
 1

Tightening Methods Based on Nontrivial Bounds on Bilinear Terms
Yifu Chen,a Christos T. Maraveliasb*

a. Department of Chemical and Biological Engineering, University of Wisconsin-Madison
1415 Engineering Dr., Madison, WI 53706, USA

b. Department of Chemical & Biological Engineering and Andlinger Center for Energy and the Environment
Princeton University, 86 Olden Street, Princeton, NJ 08544, USA

*Corresponding author: maravelias@princeton.edu

Abstract

We develop tightening and solution methods for optimization problems containing bilinear terms.
We focus on the bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with nonnegative variables 𝑥𝑥 ∈ [𝑥𝑥L, 𝑥𝑥U] and 𝑦𝑦 ∈ [𝑦𝑦L,𝑦𝑦U] ,
where 𝑤𝑤 is semi-continuous and upper and lower bounded by 𝑤𝑤U and 𝑤𝑤L when positive. 𝑤𝑤U and 𝑤𝑤L
are said to be nontrivial upper and lower bounds if 𝑤𝑤U is smaller than 𝑥𝑥U𝑦𝑦U and 𝑤𝑤L is greater than
𝑥𝑥L𝑦𝑦L, respectively. We derive a family of valid linear constraints and show that, when one of the
nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that
represents the bilinear term. We propose different preprocessing methods for generating strong
constraints from the family. Computational results demonstrate the effectiveness of the proposed
methods in terms of reducing optimality gap and computational time.

Keywords: Preprocessing, Nonlinear Optimization, Nonconvex Optimization, Semi-Continuous
Variables, Valid Constraints

 2

List of Symbols

Indices/Sets
𝑖𝑖 ∈ 𝐈𝐈: Inputs (Streams)
𝑗𝑗 ∈ 𝐉𝐉: Pools
𝑘𝑘 ∈ 𝐊𝐊: Products
𝑙𝑙 ∈ 𝐋𝐋: Properties

Parameters
𝛼𝛼𝑖𝑖: Unit cost of stream 𝑖𝑖
𝛼𝛼𝑗𝑗𝑗𝑗F : Fixed cost for flow between pool j and product k
𝛽𝛽𝑘𝑘: Price of product k
𝛽𝛽𝑘𝑘P : Unit penalty for unmet demand for product k
𝛾𝛾𝑗𝑗: Capacity of pool j
𝜇𝜇𝑗𝑗𝑗𝑗: Lower bound on positive flow between pool j and product k
𝜈𝜈𝑗𝑗𝑗𝑗: Capacity of the pipeline between pool j and product k
𝜋𝜋𝑖𝑖𝑖𝑖 : Value of property 𝑙𝑙 for stream 𝑖𝑖
𝜓𝜓𝑘𝑘𝑘𝑘 : Upper bounding specification for property 𝑙𝑙 for product k
𝜑𝜑𝑘𝑘 : Minimum demand for product k
𝜔𝜔𝑘𝑘 : Maximum demand for product k

Nonnegative continuous variables
𝐹𝐹𝑖𝑖𝑖𝑖: Flow of stream 𝑖𝑖 to pool j
𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖: Flow of stream 𝑖𝑖 from pool j to product k
𝑈𝑈𝑘𝑘: Unmet demand for product k
𝐹𝐹�𝑗𝑗𝑗𝑗: Flow from pool j to product k
𝑅𝑅𝑗𝑗𝑗𝑗: Split fraction for total inlet flows from pool j to product k

Binary variable
𝑍𝑍𝑗𝑗𝑗𝑗: = 1 if there is positive flow from pool j to product k

Models
MC: Model for the pooling problem with only continuous variables
MSC: Model for the pooling problem with semi-continuous variables

 3

1. Introduction

Optimization problems containing bilinear terms have a number of applications in different
industrial sectors, from refining (Wicaksono and Karimi 2008; Gounaris, Misener, and Floudas 2009;
Misener and Floudas 2012; Kolodziej, Castro, and Grossmann 2013; Gupte et al. 2017; Chen and
Maravelias 2020) and wastewater treatment (Bagajewicz 2000; Jeżowski 2010) to mining (Blom et
al. 2014; Blom, Pearce, and Stuckey 2016; Boland et al. 2016). Such problems are important in terms
of the potential economic benefits that can be achieved if solved efficiently (DeWitt et al. 1989; Kelly
and Mann 2003).

One optimization problem containing bilinear terms that has been studied extensively is the pooling
problem, which is a nonconvex optimization problem. First studied by Harvey (Haverly 1978), the
pooling problem continues to be an active research topic (Misener and Floudas 2009; Gupte et al.
2017). Various formulations for the pooling problem have been proposed (Haverly 1978; Ben-Tal,
Eiger, and Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and Haugland
2013; Boland, Kalinowski, and Rigterink 2016), and a number of variants of the pooling problem have
been studied. For example, Meyer and Floudas (Meyer and Floudas 2006) studied the generalized
pooling problem where there can be flows between pools. Misener et al. (Misener, Gounaris, and
Floudas 2010) studied the pooling problem containing complex emission constraints. D’Ambrosio et
al. (D’Ambrosio, Linderoth, and Luedtke 2011) studied valid constraints for the pooling problem with
binary variables.

Solution methods for optimization problems containing bilinear terms have been studied extensively.
One research focus is to tighten the linear relaxation of such problem. For example, Gounaris et al.
studied different piecewise linear relaxation methods for bilinear terms and compared their
computational performance (Gounaris, Misener, and Floudas 2009), Castro proposed piecewise
linear relaxations with variable bounds tightening (Castro 2015), Dey and Gupte analyzed mixed-
integer linear programming (MILP) techniques to address bilinear terms (Dey and Gupte 2015), Chen
and Maravelias utilized information from the given problem parameters to derive valid linear
constraints that tighten the relaxed problem in which bilinear terms are replaced by linear
inequalities (Chen and Maravelias 2020). Nonlinear relaxations of such problem have also been
studied. For example, Kimizuka et al. studied the second order cone relaxation of such problem
(Kimizuka, Kim, and Yamashita 2019) and Luedtke et al. studied a strong convex nonlinear relaxation
derived from extended formulation (Luedtke et al. 2020).

To effectively solve optimization problems containing bilinear terms, one common approach is to
construct convex relaxations of bilinear terms at each node in a branch-and-bound (B&B) algorithm.
Consider the bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with nonnegative variables 𝑥𝑥 ∈ [𝑥𝑥L, 𝑥𝑥U] and 𝑦𝑦 ∈ [𝑦𝑦L,𝑦𝑦U] and the

 4

set 𝐒𝐒 = {(𝑤𝑤, 𝑥𝑥, 𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤 = 𝑥𝑥𝑥𝑥} . Using the method proposed by

McCormick (McCormick 1976) leads to four linear inequalities parameterized by 𝑥𝑥L, 𝑥𝑥U, 𝑦𝑦L, and 𝑦𝑦U;
the four linear inequalities describe the convex hull of 𝐒𝐒.

If 𝑤𝑤 is also upper bounded by a positive parameter 𝑤𝑤U < 𝑥𝑥U𝑦𝑦U, then 𝑤𝑤U is said to be a nontrivial
upper bound on 𝑤𝑤. Similarly, if 𝑤𝑤 is lower bounded by a positive parameter 𝑤𝑤L > 𝑥𝑥L𝑦𝑦L , then 𝑤𝑤L is
said to be a nontrivial lower bound on 𝑤𝑤. In the presence of nontrivial bounds, we consider the set

𝐒𝐒1+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥}

The convex hull of 𝐒𝐒1+ has been studied by Belotti et al. (Belotti, Miller, and Namazifar 2010; 2011).
Specifically, they showed that it can be described with infinitely many linear inequalities, some of
which belong to a family of inequalities called “lifted tangent inequalities”. More recently, Anstreicher
et al. studied the convex hull representation for bilinear terms with bounds on the product, and
derived closed-form representations containing second-order cone constraints (Anstreicher, Burer,
and Park 2020). We note that both works mentioned above focus on sets that contain continuous
variables only.

In this paper we focus on the following set:

𝐒𝐒1 = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦,𝑍𝑍) ∈ ℝ+
3 × {0,1}: 𝑥𝑥L𝑍𝑍 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L𝑍𝑍 ≤ 𝑦𝑦 ≤ 𝑦𝑦U𝑍𝑍,𝑤𝑤L𝑍𝑍 ≤ 𝑤𝑤 ≤ 𝑤𝑤U𝑍𝑍,𝑤𝑤 = 𝑥𝑥𝑥𝑥}

which can be viewed as a generalization of 𝐒𝐒1+ since 𝐒𝐒1 becomes 𝐒𝐒1+ when 𝑍𝑍 = 1. We derive a family
of valid linear constraints for 𝐒𝐒1, and show that, in the presence of nontrivial bounds, such constraints
tighten the convex relaxation of the bilinear term obtained using the McCormick inequalities. We note
that when 𝑍𝑍 = 1 the constraints proposed in this paper coincide with a subset of the “lifted tangent
inequalities” and can be viewed as outer approximation cuts of the second order cone presented by
Anstreicher et al. (Anstreicher, Burer, and Park 2020). However, compared to previous work by
Belotti et al., the constraints proposed here are given in a different (parameterized) form, which
enables straightforward optimization-based generation for such constraints. We apply our methods
to the pooling problem that (1) contains only continuous variables, and (2) contains binary and semi-
continuous variables.

Note that if variable 𝑥𝑥 in 𝐒𝐒1 is upper bounded by 𝑥𝑥U𝑍𝑍 instead of 𝑥𝑥U, the resulting set will be the union
of a point and a nonconvex set. By relaxing the nonconvex set with the results obtained by
Anstreicher et al. (Anstreicher, Burer, and Park 2020), one can obtain a relaxed set that is the union
of a point and a convex set. The perspective formulation for this relaxed set has been studied by
Günlük and Linderoth (Günlük and Linderoth 2010) who proposed linear constraints known as
perspective cuts.

 5

We note that semi-continuous variables are common in models for network flow problems.
Papageorgiou et al. (Papageorgiou et al. 2012) studied the transportation problem with product
blending containing fixed costs. Such problem leads to a mixed-integer program (MILP), and facet-
defining constraints have been proposed. Pooling problems with binary variables have also been
studied; for example, D’Ambrosio et al. studied the pooling problem with binary variables that model
the on/off of the flow from stream to pool and proposed valid constraints (D’Ambrosio, Linderoth,
and Luedtke 2011). Previous works focus on utilizing stream properties and product specifications
to derive valid constraints. Here, we propose constraints that are based on nontrivial bounds on the
bilinear terms.

This paper is structured as follows. In section 2, we present background material, including problem
statement and models for the pooling problem, and the implication of nontrivial bounds for such
problem. In section 3 we derive a family of valid linear constraints that utilizes bounds on bilinear
terms. In section 4, we propose methods to generate strong constraints from the family for the
pooling problem. In section 5, we show computational results including models with constraints
generated from different methods and a branch-and-cut algorithm that incorporates the proposed
constraints. Throughout the paper, unless otherwise specified, we use Roman lowercase italic letters
for indices, Roman uppercase bold letters for sets, Greek lowercase letters for parameters, and
Roman uppercase italics for variables.

2. Background

We present the problem statement and nonlinear models for the pooling problem. We introduce
nontrivial bounds on bilinear terms and the convex relaxation of bilinear terms in the presence of
such bounds.

2.1. Problem statement

In the standard setting, the pooling problem is defined in terms of the following sets:
𝑖𝑖 ∈ 𝐈𝐈: Inputs (Streams)
𝑗𝑗 ∈ 𝐉𝐉: Pools
𝑘𝑘 ∈ 𝐊𝐊: Products
𝑙𝑙 ∈ 𝐋𝐋: Properties

Given are:
𝛼𝛼𝑖𝑖: Unit cost of stream 𝑖𝑖
𝛽𝛽𝑘𝑘: Price of product k
𝛾𝛾𝑗𝑗: Capacity of pool j
𝜈𝜈𝑗𝑗𝑗𝑗: Capacity of the pipeline between pool j and product k
𝜋𝜋𝑖𝑖𝑖𝑖 : Value of property 𝑙𝑙 for stream 𝑖𝑖

 6

𝜓𝜓𝑘𝑘𝑘𝑘 : Upper bounding specification for property 𝑙𝑙 for product k
𝜔𝜔𝑘𝑘 : Maximum demand for product k

For any product, the combined flows from all pools to that product must satisfy the corresponding
specification. We aim to find flows (from streams to pools and from pools to products) that maximize
profit. We assume that there are no flows between pools, no stream flow accumulation in pools, and
all product properties are the average of the properties of the streams blended weighted by volume
fraction. Without loss of generality, we assume we have only upper bouding specifications.

2.2. Nonlinear models for the pooling problem

2.2.1 Model containing only continuous variables

Various models have been proposed for the pooling problem (Haverly 1978; Ben-Tal, Eiger, and
Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and Haugland 2013;
Boland, Kalinowski, and Rigterink 2016). In this paper, we study models similar to the one proposed
by Alfaki and Haugland (Alfaki and Haugland 2013). We define the following nonnegative continuous
variables:
𝐹𝐹𝑖𝑖𝑖𝑖: Flow of stream 𝑖𝑖 to pool j
𝑅𝑅𝑗𝑗𝑗𝑗: Split fraction for total inlet flows for pool j to product k (𝑅𝑅𝑗𝑗𝑗𝑗 ∈ [0,1])
𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖: Flow of stream 𝑖𝑖 from pool j to product k

We have the following constraints:

Pool capacity:

� 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖

≤ 𝛾𝛾𝑗𝑗 , 𝑗𝑗 (1)

Product demand:

� � 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

≤ 𝜔𝜔𝑘𝑘 , 𝑘𝑘 (2)

Product specifications:

� � 𝜋𝜋𝑖𝑖𝑖𝑖𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

≤ 𝜓𝜓𝑘𝑘𝑘𝑘� � 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

, 𝑘𝑘, 𝑙𝑙 (3)

Upper bound on the flows from pools to products:

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

≤ 𝜈𝜈𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (4)

Stream splitting:

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (5)

Note that Eqn. (5) is an equality constraint with a bilinear term.

 7

For split fraction 𝑅𝑅𝑗𝑗𝑗𝑗 we have:

� 𝑅𝑅𝑗𝑗𝑗𝑗
𝑘𝑘

= 1, 𝑗𝑗 (6)

Eqns. (5) and (6) enforce that there is no flow accumulation in pools.

Reformulation–Linearization Technique (RLT) (Sherali and Adams 1999) constraints can be added
to strengthen the formulation. Summing over index 𝑘𝑘 on both sides of Eqn. (5), we have:

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝐹𝐹𝑖𝑖𝑖𝑖� 𝑅𝑅𝑗𝑗𝑗𝑗
𝑘𝑘

, 𝑖𝑖, 𝑗𝑗

which, combined with Eqn. (6), leads to:

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝐹𝐹𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 (7)

Another RLT constraint can be obtained by multiplying both sides of Eqn. (1) with 𝑅𝑅𝑗𝑗𝑗𝑗 (a nonnegative
variable):

� 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅𝑗𝑗𝑗𝑗
𝑖𝑖

≤ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘

which, combined with Eqn. (5), leads to:

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

≤ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (8)

The objective function is profit maximization:

max� � �� 𝛽𝛽𝑘𝑘𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

− 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖�
𝑗𝑗𝑖𝑖

 (9)

Eqns. (1) - (9) comprise a nonlinear model for the pooling problem which contains only continuous
variables and is henceforth referred to as MC .

2.2.2 Model containing semi-continuous variables

In practice, in addition to the pipeline capacity modeled in Eqn. (4), there may exist a lower bound
on ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for each (𝑗𝑗, 𝑘𝑘) pair when ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is nonzero. In other words, when the flow from pool 𝑗𝑗 to
product 𝑘𝑘 is nonzero, it must be greater or equal to a positive parameter. Let 𝜇𝜇𝑗𝑗𝑗𝑗 denote such a
parameter (𝜇𝜇𝑗𝑗𝑗𝑗 < 𝜈𝜈𝑗𝑗𝑗𝑗 and 𝜇𝜇𝑗𝑗𝑗𝑗 < 𝛾𝛾𝑗𝑗). We define the following semi-continuous variable:
𝐹𝐹�𝑗𝑗𝑗𝑗: Flow from pool j to product k

and the following binary variable:
𝑍𝑍𝑗𝑗𝑗𝑗: = 1 if there is positive flow from pool j to product k

We have the following constraints:

𝐹𝐹�𝑗𝑗𝑗𝑗 = � 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

, 𝑗𝑗, 𝑘𝑘 (10)

 8

𝜇𝜇𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 ≤ 𝐹𝐹�𝑗𝑗𝑗𝑗 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (11)

Eqn. (10) is introduced for illustration. Eqn. (11) ensures that when 𝑍𝑍𝑗𝑗𝑗𝑗 = 0, 𝐹𝐹�𝑗𝑗𝑗𝑗 = 0; when 𝑍𝑍𝑗𝑗𝑗𝑗 =
1,𝐹𝐹�𝑗𝑗𝑗𝑗 ∈ �𝜇𝜇𝑗𝑗𝑗𝑗 , 𝜈𝜈𝑗𝑗𝑗𝑗�.

Note that for split fraction 𝑅𝑅𝑗𝑗𝑗𝑗 we now have:
𝜇𝜇𝑗𝑗𝑗𝑗
𝛾𝛾𝑗𝑗

𝑍𝑍𝑗𝑗𝑗𝑗 ≤ 𝑅𝑅𝑗𝑗𝑗𝑗 ≤ 𝑍𝑍𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (12)

When 𝑍𝑍𝑗𝑗𝑗𝑗 = 0, we have 𝐹𝐹�𝑗𝑗𝑗𝑗 = 0, and thus 𝑅𝑅𝑗𝑗𝑗𝑗 = 0 for the corresponding split fraction. When 𝑍𝑍𝑗𝑗𝑗𝑗 = 1,
then 𝐹𝐹�𝑗𝑗𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗 so the lower bound on 𝑅𝑅𝑗𝑗𝑗𝑗 in this case should be 𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 and by definition 𝑅𝑅𝑗𝑗𝑗𝑗 ≤ 1.
Thus, 𝑅𝑅𝑗𝑗𝑗𝑗 is now also a semi-continuous variable. We note that Eqn. (6) is no longer valid in the model
containing semi-continuous variables since it is possible that a pool 𝑗𝑗 has no outlet flows with 𝑍𝑍𝑗𝑗𝑗𝑗 =
0,∀𝑘𝑘, and thus from Eqn. (12) we have 𝑅𝑅𝑗𝑗𝑗𝑗 = 0,∀𝑘𝑘. However, a relaxation of Eqn. (6), ∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 ≤ 1,∀𝑗𝑗,
remains valid.

We note that one can derive additional valid constraints from Eqn. (12). Since for every (𝑗𝑗, 𝑘𝑘) pair,
we have (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)𝑍𝑍𝑗𝑗𝑗𝑗 ≤ 𝑅𝑅𝑗𝑗𝑗𝑗 , by summing over index 𝑘𝑘 we have ∑ (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)𝑍𝑍𝑗𝑗𝑗𝑗 𝑘𝑘 ≤ ∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 ,∀𝑗𝑗, and since
∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑘𝑘 ≤ 1,∀𝑗𝑗 we have a knapsack constraint ∑ (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)𝑍𝑍𝑗𝑗𝑗𝑗 𝑘𝑘 ≤ 1,∀𝑗𝑗 , which is equivalent to
∑ 𝜇𝜇𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 𝑘𝑘 ≤ 𝛾𝛾𝑗𝑗 ,∀𝑗𝑗. For the pooling problem, this means that cannot turn on too many pipelines from
a pool if the sum of the lower bounds on flows of those pipelines exceeds pool capacity. In practice,
this is not the case, since ∑ 𝜇𝜇𝑗𝑗𝑗𝑗𝑘𝑘 will still be smaller than 𝛾𝛾𝑗𝑗 given that (𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗) is small, and thus such
a constraint is unlikely to be active.

We again consider profit maximization with additional fixed cost terms:

max� � �� 𝛽𝛽𝑘𝑘𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

− 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖�
𝑗𝑗𝑖𝑖

−� � 𝛼𝛼𝑗𝑗𝑗𝑗F 𝑍𝑍𝑗𝑗𝑗𝑗
𝑘𝑘𝑗𝑗

 (13)

Eqns. (1) - (3), (5) and (7) - (13) comprise a nonlinear model for the pooling problem with semi-
continuous variables, henceforth referred to as MSC.

For MSC we also consider the objective of minimizing cost considering penalty for unmet demand.
Let 𝜑𝜑𝑘𝑘 denote the minimum demand for product 𝑘𝑘 and define a nonnegative continuous variable 𝑈𝑈𝑘𝑘
for unmet demand for product 𝑘𝑘, we have:

𝑈𝑈𝑘𝑘 ≥ 𝜑𝜑𝑘𝑘 −� 𝐹𝐹�𝑗𝑗𝑗𝑗
𝑗𝑗

, 𝑘𝑘 (14)

and the objective function is:

min� � 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

+ � � 𝛼𝛼𝑗𝑗𝑗𝑗F 𝑍𝑍𝑗𝑗𝑗𝑗
𝑘𝑘𝑗𝑗

+ � 𝛽𝛽𝑘𝑘P𝑈𝑈𝑗𝑗𝑗𝑗
𝑘𝑘

 (15)

where 𝛽𝛽𝑘𝑘P is the unit penalty for unmet demand for product 𝑘𝑘.

 9

2.3. Nontrivial bounds on bilinear terms

2.3.1 Bounds on flow variables

Summing over index 𝑖𝑖 for the constraints in Eqn. (5), we obtain:

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

= 𝑅𝑅𝑗𝑗𝑗𝑗� 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖

, 𝑗𝑗, 𝑘𝑘 (16)

If we define 𝐹𝐹�𝑗𝑗 as follows:

𝐹𝐹�𝑗𝑗 = � 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖

, 𝑗𝑗 (17)

From Eqn. (7) and Eqn. (17), we can re-write Eqn. (16) as:

𝐹𝐹�𝑗𝑗𝑗𝑗 = 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (18)

Eqn.(18) is an equality constraint with a bilinear term; it is implied from constraints in both MC and
MSC. Note that 𝐹𝐹�𝑗𝑗 is upper bounded by 𝛾𝛾𝑗𝑗 since ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑗𝑗 (see Eqn. (1)) and 𝑅𝑅𝑗𝑗𝑗𝑗 is upper bounded by
1. Thus, from the right-hand-side (RHS) of Eqn. (18) we know that 𝐹𝐹�𝑗𝑗𝑗𝑗 is upper bounded by 𝛾𝛾𝑗𝑗 .
However, 𝐹𝐹�𝑗𝑗𝑗𝑗 is also upper bounded by 𝜈𝜈𝑗𝑗𝑗𝑗 since ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗 (see Eqn. (4)), which is typically
smaller than 𝛾𝛾𝑗𝑗 since, in general, the pipeline capacity from pool to product is significantly smaller
than the pool capacity. We note that above analysis holds for both MC and MSC.

We next examine the lower bounds on both sides of Eqn. (18) for model MSC when 𝑍𝑍𝑗𝑗𝑗𝑗 = 1. We note
that in MSC, 𝐹𝐹�𝑗𝑗 is also semi-continuous since we have:

𝐹𝐹�𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 , 𝑗𝑗, 𝑘𝑘 (19)

which is implied by Eqn. (11) and Eqn. (18). In this case, from Eqn. (11) we have 𝐹𝐹�𝑗𝑗𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗; we also
have 𝐹𝐹�𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗 , and from Eqn. (12) we have 𝑅𝑅𝑗𝑗𝑗𝑗 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 . We note that from the RHS of Eqn. (18) with
bounds on 𝐹𝐹�𝑗𝑗 and 𝑅𝑅𝑗𝑗𝑗𝑗 mentioned above, one can only derive the lower bound on 𝐹𝐹�𝑗𝑗𝑗𝑗 as 𝜇𝜇𝑗𝑗𝑗𝑗2 /𝛾𝛾𝑗𝑗 , which
is smaller (thus less tight) than 𝜇𝜇𝑗𝑗𝑗𝑗 since we have 𝜇𝜇𝑗𝑗𝑗𝑗 < 𝛾𝛾𝑗𝑗 .

2.3.2 Nontrivial bounds

Definition 1 Consider a bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦 ≤ 𝑦𝑦U, and 𝑤𝑤 ≤ 𝑤𝑤U. 𝑤𝑤U is said to be a
nontrivial upper bound on 𝑤𝑤 if 𝑤𝑤U < 𝑥𝑥U𝑦𝑦U.

Definition 2 Consider a bilinear term 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ≥ 𝑥𝑥L , 𝑦𝑦 ≥ 𝑦𝑦L , and 𝑤𝑤 ≥ 𝑤𝑤L . 𝑤𝑤L is said to be a
nontrivial lower bound on 𝑤𝑤 if 𝑤𝑤L > 𝑥𝑥L𝑦𝑦L.

From Definition 1 and Definition 2, 𝜈𝜈𝑗𝑗𝑗𝑗 can be nontrivial upper bounds on 𝐹𝐹�𝑗𝑗𝑗𝑗 and when 𝑍𝑍𝑗𝑗𝑗𝑗 = 1, 𝜇𝜇𝑗𝑗𝑗𝑗
can be nontrivial lower bounds on 𝐹𝐹�𝑗𝑗𝑗𝑗 in MSC.

In this paper we are interested in the set defined as follows:

𝐒𝐒1 = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦,𝑍𝑍) ∈ ℝ+
3 × {0,1}: 𝑥𝑥L𝑍𝑍 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L𝑍𝑍 ≤ 𝑦𝑦 ≤ 𝑦𝑦U𝑍𝑍,𝑤𝑤L𝑍𝑍 ≤ 𝑤𝑤 ≤ 𝑤𝑤U𝑍𝑍,𝑤𝑤 = 𝑥𝑥𝑥𝑥}

 10

with 𝑤𝑤L > 𝑥𝑥L𝑦𝑦L , 𝑤𝑤U < 𝑥𝑥U𝑦𝑦U , and 𝑤𝑤L < 𝑤𝑤U . Set 𝐒𝐒1 contains variables and constraints similar to
those in MSC; for a (𝑗𝑗, 𝑘𝑘) pair one can consider 𝐹𝐹�𝑗𝑗𝑗𝑗 as 𝑤𝑤, 𝐹𝐹�𝑗𝑗 as 𝑥𝑥, 𝑅𝑅𝑗𝑗𝑗𝑗 as 𝑦𝑦, 𝑍𝑍𝑗𝑗𝑗𝑗 as 𝑍𝑍, and Eqns. (5), (11),
(12), and (18) are similar to constraints that define 𝐒𝐒1.

When 𝑍𝑍 = 1, 𝐒𝐒1 becomes:

𝐒𝐒1+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥} (20)

with 𝑤𝑤L and 𝑤𝑤U being nontrivial lower and upper bounds on 𝑤𝑤 . When 𝑤𝑤L = 0, 𝐒𝐒1+ represents the
feasible space of a bilinear term with nontrivial upper bound, which arises in MC . We next discuss
the implication of nontrivial bounds on the convex relaxation of the bilinear terms.

2.4. Convex relaxation of bilinear terms

Global optimization for nonconvex problems involves solving convex relaxations of the original
problem. Using McCormick inequalities (McCormick 1976) to relax 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with bounds on 𝑥𝑥 and 𝑦𝑦
defined in 𝐒𝐒1+ we have:

𝑤𝑤 ≥ 𝑦𝑦L𝑥𝑥 + 𝑥𝑥L𝑦𝑦 − 𝑥𝑥L𝑦𝑦L (21)

𝑤𝑤 ≥ 𝑦𝑦U𝑥𝑥 + 𝑥𝑥U𝑦𝑦 − 𝑥𝑥U𝑦𝑦U (22)

𝑤𝑤 ≤ 𝑦𝑦L𝑥𝑥 + 𝑥𝑥U𝑦𝑦 − 𝑥𝑥U𝑦𝑦L (23)

𝑤𝑤 ≤ 𝑦𝑦U𝑥𝑥 + 𝑥𝑥L𝑦𝑦 − 𝑥𝑥L𝑦𝑦U (24)

We define set 𝐒𝐒2+, which is a relaxation of 𝐒𝐒1+, as follows:

𝐒𝐒2+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U, Eqns. (21) − (24)}

and set 𝐒𝐒3 = {𝑤𝑤 ∈ ℝ+: 𝑤𝑤 = 𝑤𝑤U}. The feasible spaces defined by 𝐒𝐒1+ ∩ 𝐒𝐒3 and 𝐒𝐒2+ ∩ 𝐒𝐒3 are shown in
Figure 1. In the next section, we derive a family of valid linear constraints for 𝐒𝐒1 (thus valid for 𝐒𝐒1+ as
well) that tightens 𝐒𝐒2+.

Figure 1. Illustrative graph for bilinear terms 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ∈ [1,3],𝑦𝑦 ∈ [1/3,1] and its relaxation when
the nontrivial upper bound 𝑤𝑤U = 2 is active. The intersection of 𝐒𝐒1+ and 𝐒𝐒3 is the solid curve 𝑥𝑥𝑥𝑥 =
 𝑤𝑤U, and the intersection of 𝐒𝐒2+ and 𝐒𝐒3 is the triangular region defined by the three dashed lines. Note
that while we have 𝑥𝑥 ∈ [2,3],𝑦𝑦 ∈ [2/3,1] when 𝑥𝑥𝑥𝑥 = 𝑤𝑤U , Eqns. (21) - (24) that define 𝐒𝐒2+ are
generated with 𝑥𝑥L = 1, 𝑥𝑥U = 3, 𝑦𝑦L = 1/3,𝑦𝑦U = 1.

 11

3. Valid linear constraints

We first present a family of valid linear constraints for a bilinear term with nontrivial upper and
lower bounds, show that such constraints are tangent to the hyperbolas that represent the bilinear
term when one of such bounds is active, and discuss the connections with previous works. We then
propose methods to generate strong tightening constraints from the family.

3.1. A family of valid linear constraints

We present a family of valid linear constraints for 𝐒𝐒1 in Proposition 1.

Proposition 1 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2𝑍𝑍) ≥ 0 with 𝜎𝜎1 = (√𝑤𝑤L𝑤𝑤U − 𝑤𝑤U)/(𝑤𝑤U − 𝑤𝑤L) , 𝜎𝜎2 =
𝑤𝑤U(𝑤𝑤L − √𝑤𝑤L𝑤𝑤U)/(𝑤𝑤U − 𝑤𝑤L), and parameter 𝜌𝜌 ≥ 0 is valid for 𝐒𝐒1.

Proof.

Since 𝑍𝑍 is binary, we first consider the case where 𝑍𝑍 = 0. In this case, 𝐒𝐒1 becomes:

𝐒𝐒1− = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ∙ 0 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ∙ 0 ≤ 𝑦𝑦 ≤ 𝑦𝑦U ∙ 0,𝑤𝑤L ∙ 0 ≤ 𝑤𝑤 ≤ 𝑤𝑤U ∙ 0,𝑤𝑤 = 𝑥𝑥𝑥𝑥}

which is equivalent to:

𝐒𝐒1− = {(𝑤𝑤, 𝑥𝑥, 𝑦𝑦) ∈ ℝ+
3 : 0 ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦 = 0,𝑤𝑤 = 0}

One can verify 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2𝑍𝑍) ≥ 0 is valid for 𝐒𝐒1− by inspection since 𝜌𝜌2𝑥𝑥 is
nonnegative and all other terms are zero.

We then consider the case where 𝑍𝑍 = 1. In this case, 𝐒𝐒1 becomes 𝐒𝐒1+ in Eqn. (20):

𝐒𝐒1+ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥L ≤ 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦L ≤ 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥}

and the proposed constraint becomes:

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 0 (25)

Assuming (𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ 𝐒𝐒1+, we first examine 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦. Since 𝑎𝑎2 ≥ 0 for any 𝑎𝑎 ∈ ℝ, we have the valid
inequality (𝜌𝜌√𝑥𝑥 − �𝑤𝑤U𝑦𝑦)2 ≥ 0, which, after expanding the left-hand-side (LHS), we obtain

𝜌𝜌2𝑥𝑥 − 2𝜌𝜌�𝑤𝑤U𝑥𝑥𝑥𝑥 + 𝑤𝑤U𝑦𝑦 ≥ 0

and thus

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 ≥ 2𝜌𝜌�𝑤𝑤U𝑥𝑥𝑥𝑥 (26)

Since (𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ 𝐒𝐒1+, we have 𝑤𝑤 = 𝑥𝑥𝑥𝑥. Thus, Eqn. (26) can be re-written as

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 ≥ 2𝜌𝜌√𝑤𝑤U𝑤𝑤 (27)

With Eqn. (27), we know that the LHS of Eqn. (25) is lower bounded by the following:

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 2𝜌𝜌�𝑤𝑤U𝑤𝑤 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2)

 12

Re-writing the RHS of the above equation in a compact form we have:

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 2𝜌𝜌(√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) (28)

We next show that the RHS of Eqn. (28) is nonnegative by showing √𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2 ≥ 0 (recall
that we have 𝜌𝜌 > 0). We first examine the zeros of the following quadratic function w.r.t √𝑤𝑤:

√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2 = 𝜎𝜎1(√𝑤𝑤)2 + √𝑤𝑤U𝑤𝑤 + 𝜎𝜎2 = 0 (29)

We note that √𝑤𝑤L is one root for such function, since

√𝑤𝑤U𝑤𝑤L + 𝜎𝜎1𝑤𝑤L + 𝜎𝜎2 = √𝑤𝑤U𝑤𝑤L +
𝑤𝑤L��𝑤𝑤U𝑤𝑤L−𝑤𝑤U�

𝑤𝑤U−𝑤𝑤L +
𝑤𝑤U�𝑤𝑤L−�𝑤𝑤U𝑤𝑤L�

𝑤𝑤U−𝑤𝑤L =
�𝑤𝑤U𝑤𝑤L�𝑤𝑤U−𝑤𝑤L�+�𝑤𝑤U𝑤𝑤L�𝑤𝑤L−𝑤𝑤U�+𝑤𝑤U𝑤𝑤L−𝑤𝑤U𝑤𝑤L

𝑤𝑤U−𝑤𝑤L = 0

And √𝑤𝑤U is the other root for such function, since

√𝑤𝑤U𝑤𝑤U + 𝜎𝜎1𝑤𝑤U + 𝜎𝜎2 = 𝑤𝑤U +
𝑤𝑤U��𝑤𝑤U𝑤𝑤L−𝑤𝑤U�

𝑤𝑤U−𝑤𝑤L +
𝑤𝑤U�𝑤𝑤L−�𝑤𝑤U𝑤𝑤L�

𝑤𝑤U−𝑤𝑤L = 𝑤𝑤U�𝑤𝑤U−𝑤𝑤L�+𝑤𝑤U�𝑤𝑤L−𝑤𝑤U�
𝑤𝑤U−𝑤𝑤L = 0

We further note that the coefficient of the quadratic term, 𝜎𝜎1, in Eq (29), is negative since 𝑤𝑤L < 𝑤𝑤U
(see the definition of 𝜎𝜎1 in Proposition 1). Thus, we have

√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2 ≥ 0 (30)

for √𝑤𝑤L ≤ √𝑤𝑤 ≤ √𝑤𝑤U , which is equivalent to 𝑤𝑤L ≤ 𝑤𝑤 ≤ 𝑤𝑤U since 0 ≤ √𝑤𝑤L ≤ √𝑤𝑤 ≤ √𝑤𝑤U .
Combining Eqn. (28) and (30), we have:

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 2𝜌𝜌(√𝑤𝑤U𝑤𝑤 + 𝜎𝜎1𝑤𝑤 + 𝜎𝜎2) ≥ 0 (31)

 is valid for (𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ 𝐒𝐒1+.

Combining both cases for 𝑍𝑍 = 0 and 𝑍𝑍 = 1, we have

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 + 2𝜌𝜌(𝜎𝜎1𝑤𝑤 + 𝜎𝜎2𝑍𝑍) ≥ 0 (32)

is valid for 𝐒𝐒1. ∎

When 𝜌𝜌 > 0, the family of constraints in Eqn. (32) can lead to some strong inequalities, particularly
when 𝑤𝑤 = 𝑤𝑤L or 𝑤𝑤 = 𝑤𝑤U (i.e., when one of the nontrivial bounds is active).

Remark 1 When 𝑤𝑤 = 𝑤𝑤U, Eqn. (32) becomes 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 − 2𝜌𝜌𝑤𝑤U ≥ 0. When 𝜌𝜌 > 0, one can easily
verify that for the branch of the 𝑥𝑥𝑥𝑥 = 𝑤𝑤U hyperbola with both 𝑥𝑥 and 𝑦𝑦 positive, line 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 −
2𝜌𝜌𝑤𝑤U = 0 is tangent to this hyperbola at point (𝑤𝑤U/𝜌𝜌, 𝜌𝜌) (the slope for the tangent line at this point
is (−𝜌𝜌2/𝑤𝑤U)).

Remark 2 When 𝑤𝑤 = 𝑤𝑤L , Eqn. (32) becomes 𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 − 2𝜌𝜌√𝑤𝑤U𝑤𝑤L ≥ 0 . When 𝜌𝜌 > 0 , one can
easily verify that for the branch of the 𝑥𝑥𝑥𝑥 = 𝑤𝑤L hyperbola with both 𝑥𝑥 and 𝑦𝑦 positive, line 𝜌𝜌2𝑥𝑥 +
𝑤𝑤U𝑦𝑦 − 2𝜌𝜌√𝑤𝑤U𝑤𝑤L = 0 is tangent to this hyperbola at point (√𝑤𝑤U𝑤𝑤L/𝜌𝜌, 𝜌𝜌�𝑤𝑤L/𝑤𝑤U) (the slope for the
tangent line at this point is (−𝜌𝜌2/𝑤𝑤U)).

 13

We show an illustrative graph for the proposed constraint and the above two remarks in Figure 2,
with numerical examples.

Remark 3 By setting 𝑤𝑤L = 0 and 𝑍𝑍 = 1, from Proposition 1 we have

𝜌𝜌2𝑥𝑥 + 𝑤𝑤U𝑦𝑦 − 2𝜌𝜌𝜌𝜌 ≥ 0 (33)

which is valid for

𝐒𝐒1∗ = {(𝑤𝑤, 𝑥𝑥,𝑦𝑦) ∈ ℝ+
3 : 𝑥𝑥 ≤ 𝑥𝑥U, 𝑦𝑦 ≤ 𝑦𝑦U,𝑤𝑤 ≤ 𝑤𝑤U,𝑤𝑤 = 𝑥𝑥𝑥𝑥} (34)

Set 𝐒𝐒1∗ contains continuous variables only. We note that the variables and constraints involved in 𝐒𝐒1∗
are similar to those in MC . Specifically, for a (𝑗𝑗, 𝑘𝑘) pair one can consider 𝐹𝐹�𝑗𝑗𝑗𝑗 as 𝑤𝑤, 𝐹𝐹�𝑗𝑗 as 𝑥𝑥, and 𝑅𝑅𝑗𝑗𝑗𝑗 as
𝑦𝑦.

Figure 2. Illustrative graph for bilinear terms 𝑤𝑤 = 𝑥𝑥𝑥𝑥 with 𝑥𝑥 ∈ [1,3],𝑦𝑦 ∈ [1/3,1], and 𝑤𝑤 ∈ [1,2] when
one of its nontrivial bounds 𝑤𝑤U = 2 or 𝑤𝑤L = 1 is active. The blue curve represents 𝑥𝑥𝑥𝑥 = 2 and the
black curve represents 𝑥𝑥𝑥𝑥 = 1. Dashed blue and black lines represent the intersection of Eqn. (25)
and 𝑤𝑤 = 2 and 𝑤𝑤 = 1, respectively, with 𝜌𝜌 = 1. Dotted blue and black lines represent the intersection
of Eqn. (25) and 𝑤𝑤 = 2 and 𝑤𝑤 = 1, respectively, with 𝜌𝜌 = 2/3. Coordinates for points of tangency are
shown in parentheses.

3.2. Generation of strong valid linear constraints

Eqn. (32) contains infinitely many constraints. We propose methods to generate strong tightening
constraints. Specifically, given a point (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) ∉ 𝐒𝐒1 obtained from solving an optimization
problem over a relaxation of 𝐒𝐒1, we determine the value of 𝜌𝜌 to obtain a constraint that cuts off such
a point.

3.2.1 Generation based on constraint violation maximization

We consider the following quadratic optimization problem:

min𝜌𝜌 𝑓𝑓(𝜌𝜌) = 𝜌𝜌2𝑥𝑥∗ + 𝑤𝑤U𝑦𝑦∗ + 2𝜌𝜌(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗) (35)

which has a closed form solution 𝜌𝜌 = −(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗)/𝑥𝑥∗ if 𝑥𝑥∗ > 0. Such 𝜌𝜌 may lead to a constraint
in Eqn. (32) that is violated by (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗), and the violation, measured by the value of 𝜌𝜌2𝑥𝑥∗ +

 14

𝑤𝑤U𝑦𝑦∗ + 2𝜌𝜌(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗), is the greatest. We note that the optimal objective function value to the
optimization problem (35) can be nonnegative. If that is the case, Eqn. (32) will not be able to cut off
(𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) . To address this issue, we first check the sign of the discriminant of 𝑓𝑓(𝜌𝜌) :
[4(𝜎𝜎1𝑤𝑤∗ + 𝜎𝜎2𝑍𝑍∗)2 − 4𝑥𝑥∗𝑤𝑤U𝑦𝑦∗] ; if positive, the optimal objective function value to the above
optimization problem is guaranteed to be negative, and we proceed to generate a constraint
(otherwise, no constraint will be generated).

3.2.2 Generation based on solving the minimum distance problem

The minimum distance problem for constraint generation has been studied (Stubbs and Mehrotra
1999; Sawaya and Grossmann 2005). Here, we focus on the case where (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) ∈ 𝐒𝐒3 =
{𝑤𝑤 ∈ ℝ+: 𝑤𝑤 = 𝑤𝑤U}, that is, the nontrivial upper bound is active (𝑤𝑤∗ = 𝑤𝑤U if 𝑍𝑍∗ = 1). Of particular
interest is the point (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) ∈ 𝐒𝐒3 with 𝑥𝑥∗𝑦𝑦∗ < 𝑤𝑤U. Note that such a point is not in 𝐒𝐒1 ∩ 𝐒𝐒3. To
find a constraint that cuts off (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗), we first find a point (𝑥𝑥,𝑦𝑦) on the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U that
has the minimum distance to (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗) by considering the following optimization problem:

min𝑥𝑥,𝑦𝑦{
1

𝑥𝑥U − 𝑥𝑥L
|𝑥𝑥 − 𝑥𝑥∗| +

1
𝑦𝑦U − 𝑦𝑦L

|𝑦𝑦 − 𝑦𝑦∗|: 𝑥𝑥𝑥𝑥 = 𝑤𝑤U, 𝑥𝑥 ∈ [𝑥𝑥L, 𝑥𝑥U], 𝑦𝑦 ∈ [𝑦𝑦L,𝑦𝑦U]}

which can be viewed as minimizing the weighted 1-norm distance between (𝑥𝑥∗,𝑦𝑦∗) and (𝑥𝑥,𝑦𝑦). Note
that points (𝑥𝑥,𝑦𝑦) on the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U can be represented using (𝑤𝑤U/𝜌𝜌,𝜌𝜌) with 𝜌𝜌 being a variable
having the same bounds with 𝑦𝑦. When 𝑥𝑥𝑥𝑥 = 𝑤𝑤U with 𝑥𝑥 ≤ 𝑥𝑥U, we have 𝑦𝑦 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U], thus 𝜌𝜌 ∈
[𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]. We rewrite the above optimization problem as:

min𝜌𝜌{
1

𝑥𝑥U − 𝑥𝑥L
�
𝑤𝑤U

𝜌𝜌
− 𝑥𝑥∗� +

1
𝑦𝑦U − 𝑦𝑦L

|𝜌𝜌 − 𝑦𝑦∗|:𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]} (36)

We claim that the solution to the above problem is the following (see proof in Appendix A):

(1) If 𝑦𝑦∗ ≤ �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) ≤ 𝑤𝑤U/𝑥𝑥∗ , then 𝜌𝜌 = �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L).

(2) If �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) < 𝑦𝑦∗, then 𝜌𝜌 = 𝑦𝑦∗.

(3) If �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) > 𝑤𝑤U/𝑥𝑥∗, then 𝜌𝜌 = 𝑤𝑤U/𝑥𝑥∗.

After obtaining 𝜌𝜌, we have the point (𝑤𝑤U/𝜌𝜌,𝜌𝜌) on the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U that has the minimum distance
to (𝑤𝑤∗, 𝑥𝑥∗,𝑦𝑦∗,𝑍𝑍∗). We then generate Eqn. (32) with such 𝜌𝜌. Recall that when the nontrivial upper
bound 𝑤𝑤U is active, Eqn. (32) is tangent to the curve 𝑥𝑥𝑥𝑥 = 𝑤𝑤U at point (𝑤𝑤U/𝜌𝜌,𝜌𝜌).

4. Solution methods

In this section we present different methods for generating the proposed constraints for model MC
and MSC.

 15

4.1. Methods for model MC

For model MC , we consider the following constraint obtained from summing over index 𝑖𝑖 ∈ 𝐈𝐈∗ ⊆ 𝐈𝐈
for the constraints in Eqn. (5):

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐈𝐈∗

= 𝑅𝑅𝑗𝑗𝑗𝑗� 𝐹𝐹𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐈𝐈∗

, 𝑗𝑗, 𝑘𝑘 (37)

We note that ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ ≤ 𝜈𝜈𝑗𝑗𝑗𝑗 and ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ ≤ 𝛾𝛾𝑗𝑗 , thus from Remark 3, by considering ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ as 𝑤𝑤
and ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ as 𝑥𝑥, we have the following valid constraint for MC :

𝜌𝜌2 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 − 2𝜌𝜌∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈∗ ≥ 0 (38)

We next present two constraint generation methods for MC that determine the value of 𝜌𝜌 and the
selection of set 𝐈𝐈∗ for Eqn (38).

4.1.1. Generation at the root node

Eqn. (38) can be generated at the root node in multiple rounds. At each round, we solve a linear
relaxation of MC , and generate constraints based on the solution to the relaxed problem. We then
resolve the relaxed problem with the generated constraints and perform another round of constraint
generation.

Let 𝑚𝑚 denote the rounds of constraint generation. Model M𝑚𝑚
C−L contains all constraints in MC , except

that the nonlinear constraint Eqn. (5) is replaced by:

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 + 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑗𝑗 , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (39)

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (40)

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐹𝐹𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (41)

M𝑚𝑚
C−L also contains the following constraint:

𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′
2 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑚𝑚′

∗ + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 − 2𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′ ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑚𝑚′
∗ ≥ 0, (𝑗𝑗, 𝑘𝑘,𝑚𝑚′) ∈ 𝐂𝐂𝑚𝑚 (42)

where 𝐂𝐂𝑚𝑚 contains (𝑗𝑗, 𝑘𝑘,𝑚𝑚′) combinations that lead to Eqn. (42) in all previous rounds, and the set
𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ is defined as follows: at each round, we solve M𝑚𝑚

C−L and, for each (𝑗𝑗, 𝑘𝑘) pair, define set 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ =
{𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0} . Given the solution to M𝑚𝑚

C−L , we calculate parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 by solving the following
optimization problem which is similar to the one in (35):

min𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔�𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗� = �� 𝐹𝐹𝑖𝑖𝑖𝑖∗
𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑚𝑚

∗
� 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗2 − 2�� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗

𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗

� 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗

We first check the sign of the discriminant of 𝑔𝑔�𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗�: [4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ �

2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗]; if
positive, then there exists a parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 that leads to a constraint in Eqn. (42) violated by the
current solution to M𝑚𝑚

C−L . We then calculate 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ (such parameter will
lead to a constraint that is violated by the current solution to M𝑚𝑚

C−L by the greatest margin). We also

 16

update set 𝐂𝐂𝑚𝑚+1, which contains the index for Eqn. (42). We then solve M𝑚𝑚+1
C−L , which contains Eqn.

(42) that are generated in previous rounds. We repeat until no new constraints are generated or we
reach the maximum number of constraint generation rounds (𝜃𝜃). The pseudocode of the
aforementioned method is given in Algorithm 1.

Algorithm 1. Constraint generation at root node
Inputs: 𝑐𝑐 = True,𝑚𝑚 = 0, 𝜃𝜃, 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ = ∅, and 𝐂𝐂𝑚𝑚 = ∅
While 𝑐𝑐 = True AND 𝑚𝑚 < 𝜃𝜃 do
 𝑐𝑐 = False
 Solve M𝑚𝑚

C−L.
 Read solution 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ , 𝑅𝑅𝑗𝑗𝑗𝑗∗ , and 𝐹𝐹𝑖𝑖𝑖𝑖∗
 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ = {𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0}
 𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚
 For 𝑗𝑗 ∈ 𝐉𝐉 do
 For 𝑘𝑘 ∈ 𝐊𝐊 do

 If 4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ �

2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ > 0 then
 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗

 𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚+1 ∪ {(𝑗𝑗, 𝑘𝑘,𝑚𝑚)}
 𝑐𝑐 = True
 End
 End
 End
 𝑚𝑚 = 𝑚𝑚 + 1
End
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 , 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ , and 𝐂𝐂𝑚𝑚+1

We discuss an example to illustrate the procedure of generating the aforementioned constraint and
its effectiveness. We have 𝐈𝐈 = {I1, I2}, 𝐉𝐉 = {J1}, 𝐊𝐊 = {K1, K2}, 𝐋𝐋 = {L1}, 𝛾𝛾J1 = 3, and the parameters
given in Table 1.

Table 1. Parameters for the illustrative example
 𝛼𝛼𝑖𝑖 𝛽𝛽𝑘𝑘 𝜈𝜈J1,𝑘𝑘 𝜋𝜋𝑖𝑖,L1 𝜓𝜓𝑖𝑖,L1 𝜔𝜔𝑘𝑘
I1 2 − − 0.5 − −
I2 1 − − 1 − −
K1 − 10 2 − 0.75 3
K2 − 5 1 − 1 3

Solving the illustrative example with nonlinear model MC leads to a solution with optimal objective
function value of 20.5. Solving the illustrative example using M0

C−L leads to a solution with an
objective function value of 21. The optimal solution to M0

C−L is shown in Figure 3.

 17

Figure 3. The optimal solution to the illustrative example from solving M0

C−L (index 𝑗𝑗 dropped for
simplicity).

We examine the optimal solution for flow to product K2. We have 𝐈𝐈K2,0
∗ = {I2}. Since 4�𝐹𝐹�I2,K2

∗ �2 −
4𝜈𝜈K2𝑅𝑅K2∗ (𝐹𝐹I2∗) = 4 − 8/3 > 0 , we calculate 𝜌𝜌K2,0 = 𝐹𝐹�I2,K2

∗ /𝐹𝐹I2∗ = 1/2 , and generate the following
constraint:

(1/4)𝐹𝐹I2 + 𝑅𝑅K2 − 𝐹𝐹�I2,K2 ≥ 0 (43)

In the next round, we solve M1
C−L again after adding Eqn. (43). The optimal objective function value

now becomes 20.78, which is closer to the objective function value obtained from solving the
nonlinear model MC (which is 20.5). Figure 4 shows the intersection of Eqn. (43) with 𝐹𝐹�I2,K2 = 1.

Figure 4. Illustrative graph showing the intersection of Eqn. (43) with 𝐹𝐹�I2,K2 = 1 . Solid curve
represents 𝐹𝐹I2𝑅𝑅K2 = 𝐹𝐹�I2,K2 in MC ; dashed lines represent Eqn. (39) - (41) in M𝑚𝑚

C−L; point A represents
(𝐹𝐹I2∗ ,𝑅𝑅K2∗) obtained from solving M0

C−L; dot-dashed line represents Eqn. (43).

4.1.2. Generation using a branch-and-cut framework

Let 𝑛𝑛 ∈ 𝐍𝐍 = {0,1, … } denote nodes in the B&B tree with 𝑛𝑛 = 0 being the root node. At each node, we
solve M𝑛𝑛

C−L which contains all constraints in MC , except that the nonlinear constraint Eqn. (5) is
replaced by:

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L (44)

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U (45)

 18

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L (46)

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U 𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U (47)

where 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L /𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U and 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L /𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U are lower/upper bounds on 𝐹𝐹𝑖𝑖𝑖𝑖 and 𝑅𝑅𝑗𝑗𝑗𝑗 at node 𝑛𝑛, respectively. For
the root node, we have 𝐹𝐹𝑖𝑖𝑖𝑖,0

L = 0, ∀𝑖𝑖, 𝑗𝑗, 𝐹𝐹𝑖𝑖𝑖𝑖,0
U = 𝛾𝛾𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗 , 𝑅𝑅𝑗𝑗𝑗𝑗,0

L = 0 ∀𝑗𝑗, 𝑘𝑘, and 𝑅𝑅𝑗𝑗𝑗𝑗,0
U = 1,∀𝑗𝑗, 𝑘𝑘 . The

values of 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖L /𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖U and 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L /𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U will be updated when new nodes are generated.

In addition, M𝑛𝑛
C−L also contains the following constraint:

𝜌𝜌𝑗𝑗𝑗𝑗𝑛𝑛′
2 � 𝐹𝐹𝑖𝑖𝑖𝑖

𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′
∗

+ 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 − 2𝜌𝜌𝑗𝑗𝑗𝑗𝑛𝑛′� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′

∗
≥ 0, (𝑗𝑗, 𝑘𝑘,𝑛𝑛′) ∈ 𝐂𝐂�𝑛𝑛 (48)

where 𝐂𝐂�𝑛𝑛 contains (𝑗𝑗, 𝑘𝑘,𝑛𝑛′) combinations that lead to Eqn. (48) in all previous nodes. For subsets 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ ,
at each node we solve M𝑛𝑛

C−L and, for each (𝑗𝑗, 𝑘𝑘) pair, define 𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛∗ = {𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0}.

We generate Eqn. (48) using Algorithm 2, with the optimal solution to M𝑛𝑛
C−L used as inputs. In

Algorithm 2 we check if the nonlinear constraints in MC are satisfied; if not, we aim to generate
constraints that cut off the current optimal solution to M𝑛𝑛

C−L. For constraint generation, for each (𝑗𝑗, 𝑘𝑘)
pair we again define subsets 𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛∗ and check the sign of [4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ �
2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗] ; if
positive, we calculate parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ .

We note that Eqn. (48) is globally valid, since different variable bounds at different nodes will only
affect the possible value of 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 , and from Proposition 1, constraints in the form of Eqn. (48) are valid
for bilinear term ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′

∗ = 𝑅𝑅𝑗𝑗𝑗𝑗 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑛𝑛′
∗ with nontrivial upper bound 𝜈𝜈𝑗𝑗𝑗𝑗 regardless of the

value of 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 .

 19

Algorithm 2. Generating constraints at nodes
Inputs: 𝑛𝑛, 𝜈𝜈𝑗𝑗𝑗𝑗 ,𝐹𝐹𝑖𝑖𝑖𝑖∗ ,𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ , and 𝐂𝐂�𝑛𝑛
𝑐𝑐1 = True, 𝑐𝑐2 = False
For 𝑗𝑗 ∈ 𝐉𝐉 do
 For 𝑘𝑘 ∈ 𝐊𝐊 do
 𝑐𝑐3 = False

For 𝑖𝑖 ∈ 𝐈𝐈 do
 If 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ ≠ 𝐹𝐹𝑖𝑖𝑖𝑖∗ 𝑅𝑅𝑗𝑗𝑗𝑗∗ then
 𝑐𝑐1 = False
 𝑐𝑐3 = True
 Break
 End
End

 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ = {𝑖𝑖:𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗ > 0}

If 𝑐𝑐3 = True AND 4 �∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗ �

2
− 4𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗∗ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ > 0 then
 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗

∗ /∑ 𝐹𝐹𝑖𝑖𝑖𝑖∗𝑖𝑖∈𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗
∗

 𝐂𝐂�𝑛𝑛 = 𝐂𝐂�𝑛𝑛 ∪ {(𝑗𝑗, 𝑘𝑘,𝑛𝑛)}
 𝑐𝑐2 = True
 End
 End
End
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 , 𝑐𝑐1, 𝑐𝑐2, 𝐈𝐈𝑗𝑗𝑗𝑗𝑗𝑗∗ , and 𝐂𝐂�𝑛𝑛

We present a customized branch-and-cut (B&C) algorithm that integrates Algorithm 2 within a B&C
framework in Figure 5. We start with the solution to the relaxation at the root node (M0

C−L) with
objective function value 𝑍𝑍0∗. The list of open nodes (node list) contains only the root node, and set 𝐂𝐂�0
is empty. 𝑍𝑍0∗ is the initial upper bound on the objective function value (UB), and the initial lower
bound on the objective function value (LB) is set to zero since a trivial feasible solution exists with all
variables being zero. We select a node 𝑛𝑛 in the node list, read its solution and run Algorithm 2. After
running Algorithm 2, if all nonlinear constraints in MC are satisfied (i.e., 𝑐𝑐1 = True), then this solution
is a feasible solution to MC; if new constraints are generated in Algorithm 2 (i.e., 𝑐𝑐2 = True), then we
add them to M𝑛𝑛

C−L and solve it again. Note that set 𝐂𝐂�𝑛𝑛 for Eqn. (48) is updated in Algorithm 2, and
constraints in Eqn. (48), once generated, will be included in all later nodes. After updating the
solution to M𝑛𝑛

C−L, we perform local search to find a feasible solution to MC, using a local nonlinear
solver, with the solution to M𝑛𝑛

C−L as the initial point. After the local search, we update LB (if applicable)
and then perform branching. Two child nodes are generated through branching, and the relaxations
associated with them are solved right after branching. Such relaxations contain all constraints in the
parent node (including Eqn. (48)). The details for the implemented node selection rule, local search,
prune rule, and branching strategy can be found in Appendix B. The algorithm terminates when (1)
the optimality gap, defined as (1 − 𝐿𝐿𝐿𝐿/𝑈𝑈𝑈𝑈), is within a chosen tolerance (𝜀𝜀), or (2) the maximum
number of processed nodes (𝜃𝜃�) has been reached.

 20

Finally, while the B&C algorithm introduced above can be used to solve the pooling problem, we note
that, since the constraints in Eqn. (48) are globally valid, it can also be utilized as a preprocessing
algorithm to generate valid constraints whose indices are stored in set 𝐂𝐂�𝑛𝑛 with 𝑛𝑛 being, essentially,
the last node that has been processed.

Figure 5. Flowchart of the customized B&C algorithm.

4.2. Methods for model MSC

4.2.1. Generation at the root node

For model MSC, we generate the following constraint at the root node:

𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′
2 𝐹𝐹�𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 + 2𝜌𝜌𝑗𝑗𝑗𝑗𝑚𝑚′�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗 + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗� ≥ 0, (𝑗𝑗, 𝑘𝑘,𝑚𝑚′) ∈ 𝐂𝐂𝑚𝑚 (49)

where 𝜎𝜎𝑗𝑗𝑗𝑗,1 = (�𝜇𝜇𝑗𝑗𝑗𝑗𝜈𝜈𝑗𝑗𝑗𝑗 − 𝜈𝜈𝑗𝑗𝑗𝑗)/(𝜈𝜈𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑗𝑗𝑗𝑗), 𝜎𝜎𝑗𝑗𝑗𝑗,2 = 𝜈𝜈𝑗𝑗𝑗𝑗(𝜇𝜇𝑗𝑗𝑗𝑗 − �𝜇𝜇𝑗𝑗𝑗𝑗𝜈𝜈𝑗𝑗𝑗𝑗)/(𝜈𝜈𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑗𝑗𝑗𝑗).

We consider model M𝑚𝑚
SC−L which contains all constraints in model MSC , except that the nonlinear

constraint Eqn. (5) is replaced by Eqn. (39) - (41). M𝑚𝑚
SC−L also contains Eqn. (49).

We first present Algorithm 3 that generates constraints based on maximizing constraint violation. At
each round of constraint generation, we solve the continuous relaxation of M𝑚𝑚

SC−L (in which 𝑍𝑍𝑗𝑗𝑗𝑗 ∈
[0,1]), and, similar to Algorithm 1, for each (𝑗𝑗, 𝑘𝑘) pair, we check the sign of [4�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗ �

2 −
4𝜈𝜈𝑗𝑗𝑗𝑗𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗]; if positive, we calculate parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = −(𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗)/𝐹𝐹�𝑗𝑗∗ and generate Eqn.
(49). We repeat until no new constraints are generated or we reach the maximum number of
constraint generation rounds.

 21

Algorithm 3. Constraint generation from maximizing violation
Inputs: 𝑐𝑐 = True,𝑚𝑚 = 0, 𝜃𝜃, and 𝐂𝐂𝑚𝑚 = ∅
While 𝑐𝑐 = True AND 𝑚𝑚 < 𝜃𝜃 do
 𝑐𝑐 = False
 Solve the continuous relaxation of M𝑚𝑚

SC−L.
 Read solution 𝐹𝐹�𝑗𝑗∗,𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝐹𝐹�𝑗𝑗𝑗𝑗∗ ,𝑍𝑍𝑗𝑗𝑗𝑗∗
 𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚
 For 𝑗𝑗 ∈ 𝐉𝐉 do
 For 𝑘𝑘 ∈ 𝐊𝐊 do

 If 4�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗ �
2 − 4𝜈𝜈𝑗𝑗𝑗𝑗𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗ > 0 then

 𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚+1 ∪ {(𝑗𝑗, 𝑘𝑘,𝑚𝑚)}
 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = −(𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗∗ + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗∗)/𝐹𝐹�𝑗𝑗∗
 𝑐𝑐 = True
 End
 End
 End
 𝑚𝑚 = 𝑚𝑚 + 1
End
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 and 𝐂𝐂𝑚𝑚+1

Similarly, Algorithm 4 generates constraints by solving the continuous relaxation of M𝑚𝑚
SC−L iteratively,

but based on solving the minimum distance problem. After solving the continuous relaxation of
M𝑚𝑚
SC−L, for each (𝑗𝑗, 𝑘𝑘) pair we check the following two conditions: (1) 𝐹𝐹�𝑗𝑗𝑗𝑗∗ = 𝜈𝜈𝑗𝑗𝑗𝑗 , and (2) 𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗ < 𝐹𝐹�𝑗𝑗𝑗𝑗∗ .

If both conditions hold, that means the nontrivial upper bound is active and the nonlinear constraint
is violated. We calculate 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 by solving the minimum distance problem discussed in section 3.2.2.
Note that when 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗 we have 𝐹𝐹�𝑗𝑗 ∈ �𝜈𝜈𝑗𝑗𝑗𝑗 , 𝛾𝛾𝑗𝑗�,𝑅𝑅𝑗𝑗𝑗𝑗 ∈ [𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , 1]. Thus, we calculate 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 as follows:

(1) If 𝑅𝑅𝑗𝑗𝑗𝑗∗ ≤ �𝜈𝜈𝑗𝑗𝑗𝑗(1 − 𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)/(𝛾𝛾𝑗𝑗 − 𝜈𝜈𝑗𝑗𝑗𝑗) = �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗ , then 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 .

(2) If 𝑅𝑅𝑗𝑗𝑗𝑗∗ > �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , then 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑅𝑅𝑗𝑗𝑗𝑗∗ .

(3) If �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 > 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗, then 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗.

 22

Algorithm 4. Constraint generation from minimizing distance
Inputs: 𝑐𝑐 = True,𝑚𝑚 = 0, 𝜃𝜃, and 𝐂𝐂𝑚𝑚 = ∅
While 𝑐𝑐 = True AND 𝑚𝑚 < 𝜃𝜃 do
 𝑐𝑐 = False
 Solve the continuous relaxation of M𝑚𝑚

SC−L.
 Read solution 𝐹𝐹�𝑗𝑗∗,𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝐹𝐹�𝑗𝑗𝑗𝑗∗ ,𝑍𝑍𝑗𝑗𝑗𝑗∗
 𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚
 For 𝑗𝑗 ∈ 𝐉𝐉 do
 For 𝑘𝑘 ∈ 𝐊𝐊 do

 If 𝐹𝐹�𝑗𝑗𝑗𝑗∗ = 𝜈𝜈𝑗𝑗𝑗𝑗 AND 𝐹𝐹�𝑗𝑗∗𝑅𝑅𝑗𝑗𝑗𝑗∗ < 𝐹𝐹�𝑗𝑗𝑗𝑗∗ then
 𝐂𝐂𝑚𝑚+1 = 𝐂𝐂𝑚𝑚+1 ∪ {(𝑗𝑗, 𝑘𝑘,𝑚𝑚)}
 If 𝑅𝑅𝑗𝑗𝑗𝑗∗ ≤ �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 ≤ 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗ then
 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗
 Else If 𝑅𝑅𝑗𝑗𝑗𝑗∗ > �𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 then
 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑅𝑅𝑗𝑗𝑗𝑗∗
 Else
 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗/𝐹𝐹�𝑗𝑗∗
 End
 End
 End
 End
 𝑚𝑚 = 𝑚𝑚 + 1
End
Outputs: 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 and 𝐂𝐂𝑚𝑚+1

4.2.2. Generation using predefined parameters

Since for a given parameter 𝜌𝜌 we have one valid constraint, we can generate constraints with a
predefined set of values of 𝜌𝜌. Specifically, we have the following:

𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗2 𝐹𝐹�𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 + 2𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗�𝜎𝜎𝑗𝑗𝑗𝑗,1𝐹𝐹�𝑗𝑗𝑗𝑗 + 𝜎𝜎𝑗𝑗𝑗𝑗,2𝑍𝑍𝑗𝑗𝑗𝑗� ≥ 0, 𝑗𝑗, 𝑘𝑘, 𝑜𝑜 ∈ 𝐎𝐎 (50)

where 𝐎𝐎 = {0,1, … . } is the index of constraints for a given (𝑗𝑗, 𝑘𝑘) pair, and 𝜌𝜌𝑗𝑗𝑗𝑗𝑜𝑜 is a predefined
parameter. Eqn. (50) is generated without solving any optimization problem. Recall that for a given
(𝑗𝑗, 𝑘𝑘) pair, when 𝐹𝐹�𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗 , Eqn. (50) is tangent to 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗 at the point corresponding to 𝐹𝐹�𝑗𝑗 =
𝜈𝜈𝑗𝑗𝑗𝑗/𝜌𝜌,𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜌𝜌. Note that when 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗 , we have 𝑅𝑅𝑗𝑗𝑗𝑗 ∈ [𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , 1], thus one straightforward way
to define 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 is the following:

𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 + 𝑜𝑜(1 − 𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗)/|𝐎𝐎|, 𝑗𝑗, 𝑘𝑘 (51)

Eqn. (51) generates values of 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 evenly distributed in [𝜈𝜈𝑗𝑗𝑗𝑗/𝛾𝛾𝑗𝑗 , 1]. We show an illustrative graph for
the points of tangency on bilinear curve generated from such 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 in Figure 6.

 23

Figure 6. Illustrative graph for points (𝜈𝜈𝑗𝑗𝑗𝑗/𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 ,𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗) on curve 𝐹𝐹�𝑗𝑗𝑅𝑅𝑗𝑗𝑗𝑗 = 𝜈𝜈𝑗𝑗𝑗𝑗 with 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 generated from
Eqn. (51) with |𝐎𝐎| = 8 (indices 𝑗𝑗 and 𝑘𝑘 are dropped in the graph for simplicity).

5. Computational results

In this section, we present computational results for models employing the proposed constraint
generation methods. Computational experiments are conducted on a Windows 10 machine with Intel
Core i5 at 2.70 GHz and 8 GB of RAM. Models are coded in GAMS 30.3 and solved using the global
optimization solver BARON 19.12.7. We also provide computational results obtained using Gurobi
9.0 in Appendix C. For all runs, CPU time limit is set at 300 seconds and the tolerance for relative
optimality gap is set at 0.01%. Instances are modified from the 90 randomly generated instances in
D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011), which are included in QPLIB, a library
of quadratic programming instances (Furini et al. 2019). The 90 instances contain 15 streams, 5 – 10
pools, 10 products, and 1 – 4 properties. All parameters defined in MC are taken from those 90
instances. There are several parameters defined in those 90 instances that are not defined in this
paper, we do not consider those parameters. For MSC , most parameters are defined in those 90
instances, except for the lower bound on the positive flow 𝜇𝜇𝑗𝑗𝑗𝑗 . We set 𝜇𝜇𝑗𝑗𝑗𝑗 to a fraction of the pipeline
capacity 𝜈𝜈𝑗𝑗𝑗𝑗 . More details can be found in the supporting material.

5.1. Model MC

We test the proposed constraints generated using different methods, as discussed in section 4.
Specifically, we consider the following variants of MC:

1) MR
C : model MC with Eqn. (42) generated iteratively at the root node; 𝐂𝐂𝑚𝑚 in Eqn. (42) is

obtained by running Algorithm 1 with 𝜃𝜃 = 10.
2) MB&C

C : model MC with Eqn. (48) generated using the B&C algorithm; 𝐂𝐂�𝑛𝑛 in Eqn. (48) is
obtained by running the algorithm shown in Figure 5 with 𝜃𝜃� = 10.

 24

3) MH
C : model MC with Eqn. (42) and Eqn. (48) generated from a hybrid approach; we first

obtain 𝐂𝐂𝑚𝑚 for Eqn. (42) by running Algorithm 1 with 𝜃𝜃 = 5 and then obtain 𝐂𝐂�𝑛𝑛 for Eqn. (48)
by running the B&C algorithm with 𝜃𝜃� = 5 (all M𝑛𝑛

C−L include previously generated Eqn. (42)).

We show the performance profiles for the instances that satisfy the following two criteria: (1)
instances are solved to global optimality by at least one of the models within 300 seconds; and (2)
instances are not solved by the slowest model for that instance within ten seconds. The performance
profile shown in Figure 7 contains 49 instances that satisfy such criteria, where the horizontal axis is
the factor for performance ratio (which is defined as the solution time for a model to solve an instance
over the shortest solution time among all models for the same instance), and the vertical axis is the
fraction of instances (Dolan and Moré 2002). We note that certain proposed methods, notably MR

C,
bring substantial computational improvements. Constraint generation for MR

C , MB&C
C , and MH

C
typically takes 10 - 20 seconds and generates around 100 constraints (time for constraint generation
is also counted towards the 300 seconds time limit).

Figure 7. Performance profile for MC and its variants solved with BARON.

There are several tested instances that are not solved by BARON in 300 seconds with the original
model MC. We solve seven instances among them with the B&C algorithm shown in Figure 5 with 𝜃𝜃� =
100. To demonstrate the effectiveness of the proposed constraints, we also solve the same seven
instances with a B&B algorithm which is similar to the B&C algorithm but does not include the
constraint generation part (flowchart can be found in Appendix D). Table 2 shows CPU time and
optimality gap (1 − 𝐿𝐿𝐿𝐿/𝑈𝑈𝑈𝑈) after 100 nodes have been processed for both B&B and B&C algorithms.
We also show the optimality gap calculated from the upper and lower bounds on the objective
function value reported by BARON after 300 seconds.

 25

Table 2. Solution statistics for B&B and B&C algorithms over select instances
Instance B&B B&C BARON
 Time(s) Gap Time(s) Gap Gap
1* 75.5 0 30.2 0 1.98%
2 136.6 0.53% 167.5 0.33% 2.34%
3 128.6 1.08% 149.6 1.03% 2.13%
4 132.5 1.63% 142.6 1.12% 1.82%
5 205.5 0.94% 210.2 0.66% 1.60%
6 205.9 2.37% 206.5 1.94% 2.80%
7 200.8 3.16% 200.3 0.52% 0.69%

* Instance 1 is solved by both B&B and B&C algorithm within 100 nodes, and we show its solution
time.

We note that for all seven instances after 100 nodes, we obtain smaller optimality gap from B&C
algorithm compared to B&B algorithm.

5.2. Model MSC

We consider the following variants of MSC:
1) MV

SC: model MSC with Eqn. (49) generated using Algorithm 3 with 𝜃𝜃 = 10.
2) MD

SC: model MSC with Eqn. (49) generated using Algorithm 4 with 𝜃𝜃 = 10.
3) MP

SC: MSC with Eqn. (50) expressed for predefined parameter 𝜌𝜌𝑗𝑗𝑗𝑗𝑜𝑜 calculated from Eqn. (51)
with |𝐎𝐎| = 10.

We again tested the above three models over 90 modified instances and show, in Figure 8, the
performance profile generated from the 36 instances satisfying the two aforementioned criteria.

Figure 8. Performance profile for MSC and its variants solved with BARON: profit maximization.

We also test our methods for MSC using an objective function where we minimize cost and the
penalty for unmet demand, defined in (15). Starting from over 90 modified instances, Figure 9 shows

 26

the performance profile based on the 35 instances satisfying the aforementioned criteria. It is shown
that the proposed methods reduce computational requirements.

For MSC, we observe that MD
SC performs well on both tested objectives, which indicates that solving

the minimizing distance problem may be a promising approach to generate the proposed constraints.
For both objectives, MV

SC and MD
SC typically contain around 100 additional constraints generated in

around 10 seconds, and MP
SC contains around 500 - 1000 additional constraints.

Figure 9. Performance profile for MSC and its variants solved with BARON: cost minimization.

5.3. Other formulation

We also test our methods on models based on another pooling formulation, known as the pq-
formulation (Tawarmalani and Sahinidis 2002), in which we have a nonnegative continuous variable
𝑞𝑞𝑖𝑖𝑖𝑖 ∈ [0,1] for the proportion of stream 𝑖𝑖 within the total outlet flow from pool 𝑗𝑗, and the following
nonlinear constraint:

𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖𝐹𝐹�𝑗𝑗𝑗𝑗 , 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (52)

Summing over index 𝑘𝑘 for Eqn. (52), we obtain:

� 𝐹𝐹�𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝑞𝑞𝑖𝑖𝑖𝑖� 𝐹𝐹�𝑗𝑗𝑗𝑗
𝑘𝑘

, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (53)

Note that the LHS of Eqn. (53) is upper bounded by the pipeline capacity between stream 𝑖𝑖 and pool
𝑗𝑗, which can be a nontrivial upper bound since the RHS of Eqn. (53) is bounded by the capacity of pool
𝑗𝑗. The model based on pq-formulation contains only continuous variables, and it is referred to as
MC−PQ. We consider the following variants of MC−PQ:

 27

1) MR
C−PQ: model MC−PQ with constraints similar to those in Eqn. (42), generated at the root

node iteratively through a procedure similar to Algorithm 1 with 𝜃𝜃 = 10.
2) MP

C−PQ : model MC−PQ with constraints similar to those in Eqn. (50) generated using pre-
determined parameter 𝜌𝜌 values calculated from an equation similar to Eqn. (51) with |𝐎𝐎| =
10.

We show a performance profile containing 33 instances in Figure 10. For model MC−PQ we observe
improvement with adding the proposed constraints. The number of constraints generated and the
time needed to generate them are similar to previous models.

Figure 10. Performance profile for MC−PQ and its variants solved with BARON: profit maximization.

6. Conclusion

We derived a family of strong valid linear constraints for bilinear terms with nontrivial bounds. The
proposed constraints are valid for the case where binary and semi-continuous variables are involved.
We proposed different methods for generating strong constraints from the family, including
generation based on constraint violation maximization and solving the minimum distance problem.
We tested the generated constraints on the pooling problem. Computational results demonstrate the
effectiveness of the proposed methods in terms of reducing the optimality gap and computational
time.

Acknowledgement

The authors acknowledge financial support from the National Science Foundation under grant CBET-
2028960.

 28

Appendix A. Solving the minimum distance problem

Consider the following optimization problem:

min𝜌𝜌{
1

𝑥𝑥U − 𝑥𝑥L
�
𝑤𝑤U

𝜌𝜌
− 𝑥𝑥∗� +

1
𝑦𝑦U − 𝑦𝑦L

|𝜌𝜌 − 𝑦𝑦∗|:𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]} (36)

 where 𝑥𝑥∗𝑦𝑦∗ < 𝜈𝜈 . Note that the above optimization problem is solved when the nontrivial upper
bound is active, in such case we have 𝑥𝑥∗ ∈ [𝑤𝑤U/𝑦𝑦U, 𝑥𝑥U] and 𝑦𝑦∗ ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]. We claim that the
solution to the above problem is the following:

(1) If 𝑦𝑦∗ ≤ �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) ≤ 𝑤𝑤U/𝑥𝑥∗ , then 𝜌𝜌 = �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L).

(2) If �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) < 𝑦𝑦∗, then 𝜌𝜌 = 𝑦𝑦∗.

(3) If �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) > 𝑤𝑤U/𝑥𝑥∗, then 𝜌𝜌 = 𝑤𝑤U/𝑥𝑥∗.

Proof We discuss the above three cases separately.

(1) When 𝑦𝑦∗ ≤ 𝜌𝜌 = �𝜈𝜈(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) ≤ 𝜈𝜈/𝑥𝑥∗ , we check the sign of (𝑤𝑤
U

𝜌𝜌
− 𝑥𝑥∗) and (𝜌𝜌 − 𝑦𝑦∗);

we have 𝑤𝑤U/𝜌𝜌 − 𝑥𝑥∗ ≥ 𝑤𝑤U/(𝑤𝑤U/𝑥𝑥∗) − 𝑥𝑥∗ ≥ 𝑥𝑥∗ − 𝑥𝑥∗ ≥ 0 and 𝜌𝜌 − 𝑦𝑦∗ ≥ 0, thus the above optimization
problem is equivalent to:

min𝜌𝜌{
1

𝑥𝑥U − 𝑥𝑥L
�
𝑤𝑤U

𝜌𝜌
− 𝑥𝑥∗� +

1
𝑦𝑦U − 𝑦𝑦L

(𝜌𝜌 − 𝑦𝑦∗):𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]}

which, after dropping constant terms, becomes:

min𝜌𝜌 {
1

𝑥𝑥U − 𝑥𝑥L
∙
𝑤𝑤U

𝜌𝜌
+

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝜌𝜌:𝜌𝜌 ∈ [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U]}

(54)

Furthermore, since 𝜌𝜌 > 0 we have the following valid inequality:

(�
1

𝑥𝑥U − 𝑥𝑥L
∙
𝑤𝑤U

𝜌𝜌
− �

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝑤𝑤U)2 ≥ 0

which is equivalent to:

1
𝑥𝑥U − 𝑥𝑥L

∙
𝑤𝑤U

𝜌𝜌
− 2�

𝑤𝑤U

(𝑥𝑥U − 𝑥𝑥L)(𝑦𝑦U − 𝑦𝑦L)
+

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝑤𝑤U ≥ 0

and thus we have:

1

𝑥𝑥U − 𝑥𝑥L
∙
𝑤𝑤U

𝜌𝜌
+

1
𝑦𝑦U − 𝑦𝑦L

∙ 𝑤𝑤U ≥ 2�
𝑤𝑤U

(𝑥𝑥U − 𝑥𝑥L)(𝑦𝑦U − 𝑦𝑦L)

(55)

 29

Eqn. (55) holds as equality when 𝜌𝜌 = �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) and by construction such 𝜌𝜌 is in the
range of [𝑤𝑤U/𝑥𝑥U,𝑦𝑦U] (since 𝑤𝑤U/𝑥𝑥U ≤ 𝑦𝑦∗ ≤ 𝜌𝜌 , and 𝜌𝜌 ≤ 𝑤𝑤U/𝑥𝑥∗ ≤ 𝑤𝑤U/(𝑤𝑤U/𝑦𝑦U) ≤ 𝑦𝑦U). Thus, 𝜌𝜌 =
�𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) is the solution to (36) when 𝑦𝑦∗ ≤ �𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) ≤ 𝑤𝑤U/𝑥𝑥∗.

(2) We first assume that the optimal solution to (36) is 𝜌𝜌∗ < 𝑦𝑦∗ . If that is the case, we also have
𝑤𝑤U/𝜌𝜌∗ > 𝑤𝑤U/𝑦𝑦∗ > 𝑥𝑥∗ since 𝑥𝑥∗𝑦𝑦∗ < 𝑤𝑤U. It follows that such 𝜌𝜌∗ is not an optimal solution to (36) since
there exists 𝜀𝜀 > 0 such that (𝜌𝜌∗ + 𝜀𝜀) leads to smaller value for both �𝑤𝑤U/𝜌𝜌∗ − 𝑥𝑥∗� and |𝜌𝜌∗ − 𝑦𝑦∗|.

We next assume that the optimal solution to (36) is 𝜌𝜌∗ > 𝑦𝑦∗. If that is the case, we first note that
𝑤𝑤U/𝜌𝜌∗ > 𝑥𝑥∗ should hold since otherwise there exists 𝜀𝜀 > 0 such that (𝜌𝜌∗ − 𝜀𝜀) leads to the objective
function value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗ − 𝜀𝜀)/(𝑦𝑦U − 𝑦𝑦L), which is smaller than the
previous objective function value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗)/(𝑦𝑦U − 𝑦𝑦L). Now, since
𝜌𝜌∗ > 𝑦𝑦∗ and 𝑤𝑤U/𝜌𝜌∗ > 𝑥𝑥∗ , we again have the optimization problem defined in (36) with 𝜌𝜌∗ =
�𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) < 𝑦𝑦∗ , which contradicts with 𝜌𝜌∗ > 𝑦𝑦∗. Thus, the optmizal solution can
only be 𝜌𝜌∗ = 𝑦𝑦∗.

(3) We first assume the optimal solution to (36) is 𝜌𝜌∗ > 𝑤𝑤U/𝑥𝑥∗. If that is the case, we also have 𝜌𝜌∗ >
𝑦𝑦∗ since 𝑥𝑥∗𝑦𝑦∗ < 𝑤𝑤U. It follows that such 𝜌𝜌∗ is not an optimal solution to (36) since there exists 𝜀𝜀 > 0
such that (𝜌𝜌∗ + 𝜀𝜀) leads to smaller value for both �𝑤𝑤U/𝜌𝜌∗ − 𝑥𝑥∗� and |𝜌𝜌∗ − 𝑦𝑦∗|.

We next assume the optimal solution to (36) is 𝜌𝜌∗ < 𝑤𝑤U/𝑥𝑥∗. If that is the case, we first note that 𝜌𝜌∗ >
𝑦𝑦∗ should hold since otherwise there exists 𝜀𝜀 > 0 such that (𝜌𝜌∗ + 𝜀𝜀) leads to the objective function
value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗ − 𝜀𝜀)/(𝑦𝑦U − 𝑦𝑦L). which is smaller than the previous
objective function value �𝑥𝑥∗ − 𝑤𝑤U/(𝜌𝜌∗ − 𝜀𝜀)�/(𝑥𝑥U − 𝑥𝑥L) + (𝜌𝜌∗ − 𝑦𝑦∗)/(𝑦𝑦U − 𝑦𝑦L) . Now, since 𝜌𝜌∗ <
𝑤𝑤U/𝑥𝑥∗ and 𝜌𝜌∗ > 𝑦𝑦∗ , we again have the optimization problem defined in (36) with 𝜌𝜌∗ =
�𝑤𝑤U(𝑦𝑦U − 𝑦𝑦L)/(𝑥𝑥U − 𝑥𝑥L) > 𝑤𝑤U/𝑥𝑥∗ , which contradicts with 𝜌𝜌∗ < 𝑤𝑤U/𝑥𝑥∗. Thus, the optmizal
solution can only be 𝜌𝜌∗ = 𝑤𝑤U/𝑥𝑥∗. ∎

Appendix B. Details of B&C algorithm

Node selection: we select the node 𝑛𝑛 with the maximum objective function value: 𝑛𝑛 = arg max𝑛𝑛′ 𝑍𝑍𝑛𝑛′
∗ .

If there are multiple nodes with the same maximum objective function value, we select the node with
the smallest index.

Local search at node 𝑛𝑛: we solve MC using CONOPT, with the initial point being the solution to M𝑛𝑛
C−L.

Prune rule: we remove all nodes with 𝑍𝑍𝑛𝑛∗ < 𝐿𝐿𝐿𝐿 from the node list.

Branching strategy at node 𝑛𝑛: we branch on variable 𝑅𝑅𝑗𝑗𝑗𝑗 only (note that for MC , branching only on
either 𝑅𝑅𝑗𝑗𝑗𝑗 or 𝐹𝐹𝑖𝑖𝑖𝑖 can guarantee 𝜀𝜀 − optimality, see Epperly and Pistikopoulos (Epperly and
Pistikopoulos 1997) for details). We first identify the (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) combination that corresponds to the
most violated nonlinear constraint: (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = arg max𝑖𝑖′𝑗𝑗′𝑘𝑘′ |𝐹𝐹�𝑖𝑖′𝑗𝑗′𝑘𝑘′

∗ − 𝐹𝐹𝑖𝑖′𝑗𝑗′
∗ 𝑅𝑅𝑗𝑗′𝑘𝑘′

∗ | , where

 30

𝐹𝐹�𝑖𝑖′𝑗𝑗′𝑘𝑘′
∗ ,𝐹𝐹𝑖𝑖′𝑗𝑗′

∗ , and 𝑅𝑅𝑗𝑗′𝑘𝑘′
∗ are obtained from solving M𝑛𝑛

C−L . Once the specific (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) is identified, we
evaluate the following equation: 𝛿̂𝛿𝑗𝑗𝑗𝑗 = �𝑅𝑅𝑗𝑗𝑗𝑗∗ − (𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U − 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L)/2�. Parameter 𝛿̂𝛿𝑗𝑗𝑗𝑗 aims to quantify the
distance between 𝑅𝑅𝑗𝑗𝑗𝑗∗ and the midpoint for its range. We branch on 𝑅𝑅𝑗𝑗𝑗𝑗 corresponds to the smallest
𝛿̂𝛿𝑗𝑗𝑘𝑘 . For branching, the break point is at the variable value in the solution to M𝑛𝑛

C−L; in other words, at
node 𝑛𝑛, the range for 𝑅𝑅𝑗𝑗𝑗𝑗 in the two resulting nodes are [𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗L ,𝑅𝑅𝑗𝑗𝑗𝑗∗] and [𝑅𝑅𝑗𝑗𝑗𝑗∗ ,𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗U], respectively.

Appendix C. Computational results for Gurobi

We provide results obtained using Gurobi 9.0 for select models and their variants below. Models are
again coded in GAMS 30.3 and Gurobi is called from GAMS. The Gurobi input parameter NonConvex
is set to 2 so that models “are solved by … applying spatial branching”, according to Gurobi’s online
documentation.

Tested instances are again modified from D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke
2011), with detailed files included in supporting material. Instances that satisfy the two criteria
described in section 5.1 are included in the performance profiles below. All models are defined in
section 5, except for model MP

C, which is a variant of model MC with constraints similar to those in
Eqn. (50) generated using pre-determined parameter 𝜌𝜌 values calculated from an equation similar
to Eqn. (51) with |𝐎𝐎| = 10.

Performance profiles in three figures below contain 27, 10, and 22 instances, respectively. Overall,
we see that the constraints proposed in this paper can improve the performance of Gurobi as well.

Figure 11. Performance profile for MC and its variants solved with Gurobi.

 31

Figure 12. Performance profile for MC−PQ and its variant solved with Gurobi: profit maximization.

Figure 13. Performance profile for MSC and its variant solved with Gurobi: profit maximization.

 32

Appendix D. B&B algorithm

Figure 14. Flowchart for the customized B&B algorithm.

 33

References
Alfaki, Mohammed, and Dag Haugland. 2013. “Strong Formulations for the Pooling Problem.” In

Journal of Global Optimization, 56:897–916. Springer. https://doi.org/10.1007/s10898-012-
9875-6.

Anstreicher, Kurt M., Samuel Burer, and Kyungchan Park. 2020. “Convex Hull Representations for
Bounded Products of Variables.” ArXiv, April. http://arxiv.org/abs/2004.07233.

Audet, Charles, Jack Brimberg, Pierre Hansen, Sébastien Le Digabel, and Nenad Mladenović. 2004.
“Pooling Problem: Alternate Formulations and Solution Methods.” Management Science 50 (6):
761–76. https://doi.org/10.1287/mnsc.1030.0207.

Bagajewicz, Miguel. 2000. “A Review of Recent Design Procedures for Water Networks in Refineries
and Process Plants.” Computers & Chemical Engineering 24 (9–10): 2093–2113.
https://doi.org/10.1016/S0098-1354(00)00579-2.

Belotti, Pietro, Andrew J. Miller, and Mahdi Namazifar. 2010. “Valid Inequalities and Convex Hulls
for Multilinear Functions.” Electronic Notes in Discrete Mathematics 36 (C): 805–12.
https://doi.org/10.1016/j.endm.2010.05.102.

Belotti, Pietro, Andrew J Miller, and Mahdi Namazifar. 2011. “Linear Inequalities for Bounded
Products of Variables.” SIAG/OPT Views-and-News 22 (1): 1–8.

Ben-Tal, Aharon, Gideon Eiger, and Vladimir Gershovitz. 1994. “Global Minimization by Reducing
the Duality Gap.” Mathematical Programming 63 (1–3): 193–212.
https://doi.org/10.1007/BF01582066.

Blom, Michelle L., Christina N. Burt, Adrian R. Pearce, and Peter J. Stuckey. 2014. “A Decomposition-
Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines.” INFORMS
Journal on Computing 26 (4): 658–76. https://doi.org/10.1287/ijoc.2013.0590.

Blom, Michelle L., Adrian R. Pearce, and Peter J. Stuckey. 2016. “A Decomposition-Based Algorithm
for the Scheduling of Open-Pit Networks Over Multiple Time Periods.” Management Science 62
(10): 3059–84. https://doi.org/10.1287/mnsc.2015.2284.

Boland, Natashia, Thomas Kalinowski, and Fabian Rigterink. 2016. “New Multi-Commodity Flow
Formulations for the Pooling Problem.” Journal of Global Optimization 66 (4): 669–710.
https://doi.org/10.1007/s10898-016-0404-x.

Boland, Natashia, Thomas Kalinowski, Fabian Rigterink, and Martin Savelsbergh. 2016. “A Special
Case of the Generalized Pooling Problem Arising in the Mining Industry.”
http://www.optimization-online.org/DB_FILE/2015/07/5025.pdf.

Castro, Pedro M. 2015. “Tightening Piecewise McCormick Relaxations for Bilinear Problems.”
Computers and Chemical Engineering 72 (January): 300–311.
https://doi.org/10.1016/j.compchemeng.2014.03.025.

Chen, Yifu, and Christos T. Maravelias. 2020. “Preprocessing Algorithm and Tightening Constraints
for Multiperiod Blend Scheduling: Cost Minimization.” Journal of Global Optimization 77 (3):
603–25. https://doi.org/10.1007/s10898-020-00882-3.

D’Ambrosio, Claudia, Jeff Linderoth, and James Luedtke. 2011. “Valid Inequalities for the Pooling
Problem with Binary Variables.” In Integer Programming and Combinatoral Optimization,
edited by Oktay Günlük and Gerhard J Woeginger, 117–29. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Dey, Santanu S., and Akshay Gupte. 2015. “Analysis of MILP Techniques for the Pooling Problem.”
Operations Research 63 (2): 412–27. https://doi.org/10.1287/opre.2015.1357.

Dolan, Elizabeth D., and Jorge J. Moré. 2002. “Benchmarking Optimization Software with
Performance Profiles.” Mathematical Programming, Series B 91 (2): 201–13.

 34

https://doi.org/10.1007/s101070100263.
Epperly, Thomas G.W., and Efstratios N. Pistikopoulos. 1997. “A Reduced Space Branch and Bound

Algorithm for Global Optimization.” Journal of Global Optimization 11 (3): 287–311.
https://doi.org/10.1023/A:1008212418949.

Furini, Fabio, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick Gould, Leo
Liberti, et al. 2019. “QPLIB: A Library of Quadratic Programming Instances.” Mathematical
Programming Computation 11 (2): 237–65. https://doi.org/10.1007/s12532-018-0147-4.

Gounaris, Chrysanthos E., Ruth Misener, and Christodoulos A. Floudas. 2009. “Computational
Comparison of Piecewise−Linear Relaxations for Pooling Problems.” Industrial & Engineering
Chemistry Research 48 (12): 5742–66. https://doi.org/10.1021/ie8016048.

Günlük, Oktay, and Jeff Linderoth. 2010. “Perspective Reformulations of Mixed Integer Nonlinear
Programs with Indicator Variables.” Mathematical Programming 124 (1–2): 183–205.
https://doi.org/10.1007/s10107-010-0360-z.

Gupte, Akshay, Shabbir Ahmed, Santanu S. Dey, and Myun Seok Cheon. 2017. “Relaxations and
Discretizations for the Pooling Problem.” Journal of Global Optimization 67 (3): 631–69.
https://doi.org/10.1007/s10898-016-0434-4.

Haverly, C. A. 1978. “Studies of the Behavior of Recursion for the Pooling Problem.” ACM SIGMAP
Bulletin, no. 25 (December): 19–28. https://doi.org/10.1145/1111237.1111238.

Jeżowski, Jacek. 2010. “Review of Water Network Design Methods with Literature Annotations.”
Industrial & Engineering Chemistry Research 49 (10): 4475–4516.
https://doi.org/10.1021/ie901632w.

Kimizuka, Masaki, Sunyoung Kim, and Makoto Yamashita. 2019. “Solving Pooling Problems with
Time Discretization by LP and SOCP Relaxations and Rescheduling Methods.” Journal of Global
Optimization 75 (3): 631–54. https://doi.org/10.1007/s10898-019-00795-w.

Kolodziej, Scott P., Pedro M. Castro, and Ignacio E. Grossmann. 2013. “Global Optimization of
Bilinear Programs with a Multiparametric Disaggregation Technique.” Journal of Global
Optimization 57 (4): 1039–63. https://doi.org/10.1007/s10898-012-0022-1.

Luedtke, James, Claudia D’Ambrosio, Jeff Linderoth, and Jonas Schweiger. 2020. “Strong Convex
Nonlinear Relaxations of the Pooling Problem.” SIAM Journal on Optimization 30 (2): 1582–
1609. https://doi.org/10.1137/18M1174374.

McCormick, Garth P. 1976. “Computability of Global Solutions to Factorable Nonconvex Programs:
Part I — Convex Underestimating Problems.” Mathematical Programming 10 (1): 147–75.
https://doi.org/10.1007/BF01580665.

Meyer, Clifford A., and Christodoulos A. Floudas. 2006. “Global Optimization of a Combinatorially
Complex Generalized Pooling Problem.” AIChE Journal 52 (3): 1027–37.
https://doi.org/10.1002/aic.10717.

Misener, Ruth, and Christodoulos A. Floudas. 2012. “Global Optimization of Mixed-Integer
Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear and Edge-
Concave Relaxations.” Mathematical Programming 136 (1): 155–82.
https://doi.org/10.1007/s10107-012-0555-6.

Misener, Ruth, and Christodoulos A Floudas. 2009. “Advances for the Pooling Problem: Modeling,
Global Optimization, and Computational Studies.” Appl. Comput. Math 8 (1): 3–22.
https://www.researchgate.net/profile/Ruth_Misener/publication/242290955_Advances_for_
the_pooling_problem_Modeling_global_optimization_and_computational_studies_Survey/links
/0046352e7d1dfeb40f000000/Advances-for-the-pooling-problem-Modeling-global-optimiza.

Misener, Ruth, Chrysanthos E. Gounaris, and Christodoulos A. Floudas. 2010. “Mathematical

 35

Modeling and Global Optimization of Large-Scale Extended Pooling Problems with the (EPA)
Complex Emissions Constraints.” Computers & Chemical Engineering 34 (9): 1432–56.
https://doi.org/10.1016/J.COMPCHEMENG.2010.02.014.

Papageorgiou, Dimitri J., Alejandro Toriello, George L. Nemhauser, and Martin W. P. Savelsbergh.
2012. “Fixed-Charge Transportation with Product Blending.” Transportation Science 46 (2):
281–95. https://doi.org/10.1287/trsc.1110.0381.

Sawaya, Nicolas W., and Ignacio E. Grossmann. 2005. “A Cutting Plane Method for Solving Linear
Generalized Disjunctive Programming Problems.” Computers and Chemical Engineering 29 (9):
1891–1913. https://doi.org/10.1016/j.compchemeng.2005.04.004.

Sherali, Hanif D., and Warren P. Adams. 1999. A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems. Vol. 31. Nonconvex Optimization and Its
Applications. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4757-4388-3.

Stubbs, Robert A., and Sanjay Mehrotra. 1999. “A Branch-and-Cut Method for 0-1 Mixed Convex
Programming.” Mathematical Programming, Series B 86 (3): 515–32.
https://doi.org/10.1007/s101070050103.

Tawarmalani, Mohit., and Nikolaos V. Sahinidis. 2002. Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming : Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers.

Wicaksono, Danan Suryo, and I. A. Karimi. 2008. “Piecewise MILP Under- and Overestimators for
Global Optimization of Bilinear Programs.” AIChE Journal 54 (4): 991–1008.
https://doi.org/10.1002/aic.11425.

