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ACC FOR LOCAL VOLUMES

AND BOUNDEDNESS OF SINGULARITIES

JINGJUN HAN, YUCHEN LIU, AND LU QI

Abstract

The ascending chain condition (ACC) conjecture for local volumes pre-
dicts that the set of local volumes of Kawamata log terminal (klt) sin-
gularities x ∈ (X,Δ) satisfies the ACC if the coefficients of Δ belong
to a descending chain condition (DCC) set. In this paper, we prove
the ACC conjecture for local volumes under the assumption that the
ambient germ is analytically bounded. We introduce another related
conjecture, which predicts the existence of δ-plt blow-ups of a klt sin-
gularity whose local volume has a positive lower bound. We show that
the latter conjecture also holds when the ambient germ is analytically
bounded. Moreover, we prove that both conjectures hold in dimension
2 as well as for 3-dimensional terminal singularities.
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520 J. HAN, Y. LIU, AND L. QI

1. Introduction

Kawamata log terminal (klt) singularities form an important class of sin-

gularities which emerges from the study of the Minimal Model Program

(MMP) (see e.g. [BCHM10]). It becomes clear now that klt singularities

appear naturally in other contexts: they form the right class of singularities

of K-semistable or Kähler-Einstein Fano varieties (see [Oda13, LX14, DS14,

BBEGZ19,CDS15, Tia15, BBJ21, LTW19] etc.); they share common proper-

ties with global Fano varieties, e.g. their (algebraic) fundamental groups are

finite (see [Xu14, GKP16, Bra21] etc.), and they always admit plt blow-ups

whose exceptional divisors, known as Kollár components, are klt (log) Fano

varieties (see [Sho96,Pro00,Kud01,Xu14,LX20] etc.).

Recently, the study of the local volume of klt singularities, first introduced

by C. Li in [Li18], has attracted lots of attention. Let us recall the defi-

nition below. Let x ∈ (X,Δ) be an n-dimensional klt singularity over an

algebraically closed field of characteristic 0. For any real valuation v of K(X)

centered at x, its normalized volume is defined as

v̂ol(X,∆),x(v) := A(X,∆)(v)
n · vol(v),

where A(X,∆)(v) is the log discrepancy of v according to [JM12,BdFFU15],

and vol(v) is the volume of v according to [ELS03]. The local volume of the

klt singularity x ∈ (X,Δ) is defined as

v̂ol(x,X,Δ) := min
v

v̂ol(X,∆),x(v),

where the existence of a normalized volume minimizer was shown by Blum

[Blu18a]. Such a minimizer is always quasi-monomial by Xu [Xu20] and unique

up to rescaling by Xu and Zhuang [XZ21]. The main purpose of Li’s inven-

tion of the normalized volume functional was to establish a local K-stability

theory for klt singularities. More precisely, according to the Stable Degenera-

tion Conjecture [Li18,LX18], the v̂ol-minimizer is expected to have a finitely

generated graded algebra, which degenerates x ∈ (X,Δ) to a K-semistable

log Fano cone singularity. For an extensive discussion of progress on this

conjecture, we refer to the survey article [LLX20].

The local volume of a klt singularity is an important invariant which reflects

essential geometric information and has deep connection to K-stability. It is

shown by Li and Xu [LX20] that a divisorial valuation minimizes v̂ol if and

only if it comes from a K-semistable Kollár component. For a quotient sin-

gularity o ∈ An/G, we know that v̂ol(o,An/G) = nn/|G| by [LX20, Example

7.1]. Moreover, such a multiplicative formula holds for any finite crepant Ga-

lois morphism between klt singularities (known as the finite degree formula) by
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the recent work of Xu and Zhuang [XZ21, Theorem 1.3]. It is shown by the sec-

ond author and Xu in [LX19, Appendix A] that v̂ol(x,X,Δ) ≤ nn for any klt

singularity x ∈ (X,Δ), where the equality holds if and only if x ∈ X\Supp (Δ)

is smooth. By works of Blum, the second author, and Xu [BL21,Xu20], in a

Q-Gorenstein family of klt singularities, the local volume of fibers is a lower

semicontinuous and constructible function on the base. This leads to a proof of

the openness of K-semistability [Xu20] (for a different proof, see [BLX19]). For

a K-semistable log Fano pair, the local volume of any singularity is bounded

from below by the global volume up to a constant [Fuj18, Liu18b, LL19].

Such an estimate is crucial in the study of explicit K-moduli spaces (see e.g.

[SS17,LX19,GMGS21,ADL19,ADL20,Liu20]). Compared with the minimal

log discrepancy (mld), there is an inequality v̂ol(x,X,Δ) < nn ·mld(x,X,Δ)

from [LLX20, Theorem 6.13]. A differential geometric interpretation of the lo-

cal volume goes as follows: when x ∈ X arises from a Gromov-Hausdorff limit

of Kähler-Einstein Fano manifolds, Li and Xu [LX18, Corollary 3.7] showed

that the local volume of x ∈ X is the same as the volume density of its metric

tangent cone up to a constant scalar (see also [HS17,SS17]).

In this paper, we explore the relation between local volumes and the bound-

edness of singularities. Motivated by the finite degree formula which yields

an effective upper bound of the order of the local fundamental group of a klt

singularity in terms of its local volume (see [XZ21, Corollary 1.4]) and other

phenomena from differential geometry (see e.g. [SS17, Section 5.1]), we ex-

pect that the existence of a positive lower bound for local volumes guarantees

certain boundedness property on singularities. In addition, our expectation

is closely related to the ACC conjecture on local volumes as local volumes of

a bounded family of singularities take finitely many values by [Xu20].

Below, we split our discussion into two parts. The first part treats the

conjecture on discreteness and the ACC property for local volumes. The

second part is focused on the conjecture which predicts the existence of δ-plt

blow-ups when the local volumes have a positive lower bound. Note that the

latter conjecture combined with [HLM20] would imply that klt singularities

whose local volumes have a positive lower bound are log bounded up to special

degeneration. Our main results confirm the above conjectures for singularities

x ∈ (X,Δ) in three cases: when x ∈ X analytically belongs to a Q-Gorenstein

bounded family, when the dimension is 2, or when x ∈ X is 3-dimensional

terminal and Δ = 0. We note that although the statements are divided into

two parts, their proofs share the same strategy.

1.1. ACC and discreteness of local volumes. In this subsection, we

address the following folklore conjecture on the discreteness and the ACC

for local volumes. Note that part (1) was first stated in [LLX20, Question
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522 J. HAN, Y. LIU, AND L. QI

6.12] (see also [LX19, Question 4.3]), and part (2) has appeared in [HLS19,

Conjecture 8.4] as a natural extension of part (1).

Conjecture 1.1. Let n be a positive integer and I ⊂ [0, 1] a subset. Con-

sider the set of local volumes

Vollocn,I :=

⎧
⎨
⎩v̂ol(x,X,Δ)

∣∣∣∣∣∣

x ∈ (X,Δ) is n-dimensional klt, where

Δ =
∑m

i=1 aiΔi, ai ∈ I for any i, and

each Δi ≥ 0 is a Weil divisor

⎫
⎬
⎭ .

(1) If I is finite, then Vollocn,I has 0 as its only accumulation point.

(2) If I satisfies the DCC, then Vollocn,I satisfies the ACC.

We note that the first author, J. Liu, and Shokurov proved Conjecture 1.1

for exceptional singularities [HLS19, Theorem 8.5]. We also remark that a

special case of part (1) that nn is not an accumulation point of Vollocn,I with

I = {0} is a weaker version of the ODP Gap Conjecture [SS17, Conjecture

5.5] which was verified in dimension at most 3, see [LL19,LX19].

Our first main result states that if (x ∈ Xan) ∈ (B ⊂ X an → B), that

is, the ambient germ x ∈ X analytically belongs to a Q-Gorenstein bounded

family (B ⊂ X → B) (see Definition 2.25), then the set of local volumes

{v̂ol(x,X,Δ)} satisfies the conclusion of Conjecture 1.1. In particular, Theo-

rem 1.2 implies that Conjecture 1.1 holds when x ∈ X is a smooth germ.

Theorem 1.2. Let n be a positive integer and I ⊂ [0, 1] a subset. Let

B ⊂ X → B be a Q-Gorenstein family of n-dimensional klt singularities.

Consider the set of local volumes

VolB⊂X→B,I :=

⎧
⎪⎪⎨
⎪⎪⎩
v̂ol(x,X,Δ)

∣∣∣∣∣∣∣∣

(x ∈ Xan) ∈ (B ⊂ X an → B), x ∈ (X,Δ)

is klt, where Δ =
∑m

i=1 aiΔi, ai ∈ I for

any i, and each Δi ≥ 0 is a Q-Cartier

Weil divisor

⎫
⎪⎪⎬
⎪⎪⎭
.

(1) If I is finite, then VolB⊂X→B,I has no non-zero accumulation point.

(2) If I satisfies the DCC, then VolB⊂X→B,I satisfies the ACC.

If x ∈ (X,Δ) belongs to a log bounded family and Δ has finite rational

coefficients, then Xu [Xu20, Theorem 1.3] proved that their local volumes

belong to a finite set. We remark that Theorem 1.2 does not assume the

boundedness of SuppΔ and allows (DCC) real coefficients.

Theorem 1.3 confirms Conjecture 1.1 in dimension 2.

Theorem 1.3. Conjecture 1.1 holds when n = 2.

We also show that the local volumes of 3-dimensional terminal singular-

ities without boundary divisors are discrete away from 0. Note that these

singularities (even the Gorenstein ones) are not analytically bounded (see e.g.
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[Mor85,Rei87] or [KM98, §5.3]), and their local volumes (even the Gorenstein

ones) can converge to 0 (see e.g. [LX19, Example 4.2]).

Theorem 1.4. The set of local volumes

Volterm3 := {v̂ol(x,X) | x ∈ X is 3-dimensional terminal}

has 0 as its only accumulation point.

Note that even if we assume the Stable Degeneration Conjecture [LX18,

Conjecture 1.2] is true, Conjecture 1.1 is still open in dimension n ≥ 3. This

is essentially due to the lack of a boundedness result for K-semistable Fano

cone singularities whose local volumes have a lower bound. To compare, the

corresponding global boundedness result was proved by Jiang [Jia20] and Xu-

Zhuang [XZ21] based on the BAB Conjecture proven by Birkar [Bir21] and

Batyrev’s Conjecture proven by Hacon-McKernan-Xu [HMX14] respectively.

For related discussions, see Conjecture 8.9, Question 8.11, or [LX19, Example

4.4].

1.2. Local volumes and boundedness of singularities. In this sub-

section, we study the relationship between local volumes and certain bound-

edness condition on singularities. We expect the following two classes of sin-

gularities are equivalent:

(1.1){
x ∈ (X,Δ) is ǫ1-lc, and admits a

δ-plt blow-up for some fixed ǫ1, δ > 0

}
≃

{
v̂ol(x,X,Δ) > ǫ

for some fixed ǫ > 0

}
.

We remark that it is expected in [HLS19] and proved in [HLM20, Theorems

1.1 and 4.1] that the first class of singularities in (1.1) belongs to a bounded

family up to special degeneration (See Section 8.2 for the definition of special

degenerations).

We first show that the local volumes of n-dimensional ǫ1-lc singularities

with δ-plt blow-ups have a positive lower bound depending only on n, ǫ1 and

δ, which confirms one direction of our expectation in (1.1).

Theorem 1.5. Let n ≥ 2 be a positive integer and δ, ǫ1 positive real num-

bers. Then there exists a positive real number ǫ depending only on n, ǫ1 and

δ satisfying the following.

If x ∈ (X,Δ) is an n-dimensional klt singularity, such that

(1) mld(x,X,Δ) ≥ ǫ1, and

(2) x ∈ (X,Δ) admits a δ-plt blow-up,

then v̂ol(x,X,Δ) ≥ ǫ.

For the converse direction in (1.1), we propose Conjecture 1.6.

Conjecture 1.6. Let n ≥ 2 be a positive integer and η, ǫ positive real

numbers. Then there exists a positive real number δ depending only on n, η
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and ǫ satisfying the following. If x ∈ (X,Δ =
∑m

i=1 aiΔi) is an n-dimensional

klt singularity such that

(1) ai > η for any i,

(2) each Δi ≥ 0 is a Weil divisor, and

(3) v̂ol(x,X,Δ) > ǫ,

then x ∈ (X,Δ) admits a δ-plt blow-up.

We prove that the statement of Conjecture 1.6 is true if x ∈ X analytically

belongs to a Q-Gorenstein bounded family.

Theorem 1.7. Let n ≥ 2 be a positive integer, η, ǫ positive real numbers,

and B ⊂ X → B a Q-Gorenstein family of n-dimensional klt singularities.

Then there exists a positive real number δ depending only on n, η, ǫ and B ⊂

X → B satisfying the following.

If x ∈ (X,Δ =
∑m

i=1 aiΔi) is an n-dimensional klt singularity such that

(1) (x ∈ Xan) ∈ (B ⊂ X an → B),

(2) ai > η for any i,

(3) each Δi ≥ 0 is a Q-Cartier Weil divisor, and

(4) v̂ol(x,X,Δ) > ǫ,

then x ∈ (X,Δ) admits a δ-plt blow-up.

We note that Theorem 1.7 fails to hold without assuming condition (2),

that is, the existence of a positive lower bound on the non-zero coefficients,

see Example 7.3.

Similar to Theorems 1.3 and 1.4, we also confirm Conjecture 1.6 in dimen-

sion 2 and for 3-dimensional terminal singularities without boundary divisors.

Theorem 1.8. Conjecture 1.6 holds in the following two situations.

(1) n = 2.

(2) n = 3, Δ = 0, and x ∈ X is terminal.

An immediate consequence of Theorem 1.7 and [HLS19, Theorem 1.3] is

that under the conditions of Theorem 1.7, the ACC conjecture for minimal

log discrepancies holds. Recall that the ACC conjecture for minimal log dis-

crepancies is closely related to the termination of flips [Sho04] and is still open

in dimension at least 3 even when x ∈ X is fixed. For other recent progress

on minimal log discrepancies, we refer the readers to [Liu18a,Kaw21, Jia19,

LX21,Mor20].

Corollary 1.9. Let n be a positive integer, I ⊂ [0, 1] a set which satisfies

the DCC, ǫ a positive real number, and B ⊂ X → B a Q-Gorenstein family
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of n-dimensional klt singularities. Then the set

⎧
⎪⎨
⎪⎩
mld(x,X,Δ)

∣∣∣∣∣∣∣

(x ∈ Xan) ∈ (B ⊂ X an → B), x ∈ (X,Δ) is klt,

where Δ =
∑m

i=1 aiΔi, ai ∈ I for any i, each Δi ≥ 0

is a Q-Cartier Weil divisor, and v̂ol(x,X,Δ) > ǫ

⎫
⎪⎬
⎪⎭

satisfies the ACC.

Moreover, if I is a finite set, then the only possible accumulation point of

the above set is 0.

Theorem 1.10 answers a folklore question on the boundedness of the Cartier

index of any Q-Cartier Weil divisor in a log bounded family (see [HLS19,

Question 3.31]). We refer readers to [GKP16, Theorem 1.10], [Bir19, Lemma

2.24], and [CH21, Lemma 7.14] for some partial results. Our approach to

show Theorem 1.10 is based on Theorem 1.7 and [Bir18, Theorem 1.2].

Theorem 1.10. Let ǫ be a positive real number. Suppose C := {(X,Δ)}

is a set of ǫ-lc projective pairs that belongs to a log bounded family P. Then

there exists a positive integer N which only depends on P and ǫ satisfying the

following.

Let (X,Δ) ∈ C, and D a Q-Cartier Weil divisor on X. Then ND is

Cartier.

Sketch of proofs. We first sketch the proofs of Theorems 1.2 and 1.7. For

simplicity, in both theorems, we assume that x ∈ X is fixed, the coefficients of

Δ belong to a rational finite set, and v̂ol(x,X,Δ) has a positive lower bound.

By the boundedness of Cartier index of any Q-Cartier Weil divisor on X,

we may further assume that each Δi is Cartier. Our idea is to reduce both

theorems to the case when SuppΔ belongs to a bounded family, and then

we may apply the constructibility of local volumes in a log bounded family

proved by Xu [Xu20, Theorem 1.3], and the existence of “good” δ-plt blow-ups

in a log bounded family (see Theorem 2.34). The reduction follows from two

steps. In step 1, we show that there exists a positive integer k depending only

on positive lower bounds of both v̂ol(x,X,Δ) and lct(X,Δ;Δ), such that if

Δk is a k-th truncation of Δ, then v̂ol(x,X,Δ) = v̂ol(x,X,Δk) (see Theorem

6.2). Moreover, we show that any “good” δ-plt blow-up of x ∈ (X,Δk) is

also a δ-plt blow-up of x ∈ (X,Δ) (see Proposition 6.4). Our argument is

inspired by generic limit constructions from [Kol08,dFEM10,dFEM11] and a

truncation argument in [Xu20] based on Li’s properness estimate [Li18]. In

step 2, we establish an inequality c · lct(X,Δ;Δ) ≥ v̂ol(x,X,Δ) where c is a

positive constant depending only on x ∈ X (see Theorem 4.1). This shows

that the constant k from step 1 can be chosen to depend only on the positive

lower bound of v̂ol(x,X,Δ), so we get the boundedness of Δk. Here a “good”
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δ-plt blow-up means that v̂ol(X,∆),x(ordS) is bounded from above where S is

the induced Kollár component.

It is worthwhile to mention that many results for local volumes were only

proved for Q-divisors Δ in previous literature, and some key ingredients in

their proofs including the existence of monotonic n-complement [Bir19, The-

orem 1.8] fail for R-divisors. Thus one technical difficulty in our paper is to

generalize these results to the case where Δ is an R-divisor and the coefficient

set I is not finite. To resolve this issue, we generalize [Blu18a, Main Theorem]

and [Xu20, Theorems 1.2 and 1.3] from Q-divisors to R-divisors (see Section

3) and prove a Lipschitz type estimate on local volumes (see Theorem 5.1).

Another technical difficulty is that we need to treat analytic boundaries and

analytically bounded families, so that together with Theorems 1.2, 1.7, and

classification results, we can prove Conjectures 1.1 and 1.6 in dimension 2 as

well as for 3-dimensional terminal singularities.

2. Preliminaries

2.1. Pairs and singularities. Throughout this paper, we work over an

algebraically closed field k of characteristic 0 unless it is specified.

We adopt the standard notation and definitions in [KM98], and will freely

use them.

Definition 2.1 (Pairs and singularities). A pair (X,Δ) consists of a nor-

mal quasi-projective variety X and an R-divisor Δ ≥ 0 such that KX + Δ

is R-Cartier. Moreover, if the coefficients of Δ are ≤ 1, then Δ is called a

boundary of X. If moreover Δ has Q-coefficients, then we say that (X,Δ) is

a Q-pair.

Let E be a prime divisor onX andD an R-divisor onX. We define multED

to be the multiplicity of E along D. Let φ : W → X be any log resolution of

(X,Δ) and let

KW +ΔW := φ∗(KX +Δ).

The log discrepancy of a prime divisor E on W with respect to (X,Δ) is

defined as

A(X,∆)(E) := 1−multEΔW .

For any positive real number ǫ, we say that (X,Δ) is lc (resp. klt, ǫ-lc, ǫ-klt)

if A(X,∆)(E) ≥ 0 (resp. > 0, ≥ ǫ, > ǫ) for every log resolution φ : W → X

as above and every prime divisor E on W . We say that (X,Δ) is plt (resp.

ǫ-plt) if A(X,∆)(E) > 0 (resp. > ǫ) for any exceptional prime divisor E over

X. Note that a prime divisor E over X is simply a prime divisor E on some
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log resolution W of X. The center of E on X (denoted by cX(E)) is the

scheme theoretic point φ(η) ∈ X where η is the generic point of E.

A singularity x ∈ (X,Δ) consists of a pair (X,Δ) and a closed point x ∈ X.

The singularity x ∈ (X,Δ) is called an lc (resp. a klt, an ǫ-lc) singularity if

there exists an open neighborhood U of x in X such that (U,Δ|U ) is lc (resp.

klt, ǫ-lc). The minimal log discrepancy of an lc singularity x ∈ (X,Δ) is

defined as

mld(x,X,Δ) := min

{
A(X,∆)(E)

∣∣∣∣
E is a prime divisor

over X with cX(E) = x

}
.

The singularity x ∈ (X,Δ) is called ǫ-lc if mld(x,X,Δ) ≥ ǫ.

Definition 2.2 (Log canonical thresholds). Let x ∈ (X,Δ) be an lc sin-

gularity and let D be an effective R-Cartier R-divisor. The log canonical

threshold of D with respect to x ∈ (X,Δ) is

lctx(X,Δ;D) := sup{t ∈ R | x ∈ (X,Δ+ tD) is log canonical}.

For convenience, we will denote lctx(X,Δ;D) by lct(X,Δ;D) if x is clear from

the context. Similarly, we may define the log canonical threshold lct(X,Δ; a)

(resp. lct(X,Δ; a•)) of an ideal a (resp. a graded sequence of ideals a•) with

respect to x ∈ (X,Δ), see, for example, [Blu18b, Definition 3.4.1].

Next we give some estimates on order functions.

Definition 2.3. Let X be a normal variety, x ∈ X a closed point, and

mX,x the maximal ideal of the local ring OX,x at x. The order function

ordx : OX,x → Z≥0 ∪ {∞} is defined by

ordx(f) := sup
{
j ≥ 0 | f ∈ m

j
X,x

}
.

This is a valuation if x is a smooth point, but not in general. Let Δ = div(f)

be an effective Cartier divisor, where f ∈ OX,x, we define ordx(Δ) := ordx(f).

We remark that ordx(Δ) is well-defined, that is, ordx(Δ) is independent on

the choice of f .

Proposition 2.4. Let x ∈ (X,Δ) be a klt singularity of dimension n.

(1) lct(X,Δ;mX,x) ≤ n, where mX,x ⊆ OX,x is the maximal ideal of x.

(2) Suppose that x ∈ (X,Δ + cΔ0) is a klt singularity for some positive

real number c and Cartier divisor Δ0 = div(f), where f ∈ OX . Then

ordx(f) <
n
c .

Proof. (1) By lower-semicontinuity of log canonical thresholds in a fam-

ily (Lemma 2.29), there exists a closed smooth point x′ ∈ X, such that n =

lctx′(X;mX,x′) ≥ lctx′(X,Δ;mX,x′) ≥ lctx(X,Δ;mX,x), where mX,x′ ⊆ OX,x′

is the maximal ideal of x′.
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(2) Let a := ordx(f). Then f ∈ ma
X,x, and (X,Δ+ cma

X,x) is klt. By (1),

ca < n. Hence ordx(f) <
n
c . �

We also need the subadditivity of log canonical thresholds [JM08, Corollary

2].

Proposition 2.5. Let x ∈ (X,Δ) be an lc singularity where X is Q-

Gorenstein. For any ideal sheaves a, b on X whose cosupports contain x, we

have

lct(X,Δ; a+ b) ≤ lct(X,Δ; a) + lct(X,Δ; b).

Proof. The proposition follows from [JM08, Corollary 2]. �

Definition 2.6 (Bounded families). A couple consists of a normal projec-

tive variety X and a divisor D on X such that D is reduced. Two couples

(X,D) and (X ′, D′) are isomorphic if there exists an isomorphism X → X ′

mapping D onto D′.

A set P of couples is bounded if there exist finitely many projective mor-

phisms V i → T i of varieties and reduced divisors Ci on V i such that for each

(X,D) ∈ P, there exists i and a closed point t ∈ T i, such that the couples

(X,D) and (V i
t , C

i
t) are isomorphic, where V i

t and Ci
t are the fibers over t of

the morphisms V i → T i and Ci → T i, respectively.

A set C of projective pairs (X,B) is said to be log bounded if the correspond-

ing set of couples {(X, SuppB)} is bounded. A set of projective varieties X

is said to be bounded if the corresponding set of couples {(X, 0)} is bounded.

A log bounded (respectively bounded) set is also called a log bounded family

(respectively bounded family).

2.2. Normalized volumes of valuations. In this section we give the

definition of normalized volumes of valuations from [Li18]. Note that our

definition slightly generalizes Li’s definition as we treat R-pairs. Throughout

this section, we denote by X a normal variety.

2.2.1. Valuations. A valuation v of K(X) is a function v : K(X)× → R

satisfying the following conditions:

• v(fg) = v(f) + v(g);

• v(f + g) ≥ min{v(f), v(g)};

• v(c) = 0 for c ∈ k×.

We also set v(0) = +∞. Every valuation v of K(X) gives rise to a valuation

ring Ov := {f ∈ K(X) | v(f) ≥ 0}. The value group of v is the (abelian)

subgroup Γv := v(K(X)×) of R.

Let ξ ∈ X be a scheme-theoretic point. We say a valuation v of K(X) is

centered at ξ = cX(v) if its valuation ring Ov dominates OX,ξ as local rings.

We denote by ValX the set of all valuations of K(X) admitting a center on X.

We denote by ValX,ξ the subset of ValX consisting of valuations centered at ξ.
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Note that the center of a valuation is unique if it exists due to separatedness

of X.

For v ∈ ValX and a non-zero ideal sheaf a ⊂ OX , we define

v(a) := min{v(f) | f ∈ a · OX,ξ where ξ = cX(v)}.

We endow ValX with the weakest topology such that for any non-zero ideal

sheaf a ⊂ OX , the map ValX → R≥0 defined as v �→ v(a) is continuous.

Given a valuation v ∈ ValX,ξ and a real number p, we define the valuation

ideal sheaf ap(v) as ap(v)(U) := {f ∈ OX(U) | v(f) ≥ p}. It is clear that the

cosupport of ap(v) is {ξ} for p > 0. In particular, if ξ = x is a closed point on

X and v ∈ ValX,x, then ap(v) is an mx-primary ideal for p > 0.

Let μ : Y → X be a birational morphism from a normal variety Y . Hence

μ∗ : K(X) → K(Y ) is an isomorphism. Let E ⊂ Y be a prime divisor.

Then E induces a valuation ordE of K(X) by assigning each rational function

f ∈ K(X) to the order of vanishing of μ∗f along E. A valuation v ∈ ValX
is a divisorial valuation if v = λ · ordE for some prime divisor E over X and

some λ ∈ R>0.

Let (Y,D) be a log smooth model over X, that is, μ : Y → X is a proper

birational morphism from a smooth variety Y , the divisor D is reduced simple

normal crossing on Y , and μ is an isomorphism on Y \ Supp (D). Let y =

(y1, . . . , yr) be a system of algebraic coordinates at a scheme-theoretic point

η ∈ Y . We assume that each divisor (yi = 0) near η is equal to an irreducible

component of D. Let α = (α1, . . . , αr) ∈ Rr
≥0 be a vector. We define a

valuation vα as follows. Since by Cohen’s structure theorem we have ÔY,η
∼=

κ(η)�y1, y2, . . . , yr�, any function f ∈ OY,η has a Taylor expansion f =∑
β∈Zr

≥0
cβy

β, where yβ :=
∏r

i=1 y
βi

i and cβ ∈ ÔY,η is either 0 or a unit.

Then we define vα(f) := min{〈α,β〉 | cβ �= 0}, where 〈α,β〉 :=
∑r

i=1 αiβi. A

valuation v ∈ ValX is quasi-monomial if v = vα for some log smooth model

(Y,D) over X, a system of algebraic coordinates y at η ∈ Y , and α ∈ Rr
≥0.

For a fixed log smooth model (Y,D) over X and η ∈ Y , we denote QMη(Y,D)

to be the collection of all quasi-monomial valuations vα that can be described

as above at the point η ∈ Y . We define QM(Y,D) := ∪ηQMη(Y,D) where η

runs through all generic points of intersections of some irreducible components

of D.

2.2.2. Log discrepancy. Let Δ be an effective R-divisor on X such that

KX + Δ is R-Cartier, i.e. (X,Δ) is a pair. In this subsection, we define

log discrepancy A(X,∆)(v) of a valuation v ∈ ValX with respect to (X,Δ)

following [JM12, BdFFU15]. Note that a log smooth pair (Y,D) is said to

dominate (X,Δ) if (Y,D) is a log smooth model over X and μ−1(Supp (Δ)) ⊂

Supp (D).
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Definition 2.7. Let v be a valuation of K(X).

(1) If v = λ · ordE is divisorial where E ⊂ Y
μ
−→ X is a prime divisor over

X, then we define the log discrepancy of v with respect to (X,Δ) as

A(X,∆)(v) := λ ·A(X,∆)(E) = λ(1 + multE(KY − μ∗(KX +Δ))).

(2) If v = vα is a quasi-monomial valuation that can be described at the

point η ∈ Y with respect to a log smooth model (Y,D =
∑l

i=1 Di)

dominating (X,Δ) such that Di = (yi = 0) near η for 1 ≤ i ≤ r ≤ l,

then we define the log discrepancy of v with respect to (X,Δ) as

A(X,∆)(v) :=
r∑

i=1

αi ·A(X,∆)(Di).

(3) It was shown in [JM12] that there exists a retraction map

rY,D : ValX → QM(Y,D) for any log smooth model (Y,D)

dominating (X,Δ), such that it induces a homeomorphism ValX
∼=
−→

lim
←−(Y,D)

QM(Y,D). For any valuation v ∈ ValX , we define the log

discrepancy of v with respect to (X,Δ) as

A(X,∆)(v) := sup
(Y,D)

A(X,∆)(rY,D(v)) ∈ R ∪ {+∞},

where the supremum is taken over all log smooth pairs (Y,D) domi-

nating (X,Δ). It is possible that AX,∆(v) = +∞ for some v ∈ ValX ,

see e.g. [JM12, Remark 5.12].

We collect some useful lemmata which are easy consequences of [JM12] (see

e.g. [JM12, Lemma 5.3 and Remark 5.6]).

Lemma 2.8. The pair (X,Δ) is klt (resp. lc) if and only if for any non-

trivial valuation v ∈ ValX we have A(X,∆)(v) > 0 (resp. ≥ 0).

Lemma 2.9. Let (X,Δ) and (X ′,Δ′) be two pairs together with a proper

birational morphism φ : X ′ → X. Then for any v ∈ ValX we have

A(X′,∆′)(v) = A(X,∆)(v)− v((KX′ +Δ′)− φ∗(KX +Δ)).

2.2.3. Normalized volumes. In this subsection, we recall the defini-

tion of normalized volumes of Li [Li18] for an n-dimensional klt singularity

x ∈ (X,Δ). First we recall the definition of the volume of a valuation from

[ELS03].

Definition 2.10. For a valuation v ∈ ValX,x, we define the volume of v

by

volX,x(v) := lim
m→+∞

ℓ(OX,x/am(v))

mn/n!
.

Here ℓ(·) denotes the length of an Artinian module.

Licensed to Princeton Univ. Prepared on Tue Aug  8 00:45:14 EDT 2023 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ACC FOR LOCAL VOLUMES AND BOUNDEDNESS OF SINGULARITIES 531

We define Val◦X,x := {v ∈ ValX,x | A(X,∆)(v) < +∞}. Note that this

definition is independent of the choice of Δ by Lemma 2.9.

Definition 2.11. For a valuation v ∈ ValX,x, we define the normalized

volume of v with respect to x ∈ (X,Δ) as

v̂ol(X,∆),x(v) :=

{
A(X,∆)(v)

n · volX,x(v) if v ∈ Val◦X,x,

+∞ if v �∈ Val◦X,x.

The local volume of a klt singularity x ∈ (X,Δ) is defined as

v̂ol(x,X,Δ) := inf
v∈ValX,x

v̂ol(X,∆),x(v).

When Δ is a Q-divisor, the existence of a v̂ol-minimizer is proven by Blum

[Blu18a, Main Theorem] when k is uncountable, and by Xu [Xu20, Remark

3.8] in general. Such a minimizer is always quasi-monomial by [Xu20, Theorem

1.2] and unique up to rescaling by [XZ21, Theorem 1.1]. We will prove that

both [Blu18a, Main Theorem] and [Xu20, Theorem 1.2] hold for any R-divisor

Δ ≥ 0 and any algebraically closed field k; see Theorem 3.3. Meanwhile, the

proof of uniqueness of v̂ol-minimizers from [XZ21] can be easily generalized

to R-divisors Δ (see Theorem 3.4). By convention, we set v̂ol(x,X,Δ′) = 0

for a pair (X,Δ′) that is not klt at x.

Theorem 2.12 provides useful estimates on local volumes. It is a combi-

nation of [Li18, Corollary 3.4], [LX19, Theorem 1.6], and [LLX20, Theorem

6.13].

Theorem 2.12 ([Li18], [LX19], [LLX20]). Let x ∈ (X,Δ) be an n-dimen-

sional klt singularity. Then

0 < v̂ol(x,X,Δ) ≤ nn ·min{1,mld(x,X,Δ)}.

Lemma 2.13 from [Liu18b] provides an alternative characterization of local

volumes in terms of log canonical thresholds and multiplicities. A proof in

the Q-pair case is provided in [LLX20, Proof of Theorem 2.6].

Lemma 2.13 ([Liu18b, Theorem 27]). Let x ∈ (X,Δ) be an n-dimensional

klt singularity. Then

v̂ol(x,X,Δ) = inf
a : mx-primary

lct(X,Δ; a)n · e(a)

= inf
a• : mx-primary

lct(X,Δ; a•)
n · e(a•),

where e(a) is the Hilbert-Samuel multiplicity of a, and e(a•) = limm→+∞
e(am)
mn .

We note that although Theorem 2.12 and Lemma 2.13 were originally

proven for Q-pairs, their proofs generalize to the pair case with little change.

The following properness and Izumi type estimates from [Li18] are impor-

tant in the study of normalized volumes. Note that although the original
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statements in [Li18] assume Δ = 0, Li’s proof generalizes easily to the pair

setting by taking a log resolution of (X,Δ). We provide a proof for readers’

convenience. For a family version, see Lemma 2.31.

Lemma 2.14 ([Li18, Theorems 1.1 and 1.2]). Let x ∈ (X,Δ) be a klt

singularity. Denote m := mX,x the maximal ideal at x. Then there exist

positive real numbers C1, C2 depending only on x ∈ (X,Δ) such that for any

f ∈ OX,x and any v ∈ ValX,x, we have

(1) (Properness estimate)

v̂ol(X,∆),x(v) ≥ C1

A(X,∆)(v)

v(m)
.

(2) (Izumi type estimate)

v(m)ordx(f) ≤ v(f) ≤ C2A(X,∆)(v)ordx(f).

Proof. We first prove part (2), i.e. the Izumi type estimate. The first

inequality is obvious. For the second inequality, we choose a log resolution

μ : X ′ → (X,Δ) with KX′ + Δ′ = μ∗(KX + Δ). Since (X,Δ) is klt, there

exists ǫ > 0 such that Δ′ ≤ (1− ǫ)Δ′
red. Since Δ

′
red is simple normal crossing,

we know that (X ′,Δ′
red) is lc. Hence by Lemma 2.9 we have

A(X,∆)(v) = AX′(v)− v(Δ′) ≥ AX′(v)− (1− ǫ)v(Δ′
red)

= ǫAX′(v) + (1− ǫ)A(X′,∆′
red)

(v) ≥ ǫAX′(v).

Let ξ ∈ X ′ be the center of v on X ′. By Izumi’s inequality in the smooth case

(see [JM12, Proposition 5.1]), for any f ∈ OX,x we have

v(f) = v(μ∗f) ≤ AX′(v)ordξ(μ
∗f) ≤ ǫ−1A(X,∆)(v)ordξ(μ

∗f).

By Izumi’s linear complementary inequality (see [Li18, Theorem 3.2]), there

exists a2 ≥ 1 depending only on x ∈ X and μ such that ordξ(μ
∗f) ≤

a2ordx(f). Hence (2) is proved by taking C2 = ǫ−1a2.

Now (1) follows from (2) and [Li18, Theorem 1.3]. �

We will also need the finite degree formula for normalized volumes which is

conjectured by the second author and Xu [LX19, Conjecture 4.1] and proved

by Xu-Zhuang [XZ21]. Note that although the result was originally stated for

Q-divisors, the proof of Xu and Zhuang can be easily generalized to R-divisors

as it is a consequence of the uniqueness of minimizers (see Theorem 3.4).

Theorem 2.15 (Finite degree formula, cf. [XZ21, Theorem 1.3]). Let y ∈

(Y,ΔY ) and x ∈ (X,Δ) be two klt singularities. Let f : (y ∈ (Y,ΔY )) →

(x ∈ (X,Δ)) be a finite Galois morphism such that f(y) = x, and KY +ΔY =

f∗(KX +Δ). Then

v̂ol(x,X,Δ) · deg(f) = v̂ol(y, Y,ΔY ).
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We also include an easy but useful lemma.

Lemma 2.16. Let x ∈ (X,Δ) be an n-dimensional klt singularity where

Δ is R-Cartier. Assume that lct(X,Δ;Δ) ≥ γ for some γ > 0, then for any

v ∈ ValX,x we have

A(X,∆)(v) ≥

(
γ

1 + γ

)
AX(v), and v̂ol(X,∆),x(v) ≥

(
γ

1 + γ

)n

v̂olX,x(v).

Proof. This follows from the inequality

A(X,(1+γ)∆)(v) = AX(v)− (1 + γ)v(Δ) ≥ 0. �

2.3. Kollár components.

Definition 2.17. Let x ∈ (X,Δ) be a klt singularity. If a projective

birational morphism μ : Y → X from a normal variety Y satisfies the following

properties:

(1) μ is isomorphic over X\{x},

(2) μ−1(x) is an irreducible exceptional divisor S,

(3) (Y, S + μ−1
∗ Δ) is plt near S, and

(4) −S is an μ-ample Q-Cartier divisor,

then we call μ a plt blow-up of x ∈ (X,Δ) and S a Kollár component of

x ∈ (X,Δ). Moreover, if for a positive real number δ we have

(3’) (Y, S + μ−1
∗ Δ) is δ-plt near S,

then we call μ a δ-plt blow-up and S a δ-Kollár component of x ∈ (X,Δ).

Proposition 2.18 ([LX20, Lemma 2.13]). Let σ : (x′ ∈ (X ′,Δ′)) →

(x ∈ (X,Δ)) be a finite morphism between klt singularities such that σ(x′) =

x, and σ∗(KX +Δ) = KX′ +Δ′. If μ : Y → X is a plt blow-up of x ∈ (X,Δ)

with the Kollár component S, then

(1) Y ×X X ′ → X ′ induces a Kollár component S′ of x′ ∈ (X ′,Δ′), and

deg(σ) · v̂ol(X,∆),x(ordS) = v̂ol(X′,∆′),x′(ordS′).

(2) If in addition σ is a Galois quotient morphism of a finite subgroup

G < Aut(x′ ∈ (X ′,Δ′)), then every G-invariant Kollár component S′

over x′ ∈ (X ′,Δ′) arises as a pullback of a Kollár component S over

x ∈ (X,Δ).

Lemma 2.19 is well-known to experts (see e.g. [HX09, Proof of Theorem

1.3], [LX20, Lemmata 3.7 and 3.8], [Fuj19, Corollary 3.5], or [Zhu21, Lemma

4.8]).

Lemma 2.19. Let x ∈ (X,Δ) be a klt singularity. Let a be an ideal sheaf

on X cosupported at x. Then there exists a Kollár component S computing

lct(X,Δ; a).

The following result generalizes [LX20, Theorem 1.3] to R-divisors.
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Theorem 2.20. Let x ∈ (X,Δ) be a klt singularity. Then

(1) v̂ol(x,X,Δ) = infS v̂ol(X,∆),x(ordS), where S runs over all Kollár

components over x ∈ (X,Δ), and

(2) if v∗ ∈ ValX,x minimizes v̂ol(X,∆),x, then there exists a sequence of

Kollár components {Sk} and positive numbers bk such that

lim
k→+∞

bk ·ordSk
=v∗ in ValX,x and lim

i→+∞
v̂ol(X,∆),x(ordSk

) = v̂ol(x,X,Δ).

Proof. (1) The direction “≤” is obvious. Thus it suffices to show that

for any positive real number ǫ, there exists a Kollár component S over x ∈

(X,Δ) such that v̂ol(X,∆),x(ordS) ≤ v̂ol(x,X,Δ) + ǫ. By Lemma 2.13, there

exists an ideal sheaf a on X cosupported at x such that lct(X,Δ; a)n · e(a) ≤

v̂ol(x,X,Δ)+ǫ. By Lemma 2.19, there exists a Kollár component S computing

lct(X,Δ; a). Hence we have

v̂ol(X,∆),x(ordS) ≤ lct(X,Δ; a)n · e(a) ≤ v̂ol(x,X,Δ) + ǫ,

where the first inequality follows from [Liu18b, Lemma 26].

The proof of part (2) is the same as that of [LX20, Theorem 1.3], and we

omit it. �

Theorem 2.21 ([LX20, Theorem 1.2]). Let x ∈ (X,Δ) be a klt singularity

where Δ ≥ 0 is a Q-divisor. Then a divisorial valuation ordS is a minimizer

of v̂ol(X,∆),x if and only if S is a Kollár component of x ∈ (X,Δ) and (S,ΔS)

is K-semistable, where μ : Y → X is the corresponding plt blow-up of x ∈

(X,Δ), and ΔS is the different divisor of KY + μ−1
∗ Δ+ S on S.

2.4. Analytically isomorphic singularities.

Definition 2.22. We say two singularities (x ∈ X) and (x′ ∈ X ′) are

analytically isomorphic (denoted by (x ∈ Xan) ∼= (x′ ∈ X ′an)) if we have an

isomorphism ÔX,x
∼= ÔX′,x′ of k-algebras.

Here we use the notion “analytically isomorphic” as “formally isomorphic”

in literature, although the former notion (over C) usually refers to isomorphic

as complex analytic germs. Note that a famous result of Artin [Art69, Corol-

lary 2.6] shows that formally isomorphic singularities have isomorphic étale

neighborhoods, hence over C the two notions are equivalent.

We will use Proposition 2.23 without citing it frequently.

Proposition 2.23. Assume that (x ∈ X) and (x′ ∈ X ′) are analyti-

cally isomorphic singularities. Then (x ∈ X) is Q-Gorenstein if and only if

(x′ ∈ X ′) is Q-Gorenstein. Moreover, the Cartier index of KX near x is the

same as the Cartier index of KX′ near x′.

Proof. Denote R := OX,x and R′ := OX′,x′ . Let R̂ and R̂′ be their com-

pletions. Then we have an isomorphism R̂ ∼= R̂′. Since both dimension and

depth are preserved under completion, we know that R is Cohen-Macaulay if
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and only if R̂ ∼= R̂′ is Cohen-Macaulay, if and only if R′ is Cohen-Macaulay.

For a finite R-module M and m ∈ Z>0, we denote M [m] := (M⊗m)∗∗. Thus

it suffices to show that ω
[m]
R is free if and only if ω

[m]
R′ is free for m ∈ Z>0.

Here ωA denotes the canonical module of a Cohen-Macaulay ring A. By

[BH93, Theorem 3.3.5], we know that ωR̂
∼= ωR ⊗R R̂. Since R →֒ R̂ and

R′ →֒ R̂′ are faithfully flat, we know that

ω
[m]

R̂
∼= ω

[m]
R ⊗R R̂, and ω

[m]

R̂′
∼= ω

[m]
R′ ⊗R′ R̂′.

Hence ω
[m]
R is free if and only if ω

[m]

R̂
∼= ω

[m]

R̂′
is free, if and only if ω

[m]
R′ is

free. �

Recall that for a klt singularity x ∈ X, the space Val◦X,x consists of valua-

tions v ∈ ValX,x satisfying AX(v) < +∞.

Proposition 2.24. Assume that (x ∈ X) and (x′ ∈ X ′) are analytically

isomorphic singularities where (x ∈ X) is klt. Then (x′ ∈ X ′) is also klt.

Moreover, there exists a bijection φ : Val◦X,x → Val◦X′,x′ such that the following

statements hold for any v ∈ Val◦X,x.

(1) We have AX(v) = AX′(φ(v)).

(2) We have grvOX,x
∼= grφ(v)OX′,x′ as graded rings. In particular,

volX,x(v) = volX′,x′(φ(v)).

(3) We have v̂olX,x(v) = v̂olX′,x′(φ(v)) and v̂ol(x,X) = v̂ol(x′, X ′).

(4) If v = ordS is a Kollár component S of (x ∈ X), then φ(v) = ordS′

is a Kollár component S′ of (x ∈ X ′), and (S,Γ) ∼= (S′,Γ′) where Γ

and Γ′ are different divisors.

Proof. For simplicity, denote

(R,m) := (OX,x,mX,x) and (R′,m′) := (OX′,x′ ,mX′,x′).

Let (R̂, m̂) and (R̂′, m̂′) be the completion of (R,m) and (R′,m′) respectively.

Since x ∈ X is klt, by [dFEM11, Proposition 2.11(1)] we know that Spec R̂

is klt in the sense of [dFEM11, Page 226]. Hence x′ ∈ X ′ is also klt by

[dFEM11, Proposition 2.11(1)] and the isomorphism Spec R̂ ∼= Spec R̂′.

Next we construct the bijection φ. By [JM12, Corollary 5.11], any valuation

v ∈ Val◦X,x has a unique extension v̂ to SpecR̂. Note that although [JM12,

Corollary 5.11] has the assumption that R is regular, the same argument

goes through for any klt singularity x ∈ X by replacing the Izumi inequality

[JM12, Proposition 5.10] with Lemma 2.14. Denote by ψ : R̂
∼=
−→ R̂′ the

isomorphism. Then we may define φ(v) := (ψ∗v̂)|R′ ∈ ValX′,x′ .

Let π : W → X be a log resolution ofX. Denote by X̂ := Spec R̂ and X̂ ′ :=

Spec R̂′. Let Ŵ := W ×X X̂ with π̂ : Ŵ → X̂. By [dFEM11, Proposition

A.14], we have π̂∗KW/X = K
Ŵ/X̂

. By [JM12, Proposition 5.13], we have that
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AW (v) = A
Ŵ
(v̂). Thus by Lemma 2.9 we have

(2.1) AX(v) = AW (v) + v(KW/X) = A
Ŵ
(v̂) + v̂(K

Ŵ/X̂
).

Since X̂ ∼= X̂ ′ by assumption, we know that Ŵ → X̂ ′ is a log resolution in

the sense of [Tem18]. Let π′ : W ′ → X ′ be a log resolution of X ′. Denote

by Ŵ ′ := W ′ ×X′ X̂ ′. Thus Ŵ ′ → X̂ ′ is also a log resolution. Thus by

[JM12, Remark 5.6] and the above arguments, we have

A
Ŵ
(v̂) + v̂(K

Ŵ/X̂
) = A

Ŵ ′(ψ∗v̂) + ψ∗v̂(KŴ ′/X̂′)(2.2)

= AW ′(φ(v)) + φ(v)(KW ′/X′) = AX′(φ(v)).

Combining (2.1) and (2.2), we get AX(v) = AX′(φ(v)). Hence φ takes value in

Val◦X′,x′ . Similarly we can define φ−1 which implies that φ : Val◦X,x → Val◦X′,x′

is a bijection. In addition, we have shown part (1).

For part (2), we first show that ap(v) · R̂ = ap(v̂) for any p ∈ R≥0. Since v̂

is an extension of v, we have ap(v) · R̂ ⊂ ap(v̂). On the other hand, suppose

f ∈ ap(v̂)\{0}, then let m ∈ N be an integer such that m ·v(m) > v̂(f). Since

v̂(m̂m) = v̂(mm · R̂) = v(mm) = mv(m), we know that v̂(m̂m) > v̂(f) ≥ p.

Choose g ∈ R such that f − g ∈ m̂m, then v(g) = v̂(f) ≥ p. Thus we have

g ∈ ap(v) and mm ⊂ ap(v) which implies f ∈ (g) + m̂m ⊂ ap(v) · R̂. As a

result, we have ap(v̂) ⊂ ap(v) · R̂ which implies ap(v) · R̂ = ap(v̂).

Since all valuation ideals ap(v) of v are m-primary, we have ap(v)/a>p(v) ∼=

ap(v̂)/a>p(v̂) for any p ∈ R≥0. Thus we have grvR
∼= grv̂R̂ as graded rings.

Apply similar arguments to φ(v) and φ̂(v) = ψ∗v̂, we get grφ(v)R
′ ∼= grψ∗v̂R̂

′.

Since ψ : R̂ → R̂′ is an isomorphism, we get

grvR
∼= grv̂R̂

∼= grψ∗v̂R̂
′ ∼= grφ(v)R

′.

From the isomorphism grvR
∼= grφ(v)R

′, we know that

ℓ(R/ap(v)) = ℓ(R′/ap(φ(v)))

for any p ∈ R≥0. Thus the volumes of v and φ(v) are equal. This finishes the

proof of part (2).

Part (3) is a consequence of parts (1) and (2).

For part (4), suppose v = ordS for a Kollár component S over (x ∈ X).

Since v and φ(v) have isomorphic associated graded algebras by part (2),

we know that the value group of φ(v) is the same as that of v, which is Z.

Let Y ′ := ProjX′ ⊕m∈Z≥0
am(φ(v)), where the finite generation of this graded

algebra follows from the finite generation of grφ(v)R
′ (see e.g. [Liu18b, Lemma

32]). Clearly Y ′ is normal as any valuation ideal sequence is integrally closed.

Denote by μ′ : Y ′ → X ′ the projection morphism, then μ′ is isomorphic over

X ′ \ {x′} as am(φ(v)) is m′-primary. Let S′ := Proj grφ(v)R
′ as a closed
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subscheme of Y ′. Then by construction we know that SuppS′ = μ′−1(x′). By

[LX20, Section 2.4] and part (2), we know that S∼=Proj grvR
∼=Proj grφ(v)R

′=

S′. Hence S′ is the only prime μ′-exceptional divisor on Y ′. Let k ∈ Z>0 be an

integer such that akm(φ(v)) = ak(φ(v))
m for any m ∈ N. Then we know that

OY ′(k) is Cartier ample over X ′, which implies that OY ′(k) ∼= OY ′(−qS′)

for some q ∈ Z>0. It is clear that akm(φ(v)) = μ′
∗OY (km), thus we have

akm(φ(v)) = μ′
∗OY (−qmE) = akm(kq ordS′) for any m ∈ N. Thus we have

φ(v) = k
q ordS′ , which implies that k = q and φ(v) = ordS′ by comparing

their value groups. In particular, we have am(φ(v)) = μ′
∗OY ′(−mS′) for any

m ∈ N.

Let o and o′ be the cone vertices of Spec grvR and Spec grφ(v)R
′ respec-

tively. By [LX20, Section 2.4] we know that o ∈ Spec grvR is a klt sin-

gularity carrying a Gm-action induced by the grading of grvR, such that

(Spec grvR) \ {o} is a Seifert Gm-bundle over (S,Γ) in the sense of [Kol04].

Thus by part (2) Spec grφ(v)R
′ is also a klt singularity with a Gm-action in-

duced by the grading of grφ(v)R
′. By [LWX21, Proof of Lemma 2.21(1)], we

know that μ′ : Y ′ → X ′ provides a Kollár component S′ with different divisor

Γ′, such that (Spec grφ(v)R
′) \ {o′} is a Seifert Gm-bundle over (S′,Γ′). Since

grvR
∼= grφ(v)R

′ as graded rings by part (2), we know that (S,Γ) ∼= (S′,Γ′)

as Gm-quotients of isomorphic Serfert Gm-bundles. The proof is finished. �

2.5. Family of singularities.

Definition 2.25 ([BL21,Xu20]). We call B ⊂ (X ,D) → B a Q-Gorenstein

(resp. an R-Gorenstein) family of (n-dimensional) klt singularities over a (pos-

sibly disconnected) normal base B if

(1) X is normal and flat over B,

(2) KX/B +D is Q-Cartier (resp. R-Cartier),

(3) for any closed point b ∈ B, Xb is connected, normal, and not contained

in Supp (D),

(4) there is a section B ⊂ X , and

(5) b ∈ (Xb,Db) is klt (of dimension n) for any closed point b ∈ B, where

Db is the (cycle theoretic) restriction of D over b ∈ B.

Let x ∈ X be a normal variety X with a closed point x. Let B ⊂ X → B

be a Q-Gorenstein family of klt singularities. We denote by (x ∈ X) ∈

(B ⊂ X → B) if there exists a closed point b ∈ B, a neighborhood U of

x ∈ X, and a neighborhood Ub of b ∈ Xb, such that (x ∈ U) is isomorphic to

(b ∈ Ub). We denote by (x ∈ Xan) ∈ (B ⊂ X an → B) if there exists a closed

point b ∈ B such that ÔX,x
∼= ÔXb,b as k-algebras.

Remark 2.26. Let B′ → B be any morphism from a normal scheme B′

of finite type over k, the base change B′ ⊂ (X ′,D′) = (X ,D)×B B′ → B′ is
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a Q-Gorenstein (resp. R-Gorenstein) family of klt singularities over B′, and

KX ′/B′ + D′ = g∗(KX/B + D), where g : X ′ → X is the base change of

B′ → B, see [BL21, Proposition 8].

Definition 2.27. Let B ⊂ (X ,D) → B be an R-Gorenstein family of klt

singularities over a normal base B. We say a birational morphism μ : (Y , E) →

(X ,D) is a fiberwise log resolution of B ⊂ (X ,D) → B where E is the sum of

the strict transform of D and the reduced exceptional divisor of Y → X if

(1) for each closed point b ∈ B, (Yb, Eb) → (Xb,Db) is a log resolution,

(2) any stratum of (Y , E), that is a component of the intersection ∩Ei for

components Ei of E , has geometric irreducible fibers over B, and

(3) for any exceptional prime divisor F of μ, the center of F on X is the

section B ⊂ X if and only if the center of Fb on Xb is b ∈ Xb for some

closed point b ∈ B.

Remark 2.28. For any R-Gorenstein family of klt singularities B ⊂

(X ,D) → B over a normal base B, by [Xu20, Definition-Lemma 2.8], possi-

bly stratifying the base B into a disjoint union of finitely many constructible

subsets and taking finite étale coverings, we may assume that there exists a

decomposition B =
⊔

α Bα into irreducible smooth strata Bα such that for

each α, (X ×BBα,D×Bα) admits a fiberwise log resolution μα. In particular,

there exists a positive real number ǫ, such that b ∈ (Xb,Db) is ǫ-lc for any

closed point b ∈ B.

Lemma 2.29 shows that log canonical thresholds in R-Gorenstein families

are constructible and lower semicontinuous. For Q-Gorenstein families it is

stated in [BL21, Proposition 10] (see also [Amb16, Corollary 2.10]). We omit

the proof since it is the same with [Amb16].

Lemma 2.29. Let (X ,D) → B be an R-Gorenstein family of klt singular-

ities over a normal base B. Let a be an ideal sheaf on X . Then

(1) The function b �→ lct(Xb,Db; ab) on B is constructible;

(2) If in addition V (a) is proper over B, then b �→ lct(Xb,Db; ab) on B is

lower semicontinuous with respect to the Zariski topology.

Lemma 2.30 states a well-known result on the klt locus in a family. See

[Amb16, Corollary 2.10] for a similar statement. We omit the proof here

because it follows from arguments similar to those in [Amb16].

Lemma 2.30. Let B ⊂ (X ,D) → B be an R-Gorenstein family of klt

singularities over a normal base B, and E an effective R-Cartier R-divisor on

X such that Supp (E) does not contain any fiber Xb. Then

{b ∈ B | (Xb,Db + Eb) is klt near b ∈ Xb}

is a Zariski open subset of B.
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The following result is a variation of [BL21, Theorems 20 and 21], which is

the generalization of [Li18, Theorem 1.1 and 1.2] to the case of Q-Gorenstein

families of singularities.

Lemma 2.31. Let B ⊂ X → B be a Q-Gorenstein family of klt singu-

larities over a normal base B. Then there exist positive constants C1, C2

depending only on B ⊂ X → B such that the following holds.

If a klt singularity x ∈ X satisfies that (x ∈ Xan) ∈ (B ⊂ X an → B), then

for any valuation v ∈ ValX,x and any f ∈ OX,x, we have

(1) (properness estimate)

v̂olX,x(v) ≥ C1
AX(v)

v(mX,x)
.

(2) (Izumi type estimate)

v(mX,x)ordx(f) ≤ v(f) ≤ C2AX(v)ordx(f).

Proof. Let b ∈ B be the closed point such that (x ∈ Xan) ∼= (b ∈ X an
b ).

By [BL21, Theorems 20 and 21] there exists positive constants C1 and C2

depending only on B ⊂ X → B such that both (1) and (2) hold for the

klt singularity b ∈ Xb. We claim that the same constants C1 and C2 work

for x ∈ X as well. We may assume that AX(v) < +∞ since otherwise the

statements are trivial. By Proposition 2.24, any v ∈ Val◦X,x corresponds to

a unique valuation v′ ∈ Val◦Xb,b
such that AX(v) = AXb

(v′) and v̂olX,x(v) =

v̂olXb,b(v
′). Denote m := mX,x and m′ := mXb,b. Since all valuation ideals of

v (resp. v′) are m-primary (resp. m′-primary), we know that v(m) = v̂(m̂) =

v̂′(m̂′) = v′(m′). Hence (1) is proven. For (2), notice that this is equivalent to

aC2AX(v)k(v) ⊂ mk. This is true since similar statement for v′ holds and both

valuation ideals are m-primary or m′-primary. The proof is finished. �

2.6. Family of Kollár components.

Definition 2.32. Let B ⊂ (X ,D)
π
−→ B be an R-Gorenstein family of

klt singularities over a normal irreducible base B. A proper birational map

μ : Y → X is said to provide a flat family of Kollár components S over (X ,D)

centered at B if the following conditions hold.

• Y is normal, μ is an isomorphism over X \ B, and S = Exc(μ) is a

prime divisor on Y with μ(S) = B.

• π ◦ μ : Y → B is flat with normal connected fibers.

• S does not contain any fiber of π ◦ μ.

• −S is Q-Cartier and μ-ample.

• For any closed point b ∈ B, the pair (Yb,Sb + (μ−1
∗ D)|Yb

) is plt near

Sb. In other words, μb : Yb → Xb provides a Kollár component Sb

over b ∈ (Xb,Db).
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Suppose that B is normal reducible. We say that μ : Y → X provides a

flat family of Kollár components if for each irreducible component Bi of B,

the restriction μi : Y ×B Bi → X ×B Bi of μ over Bi provides a flat family of

Kollár components.

Proposition 2.33. Let B ⊂ (X ,D) → B be an R-Gorenstein family of klt

singularities over a normal base. Let μ : Y → X be a proper birational map

providing a flat family of Kollár components S over (X ,D) centered at B. Let

Γ be the different divisor of (Y ,S + μ−1
∗ D) along S. Then μ|S : (S,Γ) → B

is an R-Gorenstein family of log Fano pairs.

Theorem 2.34. Let B ⊂ (X ,D) → B be an R-Gorenstein family of klt

singularities over a normal base. Then there exist a positive real number δ,

a quasi-finite surjective morphism B′ → B from a normal scheme B′, and a

proper birational morphism Y ′ → X ′ which provides a flat family of Kollár

components S ′ over (X ′,D′) := (X ,D) ×B B′ centered at B′ satisfying the

following.

For any closed point b′ ∈ B′,

(1) v̂ol(X ′
b′
,D′

b′
),b′(S

′
b′) ≤ nn + 1, and

(2) S ′
b′ is a δ-Kollár component of b′ ∈ (Xb′ ,Db′).

Proof. First of all, we may assume that B is irreducible. By Noetherian

induction, it suffices to find an open immersion B′ →֒ B such that the state-

ment of the theorem holds. For simplicity, we assume that B is smooth. Let

η ∈ B be the generic point with residue field K := κ(η) = k(B). By Lemma

2.35, there exists a plt blow-up μη : Yη → Xη of η ∈ (Xη,Dη) with the Kollár

component Sη, such that

v̂ol(Xη,Dη),η(Sη) ≤ nn + 1.

Let fη : Zη → Yη be a log resolution of (Yη, μ
−1
η∗

Dη + Sη). We may extend

μη : Yη → Xη to a dense open subset B′ ⊂ B as a projective birational

morphism μ′ : Y ′ → X ′ where X ′ := X ×B B′, such that Y ′\S ′ → X ′\B′

is an isomorphism, the center of S ′ on X ′ is B′, and S ′ is Q-Cartier. Since

Yη is normal, by Lemma 2.36, possibly shrinking B′ to an open subset, we

may assume that the fiber Y ′
b′ is normal for any closed point b′ ∈ B′, and

Y ′ is normal, and that fη can be extended to a morphism f ′ : Z ′ → Y ′

between families, such that f ′ is a log resolution of (Y ′, μ′−1
∗ D′ + S ′). By

[Xu20, Definition-Lemma 2.8], possibly shrinking B′ and replacing B′ with a

finite étale covering, we may assume that f ′ is a fiberwise log resolution of

(Y ′, μ′−1
∗ D′ + S ′). In particular, (Y ′, μ′−1

∗ D′ + S ′) is plt near S ′. Moreover,

since both ampleness and flatness are open properties in a family, possibly

shrinking B′ to an open subset again, we may further assume that −S ′ is

ample over X ′, and S ′ is flat over B′. Hence Y ′ → X ′ provides a flat family

Licensed to Princeton Univ. Prepared on Tue Aug  8 00:45:14 EDT 2023 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ACC FOR LOCAL VOLUMES AND BOUNDEDNESS OF SINGULARITIES 541

of δ-Kollár components for some positive real number δ. By [LX20, Lemma

2.11], for any closed point b′ ∈ B′, volXb′ ,b
′(ordSb′

) = vol(S ′
b′ ,−S ′

b′ |S′
b′
). We

have A(X ′
b′
,D′

b′
)(S

′
b′) = A(Xη,Dη)(Sη) is a constant function of closed points

b′ ∈ B′. Since −S ′|S′ is ample over B′, by the invariance of the Hilbert

polynomial in the flat family S ′ → B′ (cf. [Har77, §3, Theorem 9.9]),

volX ′
b′
,b′(ordS′

b′
) = vol(S ′

b′ , (−S ′|S′)b′) = volXη,η(ordSη
)

is a constant function for any closed point b′ ∈ B′. Hence

v̂ol(X ′
b′
,D′

b′
),b′(ordS′

b′
) = v̂ol(Xη,Dη),η(Sη) ≤ nn + 1

for any closed point b′ ∈ B′. �

Lemma 2.35. Let (X,Δ) be an n-dimensional klt pair over a field K of

characteristic 0. Let x ∈ X be a K-rational point. Then v̂ol(x,X,Δ) ≤ nn.

Moreover, for any ǫ > 0 there exists a Kollár component S over x ∈ (X,Δ)

such that v̂ol(X,∆),x(ordS) ≤ v̂ol(x,X,Δ) + ǫ.

Proof. Let (R,m) := (OX,x,mX,x). Let K be the algebraic closure of K.

Denote by (xK ∈ (XK,ΔK)) := (x ∈ (X,Δ) ×K K. By Theorem 3.4, there

exists a unique v̂ol-minimizer vK ∈ ValX
K
,x

K
up to rescaling. Hence vK is

invariant under the action of Gal(K/K). In particular, there exists v ∈ ValX,x

such that vK is the natural extension of v, that is, am(vK) = am(v) ⊗K K. It

is clear that

v̂ol(x,X,Δ) ≤ v̂ol(X,∆),x(v) = v̂ol(X
K
,∆

K
),x

K
(vK) = v̂ol(xK, XK,ΔK).

On the other hand, for any m-primary ideal a ⊂ R we have lct(X,Δ; a) =

lct(XK,ΔK; aK) and e(a) = e(aK) where aK := a ×K K. Thus we have

v̂ol(x,X,Δ) ≥ v̂ol(xK, XK,ΔK) by Lemma 2.13. Thus by Theorem 2.12 we

have

v̂ol(x,X,Δ) = v̂ol(xK, XK,ΔK) ≤ nn.

For the second statement, we have lct(X,Δ; am(v))n·e(am(v))≤ v̂ol(x,X,Δ)+

ǫ for any m ≫ 1. Then by [Zhu21, Lemma 4.8], there exists a Kollár compo-

nent Sm over x ∈ (X,Δ) computing lct(X,Δ; am(v)). Therefore, for m ≫ 1

we have

v̂ol(X,∆),x(ordSm
) ≤ lct(X,Δ; am(v))n · e(am(v)) ≤ v̂ol(x,X,Δ) + ǫ,

where the first inequality follows from [Liu18b, Lemma 26]. �

Lemma 2.36 ([EGA, IV Proposition 11.3.13, Theorem 12.2.4]). Let

f : X → Y be a flat morphism between varieties. Then

{y ∈ Y | Xy is geometrically normal over κ(y)}

is open in Y . Moreover, if f is faithfully flat and all the fibers of f are normal,

then X is normal.
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Corollary 2.37. Assume that k is an algebraically closed subfield of C.

Let x ∈ (X,Δ) be a klt singularity over k. Denote (xC ∈ (XC,ΔC)) :=

(x ∈ (X,Δ)) ×k C. If (xC ∈ (XC,ΔC)) admits a δ-plt blow-up, then so does

x ∈ (X,Δ).

Proof. Let μC : YC → XC be the δ-plt blow up of xC ∈ (XC,ΔC). We can

find an intermediate subfield k ⊂ K ⊂ C such that K is a finitely generated

field extension of k, and μC is defined over K which we denote μK : YK → XK.

Let B be a smooth variety over k such that its function field k(B) is isomorphic

to K. Hence by similar arguments to the proof of Theorem 2.34, after possibly

shrinking B, there is a proper birational map μ : Y → X × B such that μ

provides a flat family of Kollár components S over (X × B,Δ × B) → B

centered at x×B, and restricting μ to the generic fiber over B yields μK. By

assumption, we know that (YK,SK +ΔK) is δ-plt. After further shrinking B

such that there exists a fiberwise log resolution of (Y ,S+μ−1
∗ Δ×B), we have

that (Yb,Sb + (μb)
−1
∗ Δb) is δ-plt for a general closed point b ∈ B. Thus the

proof is finished. �

3. Minimizing valuations for pairs with real coefficients

The purpose of this section is to generalize [Blu18a, Main Theorem] and

[Xu20, Theorems 1.2 and 1.3] to the setting of any R-Cartier R-divisor KX +

Δ. We remark that in [Xu20], one needs the existence of monotonic n-

complements [Bir19, Theorem 1.8], which only holds for Q-Cartier Q-divisors

KX +Δ in general (cf. [HLS19, Example 5.1]).

3.1. Existence and quasi-monomialness of a minimizing valua-

tion. A folklore principle is that we may recover properties of the R-Cartier

R-divisor KX+Δ from corresponding properties of some Q-Cartier Q-divisors

KX +Δ′ provided that those Δ′’s are very close to the given R-divisor Δ in

the rational envelope of Δ.

Here we will use Lemma 3.1 to construct desired Q-divisors Δ′’s. Lemma

3.1 is a special case of [HLS19, Theorem 5.6] and [Nak16, Theorem 1.6] which

could be regarded as a generalization of the conjecture on accumulation points

of log canonical thresholds due to Kollár [HMX14, Theorem 1.11]. We will

use it frequently in the rest of this section. Recall that we say V ⊆ Rm is the

rational envelope of a ∈ Rm if V is the smallest affine subspace containing a

which is defined over the rationals.

Lemma 3.1 ([HLS19, Theorem 5.6]). Fix a positive integer n and a point

a = (a1, . . . , am) ∈ Rm. Then there exist positive real numbers ti, and

rational points ai = (a1i , . . . , ami ) ∈ Qm in the rational envelope of a for
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1 ≤ i ≤ l depending only on n and a, such that
∑l

i=1 ti = 1,
∑l

i=1 tiai = a,

and the following holds.

Let x ∈ (X,Δ :=
∑m

j=1 ajΔj) be a klt singularity of dimension n and S any

Kollár component of x ∈ (X,Δ), such that Δj ≥ 0 is a Weil divisor for any

1 ≤ j ≤ m. Then SuppΔ(i) = SuppΔ, x ∈ (X,Δ(i)) is klt, and S is a Kollár

component of x ∈ (X,Δ(i)) for any 1 ≤ i ≤ l, where Δ(i) :=
∑m

j=1 a
j
iΔj.

Lemma 3.2 will be applied to generalize [Blu18a, Main Theorem] and [Xu20,

Theorem 1.2].

Lemma 3.2. Let x ∈ (X,Δ) be a klt singularity, and {Sj}
∞
j=1 a sequence of

Kollár components of x ∈ (X,Δ) such that limj→+∞ v̂ol(X,∆),x(ordSj
) ≤ nn.

Then possibly passing to a subsequence of {Sj}
∞
j=1, there exist a positive real

number a ∈ [ 12 , 1] and a Q-divisor Δ′ on X, such that

(1) SuppΔ = SuppΔ′ and x ∈ (X,Δ′) is klt,

(2) {Sj}
∞
j=1 is a sequence of Kollár components of x ∈ (X,Δ′),

(3) limj→+∞
A(X,∆′)(Sj)

A(X,∆)(Sj)
= a, and

(4) v̂ol(X,∆′),x(ordSj
) < nn + 1 for any j.

Proof. Possibly passing to a subsequence, we may assume that

v̂ol(X,∆),x(ordSj
) < nn + 1

for any j. We may write Δ =
∑m

i=1 aiΔi, where Δi are distinct prime divi-

sors. There exist real numbers r1, . . . , rc, and s1, . . . , sm Q-linear functions:

Rc+1 → R, such that 1, r1, . . . , rc are linearly independent over Q, and

ai = si(1, r1, . . . , rc) for any 1 ≤ i ≤ m.

Let

Δ(x1, . . . , xc) :=

m∑

i=1

si(1, x1, . . . , xc)Δi.

Let n = dimX, and t1, . . . , tl, a1, . . . , al constructed in Lemma 3.1 which

only depends on n and a = (a1, . . . , am). Note that

• {(s1(1, x1, . . . , xc), . . . , sm(1, x1, . . . , xc)) | x1, . . . , xc ∈ R} is the ra-

tional envelope of a,

• a1, . . . , al lie in the rational envelope of a, and

• a lies in the interior of the convex hull of a1, . . . , al.

Thus there exists a positive real number δ, such that SuppΔ = SuppΔ(x1,

. . . , xc), x ∈ (X,Δ(x1, . . . , xc)) is klt, and {Sj}
∞
j=1 is a sequence of Kollár

components of x ∈ (X,Δ(x1, . . . , xc)) for any xi satisfying |ri − xi| < δ.
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Let Di be Q-divisors such that KX + Δ = KX + D0 +
∑c

i=1 riDi. By

[HLS19, Lemma 5.3], KX +D0 and Di are Q-Cartier Q-divisors for any 1 ≤

i ≤ c. Since 1, r1, . . . , rc are linearly independent over Q, we may write

KX +Δ(x1, . . . , xc) = KX +D0 +
c∑

i=1

xiDi.

Write miDi = div(fi)− div(gi), for some mi ∈ Z>0 and fi, gi ∈ OX,x for any

1 ≤ i ≤ c. Denote miDi := div(fi) + div(gi). Possibly replacing δ with a

smaller positive real number, we may assume that

C2

c∑

i=1

|ri − xi|ordx(Di) ≤
1

2
,

for any xi which satisfies that |ri−xi| < δ, where C2 = C2(x ∈ (X,Δ)) is the

Izumi constant given by Lemma 2.14.

Since

A(X,∆(x1,...,xc))(Sj) = A(X,∆)(Sj) +
c∑

i=1

(ri − xi)ordSj
(Di)

for any j, possibly passing to a subsequence of {Sj}
∞
j=1, there exist r′1, . . . ,

r′c ∈ Q such that |ri− r′i| ≤ δ for any i, and A(X,∆′)(Sj) ≤ A(X,∆)(Sj) for any

j, where Δ′ := Δ(r′1, . . . , r
′
c). Thus

1 ≥
A(X,∆′)(Sj)

A(X,∆)(Sj)
=

A(X,∆)(Sj) + ordSj
(Δ−Δ′)

A(X,∆)(Sj)

≥ 1−

∑c
i=1 |(ri − r′i) · ordSj

(Di)|

A(X,∆)(Sj)

≥ 1−

∑c
i=1 |ri − r′i| · ordSj

(Di)

A(X,∆)(Sj)

≥ 1− C2

c∑

i=1

|ri − r′i| · ordx(Di) ≥
1

2
.

Hence possibly passing to a subsequence of {Sj}
∞
j=1, we may assume that there

exists a positive real number a ∈ [ 12 , 1], such that limj→+∞
A(X,∆′)(Sj)

A(X,∆)(Sj)
= a.

Then

lim
j→+∞

v̂ol(X,∆′),x(ordSj
)

= lim
j→+∞

(
A(X,∆′)(Sj)

A(X,∆)(Sj)

)n

v̂ol(X,∆),x(ordSj
) ≤ (an)n ≤ nn.

Therefore, possibly passing to a subsequence of {Sj}
∞
j=1, we have

v̂ol(X,∆′),x(ordSj
) < nn + 1

for any j. The proof is finished. �
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Next we prove the existence and quasi-monomialness of a minimizer of

v̂ol(X,∆),x.

Theorem 3.3 (cf. [Blu18a, Main Theorem], [Xu20, Theorem 1.2]). Let

x ∈ (X,Δ) be a klt singularity. Then

(1) there exists a minimizer of the function

v̂ol(X,∆),x : ValX,x → R>0

⋃
{+∞};

(2) any minimizer v∗ of the function v̂ol(X,∆),x is quasi-monomial.

Proof. We may assume that dimX ≥ 2.

(1) By Theorems 2.12 and 2.20, there exists a sequence of Kollár compo-

nents {Sj}
∞
j=1 of x ∈ (X,Δ), such that

(3.1) lim
j→+∞

v̂ol(X,∆),x(ordSj
) = inf

v∈ValX,x

v̂ol(X,∆),x(v) ≤ nn.

By Lemma 3.2, possibly passing to a subsequence of {Sj}
∞
j=1, there exist a

positive real number a ∈ [ 12 , 1] and a Q-divisor Δ′ on X which satisfy Lemma

3.2(1)–(4). Let v′j :=
1

A(X,∆′)(Sj)
ordSj

for any j. Since

v̂ol(X,∆′),x(v
′
j) = v̂ol(X,∆′),x(ordSj

) < nn + 1

for any j, by [Xu20, Lemma 3.4] and [LX20, Proposition 3.9], possibly passing

to a subsequence of {Sj}
∞
j=1, we may assume that v′∗ := limj→+∞ v′j exists.

We finish the proof following arguments of [Xu20, Remark 3.8]. Since

limj→+∞ v′j = v′∗, by [Xu20, Proposition 3.5], there exist a positive integer N

and a family of Cartier divisors D ⊂ X × V parametrized by a variety V of

finite type, such that for any closed point u ∈ V , x ∈ (X,Δ′ + 1
NDu) is lc

but not klt, and for any j, Sj is an lc place of x ∈ (X,Δ′ + 1
NDuj

) for some

closed point uj ∈ V . Replacing V by an irreducible closed subset, we can

further assume that the set {uj | j ∈ Z≥1} forms a dense set of closed points

on V . We may further resolve V to be smooth. By [Xu20, 2.13], possibly

shrinking V , passing to a subsequence of {Sj}
∞
j=1, and replacing V by a finite

étale covering, we can assume that (X × V,Δ′ × V + 1
ND) → V admits a

fiberwise log resolution μ : Y → (X × V,Δ′ × V + 1
ND) over V .

Let E be the simple normal crossing exceptional divisor of μ given by

the components which are the lc places of V ∈ (X × V,Δ′ × V + 1
ND).

By construction, there is a sequence of prime toroidal divisors {Tj}
∞
j=1 over

(Y,E), such that Sj is given by the restriction of Tj over uj . Fix a closed

point u ∈ V . Let Fj be the restriction of Tj over u for any j. Recall that

SuppΔ′ = SuppΔ, so μ is also a fiberwise log resolution of (X × V,Δ × V ).

Since A(X×V,∆′×V+( 1
N

−ǫ)D)(Tj) < 1, and V ∈ (X × V,Δ′ × V + ( 1
N − ǫ)D) is
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klt for some positive real number ǫ ≪ 1, by [Xu20, Theorem 2.18], we have

(3.2) v̂ol(X,∆),x(ordSj
) = v̂ol(X,∆),x(ordFj

) = v̂ol(X,∆),x(wj),

where wj :=
1

A(X,∆)(Fj)
(ordFj

).

Since Fj is a prime toroidal divisor over (Yu, Eu), where Eu and Yu are

the restrictions of E and Y over u respectively, the limit of wj is a quasi-

monomial valuation w, and A(X,∆)(w) = 1. By [BFJ14, Corollary D], the

function volX,x(v) of v is continuous on any given dual complex, which implies

that

(3.3) lim
j→+∞

v̂ol(X,∆),x(wj) = lim
j→+∞

volX,x(wj) = volX,x(w) = v̂ol(X,∆),x(w).

Combining (3.1), (3.2) and (3.3), we conclude that

inf
v∈ValX,x

v̂ol(X,∆),x(v) = lim
j→+∞

v̂ol(X,∆),x(ordSj
)

= lim
j→+∞

v̂ol(X,∆),x(ordFj
) = lim

j→+∞
v̂ol(X,∆),x(wj) = v̂ol(X,∆),x(w),

and we are done.

(2) From the proof of part (1), we know that there exists a quasi-monomial

minimizer w of the function v̂ol(X,∆),x. By Theorem 3.4, any minimizer v∗ is

a rescaling of w, hence is quasi-monomial. �

The uniqueness of v̂ol-minimizers up to rescaling was proved in [XZ21] for

Q-divisors Δ. Their proof can be easily generalized to R-divisors since the

lengths and multiplicities of ideal sequences are independent of the boundary

Δ, and the summation formula of multiplier ideals also works for R-divisors

(see [Tak06]). Thus we omit the proof here.

Theorem 3.4 (cf. [XZ21, Theorem 1.1]). Let x ∈ (X,Δ) be a klt singular-

ity. Then up to rescaling, there exists a unique minimizer v∗ of the functional

v̂ol(X,∆),x.

3.2. Constructibility of local volumes in families.

Theorem 3.5 (cf. [Xu20, Theorem 1.3]). Let n be a positive integer. Let

B ⊂ (X ,D) → B be an R-Gorenstein family of klt singularities of dimension

n over a normal base. The local volume function v̂ol(b,Xb,Db) of closed points

b ∈ B is constructible in the Zariski topology.

Proof. We may assume that n ≥ 2. By Theorem 2.12, for any closed point

b, v̂ol(b,Xb,Db) < C := nn + 1. We may write D =
∑m

j=1 ajDj , where Dj

are distinct prime divisors. Apply Lemma 3.1 to n and a := (a1, . . . , am),

and let t1, . . . , tl be positive real numbers, and ai = (a1i , . . . , a
m
i ) ∈ Qm

rational points given by it. Let D(i) =
∑m

j=1 a
j
iDj for any 1 ≤ i ≤ l. Then

D =
∑l

i=1 tiD
(i), and B ⊂ (X ,D(i)) → B is a Q-Gorenstein family of klt

singularities of dimension n for any 1 ≤ i ≤ l. Apply [Xu20, Proposition
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4.2] to C and B ⊂ (X ,D(i)) → B, there are a finite type B-scheme V (i), a

family of effective Cartier divisors (G(i) ⊂ X ×B V (i)) → V (i), and a positive

integer Ni such that the following statement holds: for any Kollár component

Sb over b ∈ (Xb,D
(i)
b ) with v̂ol

b,(Xb,D
(i)
b

)
(ordSb

) ≤ C, there exists a closed

point u ∈ V (i) ×B {b} such that if we base change (Xb,D
(i)
b ) and Sb to u,

then Su is an lc place of the log canonical pair (Xu,D
(i)
b + 1

Ni
G
(i)
u ). Possibly

stratifying the base V (i) into a disjoint union of finitely many constructible

subsets and taking finite étale coverings, we may assume that there exists a

decomposition V (i) =
⊔

α V
(i)
α into irreducible smooth strata V

(i)
α such that

for each α,
(
X ×B V

(i)
α , Supp (D(i) ×B V

(i)
α + 1

Ni
G(i))

)
admits a fiberwise log

resolution μ
(i)
α : Y

(i)
α → X ×B V

(i)
α over V

(i)
α .

Let E
(i)
α be the simple normal crossing exceptional divisor of μ

(i)
α given

by the components F , such that A
(X×BV

(i)
α ,D(i)×BV

(i)
α + 1

Ni
G(i))

(F) = 0, and

the center of F on X ×B V
(i)
α is the section V

(i)
α . By Noetherian induction,

possibly shrinking B, we may assume that each V
(i)
α → B is surjective.

Since D =
∑l

i=1 tiD
(i), for any closed point b and any Kollár component

Sb over b ∈ (Xb,Db) with v̂olb,(Xb,Db)(ordSb
) ≤ C, there exists i, such that

v̂ol
b,(Xb,D

(i)
b

)
(ordSb

) ≤ C. [Xu20, Proposition 4.2] implies that there is a closed

point u ∈ {b}×B V
(i)
α such that (Xu,D

(i)
u + 1

Ni
G
(i)
u ) is lc and Su is an lc place

of the pair, where (Xu,D
(i)
u ) and Su are the base change of (Xb,D

(i)
b ) and Sb

over u. By the construction of Y
(i)
α , there is a prime toroidal divisor T

(i)
α over

(Y
(i)
α , E

(i)
α ) for some α, such that Su is given by the restriction of T

(i)
α over u.

For any prime toroidal divisor T (i) over (Y
(i)
α , E

(i)
α ), there exists a positive

real number ǫ ≪ 1, such that V
(i)
α ∈ (X ×B V

(i)
α ,D(i) ×B V

(i)
α + ( 1

Ni
− ǫ)G(i))

is klt, and

A
(X×BV

(i)
α ,D(i)×BV

(i)
α +( 1

Ni
−ǫ)G(i))

(T (i)) < 1.

Thus by [Xu20, Theorem 2.18], volXu,u(ordT (i)
u

) is a constant function for

closed points u ∈ V
(i)
α . Moreover, μ

(i)
α : Y

(i)
α → X ×B V

(i)
α is a fiberwise log

resolution of (X ×B V
(i)
α , Supp (D×B V

(i)
α )) as SuppD(i) = SuppD. It follows

that A(Xu,Du)(ordT (i)
u

) is also a constant function for closed points u ∈ V
(i)
α .

We conclude that v̂ol(Xu,Du),u(ordT (i)
u

) is a constant function for closed points

u ∈ V
(i)
α . Hence for each α and i, there exists a positive real number ν

(i)
α ,

such that

ν(i)α = inf
T (i)

{
v̂ol(Xu,Du),u(ordT (i)

u
)

∣∣∣∣∣
T (i) is a prime toroidal

divisor over (Y
(i)
α , E

(i)
α )

}
,

for any closed point u ∈ V
(i)
α .
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Recall that each V
(i)
α → B is surjective. By Theorem 2.20, for any closed

point b ∈ B, we have

v̂ol(b,Xb,Db) = inf
Sb

{
v̂ol(Xb,Db),b(ordSb

) ≤ nn+1

∣∣∣∣
Sb is a Kollár component

of b ∈ (Xb,Db)

}

≥ min
i,α

{ν(i)α } ≥ v̂ol(b,Xb,Db).

Hence v̂ol(b,Xb,Db) = mini,α{ν
(i)
α } for any closed point b ∈ B, which implies

that v̂ol(b,Xb,Db) is a constructible function of b ∈ B in the Zariski topology.

�

4. Log canonical thresholds and local volumes

In this section, we investigate the relation between lct(X,Δ;Δ) and

v̂ol(x,X,Δ) for a klt singularity x ∈ (X,Δ) where Δ is R-Cartier. The main

goal of this section is to prove Theorem 4.1.

Theorem 4.1. Let n be a positive integer, and B ⊂ X → B a Q-

Gorenstein family of n-dimensional klt singularities. Then there exists a pos-

itive real number c that depends only on n and B ⊂ X → B satisfying the

following.

Let x ∈ (X,Δ) be an n-dimensional klt singularity such that (x ∈ Xan) ∈

(B ⊂ X an → B). Then

c · lct(X,Δ;Δ) ≥ v̂ol(x,X,Δ).

We remark that Jiang studied lower bound of log canonical thresholds

lct(X,Δ;Δ) in the setting of Fano fibrations [Jia18, Conjecture 1.13, Theorem

5.1], see also [CDHJS21, Theorem 3.4, Conjecture 3.6].

Proposition 4.2 is crucial in the proof of Theorem 4.1.

Proposition 4.2. Let n ≥ 2 be a positive integer, and x ∈ (X,Δ) an

n-dimensional klt Q-Gorenstein singularity. Let m ⊂ OX,x be the maximal

ideal. Let C2 = C2(x,X) be the Izumi constant of the klt singularity x ∈ X

(see Lemma 2.14). Then for any effective Cartier divisor D passing through

x, we have

c · lct(X,Δ;D) ≥ v̂ol(x,X,Δ),

where c = n2n+1

(n−1)n−1 e(m)C2ordxD.

Proof. Possibly shrinking X near x, we may assume that X = Spec(R)

and D = div(f) where f ∈ m. Let c0 := lct(X,Δ;D). Let v ∈ ValX,x
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be the minimizing valuation of v̂olX,x. Consider the m-primary ideal as,t :=

(fs)+at(v), where s, t ∈ Z>0. By the subadditivity of log canonical thresholds

(Proposition 2.5), we have

(4.1) lct(X,Δ; as,t) ≤ lct(X,Δ; (fs)) + lct(X,Δ; at(v)) ≤
c0
s

+
A(X,∆)(v)

v(at(v))
.

Moreover, we know that

ℓ(R/as,t)=ℓ(R/at(v))−ℓ((fs)/(fs)∩at(v))=ℓ(R/at(v))−ℓ(R/(at(v) : (f
s))).

Since v is a valuation, we have (at(v) : (f
s)) = at−v(f)s(v) for any t ≥ v(f)s.

Hence

ℓ(R/as,t) = ℓ(R/at(v))− ℓ(R/at−v(f)s(v)).

Let s := ⌊ (n−1)c0
A(X,∆)(v)

· t⌋ for t ≫ 1. Then as t → ∞ we have

n! · ℓ(R/as,t) = n! · ℓ(R/at(v))− n! · ℓ(R/at−v(f)s(v))

= volX,x(v) · (t
n − (max{t− v(f)s, 0})n) +O(tn−1)

≤ volX,x(v) · nv(f)st
n−1 +O(tn−1).

Thus by Lemma 2.13, we have

v̂ol(x,X,Δ) ≤ lim inf
t→+∞

e(as,t) · lct(X,Δ; as,t)
n

≤ lim inf
t→+∞

e(m) · n!ℓ(R/as,t) · lct(X,Δ; as,t)
n

≤ lim inf
t→+∞

e(m) · volX,x(v)nv(f)st
n−1 ·

(
c0
s

+
A(X,∆)(v)

v(at(v))

)n

= e(m) · volX,x(v)nv(f) lim
t→+∞

stn−1 ·

(
c0
s

+
A(X,∆)(v)

t

)n

= e(m) · volX,x(v)nv(f) ·
nn

(n− 1)n−1
A(X,∆)(v)

n−1 · c0,

where the second line follows from Lech’s inequality [Lec60, Theorem 3], and

the fourth line follows from [Blu18a, Lemma 3.5].

By Izumi’s inequality (Lemma 2.14), there exists a positive real number

C2 independent on f such that v(f) ≤ C2AX(v)ordx(f). Hence

v̂ol(x,X,Δ) ≤
nn+1

(n− 1)n−1
e(m)C2ordx(f) · v̂olX,x(v) · c0

≤
n2n+1

(n− 1)n−1
e(m)C2ordx(f) · c0.

Here the second inequality follows from v̂olX,x(v) = v̂ol(x,X) ≤ nn by Theo-

rem 2.12. �
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We also need the following kind of approximation of R-divisors by Q-

divisors.

Lemma 4.3. Let ǫ be a positive real number, and Δ ≥ 0 an R-Cartier

R-divisor on a normal variety X. Then there exists a Q-Cartier Q-divisor

Δ′ ≥ 0, such that (1 + ǫ)Δ ≥ Δ′ ≥ (1− ǫ)Δ.

Proof. There exist positive real numbers r1, . . . , rc, Q-linear functions s1,

. . . , sm: Rc+1 → R, and distinct prime divisors Δi, such that 1, r1, . . . , rc
are linearly independent over Q, and Δ = Δ(r1, . . . , rc), where

Δ(x1, . . . , xc) =

m∑

i=1

si(1, x1, . . . , xc)Δi.

By [HLS19, Lemma 5.3], Δ(x1, . . . , xc) is R-Cartier for any x1, . . . , xc ∈ R.

It follows that there exist positive rational numbers r′1, . . . , r′c, such that

(1 + ǫ)Δ ≥ Δ′ ≥ (1− ǫ)Δ, where Δ′ = Δ(r′1, . . . , r
′
c). �

Proof of Theorem 4.1. If n = 1, then we may take c = 1. Thus we may

assume that n ≥ 2. Fix any ǫ ∈ (0, 1). By Lemma 4.3, there exists an effective

Q-Cartier Q-divisor Δ′, such that (X,Δ′) is klt, and Δ′ ≥ (1 − ǫ)Δ. Let N

be a positive integer such that NΔ′ is Cartier near x. By Proposition 2.4,

ordx(NΔ′) < Nn. By Proposition 4.2,

v̂ol(x,X,Δ) ≤
n2n+1

(n− 1)n−1
e(m)C2ordx(NΔ′) · lct(X,Δ;NΔ′)

≤
n2n+2

(n− 1)n−1
e(m)C2 · lct(X,Δ;Δ′)

≤
n2n+2e(m)C2

(1− ǫ)(n− 1)n−1
· lct(X,Δ;Δ).

Here we choose C2 which depends on B ⊂ X → B as in Lemma 2.31(2).

By the upper semicontinuity of Hilbert-Samuel function along a family of

ideals (see for example [BL21, Proposition 41]) and the fact that the comple-

tion preserves the multiplicity e(m), there exists a positive integer M which

only depends on B ⊂ X → B such that e(m) ≤ M . Let ǫ → 0, we see that

the theorem holds with c = n2n+2

(n−1)n−1MC2. �

5. Lipschitz continuity of local volumes

We will prove some Lipschitz-type estimates for the normalized volume as

a function of the coefficients in this section. The main result is the following

uniform Lipschitz-type estimate when the ambient space x ∈ X analytically

belongs to a Q-Gorenstein bounded family.
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Theorem 5.1. Let n be a positive integer, and η, γ positive real numbers.

Let B ⊂ X → B be a Q-Gorenstein family of n-dimensional klt singularities.

Then there exist positive real numbers ι, C depending only on n, η, γ and the

family B ⊂ X → B, such that the following holds.

Let x ∈ (X,Δ =
∑m

i=1 aiΔi) be a klt singularity, such that

(1) (x ∈ Xan) ∈ (B ⊂ X an → B),

(2) ai > η for any i,

(3) each Δi ≥ 0 is a Q-Cartier Weil divisor, and

(4) lct(X,Δ;Δ) > γ.

Then for any −ai ≤ ti ≤ ι, i = 1, 2, . . . , m,

|v̂ol(x,X,Δ)− v̂ol(x,X,Δ(t))| ≤ C
m∑

i=1

|ti|,

where t := (t1, . . . , tm), and Δ(t) :=
∑m

i=1(ai + ti)Δi.

Lemma 5.2. Let n, η, γ, B ⊂ X → B, x ∈ (X,Δ) be as in Theorem

5.1. Let V be a positive real number. Then there exists a positive real number

C depending only on n, η, γ, V and the family B ⊂ X → B satisfying the

following.

Let v ∈ ValX,x be a valuation such that v̂ol(X,∆),x(v) < V . Then for any

−ai ≤ ti ≤ 0, i = 1, 2, . . . , m,

0 ≤ v̂ol(X,∆(t)),x(v)− v̂ol(X,∆),x(v) ≤ C
m∑

i=1

|ti|,

where t := (t1, . . . , tm), and Δ(t) :=
∑m

i=1(ai + ti)Δi.

Proof. By [K+92, 18.22], m ≤ n
η . By Lemma 2.16, we have A(X,∆)(v) ≥(

γ
1+γ

)
AX(v). Let C2 be the positive real number given by Lemma 2.31,

which depends only on n and the family B ⊂ X → B. By Proposition 2.4,

we have

(5.1) v(Δi) ≤ C2AX(v)ordxΔi ≤
nC2

η
AX(v) ≤

nC2(1 + γ)

ηγ
A(X,∆)(v),

for any 1 ≤ i ≤ m. By (5.1), we get

0 ≤ v̂ol(X,∆(t)),x(v)− v̂ol(X,∆),x(v) =

((
A(X,∆(t))(v)

A(X,∆)(v)

)n

− 1

)
v̂ol(X,∆),x(v)

<

((
1+

∑m
i=1 |ti|v(Δi)

A(X,∆)(v)

)n

−1

)
V ≤

((
1+

m∑

i=1

|ti| ·
nC2(1 + γ)

ηγ

)n

−1

)
V

≤

m∑

i=1

|ti| ·
nC2(1 + γ)

ηγ
· n

(
1 +

n2C2(1 + γ)

η2γ

)n−1

V,
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where the last inequality follows from the inequalities (1 + xy)n − 1 ≤

nxy(1 + xy)n−1 ≤ nxy(1 + n
η y)

n−1 for any n
η ≥ x ≥ 0, y ≥ 0, and

∑m
i=1 |ti| ≤

∑m
i=1 ai ≤ m ≤ n

η . Now C := n2C2(1+γ)
ηγ (1 + n2C2(1+γ)

η2γ )n−1V

depends only on n, η, γ, V and the family B ⊂ X → B, hence we are

done. �

Proof of Theorem 5.1. Possibly replacing γ by min{γ, 1}, we may assume

that 0 < γ ≤ 1. Since lct(X,Δ;Δ) > γ, we have that x ∈ (X, (1 + γ)Δ) is

klt. This implies that

lct(X, (1 + γ
2 )Δ; (1 + γ

2 )Δ) > γ
3

because (1 + γ
2 ) +

γ
3 (1 + γ

2 ) ≤ 1 + γ. Since ai +
γη
2 ≤ (1 + γ

2 )ai, we have

Δ(ι) ≤ (1+ γ
2 )Δ where ι := γη

2 and ι = (ι, . . . , ι). Let t+i := max{ti, 0}, t
−
i :=

min{ti, 0} for any 1 ≤ i ≤ m, and t+ := (t+1 , . . . , t
+
m), t− := (t−1 , . . . , t

−
m).

Let v+ be a minimizer of v̂ol(x,X,Δ(t+)). Since Δ(t+) ≤ Δ(ι) ≤ (1 + γ
2 )Δ,

we have lct(X,Δ(t+);Δ(t+)) > γ
3 . By Lemma 5.2,

|v̂ol(x,X,Δ)− v̂ol(x,X,Δ(t))|

≤ |v̂ol(x,X,Δ)− v̂ol(x,X,Δ(t+))|+ |v̂ol(x,X,Δ(t+))− v̂ol(x,X,Δ(t))|

≤ (v̂ol(X,∆),x(v
+)− v̂ol(X,∆(t+)),x(v

+))

+ (v̂ol(X,∆(t)),x(v
+)− v̂ol(X,∆(t+)),x(v

+)) ≤ C

m∑

i=1

|ti|,

where C is the positive real number given in Lemma 5.2 which only depends

on n, η, γ
3 , n

n, and the family B ⊂ X → B. �

The next result is a Lipschitz-type inequality for v̂ol(x,X,Δ), when x ∈ X

is fixed and the boundary Δ varies in its rational envelope. Lemma 5.3 will be

applied to prove Theorem 1.5. We remark that we do not assume that x ∈ X

is Q-Gorenstein.

Lemma 5.3. Let x ∈ (X,Δ :=
∑m

i=1 aiΔi) be a klt singularity of dimen-

sion n, where Δi are distinct prime divisors. Let V ⊆ Rm be the rational

envelope of a = (a1, . . . , am) ∈ Rm. Then there exist a positive real num-

ber C and a neighborhood U ⊆ V of a, such that x ∈ (X,Δ(a′)) is a klt

singularity, and

|v̂ol(x,X,Δ)− v̂ol(x,X,Δ(a′))| ≤ C
m∑

i=1

|ai − a′i|

for any a′ := (a′1, . . . , a
′
m) ∈ U , where Δ(a′) :=

∑m
i=1 a

′
iΔi. In particular,

v̂ol(x,X,Δ(a′)) is continuous at a′ in V .
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Proof. There exist real numbers r1, . . . , rc, and Q-linear functions s1, . . . ,

sm: Rc+1 → R, such that 1, r1, . . . , rc are linearly independent over Q, and

ai = si(1, r1, . . . , rc) for any 1 ≤ i ≤ m. Let Di be Q-divisors such that

KX +Δ = KX +D0 +
∑c

i=1 riDi. By [HLS19, Lemma 5.3], KX +D0 and Di

are Q-Cartier Q-divisors for any 1 ≤ i ≤ c.

There exists a positive integer N , such that NDi is Cartier for any 1 ≤ i ≤

c. For any 1 ≤ i ≤ c, possibly replacing ri with
ri
N and Di with NDi, we may

assume that Di is Cartier. Write Di = div(fi)− div(gi), where fi, gi ∈ OX,x

for any 1 ≤ i ≤ c. Let Δ′(t) := D0 +
∑c

i=1(ri + ti)Di, where t = (t1, . . . ,

tc) ∈ Rc. There exists a positive real number ι ≤ 1, such that x ∈ (X,Δ′(t))

is a klt singularity for any t = (t1, . . . , tc) ∈ Rc satisfying
∑c

i=1 |ti| ≤ ι.

It suffices to show that there exist positive real numbers C ′ and ι′ ≤ ι, such

that

|v̂ol(x,X,Δ)− v̂ol(x,X,Δ′(t))| ≤ C ′
c∑

i=1

|ti|,

for any t = (t1, . . . , tc) ∈ Rc which satisfies that
∑c

i=1 |ti| ≤ ι′.

Let C2 > 0 be the Izumi constant of the singularity x ∈ (X,Δ) given by

Lemma 2.14, and M a positive real number such that

C2max{ordx(fi), ordx(gi)} ≤ M

for any 1 ≤ i ≤ c. Then we have

|v(Di)| ≤ C2AX,∆(v)max{ordx(fi), ordx(gi)} ≤ MAX,∆(v),

for any 1 ≤ i ≤ c and any v ∈ ValX,x.

Let v be a minimizer of v̂ol(x,X,Δ). For any t = (t1, . . . , tc) ∈ Rc which

satisfies that
∑c

i=1 |ti| ≤ ι, we have

v̂ol(x,X,Δ′(t))− v̂ol(x,X,Δ) ≤ v̂ol(X,∆′(t)),x(v)− v̂ol(X,∆),x(v)

=

(
(
A(X,∆′(t))(v)

A(X,∆)(v)
)n − 1

)
v̂ol(X,∆),x(v)

≤

(
(

∑c
i=1 |ti| · |v(Di)|

A(X,∆)(v)
+ 1)n − 1

)
nn

≤

(
(M

c∑

i=1

|ti|+ 1)n − 1

)
nn ≤ M(1 +M)n−1nn+1

c∑

i=1

|ti|,

where the last inequality follows from the inequality (xy + 1)n − 1 ≤

nxy(1 + xy)n−1 ≤ nxy(1 + y)n−1 for any 1 ≥ x ≥ 0 and any y ≥ 0.
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For any t = (t1, . . . , tc) ∈ Rc which satisfies that
∑c

i=1 |ti| ≤ min{ 1
2nM , ι},

let v∗ be a minimizer of v̂ol(x,X,Δ′(t)). We have

v̂ol(x,X,Δ′(t))− v̂ol(x,X,Δ) ≥ v̂ol(X,∆′(t)),x(v∗)− v̂ol(X,∆),x(v∗)

=

(
1− (

A(X,∆)(v∗)

A(X,∆′(t)(v∗)
)n

)
v̂ol(X,∆′(t)),x(v∗)

≥

(
1− (

A(X,∆)(v∗)

A(X,∆)(v∗)−
∑c

i=1 |ti| · |v∗(Di)|
)n

)
nn

≥

(
1− (

1

1−M
∑c

i=1 |ti|
)n

)
nn ≥ −2Mnn+1

c∑

i=1

|ti|,

where the last inequality follows from inequalities 1
(1−t)n ≤ 1

1−nt and

(1 − nt)(1 + 2nt) ≥ 1 for any 0 ≤ t ≤ 1
2n . Thus ι′ := min{ι, 1

2nM } and

C ′ := 2M(1 +M)n−1nn+1 have the required property. �

6. Local volumes of truncated singularities

6.1. Truncations preserve local volumes. In this section, we show

that the local volume stays the same after taking a k-th truncation of the

boundary divisor when k is sufficiently large. In the general context of this

paper, we often consider analytically bounded families. Thus we make Defi-

nition 6.1 which we use throughout this section.

Definition 6.1. Let (x ∈ X) and (x′ ∈ X ′) be klt singularities which

are analytically isomorphic to each other. Denote (R,m) := (OX,x,mX,x),

and (R′,m′) := (OX′,x′ ,mX′,x′). Let ψ : R̂
∼=
−→ R̂′ be the ring isomorphism.

Let k be a positive integer. Fix a k-linear basis ḡ′1, . . . , ḡ
′
d of R′/m′k. Let

g′j ∈ R′ be a lifting of ḡ′j . For an effective Cartier divisor D = div(f) on X,

we define its k-th analytic truncation D′k := div(f ′
k) on X ′ where f ′

k is the

k-linear combination of g′j such that ψ(f) − f ′
k ∈ m̂′

k
. If Δ =

∑
i aiΔi is a

non-negative R-linear combination of effective Cartier divisors Δi, then we say

that x′ ∈ (X ′,Δ′k :=
∑

i aiΔ
′k
i ) is a k-th analytic truncation of x ∈ (X,Δ).

Note that in Definition 6.1, a k-th analytic truncation depends on the

choice of many data, such as the basis ḡ′j , its lifting g′j , and the expression

Δ =
∑

i aiΔi. Thus analytic truncations are highly non-unique. In this

section, we aim to show that if k ≫ 1 then any k-th analytic truncation of

a given klt singularity has the same local volume and admits a δ-plt blow-up

for the same δ.
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The main result of this section is Theorem 6.2 which will be applied to

prove Theorem 1.2. We will also need Proposition 6.4 to prove Theorem 7.1,

and thus Theorem 1.7.

Theorem 6.2. Let n be a positive integer, η, γ positive real numbers, and

B ⊂ X → B a Q-Gorenstein family of n-dimensional klt singularities. Then

there exists a positive integer k2 depending only on n, η, γ and B ⊂ X → B

satisfying the following.

Let x ∈ (X,Δ =
∑m

i=1 aiΔi) be a klt singularity, such that

(1) (x ∈ Xan) ∈ (B ⊂ X an → B),

(2) ai ≥ η for any i,

(3) each Δi ≥ 0 is a Cartier divisor, and

(4) lct(X,Δ;Δ) > γ.

Then for any positive integer k ≥ k2, and any k-th analytic truncation x′ ∈

(X ′,Δ′k :=
∑m

i=1 aiΔ
′k
i ) of x ∈ (X,Δ),

v̂ol(x,X,Δ) = v̂ol(x′, X ′,Δ′k).

Moreover, v is a minimizer of v̂ol(x,X,Δ) if and only if v′ = φ(v) is a

minimizer of v̂ol(x′, X ′,Δ′k), where φ : Val◦X,x → Val◦X′,x′ is defined as in

Proposition 2.24.

We need some preparation to prove Theorem 6.2.

Lemma 6.3. Let n be a positive integer. Let x ∈ X be an n-dimensional

klt singularity. Let Δ =
∑m

i=1 aiΔi be a non-negative R-linear combination

of effective Cartier divisors Δi. Let x′ ∈ (X ′,Δ′k :=
∑m

i=1 aiΔ
′k
i ) be a k-th

analytic truncation of x ∈ (X,Δ). Then

(1) for any positive real number η ≤ min{ai | 1 ≤ i ≤ m}, and any

positive integer k, we have |lct(X ′; Δ′k)− lct(X; Δ)| ≤ n
kη , and

(2) if I ⊂ [0, 1] is a DCC set, ai ∈ I for any i, then there exists a positive

integer k0 depending only on n and I satisfying the following.

If x ∈ (X,Δ) is lc, then x′ ∈ (X ′,Δ′k) is also an lc singularity for

any k ≥ k0.

Proof. (1) Denote div(fi) = Δi and div(f ′
i,k) = Δ′k

i . Let bi := (fi)+mk

and b′i := (f ′
i,k) +m′k, where m,m′ are the maximal ideals of OX,x,OX′,x′ re-

spectively. By definition ψ(b̂i) = b̂′i where ψ is the isomorphism between
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complete local rings in Definition 6.1. By [dFEM11, Lemma 2.6 and Propo-

sition 2.19], we know that

0 ≤ lct(X;

m∏

i=1

b
ai

i )− lct(X; Δ) ≤
n

kη
,

0 ≤ lct(X ′;

m∏

i=1

b
′ai

i )− lct(X ′; Δ′k) ≤
n

kη
.

Since lct(X;
∏m

i=1 b
ai

i ) = lct(X ′;
∏m

i=1 b
′ai

i ) by [dFEM11, Proposition 2.11],

the above inequalities yield

|lct(X ′; Δ′k)− lct(X; Δ)| ≤
n

kη
.

(2) We may assume that 1 ∈ I. Set η := min I\{0}. On the one hand,

by the ACC of log canonical thresholds for analytically bounded singularities

[dFEM11, Theorem 1.1] (see also [HMX14]), there exists a positive integer

k0 = k0(n, I) depending only on n and I, such that for any positive integer

k ≥ k0, if lct(X
′; Δ′k) ≥ 1− n

k0η
, then x′ ∈ (X ′,Δ′k) is lc. On the other hand,

by (1),

lct(X ′; Δ′k) ≥ lct(X; Δ)−
n

kη
≥ 1−

n

k0η

for any positive integer k ≥ k0. Hence x′ ∈ (X ′,Δ′k) is lc for any positive

integer k ≥ k0 by our choice of k0. �

Proposition 6.4. Let n, η, γ, B ⊂ X → B, x ∈ (X,Δ) be as in Theorem

6.2. Let V be a positive real number.

Then there exists a positive integer k1 depending only on n, η, γ, V and

B ⊂ X → B satisfying the following.

Let v ∈ Val◦X,x be a valuation such that v̂ol(X,∆),x(v) ≤ V . Then for any

positive integer k ≥ k1,

• v(Δi) < kv(m) for any i, where m is the maximal ideal of OX,x, and

• v(Δi) = v′(Δ′k
i ), and v̂ol(X,∆),x(v) = v̂ol(X′,∆′k),x′(v′) for any i, and

any k-th analytic truncation x′ ∈ (X ′,Δ′k :=
∑m

i=1 aiΔ
′k
i ) of x ∈

(X,Δ), where v′ = φ(v), and φ : Val◦X,x → Val◦X′,x′ is defined as in

Proposition 2.24.

Moreover, if v′ = ordS′ is a divisorial valuation, and S′ is a δ-Kollár com-

ponent of x′ ∈ (X ′,Δ′k) for some positive real number δ, then S is also a

δ-Kollár component of x ∈ (X,Δ), where v = φ−1(v′) = ordS.

Proof. Let C1(B ⊂ X → B) be the positive constant defined as in Lemma

2.31. Let k1 := ⌈ V
ηC1

( 1+γ
γ )n⌉, and k ≥ k1 a positive integer. If there exists i
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such that v(Δi) ≥ kv(m), then by Lemmata 2.16 and 2.31, we get

v̂ol(X,∆),x(v) ≥

(
γ

1 + γ

)n

v̂olX,x(v)

≥

(
γ

1 + γ

)n

C1
AX(v)

v(m)
≥

(
γ

1 + γ

)n

C1
kAX(v)

v(Δi)

≥

(
γ

1 + γ

)n

C1 · klct(X; Δi) ≥

(
γ

1 + γ

)n

C1 · kη > V,

a contradiction. Thus v(Δi) < kv(m) for any i.

Let Δi = div(fi) and Δ′k
i = div(f ′

i,k). Then by Definition 6.1, hi :=

ψ(fi)− f ′
i,k ∈ m̂′

k
, where ψ is the isomorphism between complete local rings.

Since v̂(fi) = v(fi) < kv(m) = kv̂(m̂) for any i, we get

v′(f ′
i,k) = v̂′(f ′

i,k) = v̂(fi − ψ−1(hi)) = v̂(fi) = v(fi),

where v̂ and v̂′ are the unique extensions of v and v′ in Spec R̂ and Spec R̂′

respectively (see [JM12, Corollary 5.11] and the proof of Proposition 2.24).

By Lemma 2.9 and Proposition 2.24(1), A(X,∆)(v) = A(X′,∆′k)(v
′). By Propo-

sition 2.24(2), v̂ol(X,∆),x(v) = v̂ol(X′,∆′k),x′(v′).

Suppose that v′ = ordS′ is a divisorial valuation, and S′ is a δ-Kollár

component of x′ ∈ (X ′,Δ′k) for some positive real number δ. By Proposition

2.24(4), S is also a Kollár component of x ∈ X. Let μ′ : Y ′ → X ′ and

μ : Y → X be the corresponding plt blow-ups with Kollár components S′ and

S respectively. Let Γ and Γ′ be the different divisors of (Y, S) and (Y ′, S′) on

S and S′ respectively. Then by Proposition 2.24(4), we know that there is an

isomorphism ψS : S → S′ induced from taking graded algebra of ψ : R̂ → R̂′

such that Γ′ = (ψS)∗Γ.

Let ΔS and Δ′k
S′ be the different divisors of (Y, S + μ−1

∗ Δ) and (Y ′, S′ +

μ′−1
∗ Δ′k) on S and S′ respectively. Let mi := v(fi) = v′(f ′

i,k). Let f̄i and

f̄ ′
i,k be the images of fi and f ′

i,k in ami
(v)/ami+1(v) and ami

(v′)/ami+1(v
′)

respectively. Then we know that f̄i and f̄ ′
i,k define effective Q-Cartier Q-

divisors Δ̄i and Δ̄′k
i on S and S′ respectively, such that Δ̄i = (μ−1

∗ Δi)|S
and Δ̄′k

i = (μ′−1
∗ Δ′k

i )|S′ . It is clear that ΔS = Γ +
∑m

i=1 aiΔ̄i and Δ′k
S′ =

Γ′ +
∑m

i=1 aiΔ̄
′k
i . Since v̂′(ψ(fi)− fi,k) ≥ v̂′(m̂′

k
) > mi, we know that grvψ :

grvR
∼=
−→ grv′R′ maps f̄i to f̄ ′

i,k. In particular, we have (ψS)∗Δ̄i = Δ̄′k
i and

hence (ψS)∗ΔS = Δ′k
S′ , i.e. (S,ΔS) ∼= (S′,Δ′k

S′). Since (Y ′, S′ + μ′−1
∗ Δ′k)

is δ-plt near S′, we know that (S′,Δ′k
S ) is δ-klt and δ ≤ 1. It follows that

(S,ΔS) is also δ-klt. By the inversion of adjunction [BCHM10, Corollary

1.4.5], (Y, S + μ∗
−1Δ) is δ-plt near S. We conclude that S is a δ-Kollár

component of x ∈ (X,Δ). �
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Proof of Theorem 6.2. Let k0 := ⌈ 2n
ηγ ⌉. By Lemma 6.3,

lct(X ′; Δ′k) ≥ lct(X; Δ)−
n

kη
> 1 + γ −

n

kη
≥ 1 +

γ

2

for any positive integer k ≥ k0. Let k1 be the positive integer given by

Proposition 6.4 depending only on n, η, γ2 , V := nn and B ⊂ X → B, and

k2 := max{k0, k1}.

For any positive integer k ≥ k2, if v ∈ Val◦X,x satisfies that v̂ol(X,∆),x(v) ≤

nn, then by the construction of k2, v̂ol(X,∆),x(v) = v̂ol(X′,∆′k),x′(v′), where

v′ = φ(v). Recall that (x′ ∈ X ′an) ⊂ (B ⊂ X an → B), and x ∈ (X,Δ)

is a k-th analytic truncation of x′ ∈ (X ′,Δ′k). Similarly, if v′ ∈ Val◦X′,x′

satisfies that v̂ol(X′,∆′k),x′(v′) ≤ nn, then v̂ol(X′,∆′k),x′(v′) = v̂ol(X,∆),x(v),

where v = φ−1(v′).

Now the theorem follows from Theorem 2.12 and [Blu18b, Theorem A]. �

Proposition 6.5. Let n, γ,B ⊂ X → B be as in Theorem 6.2. Let I ⊂

[0, 1] be a finite set. Let η := min((I \ {0}) ∪ { 1
2}). Let k2 be the positive

integer from Theorem 6.2 depending only on n, η, γ and B ⊂ X → B. Let

k ≥ k2 be a positive integer.

Then there is an R-Gorenstein family of klt singularities over a (possibly

disconnected) smooth base T ⊂ (Y , E) → T depending only on n, I, γ, k and

B ⊂ X → B satisfying the following.

Let x ∈ (X,Δ =
∑m

i=1 aiΔi) be a klt singularity, such that

(1) (x ∈ Xan) ∈ (B ⊂ X an → B),

(2) ai ∈ I for any i, and

(3) each Δi ≥ 0 is a Cartier divisor.

(4) lct(X,Δ;Δ) > γ.

Then there exists a closed point t ∈ T such that t ∈ (Yt, Et) is a k-th analytic

truncation of x ∈ (X,Δ).

Proof. By [K+92, 18.22], m is bounded from above. It suffices to show the

proposition for any fixed positive integer m.

By Noetherian induction and Grothendieck’s generic freeness theorem, pos-

sibly shrinking B, we may assume that B = Spec(A) and OX ,B/I
k
B is a free

A-module with a basis ḡ1, . . . , ḡd for some gi ∈ OX ,B , where IB is the ideal

sheaf of B ⊂ X .

Possibly replacing I with I ∪ {0}, we may assume that 0 ∈ I. Denote

by Im ⊂ Rm the m-th Cartesian power of I. Let L := |Im| < +∞, and

Im = {a1, . . . , aL}, where |I| is the cardinality of I. Set U := Adm
A \{0},

where Adm
A = SpecA[x1, . . . , xdm]. For each 1 ≤ l ≤ L, let E(l) → U be

the space, such that for any closed point u = (u11, . . . , u1m, . . . , ud1, . . . ,

udm) ∈ U , the fiber E
(l)
u parametrizes the divisor

∑m
j=1 ajlEj,u ⊂ (X ×B U)u,
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where al = (a1l, . . . , aml) ∈ Im, and Ej,u := (
∑d

i=1 uijgi = 0) for any

1 ≤ j ≤ m. Thus we get a family U ⊂ (X ×B U, E(l)) → U . By construction,

there exist a closed point u ∈ U and a positive integer l, such that u ∈

((X ×B U)u, E
(l)
u ) is a k-th analytic truncation of x ∈ (X,Δ). By Theorem

6.2 we have v̂ol(u, (X ×B U)u, E
(l)
u ) = v̂ol(x,X,Δ) > 0, which implies that

u ∈ ((X ×B U)u, E
(l)
u ) is a klt singularity.

By Lemma 2.30, for each l, possibly stratifying the base U into a disjoint

union of finitely many constructible subsets, we can assume that there exists

a decomposition U = ⊔α∈J1,l
Uα

⊔
⊔α∈J2,l

Uα into irreducible smooth strata

Uα, such that Uα ⊂ (X ×B Uα, E
(l)) → Uα is an R-Gorenstein family of

klt singularities over a smooth base Uα for any α ∈ J1,l and u′ ∈ ((X ×B

Uα)u′ , E
(l)
u′ ) is not klt for any α ∈ J2,l and any closed point u′ ∈ Uα. Since

u ∈ ((X ×BU)u, E
(l)
u ) is klt, we know that u ∈ Uα for some l and α ∈ J1,l. Let

T :=
⊔

l,α∈J1,l
Uα, and (Y , E) → T be the pullback of

⊔
l

(
(X ×B U, E(l)) → U

)

by T → UL. Then T ⊂ (Y , E) → T is an R-Gorestein family of klt singularities

over a smooth base. Let t ∈ T be the unique preimage of u under the injective

map T → U , then by construction t ∈ (Yt, Et) is isomorphic to u ∈ ((X ×B

U)u, E
(l)
u ). Thus t ∈ (Yt, Et) is a k-th analytic truncation of x ∈ (X,Δ). �

6.2. Singularities with analytic boundary.

Definition 6.6. Let x ∈ X be a normal Q-Gorenstein singularity. Denote

(R,m) := (OX,x,mX,x). Let x̂ ∈ X̂ := Spec R̂ be the completion of x ∈ X.

Let D :=
∑m

i=1 aiDi be a non-negative R-combination (i.e. ai ∈ R≥0) of

effective Cartier divisors Di on X̂. We say that x̂ ∈ (X̂,D) is a Q-Gorenstein

singularity with analytic R-boundary. We use [dFEM11, Section 2] to define

klt and lc of such a singularity x̂ ∈ (X̂,D).

Definition 6.7. Let x̂ ∈ (X̂,D) be an n-dimensional Q-Gorenstein sin-

gularity with analytic R-boundary that is klt. Denote by ι : X̂ → X the

completion morphism.

(1) For a valuation v ∈ Val◦X,x, we define the log discrepancy, volume, and

normalized volume of v̂ (defined as in Proposition 2.24) with respect

to x̂ ∈ (X̂,D) as

A(X̂,D)(v̂) := AX(v)− v̂(D), volX̂,x̂(v̂) := volX,x(v),

v̂ol(X̂,D),x̂(v̂) := A(X̂,D)(v̂)
n · volX̂,x̂(v̂).

We define the local volume of x̂ ∈ (X̂,D) as

v̂ol(x̂, X̂,D) := inf
v∈Val◦

X,x

v̂ol(X̂,D),x̂(v̂).
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(2) We say that a projective birational map μ̂ : Ŷ → X̂ provides a Kollár

component Ŝ over x̂ ∈ (X̂,D) if there exists a plt blow-up μ : Y → X

over x ∈ X and a Cartesian diagram

Ŝ Ŷ X̂

S Y X

ιS∼=

μ̂

ιY ι

μ

such that (Ŝ, Γ̂ + (μ̂−1
∗ D)|Ŝ) is klt in the sense of [dFEM11, Section

2], where Γ is the different divisor of S in Y and Γ̂ := ι∗SΓ.

We note that Definition 6.7 only depends on the analytic isomorphism

class of x ∈ X due to the equivalence of valuations of finite log discrepancy

and Kollár components over analytic isomorphic singularities (see Proposition

2.24).

Definition 6.8. Let x̂ ∈ (X̂,D) be a Q-Gorenstein singularity with ana-

lytic R-boundary. Assume that D =
∑m

i=1 aiDi where ai ∈ R>0 and Di =

div(hi) with hi ∈ R̂ for each 1 ≤ i ≤ m. Let k be a positive integer. Fix

a k-linear basis ḡ1, . . . , ḡd of R/mk. Let gj ∈ R be a lifting of ḡj . We de-

fine the k-th analytic truncation D
k of D on X as D

k :=
∑m

i=1 aiD
k
i where

Dk
i = div(hi,k) and hi,k ∈ R is the k-linear combination of gj such that

hi − hi,k ∈ m̂k. We also set Dk = 0 when D = 0.

Theorem 6.9. Let x̂ ∈ (X̂,D) be a Q-Gorenstein singularity with analytic

R-boundary that is klt. Then we have

(1) v̂ol(x̂, X̂,D) = v̂ol(x,X,Dk) for k ≫ 1 where Dk is a k-th analytic

truncation of D on X.

(2) v̂ol(x̂, X̂,D) = inf Ŝ v̂ol(X̂,D),x̂(ordŜ) where Ŝ runs over all Kollár

components over x̂ ∈ (X̂,D).

Proof. If D = 0, then the statements follow from Theorem 2.20 and Propo-

sition 2.24. So we may assume that D �= 0. Choose η, γ ∈ R>0 such that

lct(X̂,D;D)≥γ and ai≥η for any i. Let V :=nn + 1. Then by similar argu-

ments as in the proof of Proposition 6.4, there exists k1=k1(n, η, γ, V, x∈X) ∈

Z>0 such that for any positive integer k ≥ k1 and any valuation v ∈ Val◦X,x

satisfying v̂ol(X̂,D),x̂(v̂) ≤ V , we have

(6.1)

v̂(Di) < kv(m), v̂(Di) = v(Dk
i ), and v̂ol(X̂,D),x̂(v̂) = v̂ol(X,Dk),x(v).

By Definition 6.7 and Theorem 2.12, we have that

v̂ol(x̂, X̂,D) ≤ v̂ol(x,X) ≤ nn and v̂ol(x,X,Dk) ≤ nn.
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Since V > nn, by (6.1) we have that v̂ol(x̂, X̂,D) = v̂ol(x,X,Dk) for any

k ≫ 1. This proves part (1).

Next we prove part (2). Fix an arbitrary ǫ ∈ (0, 1). Let k ≥ k1 be a

positive integer where k1 is chosen as before. By Theorem 2.20 and part (1),

there exists a Kollár component S over x ∈ (X,Dk) such that

(6.2) v̂ol(X,Dk),x(ordS) ≤ v̂ol(x,X,Dk) + ǫ = v̂ol(x̂, X̂,D) + ǫ < V.

Let Ŝ be the pullback of S under τ : X̂ → X as a Kollár component over

x̂ ∈ X̂. Let μ : Y → X (resp. μ̂ : Ŷ → X̂) be the plt blow-up providing S

(resp. Ŝ). By similar arguments to the proof of Proposition 6.4 and (6.1), we

know that

(6.3) ordS(D
k) = ordŜ(D) < kordS(m) and (μ̂−1

∗ D)|Ŝ = (μ̂−1
∗ D̂k)|Ŝ.

Thus we have (Ŝ, Γ̂ + (μ̂−1
∗ D)|Ŝ)

∼= (S,Γ + (μ−1
∗ Dk)|S) is klt. This implies

that Ŝ is a Kollár component over x̂ ∈ (X̂,D). Hence by (6.3) we have

A(X̂,D)(ordŜ) = AX̂(ordŜ)− ordŜ(D) = AX(ordS)− ordS(D
k)

= A(X,Dk)(ordS).

Since the volumes of ordS and ordŜ are the same by Proposition 2.24, the

inequality (6.2) implies that

v̂ol(X̂,D),x̂(ordŜ) = v̂ol(X,Dk),x(ordS) ≤ v̂ol(x̂, X̂,D) + ǫ.

Thus the proof of part (2) is finished as ǫ can be arbitrarily small. �

7. Proofs of main results

7.1. Existence of δ-plt blow-ups. In this subsection, we will prove The-

orems 1.7 and 1.5.

Theorem 7.1. Let n ≥ 2 be a positive integer, η, ǫ positive real numbers,

and B ⊂ X → B a Q-Gorenstein family of n-dimensional klt singularities.

Then there exists a positive real number δ depending only on n, η, γ and B ⊂

X → B satisfying the following.

If x ∈ (X,Δ =
∑m

i=1 aiΔi) is an n-dimensional klt singularity such that

(1) (x ∈ Xan) ∈ (B ⊂ X an → B),

(2) ai > η for any i,

(3) each Δi ≥ 0 is a Q-Cartier Weil divisor, and

(4) lct(X,Δ;Δ) > γ,

then x ∈ (X,Δ) admits a δ-plt blow-up.
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Proof. Let l := ⌈ 2+γ
γη ⌉, Δ+ :=

∑m
i=1

⌈lai⌉
l Δi. Then Δ+ ≥ Δ, (1+ γ

2 )·
⌈lai⌉

l ≤

(1 + γ)ai for any i, and lct(X,Δ+; Δ+) > γ
2 .

Since for any positive real number δ, any δ-plt blow-up of x ∈ (X,Δ+)

is also a δ-plt blow-up of x ∈ (X,Δ), possibly replacing (X,Δ) by (X,Δ+),

and γ by γ
2 , we may assume that any coefficient ai of Δ belongs to the finite

rational set I = 1
lZ ∩ [0, 1].

By Theorem 2.34 and Proposition 6.4, there exists a positive real number

δ0 which only depends on n, η, ǫ and B ⊂ X → B, such that x ∈ X admits

a δ0-plt blow-up. By [dFEM11, Theorem 1.2], there exists a positive real

number ǫ0 which only depends on B ⊂ X → B, such that x ∈ X is ǫ0-lc.

Thus by [HLS19, Theorem 1.6], for each i, the Cartier index of Δi near x is

bounded from above by a positive integer N which only depends on n, η, γ

and B ⊂ X → B. Therefore, possibly replacing Δi with NΔi and I with 1
N I,

we may assume that each Δi is Cartier.

Let k1 be the positive integer given in Proposition 6.4 depending only on

n, η, γ, V := nn + 1 and B ⊂ X → B. Let k2 be the positive integer given

in Theorem 6.2 depending only on n, η, γ and B ⊂ X → B. Choose k :=

max{k1, k2}. It suffices to show that there exist a k-th analytic truncation

x′ ∈ (X ′,Δ′k) of x ∈ (X,Δ) and a δ-Kollár component S′ of x′ ∈ (X ′,Δ′k)

such that v̂ol(X′,∆′k),x′(ordS′) ≤ nn + 1, for some positive real number δ

depending only on n, η, γ and B ⊂ X → B.

By Proposition 6.5, there is an R-Gorenstein family of klt singularities

over a smooth base T ⊂ (Y , E) → T , such that t ∈ (Yt, Et) is a k-th analytic

truncation of x ∈ (X,Δ) for some closed point t ∈ T . Now the theorem

follows from Theorem 2.34. �

Proof of Theorem 1.7. This follows from Theorems 4.1 and 7.1. �

If the coefficients of Δ belong to a finite set, then we may relax the as-

sumption “each Δi is a Q-Cartier Weil divisor” in Theorem 1.7 to “each Δi

is a Weil divisor”, as stated in Conjecture 1.6.

Theorem 7.2. Let n ≥ 2 be a positive integer, ǫ a positive real number,

I a finite set, and B ⊂ X → B a Q-Gorenstein family of n-dimensional klt

singularities. Then there exists a positive real number δ depending only on

n, ǫ, I and B ⊂ X → B satisfying the following.

If x ∈ (X,Δ =
∑m

i=1 aiΔi) is an n-dimensional klt singularity such that

(1) (x ∈ Xan) ∈ (B ⊂ X an → B),

(2) ai ∈ I for any i,

(3) each Δi ≥ 0 is a Weil divisor, and

(4) v̂ol(x,X,Δ) > ǫ,

then x ∈ (X,Δ) admits a δ-plt blow-up.

Licensed to Princeton Univ. Prepared on Tue Aug  8 00:45:14 EDT 2023 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ACC FOR LOCAL VOLUMES AND BOUNDEDNESS OF SINGULARITIES 563

Proof. Suppose I = {c1, . . . , c|I|} where ci < cj for any i < j. Since each

ai is the same as cj for some 1 ≤ j ≤ |I|, we may write Δ =
∑|I|

j=1 cjΔ
′
j where

Δ′
j ≥ 0 is a Weil divisor. By Lemma 3.1, there exist positive real numbers ti,

rational points ai = (a1i , . . . , a
|I|
i ) ∈ Q|I| for 1 ≤ i ≤ l depending only on n

and c := (c1, . . . , c|I|), such that Δ =
∑l

i=1 tiΔ(i), where Δ(i) :=
∑|I|

j=1 a
j
iΔ

′
j

is a Q-Cartier Q-divisor for any i. Let N be a positive integer such that Naji
is a positive integer for any i, j. Since NΔ(i) is a Q-Cartier Weil divisor for

any i, and Δ =
∑l

i=1
ti
N (NΔ(i)), Theorem 7.2 follows from Theorem 1.7 as

{ ti
N }1≤i≤l has a positive lower bound. �

Proof of Corollary 1.9. This follows from Theorem 1.7 and [HLS19, Theo-

rem 1.3]. �

Example 7.3 shows that both Theorems 7.1 and 1.7 no longer hold without

assuming the positive lower bound of the non-zero coefficients of the boundary.

Example 7.3. Let k > 2 be a positive integer and ǫ ∈ Q ∩ [1/4, 1/2).

Consider the klt singularity o ∈ (A2, Dk := (1 − ǫ)( 1
k−1 + 1

k )Ck), where o is

the origin and Ck := (xk−1 = yk). Let Ek ⊂ Yk
μk
−−→ A2 be the weighted

blow-up of o ∈ A2 with weight (k, k− 1). Let Δk := DiffEk
((μk)

−1
∗ Dk). Then

A(A2,Dk)(Ek) = (2k − 1)ǫ, and by adjunction formula, we have

Δk =

(
1−

1

k − 1

)
p+

(
1−

1

k

)
q + (1− ǫ)

(
1

k − 1
+

1

k

)
r,

where p and q are the singularities of Yk along Ek and r is a smooth point.

So we get α(Ek,Δk) = k−1ǫ−1( 1k + 1
k−1)

−1 = k−1
ǫ(2k−1) ≥ 1 for k ≫ 1. Hence

o ∈ (A2, Dk) is weakly exceptional, see for example, [Pro00, Theorem 4.3].

In particular, Ek is the unique Kollár component of 0 ∈ (A2, Dk). Thus for

k ≫ 1 we have

v̂ol(o,A2, Dk) = v̂ol(A2,Dk),o(ordEk
)

=A(A2,Dk)(Ek)
2 · volA2,o(ordEk

) =
ǫ2(2k − 1)2

k(k − 1)
>

1

4
.

However, for any given positive real number δ, there exists a positive integer

k, such that 0 ∈ (A2, Dk) does not admit a δ-plt blow-up as the total log

discrepancy of (Ek,Δk) is
1
k → 0.

The goal of the rest of this subsection is to prove Theorem 1.5, that is, the

converse direction of Conjecture 1.6. It is a consequence of Birkar–Borisov–

Alexeev–Borisov Theorem, and an inequality involving the local volume and

the δ-invariant (see Proposition 7.5). We will not need this result in the rest

of this paper.

The δ-invariant of a Q-Fano variety is introduced in [FO18, Theorem 0.3],

and is further studied by many people. We refer readers to [Blu18b] for the
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definition of the δ-invariant for log Fano pairs. Recall the following charac-

terization of K-semistability in terms of the δ-invariant.

Theorem 7.4 ([Blu18b, Theorem D],[FO18, Theorem 0.3], [BJ20, Theo-

rem B]). Let (X,Δ) be a log Fano pair, where Δ is a Q-divisor. Then (X,Δ)

is K-semistable if and only if δ(X,Δ) ≥ 1.

Proposition 7.5. Let x ∈ (X,Δ) be an n-dimensional klt singularity,

where Δ is a Q-divisor. Let μ : (Y, S) → (X, x) be a plt blow-up of (X,Δ),

and S the corresponding Kollár component of x ∈ (X,Δ). Let ΔY := μ−1
∗ Δ,

and KS +ΔS := (KY +ΔY + S)|S. Then

v̂ol(x,X,Δ) ≥ v̂ol(X,∆),x(ordS) ·min{1, δ(S,ΔS)}
n.

Proof. If (S,ΔS) is K-semistable, then by Theorem 2.21, ordS is the min-

imizer of v̂ol(x,X,Δ). Thus v̂ol(x,X,Δ) = v̂ol(X,∆),x(ordS).

Otherwise, (S,ΔS) is not K-semistable. By Theorem 7.4, δ(S,ΔS) < 1. It

suffices to show that for any positive real number β < δ(S,ΔS),

v̂ol(x,X,Δ) ≥ v̂ol(X,∆),x(ordS) · β
n.

By [BL18, Theorem 7.2], there exists an effective Q-divisor

DS ∼Q −(KS +ΔS),

such that (S,ΔS + (1 − β)DS) is K-semistable and (S,ΔS + DS) is klt.

By [HLS19, Lemma 7.1], there exists an effective Q-divisor

DY ∼Q −(KY +ΔY + S),

such that DY |S = DS . By inversion of adjunction [BCHM10, Corollary 1.4.5],

(Y,ΔY +DY + S) is plt near S. Let D := μ∗DY . Then A(X,∆+D)(ordS) = 0

which implies that A(X,∆+(1−β)D)(ordS) = βA(X,∆)(ordS). By Theorem 2.21,

ordS is the minimizer of v̂ol(x,X,Δ+ (1− β)D). Thus

v̂ol(x,X,Δ) ≥ v̂ol(x,X,Δ+ (1− β)D)

= βnA(X,∆)(ordS)
nvolX,x(ordS) = βnv̂ol(X,∆),x(ordS),

and we are done. �

Proof of Theorem 1.5. We first show the theorem for the case when Δ is a

Q-divisor.

Let μ : (Y, S + μ−1
∗ Δ) → (X,Δ) be the δ-plt blow-up. By the adjunction

formula (see e.g. [K+92, (17.2.2)]), (S,ΔS) is δ-klt, where ΔS := DiffS(μ
−1
∗ Δ).

Then by Birkar–Borisov–Alexeev–Borisov Theorem [Bir21, Theorem 1.1], S

belongs to a bounded family.

Let L := (−S)|S. By [HLS19, Proposition 4.4], there exists a positive

integer M = M(δ, ǫ1, n) which only depends on δ, ǫ1 and n, such that ML is

a Cartier divisor on S.
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Now by Proposition 7.5, we know that

v̂ol(x,X,Δ) ≥ v̂ol(X,∆),x(ordS) ·min{1, δ(S,ΔS)}
n.

By [LX20, Lemma 2.7], we have

v̂ol(X,∆),x(ordS) = A(X,∆)(ordS)
n · Ln−1 ≥ ǫn1M

1−n(ML)n−1 ≥ ǫn1M
1−n.

Thus it is enough to give a positive lower bound of δ(S,ΔS). By [Blu18b, The-

orem C] (see also [BJ20, Theorem A]), δ(S,ΔS) ≥ α(S,ΔS), where α(S,ΔS)

is Tian’s α-invariant. Since (S,ΔS) is a δ-klt log Fano pair, [Bir21, Theorem

1.4] implies that there exists a positive real number t = t(δ, n) which only

depends on δ and n, such that α(S,ΔS) ≥ t. Therefore,

v̂ol(x,X,Δ) ≥ ǫn1M
1−ntn.

For the general case, let M ′ := M( δ2 ,
ǫ1
2 , n), t

′ := t( δ2 , n), and ǫ any positive

real number such that ǫ < ( ǫ12 )
nM ′1−nt′n. By Lemma 5.3, there exists a Q-

divisor Δ′, such that x ∈ (X,Δ′) admits a δ
2 -plt blow-up, mld(X,Δ′) ≥ ǫ1

2 ,

and

v̂ol(x,X,Δ) ≥ v̂ol(x,X,Δ′)−
(( ǫ1

2

)n

M ′1−nt′n − ǫ
)
≥ ǫ.

Therefore the theorem is proved. �

7.2. Boundedness of Cartier indices in a family. In this section, we

will show Theorem 1.10.

Theorem 7.6. Let B ⊂ (X ,D) → B be an R-Gorenstein family of klt

singularities, then there exists a positive integer N such that for any closed

point b ∈ B, if D is a Q-Cartier Weil divisor near b ∈ Xb, then ND is Cartier

near b ∈ Xb.

Proof. Possibly shrinking B and replacing it by a finite étale covering, we

may assume that B ⊂ (X ,D) → B admits a fiberwise log resolution. Thus

there exists a positive real number ǫ0, such that b ∈ (Xb,Db) is ǫ0-lc. Now

Theorem follows from Theorem 2.34 and [HLS19, Theorem 1.6]. �

Remark 7.7. Theorem 7.6 could also be proved by Theorem 2.15.

Proof of Theorem 1.10. Let (X ′,Δ′) → (X,Δ) be a small Q-factorializa-

tion, KX′ + B′ the pullback of KX + B, and D′ the pullback of D. By

[Bir18, Theorem 1.2], (X ′,Δ′) belongs to a bounded family. Since X ′ → X is

a blow-up, there exists a Q-divisor H ′ ≥ 0 on X ′, such that −H ′ is ample over

X. In particular, KX′ +Δ′ +H ′ is antiample over X. Possibly rescaling H ′,

we may assume that (X ′,Δ′+H ′) is klt. Then X ′ → X is a (KX′ +Δ′+H ′)-

negative contraction of an extremal face of the Mori-Kleiman cone of X ′.

Hence the Cartier index of D′ and D are the same by the cone theorem. Thus

possibly replacing (X,Δ) with (X ′, 0), we may assume that X is Q-factorial,

and Δ = 0.
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Let X → B be the bounded family. Possibly shrinking B, using Noetherian

induction and replacing X with its normalization, by [HX15, Proposition 2.4]

and generic flatness, we may assume that X is normal, X → B is flat, and

(X , 0) is klt.

Consider the following diagram:

X

id

��
✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

id

��❚❚
❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

σ

��❍
❍

❍

❍

❍

❍

❍

❍

❍

X ×B X ��

p

��

X

π

��

X �� B

where σ(X ) is a section of p : X ×B X → X . We remark that σ(X ) ⊂

X ×BX → X is a Q-Gorestein family of klt singularities according to Remark

2.26.

Since (X ×B X )x ∼= Xπ(x) = X for any closed point x ∈ X ⊂ X , D

is a Q-Cartier Weil divisor on (X ×B X )x. By Theorem 7.6, there exists a

positive integer N which only depends on P, such that ND is Cartier near

x ∈ (X ×B X )x ∼= X for any closed point x ∈ X. Hence ND is Cartier. �

7.3. Discreteness and ACC for local volumes.

Proof of Theorem 1.2(1). We may assume that n ≥ 2. It suffices to prove

that for any positive real number ǫ, the set

Vǫ :=

⎧
⎪⎨
⎪⎩
v̂ol(x,X,Δ)

∣∣∣∣∣∣∣

(x ∈ Xan) ∈ (B ⊂ X an → B), Δ =
∑m

i=1 aiΔi,

where ai ∈ I, each Δi ≥ 0 is a Q-Cartier

Weil divisor, and v̂ol(x,X,Δ) > ǫ

⎫
⎪⎬
⎪⎭

is finite. By Theorem 1.7 and [HLS19, Theorem 1.6], there exists a positive

integer N which only depends on n, I, ǫ, and B ⊂ X → B, such that NΔi is

Cartier near x for any i. Possibly replacing I with 1
N I, we may assume that

each Δi is Cartier. By Theorems 4.1 and 6.2, there exists a positive integer

k depending only on n, I, ǫ and B ⊂ X → B, such that if v̂ol(x,X,Δ) ∈ Vǫ,

then

v̂ol(x,X,Δ) = v̂ol(x′, X ′,Δ′k),

for any k-th analytic truncation of x ∈ (X,Δ). By Proposition 6.5 and The-

orem 3.5, v̂ol(x,X,Δk) belongs to a finite set. �

Proof of Theorem 1.2(2). We may assume that n ≥ 2. Assume to the

contrary that there exists a sequence of klt singularities xj ∈ (Xj ,Δ
(j) =∑mj

i=1 a
(j)
i Δ

(j)
i ), such that a

(j)
i ∈ I, (xj ∈ Xan

j ) ∈ (B ⊂ X an → B), and

the sequence of normalized volumes {V (j) := v̂ol(xj , Xj ,Δ
(j))}∞j=1 is strictly
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increasing. In particular, there exists ǫ > 0 such that v̂ol(xj , Xj ,Δ
(j)) > ǫ for

all j.

By Theorem 4.1, possibly shrinking Xj near xj , there exists a positive

real number γ which only depends on n,B ⊂ X → B and ǫ
2 such that

lct(Xj ,Δ
(j); Δ(j)) > γ. By [K+92, 18.22], possibly passing to a subsequence,

we may assume that mj = m for any j, and {a
(j)
i }∞j=1 is increasing for each

1 ≤ i ≤ m. Set ai := limj→+∞ a
(j)
i ≤ 1 for each 1 ≤ i ≤ m. By Theorem 5.1,

possibly passing to a subsequence, we may assume that v̂ol(xj , Xj ,Δ
′(j)) >

ǫ/2, where Δ′(j) :=
∑m

i=1 aiΔ
(j)
i . In particular, xj ∈ (Xj ,Δ

′(j)) is klt. Since

I ′ := {a1, . . . , am} is a finite set, by Theorem 1.2(1), v̂ol(xj , Xj ,Δ
′(j)) belongs

to a finite set. Possibly passing to a subsequence, we may assume that there

exists a positive real number V > ǫ
2 , such that v̂ol(xj , Xj ,Δ

′(j)) = V for any

j.

By Theorem 4.1, we have lct(Xj ,Δ
′(j); Δ′(j)) > γ. By Theorem 5.1 again,

there exists a positive real number C which only depends on n, I ′, γ and

B ⊂ X → B, such that

V ≤ V (j) ≤ V + C

m∑

i=1

|a
(j)
i − ai|.

Let j → +∞, we derive a contradiction as we assume that {V (j)}∞j=1 is strictly

increasing. �

If the coefficients of Δ belong to a finite set, then we may relax the assump-

tion “each Δi ≥ 0 is a Q-Cartier Weil divisor” in Theorem 1.2(1) to “each

Δi ≥ 0 is a Weil divisor”, as stated in Conjecture 1.1.

Theorem 7.8. Let n be a positive integer and let I ⊂ [0, 1] be a finite set.

Let B ⊂ X → B be a Q-Gorenstein family of n-dimensional klt singularities.

The set of local volumes

VolB⊂X→B,I :=

⎧
⎪⎪⎨
⎪⎪⎩
v̂ol(x,X,Δ)

∣∣∣∣∣∣∣∣

(x ∈ Xan) ∈ (B ⊂ X an → B),

Δ =
∑m

i=1 aiΔi, where ai ∈ I,

each Δi ≥ 0 is a Weil divisor,

and x ∈ (X,Δ) is klt

⎫
⎪⎪⎬
⎪⎪⎭

has no non-zero accumulation point.

Proof. We may assume that n ≥ 2. By Lemma 3.1, there exist positive

real numbers ti, rational points ai = (a1i , . . . , a
m
i ) ∈ Qm depending only on n

and a := (a1, . . . , am), such that Δ =
∑l

i=1 tiΔ(i), where Δ(i) :=
∑m

j=1 a
j
iΔj

is a Q-Cartier Q-divisor for any i. Let N be a positive integer such that Naji
is a positive integer for any i, j. Since NΔ(i) is a Weil divisor for any i, and

Δ =
∑l

i=1
ti
N (NΔ(i)), Theorem 7.8 follows from Theorem 1.2(1). �

The following result is a direct consequence of Theorem 1.2.
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Corollary 7.9. Let n be a positive integer and let I ⊂ [0, 1] be a subset.

Consider the set of local volumes

Volsmn,I :=

⎧
⎨
⎩v̂ol(x,X,Δ)

∣∣∣∣∣∣

x ∈ X is n-dimensional smooth, x ∈ (X,Δ) is

klt, where Δ =
∑m

i=1 aiΔi, ai ∈ I for any i,

and each Δi ≥ 0 is a Weil divisor

⎫
⎬
⎭ .

(1) If I is finite, then Volsmn,I has no non-zero accumulation point.

(2) If I satisfies the DCC, then Volsmn,I satisfies the ACC.

7.4. Case of surfaces. In this subsection, we will prove Theorem 1.3 and

Theorem 1.8(1).

Lemma 7.10. Let ǫ be a positive real number. There exists a finite set

of surface klt singularities {(xi ∈ Xi)}i depending only on ǫ satisfying the

following.

For any klt surface singularity x ∈ X such that v̂ol(x,X,Δ) > ǫ, (x ∈ X)

is analytically isomorphic to (xi ∈ Xi) for some i.

Proof. It is well-known that (x ∈ X) is analytically isomorphic to a klt

surface singularity (x′ ∈ X ′) which is a quotient of 0 ∈ A2 by a finite group G

containing no pseudo-reflections, see for example, [KM98, Proposition 4.18].

By Proposition 2.24(3), v̂ol(x′, X ′) = v̂ol(x,X) > ǫ.

Let (y ∈ Y ) := (0 ∈ A2). There exists a finite Galois morphism f :

(y ∈ Y ) → (x′ ∈ X ′), such that KY = f∗KX′ , and deg f = |G|. By Theorem

2.15 and Theorem 2.12,

ǫ < v̂ol(x′, X ′) =
1

|G|
v̂ol(y, Y ) ≤

4

|G|
,

which implies that |G| < 4
ǫ .

It is well-known that any finite subgroup of PGL2(k) is isomorphic to

Z/r,Dr (the dihedral group), A4, S4 or A5, and there is only one conju-

gacy class for each of these groups (see e.g. [Kle93]). As G ∈ GL2(k) and

|G| < 4
ǫ , G is isomorphic to Z/r,Dr, A4, S4 or A5 up to a scaling of a ⌊ 4

ǫ ⌋!-th

unit root, and there is only one conjugacy class for each of these groups. Thus

the isomorphism class of (x′ ∈ X ′) belongs to a finite set only depending on

ǫ, and we are done. �

Proof of Theorem 1.3. This follows from Lemma 7.10 and Theorem 1.2.

�

Proof of Theorem 1.8(1). This follows from Lemma 7.10 and Theorem 1.7.

�

7.5. 3-Dimensional terminal singularities. In this subsection, we

prove Theorems 1.4 and 1.8(2). First of all, by [BL21, Proposition 14] and

Corollary 2.37 since local volumes and the existence of δ-plt blow-ups are

preserved under algebraically closed field extension and restriction, we may
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assume that the base field k = C in this subsection. Our approach here is

largely based on the classification of 3-dimensional terminal singularities by

Mori [Mor85] as explained by Reid [Rei87] (see also [KM98, Chapter 5.3]).

We first give the following useful lemma on 3-dimensional Gorenstein ter-

minal singularities.

Lemma 7.11 ([Mor85]). Let z ∈ Z be a 3-dimensional Gorenstein terminal

singularity. Then there exists a formal power series f(z2, z3, z4) such that

ÔZ,z
∼= C�z1, z2, z3, z4�/(z

2
1 + f(z2, z3, z4)).

Theorem 7.12 and Table 1 summarize the classification of 3-dimensional

terminal singularities from [Mor85] and [Rei87, Section 6]. Here µr is the

multiplicative group of r-th roots of unity.

Theorem 7.12 ([Mor85]). Let x ∈ X be a 3-dimensional terminal singu-

larity. Let r be the Gorenstein index of x ∈ X. Assume that r ≥ 2. Then

x ∈ X is isomorphic to the µr-quotient of a 3-dimensional Gorenstein ter-

minal singularity z ∈ Z as the index 1 cover of x ∈ X. Moreover, there

exist local analytic coordinates (x1, x2, x3, x4) with a diagonal µr-action and

a µr-semi-invariant formal power series φ(x1, x2, x3, x4) such that ÔZ,z is

µr-equivariantly isomorphic to C�x1, x2, x3, x4�/(φ). For a list of types of the

µr-action and φ, see Table 1.

Table 1. 3-dimensional terminal singularities (cf. [Rei87, p. 391])

Type r µr-action φ

(I) any 1
r (a,−a, 1, 0; 0) x1x2 + g(xr

3, x4)

(II) 4 1
4 (3, 1, 1, 2; 2) x2

1 + g(x2, x3, x4)

(III) 3 1
3 (0, 2, 1, 1; 0) x2

1 + x3
2 + x2g(x3, x4) + h(x3, x4)

(IV) 2 1
2 (1, 0, 1, 1; 0) x2

1 + g(x2, x3, x4)

In Table 1, 1
r (a1, a2, a3, a4; b) means that the generator ζ = e2πi/r of µr acts

on the coordinates (x1, x2, x3, x4) and the formal power series φ as (xi;φ) �→

(ζaixi; ζ
bφ).

Let z ∈ Z be a 3-dimensional Gorenstein terminal singularity. Let R :=

OZ,z, and m the maximal ideal of R. We denote by ẑ ∈ Ẑ = Spec ÔZ,z the

completion of z ∈ Z. Then by Lemma 7.11 we know that

R̂ ∼= C�z1, z2, z3, z4�/(z
2
1 + f(z2, z3, z4)).
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Denote by τ : Ẑ → Ẑ the involution given by (z1, z2, z3, z4) �→ (−z1, z2, z3, z4).

A valuation v ∈ Val◦Z,z is called τ -invariant if v = φτ (v) where φτ : Val◦Z,z →

Val◦Z,z is the involution induced by τ according to Proposition 2.24. Let D :=

(f(z2, z3, z4) = 0) be an effective Cartier divisor on Â3 = SpecC�z2, z3, z4�.

Hence by taking quotient of the µ2-action on Ẑ induced by τ , we obtain a

finite crepant Galois morphism π : Ẑ → (Â3, 12D) given by (z1, z2, z3, z4) �→

(z2, z3, z4).

Lemma 7.13. With the above notation, there is a 1-to-1 correspondence

between τ -invariant Kollár components S over z ∈ Z and Kollár components

S̄ over 0 ∈ (Â3, 12D). Moreover, we have v̂olZ,z(ordS) = 2v̂ol
(Â3, 12D),0

(ordS̄).

Proof. This is a straightforward consequence of Proposition 2.18. To be

more precise, if S ⊂ Y → Z is a τ -invariant Kollár component over z ∈ Z, we

may take a formal neighborhood Ŝ ⊂ Ŷ of S ⊂ Y where µ2 acts. Then taking

the µ2-quotient of (Ŷ , Ŝ) provides a Kollár component S̄ over 0 ∈ (Â3, 1
2D).

Conversely, if S̄ ⊂ Ȳ → Â3 is a Kollár component over 0 ∈ (Â3, 12D), by

taking Cartesian product we obtain Ŝ ⊂ Ŷ := Ȳ ×
Â3 Ẑ, and Ŝ is a Kollár

component over ẑ ∈ Ẑ by the Kollár-Shokurov connectedness theorem as in

[LX20, Proof of Lemma 2.13]. The equality on normalized volumes follows

from similar arguments as in [LX20, Proof of Lemma 2.13]. �

Lemma 7.14. With the above notation, we have

v̂ol(z, Z) = inf
S

v̂olZ,z(ordS)

where S runs over all τ -invariant Kollár components over z ∈ Z.

Proof. By Theorem 3.4, there exists a unique valuation v∗ ∈ ValZ,z up to

scaling that minimizes v̂olZ,z . Since AZ(φτ (v∗))=AZ(v∗) and v̂olZ,z(φτ (v∗))=

v̂olZ,z(v∗) by Proposition 2.24, we have φτ (v∗) = v∗ by Theorem 3.4. Let

am := am(v∗) be valuation ideals of v∗ for m ∈ Z>0. By [Liu18b, Proof of

Theorem 27], we know that

lim
m→∞

lct(Z; am)3 · e(am) = v̂olZ,z(v∗) = v̂ol(z, Z).

Let âm be the completion of am in R̂. Hence âm is τ -invariant since φτ (v∗) =

v∗. By the µ2-equivariant version of Lemma 2.19 (see e.g. [Zhu21, Lemma

4.8]), there exists a τ -invariant Kollár component Sm over z ∈ Z computing

lct(Z; am). Thus the proof of Theorem 2.20 implies that

lim
m→∞

v̂olZ,z(ordSm
) = v̂ol(z, Z).

The proof is finished. �

Proof of Theorem 1.4. Let ǫ > 0 be a positive real number. Then it suffices

to show that Volterm3 ∩ (ǫ, 27] is a finite set. For any 3-dimensional terminal
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singularity (x ∈ X) of Gorenstein index r, we may take its index 1 cover

(z ∈ Z), and Theorem 2.15 implies that

v̂ol(z, Z) = r · v̂ol(x,X).

If v̂ol(x,X) ≥ ǫ, then we know that r ≤ 27
ǫ . Hence it suffices to show that the

following set

Vǫ :=

{
v̂ol(z, Z)

∣∣∣∣∣
z ∈ Z is 3-dimensional Gorenstein terminal

and v̂ol(z, Z) > ǫ

}

is finite. In the rest of the proof, we will denote z ∈ Z a 3-dimensional

Gorenstein terminal singularity satisfying v̂ol(z, Z) > ǫ. Denote (R,m) :=

(OZ,z,mZ,z). Let ẑ ∈ Ẑ = Spec R̂ be the completion of z ∈ Z. By Lemma

7.11 we know that R̂ ∼= C�z1, z2, z3, z4�/(z
2
1 + f(z2, z3, z4)). Thus there exists

a crepant double cover

π : (ẑ ∈ Ẑ) → (0 ∈ (Â3, 1
2D)) where D = (f(z2, z3, z4) = 0).

By Lemmata 7.13, 7.14, and Theorem 6.9(2) we know that

(7.1)

v̂ol(z, Z) = inf
S

v̂olZ,z(ordS) = 2 inf
S̄

v̂ol
(Â3, 12D),0

(ordS̄) = 2v̂ol(0, Â3, 1
2D),

where S runs through all τ -invariant Kollár components over z ∈ Z, and S̄

runs through all Kollár components over 0 ∈ (Â3, 12D). By Theorem 6.9(1),

for k ≫ 1 we have v̂ol(0,A3, 1
2D

k) = v̂ol(0, Â3, 12D) whereDk is a k-th analytic

truncation of D on A3. Hence for k ≫ 1 we have

ǫ < v̂ol(z, Z) = 2v̂ol(0,A3, 1
2D

k),

and the right-hand-side belongs to a finite set by Corollary 7.9. Thus Vǫ is a

finite set. �

Proof of Theorem 1.8(2). Fix a positive number ǫ > 0. Let x ∈ X be a

3-dimensional terminal singularity satisfying v̂ol(x,X) ≥ ǫ. For simplicity, we

assume that ǫ ∈ (0, 1). We will show that there exists a δ-plt blow up of x ∈ X

where δ > 0 only depends on ǫ. Let ρ : (z ∈ Z) → (x ∈ X) be the index 1

cover of KX . Denote by r the Gorenstein index of x ∈ X. By Theorems 2.12

and 2.15, we have

27 ≥ v̂ol(z, Z) = r · v̂ol(x,X) ≥ rǫ.

Thus we have r ≤ rmax := ⌊ 27
ǫ ⌋.

Let τ : Ẑ → Ẑ be the analytic involution as before. Let π : (ẑ ∈ Ẑ) →

(0 ∈ (Â3, 1
2D)) be the double cover where D = (f = 0). By (7.1) we have

v̂ol(0, Â3, 1
2D) =

1

2
v̂ol(z, Z) ≥

rǫ

2
≥

ǫ

2
.
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Let fk be a polynomial in z2, z3, z4 of degree less than k such that fk is a

k-th analytic truncation of f . Denote by Dk := (fk = 0) ⊂ A3. Then by

Theorem 6.9, we have that v̂ol(0,A3, 1
2D

k) = v̂ol(0, Â3, 1
2D) for any k ≫ 1.

By Theorem 4.1, there exists a positive constant c such that

lct(A3, 1
2D

k; 1
2D

k) ≥ c−1v̂ol(0,A3, 12D
k) ≥

ǫ

2c
.

By Lemma 6.3 it is clear that lct(A3, 1
2D

k; 1
2D

k) converges to lct(Â3, 12D; 1
2D)

as k → ∞. Thus we have lct(Â3, 1
2D; 1

2D) ≥ ǫ
2c . Then by Theorem 6.2,

Proposition 6.4, and Theorem 6.9, there exist k1, k2 ∈ Z>0 depending only on

ǫ such that for any k ≥ k3 := max{k1, k2} and any δ ∈ R≥0 we have

(a) v̂ol(0,A3, 1
2D

k) = v̂ol(0, Â3, 1
2D) ≥ ǫ

2 , and

(b) any δ-Kollár component S of 0 ∈ (A3, 12D
k) satisfying

v̂ol(A3, 12D
k),0(ordS) ≤ 28rmax

corresponds to a δ-Kollár component Ŝ of 0 ∈ (Â3, 1
2D) by taking

completion.

Next, we show the existence of a δ-plt blow-up of x ∈ X for δ = δ(ǫ) > 0.

Firstly, we consider the case where r = 1, i.e. x ∈ X is Gorenstein. Since

k3 only depends on ǫ, we know that 0 ∈ (A3, 12D
k3) belongs to a bounded

Q-Gorenstein family of klt singularities. By Theorem 2.34, there exists δ1 =

δ1(ǫ) > 0 such that 0 ∈ (A3, 12D
k3) admits a δ1-Kollár component S satisfying

v̂ol(A3, 12D
k),0(ordS) ≤ 28. Hence by (b), we have a δ1-Kollár component Ŝ

over 0 ∈ (Â3, 1
2D). Hence by pulling back Ŝ under π then push forward under

the completion map ι : X̂ → X, we obtain a δ1-Kollár component τ∗π
∗Ŝ over

x ∈ X by [KM98, Proposition 5.20].

Next, we consider the case where r ≥ 2 and the covering morphism ρ :

(z ∈ Z) → (x ∈ X) has type (II), (III), or (IV) in Table 1. We may assume

that the coordinates (zi) from Lemma 7.11 coincide with the coordinates (xi)

from Theorem 7.12 and Table 1. Denote by G := µr. Then by restricting

to the last three coordinates, the G-action on Ẑ induces a G-action on A3

such that D is G-invariant and π is G-equivariant. In particular, Dk3 is also

G-invariant. Let w ∈ (W,ΔW ) be the crepant G-quotient of 0 ∈ (A3, 12D
k3).

Since 0 ∈ (A3, 12D
k3) belongs to a bounded Q-Gorenstein family of klt singu-

larities and the G-action on A3 has finitely many choices, we know that w ∈

(W,ΔW ) also belongs to a bounded Q-Gorenstein family of klt singularities.

Then by Theorem 2.34, there exists δ2 = δ2(ǫ) > 0 such that w ∈ (W,ΔW )

admits a δ2-Kollár component SW satisfying v̂ol(W,∆W ),w(ordSW
) ≤ 28. De-

note by S the pullback of SW under the G-quotient morphism A3 → W .
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Hence by [KM98, Proposition 5.20] and Proposition 2.18, S is a G-equivariant

δ2-Kollár component over 0 ∈ (A3, 1
2D

k3) satisfying v̂ol(A3, 12D
k),0(ordS) ≤

28rmax. Hence by (b), we have a G-equivariant δ2-Kollár component Ŝ over

0 ∈ (Â3, 1
2D). By pulling back Ŝ under π then push forward under the com-

pletion map ι : Ẑ → Z, we obtain a G-equivariant δ2-Kollár component ι∗π
∗Ŝ

over z ∈ Z. Then taking the G-quotient of ι∗π
∗Ŝ and applying [KM98, Propo-

sition 5.20] again, we obtain a (δ2/rmax)-Kollár component over x ∈ X.

Finally, we consider the case where r ≥ 2 and the covering morphism ρ

has type (I) in Table 1. Let z1 = x1+x2

2 , z2 = x1−x2

2 , z3 = x3, and z4 = x4.

Then the local analytic equation of ẑ ∈ Ẑ is given by (z21 − z22 +h(z3, z4) = 0)

where h is some formal power series in (z3, z4). Let hk be the k-th analytic

truncation of h as a polynomial in (z3, z4) of degree less than k. Let 0 ∈ Zk

be the hypersurface singularity (z21 − z22 + hk(z3, z4) = 0) in A4. Then clearly

the G-action on Ẑ induces a G-action on Zk. Let τk : Zk → Zk be the

involution given by τk(z1, z2, z3, z4) = (−z1, z2, z3, z4). Then G and {id, τk}

generate a finite subgroup H < Aut(0, Zk) of size |H| = 2r. Let w ∈ (W,ΔW )

be the crepant H-quotient of 0 ∈ Zk3 . Since 0 ∈ Zk3 belongs to a bounded

Q-Gorenstein family of klt singularities and the H-action on A4 has finitely

many choices, we know that w ∈ (W,ΔW ) also belongs to a bounded Q-

Gorenstein family of klt singularities. Thus Theorem 2.34 implies that there

exists δ3 = δ3(ǫ) > 0 such that w ∈ (W,ΔW ) admits a δ3-Kollár component

SW satisfying v̂ol(W,∆W ),w(ordSW
) ≤ 28. Denote by S̃k3 the pullback of SW

under the H-quotient morphism Zk3 → W . So [KM98, Proposition 5.20]

and Proposition 2.18 imply that S̃k3 is an H-equivariant δ3-Kollár compo-

nent over 0 ∈ Zk3 such that v̂olZk3 ,0(ordS̃k3
) ≤ 56rmax. Taking quotient of

the involution τk3
, we obtain a crepant covering morphism πk3

: (0 ∈ Zk3) →

(0 ∈ (A3, 1
2D

k3)). Hence [KM98, Proposition 5.20] and Proposition 2.18 imply

that S := (πk3
)∗S̃

k3 is a (δ3/2)-Kollár component over 0 ∈ (A3, 1
2D

k3) satis-

fying v̂ol(A3, 12D
k3 ),0(ordS) ≤ 28rmax. By (b), we have a (δ3/2)-Kollár compo-

nent Ŝ over 0 ∈ (Â3, 1
2D). Pulling back Ŝ under π yields an H-equivariant

(hence G-equivariant) (δ3/2)-Kollár component π∗Ŝ over ẑ ∈ Ẑ. Thus by

taking push-forward π∗Ŝ under ι and then quotient out by G, we obtain a

(δ3/(2rmax))-Kollár component over x ∈ X. Therefore, the proof is finished

by taking δ := min{δ1,
δ2

rmax
, δ3
2rmax

}. �
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8. Discussions

In this section, we discuss some topics related to our main results, and ask

several questions.

8.1. Relations among three classes of singularities. When (x ∈

Xan) ∈ (B ⊂ X an → B) (“bounded”) and under some mild assumptions, we

showed that the three classes of singularities a©, b©, c© in Figure 1 are equiva-

lent to each other, see Theorems 1.5 ( b© ⇒ a©), 4.1 ( a© ⇒ c©), and 7.1 ( c© ⇒

a©). In this subsection, we will discuss the relations among these three classes

of singularities without the assumption “(x ∈ Xan) ∈ (B ⊂ X an → B)”. Note

that in this general setting, Theorem 1.5 ( b© ⇒ a©) holds, and Conjecture 1.6

is about the implication “ a© ⇒ b©”.

v̂ol(x,X,Δ) > ǫ. a©

lct(X; Δ) − 1 > γ,

mld(x,X,Δ) ≥ ǫ1. c©

x ∈ (X,Δ) admits

a δ-plt blow-up,

mld(x,X,Δ) ≥ ǫ1. b©

“bounded”, T
heorem

4.1

E
xam

ple
8.3

×

Theorem 1.5

“b
ou
nd
ed
”,
T
he
or
em

7.
1

fa
ls
e
in
ge
ne
ra
l,
E
xa
m
pl
e
8.
3

×

T
he
or
em

8.
4

Q
uestion

8.1

“bounded”, Theorem 1.7

Conjecture 1.6

Figure 1. Three classes of singularities a©, b©, and c©

We expect that Theorem 4.1 holds ( a© ⇒ c©) in this general setting.

Question 8.1. Let n be a positive integer. Then does there exist a positive

real number c(n) that depends only on n satisfying the following statement?

Let x ∈ (X,Δ) be an n-dimensional klt Q-Gorenstein singularity. Then

c(n) · lct(X,Δ;Δ) ≥ v̂ol(x,X,Δ).

Remark 8.2. One might also ask for a sharp value cmin(n) in Question

8.1. We guess that cmin(n) = nn. When n = 2, it is not hard to show that

cmin(2) ≤ 8, see [HLQ20, Theorem A.5].

Example 8.3 shows that the implication “ c© ⇒ a©” does not hold when

x ∈ X is not analytically bounded. Thus the implication “ c© ⇒ b©” does not

hold either by Theorem 1.5.

Example 8.3. Let m be a positive integer. Consider the surface klt sin-

gularity (x ∈ (X,Δ = 1
2 (L1 + L2))), where (x ∈ X ∼= (o ∈ A2)/µm+1) is

Licensed to Princeton Univ. Prepared on Tue Aug  8 00:45:14 EDT 2023 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ACC FOR LOCAL VOLUMES AND BOUNDEDNESS OF SINGULARITIES 575

the Am-singularity, and L1, L2 are the images of two coordinate lines in A2.

Then lct(X,Δ;Δ) = 1, mld(x,X,Δ) = 1
2 , and v̂ol(x,X,Δ) < v̂ol(x,X, 0) =

4
m+1 → 0 when m → +∞.

If we assume that all the (non-zero) coefficients of Δ have a positive lower

bound, then Theorem 8.4 together with Conjecture 1.6 would imply that Ques-

tion 8.1 has an affirmative answer immediately. Theorem 8.4 is a consequence

of Birkar’s proof of Birkar–Borisov–Alexeev–Borisov Theorem [Bir21, Theo-

rems 1.1 and 1.6], and it is embedded in [HLS19].

Theorem 8.4. Let n ≥ 2 be a positive integer and η, δ, ǫ1 positive real

numbers. Then there exists a positive real number γ which only depends on

n, η, δ, and ǫ1 satisfying the following.

Let x ∈ (X,Δ =
∑m

i=1 aiΔi) be an n-dimensional klt Q-Gorenstein singu-

larity, such that

(1) ai > η,

(2) each Δi ≥ 0 is a Weil divisor,

(3) x ∈ (X,Δ) admits a δ-plt blow-up, and

(4) mld(x,X,Δ) ≥ ǫ1,

then lct(X,Δ;Δ) ≥ γ.

Proof. By [HLS19, Lemma 3.13], there exists a Q-factorial weak δ-plt blow-

up f : Y → X of x ∈ (X,Δ), that is, f is a birational morphism with the

exceptional prime divisor E such that

• (Y, f−1
∗ Δ+ E) is Q-factorial δ-plt near E,

• −E is nef over X,

• −(KY + f−1
∗ Δ+ E)|E is big, and

• f−1(x) = SuppE.

By [HLS19, Proposition 4.3], there exists a positive real number M which only

depends on n and δ, such that AX(E) ≤ M . By assumption, A(X,∆)(E) ≥ ǫ1.

Thus there exists a positive real number γ1 which only depends on n, δ and

ǫ1, such that A(X,(1+γ1)∆)(E) ≥ 0.

By [HLS19, Proposition 7.7], there exists a positive real number γ2 which

only depends on n, η and δ, such that (Y, (1 + γ2)f
−1
∗ Δ+ E) is plt near E.

Let γ := min{γ1, γ2}. Then x ∈ (X, (1 + γ)Δ) is lc, and

lct(X,Δ;Δ) ≥ γ. �

Remark 8.5. Example 7.3 also indicates that the assumption “ai > η” in

Theorem 8.4 is necessary.
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8.2. Boundedness of singularities up to a special degeneration.

Definition 8.6. Let (X,Δ) be a klt pair with x ∈ X a closed point. A

special test configuration of x ∈ (X,Δ) consists of the following data:

• a normal variety X and an effective R-divisor Δtc on X such that

KX +Δtc is R-Cartier;

• a flat morphism π : (X , Supp (Δtc)) → A1 and a section σ : A1 → X

of π;

• a Gm-action on (X ,Δtc) such that both π and σ are Gm-equivariant

with respect to the standardGm-action on A1 by scalar multiplication;

• σ(A1 \ 0) ⊂ (X \ X0,Δtc|X\X0
) is Gm-equivariantly isomorphic to

(x ∈ (X,Δ))× (A1 \ 0);

• (X ,X0 +Δtc) is plt.

We call the central fiber (σ(0) ∈ (X0,Δtc,0)) of the special test configuration

a special degeneration of (x ∈ (X,Δ)). By adjunction, (σ(0) ∈ (X0,Δtc,0)) is

also a klt singularity.

Definition 8.7. A set of klt singularities P is said to be log bounded up to

special degeneration if there is a log bounded set C of projective pairs, such

that the following holds.

For any klt singularity x ∈ (X,Δ) in P, there exist a special degeneration

x0 ∈ (X0,Δ0) of x ∈ (X,Δ), a pair (Y,B) ∈ C together with a closed point

y ∈ Y , and open neighborhoods U and V of x0 ∈ X0 and y ∈ Y respectively,

such that (x0 ∈ (U, Supp (Δ0)|U )) ∼= (y ∈ (V, Supp (B)|V )).

Theorem 8.8 from [HLM20] shows that ǫ-lc singularities admitting δ-plt

blow-ups with positive lower bounds on boundary coefficients are log bounded

up to special degeneration. We expect that the Q-Gorenstein assumption from

Theorem 8.8 can be dropped.

Theorem 8.8 ([HLM20, Theorem 4.1 and its proof]). Let n be a positive

integer, and ǫ1, δ, η three positive numbers. Then the set of n-dimensional

ǫ1-lc Q-Gorenstein singularities x ∈ (X,Δ) admitting a δ-plt blowup and co-

efficients of Δ that are at least η is log bounded up to special degeneration.

We ask Conjecture 8.9.

Conjecture 8.9. Let n be a positive integer, and ǫ, η two positive numbers.

Then the set of n-dimensional klt singularities x ∈ (X,Δ) satisfying that

v̂ol(x,X,Δ) ≥ ǫ and coefficients of Δ are at least η is log bounded up to

special degeneration.

By Theorem 8.8, Conjecture 8.9 follows from Conjecture 1.6 for Q-Goren-

stein singularities.

One can ask about the converses of Theorem 8.8 and Conjecture 8.9. As-

sume that coefficients of Δ belong to a finite set I. We expect that the converse

of Theorem 8.8 holds under this assumption, although we do not have a proof
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at the moment. Meanwhile, using the lower semicontinuity of local volumes

[BL21] and the constructibility [Xu20] (see also Theorem 3.5), we can show

that the converse of Conjecture 8.9 is true under this assumption.

Example 8.10 provides one more prototype for Conjecture 1.6 and Conjec-

ture 1.1.

Example 8.10. Let n be a positive integer and I ⊂ Q ∩ [0, 1] a fi-

nite set. Let (V,Δ) be an n-dimensional K-semistable log Fano pair, such

that all the coefficients of Δ belong to I. Consider the affine cone X :=

Spec ⊕∞
m=0 H

0(V,−mr(KV + Δ)) over (V,Δ) with the ample Cartier polar-

ization −r(KV + Δ), where r ∈ Q>0. Let D := C(Δ) be the cone divisor,

and o ∈ X the vertex. Then by [LX20, Theorem 4.5], the canonical valua-

tion ordS obtained by blowing up the vertex o ∈ X, μ : Y → X, minimizes

v̂ol(X,D),o on ValX,o. Let DS be the different divisor of (Y, S + μ−1
∗ D), then

(S,DS) ∼= (V,Δ). We claim if v̂ol(o,X,D) > ǫ for some ǫ > 0, then there

exists an integer N which only depends on n, I and ǫ, such that N(KS +DS)

is Cartier and v̂ol(o,X,D) belongs to a finite set. In particular, (S,DS) is
1
N -lc, and o ∈ X admits a 1

N -plt blow up. Hence Conjectures 1.1 and 1.6 hold

for those cone singularities.

Now we show the claim. By [LX20, Theorem 4.5] and [Kol13, Proposition

3.14(4)], we have

(8.1) v̂ol(o,X,D) = v̂ol(X,D),o(ordS) =
(−(KV +Δ))n

r
> ǫ.

Since −r(KV + Δ) is an ample Cartier divisor, by the length of extremal

rays, we know that r ≥ 1
2n , so (−(KV + Δ))n > ǫ

2n . On the other hand,

by Theorem 7.4 and [Blu18b, Theorem C], we know that α(V,Δ) ≥ 1
n+1 ,

so α(V,Δ)n(−(KV + Δ))n > ǫ
2n(n+1)n . Thus by [LLX20, Corollary 6.14],

(V, SuppΔ) is log bounded. Now the existence of N follows from [Bir19,

Lemma 2.24]. It follows that r belongs to a finite set. By [HLS19, Lemma

3.26], v̂ol(o,X,D) = (−(KV +∆))n

r belongs to a finite set.

If (V,Δ) is as in Example 8.10 and X := Spec ⊕∞
m=0 H0(X,mL) is an

orbifold cone over (V,Δ), where o ∈ X is the vertex and the polarization

L ∼Q −r(KV + Δ) is an integral Weil divisor, then (8.1) is true. So it is

not difficult to see that the discreteness of {v̂ol(o,X,D)} away from 0 follows

from an affirmative answer to Question 8.11 (see also [LX19, Example 4.4]).

Indeed, Conjecture 1.1 for general klt singularities is not far from the case of

orbifold cone singularities if we assume the Stable Degeneration Conjecture

[LX18, Conjecture 1.2].

Question 8.11. Let n be a positive integer and I ⊂ Q ∩ [0, 1] a finite set.

Let (V,Δ) be an n-dimensional K-semistable log Fano pair, such that all the
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coefficients of Δ belong to I. Consider the Fano-Weil index q(X,Δ) of (X,Δ)

defined as

q(X,Δ) := max

{
q ∈ Q>0

∣∣∣∣
there exists an integral Weil divisor

L ∼Q q−1(−KV −Δ)

}
,

then does there exist a positive real number M depending only on n and I

such that q(X,Δ) ≤ M?

In view of Example 8.10, we also recall the following folklore question.

Question 8.12. Let n be a positive integer. For any n-dimensional klt

singularity x ∈ (X,Δ), is there a sequence of Kollár components {Sk} of

x ∈ (X,Δ) with limk→+∞ v̂ol(X,∆),x(ordSk
) = v̂ol(x,X,Δ), such that

lim sup
k→∞

α(Sk,ΔSk
) ≥

1

n
, or lim sup

k→∞
δ(Sk,ΔSk

) ≥ 1?
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