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ACC FOR LOCAL VOLUMES
AND BOUNDEDNESS OF SINGULARITIES

JINGJUN HAN, YUCHEN LIU, AND LU QI

Abstract

The ascending chain condition (ACC) conjecture for local volumes pre-
dicts that the set of local volumes of Kawamata log terminal (klt) sin-
gularities z € (X, A) satisfies the ACC if the coefficients of A belong
to a descending chain condition (DCC) set. In this paper, we prove
the ACC conjecture for local volumes under the assumption that the
ambient germ is analytically bounded. We introduce another related
conjecture, which predicts the existence of d-plt blow-ups of a klt sin-
gularity whose local volume has a positive lower bound. We show that
the latter conjecture also holds when the ambient germ is analytically
bounded. Moreover, we prove that both conjectures hold in dimension
2 as well as for 3-dimensional terminal singularities.
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520 J. HAN, Y. LIU, AND L. QI

1. Introduction

Kawamata log terminal (klt) singularities form an important class of sin-
gularities which emerges from the study of the Minimal Model Program
(MMP) (see e.g. [BCHM10]). It becomes clear now that klt singularities
appear naturally in other contexts: they form the right class of singularities
of K-semistable or Kéhler-Einstein Fano varieties (see [Odal3, LX14, DS14,
BBEGZ19,CDS15, Tial5, BBJ21, LTW19] etc.); they share common proper-
ties with global Fano varieties, e.g. their (algebraic) fundamental groups are
finite (see [Xuld, GKP16,Bra2l] etc.), and they always admit plt blow-ups
whose exceptional divisors, known as Kolldr components, are klt (log) Fano
varieties (see [Sho96, Pro00, Kud01,Xul4,LX20] etc.).

Recently, the study of the local volume of klt singularities, first introduced
by C. Li in [Lil8], has attracted lots of attention. Let us recall the defi-
nition below. Let z € (X,A) be an n-dimensional klt singularity over an
algebraically closed field of characteristic 0. For any real valuation v of K(X)
centered at x, its normalized volume is defined as

\ﬁ(X,A),I(v) = Ax,a)(v)" - vol(v),

where A(x a)(v) is the log discrepancy of v according to [JM12, BAFFU15],
and vol(v) is the volume of v according to [ELS03]. The local volume of the
klt singularity = € (X, A) is defined as

;81(:10, X,A) := min \a(xyA)yr(v),
v

where the existence of a normalized volume minimizer was shown by Blum
[Blul8a]. Such a minimizer is always quasi-monomial by Xu [Xu20] and unique
up to rescaling by Xu and Zhuang [XZ21]. The main purpose of Li’s inven-
tion of the normalized volume functional was to establish a local K-stability
theory for klt singularities. More precisely, according to the Stable Degenera-
tion Conjecture [Lil8,LX18], the vol-minimizer is expected to have a finitely
generated graded algebra, which degenerates z € (X, A) to a K-semistable
log Fano cone singularity. For an extensive discussion of progress on this
conjecture, we refer to the survey article [LLX20].

The local volume of a klt singularity is an important invariant which reflects
essential geometric information and has deep connection to K-stability. It is
shown by Li and Xu [LX20] that a divisorial valuation minimizes vol if and
only if it comes from a K-semistable Kolldar component. For a quotient sin-
gularity o € A" /G, we know that \7(;1(07 A"/G) = n" /|G| by [LX20, Example
7.1]. Moreover, such a multiplicative formula holds for any finite crepant Ga-
lois morphism between klt singularities (known as the finite degree formula) by
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ACC FOR LOCAL VOLUMES AND BOUNDEDNESS OF SINGULARITIES 521

the recent work of Xu and Zhuang [XZ21, Theorem 1.3]. It is shown by the sec-
ond author and Xu in [LX19, Appendix A] that \70\1(95, X,A) <n™ for any klt
singularity « € (X, A), where the equality holds if and only if z € X \Supp (A)
is smooth. By works of Blum, the second author, and Xu [BL21,Xu20], in a
Q-Gorenstein family of klt singularities, the local volume of fibers is a lower
semicontinuous and constructible function on the base. This leads to a proof of
the openness of K-semistability [Xu20] (for a different proof, see [BLX19]). For
a K-semistable log Fano pair, the local volume of any singularity is bounded
from below by the global volume up to a constant [Fujl8, Liul8b, LL19].
Such an estimate is crucial in the study of explicit K-moduli spaces (see e.g.
[SS17,L.X19, GMGS21,ADL19, ADL20, Liu20]). Compared with the minimal
log discrepancy (mld), there is an inequality ;(;l(x, X,A) <n™ mld(z, X,A)
from [LLX20, Theorem 6.13]. A differential geometric interpretation of the lo-
cal volume goes as follows: when z € X arises from a Gromov-Hausdorff limit
of Kahler-Einstein Fano manifolds, Li and Xu [LX18, Corollary 3.7] showed
that the local volume of x € X is the same as the volume density of its metric
tangent cone up to a constant scalar (see also [HS17,SS17]).

In this paper, we explore the relation between local volumes and the bound-
edness of singularities. Motivated by the finite degree formula which yields
an effective upper bound of the order of the local fundamental group of a klt
singularity in terms of its local volume (see [XZ21, Corollary 1.4]) and other
phenomena from differential geometry (see e.g. [SS17, Section 5.1]), we ex-
pect that the existence of a positive lower bound for local volumes guarantees
certain boundedness property on singularities. In addition, our expectation
is closely related to the ACC conjecture on local volumes as local volumes of
a bounded family of singularities take finitely many values by [Xu20].

Below, we split our discussion into two parts. The first part treats the
conjecture on discreteness and the ACC property for local volumes. The
second part is focused on the conjecture which predicts the existence of d-plt
blow-ups when the local volumes have a positive lower bound. Note that the
latter conjecture combined with [HLM20] would imply that klt singularities
whose local volumes have a positive lower bound are log bounded up to special
degeneration. Our main results confirm the above conjectures for singularities
x € (X, A) in three cases: when x € X analytically belongs to a Q-Gorenstein
bounded family, when the dimension is 2, or when = € X is 3-dimensional
terminal and A = 0. We note that although the statements are divided into
two parts, their proofs share the same strategy.

1.1. ACC and discreteness of local volumes. In this subsection, we
address the following folklore conjecture on the discreteness and the ACC
for local volumes. Note that part (1) was first stated in [LLX20, Question
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6.12] (see also [LX19, Question 4.3]), and part (2) has appeared in [HLS19,
Conjecture 8.4] as a natural extension of part (1).

Conjecture 1.1. Let n be a positive integer and I C [0,1] a subset. Con-
sider the set of local volumes

x € (X, A) is n-dimensional kit, where
Vol?§ = { vol(z, X,A) | A= a;A;,a; € I for any i, and
each A; > 0 is a Weil divisor

(1) If I is finite, then Vol has 0 as its only accumulation point.

(2) If I satisfies the DCC, then Voliff} satisfies the ACC.

We note that the first author, J. Liu, and Shokurov proved Conjecture 1.1
for exceptional singularities [HLS19, Theorem 8.5]. We also remark that a
special case of part (1) that n™ is not an accumulation point of Vollff} with
I = {0} is a weaker version of the ODP Gap Conjecture [SS17, Conjecture
5.5] which was verified in dimension at most 3, see [LL19,LX19].

Our first main result states that if (z € X?") € (B C X* — B), that
is, the ambient germ x € X analytically belongs to a Q-Gorenstein bounded
family (B € X — B) (see Definition 2.25), then the set of local volumes
{\a(x, X, A)} satisfies the conclusion of Conjecture 1.1. In particular, Theo-
rem 1.2 implies that Conjecture 1.1 holds when x € X is a smooth germ.

Theorem 1.2. Let n be a positive integer and I C [0,1] a subset. Let
B C X — B be a Q-Gorenstein family of n-dimensional kit singularities.
Consider the set of local volumes

(x e X*) e (BC X* = B), z € (X,A)
is klt, where A =" a;A;, a; € I for
any i, and each A; > 0 is a Q-Cartier
Weil divisor

Volpcx B, 1= ‘781(% X,A)

(1) If I is finite, then Volpcx—p,1 has no non-zero accumulation point.
(2) If I satisfies the DCC, then Volpcx—,p 1 satisfies the ACC.

If z € (X,A) belongs to a log bounded family and A has finite rational
coefficients, then Xu [Xu20, Theorem 1.3] proved that their local volumes
belong to a finite set. We remark that Theorem 1.2 does not assume the
boundedness of Supp A and allows (DCC) real coefficients.

Theorem 1.3 confirms Conjecture 1.1 in dimension 2.

Theorem 1.3. Conjecture 1.1 holds when n = 2.

We also show that the local volumes of 3-dimensional terminal singular-
ities without boundary divisors are discrete away from 0. Note that these
singularities (even the Gorenstein ones) are not analytically bounded (see e.g.
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[Mor85, Rei87] or [KM98, §5.3]), and their local volumes (even the Gorenstein
ones) can converge to 0 (see e.g. [LX19, Example 4.2]).
Theorem 1.4. The set of local volumes

Vol§™ := {\70\1(33,X) | z € X is 3-dimensional terminal}

has 0 as its only accumulation point.

Note that even if we assume the Stable Degeneration Conjecture [LX18,
Conjecture 1.2] is true, Conjecture 1.1 is still open in dimension n > 3. This
is essentially due to the lack of a boundedness result for K-semistable Fano
cone singularities whose local volumes have a lower bound. To compare, the
corresponding global boundedness result was proved by Jiang [Jia20] and Xu-
Zhuang [XZ21] based on the BAB Conjecture proven by Birkar [Bir21] and
Batyrev’s Conjecture proven by Hacon-McKernan-Xu [HMX14] respectively.
For related discussions, see Conjecture 8.9, Question 8.11, or [LX19, Example
4.4].

1.2. Local volumes and boundedness of singularities. In this sub-
section, we study the relationship between local volumes and certain bound-
edness condition on singularities. We expect the following two classes of sin-
gularities are equivalent:

(1.1)
x € (X,A) is €-le, and admits a N \781(;10,X,A) > €
{ d-plt blow-up for some fixed €1, > 0 } o for some fixed e >0 [

We remark that it is expected in [HLS19] and proved in [HLM20, Theorems
1.1 and 4.1] that the first class of singularities in (1.1) belongs to a bounded
family up to special degeneration (See Section 8.2 for the definition of special
degenerations).

We first show that the local volumes of n-dimensional €;-lc singularities
with d-plt blow-ups have a positive lower bound depending only on n, €; and
0, which confirms one direction of our expectation in (1.1).

Theorem 1.5. Let n > 2 be a positive integer and 9§, €1 positive real num-
bers. Then there exists a positive real number € depending only on n, e, and
0 satisfying the following.

If v € (X,A) is an n-dimensional kit singularity, such that

(1) mld(z, X,A) > €1, and
(2) z € (X,A) admits a §-plt blow-up,
then \7o\l(x, X,A) >e.

For the converse direction in (1.1), we propose Conjecture 1.6.

Conjecture 1.6. Let n > 2 be a positive integer and n, € positive real
numbers. Then there exists a positive real number § depending only on n,n
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and € satisfying the following. If v € (X,A =3"1" a;A;) is an n-dimensional
klt singularity such that

(1) a; > n for any 1,
(2) each A; >0 is a Weil divisor, and
(3) vol(z, X, A) > ¢,

then x € (X, A) admits a §-plt blow-up.

We prove that the statement of Conjecture 1.6 is true if z € X analytically
belongs to a Q-Gorenstein bounded family.

Theorem 1.7. Let n > 2 be a positive integer, n, € positive real numbers,
and B C X — B a Q-Gorenstein family of n-dimensional klt singularities.
Then there exists a positive real number § depending only on n,n,e and B C
X — B satisfying the following.

Ifzxe (X, A=3",a;A;) is an n-dimensional klt singularity such that

(1) (x € X*) € (B C XA*™ — B),

(2) a; >n for any 1,

(3) each A; >0 is a Q-Cartier Weil divisor, and
(4)

—

4) vol(z, X,A) > e,

then © € (X,A) admits a §-plt blow-up.

We note that Theorem 1.7 fails to hold without assuming condition (2),
that is, the existence of a positive lower bound on the non-zero coefficients,
see Example 7.3.

Similar to Theorems 1.3 and 1.4, we also confirm Conjecture 1.6 in dimen-
sion 2 and for 3-dimensional terminal singularities without boundary divisors.

Theorem 1.8. Conjecture 1.6 holds in the following two situations.

(1) n=2.
(2) n=3, A=0, and z € X is terminal.

An immediate consequence of Theorem 1.7 and [HLS19, Theorem 1.3] is
that under the conditions of Theorem 1.7, the ACC conjecture for minimal
log discrepancies holds. Recall that the ACC conjecture for minimal log dis-
crepancies is closely related to the termination of flips [Sho04] and is still open
in dimension at least 3 even when x € X is fixed. For other recent progress
on minimal log discrepancies, we refer the readers to [Liul8a, Kaw21, Jial9,
LX21, Mor20].

Corollary 1.9. Let n be a positive integer, I C [0,1] a set which satisfies
the DCC, € a positive real number, and B C X — B a Q-Gorenstein family
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ACC FOR LOCAL VOLUMES AND BOUNDEDNESS OF SINGULARITIES 525
of n-dimensional kit singularities. Then the set

(reX*™) e(BCX*™ = B), ze€(X,A) is kit
mld(z, X, A) | where A =" a;A;, a; € I for any i, each A; >0
is a Q-Cartier Weil divisor, and vol(x, X, A) > ¢

satisfies the ACC.
Moreover, if I is a finite set, then the only possible accumulation point of
the above set is 0.

Theorem 1.10 answers a folklore question on the boundedness of the Cartier
index of any Q-Cartier Weil divisor in a log bounded family (see [HLS19,
Question 3.31]). We refer readers to [GKP16, Theorem 1.10], [Birl9, Lemma
2.24], and [CH21, Lemma 7.14] for some partial results. Our approach to
show Theorem 1.10 is based on Theorem 1.7 and [Birl8, Theorem 1.2].

Theorem 1.10. Let € be a positive real number. Suppose C = {(X,A)}
is a set of e-lc projective pairs that belongs to a log bounded family P. Then
there exists a positive integer N which only depends on P and € satisfying the
following.

Let (X,A) € C, and D a Q-Cartier Weil divisor on X. Then ND is
Cartier.

Sketch of proofs. We first sketch the proofs of Theorems 1.2 and 1.7. For
simplicity, in both theorems, we assume that x € X is fixed, the coefficients of
A belong to a rational finite set, and \751(:10, X, A) has a positive lower bound.
By the boundedness of Cartier index of any Q-Cartier Weil divisor on X,
we may further assume that each A; is Cartier. Our idea is to reduce both
theorems to the case when Supp A belongs to a bounded family, and then
we may apply the constructibility of local volumes in a log bounded family
proved by Xu [Xu20, Theorem 1.3], and the existence of “good” é-plt blow-ups
in a log bounded family (see Theorem 2.34). The reduction follows from two
steps. In step 1, we show that there exists a positive integer k£ depending only
on positive lower bounds of both ;al(x,X, A) and lct(X, A; A), such that if
AF is a k-th truncation of A, then \7(;1(33, X,A) = \70\1(33, X, A¥) (see Theorem
6.2). Moreover, we show that any “good” é-plt blow-up of z € (X, AF) is
also a d-plt blow-up of = € (X, A) (see Proposition 6.4). Our argument is
inspired by generic limit constructions from [Kol08,dFEM10,dFEM11] and a
truncation argument in [Xu20] based on Li’s properness estimate [Lil8]. In
step 2, we establish an inequality ¢ - lct(X, A; A) > \751($,X, A) where ¢ is a
positive constant depending only on € X (see Theorem 4.1). This shows
that the constant & from step 1 can be chosen to depend only on the positive
lower bound of \781(:1:, X, A), so we get the boundedness of A*. Here a “good”
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0-plt blow-up means that \7(;1( x,A),z(ords) is bounded from above where S is
the induced Kollar component.

It is worthwhile to mention that many results for local volumes were only
proved for Q-divisors A in previous literature, and some key ingredients in
their proofs including the existence of monotonic n-complement [Birl9, The-
orem 1.8] fail for R-divisors. Thus one technical difficulty in our paper is to
generalize these results to the case where A is an R-divisor and the coefficient
set I is not finite. To resolve this issue, we generalize [Blul8a, Main Theorem)]
and [Xu20, Theorems 1.2 and 1.3] from Q-divisors to R-divisors (see Section
3) and prove a Lipschitz type estimate on local volumes (see Theorem 5.1).
Another technical difficulty is that we need to treat analytic boundaries and
analytically bounded families, so that together with Theorems 1.2, 1.7, and
classification results, we can prove Conjectures 1.1 and 1.6 in dimension 2 as
well as for 3-dimensional terminal singularities.

2. Preliminaries

2.1. Pairs and singularities. Throughout this paper, we work over an
algebraically closed field k of characteristic 0 unless it is specified.

We adopt the standard notation and definitions in [KM98], and will freely
use them.

Definition 2.1 (Pairs and singularities). A pair (X, A) consists of a nor-
mal quasi-projective variety X and an R-divisor A > 0 such that Kx + A
is R-Cartier. Moreover, if the coefficients of A are < 1, then A is called a
boundary of X. If moreover A has Q-coefficients, then we say that (X, A) is
a Q-pair.

Let E be a prime divisor on X and D an R-divisor on X. We define mult g D
to be the multiplicity of F along D. Let ¢ : W — X be any log resolution of
(X,A) and let

Kw + Ay = gf)*(KX + A)
The log discrepancy of a prime divisor F on W with respect to (X,A) is
defined as

A(X7A)(E) =1 —multgAy.
For any positive real number ¢, we say that (X, A) is lc (resp. klt, e-lc, e-klt)
if Ax a)(E) >0 (resp. > 0, > ¢, > ¢) for every log resolution ¢ : W — X
as above and every prime divisor £ on W. We say that (X, A) is plt (resp.
e-plt) if Acx A)(E) > 0 (resp. > ¢) for any exceptional prime divisor £ over
X. Note that a prime divisor F over X is simply a prime divisor £ on some
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log resolution W of X. The center of E on X (denoted by cx(FE)) is the
scheme theoretic point ¢(n) € X where 7 is the generic point of .

A singularity x € (X, A) consists of a pair (X, A) and a closed point z € X.
The singularity = € (X, A) is called an lc (resp. a klt, an e-lc) singularity if
there exists an open neighborhood U of z in X such that (U, A|y) is lc (resp.
klt, e-lc). The minimal log discrepancy of an lc singularity z € (X,A) is
defined as

mld(z, X, A) := min {A(X,A)(E)

FE is a prime divisor
over X with cx(E) =«

The singularity = € (X, A) is called e-lc if mld(z, X, A) > e.
Definition 2.2 (Log canonical thresholds). Let z € (X, A) be an lc sin-

gularity and let D be an effective R-Cartier R-divisor. The log canonical
threshold of D with respect to z € (X, A) is

let, (X, A; D) :==sup{t e R |z € (X,A +tD) is log canonical}.

For convenience, we will denote lct,, (X, A; D) by let(X, A; D) if x is clear from
the context. Similarly, we may define the log canonical threshold let(X, A;a)
(resp. let(X, Aja,e)) of an ideal a (resp. a graded sequence of ideals a,) with
respect to x € (X, A), see, for example, [Blul8b, Definition 3.4.1].

Next we give some estimates on order functions.

Definition 2.3. Let X be a normal variety, x € X a closed point, and
myx , the maximal ideal of the local ring Ox , at x. The order function
ordy : Ox » — Z>o U {00} is defined by

ord, (f) := sup {j >0]|fe€ m]Xw}

This is a valuation if = is a smooth point, but not in general. Let A = div(f)
be an effective Cartier divisor, where f € Ox ;, we define ord, (A) := ord,(f).
We remark that ord, (A) is well-defined, that is, ord,(A) is independent on
the choice of f.

Proposition 2.4. Let x € (X, A) be a kit singularity of dimension n.

(1) let(X, Asmy o) < n, where my , C Ox 5 is the mazimal ideal of x.

(2) Suppose that x € (X, A + cAg) is a kit singularity for some positive
real number ¢ and Cartier divisor Ao = div(f), where f € Ox. Then
ord,(f) < 2.

Proof. (1) By lower-semicontinuity of log canonical thresholds in a fam-
ily (Lemma 2.29), there exists a closed smooth point ' € X, such that n =
lety (X; mxvx/) > ety (X, A; mxwl) > lctm(X, A; mxw), where my . C OX,gc’
is the maximal ideal of x’.
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(2) Let a = ord,(f). Then f € m% ., and (X, A+ em§ ) is klt. By (1),
ca < n. Hence ord,(f) < 2. O

We also need the subadditivity of log canonical thresholds [JM08, Corollary
2].

Proposition 2.5. Let © € (X,A) be an lc singularity where X is Q-
Gorenstein. For any ideal sheaves a,b on X whose cosupports contain x, we
have

let(X, Asa+b) <let(X,A;a) + let(X, A; b).

Proof. The proposition follows from [JMO08, Corollary 2]. O

Definition 2.6 (Bounded families). A couple consists of a normal projec-
tive variety X and a divisor D on X such that D is reduced. Two couples
(X,D) and (X', D’) are isomorphic if there exists an isomorphism X — X’
mapping D onto D'.

A set P of couples is bounded if there exist finitely many projective mor-
phisms V' — T of varieties and reduced divisors C? on V* such that for each
(X, D) € P, there exists i and a closed point ¢t € T*, such that the couples
(X, D) and (V/,C}) are isomorphic, where V;' and C; are the fibers over ¢ of
the morphisms V? — T% and C* — T, respectively.

A set C of projective pairs (X, B) is said to be log bounded if the correspond-
ing set of couples {(X,Supp B)} is bounded. A set of projective varieties X
is said to be bounded if the corresponding set of couples {(X,0)} is bounded.
A log bounded (respectively bounded) set is also called a log bounded family
(respectively bounded family).

2.2. Normalized volumes of valuations. In this section we give the
definition of normalized volumes of valuations from [Lil8]. Note that our
definition slightly generalizes Li’s definition as we treat R-pairs. Throughout
this section, we denote by X a normal variety.

2.2.1. Valuations. A wvaluation v of K(X) is a function v : K(X)* - R
satisfying the following conditions:

 v(fg) =v(f) +v(9);

o v(f +g) = min{v(f),v(9)};

e v(c) =0 for c € k*.
We also set v(0) = +00. Every valuation v of K(X) gives rise to a valuation
ring O, = {f € K(X) | v(f) > 0}. The value group of v is the (abelian)
subgroup I, := v(K(X)*) of R.

Let £ € X be a scheme-theoretic point. We say a valuation v of K(X) is
centered at & = cx(v) if its valuation ring O, dominates Ox ¢ as local rings.
We denote by Valy the set of all valuations of K (X) admitting a center on X.
We denote by Valx ¢ the subset of Valx consisting of valuations centered at &.
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Note that the center of a valuation is unique if it exists due to separatedness
of X.
For v € Valx and a non-zero ideal sheaf a C Ox, we define

v(a) :=min{v(f) | f € a- Ox ¢ where £ = cx(v)}.

We endow Valx with the weakest topology such that for any non-zero ideal
sheaf a C Ox, the map Valx — Rx( defined as v — v(a) is continuous.

Given a valuation v € Valyx ¢ and a real number p, we define the valuation
ideal sheaf a,(v) as a,(v)(U) :={f € Ox(U) | v(f) > p}. It is clear that the
cosupport of a,(v) is @ for p > 0. In particular, if £ = z is a closed point on
X and v € Valx 4, then a,(v) is an m,-primary ideal for p > 0.

Let 1 : Y — X be a birational morphism from a normal variety Y. Hence
p* o K(X) - K(Y) is an isomorphism. Let E C Y be a prime divisor.
Then E induces a valuation ordg of K(X) by assigning each rational function
f € K(X) to the order of vanishing of u*f along E. A valuation v € Valx
is a divisorial valuation if v = X - ordg for some prime divisor E over X and
some A € Ryg.

Let (Y, D) be a log smooth model over X, that is, p: Y — X is a proper
birational morphism from a smooth variety Y, the divisor D is reduced simple
normal crossing on Y, and p is an isomorphism on Y \ Supp (D). Let y =
(y1, - -, Yr) be a system of algebraic coordinates at a scheme-theoretic point
n € Y. We assume that each divisor (y; = 0) near 7 is equal to an irreducible
component of D. Let a = (a1, ..., ay) € RL, be a vector. We define a

valuation v, as follows. Since by Cohen’s structure theorem we have 6; ~
k(M [y1, v2, ..., yr], any function f € Oy, has a Taylor expansion f =
EﬁeZ;O cayP, where y? = [[/_, 4’ and ¢g € 63/\,7 is either 0 or a unit.
Then we define v4 (f) 1= min{(c, B) | cg # 0}, where (o, 8) := SI_, ;3. A
valuation v € Valy is quasi-monomial if v = v for some log smooth model
(Y, D) over X, a system of algebraic coordinates y at n € Y, and o € R%,,.
For a fixed log smooth model (Y, D) over X and n € Y, we denote QM,,(Y,D)
to be the collection of all quasi-monomial valuations v, that can be described
as above at the point n € Y. We define QM(Y, D) := U,QM, (Y, D) where n
runs through all generic points of intersections of some irreducible components
of D.

2.2.2. Log discrepancy. Let A be an effective R-divisor on X such that
Kx + A is R-Cartier, i.e. (X,A) is a pair. In this subsection, we define
log discrepancy A(x a)y(v) of a valuation v € Valx with respect to (X,A)
following [JM12, BAFFU15]. Note that a log smooth pair (Y, D) is said to
dominate (X, A) if (Y, D) is a log smooth model over X and p~1(Supp (A)) C
Supp (D).
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Definition 2.7. Let v be a valuation of K(X).

(1)

If v = \-ordg is divisorial where E CY % X is a prime divisor over
X, then we define the log discrepancy of v with respect to (X, A) as

A(X’A)(U) = )\ . A(X’A)(E) = )\(1 + Hluh]E(Ky — M*(KX —|- A)))

(2)

If v = vq is a quasi-monomial valuation that can be described at the
point 7 € Y with respect to a log smooth model (Y, D = 22:1 D;)
dominating (X, A) such that D; = (y; = 0) near n for 1 <i <r </,
then we define the log discrepancy of v with respect to (X, A) as

Ax,a)(©) = a; - Ax,a)(Di).
1=1

It was shown in [JM12] that there exists a retraction map
ryp : Valy — QM(Y,D) for any log smooth model (Y,D)
dominating (X, A), such that it induces a homeomorphism Valx =N
@(Y,D) QM(Y, D). For any valuation v € Valx, we define the log
discrepancy of v with respect to (X, A) as

Ax,ay(v) = sup Ax a)(ry,p(v)) € RU {400},
(Y,D)
where the supremum is taken over all log smooth pairs (Y, D) domi-
nating (X, A). It is possible that Ax a(v) = +oo for some v € Valy,
see e.g. [JM12, Remark 5.12].

We collect some useful lemmata which are easy consequences of [JM12] (see
e.g. [JM12, Lemma 5.3 and Remark 5.6]).

Lemma 2.8. The pair (X,A) is kit (resp. lc) if and only if for any non-
trivial valuation v € Valy we have A(x ay(v) >0 (resp. > 0).

Lemma 2.9. Let (X,A) and (X', A’) be two pairs together with a proper
birational morphism ¢ : X' — X. Then for any v € Valx we have

Axran() = Aix,a)(v) —v(Kx + A') — ¢"(Kx + A)).

2.2.3. Normalized volumes. In this subsection, we recall the defini-
tion of normalized volumes of Li [Lil8] for an n-dimensional klt singularity
x € (X,A). First we recall the definition of the volume of a valuation from
[ELS03].

Definition 2.10. For a valuation v € Valx ,, we define the volume of v

by

, UOx o/am
VOIX’I (’U) = mgr-r&-loo %/n'(v))

Here £(-) denotes the length of an Artinian module.
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We define Valy , = {v € Valx, | Acx a)(v) < +oo}. Note that this
definition is independent of the choice of A by Lemma 2.9.

Definition 2.11. For a valuation v € Valy ,, we define the normalized
volume of v with respect to x € (X, A) as

Acx,ay ()" -volx . (v) if v € Valk ,

vol L(v) =
(x.a).2 (V) {—l—oo ifveg Valgfjm.

The local volume of a klt singularity = € (X, A) is defined as
@(w,X,A) = inf \7(;1(X7A)7w(v).

vEValx

When A is a Q-divisor, the existence of a vol-minimizer is proven by Blum
[Blul8a, Main Theorem] when k is uncountable, and by Xu [Xu20, Remark
3.8] in general. Such a minimizer is always quasi-monomial by [Xu20, Theorem
1.2] and unique up to rescaling by [XZ21, Theorem 1.1]. We will prove that
both [Blul8a, Main Theorem] and [Xu20, Theorem 1.2] hold for any R-divisor
A > 0 and any algebraically closed field k; see Theorem 3.3. Meanwhile, the
proof of uniqueness of vol-minimizers from [XZ21] can be easily generalized
to R-divisors A (see Theorem 3.4). By convention, we set @(x,X, Ay =0
for a pair (X, A’) that is not klt at x.

Theorem 2.12 provides useful estimates on local volumes. It is a combi-
nation of [Lil8, Corollary 3.4], [LX19, Theorem 1.6], and [LLX20, Theorem
6.13].

Theorem 2.12 ([Lil8], [LX19], [LLX20]). Let z € (X, A) be an n-dimen-
stonal kit singularity. Then

0 < vol(z, X, A) < n™ - min{1, mld(z, X, A)}.

Lemma 2.13 from [Liul8b] provides an alternative characterization of local
volumes in terms of log canonical thresholds and multiplicities. A proof in
the Q-pair case is provided in [LLX20, Proof of Theorem 2.6].

Lemma 2.13 ([Liul8b, Theorem 27]). Let z € (X, A) be an n-dimensional
klt singularity. Then

vol(z, X,A) = inf  let(X,A;a)" - e(a)
a: mg-primary

= inf let(X, Asae)™ - e(as),

e : My -primary

where e(a) is the Hilbert-Samuel multiplicity of a, and e(aqe) = limy, 1 0o es:;;’f) .

We note that although Theorem 2.12 and Lemma 2.13 were originally
proven for Q-pairs, their proofs generalize to the pair case with little change.

The following properness and Izumi type estimates from [Lil8] are impor-
tant in the study of normalized volumes. Note that although the original
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statements in [Lil8] assume A = 0, Li’s proof generalizes easily to the pair
setting by taking a log resolution of (X, A). We provide a proof for readers’
convenience. For a family version, see Lemma 2.31.

Lemma 2.14 ([Lil8, Theorems 1.1 and 1.2]). Let x € (X,A) be a kit
singularity. Denote m := mx , the mazimal ideal at x. Then there exist
positive real numbers Cq,Csy depending only on x € (X, A) such that for any
f € Ox, and any v € Valy ,, we have

(1) (Properness estimate)

vol A A (U
vol(x a).2(v) > Cl(fT))()'

(2) (Izumi type estimate)

v(m)ord, (f) < v(f) < CaAx,a)(v)ord,(f).

Proof. We first prove part (2), i.e. the Izumi type estimate. The first
inequality is obvious. For the second inequality, we choose a log resolution
pe X' = (X,A) with Kx, + A" = p*(Kx + A). Since (X, A) is klt, there
exists € > 0 such that A’ < (1 —¢)A/_,. Since Al is simple normal crossing,
we know that (X', Al ;) is lc. Hence by Lemma 2.9 we have

Ax,a)(v) = Ax(v) = v(A") > Axr (v) = (1 = )v(ALeq)
= EAX/(’U) + (1 — E)A(X/7A;ed)(v) > GAX/(’U).

Let £ € X’ be the center of v on X’. By Izumi’s inequality in the smooth case
(see [JM12, Proposition 5.1]), for any f € Ox , we have

o(f) = v f) < Axr(v)orde(” f) < €M Ax,a) (v)orde (W f).

By Izumi’s linear complementary inequality (see [Lil8, Theorem 3.2]), there
exists as > 1 depending only on z € X and p such that orde(u*f) <
azord,(f). Hence (2) is proved by taking Cy = € las.

Now (1) follows from (2) and [Lil8, Theorem 1.3]. O

We will also need the finite degree formula for normalized volumes which is
conjectured by the second author and Xu [LX19, Conjecture 4.1] and proved
by Xu-Zhuang [XZ21]. Note that although the result was originally stated for
Q-divisors, the proof of Xu and Zhuang can be easily generalized to R-divisors
as it is a consequence of the uniqueness of minimizers (see Theorem 3.4).

Theorem 2.15 (Finite degree formula, cf. [XZ21, Theorem 1.3]). Let y €
(Y,Ay) and x € (X,A) be two klt singularities. Let f : (y € (Y,Ay)) —
(x € (X,A)) be a finite Galois morphism such that f(y) =z, and Ky +Ay =
[*(Kx +A). Then

vol(z, X, A) - deg(f) = vol(y, Y, Ay).
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We also include an easy but useful lemma.

Lemma 2.16. Let x € (X, A) be an n-dimensional kit singularity where
A is R-Cartier. Assume that lct(X, A; A) >+ for some v > 0, then for any
v € Valx , we have

FNCE (L>Ax<v>, and vﬁ@m(v)z(i) Tl (v).

1+~ 1+~
Proof. This follows from the inequality
A 11y (0) = Ax (v) = (1+7)0(A) > 0. O

2.3. Kollar components.

Definition 2.17. Let = € (X,A) be a klt singularity. If a projective
birational morphism g : Y — X from a normal variety Y satisfies the following
properties:

(1) w is isomorphic over X\{z},

(2) p~Y(z) is an irreducible exceptional divisor S,

(3) (Y, 8+ p;tA) is plt near S, and

(4) =S is an p-ample Q-Cartier divisor,
then we call p a plt blow-up of x € (X,A) and S a Kolldr component of
x € (X,A). Moreover, if for a positive real number § we have

(3") (V,S + pu;tA) is §-plt near S,
then we call u a 0-plt blow-up and S a é-Kolldr component of z € (X, A).

Proposition 2.18 ([LX20, Lemma 2.13]). Let ¢ : (2/ € (X',A')) —
(x € (X,A)) be a finite morphism between kit singularities such that o(x’) =
x, and o*(Kx +A) = Kx:+ A’ If Y — X is a plt blow-up of x € (X, A)
with the Kolldr component S, then

(1) Y xx X' = X’ induces a Kolldr component S" of ' € (X', A"), and

deg(c) - vol(x, a),z(0rds) = vol(x ar) o (ords:).

(2) If in addition o is a Galois quotient morphism of a finite subgroup
G < Aut(z’ € (X', A")), then every G-invariant Kollar component S’
over x' € (X', A") arises as a pullback of a Kolldr component S over
xz € (X, A).

Lemma 2.19 is well-known to experts (see e.g. [HX09, Proof of Theorem
1.3], [LX20, Lemmata 3.7 and 3.8], [Fuj19, Corollary 3.5], or [Zhu21, Lemma
4.8)).

Lemma 2.19. Let x € (X, A) be a klt singularity. Let a be an ideal sheaf
on X cosupported at x. Then there exists a Kolldar component S computing
let(X, A a).

The following result generalizes [LX20, Theorem 1.3] to R-divisors.
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Theorem 2.20. Let z € (X, A) be a kit singularity. Then

(1) \a(x,X, A) = infg \a(X,A),I(ordS), where S runs over all Kolldr
components over x € (X,A), and

(2) if v. € Valx, minimizes @(XA)@; then there exists a sequence of
Kolldr components {Si} and positive numbers by, such that

lim by-ordg, =v. in Valx, and lim \70\1(X A)el(ords, ) = ;c:l(x, X, A).
k—+oco ) i—>+00 =0 ’

Proof. (1) The direction “<” is obvious. Thus it suffices to show that
for any positive real number e, there exists a Kollar component S over = €
(X, A) such that \7(;1(X7A)7x(0rd5) < \7(;1(1’,X, A) 4 e. By Lemma 2.13, there
exists an ideal sheaf a on X cosupported at = such that lct(X, A;a)™ - e(a) <
\70\1(95, X, A)+e. By Lemma 2.19, there exists a Kolldr component S computing
let(X, A; a). Hence we have

vol(x.a)..(ords) <1et(X, A;a)™ - e(a) < vol(z, X, A) + ¢,

where the first inequality follows from [Liul8b, Lemma 26].

The proof of part (2) is the same as that of [LX20, Theorem 1.3], and we
omit it. ]

Theorem 2.21 ([LX20, Theorem 1.2]). Let x € (X, A) be a kit singularity
where A > 0 is a Q-divisor. Then a divisorial valuation ordg is a minimizer
of;c;l(XA)@ if and only if S is a Kolldr component of x € (X, A) and (S, Ag)
is K-semistable, where p :' Y — X is the corresponding plt blow-up of x €
(X,A), and Ag is the different divisor of Ky + u A+ S on S.

2.4. Analytically isomorphic singularities.

Definition 2.22. We say two singularities (z € X) and (z/ € X’) are
analytically isomorphic (denoted by (z € X*") = (2’ € X'*")) if we have an
isomorphism @\m = (m of k-algebras.

Here we use the notion “analytically isomorphic” as “formally isomorphic”
in literature, although the former notion (over C) usually refers to isomorphic
as complex analytic germs. Note that a famous result of Artin [Art69, Corol-
lary 2.6] shows that formally isomorphic singularities have isomorphic étale
neighborhoods, hence over C the two notions are equivalent.

We will use Proposition 2.23 without citing it frequently.

Proposition 2.23. Assume that (x € X) and (¢ € X') are analyti-
cally isomorphic singularities. Then (z € X) is Q-Gorenstein if and only if
(' € X') is Q-Gorenstein. Moreover, the Cartier index of Kx near x is the
same as the Cartier index of Kx/ near x’.

Proof. Denote R := Ox, and R := Ox/ 4. Let R and R’ be their com-
pletions. Then we have an isomorphism R =~ R'. Since both dimension and
depth are preserved under completion, we know that R is Cohen-Macaulay if
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and only if R~Tis Cohen-Macaulay, if and only if R’ is Cohen-Macaulay.
For a finite R-module M and m € Z~q, we denote M := (M®™)** Thus
it suffices to show that w[ " is free if and only if w[ ") is free for m € Zy.
Here w4 denotes the canonical module of a Cohen—Macaulay ring A By
[BH93, Theorem 3.3.5], we know that wg = wr ®g R. Since R < R and
R < R are faithfully flat, we know that
w%n] = [m] ®RR and w%’?] ~ w%’?] QR R

Hence w%n] is free if and only if w%n] =~ w%\?] is free, if and only if w%’,l] is
free. O

Recall that for a klt singularity « € X, the space Valg(’m consists of valua-
tions v € Valx , satisfying Ax (v) < 4o00.

Proposition 2.24. Assume that (x € X) and (' € X') are analytically
isomorphic singularities where (x € X) is kit. Then (¢’ € X') is also klt.
Moreover, there exists a bijection ¢ : Val , — Val%. ., such that the following
statements hold for any v € Val .

(1) We have Ax(v) = Ax/(p(v)).

(2) We have gr,Ox,. = gryOxra as graded rings. In particular,
VOlX,x(v) = VOlX/,x’ (¢(v))

(3) We have volx o(v) = volxs o (¢(v)) and vol(z, X) = vol(z', X").

(4) If v = ordg is a Kolldr component S of (x € X), then ¢(v) = ordg
is a Kollar component S’ of (x € X'), and (S,T") = (S',T") where T
and T are different divisors.

Proof. For simplicity, denote
(R,m) := (Ox 4,mx,) and (R ,m'):=(Ox/ p,mx/ ).

Let (Rﬁ) and (R\’,a\/) be the completion of (R, m) and (R’, m’) respectively.
Since x € X is klt, by [dFEM11, Proposition 2.11(1)] we know that Spec R
is kit in the sense of [dFEM11, Page 226]. Hence 2’ € X' is also klt by
[dFEM11, Proposition 2.11(1)] and the isomorphism Specﬁ 2 Spec R.

Next we construct the bijection ¢. By [JM12, Corollary 5.11], any valuation
v € Valg(ﬁz has a unique extension ¢ to Specﬁ. Note that although [JM12,
Corollary 5.11] has the assumption that R is regular, the same argument
goes through for any klt singularity x € X by replacing the Izumi inequality
[JM12, Proposition 5.10] with Lemma 2.14. Denote by % : R = R the
isomorphism. Then we may define ¢(v) := (¢.0)|r' € ValX/ 2

Let T W -2 X bealog resolutlon of X Denote by X = Spec Rand X' :=
Spec R. Let W:i=W X x X with # : W — X. By [dFEM11, Proposition
A.14], we have T* Ky, x = KW/X. By [JM12, Proposition 5.13], we have that
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Aw (v) = Ag(0). Thus by Lemma 2.9 we have

(2.1) Ax(v) = Aw () + v(Kw/x) = Ay (0) + 8(Kp 5)-

Since X =~ X' by assumption, we know that W= X'isa log resolution in
the sense of [Tem18]. Let «’ : W' — X’ be a log resolution of X’. Denote

by W =W xx» X'. Thus W — X' is also a log resolution. Thus by
[JM12, Remark 5.6] and the above arguments, we have

(22)  Ap(0) +0(Kgp 5) = Agn ($40) + 00 (K 57)
= Aw (¢(v)) + o(v)(Kw/x7) = Ax(6(v))-
Combining (2.1) and (2.2), we get Ax(v) = Ax/(¢(v)). Hence ¢ takes value in

Val, .. Similarly we can define ¢! which implies that ¢ : Val% , — Val%,
is a bijection. In addition, we have shown part (1).

~

For part (2), we first show that a,(v) - R = a,(?) for any p € R>¢. Since ¢

’
s T

is an extension of v, we have a,(v) - RC a,(0). On the other hand, suppose
f € a,(0)\ {0}, then let m € N be an integer such that m-v(m) > 9(f). Since
B(@™) = H(m™ - R) = v(m™) = mo(m), we know that d(@™) > o(f) > p.
Choose g € R such that f — g € m™, then v(g) = 0(f) > p. Thus we have
g € a,(v) and m™ C a,(v) which implies f € (g) + m™ C a,(v) - R. Asa
result, we have a,(0) C a,(v) - R which implies a,(v) - R= a,(0).

Since all valuation ideals a,(v) of v are m-primary, we have a,(v)/as,(v) =
a,(0)/as,(0) for any p € R>o. Thus we have gr, R = gry R as graded rings.
Apply similar arguments to ¢(v) and qb/(;) = .0, we get gry(,) R = grw*{)]/%\’.
Since 1 : R— R isan isomorphism, we get

gr,R = gr, R~ grw*ﬁﬁ = gry R

From the isomorphism gr, R = gr ) ¥', we know that

U(R/ap(v)) = (R /ay((v)))
for any p € R>g. Thus the volumes of v and ¢(v) are equal. This finishes the
proof of part (2).

Part (3) is a consequence of parts (1) and (2).

For part (4), suppose v = ordg for a Kolldr component S over (z € X).
Since v and ¢(v) have isomorphic associated graded algebras by part (2),
we know that the value group of ¢(v) is the same as that of v, which is Z.
Let Y’ := Projx: ®mez-, 0m(¢(v)), where the finite generation of this graded
algebra follows from the finite generation of 8Tyt (see e.g. [Liul8b, Lemma
32]). Clearly Y is normal as any valuation ideal sequence is integrally closed.
Denote by p/ : YY" — X’ the projection morphism, then y' is isomorphic over
X"\ {z'} as am(p(v)) is m'-primary. Let S” := Proj gry R as a closed

Licensed to Princeton Univ. Prepared on Tue Aug 8 00:45:14 EDT 2023 for download from IP 128.112.200.107.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ACC FOR LOCAL VOLUMES AND BOUNDEDNESS OF SINGULARITIES 537

subscheme of Y”. Then by construction we know that Supp S’ = p/~1(2’). By
[LX20, Section 2.4] and part (2), we know that S=Proj gr, R=Proj gry,) R’ =
S’. Hence S’ is the only prime p’-exceptional divisor on Y. Let k € Z~¢ be an
integer such that ag, (é(v)) = ag(é(v))™ for any m € N. Then we know that
Oy (k) is Cartier ample over X', which implies that Oy (k) = Oy (—¢S")
for some ¢ € Zso. It is clear that ag,,(¢(v)) = w,Oy(km), thus we have
apm (d(v)) = p,Oy(—gmE) = akm(gordsf) for any m € N. Thus we have
p(v) = sordgf, which implies that k& = ¢ and ¢(v) = ordss by comparing
their value groups. In particular, we have a,,(¢(v)) = p, Oy (—mS’) for any
m € N.

Let o and o’ be the cone vertices of Spec gr, R and Spec gr¢(U)R’ respec-
tively. By [LX20, Section 2.4] we know that o € Spec gr,R is a klt sin-
gularity carrying a Gp,-action induced by the grading of gr, R, such that
(Spec gr,R) \ {o} is a Seifert G,,-bundle over (S,T) in the sense of [Kol04].
Thus by part (2) Spec gry,) R’ is also a klt singularity with a G,,-action in-
duced by the grading of gr,,y¥'. By [LWX21, Proof of Lemma 2.21(1)], we
know that p/ : Y/ — X’ provides a Kollar component S’ with different divisor
I, such that (Spec gry(,) ') \ {0’} is a Seifert G,,,-bundle over (S’,I"). Since
gr, R = gry, R’ as graded rings by part (2), we know that (S,T') = (5',1")
as G,,-quotients of isomorphic Serfert G,,,-bundles. The proof is finished. [

2.5. Family of singularities.

Definition 2.25 ([BL21,Xu20]). We call B C (X, D) — B a Q-Gorenstein
(resp. an R-Gorenstein) family of (n-dimensional) kIt singularities over a (pos-
sibly disconnected) normal base B if

(1) X is normal and flat over B,

(2) Kx/p + D is Q-Cartier (resp. R-Cartier),

(3) for any closed point b € B, X}, is connected, normal, and not contained
in Supp (D),

(4) there is a section B C X, and

(5) b€ (X, Dp) is kit (of dimension n) for any closed point b € B, where
Dy, is the (cycle theoretic) restriction of D over b € B.

Let z € X be a normal variety X with a closed point . Let B C X — B
be a Q-Gorenstein family of klt singularities. We denote by (z € X) €
(B C X — B) if there exists a closed point b € B, a neighborhood U of
z € X, and a neighborhood Uy of b € &}, such that (x € U) is isomorphic to
(b € Up). We denote by (z € X**) € (B C X*" — B) if there exists a closed

——

point b € B such that Ox , = @ as k-algebras.

Remark 2.26. Let B’ — B be any morphism from a normal scheme B’
of finite type over k, the base change B’ C (X',D') = (X,D) xg B’ = B is
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a Q-Gorenstein (resp. R-Gorenstein) family of klt singularities over B’, and
Kxi/p + D' = g*(Kx/p + D), where g : &’ — X is the base change of
B’ — B, see [BL21, Proposition 8§].

Definition 2.27. Let B C (X,D) — B be an R-Gorenstein family of kit
singularities over a normal base B. We say a birational morphism g : (Y, &) —
(X, D) is a fiberwise log resolution of B C (X,D) — B where & is the sum of
the strict transform of D and the reduced exceptional divisor of Y — X if

(1) for each closed point b € B, (¥, Ep) — (A, Dp) is a log resolution,
(2) any stratum of (Y, £), that is a component of the intersection NE; for
components &; of £, has geometric irreducible fibers over B, and
(3) for any exceptional prime divisor F of u, the center of F on X is the
section B C X if and only if the center of F, on &} is b € X}, for some

closed point b € B.

Remark 2.28. For any R-Gorenstein family of klt singularities B C
(X,D) — B over a normal base B, by [Xu20, Definition-Lemma 2.8], possi-
bly stratifying the base B into a disjoint union of finitely many constructible
subsets and taking finite étale coverings, we may assume that there exists a
decomposition B = | |, B, into irreducible smooth strata B, such that for
each a, (X x g By, D x B,) admits a fiberwise log resolution p,. In particular,
there exists a positive real number e, such that b € (X}, Dp) is e-lc for any
closed point b € B.

Lemma 2.29 shows that log canonical thresholds in R-Gorenstein families
are constructible and lower semicontinuous. For Q-Gorenstein families it is
stated in [BL21, Proposition 10] (see also [Amb16, Corollary 2.10]). We omit
the proof since it is the same with [Amb16].

Lemma 2.29. Let (X, D) — B be an R-Gorenstein family of kit singular-
ities over a normal base B. Let a be an ideal sheaf on X. Then

(1) The function b — lct(Xy, Dy; ap) on B is constructible;
(2) If in addition V (a) is proper over B, then b — lct(Xy, Dy; ap) on B is
lower semicontinuous with respect to the Zariski topology.

Lemma 2.30 states a well-known result on the klt locus in a family. See
[Amb16, Corollary 2.10] for a similar statement. We omit the proof here
because it follows from arguments similar to those in [Amb16].

Lemma 2.30. Let B C (X,D) — B be an R-Gorenstein family of kit
singularities over a normal base B, and £ an effective R-Cartier R-divisor on
X such that Supp (£) does not contain any fiber Xy. Then

{b€ B| (X, Dy + &) is kit near b € Xy}

s a Zariski open subset of B.
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The following result is a variation of [BL21, Theorems 20 and 21], which is
the generalization of [Lil8, Theorem 1.1 and 1.2] to the case of Q-Gorenstein
families of singularities.

Lemma 2.31. Let B C X — B be a Q-Gorenstein family of klt singu-
larities over a mormal base B. Then there exist positive constants Cp,Cy
depending only on B C X — B such that the following holds.

If a kit singularity x € X satisfies that (x € X?**) € (B C X* — B), then
for any valuation v € Valx , and any f € Ox 5, we have

(1) (properness estimate)

— Ax(v)
lx z(v) > Cr——.
v 2 )

(2) (Izumi type estimate)

v(my z)ord, (f) < v(f) < CaAx(v)ord,(f).

Proof. Let b € B be the closed point such that (x € X?") = (b € A2").
By [BL21, Theorems 20 and 21] there exists positive constants C; and Cs
depending only on B C X — B such that both (1) and (2) hold for the
klt singularity b € &,. We claim that the same constants C; and Cs work
for x € X as well. We may assume that Ax(v) < 400 since otherwise the
statements are trivial. By Proposition 2.24, any v € Valf;(,m corresponds to
a unique valuation v € Valy, ;, such that Ax(v) = Ax,(v') and \70\1)(@(11) =
xjc;lx,),b(v’). Denote m := my , and m’ := my, ;. Since all valuation ideals of
v (resp. v') are m-primary (resp. m’-primary), we know that v(m) = 9(m) =
o' (') = v'(m’). Hence (1) is proven. For (2), notice that this is equivalent to
A, Ax (v)k (V) C m¥*. This is true since similar statement for v’ holds and both
valuation ideals are m-primary or m’-primary. The proof is finished. O

2.6. Family of Kollar components.

Definition 2.32. Let B C (X,D) = B be an R-Gorenstein family of
klt singularities over a normal irreducible base B. A proper birational map
Y — X is said to provide a flat family of Kolldr components S over (X, D)
centered at B if the following conditions hold.

e ) is normal, p is an isomorphism over X' \ B, and § = Exc(p) is a
prime divisor on ) with u(S) = B.

mou:Y — B is flat with normal connected fibers.

S does not contain any fiber of 7o .

—§ is Q-Cartier and p-ample.

For any closed point b € B, the pair (M, Sp + (115 1D)ly,) is plt near
Sp. In other words, up : Vp — A provides a Kollar component S,
over b € (Xp, Dy).
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Suppose that B is normal reducible. We say that p : )Y — X provides a
flat family of Kollar components if for each irreducible component B; of B,
the restriction p; : Y xg B; =& X Xp B; of u over B; provides a flat family of
Kollar components.

Proposition 2.33. Let B C (X, D) — B be an R-Gorenstein family of kit
singularities over a mormal base. Let p:Y — X be a proper birational map
providing a flat family of Kolldr components S over (X, D) centered at B. Let
[ be the different divisor of (¥,S + p; D) along S. Then pls : (S,T') — B
is an R-Gorenstein family of log Fano pairs.

Theorem 2.34. Let B C (X,D) — B be an R-Gorenstein family of kit
singularities over a normal base. Then there exist a positive real number 6,
a quasi-finite surjective morphism B’ — B from a normal scheme B’, and a
proper birational morphism )Y’ — X' which provides a flat family of Kolldr
components S’ over (X', D') := (X,D) xp B’ centered at B’ satisfying the
following.

For any closed point V' € B/,

(1) \70\1(_)(1;”1);)/)75,/ (Sé/) < n" + 1, and
(2) & is a 6-Kolldr component of b' € (Xy, Dy ).

Proof. First of all, we may assume that B is irreducible. By Noetherian
induction, it suffices to find an open immersion B’ — B such that the state-
ment of the theorem holds. For simplicity, we assume that B is smooth. Let
1 € B be the generic point with residue field K := k(n) = k(B). By Lemma
2.35, there exists a plt blow-up pu, : V,, = &, of n € (X, D,)) with the Kollar
component S,, such that

\&(X,“'D”))n(sn) S nn + 1

Let f, : Z, — Y, be a log resolution of (yn,,u;*an + ;). We may extend
pn = Yy — X, to a dense open subset B’ C B as a projective birational
morphism g’ : Y — X’ where X' := X xp B, such that Y'\§' — X"\B’
is an isomorphism, the center of &’ on X’ is B’, and &’ is Q-Cartier. Since
Y, is normal, by Lemma 2.36, possibly shrinking B’ to an open subset, we
may assume that the fiber )}, is normal for any closed point ¥’ € B’, and
Y’ is normal, and that f, can be extended to a morphism f’ : Z" — )’
between families, such that f’ is a log resolution of (), 4/, D’ + S'). By
[Xu20, Definition-Lemma 2.8], possibly shrinking B’ and replacing B’ with a
finite étale covering, we may assume that f’ is a fiberwise log resolution of
(y’,;/;lp’ + &’). In particular, (y’,;/;lp’ + &’) is plt near §’. Moreover,
since both ampleness and flatness are open properties in a family, possibly
shrinking B’ to an open subset again, we may further assume that —&’ is
ample over X', and &’ is flat over B’. Hence V' — X’ provides a flat family
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of §-Kolldr components for some positive real number §. By [LX20, Lemma
2.11], for any closed point b" € B', volx,, i (ords,, ) = vol(S},, =Sy |s:,). We
have A(XI;”DI;,)(S{),) = A, p,)(Sy) is a constant function of closed points
b € B’. Since —&'|s/ is ample over B’, by the invariance of the Hilbert
polynomial in the flat family 8" — B’ (cf. [Har77, §3, Theorem 9.9]),
vol/—yé”b/ (Ord‘gé,) =vol(S;,, (=8'|s )») = voly, n(ords, )
is a constant function for any closed point ¥ € B’. Hence
VOl(Xl:,,D{),),b’ (Ordggl) = VOI(XT,,DU),n(Sn) <n"+1

for any closed point ' € B'. O

Lemma 2.35. Let (X,A) be an n-dimensional klt pair over a field K of
characteristic 0. Let x € X be a K-rational point. Then \j&(x,X,A) < n".
Moreover, for any e > 0 there exists a Kolldr component S over x € (X, A)
such that @(X)A))x(ords) < \781(:1:, X,A) +e.

Proof. Let (R,m) := (Ox 4, mx ). Let K be the algebraic closure of K.
Denote by (zz € (Xz, Ag)) == (z € (X,A) xg K. By Theorem 3.4, there
exists a unique vol-minimizer vg € Valx, . up to rescaling. Hence vg is
invariant under the action of Gal(K/K). In particular, there exists v € Valx
such that vz is the natural extension of v, that is, a,(vg) = an(v) @x K. It
is clear that

\7(;1(1'7 X, A) < ;0\1(X,A),ac(v) = @(XK,AK),QCK(UK) = ;0\1(1.K, XKa AK)

On the other hand, for any m-primary ideal a C R we have lct(X, A;a) =

let(Xg, Ag;ag) and e(a) = e(ag) where ap := a xg K. Thus we have
vol(z, X, A) > vol(zg, Xi, Ag) by Lemma 2.13. Thus by Theorem 2.12 we
have

\70\1(37, )(7 A) = \70\1($K, XK’ AK) S n".
For the second statement, we have lct(X, A; a,, (v))™-e(a, (v)) g;gl(az, X,A)+
€ for any m > 1. Then by [Zhu21, Lemma 4.8], there exists a Kolldr compo-
nent Sy, over z € (X, A) computing lct(X, A; a,,(v)). Therefore, for m > 1
we have

vol(x )2 (0rds,, ) <1et(X, A; am(0))" - e(am(v) < vol(z, X, A) + ¢,

where the first inequality follows from [Liul8b, Lemma 26]. O
Lemma 2.36 ([EGA, IV Proposition 11.3.13, Theorem 12.2.4]). Let
f: X =Y be a flat morphism between varieties. Then

{y €Y | X, is geometrically normal over x(y)}

is open in'Y . Moreover, if f is faithfully flat and all the fibers of f are normal,
then X s normal.
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Corollary 2.37. Assume that k is an algebraically closed subfield of C.
Let x € (X,A) be a kit singularity over k. Denote (z¢c € (X¢,Ac)) ==
(x € (X,A)) xx C. If (z¢ € (X¢,Ac)) admits a §-plt blow-up, then so does
z € (X,A).

Proof. Let uc : Yo — Xc be the d-plt blow up of z¢ € (X¢, Ac). We can
find an intermediate subfield k C K C C such that K is a finitely generated
field extension of k, and uc is defined over K which we denote ux : Yx — Xk.
Let B be a smooth variety over k such that its function field k(B) is isomorphic
to K. Hence by similar arguments to the proof of Theorem 2.34, after possibly
shrinking B, there is a proper birational map p : Y — X X B such that p
provides a flat family of Kolldr components S over (X x B,A x B) — B
centered at x x B, and restricting p to the generic fiber over B yields ux. By
assumption, we know that (Yx, Sk + Ak) is d-plt. After further shrinking B
such that there exists a fiberwise log resolution of (), S+ u; 1A x B), we have
that (V, Sy + (16)5 1Ap) is 6-plt for a general closed point b € B. Thus the

*

proof is finished. O

3. Minimizing valuations for pairs with real coefficients

The purpose of this section is to generalize [Blul8a, Main Theorem] and
[Xu20, Theorems 1.2 and 1.3] to the setting of any R-Cartier R-divisor Kx +
A. We remark that in [Xu20], one needs the existence of monotonic n-
complements [Bir19, Theorem 1.8], which only holds for Q-Cartier Q-divisors
Kx + A in general (cf. [HLS19, Example 5.1]).

3.1. Existence and quasi-monomialness of a minimizing valua-
tion. A folklore principle is that we may recover properties of the R-Cartier
R-divisor Kx + A from corresponding properties of some Q-Cartier Q-divisors
Ky + A’ provided that those A”’s are very close to the given R-divisor A in
the rational envelope of A.

Here we will use Lemma 3.1 to construct desired Q-divisors A’’s. Lemma
3.1 is a special case of [HLS19, Theorem 5.6] and [Nak16, Theorem 1.6] which
could be regarded as a generalization of the conjecture on accumulation points
of log canonical thresholds due to Kollar [HMX14, Theorem 1.11]. We will
use it frequently in the rest of this section. Recall that we say V' C R™ is the
rational envelope of a € R™ if V is the smallest affine subspace containing a
which is defined over the rationals.

Lemma 3.1 ([HLS19, Theorem 5.6]). Fiz a positive integer n and a point
a = (a1, ..., am) € R™. Then there exist positive real numbers t;, and
1 m

a:

rational points a; = (a;, ..., al) € Q™ in the rational envelope of a for
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1 <1 <1 depending only on n and a, such that 22:1 t; =1, 22:1 t;a; = a,
and the following holds.

Letz e (X,A = Z;nzl a;A;) be a kit singularity of dimension n and S any
Kolldr component of x € (X,A), such that Aj > 0 is a Weil divisor for any
1 <j <m. Then Supp Ay = Supp A, = € (X, A)) is kit, and S is a Kolldr
component of x € (X, Ag) for any 1 <i <1, where Ay := Z;n:l agAj.

Lemma 3.2 will be applied to generalize [Blul8a, Main Theorem] and [Xu20,
Theorem 1.2].

Lemma 3.2. Letx € (X, A) be a kit singularity, and {S;}32, a sequence of
Kolldr components of x € (X, A) such that lim;_, xj(;l(XA)’x(ordsj) < n".
Then possibly passing to a subsequence of {S; }3?';1, there exist a positive real
number a € [%, 1] and a Q-divisor A" on X, such that

(1) SuppA = Supp A’ and z € (X, A’) is klt,

(2) {S;}52, is a sequence of Kolldr components of x € (X, A’),
. Ax,an(S5)

(8) 1y oo 52552 = 0, and

(4) vol(x,anz(ords;) <n™+1 for any j.

Proof. Possibly passing to a subsequence, we may assume that
\7(;1(X7A)7w(01‘d5j) <n"+1

for any j. We may write A = Y7, a;A;, where A; are distinct prime divi-

sors. There exist real numbers rq, ..., 7., and sy, ..., S, Q-linear functions:
Ret! — R, such that 1, rq, ..., r. are linearly independent over Q, and
a; =s;(1, 1, ..., 1) for any 1 <i < m.
Let
m
A(z1,...,2) = Z si(lyz1,. .., ze) Ay
i=1
Let n =dim X, and ¢4, ..., t;, a1, ..., a; constructed in Lemma 3.1 which
only depends on n and a = (aq, ..., a;). Note that
o {(s1(L, 1, o, 2e), oy Sm(lyz1,. . 2e)) | @1, ..., . € R} is the ra-
tional envelope of a,
® ai, ..., a; lie in the rational envelope of a, and
e a lies in the interior of the convex hull of a4, ..., a;.

Thus there exists a positive real number 4, such that Supp A = Supp A(zq,
oy @), T € (X, Az, ..., ) is klt, and {S;}52; is a sequence of Kollar
components of x € (X, A(x1, ..., z.)) for any z; satisfying |r; — x;| < 0.
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Let D; be Q-divisors such that Kx + A = Kx + Do + > 5, 7;D;. By
[HLS19, Lemma 5.3], Kx + Dy and D; are Q-Cartier Q-divisors for any 1 <
1 <c. Since 1, r1, ..., r. are linearly independent over Q, we may write

c
Kx +A(x,...,2) = Kx +D0+inD
i=1
Write m; D; = div(f;) — div(g;), for some m; € Z~o and f;, g; € Ox , for any
1 < i < ¢. Denote m;D; = div(f;) + div(g;). Possibly replacing § with a
smaller positive real number, we may assume that

CQZ\W z;lord, (D;) <

1
2’
for any x; which satisfies that |ri — ;| < d, where Cy = Ca(x € (X, A)) is the
Izumi constant given by Lemma 2.14.
Since

Ax Adr,w)) (S5) = Ax,a) (S Z x;)ords; (D;)

for any j, possibly passing to a subsequence of {55152, there exist 77, ...,
7. € Q such that |r; —rj| < 0 for any i, and Ax a1y (S;) < Acx,a)(S;) for any
J, where A" == A(r], ..., r.). Thus
L > Acan(85) _ Acxa)(8) + ords, (A — A)

~ Axa(5)) Ax,0)(55)
D i |(ri = 1) - ords, (D;)]

Ax,n)(55)
S onds, (D)
- Arx,n)(S))

Zl—CQZ\rZ—H ord,(D;) >

=1

>1-

l\DI»—A

Hence possibly passing to a subsequence of {S; }‘;‘;1, we may assume that there

. - . Ax.an(S;
exists a positive real number a € [4,1], such that lim;_, | X("#))((S?)) = a.
) J

Then
jBIJPoo vol(X A,z (ords;)
= lim | ———+~ ol zlordg.) < (an)™ < n™.
e <A<X,A><sj> volxay«lords, ) < (an)

Therefore, possibly passing to a subsequence of {S;}32;, we have
;(;l(XﬁA/)vz(ordsj) <n"+1
for any j. The proof is finished. O
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Next we prove the existence and quasi-monomialness of a minimizer of
VOl(X7A)7x.

Theorem 3.3 (cf. [Blul8a, Main Theorem]|, [Xu20, Theorem 1.2]). Let
x € (X,A) be a kit singularity. Then

(1) there exists a minimizer of the function
VOl(X7A)7x : Val)(’z — R>0 U{+OO},

(2) any minimizer v, of the function ;(;l(XA)@ s quasi-monomial.
Proof. We may assume that dim X > 2.

(1) By Theorems 2.12 and 2.20, there exists a sequence of Kolldr compo-
nents {S;}152,; of x € (X, A), such that

(3.1) ng_noo vol(x a),z(ords;) = Ue\ifglf“ vol(x,A),z(v) < n™.
By Lemma 3.2, possibly passing to a subsequence of {95 };?‘;1, there exist a
positive real number a € [4,1] and a Q-divisor A’ on X which satisfy Lemma

3.2(1)~(4). Let v} = mordsj for any j. Since

@(X,A’),x(wg') = \70\1(X7A/)7x(01‘d5j) <n"+1

for any j, by [Xu20, Lemma 3.4] and [LX20, Proposition 3.9], possibly passing
to a subsequence of {S;}32,, we may assume that v} := lim;_, 4 v} exists.

We finish the proof following arguments of [Xu20, Remark 3.8]. Since
lim; s 400 v = vi, by [Xu20, Proposition 3.5], there exist a positive integer N
and a family of Cartier divisors D C X x V parametrized by a variety V of
finite type, such that for any closed point u € V, z € (X,A’ + % D,) is lc
but not klt, and for any j, S; is an lc place of x € (X, A’ + %Duj) for some
closed point u; € V. Replacing V by an irreducible closed subset, we can
further assume that the set {u; | j € Z>1} forms a dense set of closed points
on V. We may further resolve V' to be smooth. By [Xu20, 2.13], possibly
shrinking V, passing to a subsequence of {S; }3";1, and replacing V' by a finite
étale covering, we can assume that (X x V,A’ x V 4+ D) — V admits a
fiberwise log resolution 1 : Y — (X x V,A’ x V + % D) over V.

Let E be the simple normal crossing exceptional divisor of u given by
the components which are the lc places of V € (X x V,A" x V 4+ % D).
By construction, there is a sequence of prime toroidal divisors {7}}52, over
(Y, E), such that S; is given by the restriction of T; over u;. Fix a closed
point u € V. Let F; be the restriction of T; over u for any j. Recall that
Supp A’ = Supp A, so u is also a fiberwise log resolution of (X x V,A x V).
Since A(xxv.arxvi(h-op)(T) <L and V € (X x V,A' x V + (5 —€)D) is
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klt for some positive real number € < 1, by [Xu20, Theorem 2.18], we have

(3.2) vol(x,A),z(ords;) = vol(x,a) 2 (ordp, ) = vol(x a) 2 (w;),
where w; = m(ordpj).

Since F} is a prime toroidal divisor over (Y, E,), where E, and Y, are
the restrictions of £ and Y over u respectively, the limit of w; is a quasi-
monomial valuation w, and Ax ay(w) = 1. By [BFJ14, Corollary D], the
function voly . (v) of v is continuous on any given dual complex, which implies
that

(3.3) jETOO vol(x Ay (wjy) = jEIJPoo volx o (w;) = volx o (w) = volx Ay o (w).

Combining (3.1), (3.2) and (3.3), we conclude that

inf @(X,A),x(v) = IHJP \7(;1(X7A)7x(01'ds7.)
J o ’

vEValx o
:jEIJPoo vol(X7A)7x(ordE7) = jEIJPoo vol(x,A),«(w;) = vol(x A).(w),

and we are done.

(2) From the proof of part (1), we know that there exists a quasi-monomial
minimizer w of the function ;81( X,A),z- By Theorem 3.4, any minimizer v, is
a rescaling of w, hence is quasi-monomial. (I

The uniqueness of vol-minimizers up to rescaling was proved in [XZ21] for
Q-divisors A. Their proof can be easily generalized to R-divisors since the
lengths and multiplicities of ideal sequences are independent of the boundary
A, and the summation formula of multiplier ideals also works for R-divisors
(see [Tak06]). Thus we omit the proof here.

Theorem 3.4 (cf. [XZ21, Theorem 1.1]). Let x € (X, A) be a kit singular-
ity. Then up to rescaling, there exists a unique minimizer v, of the functional
VOl(X7A)7m.

3.2. Constructibility of local volumes in families.

Theorem 3.5 (cf. [Xu20, Theorem 1.3]). Let n be a positive integer. Let
B C (X,D) — B be an R-Gorenstein family of kit singularities of dimension
n over a normal base. The local volume function \70\1(b, Xy, Dp) of closed points
b € B is constructible in the Zariski topology.

Proof. We may assume that n > 2. By Theorem 2.12, for any closed point
b, ;al(b, Xy, Dp) < C :==n"+ 1. We may write D = Z;nzl a;D;, where D;

are distinct prime divisors. Apply Lemma 3.1 to n and a = (ay, ..., am),
and let t1, ..., t; be positive real numbers, and a; = (a;, ..., a*) € Q™

m

rational points given by it. Let D) = ijl a{Dj for any 1 < i < [. Then
D = 22:1 t; D% and B C (X,D¥) — B is a Q-CGorenstein family of kit
singularities of dimension n for any 1 < ¢ < [. Apply [Xu20, Proposition
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4.2] to C and B C (X,D%) — B, there are a finite type B-scheme V() a
family of effective Cartier divisors (G C X x5 V¥) — V® and a positive
integer N; such that the following statement holds: for any Kollar component
Sy over b € (Xb,DZSZ)) with VOlb,(xb,Dg”)(OrdSb) < C, there exists a closed

point u € V) xp {b} such that if we base change (Xb,Dl(f)) and Sy to wu,
then S, is an lc place of the log canonical pair (X, Dlgi) + Nigf])) Possibly
stratifying the base V(@ into a disjoint union of finitely many constructible
subsets and taking finite étale coverings, we may assume that there exists a
decomposition V@ = [_|a Vogi) into irreducible smooth strata Vai) such that
for each a, (X X B Vogi), Supp (D@ x g v 4 N%_g(“)) admits a fiberwise log

resolution ,u((xi) : y&i) — X xp VOE“ over VOE“. |
Let 5&1) be the simple normal crossing exceptional divisor of u(az) given

by the components F, such that A(XXBVOE”,DMxBVé"'HN%g(i))(f) = 0, and

the center of F on X xp VA is the section Vi". By Noetherian induction,

possibly shrinking B, we may assume that each VOSZ) — B is surjective.
Since D = Zi’:1 t; D@ fi)z any closed point b and any Kollar component

Sy over b € (X, Dy) with voly (x, p,)(ords,) < C, there exists i, such that

Volb’(Xb’,DlEi))(OrdSb) < C. [Xu20, Proposition 4.2] implies that there is a closed

point u € {b} xp V.Y such that (X, DY) + NAgfj)) is lc and S, is an lc place
of the pair, where (X, Dq(f)) and S, are the base change of (X}, Dgi)) and Sy
over u. By the construction of y&”, there is a prime toroidal divisor 7:5“ over
( fj), Eéi)) for some «, such that S, is given by the restriction of 725“ over u.
For any prime toroidal divisor T over (y&i), Sc(f)), there exists a positive
real number € < 1, such that Vcsi) € (X xp Vogi),D(i) X B Vogi) + (NL — e)g@))
is klt, and
(TW) < 1.

is a constant function for

A pv 06 x5 Ve +(F—)g®)

Thus by [Xu20, Theorem 2.18], volx, u(ord )
@ .

closed points u € Vogi)._ Moreover, fia” : y,Ef’ — X Xp Vogi) is a fiberwise log
resolution of (X x g Vcsl), Supp (D x5 Vogl))) as Supp DY = Supp D. It follows

that Ay, p,)(ord is also a constant function for closed points u € Vcsi).

7o)

We conclude that \7(;1( X,,Dy)ulord is a constant function for closed points

7o)
u € V(y(l). Hence for each o and i, there exists a positive real number V((;),

such that

l/éi) = inf {@(meu)7u(ord7,(m)

T is a prime toroidal
T ’

divisor over (yéf), g(gi))

for any closed point u € V(y(i).
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Recall that each V(y) — B is surjective. By Theorem 2.20, for any closed
point b € B, we have

ol(b, Xy, Dy) = igf {@(Xb,Db),b(OrdSb) < nm41 Sy is a Kollar component}
b

of b € (Xb, Db)

> min{r{"} > vol(b, Xy, Dy).
7,00

Hence \a(b, Xy, Dp) = min@a{yéi)} for any closed point b € B, which implies
that vol(b, Xy, Dp) is a constructible function of b € B in the Zariski topology.
O

4. Log canonical thresholds and local volumes

In this section, we investigate the relation between lct(X,A;A) and
\70\1(95, X, A) for a kit singularity = € (X, A) where A is R-Cartier. The main
goal of this section is to prove Theorem 4.1.

Theorem 4.1. Let n be a positive integer, and B C X — B a Q-
Gorenstein family of n-dimensional kit singularities. Then there exists a pos-
itive real number ¢ that depends only on n and B C X — B satisfying the
following.

Let x € (X,A) be an n-dimensional klt singularity such that (x € X?") €
(B C X* — B). Then

c-let(X, A; A) > vol(z, X, A).

We remark that Jiang studied lower bound of log canonical thresholds
let(X, A; A) in the setting of Fano fibrations [Jial8, Conjecture 1.13, Theorem
5.1], see also [CDHJS21, Theorem 3.4, Conjecture 3.6].

Proposition 4.2 is crucial in the proof of Theorem 4.1.

Proposition 4.2. Let n > 2 be a positive integer, and x € (X,A) an
n-dimensional kit Q-Gorenstein singularity. Let m C Ox , be the mazimal
ideal. Let Cy = Co(x,X) be the Izumi constant of the kit singularity x € X
(see Lemma 2.14). Then for any effective Cartier divisor D passing through
x, we have

c-let(X,A; D) > vol(z, X, A),

where ¢ = %e(m)@’gorde.

Proof. Possibly shrinking X near x, we may assume that X = Spec(R)
and D = div(f) where f € m. Let ¢o = let(X,A; D). Let v € Valx,
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be the minimizing valuation of vol x,z- Consider the m-primary ideal a; :=
(f?)+a:(v), where s,t € Z~¢. By the subadditivity of log canonical thresholds
(Proposition 2.5), we have

Ax, ) (v)

(4.1) let(X, Asagy) < leb(X, A; (F9)) + let(X, As oy (v)) < %0 S R

Moreover, we know that
U(R/as ) =L(R/ay(v)—L((f*)/(fF)Nac(v)) =L(R/a(v)) —L(R/(ar(v) : (f7)))-

Since v is a valuation, we have (a;(v) : (f*)) = a;_y(5)s(v) for any t > v(f)s.
Hence

E(R/us,t) = ((R/a(v)) — K(R/atfv(f)s(v))‘

Let s := L% -t| for t > 1. Then as t — oo we have

n!-l(R/as) =n!-L(R/az(v)) —n!-L(R/a;_y(5)s(v))
= volx o (v) - (t" = (max{t — v(f)s,0})") + O(t"™")
< volx 2 (v) - nu(f)st™t + O™ ).
Thus by Lemma 2.13, we have
vol(z, X, A) < lgrﬂnﬁgof e(asy) - let(X, Ajag )

glgglﬁgofe(m) nW(R/asy) - let(X, Ajasy)

A n
< ltlgl_ﬁg e(m) . VO]X’I(’U)TL'U(f)Stn_l ’ (%0 + ’l)((X%()U()’I;))
o, M)n

= e(m) .VO]XVI(U)TL’U(f) lim st" 1. < . :

t——+o0

,rL’Vl

= e(m) - volxa (v)nv(f) - Ty Acxa) ()" co,

where the second line follows from Lech’s inequality [Lec60, Theorem 3], and
the fourth line follows from [Blul8a, Lemma 3.5].

By Izumi’s inequality (Lemma 2.14), there exists a positive real number
C5 independent on f such that v(f) < CoAx(v)ord,(f). Hence

nn+1

vol(z, X, A) < me(m)C’gordm( £) - volx 4 (v) - o

n2n+1

< We(m)Cgordw(f) - Co.

Here the second inequality follows from \7(;1;(7% (v) = \751(:1:, X) < n™ by Theo-
rem 2.12. g
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We also need the following kind of approximation of R-divisors by Q-
divisors.

Lemma 4.3. Let € be a positive real number, and A > 0 an R-Cartier
R-divisor on a normal variety X. Then there exists a Q-Cartier Q-divisor
A" >0, such that (1 +e)A > A" > (1 —¢€)A.

Proof. There exist positive real numbers rq, ..., 7., Q-linear functions s1,
.., 8m: RT1 5 R, and distinct prime divisors A;, such that 1, ri, ..., r¢
are linearly independent over Q, and A = A(rq, ..., r.), where

Az, ... ,x.) = Zsi(l,xl, ceny Te) A
i=1
By [HLS19, Lemma 5.3], A(zq, ..., x.) is R-Cartier for any =1, ..., z. € R.
It follows that there exist positive rational numbers 77, ..., ., such that
(1+e)A>A">(1—¢€)A, where A" = A(r], ..., rl). O
Proof of Theorem 4.1. If n = 1, then we may take ¢ = 1. Thus we may
assume that n > 2. Fix any € € (0,1). By Lemma 4.3, there exists an effective
Q-Cartier Q-divisor A’, such that (X, A’) is klt, and A" > (1 — €)A. Let N
be a positive integer such that NA’ is Cartier near . By Proposition 2.4,
ord;(NA’) < Nn. By Proposition 4.2,

_ 2n+1
vol(z, X, A) < (nn_ﬁe(m)Cgordx(NA’) et(X, A; NA')
n2n+2

< We(m)Cg let(X, Ay A

- n?"+2e(m)Cy
“(1-¢€¢(n-1)n"1
Here we choose Cy which depends on B C X — B as in Lemma 2.31(2).

By the upper semicontinuity of Hilbert-Samuel function along a family of
ideals (see for example [BL21, Proposition 41]) and the fact that the comple-
tion preserves the multiplicity e(m), there exists a positive integer M which
only depends on B C X — B such that e(m) < M. Let ¢ — 0, we see that
the theorem holds with ¢ = T n’r 1 MCs. ([

[y

let(X, A A).

5. Lipschitz continuity of local volumes

We will prove some Lipschitz-type estimates for the normalized volume as
a function of the coefficients in this section. The main result is the following
uniform Lipschitz-type estimate when the ambient space € X analytically
belongs to a Q-Gorenstein bounded family.
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Theorem 5.1. Let n be a positive integer, and n,~ positive real numbers.
Let B C X — B be a Q-Gorenstein family of n-dimensional klt singularities.
Then there exist positive real numbers v, C depending only on n,n,~vy and the
family B C X — B, such that the following holds.

Let v € (X,A=3"1" 1 a;\;) be a kit singularity, such that
(1) (x e X*)e(BCX*™ = B),

(2) a; > n for any i,

(3) each A; >0 is a Q-Cartier Weil divisor, and
(4) let(X, A5 A) > .

Then for any —a; <t; <t,i=1,2,..., m,

[vol(z, X, A) — vol(z, X, A(£)] < C Y [t,],
=1

where t == (t1, ..., ty,), and A(t) == Y10 (a; +t;)A,.

Lemma 5.2. Let n,n,7, B C X — B, x € (X,A) be as in Theorem
5.1. Let V' be a positive real number. Then there exists a positive real number
C depending only on n,n,~v,V and the family B C X — B satisfying the

following.
Let v € Valx , be a valuation such that vol x a)(v) < V. Then for any
—aigti SO,ZZI, 2, ce., M,

m
0 < vol(x a(#)),z(v) — vol(x,a)2(v) < OZ [ti],
i=1

where t == (t1, ..., tm), and A(t) = Y10 (a; + ;) A,.
Proof. By [K+92, 18.22], m < % By Lemma 2.16, we have Ax a)(v) >

(L> Ax(v). Let Cy be the positive real number given by Lemma 2.31,

1+
which depends only on n and the family B C X — B. By Proposition 2.4,
we have
C Cs(1
(5.1)  o(A) < CoAx(v)ord, A; < %Ax(v) <nCUE) ),

ny
for any 1 <i <m. By (5.1), we get

— — A A (v) " >
0 < vol(x,A(¢)),(v) = vol(x a) 2 (v) = <<M> - 1> vol(x A)«(v)

Ax.a)(v)
< ((1+Zi—1 ti|U(Ai)> —1)V< 1+Z|t1‘n02(1+v) 1lv
Ax.a)(v) — m
m 2 n—1
<Z|ti.nC2(1+’Y).n(1+TLC2(21+’Y)> v,
i—1 nm n=y
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where the last inequality follows from the inequalities (1 4+ ay)” — 1 <
nzy(l + zy)" 1 < nay(l + %y)”_1 for any + > 2 > 0, y > 0, and

Sl < Tilar < m < % Now €= mALEN(L 4 MGy
depends only on n, n, v, V and the family B € X — B, hence we are

done. (]

Proof of Theorem 5.1. Possibly replacing v by min{y, 1}, we may assume
that 0 < v < 1. Since let(X, A;A) > «, we have that z € (X, (1 4+ v)A) is
klt. This implies that

let(X, (1+3)A;(1+3)A) > 2

because (1 + 3) + 2(1+3) < 1+4. Since a; + 5 < (1 + 3)a;, we have
A) < (1+2)A where t:= L and ¢ = (1, ..., t). Let t} = max{tl,()}
min{¢;, 0} for any 1 <4 < m, and tt = (t+ cey B T = (.

)
Let v* be a minimizer of vol(z, X, A(t)). Since A(t+) <AQ) < (1+3)A,
we have let(X, A(t"); A(tT)) > 2. By Lemma 5.2,

vol(z, X, A) — vol(z, X, A(t))]
< [vol(z, X, A) = vol(z, X, A(£"))| + [vol(z, X, A(t")) = vol(z, X, A(t))]

S (VOI(X7A)73;(’U+) — VOI(X,A(t+))71(U+))
+ (VOI(X,A(t)),I('U*) — VOl(X A(tH) ) < CZ It

where C' is the positive real number given in Lemma 5.2 which only depends
on n,n, 3,n", and the family B C X — B. O

The next result is a Lipschitz-type inequality for \751(:10, X,A),whenz € X
is fixed and the boundary A varies in its rational envelope. Lemma 5.3 will be
applied to prove Theorem 1.5. We remark that we do not assume that z € X
is Q-Gorenstein.

Lemma 5.3. Let z € (X, A :=3"" a;A;) be a klt singularity of dimen-
sion n, where A; are distinct prime divisors. Let V. C R™ be the rational
envelope of a = (ay, ..., ay) € R™. Then there exist a positive real num-
ber C' and a neighborhood U C V of a, such that x € (X,A(a’)) is a kit
singularity, and

|V01(:UXA)—V01(:BXA \<CZ|az—a\

for any @’ = (ay, ..., al,) € U, where A(a’) == >_\" a.A;. In particular,

i=1"1

@(x,X,A(a’)) is continuous at a’ in V.
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Proof. There exist real numbers rq, ..., 7., and Q-linear functions s, ...,
sm: Rt — R, such that 1, rq, ..., r. are linearly independent over Q, and
a; = s;(1, r1, ..., re) for any 1 < i < m. Let D; be Q-divisors such that

Kx+A=Kx+Dy+> :_,rD; By [HLS19, Lemma 5.3], Kx + Dy and D;
are Q-Cartier Q-divisors for any 1 <1 < c.

There exists a positive integer N, such that N D, is Cartier for any 1 < i <
c. For any 1 <i < ¢, possibly replacing r; with & and D; with ND;, we may
assume that D; is Cartier. Write D; = div(f;) — div(g;), where f;,9; € Ox 4
for any 1 < i < c. Let A/(¢) == Do+ > ;_,(ri + t;)D;, where t = (t1, ...,
t.) € R°. There exists a positive real number ¢ < 1, such that x € (X, A'(t))

is a kit singularity for any t = (¢1, ..., t.) € R® satisfying > ¢, |t;| < ¢
It suffices to show that there exist positive real numbers C’ and ¢/ < ¢, such
that

[vol(z, X, A) — vol(z, X, A'(£))| < "> |ti],
=1

for any t = (t1, ..., t.) € R® which satisfies that > 7, [t;| < /.
Let Cy > 0 be the Izumi constant of the singularity x € (X, A) given by
Lemma 2.14, and M a positive real number such that

Cy max{ord,(f;),ord,(g:)} <M
for any 1 < ¢ < ¢. Then we have
[v(D;)| < CoAx a(v) max{ord,(f;),ord;(g:)} < MAx a(v),

for any 1 <i < cand any v € Valx ;.
Let v be a minimizer of vol(xz, X, A). For any t = (¢1, ..., t.) € R® which
satisfies that Y, [t;] <, we have

vol(z, X, A'(t)) — vol(z, X, A) < vol x ar(e)).2(v) — vol(x.) 2 (v)

A ’ (’U) ) —

(X,A'(t)) n

= (—/—=——)" -1 vol (v
(( A(X,A)(U) ) (X,4A), ( )

- <( Axm@) g 1)

< <(MZ It +1)" — 1) n" < M(1+M)" 'y

i=1 i=1

where the last inequality follows from the inequality (zy + 1)* — 1 <
nzy(l+ zy)" 1 < nzy(l+y)" ! for any 1 > 2 > 0 and any y > 0.
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For any t = (11, ..., t.) € R® which satisfies that }_7 | [¢;| < min{557, ¢},
let v, be a minimizer of \70\1(3:, X, A'(t)). We have
vol(z, X, A(£)) — vol(z, X, A) > vol(x ar(ey).2(vx) = volx,a).2(v:)

Ax,ay(vs) ) P
- 1 _ (=) T\ VOl , (v,
( A(X,A’(t)(’l)*)) (X,47(£)),2 (Vs)

B Axa)(vi) n) pn
O %mmm—zgmummw>

1 C
> (1 (—— | p" > _2Mn"t! t;
—< H—Mzamﬂ)” D lul,

v

i=1
where the last inequality follows from inequalities ﬁ < ﬁ and
(1 —nt)(1+2nt) > 1 for any 0 < t < % Thus ¢/ = min{L,ﬁ} and
C":=2M (1 + M) tn™*! have the required property. O

6. Local volumes of truncated singularities

6.1. Truncations preserve local volumes. In this section, we show
that the local volume stays the same after taking a k-th truncation of the
boundary divisor when k is sufficiently large. In the general context of this
paper, we often consider analytically bounded families. Thus we make Defi-
nition 6.1 which we use throughout this section.

Definition 6.1. Let (xr € X) and (2’ € X’) be klt singularities which
are analytically isomorphic to each other. Denote (R,m) := (Ox gz, Mx ),
and (R, w') := (Ox/ o, mxs ,). Let ¢ : R 5 R be the ring isomorphism.
Let k be a positive integer. Fix a k-linear basis g}, ..., g, of R'/m’*. Let
g; € R’ be a lifting of g;. For an effective Cartier divisor D = div(f) on X,
we define its k-th analytic truncation D'* := div(f;) on X' where f is the

k-linear combination of g} such that ¢(f) — f; € wIEA = Yo aiis a
non-negative R-linear combination of effective Cartier divisors A;, then we say
that 2’ € (X', A" := ", a;AlF) is a k-th analytic truncation of z € (X, A).

Note that in Definition 6.1, a k-th analytic truncation depends on the
choice of many data, such as the basis g;., its lifting gg-, and the expression
A = 3 .a;A;. Thus analytic truncations are highly non-unique. In this
section, we aim to show that if £ > 1 then any k-th analytic truncation of
a given klt singularity has the same local volume and admits a d-plt blow-up
for the same 9.
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The main result of this section is Theorem 6.2 which will be applied to
prove Theorem 1.2. We will also need Proposition 6.4 to prove Theorem 7.1,
and thus Theorem 1.7.

Theorem 6.2. Let n be a positive integer, 1,7y positive real numbers, and
B C X - B a Q-Gorenstein family of n-dimensional klt singularities. Then
there exists a positive integer ko depending only on n,n,v and B C X — B
satisfying the following.

Let x € (X,A=3"", a;\;) be a kit singularity, such that

(1) (x € X*) e (B C X* — B),

(2) a; > for any 1,

(3) each A; >0 is a Cartier divisor, and
(4)

Then for any positive integer k > ko, and any k-th analytic truncation ' €

(X AR =5 a;AF) of v € (X, A),
vol(z, X, A) = vol(z/, X', A').

Moreover, v is a minimizer of \a(x,X, A) if and only if v = ¢(v) is a
minimizer of vol(z', X', A'%), where ¢ : Valk , — Valk/ ., is defined as in
Proposition 2.24.

We need some preparation to prove Theorem 6.2.

Lemma 6.3. Let n be a positive integer. Let x € X be an n-dimensional
klt singularity. Let A = Zf;l a;A\; be a non-negative R-linear combination
of effective Cartier divisors A;. Let z' € (X', A" := 3" a;,A[F) be a k-th
analytic truncation of x € (X,A). Then

(1) for any positive real number n < min{a; | 1 < i < m}, and any
positive integer k, we have |let(X'; A'F) —1ct(X; A)| < %, and
(2) if I C[0,1] is a DCC set, a; € I for any i, then there exists a positive
integer ko depending only on n and I satisfying the following.
Ifx € (X,A) is lc, then ' € (X', A™%) is also an lc singularity for
any k > k.

Proof. (1) Denote div(f;) = A; and div(f],) = A Let b; == (f;) +mF
and b; := (f{ ;) + m’® where m, m’ are the maximal ideals of Ox ., Ox/ . re-

spectively. By definition 1/)([)2) = [;Z where 1) is the isomorphism between
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complete local rings in Definition 6.1. By [dFEM11, Lemma 2.6 and Propo-
sition 2.19], we know that

- a; . n
0< lct(X;il;[lbi ) —let(X;A) < o
0 < let(X; TT0) —let(X'; A™F) < 12
s Ic ( E 7 ) C ( ) )— ]W]
Since let(X; [Ti~, b%) = let(X'; T[/%, b;*) by [dFEM11, Proposition 2.11],
the above inequalities yield
et (X/; A) — let(X; A)| < .
kn
(2) We may assume that 1 € I. Set n := min7\{0}. On the one hand,
by the ACC of log canonical thresholds for analytically bounded singularities
[dFEM11, Theorem 1.1] (see also [HMX14]), there exists a positive integer
ko = ko(n,I) depending only on n and I, such that for any positive integer

k > ko, if let(X'; A%) > 1— %ﬂ, then 2’ € (X', A’%) is Ic. On the other hand,

by (1),
let(X'; A%) > let(X; A) — LR
(X A%) 21X A) = 1 > 1= 7
for any positive integer & > ko. Hence 2’ € (X', A’%) is lc for any positive
integer k > ko by our choice of k. (|

Proposition 6.4. Let n,n,v, BC X — B, z € (X,A) be as in Theorem
6.2. Let V be a positive real number.

Then there exists a positive integer ki depending only on n,n,~v,V and
B C X — B satisfying the following.

Let v € Valk , be a valuation such that \7(;1(X7A)7w(v) < V. Then for any
positive integer k > k1,

o v(A;) < kv(m) for any i, where m is the mazimal ideal of Ox ,, and

e v(A;) = (AF), and ‘ﬁ(X,A)ﬂ:(”) = \70\1(X/7A/k)7rl (V') for any i, and
any k-th analytic truncation ¥’ € (X', A* = S a;Al¥) of z €
(X,A), where v' = ¢(v), and ¢ : Valy , — Val, .. is defined as in
Proposition 2.24.

Moreover, if v = ordg: is a divisorial valuation, and S’ is a 0-Kolldr com-
ponent of ' € (X', A’®) for some positive real number §, then S is also a
§-Kolldr component of x € (X, A), where v= ¢~ (v') = ords.

Proof. Let C1(B C X — B) be the positive constant defined as in Lemma

2.31. Let k1 = fn%l(HT'y)”], and k > ky a positive integer. If there exists i
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such that v(A;) > kv(m), then by Lemmata 2.16 and 2.31, we get
@(X,A),x(v) > (
v\ 4 Ax(v) ( v )n kAx (v)
> C > C
—(1+7) Pom) T \1+7) oA

n ’y n
— ) C1Klet(X;A) > [ —— ) CL-kn>V,
7) 1 Rlet( ) <1+7> L

a contradiction. Thus v(4A;) < kv(m) for any .
Let A; = div(f;) and A = div(f ;). Then by Definition 6.1, h; =

—~k
(fi) — z/k € m’ | where 1 is the isomorphism between complete local rings.
Since 0(f;) = v(fi) < kv(m) = ki (m) for any i, we get

O (fle) =0 (flr) = 0(fi = (ha)) = 0(fs) = v(fi),

where ¢ and v’ are the unique extensions of v and v’ in Specﬁ and Specj%\’
respectively (see [JM12, Corollary 5.11] and the proof of Proposition 2.24).
By Lemma 2.9 and Proposition 2.24(1), A(x,a)(v) = A(x/ a+)(v"). By Propo-
sition 2.24(2), vol(x.).2(v) = vol x/ arky o (V).

Suppose that v = ordgs is a divisorial valuation, and S’ is a d-Kollar
component of 2’ € (X', A’*) for some positive real number §. By Proposition
2.24(4), S is also a Kolldr component of z € X. Let ¢/ : Y — X’ and
1Y — X be the corresponding plt blow-ups with Koll4r components S’ and
S respectively. Let I" and TV be the different divisors of (Y, .5) and (Y’,S") on
S and S’ respectively. Then by Proposition 2.24(4), we know that there is an
isomorphism g : S — S’ induced from taking graded algebra of 1 : R T
such that IV = (1g).I.

Let Ag and A% be the different divisors of (Y, S + p;1A) and (Y, 9" +
p."YA®) on S and S’ respectively. Let m; := v(f;) = v'(fi ). Let fi and
_i’)k be the images of f; and f]; in an, (v)/@m,+1(v) and ap, (v')/@m,+1(v")
respectively. Then we know that f; and fz’k define effective Q-Cartier Q-
divisors A; and A on S and S’ respectively, such that A; = (u;1A;)|s
and A = (u/7TAF)|sr. Tt is clear that Ag = T'+ > 1" a;A; and A% =
I+ 3" ;A Since o' (Y(fi) — fin) > 1;’(1;1\’k) > m;, we know that gr, ¢ :
gr,R = gr, R’ maps f; to f;k In particular, we have (1g).A; = A* and
hence (¥g).As = A%, ie. (S,Ag) =2 (S, A%). Since (Y', 8" + p/71A)
is 6-plt near ', we know that (S, A%) is §-klt and 6 < 1. It follows that
(S,Ag) is also 4-klt. By the inversion of adjunction [BCHM10, Corollary
1.4.5], (Y, S + p.~tA) is §-plt near S. We conclude that S is a §-Kollar
component of x € (X, A). O
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Proof of Theorem 6.2. Let kg := [f]—:] By Lemma 6.3,

et (X A%) > 1et(X:A) — - > 14— >14 2
XA 2 (G A) ~ gt > 1k~ 1214 ]

for any positive integer k > kg. Let k; be the positive integer given by
Proposition 6.4 depending only on n,7n, 3,V := n™ and B C X — B, and
ko = max{ko, k1}.

For any positive integer k > ko, if v € Val , satisfies that \7(;1(X7A)71(U) <
n™, then by the construction of ko, @(X’A)’m(v) = \70\1(X/)A/k)7w/ (v"), where
v/ = ¢(v). Recall that (' € X'*) C (B C &A™ — B), and =z € (X,A)
is a k-th analytic truncation of 2/ € (X’,A’™). Similarly, if v € Val%, .
satisfies that \T&(X/,A/k)@/ (v") < n™, then \TO\I(XI’A/k)’x/ (') = @(X’A)’m(v),
where v = ¢~ 1(v').

Now the theorem follows from Theorem 2.12 and [Blul8b, Theorem A]. O

Proposition 6.5. Let n,v,B C X — B be as in Theorem 6.2. Let I C
[0,1] be a finite set. Let n := min((I \ {0}) U{3}). Let ks be the positive
integer from Theorem 6.2 depending only on n,n,v and B C X — B. Let
k > ko be a positive integer.

Then there is an R-Gorenstein family of kit singularities over a (possibly
disconnected) smooth base T C (V,€) — T depending only on n,I,v,k and
B C X — B satisfying the following.

Let v € (X,A=3"1" a;\;) be a kit singularity, such that
(1) (x e X*) e (BCX*™ — B),

(2) a; €I for any i, and
(3) each A; >0 is a Cartier divisor.
(4) let(X, A5 A) > .
Then there exists a closed point t € T such that t € (Vy, &) is a k-th analytic
truncation of x € (X, A).

Proof. By [K+92, 18.22], m is bounded from above. It suffices to show the
proposition for any fixed positive integer m.

By Noetherian induction and Grothendieck’s generic freeness theorem, pos-
sibly shrinking B, we may assume that B = Spec(A) and Ox p/I% is a free
A-module with a basis g1, ..., gq for some g; € Ox g, where Ip is the ideal
sheaf of B C X.

Possibly replacing I with I U {0}, we may assume that 0 € I. Denote
by I™ C R™ the m-th Cartesian power of I. Let L := |I™| < 400, and

I™ = {ay, ..., ar}, where |I| is the cardinality of I. Set U := A%4™\{0},
where A4™ = Spec A[x1, ..., Tam]. For each 1 <1 < L, let £V — U be
the space, such that for any closed point u = (w11, -« ., Ulm, «-y Udly -- -

Ugm) € U, the fiber &(Ll) parametrizes the divisor Z;n:l ajiEj C (X xpU)y,
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where a; = (awy, ..., am) € I"™, and E;, = (Zle ui;9; = 0) for any
1 <j <m. Thus we get a family U C (X x5 U,EW) — U. By construction,
there exist a closed point v € U and a positive integer I, such that u &
(X xp U)u,&(f)) is a k-th analytic truncation of z € (X, A). By Theorem
6.2 we have \To\l(u, (X xp U)u,é,sl)) = \To\l(x,X, A) > 0, which implies that
u€ (X xp Uy, &5”) is a klt singularity.

By Lemma 2.30, for each [, possibly stratifying the base U into a disjoint
union of finitely many constructible subsets, we can assume that there exists
a decomposition U = Uae, ,Ua | |Uacs,,Uq into irreducible smooth strata
Uy, such that U, C (X xp Uy, EW) — U, is an R-Gorenstein family of
klt singularities over a smooth base U, for any a € J1; and v’ € ((X xp
Ua)uz,é'i(tl,)) is not klt for any « € J; and any closed point v’ € U,. Since
ue ((Xxp U)u,&sl)) is klt, we know that u € U, for some [ and o € Jy ;. Let
T = 0e,, Ua, and (¥, €) — T be the pullback of | ], (X xpU,ED) = U)
by T — UL. Then T C (,&) — T is an R-Gorestein family of kit singularities
over a smooth base. Let t € T be the unique preimage of u under the injective
map T — U, then by construction ¢ € (), &;) is isomorphic to u € ((X xp
U, &Sl)). Thus t € (Y4, &) is a k-th analytic truncation of z € (X, A). O

6.2. Singularities with analytic boundary.

Definition 6.6. Let z € X be a normal Q-Gorenstein singularity. Denote
(R,m) := (Ox 4, mx ). Let & € X := Spec R be the completion of = € X.
Let © := > 1", a;®; be a non-negative R-combination (i.e. a; € R>g) of
effective Cartier divisors ©; on X. We say that & € ()A(, D) is a Q-Gorenstein
singularity with analytic R-boundary. We use [dFEM11, Section 2] to define
klt and lc of such a singularity & € ()? D).

Definition 6.7. Let & € ()/(\',@) be an n-dimensional Q-Gorenstein sin-
gularity with analytic R-boundary that is klt. Denote by ¢ : X — X the
completion morphism.

(1) For a valuation v € Val% ., we define the log discrepancy, volume, and
normalized volume of O (defined as in Proposition 2.24) with respect
to & € (X,D) as

A()?’Q)(ﬁ) = Ax(v) —0(D), VOl)’E@,(@) = volx 4 (v),
VOI()?,@)@(’{’) = A(g@)(ﬁ)” -volf(@({;).
We define the local volume of & € ()?,@) as

vol(z, X, D) := Ue\i/r;lfo vol g 5.+ (0)-
X,x
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(2) We say that a projective birational map fi : Y > X provides a Kolldr
component S over & € (X, D) if there exists a plt blow-up p: Y — X
over x € X and a Cartesian diagram

S——y 14X
o )
S— sy -ty Xx

such that (S,T + (a7'D |g) is kIt in the sense of [dFEMI11, Section
2], where T is the different divisor of S in Y and = Vel

~—

We note that Definition 6.7 only depends on the analytic isomorphism
class of x € X due to the equivalence of valuations of finite log discrepancy
and Kollar components over analytic isomorphic singularities (see Proposition
2.24).

Definition 6.8. Let & € ()?,@) be a Q-Gorenstein singularity with ana-
lytic R-boundary. Assume that ® = 2111 a;®; where a; € Ryg and ®; =
div(h;) with h,; € R for each 1 < i < m. Let k be a positive integer. Fix
a k-linear basis g, ..., gq of R/m*. Let g; € R be a lifting of g;. We de-
fine the k-th analytic truncation D% of ® on X as D% := "' ;D% where
@f = div(h;x) and h;; € R is the k-linear combination of g; such that
hi — hix € mF. We also set D¥ = 0 when ® = 0.

Theorem 6.9. Let & € ()/(\', D) be a Q-Gorenstein singularity with analytic
R-boundary that is klt. Then we have

1) vol i,)?,@ = vol x, X,DF) for k > 1 where D% is a k-th analytic
( y
truncation of ® on X.
2) vol(z, X,®) = infgvol ¢ o, .(ordg) where S runs over all Kolldr
gVOi X 0)2 g
components over & € ()A(,Q).

Proof. If ® = 0, then the statements follow from Theorem 2.20 and Propo-
sition 2.24. So we may assume that ©® # 0. Choose 1,7 € R5( such that
let(X,9;9) >~ and a; >n for any i. Let V:=n" + 1. Then by similar argu-
ments as in the proof of Proposition 6.4, there exists k1 =k1(n,n,v, V,x € X) €
Z~q such that for any positive integer £ > k1 and any valuation v € Valg(ﬂ
satisfying \7(;1(;(7@)@(17) <V, we have
(6.1)

8(D;) < kv(m), 8(D;) =v(DF), and vol g o ;(8) = volix o8 (V).

By Definition 6.7 and Theorem 2.12, we have that

vol(2, X,D) < vol(z,X) <n" and vol(z, X,D") < n".
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Since V' > n", by (6.1) we have that \70\1(33,)?,@) = \70\1(33,X,®k) for any
k> 1. This proves part (1).

Next we prove part (2). Fix an arbitrary ¢ € (0,1). Let k > k; be a
positive integer where k; is chosen as before. By Theorem 2.20 and part (1),
there exists a Kolldr component S over x € (X, D*) such that

(6.2) Vol(X o), (ords) < VOI(.’L‘ X, 0F) +e= \781(33, X, D) +e<V.

Let S be the pullback of S under T X — X as a Kollar component over
ieX. Letpu:Y —» X (resp. fi : Y — X) be the plt blow-up prov1d1ng S
(resp. S). By similar arguments to the proof of Proposition 6.4 and (6.1), w
know that

(6.3) ordg(®*) = ordg(®) < kordg(m) and (fi;'D)|g = ([L;lé\kﬂg.
Thus we have (9,T + (1:'D)|5) = (ST + (u'D%)|s) is klt. This implies
that S is a Kolldr component over & € ()/(\', D). Hence by (6.3) we have
A(X@)(ordg) = Ag(ordg) —ordg(®D) = Ax(ords) — ordg(DF)
= A(X@k)(ords).

Since the volumes of ords and ordg are the same by Proposition 2.24, the
inequality (6.2) implies that

\751()?7@)@(0rd§) = \70\1()(7@&)@(01“(313) < \70\1(53', X, D) +e
Thus the proof of part (2) is finished as e can be arbitrarily small. O

7. Proofs of main results

7.1. Existence of §-plt blow-ups. In this subsection, we will prove The-
orems 1.7 and 1.5.

Theorem 7.1. Let n > 2 be a positive integer, n, € positive real numbers,
and B C X — B a Q-Gorenstein family of n-dimensional klt singularities.
Then there ezists a positive real number § depending only on n,n,y and B C
X — B satisfying the following.

Ifex e (X,A=3",a;A;) is an n-dimensional klt singularity such that

(1) (x € X?) € (B C A* — B),
(2) a; > n for any 1,
(3) each A; >0 is a Q-Cartier Weil divisor, and
(4) let(X, A5 A) >+,
then x € (X, A) admits a §-plt blow-up.
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Proof. Let | = [Q;F—n"’], At =3 ”‘l“] A;. Then AT > A, (1+3)- ”?ﬂ <
(1+7)a; for any 4, and let(X, A*t; AT) > 7.

Since for any positive real number §, any J-plt blow-up of z € (X,A™)
is also a d-plt blow-up of x € (X, A), possibly replacing (X, A) by (X,A™),
and v by 2, we may assume that any coefficient a; of A belongs to the finite
rational set I = 37N [0, 1].

By Theorem 2.34 and Proposition 6.4, there exists a positive real number
09 which only depends on n,n,e and B C X — B, such that z € X admits
a dp-plt blow-up. By [dFEM11, Theorem 1.2], there exists a positive real
number €y which only depends on B C X — B, such that z € X is ¢y-lc.
Thus by [HLS19, Theorem 1.6], for each i, the Cartier index of A; near z is
bounded from above by a positive integer N which only depends on n,n,~y
and B C X — B. Therefore, possibly replacing A; with NA; and I with %I ,
we may assume that each A; is Cartier.

Let k1 be the positive integer given in Proposition 6.4 depending only on
n,n,v,V :=n"+1and B C X — B. Let ky be the positive integer given
in Theorem 6.2 depending only on n,n,7 and B C X — B. Choose k =
max{ky, ko}. Tt suffices to show that there exist a k-th analytic truncation
2’ € (X', A) of x € (X,A) and a §-Kollar component S’ of 2’ € (X', A’%)
such that \7()\1(X/7A/k),m/ (ords/) < n™ + 1, for some positive real number §
depending only on n,7n,v and B C X — B.

By Proposition 6.5, there is an R-Gorenstein family of klt singularities
over a smooth base T' C (V,&) — T, such that ¢ € (Y4, &) is a k-th analytic
truncation of z € (X, A) for some closed point ¢ € T. Now the theorem
follows from Theorem 2.34. (|

Proof of Theorem 1.7. This follows from Theorems 4.1 and 7.1. O
If the coefficients of A belong to a finite set, then we may relax the as-
sumption “each A; is a Q-Cartier Weil divisor” in Theorem 1.7 to “each A;
is a Weil divisor”, as stated in Conjecture 1.6.
Theorem 7.2. Let n > 2 be a positive integer, € a positive real number,
I a finite set, and B C X — B a Q-Gorenstein family of n-dimensional klt
singularities. Then there exists a positive real number § depending only on
n,e,I and B C X — B satisfying the following.
Ifze (X, A=3",a;A;) is an n-dimensional klt singularity such that
(1) (x € X*) € (B C X*™ — B),
(2) a; €I for any i,
(3) each A; > 0 is a Weil divisor, and
(4) vol(z, X,A) > e,
then x € (X, A) admits a -plt blow-up.
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Proof. Suppose I = {c1, ..., ¢} where ¢; < ¢; for any i < j. Since each
a; is the same as ¢; for some 1 < j < |I|, we may write A = lel ¢; A’ where
A’ > 0 is a Weil divisor. By Lemma 3.1, there exist positive real numbers t;,

rational points a; = (a}, ... \1\) e QI for 1 < i <1 depending only on n
and ¢ = (c1, ..., 1)), such that A= Zi:l tiA(;), where Ay = Ej:l ZA;
is a Q-Cartier Q-divisor for any 7. Let N be a positive integer such that Na]
is a positive integer for any 7,j. Since NA(; is a Q-Cartier Weil divisor for

any 7, and A = Zi’:1 %(NA(@), Theorem 7.2 follows from Theorem 1.7 as

{%}1931 has a positive lower bound. O
Proof of Corollary 1.9. This follows from Theorem 1.7 and [HLS19, Theo-
rem 1.3]. O

Example 7.3 shows that both Theorems 7.1 and 1.7 no longer hold without
assuming the positive lower bound of the non-zero coefficients of the boundary.

Example 7.3. Let k£ > 2 be a positive integer and ¢ € Q N [1/4,1/2).
Consider the klt singularity o € (A% Dy := (1 — )(k -+ +)Ck), where o is
the origin and Cj = (2F~! = y¥). Let E, C Y} £+, A2 be the weighted
blow-up of 0 € A% with weight (k,k —1). Let Ay == Diffg, ((us); 1 Ds). Then
Aa2,p,)(Er) = (2k — 1)¢, and by adjunction formula, we have

s e (oo ey ).

where p and ¢ are the singularities of Yk along Ek and r is a smooth point.
So we get a(Ey, Ap) =k~ te (1 + 75) 7! = m > 1 for k> 1. Hence
o € (A% Dy,) is weakly exceptional, see for example, [Pro00, Theorem 4.3].
In particular, Ej is the unique Kollar component of 0 € (A%, D). Thus for
k> 1 we have
\751(0, AQ, Dk) = ﬁ(AZDk),o(Ol“dEk)

e(2k—-1)2 1

Kk—1) 4
However, for any given positive real number 0, there exists a positive integer
k, such that 0 € (A2, D) does not admit a é-plt blow-up as the total log
discrepancy of (Ej, Ay) is + — 0.

The goal of the rest of this subsection is to prove Theorem 1.5, that is, the
converse direction of Conjecture 1.6. It is a consequence of Birkar-Borisov—
Alexeev-Borisov Theorem, and an inequality involving the local volume and
the d-invariant (see Proposition 7.5). We will not need this result in the rest
of this paper.

The J-invariant of a Q-Fano variety is introduced in [FO18, Theorem 0.3],
and is further studied by many people. We refer readers to [Blul8b| for the

:A(A2,Dk) (Ek)z . VOIA270(OrdEk) =
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definition of the d-invariant for log Fano pairs. Recall the following charac-
terization of K-semistability in terms of the J-invariant.

Theorem 7.4 ([Blul8b, Theorem D],[FO18, Theorem 0.3], [BJ20, Theo-
rem B]). Let (X,A) be a log Fano pair, where A is a Q-divisor. Then (X, A)
is K-semistable if and only if 6(X,A) > 1.

Proposition 7.5. Let x € (X,A) be an n-dimensional kit singularity,
where A is a Q-divisor. Let p: (Y,S) — (X,z) be a plt blow-up of (X,A),
and S the corresponding Kolldr component of v € (X,A). Let Ay = u; 1A,
and Kg + Ag = (Ky + Ay + 5)|s. Then

vol(z, X, A) > vol(x a)..(ordg) - min{1, 6(S, Ag)}".

Proof. If (S, Ag) is K-semistable, then by Theorem 2.21, ordg is the min-
imizer of @(x,X, A). Thus @(x,X, A) = \70\1(X,A)7x(0rd5).

Otherwise, (S5, Ag) is not K-semistable. By Theorem 7.4, §(S,Ag) < 1. It
suffices to show that for any positive real number 5 < 6(S, Ag),

vol(z, X, A) > vol(x.a).. (ordg) - 8.
By [BL18, Theorem 7.2], there exists an effective Q-divisor
Dg ~q —(Ks + Asg),
such that (S,As + (1 — f)Dg) is K-semistable and (S,Ag + Dg) is klt.
By [HLS19, Lemma 7.1], there exists an effective Q-divisor
Dy ~g —(Ky + Ay +5),

such that Dy|s = Dg. By inversion of adjunction [BCHM10, Corollary 1.4.5],
(Y,Ay + Dy + S) is plt near S. Let D = p,Dy. Then Ax anqp)(ords) =0
which implies that A x a4 (1—pg)p)(ords) = BA(x,a)(ords). By Theorem 2.21,

—

ordg is the minimizer of vol(x, X, A+ (1 — 8)D). Thus
vol(z, X, A) > vol(z, X, A + (1 — 8)D)

= B"A(x,a)(ords)"volx ;(ords) = B"x;al(xﬁA)ﬁz(ords),

and we are done. O
Proof of Theorem 1.5. We first show the theorem for the case when A is a
Q-divisor.

Let u: (Y, S+ p;tA) — (X, A) be the 6-plt blow-up. By the adjunction
formula (see e.g. [K492, (17.2.2)]), (S, Ag) is §-klt, where Ag := Diff g(u; 1 A).
Then by Birkar-Borisov—Alexeev—Borisov Theorem [Bir21, Theorem 1.1], S
belongs to a bounded family.

Let L = (—S)|s. By [HLS19, Proposition 4.4], there exists a positive
integer M = M (9, €1,n) which only depends on §, ¢; and n, such that ML is
a Cartier divisor on S.
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Now by Proposition 7.5, we know that
vol(z, X, A) > vol(x,a) - (ords) - min{1,5(S, Ag)}".
By [LX20, Lemma 2.7], we have
vol(x )2 (0rds) = A(x a)(ordg)™ - L1 > e M (ML)" ! > e M.

Thus it is enough to give a positive lower bound of §(.5, Ag). By [Blul8b, The-
orem C] (see also [BJ20, Theorem A]), §(S, Ag) > (S, Ag), where a(S, Ag)
is Tian’s a-invariant. Since (S, Ag) is a d-klt log Fano pair, [Bir21, Theorem
1.4] implies that there exists a positive real number ¢ = ¢(§,n) which only
depends on ¢ and n, such that a(S, Ag) > t. Therefore,
vol(z, X, A) > e M~ "t".

For the general case, let M’ = M(%, S,n), t' = t(g, n), and € any positive
real number such that € < (§)"M"~"¢". By Lemma 5.3, there exists a Q-
divisor A’, such that z € (X, A’) admits a %—plt blow-up, mld(X,A’) > ¢,

and .
vol(x, X, A) > vol(z, X, A") — ((%) Mty — e) > €.
Therefore the theorem is proved. (I

7.2. Boundedness of Cartier indices in a family. In this section, we
will show Theorem 1.10.

Theorem 7.6. Let B C (X,D) — B be an R-Gorenstein family of kit
singularities, then there exists a positive integer N such that for any closed
pointb € B, if D is a Q-Cartier Weil divisor near b € Xy, then ND is Cartier
near b € Xj.

Proof. Possibly shrinking B and replacing it by a finite étale covering, we
may assume that B C (X,D) — B admits a fiberwise log resolution. Thus
there exists a positive real number €y, such that b € (X}, Dp) is €p-lc. Now
Theorem follows from Theorem 2.34 and [HLS19, Theorem 1.6]. O

Remark 7.7. Theorem 7.6 could also be proved by Theorem 2.15.

Proof of Theorem 1.10. Let (X', A’) — (X,A) be a small Q-factorializa-
tion, Kx: + B’ the pullback of Kx + B, and D’ the pullback of D. By
[Birl8, Theorem 1.2], (X', A") belongs to a bounded family. Since X' — X is
a blow-up, there exists a Q-divisor H' > 0 on X', such that —H’ is ample over
X. In particular, Kx. + A’ + H' is antiample over X. Possibly rescaling H’,
we may assume that (X', A+ H') is klt. Then X' — X isa (Kx+A'+ H')-
negative contraction of an extremal face of the Mori-Kleiman cone of X'.
Hence the Cartier index of D’ and D are the same by the cone theorem. Thus
possibly replacing (X, A) with (X’,0), we may assume that X is Q-factorial,
and A = 0.
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Let X — B be the bounded family. Possibly shrinking B, using Noetherian
induction and replacing X with its normalization, by [HX15, Proposition 2.4]
and generic flatness, we may assume that X is normal, X — B is flat, and
(X,0) is klt.

Consider the following diagram:

B
where o(X) is a section of p : X xg X — X. We remark that o(X) C
X xpX — X is a Q-Gorestein family of klt singularities according to Remark
2.26.
Since (X xp X); = Xy = X for any closed point z € X C X, D
is a Q-Cartier Weil divisor on (X xp X),. By Theorem 7.6, there exists a
positive integer N which only depends on P, such that ND is Cartier near
x € (X xp X)), 2 X for any closed point € X. Hence ND is Cartier. O
7.3. Discreteness and ACC for local volumes.

Proof of Theorem 1.2(1). We may assume that n > 2. It suffices to prove
that for any positive real number ¢, the set

(reX*™) e (BCXx*™ = B), A=Y" al,,
Ve := < vol(x, X, A) | where a; € I, each A; > 0 is a Q-Cartier
Weil divisor, and vol(z, X, A) > €

is finite. By Theorem 1.7 and [HLS19, Theorem 1.6], there exists a positive
integer NV which only depends on n, I, e, and B C X — B, such that NA; is
Cartier near x for any i. Possibly replacing I with %I , we may assume that
each A; is Cartier. By Theorems 4.1 and 6.2, there exists a positive integer
k depending only on n,I,e and B C X — B, such that if \7(;1(33,X, A) eV,
then
vol(z, X, A) = vol(z/, X', A’%),

for any k-th analytic truncation of x € (X, A). By Proposition 6.5 and The-
orem 3.5, \751(33, X, AF) belongs to a finite set. O

Proof of Theorem 1.2(2). We may assume that n > 2. Assume to the
contrary that there exists a sequence of klt singularities z; € (Xj,A(j) =
S al(.j)Al(.j)), such that al(»j) €I, (z; € X3") € (B C A" — B), and

the sequence of normalized volumes {V) := \751(:1@, X, A(j))};—‘;l is strictly
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increasing. In particular, there exists € > 0 such that \70\1(%, X, A(j)) > € for
all j.

By Theorem 4.1, possibly shrinking X; near z;, there exists a positive
real number 7 which only depends on n,B C X — B and § such that
let(X;, AU AW > . By [K+92, 18.22], possibly passing to a subsequence,

we may assume that m; = m for any j, and {agj )};";1 is increasing for each

1<i<m. Set a; == lim;j_ az(»j) <1 for each 1 < i < m. By Theorem 5.1,
possibly passing to a subsequence, we may assume that \7(;1(%-, X, A9 >
¢/2, where A'@ == 3" gAY In particular, z; € (X;, A’@)) is klt. Since
I' ={as, ..., an} is a finite set, by Theorem 1.2(1), \7(;1(%-, X;, A’0)) belongs
to a finite set. Possibly passing to a subsequence, we may assume that there
exists a positive real number V' > §, such that \781(30]», X;,A'0)) =V for any
j.

By Theorem 4.1, we have lct(X;, A’); A’G)) > ~. By Theorem 5.1 again,
there exists a positive real number C which only depends on n,I’,v and
B C X — B, such that

Vv <v+od e —ail.
i=1
Let j — +o0, we derive a contradiction as we assume that {V )};?‘;1 is strictly
increasing. (I

If the coefficients of A belong to a finite set, then we may relax the assump-
tion “each A; > 0 is a Q-Cartier Weil divisor” in Theorem 1.2(1) to “each
A; > 0 is a Weil divisor”, as stated in Conjecture 1.1.

Theorem 7.8. Let n be a positive integer and let I C [0,1] be a finite set.
Let B C X — B be a Q-Gorenstein family of n-dimensional klt singularities.
The set of local volumes
(x € X*) € (BC X* — B),
A=3" a;A;, wherea; €1,
each A; > 0 is a Weil divisor,
and x € (X,A) is klt

Volpcx—p,1 = vol(z, X, A)

has no non-zero accumulation point.

Proof. We may assume that n > 2. By Lemma 3.1, there exist positive
real numbers ¢;, rational points a; = (a}, ..., a™) € Q™ depending only on n
and a := (aj, ..., amy), such that A = 22:1 tiA(;), where Ay = E;nzl a'ZAj
is a Q-Cartier Q-divisor for any 7. Let N be a positive integer such that N ag
is a positive integer for any i, j. Since NA(; is a Weil divisor for any i, and
A= Zi’:1 % (NA)), Theorem 7.8 follows from Theorem 1.2(1). O

The following result is a direct consequence of Theorem 1.2.
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Corollary 7.9. Let n be a positive integer and let I C [0,1] be a subset.
Consider the set of local volumes

x € X is n-dimensional smooth, x € (X, A) is
Vol3)'7 := { vol(z, X, A) | Kit, where A = St aidi, a; € 1 for any i,
and each A; > 0 is a Weil divisor

(1) If I is finite, then Vol}'; has no non-zero accumulation point.
(2) If I satisfies the DCC, then Vol},"; satisfies the ACC.

7.4. Case of surfaces. In this subsection, we will prove Theorem 1.3 and
Theorem 1.8(1).

Lemma 7.10. Let € be a positive real number. There exists a finite set
of surface klt singularities {(x; € X;)}; depending only on € satisfying the
following.

For any klt surface singularity x € X such that \751($,X, A)>e¢ (z€X)
is analytically isomorphic to (x; € X;) for some i.

Proof. Tt is well-known that (z € X) is analytically isomorphic to a klt
surface singularity (2’ € X') which is a quotient of 0 € A? by a finite group G
containing no pseudo-reflections, see for example, [KM98, Proposition 4.18].
By Proposition 2.24(3), \7(;1(33’,X’) = \781(3;, X)>e

Let (y € Y) := (0 € A?). There exists a finite Galois morphism f :
(y€eY)— (z' € X'), such that Ky = f*Kx/, and deg f = |G|. By Theorem
2.15 and Theorem 2.12,

~ o 1 —~ 4
e <vol(z', X') = @VOI(@/,Y) < ar
which implies that |G| < 2.

It is well-known that any finite subgroup of PGLy(k) is isomorphic to
Z/r,D, (the dihedral group), A4, &4 or s, and there is only one conju-
gacy class for each of these groups (see e.g. [Kle93]). As G € GLa(k) and
|G| < %, G is isomorphic to Z/r, D,., A4, &4 or A5 up to a scaling of a L%j I-th
unit root, and there is only one conjugacy class for each of these groups. Thus
the isomorphism class of (¢’ € X’) belongs to a finite set only depending on
€, and we are done. ([

Proof of Theorem 1.3. This follows from Lemma 7.10 and Theorem 1.2.

O

Proof of Theorem 1.8(1). This follows from Lemma 7.10 and Theorem 1.7.

O

7.5. 3-Dimensional terminal singularities. In this subsection, we
prove Theorems 1.4 and 1.8(2). First of all, by [BL21, Proposition 14] and
Corollary 2.37 since local volumes and the existence of §-plt blow-ups are
preserved under algebraically closed field extension and restriction, we may
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assume that the base field k = C in this subsection. Our approach here is
largely based on the classification of 3-dimensional terminal singularities by
Mori [Mor85] as explained by Reid [Rei87] (see also [KM98, Chapter 5.3]).

We first give the following useful lemma on 3-dimensional Gorenstein ter-
minal singularities.

Lemma 7.11 ([Mor85]). Let z € Z be a 3-dimensional Gorenstein terminal
singularity. Then there exists a formal power series f(za2,zs,z4) such that
62: & Clz1, 22, 23, 24] /(23 + f(22, 23, 24)).

Theorem 7.12 and Table 1 summarize the classification of 3-dimensional
terminal singularities from [Mor85] and [Rei87, Section 6]. Here u, is the
multiplicative group of r-th roots of unity.

Theorem 7.12 ([Mor85]). Let x € X be a 3-dimensional terminal singu-
larity. Let r be the Gorenstein index of x € X. Assume that r > 2. Then
x € X is isomorphic to the u.-quotient of a 3-dimensional Gorenstein ter-
minal singularity z € Z as the index 1 cover of x € X. Moreover, there
exist local analytic coordinates (x1, s, x3,x4) with a diagonal p,.-action and
a p.-semi-invariant formal power series ¢(x1, 2,3, T4) such that 5; 18
wr-equivariantly isomorphic to Clxy, xa, x3, 4] /($). For a list of types of the
pr-action and ¢, see Table 1.

TABLE 1. 3-dimensional terminal singularities (cf. [Rei87, p. 391])

Type | r | pr-action 10)

(I) |any | £(a,—a,1,0;0) | z122 + g(ah, 24)

I | 4 | 1(3,1,1,22) | 2%+ g(z2, 73, 24)

(M) | 3 |5(0,2,1,1;,0) | 2F+ 23 + wag(x3,24) + (3, 24)
Iv) | 2 | 1(1,0,1,1;0) | 2% + g(w2,z3,24)

In Table 1, %(al, a9, as, aqs; b) means that the generator ¢ = e2™/" of p, acts
on the coordinates (x1, x2, 23, x4) and the formal power series ¢ as (z;; ¢) —
(¢¥zi; CP9).

Let z € Z be a 3-dimensional Gorenstein terminal singularity. Let R :=
Ogz.., and m the maximal ideal of R. We denote by 2 € Z= Specgz: the

completion of z € Z. Then by Lemma 7.11 we know that

R Clz1, 22, 23, z;ﬂ}/(zf + f(22,23,24)).
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Denote by 7 : 7 — 7 the involution given by (z1, 22, 23, 24) — (—21, 22, 23, 24).
A valuation v € Valy , is called 7-invariant if v = ¢, (v) where ¢, : Valy . —
Val},z is the involution induced by 7 according to Proposition 2.24. Let ® :=
(f(22,23,24) = 0) be an effective Cartier divisor on A3 = SpecC[z2, 23, 24]-
Hence by taking quotient of the ps-action on 7 induced by 7, we obtain a
finite crepant Galois morphism 7 : Z — (1/@, %@) given by (z1, 22, 23,24) —
(22, 23, 24).

Lemma 7.13. With the above notation, there is a 1-to-1 correspondence
between T-invariant Kolldr components S over z € Z and Kolldr components
S over 0 € (1/@, 1D). Moreover, we have \azyz(ordg) = 2\7(;1(@7%9)70(

Proof. This is a straightforward consequence of Proposition 2.18. To be

ordg).

more precise, if S CY — Z is a 7-invariant Kollar component over z € Z, we
may take a formal neighborhood S CY of S CY where po acts. Then taking
the po-quotient of (f/, §) provides a Kolldr component S over 0 € (1/%\3, %CD)
Conversely, if S C Y — A3 is a Kollar component over 0 € (@, %@), by
taking Cartesian product we obtain ScY:=Y X713 2, and S is a Kollar
component over Z € Z by the Kollar-Shokurov connectedness theorem as in
[LX20, Proof of Lemma 2.13]. The equality on normalized volumes follows
from similar arguments as in [LX20, Proof of Lemma 2.13]. O
Lemma 7.14. With the above notation, we have

vol(z, Z) = inf volz..(ords)

where S runs over all T-invariant Kolldr components over z € Z.

Proof. By Theorem 3.4, there exists a unique valuation v, € Valz , up to
scaling that minimizes \7(;1Z7Z. Since Az (¢r(vs))=Az(vs) and az7z(¢7(v*)) =
\7(;1272(1;*) by Proposition 2.24, we have ¢,(v.) = v, by Theorem 3.4. Let
U = 0y (vs) be valuation ideals of v, for m € Zso. By [Liul8b, Proof of
Theorem 27|, we know that

lm let(Z;am)? - e(am) = volz.. (v.) = vol(z, Z).

m— 00

Let a,, be the completion of a,, in R. Hence a,, is T-invariant since ¢, (vs) =
vx. By the po-equivariant version of Lemma 2.19 (see e.g. [Zhu2l, Lemma
4.8]), there exists a 7-invariant Kolldr component S, over z € Z computing
let(Z; ayy,). Thus the proof of Theorem 2.20 implies that

lim volz .(ordg, ) = vol(z, Z).
m— o0

The proof is finished. O
Proof of Theorem 1.4. Let ¢ > 0 be a positive real number. Then it suffices
to show that Voly™ N (e,27] is a finite set. For any 3-dimensional terminal
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singularity (z € X) of Gorenstein index r, we may take its index 1 cover
(z € Z), and Theorem 2.15 implies that

vol(z, Z) = r - vol(z, X).

If \7(;1(x, X) > ¢, then we know that 7 < 2L, Hence it suffices to show that the
following set

Ve = vol ,Z —
{vo(z ) and vol(z, Z) > ¢

z € Z is 3-dimensional Gorenstein terminal }

is finite. In the rest of the proof, we Wlll denote z € Z a 3-dimensional
Gorenstein terminal singularity satisfying vol(z Z) > €. Denote (R,m) :=
(Oz.,mz.). Let 2 € Z= SpecR be the completion of z € Z. By Lemma
7.11 we know that R = Clz1, 22, 23, 24] /(22 + f(22, 23, 24)). Thus there exists
a crepant double cover
T:(2€Z)—=(0¢€ (1/@, 19))  where ® = (f(22,23,24) = 0).

By Lemmata 7.13, 7.14, and Theorem 6.9(2) we know that
(7.1)

vol(z,Z) = mf voly z(ordg) =2 1nf vol

(73,19),0 olordg) = 2vol(0, A3, 19),

where S runs through all 7-invariant Kollar components over z € Z, and S
runs through all Kolldr components over 0 € (1&§ 1D). By Theorem 6.9(1),
for k > 1 we have \7(;1( A3, 2DF) = Vol(O A3 3D) where D is a k-th analytic
truncation of ® on A3. Hence for k£ > 1 we have

€ < vol(z, Z) = 2vol(0, A%, 1DF),

and the right-hand-side belongs to a finite set by Corollary 7.9. Thus V, is a
finite set. O

Proof of Theorem 1.8(2). Fix a positive number € > 0. Let z € X be a
3-dimensional terminal singularity satisfying \70\1(£E, X) > e. For simplicity, we
assume that € € (0,1). We will show that there exists a d-plt blow up of z € X
where § > 0 only depends on e. Let p: (z € Z) = (z € X) be the index 1
cover of Kx. Denote by r the Gorenstein index of z € X. By Theorems 2.12
and 2.15, we have

27 > \7(;1(2,Z) = r~\70\1(x,X) > re.

27
=]

Let 7 : Z — Z be the analytic involution as before. Let  : (2€Z)—
(0 € (A3, 1D)) be the double cover where © = (f = 0). By (7.1) we have

Thus we have r < rpax = |

vol(0, A3, 19) = %vAol(z,Z)z
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Let fr be a polynomial in zs, 23, 24 of degree less than k such that fj is a
k-th analytic truncation of f. Denote by ®* := (f;, = 0) C A3. Then by
Theorem 6.9, we have that \781(0,1%37 1OF) = \781(0,&5, 19) for any k > 1.
By Theorem 4.1, there exists a positive constant ¢ such that

let(A%, 1D%; 1DF) > ¢ 1vol(0, A%, 1DF) > 2%

By Lemma 6.3 it is clear that 1Ct(j‘§3’ %C‘Dk; %C‘Dk) converges to 1(:‘5(1&37 %CD; %’D)

as k — oo. Thus we have lct(A3, %@; %CD) > 5-. Then by Theorem 6.2,
Proposition 6.4, and Theorem 6.9, there exist k1, ke € Z~ o depending only on
e such that for any k > ks := max{k1, k2} and any 6 € R>o we have

(a) vol(0, A3, 1DF) = vol(0, A%, 1D) > &, and

(b) any d-Kolldr component S of 0 € (A%, 1D*) satisfying

\7(;1(A37%@k)70 (ordg) < 287max

corresponds to a J-Kolldr component Sof0 e (1&5, %@) by taking
completion.

Next, we show the existence of a §-plt blow-up of z € X for § = d(¢) > 0.
Firstly, we consider the case where r = 1, i.e. * € X is Gorenstein. Since
k3 only depends on €, we know that 0 € (A3, %@’%) belongs to a bounded
Q-Gorenstein family of kit singularities. By Theorem 2.34, there exists d; =
61(€) > 0 such that 0 € (A3, 2D*2) admits a §;-Kollar component S satisfying
a(AS’%QR:)’O(OrdS) < 28. Hence by (b), we have a d;-Kollar component S

over 0 € (1/@, %@) Hence by pulling back S under 7 then push forward under
the completion map ¢ : XX , we obtain a d§;-Kollar component 7*77*5'\ over
x € X by [KM98, Proposition 5.20].

Next, we consider the case where r > 2 and the covering morphism p :
(z € Z) = (x € X) has type (II), (IIT), or (IV) in Table 1. We may assume
that the coordinates (z;) from Lemma 7.11 coincide with the coordinates (z;)
from Theorem 7.12 and Table 1. Denote by G := u,. Then by restricting
to the last three coordinates, the G-action on 7 induces a G-action on A3
such that ® is G-invariant and 7 is G-equivariant. In particular, D% is also
G-invariant. Let w € (W, Aw) be the crepant G-quotient of 0 € (A3, £D*s).
Since 0 € (A3, %@k?’) belongs to a bounded Q-Gorenstein family of klt singu-
larities and the G-action on A? has finitely many choices, we know that w €
(W, Aw) also belongs to a bounded Q-Gorenstein family of klt singularities.
Then by Theorem 2.34, there exists d3 = da(e) > 0 such that w € (W, Ay)
admits a do-Kollar component Sy satisfying \7(;1(W7AW)7w(ord5W) < 28. De-
note by S the pullback of Sy under the G-quotient morphism A% — W.
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Hence by [KM98, Proposition 5.20] and Proposition 2.18, S is a G-equivariant
do-Kollar component over 0 € (A® D%3) satisfying \7(?1(A37%@k)70(0rd5) <
28rrmx Hence by (b), we have a G-equivariant do-Kolldr component S over
0 e (A?’ 1@) By pulling back S under 7 then push forward under the com-
pletion map ¢ : 7 - Z, we obtain a G-equwarlant d2-Kollar component ¢, *S
over z € Z. Then taking the G-quotient of ¢, 7§ and applying [KM98, Propo-
sition 5.20] again, we obtain a (02/rmax)-Kolldr component over x € X.
Finally, we consider the case where r > 2 and the covering morphism p
has type (I) in Table 1. Let 23 = ”142"”2, 2y = P5T2 23 = x3, and 24 = 4.

Then the local analytic equation of 2 € Z is given by (22 — 22 + h(z3, 24) = 0)
where h is some formal power series in (23, 24). Let hg be the k-th analytic
truncation of h as a polynomial in (,2:37 z4) of degree less than k. Let 0 € Z¥
be the hypersurface singularity (22 — 22 + hi,(23,24) = 0) in A*. Then clearly
the G-action on Z induces a G-action on Z*. Let Tw © Z¥ = ZF be the
involution given by 7 (21, 22, 23, 24) = (—21, 22, 23, 24)- Then G and {id, 74}
generate a finite subgroup H < Aut(0, Z¥) of size |H| = 2r. Let w € (W, Aw)
be the crepant H-quotient of 0 € Z*3. Since 0 € Z*3 belongs to a bounded
Q-Gorenstein family of klt singularities and the H-action on A* has finitely
many choices, we know that w € (W, Ay ) also belongs to a bounded Q-
Gorenstein family of klt singularities. Thus Theorem 2.34 implies that there
exists d3 = d3(e ) > 0 such that w € (W, Ay) admits a d3-Kolldr component
Sw satistying VOI(W7AW) (ordg,,) < 28. Denote by Sks the pullback of Sy
under the H-quotient morphism Z* — W. So [KM98, Proposition 5.20]
and Proposition 2.18 imply that Sks s an H-equivariant §3-Kollar compo-
nent over 0 € Z*s such that \7(;12;63 olordgy,) < 56rmax. Taking quotient of
the involution 73,, we obtain a crepant covering morphism 7, : (0 € Zks) —
(0 € (A%, 1©F=)). Hence [KM98, Proposition 5.20] and Proposition 2.18 imply
that S := (7, ). 5% is a (J3/2)-Kolldr component over 0 € (A?, $D%3) satis-
fying ﬁ(A37%©k3)70(0rd5) < 287rmax. By (b), we have a (d3/2)-Kollar compo-
nent S over 0 € (1/%\3, 39). Pulling back S under 7 yields an H-equivariant
(hence G-equivariant) (d5/2)-Kolldr component 7S over 2 € Z. Thus by
taking push-forward 7S under ¢ and then quotient out by G, we obtain a
(3/(27rmax))-Kolldr component over x € X. Therefore, the proof is finished
by taking § := min{d;, 92— . %2 1, O

)
max ’ 2T max
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8. Discussions

In this section, we discuss some topics related to our main results, and ask
several questions.

8.1. Relations among three classes of singularities. When (z €
XaM) e (B C X* — B) (“bounded”) and under some mild assumptions, we
showed that the three classes of singularities @), ), (© in Figure 1 are equiva-
lent to each other, see Theorems 1.5 (B = @), 4.1 (® = ©), and 7.1 (© =
®). In this subsection, we will discuss the relations among these three classes
of singularities without the assumption “(x € X*") € (B C X** — B)”. Note
that in this general setting, Theorem 1.5 (® = ®) holds, and Conjecture 1.6
is about the implication “@ = ®”.

Theorem 1.5 z € (X,A) admits
vol(z, X, A) > e. @ a 0-plt blow-up,
. “bounded”, Theorem 1.7 mld(z, X,A) > ;. ®

VNNl T =— o ____ _ -

let(X;A) =1 > 7,
mld(z, X,A) > ;. ©

FIGURE 1. Three classes of singularities @, ®), and (©)

We expect that Theorem 4.1 holds (@ = (©) in this general setting.

Question 8.1. Let n be a positive integer. Then does there exist a positive
real number ¢(n) that depends only on n satisfying the following statement?

Let € (X, A) be an n-dimensional klt Q-Gorenstein singularity. Then

e(n) - let(X, A; A) > \7(;1(:5,X, A).

Remark 8.2. One might also ask for a sharp value ¢pin(n) in Question
8.1. We guess that cpin(n) = n™. When n = 2, it is not hard to show that
cmin(2) < 8, see [HLQ20, Theorem A.5].

Example 8.3 shows that the implication “© = @” does not hold when
x € X is not analytically bounded. Thus the implication “@© = ®” does not
hold either by Theorem 1.5.

Example 8.3. Let m be a positive integer. Consider the surface klt sin-
gularity (z € (X,A = (Li + Lo))), where (z € X = (0 € A?)/ptp41) is
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the A,,-singularity, and L, Lo are the images of two coordinate lines in AZ.
Then lct(X,A; A) = 1, mld(z, X, A) = L, and vol(z, X, A) < vol(z, X,0) =

29
4
T 0 when m — +o0.

If we assume that all the (non-zero) coefficients of A have a positive lower
bound, then Theorem 8.4 together with Conjecture 1.6 would imply that Ques-
tion 8.1 has an affirmative answer immediately. Theorem 8.4 is a consequence
of Birkar’s proof of Birkar—Borisov—Alexeev—Borisov Theorem [Bir21, Theo-
rems 1.1 and 1.6], and it is embedded in [HLS19].

Theorem 8.4. Let n > 2 be a positive integer and 1,6, €, positive real
numbers. Then there exists a positive real number v which only depends on
n,n,0, and €1 satisfying the following.

Let v € (X, A =31" a;\;) be an n-dimensional kit Q-Gorenstein singu-
larity, such that

(1) a; > 1,

(2) each A; >0 is a Weil divisor,

(3) x € (X,A) admits a §-plt blow-up, and
(4) mld(z, X,A) > €,

then let(X, A; A) > ~.

Proof. By [HLS19, Lemma 3.13], there exists a Q-factorial weak J-plt blow-
up f:Y — X of x € (X, A), that is, f is a birational morphism with the
exceptional prime divisor E such that

o (Y, f-'A + E) is Q-factorial §-plt near E,
e —F is nef over X,

e —(Ky + f'A+ E)|g is big, and

o f~!(z) =Supp E.

By [HLS19, Proposition 4.3], there exists a positive real number M which only
depends on n and 0, such that Ax (E) < M. By assumption, A(x,a)(E) > €.
Thus there exists a positive real number ; which only depends on n, § and
€1, such that A(X7(1+v1)A)(E) > 0.
By [HLS19, Proposition 7.7], there exists a positive real number 2 which
only depends on n, n and §, such that (Y, (1 +72)f; A + E) is plt near E.
Let 7 := min{vy1,v2}. Then z € (X, (14 v)A) is lc, and

let(X, A; A) > 4. O

Remark 8.5. Example 7.3 also indicates that the assumption “a; > n” in
Theorem 8.4 is necessary.
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8.2. Boundedness of singularities up to a special degeneration.

Definition 8.6. Let (X, A) be a klt pair with € X a closed point. A
spectal test configuration of x € (X, A) consists of the following data:

e a normal variety X and an effective R-divisor Ay. on X such that
Ky + A is R-Cartier;
e a flat morphism 7 : (X, Supp (A¢c)) — Al and a section o : A} — X
of ;
e a G,,-action on (X, A¢.) such that both 7 and o are G,,-equivariant
with respect to the standard G,,-action on A! by scalar multiplication;
e o(A'\ 0) C (X \ X, Agc|x\x,) is G-equivariantly isomorphic to
(z € (X,A)) x (A1 0);
o (X, X+ A¢e) is plt.
We call the central fiber (0(0) € (Xp, Atc,0)) of the special test configuration
a special degeneration of (z € (X, A)). By adjunction, (¢(0) € (Xp, A¢e,0)) is
also a klt singularity.

Definition 8.7. A set of kit singularities P is said to be log bounded up to
special degeneration if there is a log bounded set C of projective pairs, such
that the following holds.

For any klt singularity € (X, A) in P, there exist a special degeneration
xo € (Xo,A9) of z € (X,A), a pair (Y, B) € C together with a closed point
y € Y, and open neighborhoods U and V' of zg € Xy and y € Y respectively,
such that (zo € (U, Supp (Ao)[v)) = (y € (V; Supp (B)|v)).

Theorem 8.8 from [HLM20] shows that e-lc singularities admitting J-plt
blow-ups with positive lower bounds on boundary coefficients are log bounded
up to special degeneration. We expect that the Q-Gorenstein assumption from
Theorem 8.8 can be dropped.

Theorem 8.8 ([HLM20, Theorem 4.1 and its proof]). Let n be a positive
integer, and €1,0,mn three positive numbers. Then the set of n-dimensional
€1-lc Q-Gorenstein singularities x € (X, A) admitting a §-plt blowup and co-
efficients of A that are at least 1 is log bounded up to special degeneration.

We ask Conjecture 8.9.

Conjecture 8.9. Letn be a positive integer, and €, n two positive numbers.
Then the set of n-dimensional kit singularities x € (X,A) satisfying that
\ﬁ(x,X, A) > € and coefficients of A are at least 1 is log bounded up to
special degeneration.

By Theorem 8.8, Conjecture 8.9 follows from Conjecture 1.6 for Q-Goren-
stein singularities.

One can ask about the converses of Theorem 8.8 and Conjecture 8.9. As-
sume that coefficients of A belong to a finite set 1. We expect that the converse
of Theorem 8.8 holds under this assumption, although we do not have a proof
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at the moment. Meanwhile, using the lower semicontinuity of local volumes
[BL21] and the constructibility [Xu20] (see also Theorem 3.5), we can show
that the converse of Conjecture 8.9 is true under this assumption.

Example 8.10 provides one more prototype for Conjecture 1.6 and Conjec-
ture 1.1.

Example 8.10. Let n be a positive integer and I € Q N [0,1] a fi-
nite set. Let (V,;A) be an n-dimensional K-semistable log Fano pair, such
that all the coefficients of A belong to I. Consider the affine cone X :=
Spec ®_, HY(V, —mr(Ky + A)) over (V, A) with the ample Cartier polar-
ization —r(Ky + A), where r € Q. Let D := C(A) be the cone divisor,
and o € X the vertex. Then by [L.X20, Theorem 4.5, the canonical valua-
tion ordg obtained by blowing up the vertex o € X, u : Y — X, minimizes
\7(;1(X7D)70 on Valy ,. Let Dg be the different divisor of (Y, S + pu; D), then
(S,Dg) = (V,A). We claim if \7(;1(0, X,D) > ¢ for some € > 0, then there
exists an integer N which only depends on n, I and ¢, such that N(Kg+ Dg)
is Cartier and \70\1(0, X, D) belongs to a finite set. In particular, (S, Dg) is
%—lc7 and o € X admits a %—plt blow up. Hence Conjectures 1.1 and 1.6 hold
for those cone singularities.

Now we show the claim. By [LX20, Theorem 4.5] and [Kol13, Proposition
3.14(4)], we have
(8.1) 76l(0, X, D) = volx ) o(ords) = SV EADT

r

Since —r(Ky + A) is an ample Cartier divisor, by the length of extremal
rays, we know that r > 21, so (—(Ky + A))” > £, On the other hand,
by Theorem 7.4 and [Blul8b, Theorem C], we know that a(V,A) > n%_l,
so a(V,A)"(=(Ky + A)" > gy Thus by [LLX20, Corollary 6.14],
(V,Supp A) is log bounded. Now the existence of N follows from [Birl9,
Lemma 2.24]. It follows that r belongs to a finite set. By [HLS19, Lemma
3.26], \781(0, X,D)= M belongs to a finite set.

If (V,A) is as in Example 8.10 and X := Spec ®%_, H°(X,mL) is an
orbifold cone over (V,A), where o € X is the vertex and the polarization
L ~g —r(Ky + A) is an integral Weil divisor, then (8.1) is true. So it is
not difficult to see that the discreteness of {\7(;1(0, X, D)} away from 0 follows
from an affirmative answer to Question 8.11 (see also [LX19, Example 4.4]).
Indeed, Conjecture 1.1 for general klt singularities is not far from the case of
orbifold cone singularities if we assume the Stable Degeneration Conjecture
[LX18, Conjecture 1.2].

Question 8.11. Let n be a positive integer and I C QN [0, 1] a finite set.
Let (V,A) be an n-dimensional K-semistable log Fano pair, such that all the
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coefficients of A belong to I. Consider the Fano-Weil index ¢(X, A) of (X, A)
defined as

q(X,A) == max {q € Qxo

there exists an integral Weil divisor }
Lgq Ky — A) /

then does there exist a positive real number M depending only on n and [
such that ¢(X,A) < M?
In view of Example 8.10, we also recall the following folklore question.
Question 8.12. Let n be a positive integer. For any n-dimensional klt
singularity z € (X,A), is there a sequence of Kolldr components {S} of
x € (X,A) with limg_ 4 o \a(X,A),I(ordSk) = \7(;1(90,)(, A), such that

1
limsup a(Sk, Ag,) > —, or limsupd(Sk,As,) > 17
k—o0 n k—00
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