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Abstract 

We develop tightening and solution methods for optimization problems containing bilinear terms. 
We focus on the bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥  with nonnegative variables 𝑥𝑥 ∈ [𝑥𝑥L, 𝑥𝑥U]  and 𝑦𝑦 ∈ [𝑦𝑦L,𝑦𝑦U] , 
where 𝑤𝑤 is semi-continuous and upper and lower bounded by 𝑤𝑤U and 𝑤𝑤L when positive. 𝑤𝑤U and 𝑤𝑤L 
are said to be nontrivial upper and lower bounds if 𝑤𝑤U is smaller than 𝑥𝑥U𝑦𝑦U and 𝑤𝑤L is greater than 
𝑥𝑥L𝑦𝑦L, respectively. We derive a family of valid linear constraints and show that, when one of the 
nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that 
represents the bilinear term. We propose different preprocessing methods for generating strong 
constraints from the family. Computational results demonstrate the effectiveness of the proposed 
methods in terms of reducing optimality gap and computational time.  

Keywords: Preprocessing, Nonlinear Optimization, Nonconvex Optimization, Semi-Continuous 
Variables, Valid Constraints 
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List of Symbols 

Indices/Sets 
𝑖𝑖 ∈ 𝐈𝐈:  Inputs (Streams) 
𝑗𝑗 ∈ 𝐉𝐉:  Pools 
𝑘𝑘 ∈ 𝐊𝐊:  Products 
𝑙𝑙 ∈ 𝐋𝐋:  Properties 

Parameters 
𝛼𝛼𝑖𝑖: Unit cost of stream 𝑖𝑖 
𝛼𝛼𝑗𝑗𝑗𝑗F  :  Fixed cost for flow between pool j and product k  
𝛽𝛽𝑘𝑘: Price of product k 
𝛽𝛽𝑘𝑘P :  Unit penalty for unmet demand for product k  
𝛾𝛾𝑗𝑗:  Capacity of pool j 
𝜇𝜇𝑗𝑗𝑗𝑗:  Lower bound on positive flow between pool j and product k  
𝜈𝜈𝑗𝑗𝑗𝑗:  Capacity of the pipeline between pool j and product k 
𝜋𝜋𝑖𝑖𝑖𝑖  :  Value of property 𝑙𝑙 for stream 𝑖𝑖 
𝜓𝜓𝑘𝑘𝑘𝑘  :  Upper bounding specification for property 𝑙𝑙 for product k 
𝜑𝜑𝑘𝑘 :  Minimum demand for product k 
𝜔𝜔𝑘𝑘 :  Maximum demand for product k 

Nonnegative continuous variables  
𝐹𝐹𝑖𝑖𝑖𝑖:  Flow of stream 𝑖𝑖 to pool j 
𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖:  Flow of stream 𝑖𝑖 from pool j to product k  
𝑈𝑈𝑘𝑘:  Unmet demand for product k 
𝐹𝐹�𝑗𝑗𝑗𝑗:  Flow from pool j to product k  
𝑅𝑅𝑗𝑗𝑗𝑗:  Split fraction for total inlet flows from pool j to product k 

Binary variable  
𝑍𝑍𝑗𝑗𝑗𝑗:  = 1 if there is positive flow from pool j to product k 

Models 
MC:  Model for the pooling problem with only continuous variables 
MSC:  Model for the pooling problem with semi-continuous variables 
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1. Introduction 

Optimization problems containing bilinear terms have a number of applications in different 
industrial sectors, from refining (Wicaksono and Karimi 2008; Gounaris, Misener, and Floudas 2009; 
Misener and Floudas 2012; Kolodziej, Castro, and Grossmann 2013; Gupte et al. 2017; Chen and 
Maravelias 2020) and wastewater treatment (Bagajewicz 2000; Jeżowski 2010) to mining (Blom et 
al. 2014; Blom, Pearce, and Stuckey 2016; Boland et al. 2016). Such problems are important in terms 
of the potential economic benefits that can be achieved if solved efficiently (DeWitt et al. 1989; Kelly 
and Mann 2003). 

One optimization problem containing bilinear terms that has been studied extensively is the pooling 
problem, which is a nonconvex optimization problem. First studied by Harvey (Haverly 1978), the 
pooling problem continues to be an active research topic (Misener and Floudas 2009; Gupte et al. 
2017). Various formulations for the pooling problem have been proposed (Haverly 1978; Ben-Tal, 
Eiger, and Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and Haugland 
2013; Boland, Kalinowski, and Rigterink 2016), and a number of variants of the pooling problem have 
been studied. For example, Meyer and Floudas (Meyer and Floudas 2006) studied the generalized 
pooling problem where there can be flows between pools. Misener et al. (Misener, Gounaris, and 
Floudas 2010) studied the pooling problem containing complex emission constraints. D’Ambrosio et 
al. (D’Ambrosio, Linderoth, and Luedtke 2011) studied valid constraints for the pooling problem with 
binary variables. 

Solution methods for optimization problems containing bilinear terms have been studied extensively. 
One research focus is to tighten the linear relaxation of such problem. For example, Gounaris et al. 
studied different piecewise linear relaxation methods for bilinear terms and compared their 
computational performance (Gounaris, Misener, and Floudas 2009), Castro proposed piecewise 
linear relaxations with variable bounds tightening (Castro 2015), Dey and Gupte analyzed mixed-
integer linear programming (MILP) techniques to address bilinear terms (Dey and Gupte 2015), Chen 
and Maravelias utilized information from the given problem parameters to derive valid linear 
constraints that tighten the relaxed problem in which bilinear terms are replaced by linear 
inequalities (Chen and Maravelias 2020). Nonlinear relaxations of such problem have also been 
studied. For example, Kimizuka et al. studied the second order cone relaxation of such problem 
(Kimizuka, Kim, and Yamashita 2019)  and Luedtke et al. studied a strong convex nonlinear relaxation 
derived from extended formulation (Luedtke et al. 2020). 

To effectively solve optimization problems containing bilinear terms, one common approach is to 
construct convex relaxations of bilinear terms at each node in a branch-and-bound (B&B) algorithm. 
Consider the bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with nonnegative variables 𝑥𝑥 ∈ [𝑥𝑥L, 𝑥𝑥U] and 𝑦𝑦 ∈ [𝑦𝑦L,𝑦𝑦U] and the 
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set 𝐒𝐒 = {(𝑤𝑤, 𝑥𝑥, 𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤 = 𝑥𝑥𝑥𝑥} . Using the method proposed by 

McCormick (McCormick 1976) leads to four linear inequalities parameterized by 𝑥𝑥L, 𝑥𝑥U, 𝑦𝑦L, and 𝑦𝑦U; 
the four linear inequalities describe the convex hull of 𝐒𝐒. 

If 𝑤𝑤 is also upper bounded by a positive parameter 𝑤𝑤U < 𝑥𝑥U𝑦𝑦U, then 𝑤𝑤U is said to be a nontrivial 
upper bound on 𝑤𝑤. Similarly, if 𝑤𝑤 is lower bounded by a positive parameter 𝑤𝑤L > 𝑥𝑥L𝑦𝑦L , then 𝑤𝑤L is 
said to be a nontrivial lower bound on 𝑤𝑤. In the presence of nontrivial bounds, we consider the set 

𝐒𝐒1+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥}  

The convex hull of 𝐒𝐒1+ has been studied by Belotti et al. (Belotti, Miller, and Namazifar 2010; 2011). 
Specifically, they showed that it can be described with infinitely many linear inequalities, some of 
which belong to a family of inequalities called “lifted tangent inequalities”. More recently, Anstreicher 
et al. studied the convex hull representation for bilinear terms with bounds on the product, and 
derived closed-form representations containing second-order cone constraints (Anstreicher, Burer, 
and Park 2020). We note that both works mentioned above focus on sets that contain continuous 
variables only. 

In this paper we focus on the following set: 

𝐒𝐒1 = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦,𝑍𝑍) ∈ ℝ+
3 × {0,1}: 𝑥𝑥L𝑍𝑍 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L𝑍𝑍 ≤ 𝑦𝑦 ≤ 𝑦𝑦U𝑍𝑍,𝑤𝑤L𝑍𝑍 ≤ 𝑤𝑤 ≤ 𝑤𝑤U𝑍𝑍,𝑤𝑤 = 𝑥𝑥𝑥𝑥}  

which can be viewed as a generalization of 𝐒𝐒1+ since 𝐒𝐒1 becomes 𝐒𝐒1+ when 𝑍𝑍 = 1. We derive a family 
of valid linear constraints for 𝐒𝐒1, and show that, in the presence of nontrivial bounds, such constraints 
tighten the convex relaxation of the bilinear term obtained using the McCormick inequalities. We note 
that when 𝑍𝑍 = 1 the constraints proposed in this paper coincide with a subset of the “lifted tangent 
inequalities” and can be viewed as outer approximation cuts of the second order cone presented by 
Anstreicher et al. (Anstreicher, Burer, and Park 2020). However, compared to previous work by 
Belotti et al., the constraints proposed here are given in a different (parameterized) form, which 
enables straightforward optimization-based generation for such constraints. We apply our methods 
to the pooling problem that (1) contains only continuous variables, and (2) contains binary and semi-
continuous variables. 

Note that if variable 𝑥𝑥 in 𝐒𝐒1 is upper bounded by 𝑥𝑥U𝑍𝑍 instead of 𝑥𝑥U, the resulting set will be the union 
of a point and a nonconvex set. By relaxing the nonconvex set with the results obtained by 
Anstreicher et al. (Anstreicher, Burer, and Park 2020), one can obtain a relaxed set that is the union 
of a point and a convex set. The perspective formulation for this relaxed set has been studied by 
Günlük and Linderoth (Günlük and Linderoth 2010) who proposed linear constraints known as 
perspective cuts. 
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We note that semi-continuous variables are common in models for network flow problems. 
Papageorgiou et al. (Papageorgiou et al. 2012) studied the transportation problem with product 
blending containing fixed costs. Such problem leads to a mixed-integer program (MILP), and facet-
defining constraints have been proposed. Pooling problems with binary variables have also been 
studied; for example, D’Ambrosio et al. studied the pooling problem with binary variables that model 
the on/off of the flow from stream to pool and proposed valid constraints (D’Ambrosio, Linderoth, 
and Luedtke 2011). Previous works focus on utilizing stream properties and product specifications 
to derive valid constraints. Here, we propose constraints that are based on nontrivial bounds on the 
bilinear terms. 

This paper is structured as follows. In section 2, we present background material, including problem 
statement and models for the pooling problem, and the implication of nontrivial bounds for such 
problem. In section 3 we derive a family of valid linear constraints that utilizes bounds on bilinear 
terms. In section 4, we propose methods to generate strong constraints from the family for the 
pooling problem. In section 5, we show computational results including models with constraints 
generated from different methods and a branch-and-cut algorithm that incorporates the proposed 
constraints. Throughout the paper, unless otherwise specified, we use Roman lowercase italic letters 
for indices, Roman uppercase bold letters for sets, Greek lowercase letters for parameters, and 
Roman uppercase italics for variables. 

2. Background 

We present the problem statement and nonlinear models for the pooling problem. We introduce 
nontrivial bounds on bilinear terms and the convex relaxation of bilinear terms in the presence of 
such bounds.   

2.1. Problem statement 

In the standard setting, the pooling problem is defined in terms of the following sets: 
𝑖𝑖 ∈ 𝐈𝐈:  Inputs (Streams) 
𝑗𝑗 ∈ 𝐉𝐉:  Pools 
𝑘𝑘 ∈ 𝐊𝐊:  Products 
𝑙𝑙 ∈ 𝐋𝐋:  Properties 

Given are: 
𝛼𝛼𝑖𝑖: Unit cost of stream 𝑖𝑖 
𝛽𝛽𝑘𝑘: Price of product k 
𝛾𝛾𝑗𝑗:  Capacity of pool j 
𝜈𝜈𝑗𝑗𝑗𝑗:  Capacity of the pipeline between pool j and product k  
𝜋𝜋𝑖𝑖𝑖𝑖  :  Value of property 𝑙𝑙 for stream 𝑖𝑖 
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𝜓𝜓𝑘𝑘𝑘𝑘  :  Upper bounding specification for property 𝑙𝑙 for product k 
𝜔𝜔𝑘𝑘 :  Maximum demand for product k 

For any product, the combined flows from all pools to that product must satisfy the corresponding 
specification. We aim to find flows (from streams to pools and from pools to products) that maximize 
profit. We assume that there are no flows between pools, no stream flow accumulation in pools, and 
all product properties are the average of the properties of the streams blended weighted by volume 
fraction. Without loss of generality, we assume we have only upper bouding specifications. 

2.2. Nonlinear models for the pooling problem 

2.2.1 Model containing only continuous variables  

Various models have been proposed for the pooling problem (Haverly 1978; Ben-Tal, Eiger, and 
Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and Haugland 2013; 
Boland, Kalinowski, and Rigterink 2016). In this paper, we study models similar to the one proposed 
by  Alfaki and Haugland (Alfaki and Haugland 2013). We define the following nonnegative continuous 
variables: 
𝐹𝐹𝑖𝑖𝑖𝑖:  Flow of stream 𝑖𝑖 to pool j 
𝑅𝑅𝑗𝑗𝑗𝑗:  Split fraction for total inlet flows for pool j to product k (𝑅𝑅𝑗𝑗𝑗𝑗 ∈ [0,1]) 
𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖:  Flow of stream 𝑖𝑖 from pool j to product k  

We have the following constraints: 

Pool capacity: 

� 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖

≤ 𝛾𝛾𝑗𝑗 , 𝑗𝑗 (1) 

Product demand: 

� � 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

≤ 𝜔𝜔𝑘𝑘 , 𝑘𝑘 (2) 

Product specifications: 

� � 𝜋𝜋𝑖𝑖𝑖𝑖𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

≤ 𝜓𝜓𝑘𝑘𝑘𝑘� � 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

, 𝑘𝑘, 𝑙𝑙 (3) 

Upper bound on the flows from pools to products: 

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

≤ 𝜈𝜈𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (4) 

Stream splitting: 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (5) 

Note that Eqn. (5) is an equality constraint with a bilinear term. 
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For split fraction 𝑅𝑅𝑗𝑗𝑗𝑗 we have: 

� 𝑅𝑅𝑗𝑗𝑗𝑗
𝑘𝑘

= 1, 𝑗𝑗 (6) 

Eqns. (5) and (6) enforce that there is no flow accumulation in pools. 

Reformulation–Linearization Technique (RLT) (Sherali and Adams 1999) constraints can be added 
to strengthen the formulation. Summing over index 𝑘𝑘 on both sides of Eqn. (5), we have: 

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝐹𝐹𝑖𝑖𝑖𝑖� 𝑅𝑅𝑗𝑗𝑗𝑗
𝑘𝑘

, 𝑖𝑖, 𝑗𝑗  

which, combined with Eqn. (6), leads to: 

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝐹𝐹𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 (7) 

Another RLT constraint can be obtained by multiplying both sides of Eqn. (1) with 𝑅𝑅𝑗𝑗𝑗𝑗 (a nonnegative 
variable): 

� 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅𝑗𝑗𝑗𝑗
𝑖𝑖

≤ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘  

which, combined with Eqn. (5), leads to: 

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

≤ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (8) 

The objective function is profit maximization: 

max� � �� 𝛽𝛽𝑘𝑘𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

− 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖�
𝑗𝑗𝑖𝑖

 (9) 

Eqns. (1) - (9) comprise a nonlinear model for the pooling problem which contains only continuous 
variables and is henceforth referred to as MC .  

2.2.2 Model containing semi-continuous variables  

In practice, in addition to the pipeline capacity modeled in Eqn. (4), there may exist a lower bound 
on ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  for each ( 𝑗𝑗, 𝑘𝑘) pair when ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is nonzero. In other words, when the flow from pool 𝑗𝑗 to 
product 𝑘𝑘  is nonzero, it must be greater or equal to a positive parameter. Let 𝜇𝜇𝑗𝑗𝑗𝑗  denote such a 
parameter (𝜇𝜇𝑗𝑗𝑗𝑗 < 𝜈𝜈𝑗𝑗𝑗𝑗  and 𝜇𝜇𝑗𝑗𝑗𝑗 < 𝛾𝛾𝑗𝑗). We define the following semi-continuous variable: 
𝐹𝐹�𝑗𝑗𝑗𝑗:  Flow from pool j to product k  

and the following binary variable: 
𝑍𝑍𝑗𝑗𝑗𝑗:  = 1 if there is positive flow from pool j to product k 

We have the following constraints: 

𝐹𝐹�𝑗𝑗𝑗𝑗 = � 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

, 𝑗𝑗, 𝑘𝑘 (10) 
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𝜇𝜇𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 ≤ 𝐹𝐹�𝑗𝑗𝑗𝑗 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (11) 

Eqn. (10) is introduced for illustration. Eqn. (11) ensures that when 𝑍𝑍𝑗𝑗𝑗𝑗 = 0, 𝐹𝐹�𝑗𝑗𝑗𝑗 = 0; when 𝑍𝑍𝑗𝑗𝑗𝑗 =
1,𝐹𝐹�𝑗𝑗𝑗𝑗 ∈ �𝜇𝜇𝑗𝑗𝑗𝑗 , 𝜈𝜈𝑗𝑗𝑗𝑗�.  

Note that for split fraction 𝑅𝑅𝑗𝑗𝑗𝑗 we now have: 
𝜇𝜇𝑗𝑗𝑗𝑗
𝛾𝛾𝑗𝑗

𝑍𝑍𝑗𝑗𝑗𝑗 ≤ 𝑅𝑅𝑗𝑗𝑗𝑗 ≤ 𝑍𝑍𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (12) 

When 𝑍𝑍𝑗𝑗𝑗𝑗 = 0, we have 𝐹𝐹�𝑗𝑗𝑗𝑗 = 0, and thus 𝑅𝑅𝑗𝑗𝑗𝑗 = 0 for the corresponding split fraction. When 𝑍𝑍𝑗𝑗𝑗𝑗 = 1,   
then 𝐹𝐹�𝑗𝑗𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗  so the lower bound on 𝑅𝑅𝑗𝑗𝑗𝑗  in this case should be 𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗  and by definition 𝑅𝑅𝑗𝑗𝑗𝑗 ≤ 1. 
Thus, 𝑅𝑅𝑗𝑗𝑗𝑗 is now also a semi-continuous variable. We note that Eqn. (6) is no longer valid in the model 
containing semi-continuous variables since it is possible that a pool 𝑗𝑗 has no outlet flows with 𝑍𝑍𝑗𝑗𝑗𝑗 =
0,∀𝑘𝑘, and thus from Eqn. (12) we have 𝑅𝑅𝑗𝑗𝑗𝑗 = 0,∀𝑘𝑘. However, a relaxation of Eqn. (6), ∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 ≤ 1,∀𝑗𝑗, 
remains valid.  

We note that one can derive additional valid constraints from Eqn. (12). Since for every (𝑗𝑗, 𝑘𝑘) pair, 
we have (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)𝑍𝑍𝑗𝑗𝑗𝑗 ≤ 𝑅𝑅𝑗𝑗𝑗𝑗 , by summing over index 𝑘𝑘 we have ∑ (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)𝑍𝑍𝑗𝑗𝑗𝑗  𝑘𝑘 ≤ ∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 ,∀𝑗𝑗, and since 
∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 ≤ 1,∀𝑗𝑗  we have a knapsack constraint ∑ (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)𝑍𝑍𝑗𝑗𝑗𝑗  𝑘𝑘 ≤ 1,∀𝑗𝑗 , which is equivalent to 
∑ 𝜇𝜇𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗  𝑘𝑘 ≤ 𝛾𝛾𝑗𝑗 ,∀𝑗𝑗. For the pooling problem, this means that cannot turn on too many pipelines from 
a pool if the sum of the lower bounds on flows of those pipelines exceeds pool capacity. In practice, 
this is not the case, since ∑ 𝜇𝜇𝑗𝑗𝑗𝑗𝑘𝑘  will still be smaller than 𝛾𝛾𝑗𝑗  given that (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗) is small, and thus such 
a constraint is unlikely to be active.  

We again consider profit maximization with additional fixed cost terms: 

max� � �� 𝛽𝛽𝑘𝑘𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

− 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖�
𝑗𝑗𝑖𝑖

−� � 𝛼𝛼𝑗𝑗𝑗𝑗F 𝑍𝑍𝑗𝑗𝑗𝑗
𝑘𝑘𝑗𝑗

 (13) 

Eqns. (1) - (3), (5) and (7) - (13) comprise a nonlinear model for the pooling problem with semi-
continuous variables, henceforth referred to as MSC.  

For MSC we also consider the objective of minimizing cost considering penalty for unmet demand. 
Let 𝜑𝜑𝑘𝑘 denote the minimum demand for product 𝑘𝑘 and define a nonnegative continuous variable 𝑈𝑈𝑘𝑘 
for unmet demand for product 𝑘𝑘, we have: 

𝑈𝑈𝑘𝑘 ≥ 𝜑𝜑𝑘𝑘 −� 𝐹𝐹�𝑗𝑗𝑗𝑗
𝑗𝑗

, 𝑘𝑘 (14) 

and the objective function is: 

min� � 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

+ � � 𝛼𝛼𝑗𝑗𝑗𝑗F 𝑍𝑍𝑗𝑗𝑗𝑗
𝑘𝑘𝑗𝑗

+ � 𝛽𝛽𝑘𝑘P𝑈𝑈𝑗𝑗𝑗𝑗
𝑘𝑘

 (15) 

where 𝛽𝛽𝑘𝑘P is the unit penalty for unmet demand for product 𝑘𝑘. 
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2.3. Nontrivial bounds on bilinear terms 

2.3.1 Bounds on flow variables  

Summing over index 𝑖𝑖 for the constraints in Eqn. (5), we obtain: 

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

= 𝑅𝑅𝑗𝑗𝑗𝑗� 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖

, 𝑗𝑗, 𝑘𝑘 (16) 

If we define 𝐹𝐹�𝑗𝑗 as follows: 

𝐹𝐹�𝑗𝑗 = � 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖

,      𝑗𝑗 (17) 

From Eqn. (7) and Eqn. (17), we can re-write Eqn. (16) as: 

𝐹𝐹�𝑗𝑗𝑗𝑗 = 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (18) 

Eqn.(18) is an equality constraint with a bilinear term; it is implied from constraints in both MC  and 
MSC. Note that 𝐹𝐹�𝑗𝑗 is upper bounded by 𝛾𝛾𝑗𝑗  since ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑗𝑗  (see Eqn. (1)) and 𝑅𝑅𝑗𝑗𝑗𝑗 is upper bounded by 
1. Thus, from the right-hand-side (RHS) of Eqn. (18) we know that 𝐹𝐹�𝑗𝑗𝑗𝑗  is upper bounded by 𝛾𝛾𝑗𝑗 . 
However, 𝐹𝐹�𝑗𝑗𝑗𝑗  is also upper bounded by 𝜈𝜈𝑗𝑗𝑗𝑗  since ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗  (see Eqn. (4)), which is typically 
smaller than 𝛾𝛾𝑗𝑗  since, in general, the pipeline capacity from pool to product is significantly smaller 
than the pool capacity. We note that above analysis holds for both MC  and MSC. 

We next examine the lower bounds on both sides of Eqn. (18) for model MSC when 𝑍𝑍𝑗𝑗𝑗𝑗 = 1. We note 
that in MSC, 𝐹𝐹�𝑗𝑗 is also semi-continuous since we have: 

𝐹𝐹�𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (19) 

which is implied by Eqn. (11) and Eqn. (18). In this case, from Eqn. (11) we have 𝐹𝐹�𝑗𝑗𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗; we also 
have 𝐹𝐹�𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗 , and from Eqn. (12) we have 𝑅𝑅𝑗𝑗𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 . We note that from the RHS of Eqn. (18) with 
bounds on 𝐹𝐹�𝑗𝑗 and 𝑅𝑅𝑗𝑗𝑗𝑗 mentioned above, one can only derive the lower bound on 𝐹𝐹�𝑗𝑗𝑗𝑗 as 𝜇𝜇𝑗𝑗𝑗𝑗2 /𝛾𝛾𝑗𝑗 , which 
is smaller (thus less tight) than 𝜇𝜇𝑗𝑗𝑗𝑗  since we have 𝜇𝜇𝑗𝑗𝑗𝑗 < 𝛾𝛾𝑗𝑗 .  

2.3.2 Nontrivial bounds  

Definition 1 Consider a bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦 ≤ 𝑦𝑦U, and 𝑤𝑤 ≤ 𝑤𝑤U. 𝑤𝑤U is said to be a 
nontrivial upper bound on 𝑤𝑤 if 𝑤𝑤U < 𝑥𝑥U𝑦𝑦U. 

Definition 2 Consider a bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ≥ 𝑥𝑥L , 𝑦𝑦 ≥ 𝑦𝑦L , and 𝑤𝑤 ≥ 𝑤𝑤L . 𝑤𝑤L is said to be a 
nontrivial lower bound on 𝑤𝑤 if 𝑤𝑤L > 𝑥𝑥L𝑦𝑦L. 

From Definition 1 and Definition 2, 𝜈𝜈𝑗𝑗𝑗𝑗  can be nontrivial upper bounds on 𝐹𝐹�𝑗𝑗𝑗𝑗 and when 𝑍𝑍𝑗𝑗𝑗𝑗 = 1, 𝜇𝜇𝑗𝑗𝑗𝑗  
can be nontrivial lower bounds on 𝐹𝐹�𝑗𝑗𝑗𝑗 in MSC. 

In this paper we are interested in the set defined as follows: 

𝐒𝐒1 = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦,𝑍𝑍) ∈ ℝ+
3 × {0,1}: 𝑥𝑥L𝑍𝑍 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L𝑍𝑍 ≤ 𝑦𝑦 ≤ 𝑦𝑦U𝑍𝑍,𝑤𝑤L𝑍𝑍 ≤ 𝑤𝑤 ≤ 𝑤𝑤U𝑍𝑍,𝑤𝑤 = 𝑥𝑥𝑥𝑥}  
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with 𝑤𝑤L > 𝑥𝑥L𝑦𝑦L , 𝑤𝑤U < 𝑥𝑥U𝑦𝑦U , and 𝑤𝑤L < 𝑤𝑤U . Set 𝐒𝐒1  contains variables and constraints similar to 
those  in MSC; for a (𝑗𝑗, 𝑘𝑘) pair one can consider 𝐹𝐹�𝑗𝑗𝑗𝑗 as 𝑤𝑤, 𝐹𝐹�𝑗𝑗 as 𝑥𝑥, 𝑅𝑅𝑗𝑗𝑗𝑗 as 𝑦𝑦, 𝑍𝑍𝑗𝑗𝑗𝑗  as 𝑍𝑍, and Eqns. (5), (11), 
(12), and (18) are similar to constraints that define 𝐒𝐒1. 

When 𝑍𝑍 = 1, 𝐒𝐒1 becomes: 

𝐒𝐒1+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥} (20) 

with 𝑤𝑤L  and 𝑤𝑤U  being nontrivial lower and upper bounds on 𝑤𝑤 . When 𝑤𝑤L = 0, 𝐒𝐒1+  represents the 
feasible space of a bilinear term with nontrivial upper bound, which arises in MC . We next discuss 
the implication of nontrivial bounds on the convex relaxation of the bilinear terms. 

2.4. Convex relaxation of bilinear terms 

Global optimization for nonconvex problems involves solving convex relaxations of the original 
problem. Using McCormick inequalities (McCormick 1976) to relax 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with bounds on 𝑥𝑥 and 𝑦𝑦 
defined in 𝐒𝐒1+ we have: 

𝑤𝑤 ≥ 𝑦𝑦L𝑥𝑥 +  𝑥𝑥L𝑦𝑦 − 𝑥𝑥L𝑦𝑦L  (21) 

𝑤𝑤 ≥ 𝑦𝑦U𝑥𝑥 + 𝑥𝑥U𝑦𝑦 − 𝑥𝑥U𝑦𝑦U (22) 

𝑤𝑤 ≤ 𝑦𝑦L𝑥𝑥 + 𝑥𝑥U𝑦𝑦 − 𝑥𝑥U𝑦𝑦L (23) 

𝑤𝑤 ≤ 𝑦𝑦U𝑥𝑥 +  𝑥𝑥L𝑦𝑦 − 𝑥𝑥L𝑦𝑦U (24) 

We define set 𝐒𝐒2+, which is a relaxation of 𝐒𝐒1+, as follows: 

𝐒𝐒2+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U, Eqns.  (21)  −  (24)}  

and set 𝐒𝐒3 = {𝑤𝑤 ∈ ℝ+: 𝑤𝑤 = 𝑤𝑤U}. The feasible spaces defined by 𝐒𝐒1+ ∩  𝐒𝐒3 and 𝐒𝐒2+ ∩  𝐒𝐒3 are shown in 
Figure 1. In the next section, we derive a family of valid linear constraints for 𝐒𝐒1 (thus valid for 𝐒𝐒1+ as 
well) that tightens 𝐒𝐒2+. 

 
Figure 1. Illustrative graph for bilinear terms 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ∈ [1,3],𝑦𝑦 ∈ [1/3,1] and its relaxation when 
the nontrivial upper bound 𝑤𝑤U = 2 is active. The intersection of 𝐒𝐒1+ and 𝐒𝐒3 is the solid curve 𝑥𝑥𝑥𝑥 =
 𝑤𝑤U, and the intersection of 𝐒𝐒2+ and 𝐒𝐒3 is the triangular region defined by the three dashed lines. Note 
that while we have 𝑥𝑥 ∈ [2,3],𝑦𝑦 ∈ [2/3,1]  when 𝑥𝑥𝑥𝑥 =  𝑤𝑤U , Eqns. (21) - (24) that define 𝐒𝐒2+  are 
generated with 𝑥𝑥L = 1, 𝑥𝑥U = 3, 𝑦𝑦L = 1/3,𝑦𝑦U = 1. 
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3. Valid linear constraints  

We first present a family of valid linear constraints for a bilinear term with nontrivial upper and 
lower bounds, show that such constraints are tangent to the hyperbolas that represent the bilinear 
term when one of such bounds is active, and discuss the connections with previous works. We then 
propose methods to generate strong tightening constraints from the family. 

3.1. A family of valid linear constraints 

We present a family of valid linear constraints for 𝐒𝐒1 in Proposition 1. 

Proposition 1 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2𝑍𝑍) ≥ 0  with 𝜎𝜎1 = (√𝑤𝑤L𝑤𝑤U − 𝑤𝑤U)/(𝑤𝑤U − 𝑤𝑤L) , 𝜎𝜎2 =
𝑤𝑤U(𝑤𝑤L − √𝑤𝑤L𝑤𝑤U)/(𝑤𝑤U − 𝑤𝑤L),   and parameter 𝜌𝜌 ≥ 0 is valid for 𝐒𝐒1. 

Proof.  

Since 𝑍𝑍 is binary, we first consider the case where 𝑍𝑍 = 0. In this case, 𝐒𝐒1 becomes: 

𝐒𝐒1− = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ∙ 0 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ∙ 0 ≤ 𝑦𝑦 ≤ 𝑦𝑦U ∙ 0,𝑤𝑤L ∙ 0 ≤ 𝑤𝑤 ≤ 𝑤𝑤U ∙ 0,𝑤𝑤 = 𝑥𝑥𝑥𝑥}  

which is equivalent to: 

𝐒𝐒1− = {(𝑤𝑤, 𝑥𝑥, 𝑦𝑦) ∈ ℝ+
3 : 0 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦 = 0,𝑤𝑤 = 0}  

One can verify 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2𝑍𝑍) ≥ 0  is valid for 𝐒𝐒1−  by inspection since 𝜌𝜌2𝑥𝑥  is 
nonnegative and all other terms are zero. 

We then consider the case where 𝑍𝑍 = 1. In this case, 𝐒𝐒1 becomes 𝐒𝐒1+ in Eqn. (20): 

𝐒𝐒1+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥}  

and the proposed constraint becomes: 

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 0  (25) 

Assuming (𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ 𝐒𝐒1+, we first examine 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦. Since 𝑎𝑎2 ≥ 0 for any 𝑎𝑎 ∈ ℝ,  we have the valid 
inequality (𝜌𝜌√𝑥𝑥 − �𝑤𝑤U𝑦𝑦)2 ≥ 0, which, after expanding the left-hand-side (LHS), we obtain  

𝜌𝜌2𝑥𝑥 − 2𝜌𝜌�𝑤𝑤U𝑥𝑥𝑥𝑥 + 𝑤𝑤U𝑦𝑦 ≥ 0   

and thus 

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 ≥ 2𝜌𝜌�𝑤𝑤U𝑥𝑥𝑥𝑥  (26) 

Since (𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ 𝐒𝐒1+, we have 𝑤𝑤 = 𝑥𝑥𝑥𝑥. Thus, Eqn. (26) can be re-written as  

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 ≥ 2𝜌𝜌√𝑤𝑤U𝑤𝑤  (27) 

With Eqn. (27), we know that the LHS of Eqn. (25) is lower bounded by the following:  

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 2𝜌𝜌�𝑤𝑤U𝑤𝑤 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2)  
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Re-writing the RHS of the above equation in a compact form we have: 

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 2𝜌𝜌(√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2)  (28) 

We next show that the RHS of Eqn. (28) is nonnegative by showing √𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2 ≥ 0 (recall 
that we have 𝜌𝜌 > 0). We first examine the zeros of the following quadratic function w.r.t √𝑤𝑤: 

√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2 = 𝜎𝜎1(√𝑤𝑤)2 + √𝑤𝑤U𝑤𝑤 + 𝜎𝜎2 = 0  (29) 

We note that √𝑤𝑤L is one root for such function, since 

√𝑤𝑤U𝑤𝑤L + 𝜎𝜎1𝑤𝑤L + 𝜎𝜎2 = √𝑤𝑤U𝑤𝑤L +
𝑤𝑤L��𝑤𝑤U𝑤𝑤L−𝑤𝑤U�

𝑤𝑤U−𝑤𝑤L +
𝑤𝑤U�𝑤𝑤L−�𝑤𝑤U𝑤𝑤L�

𝑤𝑤U−𝑤𝑤L =
�𝑤𝑤U𝑤𝑤L�𝑤𝑤U−𝑤𝑤L�+�𝑤𝑤U𝑤𝑤L�𝑤𝑤L−𝑤𝑤U�+𝑤𝑤U𝑤𝑤L−𝑤𝑤U𝑤𝑤L

𝑤𝑤U−𝑤𝑤L = 0   

And √𝑤𝑤U is the other root for such function, since 

√𝑤𝑤U𝑤𝑤U + 𝜎𝜎1𝑤𝑤U + 𝜎𝜎2 = 𝑤𝑤U +
𝑤𝑤U��𝑤𝑤U𝑤𝑤L−𝑤𝑤U�

𝑤𝑤U−𝑤𝑤L +
𝑤𝑤U�𝑤𝑤L−�𝑤𝑤U𝑤𝑤L�

𝑤𝑤U−𝑤𝑤L = 𝑤𝑤U�𝑤𝑤U−𝑤𝑤L�+𝑤𝑤U�𝑤𝑤L−𝑤𝑤U�
𝑤𝑤U−𝑤𝑤L = 0   

We further note that the coefficient of the quadratic term, 𝜎𝜎1, in Eq (29), is negative since 𝑤𝑤L < 𝑤𝑤U 
(see the definition of 𝜎𝜎1 in Proposition 1). Thus, we have 

√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2 ≥ 0  (30) 

for √𝑤𝑤L ≤ √𝑤𝑤 ≤ √𝑤𝑤U , which is equivalent to 𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U  since 0 ≤ √𝑤𝑤L ≤ √𝑤𝑤 ≤ √𝑤𝑤U . 
Combining Eqn. (28) and (30), we have: 

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 2𝜌𝜌(√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 0  (31) 

 is valid for (𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ 𝐒𝐒1+.  

Combining both cases for 𝑍𝑍 = 0 and 𝑍𝑍 = 1, we have  

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2𝑍𝑍) ≥ 0  (32) 

is valid for 𝐒𝐒1.                                 ∎ 

When 𝜌𝜌 > 0, the family of constraints in Eqn. (32) can lead to some strong inequalities, particularly 
when 𝑤𝑤 = 𝑤𝑤L or 𝑤𝑤 = 𝑤𝑤U (i.e., when one of the nontrivial bounds is active).  

Remark 1 When 𝑤𝑤 = 𝑤𝑤U, Eqn. (32) becomes 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 − 2𝜌𝜌𝑤𝑤U ≥ 0. When 𝜌𝜌 > 0, one can easily 
verify that for the branch of the 𝑥𝑥𝑥𝑥 =  𝑤𝑤U hyperbola with both 𝑥𝑥 and 𝑦𝑦 positive, line 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 −
2𝜌𝜌𝑤𝑤U = 0 is tangent to this hyperbola at point (𝑤𝑤U/𝜌𝜌, 𝜌𝜌) (the slope for the tangent line at this point 
is (−𝜌𝜌2/𝑤𝑤U)).  

Remark 2 When 𝑤𝑤 = 𝑤𝑤L , Eqn. (32) becomes 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 − 2𝜌𝜌√𝑤𝑤U𝑤𝑤L ≥ 0 . When 𝜌𝜌 > 0 , one can 
easily verify that for the branch of the 𝑥𝑥𝑥𝑥 =  𝑤𝑤L  hyperbola with both 𝑥𝑥  and 𝑦𝑦 positive, line 𝜌𝜌2𝑥𝑥 +
𝑤𝑤U𝑦𝑦 − 2𝜌𝜌√𝑤𝑤U𝑤𝑤L = 0 is tangent to this hyperbola at point (√𝑤𝑤U𝑤𝑤L/𝜌𝜌, 𝜌𝜌�𝑤𝑤L/𝑤𝑤U) (the slope for the 
tangent line at this point is (−𝜌𝜌2/𝑤𝑤U)).  
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We show an illustrative graph for the proposed constraint and the above two remarks in Figure 2, 
with numerical examples. 

Remark 3 By setting 𝑤𝑤L = 0 and 𝑍𝑍 = 1, from Proposition 1 we have  

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 − 2𝜌𝜌𝜌𝜌 ≥ 0  (33) 

which is valid for  

𝐒𝐒1∗ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥}  (34) 

Set 𝐒𝐒1∗ contains continuous variables only. We note that the variables and constraints involved in 𝐒𝐒1∗ 
are similar to those in MC . Specifically, for a (𝑗𝑗, 𝑘𝑘) pair one can consider 𝐹𝐹�𝑗𝑗𝑗𝑗 as 𝑤𝑤, 𝐹𝐹�𝑗𝑗 as 𝑥𝑥, and 𝑅𝑅𝑗𝑗𝑗𝑗 as 
𝑦𝑦.  

 
Figure 2. Illustrative graph for bilinear terms 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ∈ [1,3],𝑦𝑦 ∈ [1/3,1], and 𝑤𝑤 ∈ [1,2] when 
one of its nontrivial bounds 𝑤𝑤U = 2 or 𝑤𝑤L = 1 is active. The blue curve represents 𝑥𝑥𝑥𝑥 = 2 and the 
black curve represents 𝑥𝑥𝑥𝑥 = 1. Dashed blue and black lines represent the intersection of Eqn. (25) 
and 𝑤𝑤 = 2 and 𝑤𝑤 = 1, respectively, with 𝜌𝜌 = 1. Dotted blue and black lines represent the intersection 
of Eqn. (25) and 𝑤𝑤 = 2 and 𝑤𝑤 = 1, respectively, with 𝜌𝜌 = 2/3. Coordinates for points of tangency are 
shown in parentheses. 

3.2. Generation of strong valid linear constraints 

Eqn. (32) contains infinitely many constraints. We propose methods to generate strong tightening 
constraints. Specifically, given a point (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) ∉ 𝐒𝐒1  obtained from solving an optimization 
problem over a relaxation of 𝐒𝐒1, we determine the value of 𝜌𝜌 to obtain a constraint that cuts off such 
a point.  

3.2.1 Generation based on constraint violation maximization 

We consider the following quadratic optimization problem: 

min𝜌𝜌 𝑓𝑓(𝜌𝜌) = 𝜌𝜌2𝑥𝑥∗ + 𝑤𝑤U𝑦𝑦∗ + 2𝜌𝜌(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗)  (35) 

which has a closed form solution 𝜌𝜌 = −(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗)/𝑥𝑥∗ if 𝑥𝑥∗ > 0. Such 𝜌𝜌 may lead to a constraint 
in Eqn. (32) that is violated by (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗), and the violation, measured by the value of 𝜌𝜌2𝑥𝑥∗ +
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𝑤𝑤U𝑦𝑦∗ + 2𝜌𝜌(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗), is the greatest. We note that the optimal objective function value to the 
optimization problem (35) can be nonnegative. If that is the case, Eqn. (32) will not be able to cut off 
(𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) . To address this issue, we first check the sign of the discriminant of 𝑓𝑓(𝜌𝜌) : 
[4(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗)2 − 4𝑥𝑥∗𝑤𝑤U𝑦𝑦∗] ; if positive, the optimal objective function value to the above 
optimization problem is guaranteed to be negative, and we proceed to generate a constraint 
(otherwise, no constraint will be generated). 

3.2.2 Generation based on solving the minimum distance problem  

The minimum distance problem for constraint generation has been studied (Stubbs and Mehrotra 
1999; Sawaya and Grossmann 2005). Here, we focus on the case where (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) ∈ 𝐒𝐒3 =
{𝑤𝑤 ∈ ℝ+: 𝑤𝑤 = 𝑤𝑤U}, that is, the nontrivial upper bound is active (𝑤𝑤∗ = 𝑤𝑤U if 𝑍𝑍∗ = 1). Of particular 
interest is the point (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) ∈ 𝐒𝐒3 with 𝑥𝑥∗𝑦𝑦∗ < 𝑤𝑤U. Note that such a point is not in 𝐒𝐒1 ∩ 𝐒𝐒3. To 
find a constraint that cuts off (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗), we first find a point (𝑥𝑥,𝑦𝑦)  on the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U that 
has the minimum distance to (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) by considering the following optimization problem: 

min𝑥𝑥,𝑦𝑦{ 
1

𝑥𝑥U − 𝑥𝑥L
|𝑥𝑥 − 𝑥𝑥∗| +

1
𝑦𝑦U − 𝑦𝑦L

|𝑦𝑦 − 𝑦𝑦∗|: 𝑥𝑥𝑥𝑥 = 𝑤𝑤U, 𝑥𝑥 ∈ [𝑥𝑥L, 𝑥𝑥U], 𝑦𝑦 ∈ [𝑦𝑦L,𝑦𝑦U]}  

which can be viewed as minimizing the weighted 1-norm distance between (𝑥𝑥∗,𝑦𝑦∗) and (𝑥𝑥,𝑦𝑦). Note 
that points (𝑥𝑥,𝑦𝑦) on the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U can be represented using (𝑤𝑤U/𝜌𝜌,𝜌𝜌) with 𝜌𝜌 being a variable 
having the same bounds with 𝑦𝑦. When 𝑥𝑥𝑥𝑥 = 𝑤𝑤U with 𝑥𝑥 ≤ 𝑥𝑥U, we have  𝑦𝑦 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U], thus  𝜌𝜌 ∈
[𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]. We rewrite the above optimization problem as:   

min𝜌𝜌{ 
1

𝑥𝑥U − 𝑥𝑥L
�
𝑤𝑤U

𝜌𝜌
− 𝑥𝑥∗� +

1
𝑦𝑦U − 𝑦𝑦L

|𝜌𝜌 − 𝑦𝑦∗|:𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]} (36) 

We claim that the solution to the above problem is the following (see proof in Appendix A): 

(1) If  𝑦𝑦∗ ≤ �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) ≤ 𝑤𝑤U/𝑥𝑥∗ , then 𝜌𝜌 = �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ). 

(2) If  �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) < 𝑦𝑦∗, then 𝜌𝜌 = 𝑦𝑦∗. 

(3) If  �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) > 𝑤𝑤U/𝑥𝑥∗, then 𝜌𝜌 = 𝑤𝑤U/𝑥𝑥∗. 

After obtaining 𝜌𝜌, we have the point (𝑤𝑤U/𝜌𝜌,𝜌𝜌) on the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U that has the minimum distance 
to (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗). We then generate Eqn. (32) with such 𝜌𝜌. Recall that when the nontrivial upper 
bound 𝑤𝑤U is active, Eqn. (32) is tangent to the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U at point (𝑤𝑤U/𝜌𝜌,𝜌𝜌). 

4. Solution methods 

In this section we present different methods for generating the proposed constraints for model MC  
and MSC.  
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4.1. Methods for model MC  

For model MC , we consider the following constraint obtained from summing over index 𝑖𝑖 ∈ 𝐈𝐈∗ ⊆ 𝐈𝐈 
for the constraints in Eqn. (5): 

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐈𝐈∗

= 𝑅𝑅𝑗𝑗𝑗𝑗� 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐈𝐈∗

, 𝑗𝑗, 𝑘𝑘 (37) 

We note that ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ ≤ 𝜈𝜈𝑗𝑗𝑗𝑗  and ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ ≤ 𝛾𝛾𝑗𝑗 , thus from Remark 3, by considering ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗  as 𝑤𝑤 
and ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗  as 𝑥𝑥, we have the following valid constraint for MC : 

𝜌𝜌2 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 − 2𝜌𝜌∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ ≥ 0  (38) 

We next present two constraint generation methods for MC  that determine the value of 𝜌𝜌 and the 
selection of set 𝐈𝐈∗ for Eqn (38). 

4.1.1. Generation at the root node 

Eqn. (38) can be generated at the root node in multiple rounds. At each round, we solve a linear 
relaxation of MC , and generate constraints based on the solution to the relaxed problem. We then 
resolve the relaxed problem with the generated constraints and perform another round of constraint 
generation. 

Let 𝑚𝑚 denote the rounds of constraint generation. Model M𝑚𝑚
C−L contains all constraints in MC , except 

that the nonlinear constraint Eqn. (5) is replaced by: 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 +  𝐹𝐹𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑗𝑗 ,        𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (39) 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 ,        𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (40) 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤  𝐹𝐹𝑖𝑖𝑖𝑖 ,        𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (41) 

M𝑚𝑚
C−L also contains the following constraint: 

𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′
2 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑚𝑚′

∗ + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 − 2𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′ ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑚𝑚′
∗ ≥ 0,          (𝑗𝑗, 𝑘𝑘,𝑚𝑚′) ∈ 𝐂𝐂𝑚𝑚  (42) 

where 𝐂𝐂𝑚𝑚 contains (𝑗𝑗, 𝑘𝑘,𝑚𝑚′) combinations that lead to Eqn. (42) in all previous rounds, and the set 
𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗  is defined as follows: at each round, we solve M𝑚𝑚

C−L and, for each (𝑗𝑗, 𝑘𝑘) pair, define set 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ =
{𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0} . Given the solution to M𝑚𝑚

C−L , we calculate parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗  by solving the following 
optimization problem which is similar to the one in (35): 

min𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗  𝑔𝑔�𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗� = �� 𝐹𝐹𝑖𝑖𝑖𝑖∗
𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑚𝑚

∗
� 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗2 − 2�� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗

𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗

� 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗  

We first check the sign of the discriminant of  𝑔𝑔�𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗�: [4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ �

2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ ]; if 
positive, then there exists a parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 that leads to a constraint in Eqn. (42) violated by the 
current solution to M𝑚𝑚

C−L . We then calculate 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗  (such parameter will 
lead to a constraint that is violated by the current solution to M𝑚𝑚

C−L by the greatest margin). We also 
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update set 𝐂𝐂𝑚𝑚+1, which contains the index for Eqn. (42). We then solve M𝑚𝑚+1
C−L , which contains Eqn. 

(42) that are generated in previous rounds. We repeat until no new constraints are generated or we 
reach the maximum number of constraint generation rounds ( 𝜃𝜃 ). The pseudocode of the 
aforementioned method is given in Algorithm 1. 

 
Algorithm 1. Constraint generation at root node 
Inputs: 𝑐𝑐 = True,𝑚𝑚 = 0, 𝜃𝜃, 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ = ∅, and 𝐂𝐂𝑚𝑚 = ∅ 
While 𝑐𝑐 = True AND 𝑚𝑚 < 𝜃𝜃 do 
  𝑐𝑐 = False 
  Solve M𝑚𝑚

C−L.  
  Read solution 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ , 𝑅𝑅𝑗𝑗𝑗𝑗∗ , and 𝐹𝐹𝑖𝑖𝑖𝑖∗  
  𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ = {𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0} 
  𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚 
  For 𝑗𝑗 ∈ 𝐉𝐉 do 
    For 𝑘𝑘 ∈ 𝐊𝐊 do 

  If 4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ �

2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ > 0 then 
        𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗  

        𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚+1 ∪ {(𝑗𝑗, 𝑘𝑘,𝑚𝑚)} 
        𝑐𝑐 = True 
      End    
    End 
  End 
  𝑚𝑚 = 𝑚𝑚 + 1  
End 
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 , 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ , and 𝐂𝐂𝑚𝑚+1 

We discuss an example to illustrate the procedure of generating the aforementioned constraint and 
its effectiveness. We have 𝐈𝐈 = {I1, I2}, 𝐉𝐉 = {J1}, 𝐊𝐊 = {K1, K2}, 𝐋𝐋 = {L1}, 𝛾𝛾J1 = 3, and the parameters 
given in Table 1.   

Table 1. Parameters for the illustrative example 
 𝛼𝛼𝑖𝑖  𝛽𝛽𝑘𝑘  𝜈𝜈J1,𝑘𝑘  𝜋𝜋𝑖𝑖,L1 𝜓𝜓𝑖𝑖,L1 𝜔𝜔𝑘𝑘 
I1  2 − − 0.5 − − 
I2 1 − − 1 − − 
K1 − 10 2 − 0.75 3 
K2  − 5 1 − 1 3 

Solving the illustrative example with nonlinear model MC  leads to a solution with optimal objective 
function value of 20.5. Solving the illustrative example using M0

C−L  leads to a solution with an 
objective function value of 21. The optimal solution to M0

C−L is shown in Figure 3. 



 17 

   
Figure 3. The optimal solution to the illustrative example from solving M0

C−L (index 𝑗𝑗 dropped for 
simplicity).  

We examine the optimal solution for flow to product K2. We have 𝐈𝐈K2,0
∗ = {I2}. Since 4�𝐹𝐹�I2,K2

∗ �2 −
4𝜈𝜈K2𝑅𝑅K2∗ (𝐹𝐹I2∗ ) = 4 − 8/3 > 0 , we calculate 𝜌𝜌K2,0 = 𝐹𝐹�I2,K2

∗ /𝐹𝐹I2∗ = 1/2 , and generate the following 
constraint: 

(1/4)𝐹𝐹I2 + 𝑅𝑅K2 − 𝐹𝐹�I2,K2 ≥ 0  (43) 

In the next round, we solve M1
C−L again after adding Eqn. (43). The optimal objective function value 

now becomes 20.78, which is closer to the objective function value obtained from solving the 
nonlinear model MC  (which is 20.5). Figure 4 shows the intersection of Eqn. (43) with 𝐹𝐹�I2,K2 = 1. 

 
Figure 4. Illustrative graph showing the intersection of Eqn. (43) with 𝐹𝐹�I2,K2 = 1 . Solid curve 
represents 𝐹𝐹I2𝑅𝑅K2 = 𝐹𝐹�I2,K2 in MC ; dashed lines represent Eqn. (39) - (41) in M𝑚𝑚

C−L; point A represents 
(𝐹𝐹I2∗ ,𝑅𝑅K2∗ ) obtained from solving M0

C−L; dot-dashed line represents Eqn. (43).  

4.1.2. Generation using a branch-and-cut framework 

Let 𝑛𝑛 ∈ 𝐍𝐍 = {0,1, … } denote nodes in the B&B tree with 𝑛𝑛 = 0 being the root node. At each node, we 
solve M𝑛𝑛

C−L  which contains all constraints in MC , except that the nonlinear constraint Eqn. (5) is 
replaced by: 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗 +  𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L  (44) 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗 +  𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U  (45) 
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𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗 +  𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L  (46) 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗 +  𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U  (47) 

where 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L /𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U  and 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L /𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U  are lower/upper bounds on 𝐹𝐹𝑖𝑖𝑖𝑖  and 𝑅𝑅𝑗𝑗𝑗𝑗  at node 𝑛𝑛, respectively. For 
the root node, we have 𝐹𝐹𝑖𝑖𝑖𝑖,0

L = 0, ∀𝑖𝑖, 𝑗𝑗, 𝐹𝐹𝑖𝑖𝑖𝑖,0
U = 𝛾𝛾𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗 , 𝑅𝑅𝑗𝑗𝑗𝑗,0

L = 0 ∀𝑗𝑗, 𝑘𝑘, and 𝑅𝑅𝑗𝑗𝑗𝑗,0
U = 1,∀𝑗𝑗, 𝑘𝑘 . The 

values of 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L /𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U  and 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L /𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U  will be updated when new nodes are generated.  

In addition, M𝑛𝑛
C−L also contains the following constraint: 

𝜌𝜌𝑗𝑗𝑗𝑗𝑛𝑛′
2 � 𝐹𝐹𝑖𝑖𝑖𝑖

𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′
∗

+ 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 − 2𝜌𝜌𝑗𝑗𝑗𝑗𝑛𝑛′� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′

∗
≥ 0,            (𝑗𝑗, 𝑘𝑘,𝑛𝑛′) ∈ 𝐂𝐂�𝑛𝑛 (48) 

where 𝐂𝐂�𝑛𝑛 contains (𝑗𝑗, 𝑘𝑘,𝑛𝑛′) combinations that lead to Eqn. (48) in all previous nodes. For subsets 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ , 
at each node we solve M𝑛𝑛

C−L and, for each (𝑗𝑗, 𝑘𝑘) pair, define 𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛∗ = {𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0}. 

We generate Eqn. (48) using Algorithm 2, with the optimal solution to M𝑛𝑛
C−L  used as inputs. In 

Algorithm 2 we check if the nonlinear constraints in MC  are satisfied; if not, we aim to generate 
constraints that cut off the current optimal solution to M𝑛𝑛

C−L. For constraint generation, for each (𝑗𝑗, 𝑘𝑘) 
pair we again define subsets 𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛∗  and check the sign of [4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ �
2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ ] ; if 
positive, we calculate parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ . 

We note that Eqn. (48) is globally valid, since different variable bounds at different nodes will only 
affect the possible value of 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 , and from Proposition 1, constraints in the form of Eqn. (48) are valid 
for bilinear term ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′

∗ = 𝑅𝑅𝑗𝑗𝑗𝑗 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′
∗  with nontrivial upper bound 𝜈𝜈𝑗𝑗𝑗𝑗  regardless of the 

value of 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 . 
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Algorithm 2. Generating constraints at nodes 
Inputs: 𝑛𝑛, 𝜈𝜈𝑗𝑗𝑗𝑗 ,𝐹𝐹𝑖𝑖𝑖𝑖∗ ,𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ , and 𝐂𝐂�𝑛𝑛 
𝑐𝑐1 = True, 𝑐𝑐2 = False 
For 𝑗𝑗 ∈ 𝐉𝐉 do 
  For 𝑘𝑘 ∈ 𝐊𝐊 do 
    𝑐𝑐3 = False 

For 𝑖𝑖 ∈ 𝐈𝐈 do 
  If 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ ≠ 𝐹𝐹𝑖𝑖𝑖𝑖∗ 𝑅𝑅𝑗𝑗𝑗𝑗∗  then 
    𝑐𝑐1 = False 
    𝑐𝑐3 = True 
    Break 
  End 
End     

    𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ = {𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0} 

If 𝑐𝑐3 = True AND 4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ �

2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ > 0 then 
      𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗  

      𝐂𝐂�𝑛𝑛 = 𝐂𝐂�𝑛𝑛 ∪ {(𝑗𝑗, 𝑘𝑘,𝑛𝑛)} 
      𝑐𝑐2 = True 
    End    
  End 
End  
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 , 𝑐𝑐1, 𝑐𝑐2, 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ , and 𝐂𝐂�𝑛𝑛 

We present a customized branch-and-cut (B&C) algorithm that integrates Algorithm 2 within a B&C 
framework in Figure 5. We start with the solution to the relaxation at the root node (M0

C−L) with 
objective function value 𝑍𝑍0∗. The list of open nodes (node list) contains only the root node, and set 𝐂𝐂�0 
is empty. 𝑍𝑍0∗  is the initial upper bound on the objective function value (UB), and the initial lower 
bound on the objective function value (LB) is set to zero since a trivial feasible solution exists with all 
variables being zero. We select a node 𝑛𝑛 in the node list, read its solution and run Algorithm 2. After 
running Algorithm 2, if all nonlinear constraints in MC are satisfied (i.e., 𝑐𝑐1 = True), then this solution 
is a feasible solution to MC; if new constraints are generated in Algorithm 2 (i.e., 𝑐𝑐2 = True), then we 
add them to M𝑛𝑛

C−L and solve it again. Note that set 𝐂𝐂�𝑛𝑛 for Eqn. (48) is updated in Algorithm 2, and 
constraints in Eqn. (48), once generated, will be included in all later nodes. After updating the 
solution to M𝑛𝑛

C−L, we perform local search to find a feasible solution to MC, using a local nonlinear 
solver, with the solution to M𝑛𝑛

C−L as the initial point. After the local search, we update LB (if applicable) 
and then perform branching. Two child nodes are generated through branching, and the relaxations 
associated with them are solved right after branching. Such relaxations contain all constraints in the 
parent node (including Eqn. (48)). The details for the implemented node selection rule, local search, 
prune rule, and branching strategy can be found in Appendix B. The algorithm terminates when (1) 
the optimality gap, defined as (1 − 𝐿𝐿𝐿𝐿/𝑈𝑈𝑈𝑈), is within a chosen tolerance (𝜀𝜀), or (2) the maximum 
number of processed nodes (𝜃𝜃�) has been reached.  



 20 

Finally, while the B&C algorithm introduced above can be used to solve the pooling problem, we note 
that, since the constraints in Eqn. (48) are globally valid, it can also be utilized as a preprocessing 
algorithm to generate valid constraints whose indices are stored in set 𝐂𝐂�𝑛𝑛 with 𝑛𝑛 being, essentially, 
the last node that has been processed.  

 
Figure 5. Flowchart of the customized B&C algorithm. 

4.2. Methods for model MSC 

4.2.1. Generation at the root node 

For model MSC, we generate the following constraint at the root node: 

𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′
2 𝐹𝐹�𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 + 2𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗 + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗� ≥ 0,         (𝑗𝑗, 𝑘𝑘,𝑚𝑚′) ∈ 𝐂𝐂𝑚𝑚 (49) 

where 𝜎𝜎𝑗𝑗𝑗𝑗,1 = (�𝜇𝜇𝑗𝑗𝑗𝑗𝜈𝜈𝑗𝑗𝑗𝑗 − 𝜈𝜈𝑗𝑗𝑗𝑗)/(𝜈𝜈𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑗𝑗𝑗𝑗), 𝜎𝜎𝑗𝑗𝑗𝑗,2 = 𝜈𝜈𝑗𝑗𝑗𝑗(𝜇𝜇𝑗𝑗𝑗𝑗 − �𝜇𝜇𝑗𝑗𝑗𝑗𝜈𝜈𝑗𝑗𝑗𝑗)/(𝜈𝜈𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑗𝑗𝑗𝑗). 

We consider model M𝑚𝑚
SC−L  which contains all constraints in model MSC , except that the nonlinear 

constraint Eqn. (5) is replaced by Eqn. (39) - (41). M𝑚𝑚
SC−L also contains Eqn. (49). 

We first present Algorithm 3 that generates constraints based on maximizing constraint violation. At 
each round of constraint generation, we solve the continuous relaxation of M𝑚𝑚

SC−L (in which 𝑍𝑍𝑗𝑗𝑗𝑗 ∈
[0,1]), and, similar to Algorithm 1, for each (𝑗𝑗, 𝑘𝑘) pair, we check the sign of [4�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗ �

2 −
4𝜈𝜈𝑗𝑗𝑗𝑗𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗ ]; if positive, we calculate parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = −(𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗ )/𝐹𝐹�𝑗𝑗∗ and generate Eqn. 
(49). We repeat until no new constraints are generated or we reach the maximum number of 
constraint generation rounds. 
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Algorithm 3. Constraint generation from maximizing violation  
Inputs: 𝑐𝑐 = True,𝑚𝑚 = 0, 𝜃𝜃, and 𝐂𝐂𝑚𝑚 = ∅ 
While 𝑐𝑐 = True AND 𝑚𝑚 < 𝜃𝜃 do 
  𝑐𝑐 = False 
  Solve the continuous relaxation of M𝑚𝑚

SC−L.  
  Read solution 𝐹𝐹�𝑗𝑗∗,𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝐹𝐹�𝑗𝑗𝑗𝑗∗ ,𝑍𝑍𝑗𝑗𝑗𝑗∗  
  𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚 
  For 𝑗𝑗 ∈ 𝐉𝐉 do 
    For 𝑘𝑘 ∈ 𝐊𝐊 do 

  If 4�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗ �
2 − 4𝜈𝜈𝑗𝑗𝑗𝑗𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗ > 0 then 

        𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚+1 ∪ {(𝑗𝑗, 𝑘𝑘,𝑚𝑚)}  
        𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = −(𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗ )/𝐹𝐹�𝑗𝑗∗ 
        𝑐𝑐 = True 
      End    
    End 
  End 
  𝑚𝑚 = 𝑚𝑚 + 1  
End 
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 and 𝐂𝐂𝑚𝑚+1 

Similarly, Algorithm 4 generates constraints by solving the continuous relaxation of M𝑚𝑚
SC−L iteratively, 

but based on solving the minimum distance problem. After solving the continuous relaxation of 
M𝑚𝑚
SC−L, for each (𝑗𝑗, 𝑘𝑘) pair we check the following two conditions: (1) 𝐹𝐹�𝑗𝑗𝑗𝑗∗ = 𝜈𝜈𝑗𝑗𝑗𝑗 , and (2) 𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗ < 𝐹𝐹�𝑗𝑗𝑗𝑗∗ . 

If both conditions hold, that means the nontrivial upper bound is active and the nonlinear constraint 
is violated. We calculate 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 by solving the minimum distance problem discussed in section 3.2.2. 
Note that when 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗  we have 𝐹𝐹�𝑗𝑗 ∈ �𝜈𝜈𝑗𝑗𝑗𝑗 , 𝛾𝛾𝑗𝑗�,𝑅𝑅𝑗𝑗𝑗𝑗 ∈ [𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , 1]. Thus, we calculate 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 as follows: 

(1) If  𝑅𝑅𝑗𝑗𝑗𝑗∗ ≤ �𝜈𝜈𝑗𝑗𝑗𝑗(1 − 𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)/(𝛾𝛾𝑗𝑗 − 𝜈𝜈𝑗𝑗𝑗𝑗  ) = �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗ , then 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 . 

(2) If  𝑅𝑅𝑗𝑗𝑗𝑗∗ > �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , then 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑅𝑅𝑗𝑗𝑗𝑗∗ . 

(3) If �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 > 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗, then 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗. 
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Algorithm 4. Constraint generation from minimizing distance 
Inputs: 𝑐𝑐 = True,𝑚𝑚 = 0, 𝜃𝜃, and 𝐂𝐂𝑚𝑚 = ∅ 
While 𝑐𝑐 = True AND 𝑚𝑚 < 𝜃𝜃 do 
  𝑐𝑐 = False 
  Solve the continuous relaxation of M𝑚𝑚

SC−L.  
  Read solution 𝐹𝐹�𝑗𝑗∗,𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝐹𝐹�𝑗𝑗𝑗𝑗∗ ,𝑍𝑍𝑗𝑗𝑗𝑗∗  
  𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚 
  For 𝑗𝑗 ∈ 𝐉𝐉 do 
    For 𝑘𝑘 ∈ 𝐊𝐊 do 

  If 𝐹𝐹�𝑗𝑗𝑗𝑗∗ = 𝜈𝜈𝑗𝑗𝑗𝑗  AND 𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗ < 𝐹𝐹�𝑗𝑗𝑗𝑗∗  then 
        𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚+1 ∪ {(𝑗𝑗, 𝑘𝑘,𝑚𝑚)}  
        If 𝑅𝑅𝑗𝑗𝑗𝑗∗ ≤ �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗ then 
          𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗  
        Else If 𝑅𝑅𝑗𝑗𝑗𝑗∗ > �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗  then 
          𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑅𝑅𝑗𝑗𝑗𝑗∗  
        Else 
          𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗ 
        End 
      End    
    End 
  End 
  𝑚𝑚 = 𝑚𝑚 + 1  
End 
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 and 𝐂𝐂𝑚𝑚+1 

4.2.2. Generation using predefined parameters 

Since for a given parameter 𝜌𝜌  we have one valid constraint, we can generate constraints with a 
predefined set of values of 𝜌𝜌. Specifically, we have the following: 

𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗2 𝐹𝐹�𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 + 2𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗 + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗� ≥ 0, 𝑗𝑗, 𝑘𝑘, 𝑜𝑜 ∈ 𝐎𝐎 (50) 

where 𝐎𝐎 = {0,1, … . }  is the index of constraints for a given (𝑗𝑗, 𝑘𝑘)  pair, and 𝜌𝜌𝑗𝑗𝑗𝑗𝑜𝑜  is a predefined 
parameter. Eqn. (50) is generated without solving any optimization problem. Recall that for a given 
(𝑗𝑗, 𝑘𝑘) pair, when 𝐹𝐹�𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗 , Eqn. (50) is tangent to 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗  at the point corresponding to 𝐹𝐹�𝑗𝑗 =
𝜈𝜈𝑗𝑗𝑗𝑗/𝜌𝜌,𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜌𝜌. Note that when 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗 , we have 𝑅𝑅𝑗𝑗𝑗𝑗 ∈ [𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , 1], thus one straightforward way 
to define 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 is the following: 

𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 + 𝑜𝑜(1 − 𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)/|𝐎𝐎|, 𝑗𝑗, 𝑘𝑘 (51) 

Eqn. (51) generates values of 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗  evenly distributed in [𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , 1]. We show an illustrative graph for 
the points of tangency on bilinear curve generated from such 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗  in Figure 6. 
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Figure 6. Illustrative graph for points (𝜈𝜈𝑗𝑗𝑗𝑗/𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 ,𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗) on curve 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗  with 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 generated from 
Eqn. (51) with |𝐎𝐎| = 8 (indices 𝑗𝑗 and 𝑘𝑘 are dropped in the graph for simplicity). 

5. Computational results 

In this section, we present computational results for models employing the proposed constraint 
generation methods. Computational experiments are conducted on a Windows 10 machine with Intel 
Core i5 at 2.70 GHz and 8 GB of RAM. Models are coded in GAMS 30.3 and solved using the global 
optimization solver BARON 19.12.7. We also provide computational results obtained using Gurobi 
9.0 in Appendix C. For all runs, CPU time limit is set at 300 seconds and the tolerance for relative 
optimality gap is set at 0.01%. Instances are modified from the 90 randomly generated instances in 
D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011), which are included in QPLIB, a library 
of quadratic programming instances (Furini et al. 2019). The 90 instances contain 15 streams, 5 – 10 
pools, 10 products, and 1 – 4 properties. All parameters defined in MC  are taken from those 90 
instances. There are several parameters defined in those 90 instances that are not defined in this 
paper, we do not consider those parameters. For MSC , most parameters are defined in those 90 
instances, except for the lower bound on the positive flow 𝜇𝜇𝑗𝑗𝑗𝑗 . We set 𝜇𝜇𝑗𝑗𝑗𝑗  to a fraction of the pipeline 
capacity 𝜈𝜈𝑗𝑗𝑗𝑗 . More details can be found in the supporting material.  

5.1. Model MC 

We test the proposed constraints generated using different methods, as discussed in section 4. 
Specifically, we consider the following variants of MC: 

1) MR
C : model MC  with Eqn. (42) generated iteratively at the root node; 𝐂𝐂𝑚𝑚  in Eqn. (42) is 

obtained by running Algorithm 1 with 𝜃𝜃 = 10.  
2) MB&C

C : model MC  with Eqn. (48) generated using the B&C algorithm; 𝐂𝐂�𝑛𝑛  in Eqn. (48) is 
obtained by running the algorithm shown in Figure 5 with 𝜃𝜃� = 10.  
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3) MH
C : model MC  with Eqn. (42) and Eqn. (48) generated from a hybrid approach; we first 

obtain 𝐂𝐂𝑚𝑚 for Eqn. (42) by running Algorithm 1 with 𝜃𝜃 = 5 and then obtain 𝐂𝐂�𝑛𝑛 for Eqn. (48) 
by running the B&C algorithm with 𝜃𝜃� = 5 (all M𝑛𝑛

C−L include previously generated Eqn. (42)).  

We show the performance profiles for the instances that satisfy the following two criteria: (1) 
instances are solved to global optimality by at least one of the models within 300 seconds; and (2) 
instances are not solved by the slowest model for that instance within ten seconds. The performance 
profile shown in Figure 7 contains 49 instances that satisfy such criteria, where the horizontal axis is 
the factor for performance ratio (which is defined as the solution time for a model to solve an instance 
over the shortest solution time among all models for the same instance), and the vertical axis is the 
fraction of instances (Dolan and Moré 2002). We note that certain proposed methods, notably MR

C, 
bring substantial computational improvements. Constraint generation for MR

C , MB&C
C , and MH

C  
typically takes 10 - 20 seconds and generates around 100 constraints (time for constraint generation 
is also counted towards the 300 seconds time limit). 

 
Figure 7. Performance profile for MC and its variants solved with BARON. 

There are several tested instances that are not solved by BARON in 300 seconds with the original 
model MC. We solve seven instances among them with the B&C algorithm shown in Figure 5 with 𝜃𝜃� =
100. To demonstrate the effectiveness of the proposed constraints, we also solve the same seven 
instances with a B&B algorithm which is similar to the B&C algorithm but does not include the 
constraint generation part (flowchart can be found in Appendix D). Table 2 shows CPU time and 
optimality gap (1 − 𝐿𝐿𝐿𝐿/𝑈𝑈𝑈𝑈) after 100 nodes have been processed for both B&B and B&C algorithms. 
We also show the optimality gap calculated from the upper and lower bounds on the objective 
function value reported by BARON after 300 seconds. 
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Table 2. Solution statistics for B&B and B&C algorithms over select instances  
Instance B&B B&C BARON 
 Time(s) Gap Time(s) Gap Gap 
1* 75.5 0 30.2 0 1.98% 
2 136.6 0.53% 167.5 0.33% 2.34% 
3 128.6 1.08% 149.6 1.03% 2.13% 
4 132.5 1.63% 142.6 1.12% 1.82% 
5 205.5 0.94% 210.2 0.66% 1.60% 
6 205.9 2.37% 206.5 1.94% 2.80% 
7 200.8 3.16% 200.3 0.52% 0.69% 

* Instance 1 is solved by both B&B and B&C algorithm within 100 nodes, and we show its solution 
time. 
 
We note that for all seven instances after 100 nodes, we obtain smaller optimality gap from B&C 
algorithm compared to B&B algorithm.  

5.2. Model MSC 

We consider the following variants of MSC: 
1) MV

SC: model MSC with Eqn. (49) generated using Algorithm 3 with 𝜃𝜃 = 10.  
2) MD

SC: model MSC with Eqn. (49) generated using Algorithm 4 with 𝜃𝜃 = 10. 
3) MP

SC: MSC with Eqn. (50) expressed for predefined parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑜𝑜 calculated from Eqn. (51) 
with |𝐎𝐎| = 10.  

We again tested the above three models over 90 modified instances and show, in Figure 8, the 
performance profile generated from the 36 instances satisfying the two aforementioned criteria.  

 
Figure 8. Performance profile for MSC and its variants solved with BARON: profit maximization.  

We also test our methods for MSC  using an objective function where we minimize cost and the 
penalty for unmet demand, defined in (15). Starting from over 90 modified instances, Figure 9 shows 
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the performance profile based on the 35 instances satisfying the aforementioned criteria. It is shown 
that the proposed methods reduce computational requirements.  

For MSC, we observe that MD
SC performs well on both tested objectives, which indicates that solving 

the minimizing distance problem may be a promising approach to generate the proposed constraints. 
For both objectives, MV

SC and MD
SC typically contain around 100 additional constraints generated in 

around 10 seconds, and MP
SC contains around 500 - 1000 additional constraints.  

 
Figure 9. Performance profile for MSC and its variants solved with BARON: cost minimization.  

5.3. Other formulation 

We also test our methods on models based on another pooling formulation, known as the pq-
formulation (Tawarmalani and Sahinidis 2002), in which we have a nonnegative continuous variable 
𝑞𝑞𝑖𝑖𝑖𝑖 ∈ [0,1] for the proportion of stream 𝑖𝑖 within the total outlet flow from pool 𝑗𝑗, and the following 
nonlinear constraint: 

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖𝐹𝐹�𝑗𝑗𝑗𝑗 , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (52) 

Summing over index 𝑘𝑘 for Eqn. (52), we obtain: 

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝑞𝑞𝑖𝑖𝑖𝑖� 𝐹𝐹�𝑗𝑗𝑗𝑗
𝑘𝑘

, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (53) 

Note that the LHS of Eqn. (53) is upper bounded by the pipeline capacity between stream 𝑖𝑖 and pool 
𝑗𝑗, which can be a nontrivial upper bound since the RHS of Eqn. (53) is bounded by the capacity of pool 
𝑗𝑗. The model based on pq-formulation contains only continuous variables, and it is referred to as 
MC−PQ. We consider the following variants of MC−PQ: 
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1) MR
C−PQ: model MC−PQ  with constraints similar to those in Eqn. (42), generated at the root 

node iteratively through a procedure similar to Algorithm 1 with 𝜃𝜃 = 10.  
2) MP

C−PQ : model MC−PQ  with constraints similar to those in Eqn. (50) generated using pre-
determined parameter 𝜌𝜌 values calculated from an equation similar to Eqn. (51) with |𝐎𝐎| =
10.  

We show a performance profile containing 33 instances in Figure 10. For model MC−PQ we observe 
improvement with adding the proposed constraints. The number of constraints generated and the 
time needed to generate them are similar to previous models. 

 
Figure 10. Performance profile for MC−PQ and its variants solved with BARON: profit maximization.  

6. Conclusion 

We derived a family of strong valid linear constraints for bilinear terms with nontrivial bounds. The 
proposed constraints are valid for the case where binary and semi-continuous variables are involved. 
We proposed different methods for generating strong constraints from the family, including 
generation based on constraint violation maximization and solving the minimum distance problem. 
We tested the generated constraints on the pooling problem. Computational results demonstrate the 
effectiveness of the proposed methods in terms of reducing the optimality gap and computational 
time.  
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Appendix A.  Solving the minimum distance problem 

Consider the following optimization problem: 

min𝜌𝜌{ 
1

𝑥𝑥U − 𝑥𝑥L
�
𝑤𝑤U

𝜌𝜌
− 𝑥𝑥∗� +

1
𝑦𝑦U − 𝑦𝑦L

|𝜌𝜌 − 𝑦𝑦∗|:𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]} (36) 

 where 𝑥𝑥∗𝑦𝑦∗ < 𝜈𝜈 . Note that the above optimization problem is solved when the nontrivial upper 
bound is active, in such case we have 𝑥𝑥∗ ∈ [𝑤𝑤U/𝑦𝑦U, 𝑥𝑥U] and 𝑦𝑦∗ ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U].  We claim that the 
solution to the above problem is the following: 

(1) If  𝑦𝑦∗ ≤ �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) ≤ 𝑤𝑤U/𝑥𝑥∗ , then 𝜌𝜌 = �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ). 

(2) If  �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) < 𝑦𝑦∗, then 𝜌𝜌 = 𝑦𝑦∗. 

(3) If  �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) > 𝑤𝑤U/𝑥𝑥∗, then 𝜌𝜌 = 𝑤𝑤U/𝑥𝑥∗. 

Proof We discuss the above three cases separately. 

(1) When 𝑦𝑦∗ ≤ 𝜌𝜌 = �𝜈𝜈(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) ≤ 𝜈𝜈/𝑥𝑥∗ , we check the sign of (𝑤𝑤
U

𝜌𝜌
− 𝑥𝑥∗) and (𝜌𝜌 − 𝑦𝑦∗); 

we have 𝑤𝑤U/𝜌𝜌 − 𝑥𝑥∗ ≥ 𝑤𝑤U/(𝑤𝑤U/𝑥𝑥∗) − 𝑥𝑥∗ ≥ 𝑥𝑥∗ − 𝑥𝑥∗ ≥ 0 and 𝜌𝜌 − 𝑦𝑦∗ ≥ 0, thus the above optimization 
problem is equivalent to: 

min𝜌𝜌{ 
1

𝑥𝑥U − 𝑥𝑥L
�
𝑤𝑤U

𝜌𝜌
− 𝑥𝑥∗� +

1
𝑦𝑦U − 𝑦𝑦L

(𝜌𝜌 − 𝑦𝑦∗):𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]}  

which, after dropping constant terms, becomes:  

min𝜌𝜌 {
1

𝑥𝑥U − 𝑥𝑥L
∙
𝑤𝑤U

𝜌𝜌
+

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝜌𝜌:𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]}  
 

(54) 

Furthermore, since 𝜌𝜌 > 0 we have the following valid inequality: 

(�
1

𝑥𝑥U − 𝑥𝑥L
∙
𝑤𝑤U

𝜌𝜌
− �

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝑤𝑤U)2 ≥ 0  

which is equivalent to: 

1
𝑥𝑥U − 𝑥𝑥L

∙
𝑤𝑤U

𝜌𝜌
− 2�

𝑤𝑤U

(𝑥𝑥U − 𝑥𝑥L)(𝑦𝑦U − 𝑦𝑦L)
+

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝑤𝑤U ≥ 0  

and thus we have: 

 
1

𝑥𝑥U − 𝑥𝑥L
∙
𝑤𝑤U

𝜌𝜌
+

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝑤𝑤U ≥ 2�
𝑤𝑤U

(𝑥𝑥U − 𝑥𝑥L)(𝑦𝑦U − 𝑦𝑦L)
  

 

(55) 
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Eqn. (55) holds as equality when 𝜌𝜌 = �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) and by construction such 𝜌𝜌 is in the 
range of [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]  (since 𝑤𝑤U/𝑥𝑥U ≤ 𝑦𝑦∗ ≤ 𝜌𝜌 , and 𝜌𝜌 ≤ 𝑤𝑤U/𝑥𝑥∗ ≤ 𝑤𝑤U/(𝑤𝑤U/𝑦𝑦U) ≤ 𝑦𝑦U ). Thus, 𝜌𝜌 =
�𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) is the solution to (36) when 𝑦𝑦∗ ≤ �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) ≤ 𝑤𝑤U/𝑥𝑥∗. 

(2) We first assume that the optimal solution to (36) is 𝜌𝜌∗ < 𝑦𝑦∗ . If that is the case, we also have 
𝑤𝑤U/𝜌𝜌∗ > 𝑤𝑤U/𝑦𝑦∗ > 𝑥𝑥∗ since 𝑥𝑥∗𝑦𝑦∗ < 𝑤𝑤U. It follows that such 𝜌𝜌∗ is not an optimal solution to (36) since 
there exists 𝜀𝜀 > 0 such that (𝜌𝜌∗ + 𝜀𝜀) leads to smaller value for both �𝑤𝑤U/𝜌𝜌∗ − 𝑥𝑥∗� and |𝜌𝜌∗ − 𝑦𝑦∗|. 

We next assume that the optimal solution to (36) is 𝜌𝜌∗ > 𝑦𝑦∗. If that is the case, we first note that 
𝑤𝑤U/𝜌𝜌∗ > 𝑥𝑥∗ should hold since otherwise there exists 𝜀𝜀 > 0 such that (𝜌𝜌∗ − 𝜀𝜀) leads to the objective 
function value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗ − 𝜀𝜀)/(𝑦𝑦U − 𝑦𝑦L), which is smaller than the 
previous objective function value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗)/(𝑦𝑦U − 𝑦𝑦L). Now, since 
𝜌𝜌∗ > 𝑦𝑦∗  and 𝑤𝑤U/𝜌𝜌∗ > 𝑥𝑥∗ , we again have the optimization problem defined in (36) with 𝜌𝜌∗ =
�𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) < 𝑦𝑦∗ , which contradicts with 𝜌𝜌∗ > 𝑦𝑦∗.  Thus, the optmizal solution can 
only be 𝜌𝜌∗ = 𝑦𝑦∗.  

(3) We first assume the optimal solution to (36) is 𝜌𝜌∗ > 𝑤𝑤U/𝑥𝑥∗.  If that is the case, we also have  𝜌𝜌∗ >
𝑦𝑦∗ since 𝑥𝑥∗𝑦𝑦∗ < 𝑤𝑤U. It follows that such 𝜌𝜌∗ is not an optimal solution to (36) since there exists 𝜀𝜀 > 0 
such that (𝜌𝜌∗ + 𝜀𝜀) leads to smaller value for both �𝑤𝑤U/𝜌𝜌∗ − 𝑥𝑥∗� and |𝜌𝜌∗ − 𝑦𝑦∗|. 

We next assume the optimal solution to (36) is 𝜌𝜌∗ < 𝑤𝑤U/𝑥𝑥∗. If that is the case, we first note that  𝜌𝜌∗ >
𝑦𝑦∗ should hold since otherwise there exists 𝜀𝜀 > 0 such that (𝜌𝜌∗ + 𝜀𝜀) leads to the objective function 
value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗ − 𝜀𝜀)/(𝑦𝑦U − 𝑦𝑦L). which is smaller than the previous 
objective function value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗)/(𝑦𝑦U − 𝑦𝑦L) . Now, since 𝜌𝜌∗ <
𝑤𝑤U/𝑥𝑥∗  and 𝜌𝜌∗ > 𝑦𝑦∗ , we again have the optimization problem defined in (36) with 𝜌𝜌∗ =
�𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L ) > 𝑤𝑤U/𝑥𝑥∗ , which contradicts with 𝜌𝜌∗ < 𝑤𝑤U/𝑥𝑥∗.  Thus, the optmizal 
solution can only be 𝜌𝜌∗ = 𝑤𝑤U/𝑥𝑥∗.                        ∎ 

Appendix B.  Details of B&C algorithm 

Node selection: we select the node 𝑛𝑛 with the maximum objective function value: 𝑛𝑛 = arg max𝑛𝑛′ 𝑍𝑍𝑛𝑛′
∗ . 

If there are multiple nodes with the same maximum objective function value, we select the node with 
the smallest index. 

Local search at node 𝑛𝑛: we solve MC  using CONOPT, with the initial point being the solution to M𝑛𝑛
C−L.  

Prune rule: we remove all nodes with 𝑍𝑍𝑛𝑛∗ < 𝐿𝐿𝐿𝐿 from the node list. 

Branching strategy at node 𝑛𝑛: we branch on variable 𝑅𝑅𝑗𝑗𝑗𝑗 only (note that for MC , branching only on 
either 𝑅𝑅𝑗𝑗𝑗𝑗  or 𝐹𝐹𝑖𝑖𝑖𝑖  can guarantee 𝜀𝜀 − optimality, see Epperly and Pistikopoulos (Epperly and 
Pistikopoulos 1997) for details). We first identify the (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) combination that corresponds to the 
most violated nonlinear constraint: (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = arg max𝑖𝑖′𝑗𝑗′𝑘𝑘′ |𝐹𝐹�𝑖𝑖′𝑗𝑗′𝑘𝑘′

∗ − 𝐹𝐹𝑖𝑖′𝑗𝑗′
∗ 𝑅𝑅𝑗𝑗′𝑘𝑘′

∗ | , where 
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𝐹𝐹�𝑖𝑖′𝑗𝑗′𝑘𝑘′
∗ ,𝐹𝐹𝑖𝑖′𝑗𝑗′

∗ , and 𝑅𝑅𝑗𝑗′𝑘𝑘′
∗  are obtained from solving M𝑛𝑛

C−L . Once the specific (𝑖𝑖, 𝑗𝑗, 𝑘𝑘)  is identified, we 
evaluate the following equation: 𝛿̂𝛿𝑗𝑗𝑗𝑗 = �𝑅𝑅𝑗𝑗𝑗𝑗∗ − (𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U − 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L )/2�. Parameter 𝛿̂𝛿𝑗𝑗𝑗𝑗  aims to quantify the 
distance between 𝑅𝑅𝑗𝑗𝑗𝑗∗  and the midpoint for its range. We branch on 𝑅𝑅𝑗𝑗𝑗𝑗 corresponds to the smallest 
𝛿̂𝛿𝑗𝑗𝑘𝑘 . For branching, the break point is at the variable value in the solution to M𝑛𝑛

C−L; in other words, at 
node 𝑛𝑛, the range for 𝑅𝑅𝑗𝑗𝑗𝑗 in the two resulting nodes are [𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L ,𝑅𝑅𝑗𝑗𝑗𝑗∗ ] and [𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U ], respectively. 

Appendix C. Computational results for Gurobi 

We provide results obtained using Gurobi 9.0 for select models and their variants below. Models are 
again coded in GAMS 30.3 and Gurobi is called from GAMS. The Gurobi input parameter NonConvex 
is set to 2 so that models “are solved by … applying spatial branching”, according to Gurobi’s online 
documentation.  

Tested instances are again modified from D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 
2011), with detailed files included in supporting material. Instances that satisfy the two criteria 
described in section 5.1 are included in the performance profiles below. All models are defined in 
section 5, except for model MP

C, which is a variant of model MC with constraints similar to those in 
Eqn. (50) generated using pre-determined parameter 𝜌𝜌 values calculated from an equation similar 
to Eqn. (51) with |𝐎𝐎| = 10. 

Performance profiles in three figures below contain 27, 10, and 22 instances, respectively. Overall, 
we see that the constraints proposed in this paper can improve the performance of Gurobi as well. 

 
Figure 11. Performance profile for MC and its variants solved with Gurobi. 
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Figure 12. Performance profile for MC−PQ and its variant solved with Gurobi: profit maximization. 

 
Figure 13. Performance profile for MSC and its variant solved with Gurobi: profit maximization. 
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Appendix D. B&B algorithm 

 
Figure 14. Flowchart for the customized B&B algorithm. 
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