λUBr Lower/upper bound on level of resource r

µirk Resource-task interactions of resource r with task i at status k

independent of batch size

νirk Resource-task interactions of resource r with task i at status k that

depend on batch size

ξrn Demand amount for product resource r at time point n

ρs Probability of scenario s

τi Processing time of task i in time periods

Ω Time between orders

Binary variables

Xin Task start variable, equals 1, when task i starts at time point n

X̄k
in Lifted task start variable, equals 1, when task i has status k at time

n

Continuous variables

Bin Batch size of task i starting at time n

B̄k
in Lifted batch size variables

Rrn Level of resource r during period n
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Urn Backlog level for product resource r during period n

Vrn Shipment quantity of product resource r at time n

References

Andrés-Mart́ınez, O. and Ricardez-Sandoval, L. A. (2022). A nested online scheduling

and nonlinear model predictive control framework for multi-product continuous systems.

AIChE Journal, 68(5):e17665.

Avadiappan, V. and Maravelias, C. T. (2021). State estimation in online batch production

scheduling: concepts, definitions, algorithms and optimization models. Computers &

Chemical Engineering, 146:107209.

Ave, G. D., Alici, M., Harjunkoski, I., and Engell, S. (2019). An explicit online resource-task

network scheduling formulation to avoid scheduling nervousness. In Kiss, A. A., Zondervan,
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