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Abstract

We develop tightening and solution methods for optimization problems containing bilinear terms.
We focus on the bilinear term w = xy with nonnegative variables x € [x%, x'] and y € [y, yY],
where w is semi-continuous and upper and lower bounded by wU and w when positive. wY and w'
are said to be nontrivial upper and lower bounds if wY is smaller than xVyV and w' is greater than
xLyl, respectively. We derive a family of valid linear constraints and show that, when one of the
nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that
represents the bilinear term. We propose different preprocessing methods for generating strong
constraints from the family. Computational results demonstrate the effectiveness of the proposed

methods in terms of reducing optimality gap and computational time.
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1. Introduction

Optimization problems containing bilinear terms have a number of applications in different
industrial sectors, from refining (Wicaksono and Karimi 2008; Gounaris, Misener, and Floudas 2009;
Misener and Floudas 2012; Kolodziej, Castro, and Grossmann 2013; Gupte et al. 2017; Chen and
Maravelias 2020) and wastewater treatment (Bagajewicz 2000; Jezowski 2010) to mining (Blom et
al. 2014; Blom, Pearce, and Stuckey 2016; Boland et al. 2016). Such problems are important in terms
of the potential economic benefits that can be achieved if solved efficiently (DeWitt et al. 1989; Kelly
and Mann 2003).

One optimization problem containing bilinear terms that has been studied extensively is the pooling
problem, which is a nonconvex optimization problem. First studied by Harvey (Haverly 1978), the
pooling problem continues to be an active research topic (Misener and Floudas 2009; Gupte et al.
2017). Various formulations for the pooling problem have been proposed (Haverly 1978; Ben-Tal,
Eiger, and Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and Haugland
2013; Boland, Kalinowski, and Rigterink 2016), and a number of variants of the pooling problem have
been studied. For example, Meyer and Floudas (Meyer and Floudas 2006) studied the generalized
pooling problem where there can be flows between pools. Misener et al. (Misener, Gounaris, and
Floudas 2010) studied the pooling problem containing complex emission constraints. D’Ambrosio et
al. (D’Ambrosio, Linderoth, and Luedtke 2011) studied valid constraints for the pooling problem with

binary variables.

Solution methods for optimization problems containing bilinear terms have been studied extensively.
One research focus is to tighten the linear relaxation of such problem. For example, Gounaris et al.
studied different piecewise linear relaxation methods for bilinear terms and compared their
computational performance (Gounaris, Misener, and Floudas 2009), Castro proposed piecewise
linear relaxations with variable bounds tightening (Castro 2015), Dey and Gupte analyzed mixed-
integer linear programming (MILP) techniques to address bilinear terms (Dey and Gupte 2015), Chen
and Maravelias utilized information from the given problem parameters to derive valid linear
constraints that tighten the relaxed problem in which bilinear terms are replaced by linear
inequalities (Chen and Maravelias 2020). Nonlinear relaxations of such problem have also been
studied. For example, Kimizuka et al. studied the second order cone relaxation of such problem
(Kimizuka, Kim, and Yamashita 2019) and Luedtke et al. studied a strong convex nonlinear relaxation

derived from extended formulation (Luedtke et al. 2020).

To effectively solve optimization problems containing bilinear terms, one common approach is to
construct convex relaxations of bilinear terms at each node in a branch-and-bound (B&B) algorithm.

Consider the bilinear term w = xy with nonnegative variables x € [x", xU] and y € [y, yV] and the



set S={(w,x,y) eR:xl <x<xYyt<y<yYw=xy}. Using the method proposed by
McCormick (McCormick 1976) leads to four linear inequalities parameterized by x%, xU, y%, and yY;
the four linear inequalities describe the convex hull of S.

Ifw is also upper bounded by a positive parameter wY < xUyY, then wY is said to be a nontrivial

upper bound on w. Similarly, if w is lower bounded by a positive parameter w® > x*y, then wl is

said to be a nontrivial lower bound on w. In the presence of nontrivial bounds, we consider the set
ST={w,xy) eR}: xt<x<xVyl<y<ywh<sw<wYw=xy}

The convex hull ofo has been studied by Belotti et al. (Belotti, Miller, and Namazifar 2010; 2011).
Specifically, they showed that it can be described with infinitely many linear inequalities, some of
which belong to a family of inequalities called “lifted tangent inequalities”. More recently, Anstreicher
et al. studied the convex hull representation for bilinear terms with bounds on the product, and
derived closed-form representations containing second-order cone constraints (Anstreicher, Burer,
and Park 2020). We note that both works mentioned above focus on sets that contain continuous

variables only.

In this paper we focus on the following set:
Si={w,x,y,2) eREx{0,1}: xMZ<x<xVy'Z<y<yZwlZ<w<wYZw=xy}

which can be viewed as a generalization of S§ since S; becomes S§ when Z = 1. We derive a family
of valid linear constraints for S;, and show that, in the presence of nontrivial bounds, such constraints
tighten the convex relaxation of the bilinear term obtained using the McCormick inequalities. We note
that when Z = 1 the constraints proposed in this paper coincide with a subset of the “lifted tangent
inequalities” and can be viewed as outer approximation cuts of the second order cone presented by
Anstreicher et al. (Anstreicher, Burer, and Park 2020). However, compared to previous work by
Belotti et al., the constraints proposed here are given in a different (parameterized) form, which
enables straightforward optimization-based generation for such constraints. We apply our methods
to the pooling problem that (1) contains only continuous variables, and (2) contains binary and semi-

continuous variables.

Note that if variable x in S; is upper bounded by xVZ instead of xV, the resulting set will be the union
of a point and a nonconvex set. By relaxing the nonconvex set with the results obtained by
Anstreicher et al. (Anstreicher, Burer, and Park 2020), one can obtain a relaxed set that is the union
of a point and a convex set. The perspective formulation for this relaxed set has been studied by
Giinliik and Linderoth (Giinliik and Linderoth 2010) who proposed linear constraints known as

perspective cuts.



We note that semi-continuous variables are common in models for network flow problems.
Papageorgiou et al. (Papageorgiou et al. 2012) studied the transportation problem with product
blending containing fixed costs. Such problem leads to a mixed-integer program (MILP), and facet-
defining constraints have been proposed. Pooling problems with binary variables have also been
studied; for example, D’Ambrosio et al. studied the pooling problem with binary variables that model
the on/off of the flow from stream to pool and proposed valid constraints (D’Ambrosio, Linderoth,
and Luedtke 2011). Previous works focus on utilizing stream properties and product specifications
to derive valid constraints. Here, we propose constraints that are based on nontrivial bounds on the

bilinear terms.

This paper is structured as follows. In section 2, we present background material, including problem
statement and models for the pooling problem, and the implication of nontrivial bounds for such
problem. In section 3 we derive a family of valid linear constraints that utilizes bounds on bilinear
terms. In section 4, we propose methods to generate strong constraints from the family for the
pooling problem. In section 5, we show computational results including models with constraints
generated from different methods and a branch-and-cut algorithm that incorporates the proposed
constraints. Throughout the paper, unless otherwise specified, we use Roman lowercase italic letters
for indices, Roman uppercase bold letters for sets, Greek lowercase letters for parameters, and

Roman uppercase italics for variables.
2. Background

We present the problem statement and nonlinear models for the pooling problem. We introduce
nontrivial bounds on bilinear terms and the convex relaxation of bilinear terms in the presence of

such bounds.
2.1. Problem statement

In the standard setting, the pooling problem is defined in terms of the following sets:
i €I: Inputs (Streams)

j€]J: Pools

k € K: Products

l € L: Properties

Given are:

a;: Unit cost of stream i
Br: Price of product k
4% Capacity of pool j
Vik: Capacity of the pipeline between pool j and product k

m;;:  Value of property [ for stream i



Y :  Upper bounding specification for property [ for product k

Wy :  Maximum demand for product k

For any product, the combined flows from all pools to that product must satisfy the corresponding
specification. We aim to find flows (from streams to pools and from pools to products) that maximize
profit. We assume that there are no flows between pools, no stream flow accumulation in pools, and
all product properties are the average of the properties of the streams blended weighted by volume

fraction. Without loss of generality, we assume we have only upper bouding specifications.
2.2. Nonlinear models for the pooling problem
2.2.1 Model containing only continuous variables

Various models have been proposed for the pooling problem (Haverly 1978; Ben-Tal, Eiger, and
Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and Haugland 2013;
Boland, Kalinowski, and Rigterink 2016). In this paper, we study models similar to the one proposed
by Alfaki and Haugland (Alfaki and Haugland 2013). We define the following nonnegative continuous
variables:

Fyj: Flow of stream i to pool j

Rjx:  Split fraction for total inlet flows for pool j to product k (R € [0,1])

Fij: Flow of stream i from pool j to product k
We have the following constraints:

Pool capacity:
Zi Fij<vj, €Y

Product demand:

Zizjﬁijk < Wy, k (2)
Z.Z.”ilﬁijk < wklz_z.ﬁijk; k,1 (3)
i j i j

Upper bound on the flows from pools to products:

Ziﬁijk < ij' ],k (4)

Product specifications:

Stream splitting:

Fijk = FijRjg, Ljk (5)

Note that Eqn. (5) is an equality constraint with a bilinear term.



For split fraction R;; we have:

D Ri=1 (6)
k

Eqns. (5) and (6) enforce that there is no flow accumulation in pools.

Reformulation-Linearization Technique (RLT) (Sherali and Adams 1999) constraints can be added

to strengthen the formulation. Summing over index k on both sides of Eqn. (5), we have:

Zkﬁijk = Fyj ZkRjk: i,j

which, combined with Eqn. (6), leads to:
Zkﬁijk —Fy,  ij 7)

Another RLT constraint can be obtained by multiplying both sides of Eqn. (1) with R;; (a nonnegative

variable):
ZiFinjk < ViR, J.k
which, combined with Eqn. (5), leads to:
Zip”" <VRw ik 8)

The objective function is profit maximization:

max Zizj (Zkﬁkﬁijk - a’iFij> (9)

Eqgns. (1) - (9) comprise a nonlinear model for the pooling problem which contains only continuous

variables and is henceforth referred to as M€.
2.2.2 Model containing semi-continuous variables

In practice, in addition to the pipeline capacity modeled in Eqn. (4), there may exist a lower bound
ony,; Fijk for each (j, k) pair when };; Fijk is nonzero. In other words, when the flow from pool j to
product k is nonzero, it must be greater or equal to a positive parameter. Let y;;, denote such a
parameter (i), < v and pj, < y;). We define the following semi-continuous variable:

Fjy: Flow from pool j to product k

and the following binary variable:

Zik: = 1 if there is positive flow from pool j to product k

We have the following constraints:

Fi=) Fyeo ik (10)
L



wikZik < Fje < vieZpe, ok (11)
Eqgn. (10) is introduced for illustration. Eqn. (11) ensures that when Z;, = 0, ij = 0; when Zj;, =
1, Fye € [jicr vire]-
Note that for split fraction R;; we now have:

%ij < Rj < Zjy, Jk (12)

When Zj; = 0, we have F;;, = 0, and thus Rj; = 0 for the corresponding split fraction. When Zj;, = 1,
then ij = Ujk so the lower bound on Rjy in this case should be uj /y; and by definition R, < 1.
Thus, Rji is now also a semi-continuous variable. We note that Eqn. (6) is no longer valid in the model
containing semi-continuous variables since it is possible that a pool j has no outlet flows with Z;, =
0, Vk, and thus from Eqn. (12) we have Rj, = 0, Vk. However, a relaxation of Eqn. (6), Xx Rjx < 1,V/,

remains valid.

We note that one can derive additional valid constraints from Eqn. (12). Since for every (j, k) pair,
we have (U /Vj)Zjk < Rji, by summing over index k we have ¥, (ujx/vj)Zjx < Xk Rjx,Vj,and since
Yk Rjx < 1,Vj we have a knapsack constraint Y,(ujx/v;)Zjx < 1,Vj, which is equivalent to
Yk MjkZix < vj, Vj.For the pooling problem, this means that cannot turn on too many pipelines from
a pool if the sum of the lower bounds on flows of those pipelines exceeds pool capacity. In practice,
this is not the case, since Y, uj, will still be smaller than y; given that (. /¥;) is small, and thus such

a constraint is unlikely to be active.

We again consider profit maximization with additional fixed cost terms:

max 21’ Zj (Zk'gkﬁ”k — aiFij) - Zj Zk X Zjk (13)

Eqgns. (1) - (3), (5) and (7) - (13) comprise a nonlinear model for the pooling problem with semi-

continuous variables, henceforth referred to as MS€,

For M5 we also consider the objective of minimizing cost considering penalty for unmet demand.
Let ¢, denote the minimum demand for product k and define a nonnegative continuous variable Uy

for unmet demand for product k, we have:
Uk 2 o — Fi., k (14)

and the objective function is:

minY > why+y Y afiZu+ . fRU (15)
1] j=k k

where Bf is the unit penalty for unmet demand for product k.



2.3. Nontrivial bounds on bilinear terms
2.3.1 Bounds on flow variables

Summing over index i for the constraints in Eqn. (5), we obtain:

Z,Fijk = Rjkz.Fij' Jk (16)
L L

If we define F; as follows:
F = ZiFij: J (17)
From Eqn. (7) and Eqn. (17), we can re-write Eqn. (16) as:
ij = F}Rjk: Jk (18)

Eqn.(18) is an equality constraint with a bilinear term; it is implied from constraints in both M¢ and
M5, Note that ﬁ] is upper bounded by y; since ¥; F;; < y; (see Eqn. (1)) and Rjy is upper bounded by
1. Thus, from the right-hand-side (RHS) of Eqn. (18) we know that ij is upper bounded by y;.
However, ij is also upper bounded by vj; since Ziﬁijk < vjx (see Eqn. (4)), which is typically
smaller than y; since, in general, the pipeline capacity from pool to product is significantly smaller

than the pool capacity. We note that above analysis holds for both M¢ and MSC.

We next examine the lower bounds on both sides of Eqn. (18) for model MS5€ when Zjx = 1. We note

thatin MSC, ﬁ] is also semi-continuous since we have:

F =z puZp, ok (19)

which is implied by Eqn. (11) and Eqn. (18). In this case, from Eqn. (11) we have F}-k = Wji; we also
have I:"] = Ujk, and from Eqn. (12) we have Rj; = pji/vj. We note that from the RHS of Eqn. (18) with
bounds on F] and Rj; mentioned above, one can only derive the lower bound on ij as ujz-k/yj, which

is smaller (thus less tight) than u; since we have p . <v;.

2.3.2 Nontrivial bounds

U

Definition 1 Consider a bilinear termw = xy withx < xY,y < yY, andw < wY. wY is said to be a

nontrivial upper bound on w if wV < xYyY,

L

Definition 2 Consider a bilinear term w = xy with x > x*, y > y%, and w > w'. w' is said to be a

nontrivial lower bound on w if w' > xly".

From Definition 1 and Definition 2, vj, can be nontrivial upper bounds on ij and when Zj, = 1, pjy

can be nontrivial lower bounds on ij in MS€,

In this paper we are interested in the set defined as follows:

Si={w,x,y,2) eREx{0,1}: xMZ<x<xV,y'Z<y<yZwlZ<w<wYZw=xy}



with wl > xtyl, wY < xUyU, and wt < wY. Set S; contains variables and constraints similar to

those in M5C; for a (j, k) pair one can consider ij asw, Fj as x, Rji as y, Zjj as Z, and Eqns. (5), (11),

(12), and (18) are similar to constraints that define S;.
When Z = 1, S; becomes:
ST={w,xy)eR}: xt<x<xVyl<y<ywh<sw<wYw=xy} (20)

with w' and wV being nontrivial lower and upper bounds on w. When w' = 0, S represents the
feasible space of a bilinear term with nontrivial upper bound, which arises in MC. We next discuss

the implication of nontrivial bounds on the convex relaxation of the bilinear terms.
2.4, Convex relaxation of bilinear terms

Global optimization for nonconvex problems involves solving convex relaxations of the original
problem. Using McCormick inequalities (McCormick 1976) to relax w = xy with bounds on x and y

defined in ST we have:

w > yhx + xly — xlyt (21)
w = yUx + xVy — xUyY (22)
w < ylx + xUy —xUyl (23)
w < yYx + xly — xlyY (24)

We define set S5, which is a relaxation of S7, as follows:
S; ={w,x,y) eR}: xl<x<a¥y"<y<yYwhl<w<wYEqgs (21) - (24)}
and set S; = {w € R,: w = wY}. The feasible spaces defined by S§ n S; and S n S5 are shown in

Figure 1. In the next section, we derive a family of valid linear constraints for S; (thus valid for S} as

well) that tightens S7.
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Figure 1. [llustrative graph for bilinear terms xy with x € [1,3],y € [1/3,1] and its relaxation when
the nontrivial upper bound wV = 2 is active. The intersection of S§ and S; is the solid curve xy =
wVY, and the intersection of S and Sj is the triangular region defined by the three dashed lines. Note
that while we have x € [2,3],y € [2/3,1] when xy = wY, Eqns. (21) - (24) that define SJ are
generated with x = 1,xY = 3,yL = 1/3,yV = 1.
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3. Valid linear constraints

We first present a family of valid linear constraints for a bilinear term with nontrivial upper and
lower bounds, show that such constraints are tangent to the hyperbolas that represent the bilinear
term when one of such bounds is active, and discuss the connections with previous works. We then

propose methods to generate strong tightening constraints from the family.
3.1. A family of valid linear constraints
We present a family of valid linear constraints for S; in Proposition 1.

Proposition 1 p%x +wYy + 2p(oyw + 0,Z2) =0 with o, = WwtwV —wV)y/wY —wb) |, o, =
wYwr — vwlwV)/(wY —wb), and parameter p > 0 is valid for S;.

Proof.
Since Z is binary, we first consider the case where Z = 0. In this case, S; becomes:
Si={w,x,y) eR3: xl-0o<x<xV,yl-0<y<yV-owt-0o<sw=<swV-0,w=xy}
which is equivalent to:
ST={w,x,y) €R}: 0<x<xYy=0w=0}
One can verify p?x +wVy + 2p(oyw + 0,Z) = 0 is valid for S; by inspection since p?x is
nonnegative and all other terms are zero.
We then consider the case where Z = 1. In this case, S; becomes S} in Eqn. (20):
Sf={w,x,y) eR3: xl<x<axVyl<y<yVwl<sw<wYw=xy}

and the proposed constraint becomes:

px +wly + 2p(oyw + 05) =0 (25)

Assuming (w,x,y) € ST, we first examine p2x + wVYy. Since a? > 0 for any a € R, we have the valid
inequality (pvx — ywYy)? > 0, which, after expanding the left-hand-side (LHS), we obtain

p%x — 2p/wYxy + wly >0

and thus

p2x +wYy = 2p/wlxy (26)
Since (w, x,y) € ST, we have w = xy. Thus, Eqn. (26) can be re-written as

p2x + wly = 2pVwlw (27)

With Eqn. (27), we know that the LHS of Eqn. (25) is lower bounded by the following:

pix + wVUy + 2p(oyw + 03) = 2pywOw + 2p(oyw + 05)

11



Re-writing the RHS of the above equation in a compact form we have:
plx +wly + 2p(oyw + 03) = 2p(VwOw + gy w + a,) (28)

We next show that the RHS of Eqn. (28) is nonnegative by showing VvwUw + o;w + 0, = 0 (recall

that we have p > 0). We first examine the zeros of the following quadratic function w.r.t vVw:
Vwlw + gyw + 0, = o, (Vw)? + VwUw + g, = 0 (29)

We note that Vvwl is one root for such function, since

L Uy,L_y,U U L_ Uy L
VTWE + gy Wh + 0y = VO 4 2 WEw) i w o wT) Tt T e

wU_wL wU_wL wU—_wlL =0
And VvwV is the other root for such function, since
U U,,L_y,U Ufpwl— UL u(,,,U L U(,,,L U
wr (Vwrwhi-w wt(w wtw wI (WU —wL)+w U (wl-w
VwOwbl + owY + 0, = wl + ( )+ ( )= ( Jrw( )_ o

wU—wL wU—_wL wU—_wL
We further note that the coefficient of the quadratic term, o4, in Eq (29), is negative since w" < wY

(see the definition of oy in Proposition 1). Thus, we have
VwOw + oyw + g, = 0 (30)
for Vwl <+vw <vwY , which is equivalent to wl<w <wV since 0 <Vwl <+w <VwU .
Combining Eqn. (28) and (30), we have:
p2x + wly + 2p(ayw + 0,) = 2p(VwOw + ayw + 0,) = 0 (31)
is valid for (w, x,y) € ST.
Combining both cases for Z = 0 and Z = 1, we have
p’x +wly + 2p(oyw + 0,2) = 0 (32)
is valid for S;. [

When p > 0, the family of constraints in Eqn. (32) can lead to some strong inequalities, particularly

L

when w = w or w = wY (i.e,, when one of the nontrivial bounds is active).

Remark 1 When w = wY, Eqn. (32) becomes p?x + wVy — 2pwV > 0. When p > 0, one can easily
verify that for the branch of the xy = wY hyperbola with both x and y positive, line p2x + w'y —
2pwY = 0 is tangent to this hyperbola at point (WY/p, p) (the slope for the tangent line at this point
is (—p?/w")).

Remark 2 When w = w®, Eqn. (32) becomes p2x + wVy — 2pvVwUwL > 0. When p > 0, one can
easily verify that for the branch of the xy = w! hyperbola with both x and y positive, line p?x +
wly — ZpW = 0 is tangent to this hyperbola at point (W/p, pW} (the slope for the
tangent line at this point is (—p?/w")).

12



We show an illustrative graph for the proposed constraint and the above two remarks in Figure 2,
with numerical examples.
Remark 3 By setting w = 0 and Z = 1, from Proposition 1 we have
plx +wly —2pw >0 (33)
which is valid for
S;={w,x,y)eRy: x<xV,y<y'w=<wYw=xy} (34)

Set S7 contains continuous variables only. We note that the variables and constraints involved in S]

are similar to those in M¢. Specifically, for a (j, k) pair one can consider ij asw, Fj as x, and R as

]
y.
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Figure 2. [llustrative graph for bilinear terms w = xy with x € [1,3],y € [1/3,1],and w € [1,2] when
one of its nontrivial bounds wV = 2 or w! = 1 is active. The blue curve represents xy = 2 and the
black curve represents xy = 1. Dashed blue and black lines represent the intersection of Eqn. (25)
and w = 2 and w = 1, respectively, with p = 1. Dotted blue and black lines represent the intersection
of Eqn. (25) and w = 2 and w = 1, respectively, with p = 2/3. Coordinates for points of tangency are
shown in parentheses.

3.2. Generation of strong valid linear constraints

Eqn. (32) contains infinitely many constraints. We propose methods to generate strong tightening
constraints. Specifically, given a point (W*,x*,y*,Z*) ¢ S; obtained from solving an optimization
problem over a relaxation of S;, we determine the value of p to obtain a constraint that cuts off such

a point.
3.2.1 Generation based on constraint violation maximization

We consider the following quadratic optimization problem:
min, f(p) = p*x* + wly* + 2p(yw* + 0,Z%) (35)

which has a closed form solution p = —(oyw* + 0,Z2%)/x* if x* > 0. Such p may lead to a constraint

in Eqn. (32) that is violated by (w*, x*,y*,Z*), and the violation, measured by the value of p2x* +

13



wVy* + 2p(oyw* + 0,Z%), is the greatest. We note that the optimal objective function value to the
optimization problem (35) can be nonnegative. If that is the case, Eqn. (32) will not be able to cut off
(w*, x*,y*,Z*) . To address this issue, we first check the sign of the discriminant of f(p) :
[4(oyw* + 0,Z2*)? — 4x*wYy*] ; if positive, the optimal objective function value to the above
optimization problem is guaranteed to be negative, and we proceed to generate a constraint

(otherwise, no constraint will be generated).
3.2.2 Generation based on solving the minimum distance problem

The minimum distance problem for constraint generation has been studied (Stubbs and Mehrotra
1999; Sawaya and Grossmann 2005). Here, we focus on the case where (W*, x*,y*,Z*) € S3 =
{w e R,: w = wVY}, thatis, the nontrivial upper bound is active (w* = wY if Z* = 1). Of particular
interest is the point (w*, x*,y*,Z*) € S5 with x*y* < wY. Note that such a point is notin §; N S3. To
find a constraint that cuts off (w*, x*,y*,Z*), we first find a point (x,y) on the curve xy = wV that

has the minimum distance to (W*, x*,y*, Z*) by considering the following optimization problem:
1 1
i — * — * : — U’ E L’ 0] , E L’ 0]
mmx,y{—xu_xle x|+—yU_yL|y yilxy=w",x€[xx ],y ey y 1}

which can be viewed as minimizing the weighted 1-norm distance between (x*, y*) and (x, y). Note

U can be represented using (wV/p, p) with p being a variable

that points (x,y) on the curve xy =w
having the same bounds with y. When xy = wV with x < x!, we have y € [wY/xY,yV], thus p €
[wY/xY, yY]. We rewrite the above optimization problem as:

i 1
ming{ Tt

wY

P

*

1
tor i ylp €wh/xt T (36)

We claim that the solution to the above problem is the following (see proof in Appendix A):

(MIf y* <JwIY —yb)/(x¥ —xb) <wU/x", thenp = JwY (Y — yb)/(x¥ — x1).
) If ywU (Y —yL)/(xV —x1) < y*, thenp = y*,

B If ywU (U —yL)/(xV —xL) > wY/x*, then p = wV/x".

After obtaining p, we have the point (WY /p, p) on the curve xy = wV that has the minimum distance
to (W*, x*,y*,Z*). We then generate Eqn. (32) with such p. Recall that when the nontrivial upper

bound wV is active, Eqn. (32) is tangent to the curve xy = wV at point (WY /p, p).
4. Solution methods

In this section we present different methods for generating the proposed constraints for model M¢
and M5,
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4.1. Methods for model M€

For model M¢, we consider the following constraint obtained from summing over indexi € I* C 1

for the constraints in Eqn. (5):

Z. Fiji = R; z Fij.  Jk (37)
ier* ier*

We note that ;¢ Fijk < Vjx and X;¢+ Fijj < y;, thus from Remark 3, by considering ;¢ ﬁijk asw

and Y;er- Fj; as x, we have the following valid constraint for ME:

p? Lierr Fij + VixRji = 2p Bier Fiji 2 0 (38)
We next present two constraint generation methods for M that determine the value of p and the
selection of set I* for Eqn (38).

4.1.1. Generation at the root node

Eqn. (38) can be generated at the root node in multiple rounds. At each round, we solve a linear
relaxation of M© , and generate constraints based on the solution to the relaxed problem. We then
resolve the relaxed problem with the generated constraints and perform another round of constraint

generation.

Let m denote the rounds of constraint generation. Model M$, " contains all constraints in M, except

that the nonlinear constraint Eqn. (5) is replaced by:

Fijx 2 ViR + Fij—vj,  Ljk (39)
Fijk < )/jRjkl i,j, k (40)
Fiw < Fj, ik (41)

M§, L also contains the following constraint:
2 & ,
Pjkm’ Ziel}km, Fij + VireRjie = 2P jiem’ ZiEl;km, Fijie 20, U k,m’) € Cny (42)

where C,, contains (j, k, m") combinations that lead to Eqn. (42) in all previous rounds, and the set
I5jm is defined as follows: at each round, we solve MS, L and, for each (j, k) pair, define set Liem =
{i: F; > 0}. Given the solution to M5, ", we calculate parameter pjy,, by solving the following
optimization problem which is similar to the one in (35):

ming,.. 9(pjim) = (Z . Fﬁ)ﬂfm —2 <Z .
i€l 1S

jkm jkm

Fi?k) Pjkm + VjkRjk

~ 2 .
Fij'k) = 4vjcRjy Xiers,,, Fijls i
positive, then there exists a parameter pjy.,, that leads to a constraint in Eqn. (42) violated by the

We first check the sign of the discriminant ofg(pjkm): [4 (Ziel*

jkm

current solution to M$ L. We then calculate Pjkm = Zier

* * .
em Fijk /Eiel;km F;; (such parameter will

lead to a constraint that is violated by the current solution to M$; by the greatest margin). We also

15



update set C,,,;, which contains the index for Eqn. (42). We then solve M$ Y, which contains Eqn.
(42) that are generated in previous rounds. We repeat until no new constraints are generated or we

reach the maximum number of constraint generation rounds ( 6 ). The pseudocode of the

aforementioned method is given in Algorithm 1.

Algorithm 1. Constraint generation at root node
Inputs: ¢ = True,m =0, 6, I} iem = =@,andC,, =0
While ¢ = True AND m < 6 do

¢ = False

Solve M§; L.

Read solution Fiik» Rix, and Fj;

]km {l ij > 0}
Cs1 = Cry
Forj € ]do
For k € Kdo
2
If 4 (ZLEI Uk) — 4 Rji Xiery,,, Fij > 0 then
Pjrkm = ZlEl]km ijk /Zlel]km ij
Cn+1 = Gy V{0, k,m)}
¢ = True
End
End
End
m=m+1
End
Outputs: pjim, Ly, and Cpyy

We discuss an example to illustrate the procedure of generating the aforementioned constraint and
its effectiveness. We have I = {I1,12},] = {J1}, K = {K1,K2}, L = {L1}, yj; = 3, and the parameters

given in Table 1.

Table 1. Parameters for the illustrative example

a P Vik T Yin o Wk
11 2 — — 0.5 — —
12 1 — — 1 — —
K1 — 10 2 — 0.75 3
K2 — 5 1 — 1 3

Solving the illustrative example with nonlinear model M€ leads to a solution with optimal objective
function value of 20.5. Solving the illustrative example using M§™" leads to a solution with an

objective function value of 21. The optimal solution to M§~" is shown in Figure 3.
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[=¥3 o
F11,K1 = FIZ,KI =1

K1

Products

K2

Figure 3. The optimal solution to the illustrative example from solving M§™" (index j dropped for
simplicity).

We examine the optimal solution for flow to product K2. We have I, , = {I2}. Since 4(131*2,1(2)2 -
4vio Ry, (Fy) =4 —8/3 >0, we calculate px,o = Fiy k,/F5 = 1/2, and generate the following

constraint:
(1/4)Fiz + Rgz — Fiox2 2 0 (43)
In the next round, we solve M{~" again after adding Eqn. (43). The optimal objective function value

now becomes 20.78, which is closer to the objective function value obtained from solving the

nonlinear model M¢ (which is 20.5). Figure 4 shows the intersection of Eqn. (43) with FIZ,KZ =1.

1.0 1 ~
Fipk2 =1
0.9 1
0.8 1
0.7 1
Rg2 .l
0.51 \\\\
041 A21/3) TR
Y . S
0.3

1.00 125 150 1.75 200 225 250 275 3.00

F,
12
Figure 4. Illustrative graph showing the intersection of Eqn. (43) with FIZ,KZ = 1. Solid curve

represents Fj, Rk, = FIZ,KZ in M©; dashed lines represent Eqn. (39) - (41) in M$%; point A represents
(F}, R,) obtained from solving M§™L; dot-dashed line represents Eqn. (43).

4.1.2. Generation using a branch-and-cut framework

Letn € N = {0,1, ... } denote nodes in the B&B tree with n = 0 being the root node. At each node, we

solve M$~L which contains all constraints in ME¢, except that the nonlinear constraint Eqn. (5) is

replaced by:
Fifk = FiI]"nRjk + RijnFij - Filj'nRijn (44)
Fi]'k = Fi[;nRjk + R}ljanij - FiI]J'nR};m (45)

17



Fi]' Fll]JnRjk + R]knF Fll]JnR (46)
Fij Fl]nR R]I{an Fl]:]‘nR][;{n (47)

where F]n/FlI]Jn and R; kn/ ikn A€ lower/upper bounds on Fj; and Rj; at node n, respectively. For

the root node, we have F 0 =0, VYi,j, 110 =y, Yi,j, 0 =0Vj,k, and Rﬁ_o =1,Vj, k. The

values ofF]n/Fll]Jn and R; kn/ ikn Will be updated when new nodes are generated.

In addition, M$~L also contains the following constraint:
,D]gkn/ z . FU + ijRjk - 2p}-kn/ Z . Fijk = 0, (i, k,n') € Cn (48)
iel’,, , iel’, ,
jkn jkn
where C,, contains (j, k,n’) combinations that lead to Eqn. (48) in all previous nodes. For subsets L,

at each node we solve M{™" and, for each (j, k) pair, define I3, = {i: F}j, > 0}.

We generate Eqn. (48) using Algorithm 2, with the optimal solution to M$™" used as inputs. In
Algorithm 2 we check if the nonlinear constraints in MC€ are satisfied; if not, we aim to generate
constraints that cut off the current optimal solution to M$™L. For constraint generation for each (j, k)
S5 if

pair we again define subsets I}, and check the sign of [4 (Zlel Uk) — 4V R; kzzelﬂm ij

positive, we calculate parameter pjy, = Zzel]k_n i’}-k /ZiEI}kn Fj.
We note that Eqn. (48) is globally valid, since different variable bounds at different nodes will only
affect the possible value of p 4y, and from Proposition 1, constraints in the form of Eqn. (48) are valid
for bilinear term Zie};kn’ Fijk = Rjx Zie{;’kn’ F;j with nontrivial upper bound v;, regardless of the

value of pjyy.
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Algorithm 2. Generating constraints at nodes
Inputs: n, vy, F{;, R}y, F{}k, and C,,
c; = True, c, = False
Forj € Jdo
For k € Kdo
c3 = False
Fori eIdo
If £y # F;;R}, then
c; = False
c3 = True
Break
End
End

Lin = {i: Fjji > 0

5% 2 * *
If c; = True AND 4 (Ziel}‘-kn F; ,-k) — 4V Rjy Liery,, Fij > 0 then
Pjkn = Xiery, Fijk [ Ziert,, Fij

jkn jkn
C\n = C\n U {(, k,n)}
¢y = True
End
End
End

Outputs: pjy, €1, €5, Ly, and C,

We present a customized branch-and-cut (B&C) algorithm that integrates Algorithm 2 within a B&C
framework in Figure 5. We start with the solution to the relaxation at the root node (M$™) with
objective function value Z;. The list of open nodes (node list) contains only the root node, and set C,
is empty. Z; is the initial upper bound on the objective function value (UB), and the initial lower
bound on the objective function value (LB) is set to zero since a trivial feasible solution exists with all
variables being zero. We select a node n in the node list, read its solution and run Algorithm 2. After
running Algorithm 2, if all nonlinear constraints in MC are satisfied (i.e., c; = True), then this solution
is a feasible solution to M€; if new constraints are generated in Algorithm 2 (i.e., c; = True), then we
add them to M$~" and solve it again. Note that set C,, for Eqn. (48) is updated in Algorithm 2, and
constraints in Eqn. (48), once generated, will be included in all later nodes. After updating the
solution to M,C,‘L, we perform local search to find a feasible solution to M€, using a local nonlinear
solver, with the solution to M$™F as the initial point. After the local search, we update LB (if applicable)
and then perform branching. Two child nodes are generated through branching, and the relaxations
associated with them are solved right after branching. Such relaxations contain all constraints in the
parent node (including Eqn. (48)). The details for the implemented node selection rule, local search,
prune rule, and branching strategy can be found in Appendix B. The algorithm terminates when (1)
the optimality gap, defined as (1 — LB/UB), is within a chosen tolerance (¢), or (2) the maximum

number of processed nodes (#) has been reached.
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Finally, while the B&C algorithm introduced above can be used to solve the pooling problem, we note
that, since the constraints in Eqn. (48) are globally valid, it can also be utilized as a preprocessing
algorithm to generate valid constraints whose indices are stored in set C,, with n being, essentially,

the last node that has been processed.

| Initialize with: Solution to Mgil‘,tolerance & node counts = 0 |
max node count §, N = {0}, C,=@, UB=Z;, LB=0

| Select a node n € N, read its solution and C,, |
Prune
detail in Appendix B
Y

NO
c; = True?

i.e., new constraints generated?,
YES

[ solve ME~L again with the updated set C,, then update solution |

Perform local search with solution toMSYas initial point; let
2 denote the optimal obj. function value from local search

LB = max(LB,Z;)
N=N\{n}a=n4+1
¥

Branch to generate two new nodes. For each generated node n’, set
€, = C, and solve MSTL; if feasible, N =Nu {n'}

Figure 5. Flowchart of the customized B&C algorithm.

4.2. Methods for model MS©
4.2.1. Generation at the root node

For model M5¢, we generate the following constraint at the root node:

Phem' Fr + ViR + 20 et (01 Fjie + Ojr2Zii) 2 0, (i k,m') € Cpy (49)

where Ojik1 = (\/l'ljkvjk - ij)/(ij - ﬂjk): Ojk,2 = Vjk (.ujk - \/ﬂjijk)/(ij - lijk)-
We consider model M3¢~L which contains all constraints in model M5, except that the nonlinear
constraint Eqn. (5) is replaced by Eqn. (39) - (41). M5~ also contains Eqn. (49).

We first present Algorithm 3 that generates constraints based on maximizing constraint violation. At
each round of constraint generation, we solve the continuous relaxation of Mj~" (in which Z;, €
% * 2
[0,1]), and, similar to Algorithm 1, for each (j, k) pair, we check the sign of [4(ajk,1ij + ajk,Zij) —
4v; F; R}, ]; if positive, we calculate parameter pjym, = —(0jx1Fji + 0jx2Z;)/F and generate Eqn.
(49). We repeat until no new constraints are generated or we reach the maximum number of

constraint generation rounds.
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Algorithm 3. Constraint generation from maximizing violation
Inputs: c = True, m =0,60,and C,,, = @
While ¢ = True AND m < 6 do

c = False

Solve the continuous relaxation of M3¢~L,

Read solution F']-*, R, Fiie» Zj

Cn+1 =Cpy
Forj € Jdo
Fork € Kdo
If 4(01 Fje + 02Z5)” — 4VjuF7 R}, > 0 then
Crn+1 = Cpyq U_{(j: k, m)} B
Pjkm = =Gk Fik + 0ji2Z3) [ Ff
¢ = True
End
End
End
m=m+1
End
Outputs: pjyp, and Cpyq

Similarly, Algorithm 4 generates constraints by solving the continuous relaxation of M3¢~L iteratively,
but based on solving the minimum distance problem. After solving the continuous relaxation of
MSC-L for each (j, k) pair we check the following two conditions: (1) Fj’;( = Vjk, and (2) F}*R}‘k < F]’;c
If both conditions hold, that means the nontrivial upper bound is active and the nonlinear constraint
is violated. We calculate pjy,, by solving the minimum distance problem discussed in section 3.2.2.

Note that when IEjRjk = vj, we have F] € [vjk, yj], Rji € [Vjk/vj,1]. Thus, we calculate p i, as follows:
(D If Ry < Ve (U= v /¥D/ 0 — Vi) = Vi /v < Vi /Ff , then pjum = \[vji/v;-
(2) If Ry > \Jvj/v) then pjim = Rjy.

(3) If /v /v > vji/Ff', then pjym = v /F}.
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Algorithm 4. Constraint generation from minimizing distance
Inputs: c = True, m =0,60,and C,,, = @
While ¢ = True AND m < 6 do

c = False

Solve the continuous relaxation of M3¢~L,

Read solution F']-*, R, Fiie» Zj

Cnt1=Cp
Forj € Jdo
Fork € Kdo
If Fj, = vj; AND F{R}, < Fj, then
Cns1 =Cpsy U {(]' k, m)}
If R, < \/Vik/Yv; < vji/Fj then
Pjkm = [ Vjk/Vj
Else If R, > \/vjc/y; then
Pjkm = ]ikk
Else
Pikm = Vii/F}
End
End
End
End
m=m+1
End
Outputs: pjy, and Cp, 44

4.2.2. Generation using predefined parameters

Since for a given parameter p we have one valid constraint, we can generate constraints with a

predefined set of values of p. Specifically, we have the following:
PieoFi + ViiRik + 2Pjko (G 1 Fjie + 0j1e2Zjx) 20, j,k,0 €O (50)

where O = {0,1, ...} is the index of constraints for a given (j, k) pair, and pjy, is a predefined
parameter. Eqn. (50) is generated without solving any optimization problem. Recall that for a given
(j, k) pair, when ij = Vj, Eqn. (50) is tangent to FjRjk = vji at the point corresponding to F"] =
Vjk/P, Rjx = p. Note that when FjRjk = Vj, we have Ry € [vj/yj, 1], thus one straightforward way

to define pjy, is the following:
Piko = Vik/Vj + o(1 — v /¥))/10l,  j.k (51)

Eqn. (51) generates values of pjy, evenly distributed in [v, /y;, 1]. We show an illustrative graph for

the points of tangency on bilinear curve generated from such p;, in Figure 6.
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v/y .

Figure 6. [llustrative graph for points (vjx/pjko, Pjko) ON curve FJ-Rjk = Vji with pjy, generated from

Eqn. (51) with |O| = 8 (indices j and k are dropped in the graph for simplicity).

5. Computational results

In this section, we present computational results for models employing the proposed constraint
generation methods. Computational experiments are conducted on a Windows 10 machine with Intel
Core i5 at 2.70 GHz and 8 GB of RAM. Models are coded in GAMS 30.3 and solved using the global
optimization solver BARON 19.12.7. We also provide computational results obtained using Gurobi
9.0 in Appendix C. For all runs, CPU time limit is set at 300 seconds and the tolerance for relative
optimality gap is set at 0.01%. Instances are modified from the 90 randomly generated instances in
D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011), which are included in QPLIB, a library
of quadratic programming instances (Furini et al. 2019). The 90 instances contain 15 streams, 5 - 10
pools, 10 products, and 1 - 4 properties. All parameters defined in M® are taken from those 90
instances. There are several parameters defined in those 90 instances that are not defined in this
paper, we do not consider those parameters. For MS¢, most parameters are defined in those 90
instances, except for the lower bound on the positive flow p;. We set p to a fraction of the pipeline

capacity vj,. More details can be found in the supporting material.
5.1. Model M¢

We test the proposed constraints generated using different methods, as discussed in section 4.
Specifically, we consider the following variants of M¢:
1) M§: model MC with Eqn. (42) generated iteratively at the root node; C,, in Eqn. (42) is
obtained by running Algorithm 1 with 6§ = 10.
2) MSgc: model MC with Eqn. (48) generated using the B&C algorithm; €,, in Eqn. (48) is
obtained by running the algorithm shown in Figure 5 with § = 10.
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3) M§: model M€ with Eqn. (42) and Eqn. (48) generated from a hybrid approach; we first
obtain C,, for Eqn. (42) by running Algorithm 1 with & = 5 and then obtain C,, for Eqn. (48)
by running the B&C algorithm with 8 = 5 (all M$~" include previously generated Eqn. (42)).

We show the performance profiles for the instances that satisfy the following two criteria: (1)
instances are solved to global optimality by at least one of the models within 300 seconds; and (2)
instances are not solved by the slowest model for that instance within ten seconds. The performance
profile shown in Figure 7 contains 49 instances that satisfy such criteria, where the horizontal axis is
the factor for performance ratio (which is defined as the solution time for a model to solve an instance
over the shortest solution time among all models for the same instance), and the vertical axis is the
fraction of instances (Dolan and Moré 2002). We note that certain proposed methods, notably M,
bring substantial computational improvements. Constraint generation for M, Mg&c , and M§
typically takes 10 - 20 seconds and generates around 100 constraints (time for constraint generation

is also counted towards the 300 seconds time limit).

Figure 7. Performance profile for M® and its variants solved with BARON.

There are several tested instances that are not solved by BARON in 300 seconds with the original
model M€. We solve seven instances among them with the B&C algorithm shown in Figure 5 with § =
100. To demonstrate the effectiveness of the proposed constraints, we also solve the same seven
instances with a B&B algorithm which is similar to the B&C algorithm but does not include the
constraint generation part (flowchart can be found in Appendix D). Table 2 shows CPU time and
optimality gap (1 — LB/UB) after 100 nodes have been processed for both B&B and B&C algorithms.
We also show the optimality gap calculated from the upper and lower bounds on the objective

function value reported by BARON after 300 seconds.
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Table 2. Solution statistics for B&B and B&C algorithms over select instances

Instance B&B B&C BARON
Time(s) Gap Time(s) Gap Gap
1* 75.5 0 30.2 0 1.98%
2 136.6 0.53% 167.5 0.33% 2.34%
3 128.6 1.08% 149.6 1.03% 2.13%
4 132.5 1.63% 142.6 1.12% 1.82%
5 205.5 0.94% 210.2 0.66% 1.60%
6 205.9 2.37% 206.5 1.94% 2.80%

7 200.8 3.16% 200.3 0.52% 0.69%
* Instance 1 is solved by both B&B and B&C algorithm within 100 nodes, and we show its solution
time.

We note that for all seven instances after 100 nodes, we obtain smaller optimality gap from B&C

algorithm compared to B&B algorithm.
5.2. Model M°¢

We consider the following variants of MS¢:
1) M{C: model MSC with Eqn. (49) generated using Algorithm 3 with 6 = 10.
2) M3C: model MSC with Eqn. (49) generated using Algorithm 4 with 8 = 10.
3) M3C: MSC with Eqn. (50) expressed for predefined parameter Pjko calculated from Eqn. (51)
with |0] = 10.

We again tested the above three models over 90 modified instances and show, in Figure 8, the

performance profile generated from the 36 instances satisfying the two aforementioned criteria.

.......

> 4 & 8 1 12 1
Figure 8. Performance profile for MS¢ and its variants solved with BARON: profit maximization.

We also test our methods for MS¢ using an objective function where we minimize cost and the

penalty for unmet demand, defined in (15). Starting from over 90 modified instances, Figure 9 shows
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the performance profile based on the 35 instances satisfying the aforementioned criteria. It is shown

that the proposed methods reduce computational requirements.

For MS¢, we observe that ME¢ performs well on both tested objectives, which indicates that solving
the minimizing distance problem may be a promising approach to generate the proposed constraints.
For both objectives, M{¢ and M3C typically contain around 100 additional constraints generated in

around 10 seconds, and Mf’,c contains around 500 - 1000 additional constraints.

P
Figure 9. Performance profile for MS¢ and its variants solved with BARON: cost minimization.

5.3. Other formulation

We also test our methods on models based on another pooling formulation, known as the pg-
formulation (Tawarmalani and Sahinidis 2002), in which we have a nonnegative continuous variable
q;j € [0,1] for the proportion of stream { within the total outlet flow from pool j, and the following

nonlinear constraint:
Fijk = qijFj iLjk (52)

Summing over index k for Eqn. (52), we obtain:

By = Z Fo, ik 53
Zk ijk qU X jk ] ( )

Note that the LHS of Eqn. (53) is upper bounded by the pipeline capacity between stream i and pool
j, which can be a nontrivial upper bound since the RHS of Eqn. (53) is bounded by the capacity of pool
j. The model based on pq-formulation contains only continuous variables, and it is referred to as

MC¢~PQ We consider the following variants of M¢~PQ:
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1) MS "% model ME~PQ with constraints similar to those in Eqn. (42), generated at the root
node iteratively through a procedure similar to Algorithm 1 with 8 = 10.

2) MS™"? model ME~PQ with constraints similar to those in Eqn. (50) generated using pre-
determined parameter p values calculated from an equation similar to Eqn. (51) with [O| =

10.

We show a performance profile containing 33 instances in Figure 10. For model M¢~PQ we observe
improvement with adding the proposed constraints. The number of constraints generated and the

time needed to generate them are similar to previous models.

5 10 15 20 25 30
R

Figure 10. Performance profile for M®~PQ and its variants solved with BARON: profit maximization.

6. Conclusion

We derived a family of strong valid linear constraints for bilinear terms with nontrivial bounds. The
proposed constraints are valid for the case where binary and semi-continuous variables are involved.
We proposed different methods for generating strong constraints from the family, including
generation based on constraint violation maximization and solving the minimum distance problem.
We tested the generated constraints on the pooling problem. Computational results demonstrate the
effectiveness of the proposed methods in terms of reducing the optimality gap and computational

time.
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Appendix A. Solving the minimum distance problem

Consider the following optimization problem:

1

minp{ T

WU

p

*

1
+Wlp ~y*l:p e w/x",y"]} (36)

where x*y* < v. Note that the above optimization problem is solved when the nontrivial upper
bound is active, in such case we have x* € [wV/yY,xY] and y* € [wY/xV,yY]. We claim that the

solution to the above problem is the following:
(W If y* <YwIU —yL)/(xV —xL) <wV/x*, then p = JwU(yU — yL)/(xU — xL).
(2) If ywU(yU —yL)/(xV —xL) < y*, thenp = y".

(3) If ywU(YY —yL)/(xY — xL) > wV/x*, then p = wY /x".

Proof We discuss the above three cases separately.

(1) When y* < p = /v(yY — yL)/(xY — x) < v/x*, we check the sign of (WTU —x*) and (p — ¥*);
wehavewV/p —x* > wV/(wY/x*) —x* = x* —x* = 0and p — y* > 0, thus the above optimization
problem is equivalent to:

wU

mlnp{m<7—x >+m(p—y ):p € [WU/XU,yU]}

which, after dropping constant terms, becomes:

1wl 1
minp { ﬁ “p:p € [WU/XU,yU]} (54)

—._+
xXU—xL p U

Furthermore, since p > 0 we have the following valid inequality:

1 wlY 1 U2 >
(xU_xL 0 yU_yLW) =
which is equivalent to:

1 wl 5 wU N 1 Us o
—— wh 2
xU—xbt p Y =xBOY-yh YU -yt

and thus we have:

1wl 1 wY
- 4 _.ywUs 55
Y —ZJ(xU—xL)(yU—yL) )
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Eqn. (55) holds as equality when p = \/wU(yU — yL)/(xU — xL ) and by construction such p is in the
range of [wV/xY,yY] (since wY/xV <y* <p, and p < wY/x* <wV/wY/yY) <yY). Thus, p =
JwY(U — yL)/(xVU — xL) is the solution to (36) when y* < /wU(yY — yL)/(xY — xL) < wV/x".

(2) We first assume that the optimal solution to (36) is p* < y*. If that is the case, we also have

wVY/p* > wU/y* > x* since x*y* < wV. It follows that such p* is not an optimal solution to (36) since

there exists € > 0 such that (p* + ¢) leads to smaller value for both |WU/p* —x*[and |p* — y*|.

We next assume that the optimal solution to (36) is p* > y*. If that is the case, we first note that
wY/p* > x* should hold since otherwise there exists € > 0 such that (p* — ¢) leads to the objective
function value (x* —wY/(p* — ))/(xV —xY) + (p* — y* — &) /(yY — y1), which is smaller than the
previous objective function value (x* —wY/(p* — ))/(xV — x%) + (p* — y*)/ ¥V — y). Now, since

p* >vy* and wV/p* > x*, we again have the optimization problem defined in (36) with p* =

JwY(U —yL)/(xVU — xL) < y*, which contradicts with p* > y*. Thus, the optmizal solution can
only be p* = y*.

(3) We first assume the optimal solution to (36) is p* > wV/x*. If that is the case, we also have p* >

y* since x*y* < wY. It follows that such p* is not an optimal solution to (36) since there exists ¢ > 0

such that (p* + ¢) leads to smaller value for both |WU/p* —x*[and |p* — y*|.

We next assume the optimal solution to (36) is p* < wU/x*. If that is the case, we first note that p* >
y* should hold since otherwise there exists € > 0 such that (p* + €) leads to the objective function
value (x* —wV/(p* — &))/(xV = xY) + (p* — y* — &) /(Y — y1). which is smaller than the previous
objective function value (x* —wY/(p* —€))/(xV —x) + (p* —y*) /¥ — y»). Now, since p* <

wV/x* and p* >y*, we again have the optimization problem defined in (36) with p* =

JwIU —yL)/(xU —xL) > wY/x* , which contradicts with p* <wV/x*. Thus, the optmizal

solution can only be p* = wY /x". n
Appendix B. Details of B&C algorithm

Node selection: we select the node n with the maximum objective function value: n = argmax, Z, .
[f there are multiple nodes with the same maximum objective function value, we select the node with

the smallest index.
Local search at node n: we solve M© using CONOPT, with the initial point being the solution to M§~t.
Prune rule: we remove all nodes with Z,; < LB from the node list.

Branching strategy at node n: we branch on variable Rj; only (note that for ME, branching only on
either Rj, or F;; can guarantee & — optimality, see Epperly and Pistikopoulos (Epperly and
Pistikopoulos 1997) for details). We first identify the (i, j, k) combination that corresponds to the

. . - PR =£3 * *
most  violated nonlinear constraint: (i), k) = argmax;s s |Fi,j,k, - Fi,].,Rj,k,| , where
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Ejr oy Fiijr, and Rjo are obtained from solving Mg™". Once the specific (i, j, k) is identified, we
evaluate the following equation: Sjk = |R]?‘k - (R}{m - R}kn)/2|. Parameter Sjk aims to quantify the
distance between Rj, and the midpoint for its range. We branch on Rj;, corresponds to the smallest
Sjk. For branching, the break point is at the variable value in the solution to M$™L; in other words, at

node n, the range for R;; in the two resulting nodes are [R}“kn, Rji] and [Rj, R}{m], respectively.

Appendix C. Computational results for Gurobi

We provide results obtained using Gurobi 9.0 for select models and their variants below. Models are
again coded in GAMS 30.3 and Gurobi is called from GAMS. The Gurobi input parameter NonConvex
is set to 2 so that models “are solved by ... applying spatial branching”, according to Gurobi’s online

documentation.

Tested instances are again modified from D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke
2011), with detailed files included in supporting material. Instances that satisfy the two criteria
described in section 5.1 are included in the performance profiles below. All models are defined in
section 5, except for model Mg, which is a variant of model M€ with constraints similar to those in
Eqn. (50) generated using pre-determined parameter p values calculated from an equation similar
to Eqn. (51) with |0] = 10.

Performance profiles in three figures below contain 27, 10, and 22 instances, respectively. Overall,

we see that the constraints proposed in this paper can improve the performance of Gurobi as well.
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Figure 11. Performance profile for M® and its variants solved with Gurobi.
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Figure 13. Performance profile for M5¢ and its variant solved with Gurobi: profit maximization.
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Appendix D. B&B algorithm

| Initialize with: Solution to M‘?*L, tolerance &, node counti = 0 ‘
max node count 8, N = {0}, €,=0, UB=Z;, LB=0

Prune
(detail in Appendix B) Select anode n € N, read its solutionand G, |

<—All nonlinear constraints satisfied?
NO

Perform local search with solutionto MS$L as initial point;
let Z;; denote the obj.function value from local search

LB = max(LB,Z;;)
N =N\{n

LB = max(LB, Z,

N=N\{n}Ai=f+1

Branch to generate two new nodes. For each generated node n’, set
¢, = C, and solve MSTL ; if feasible, N = N u {n'}

Figure 14. Flowchart for the customized B&B algorithm.
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