Variable Bound Tightening and Valid Constraints
for Multiperiod Blending
Yifu Chen,2 Christos T. Maraveliasbe*
a. Department of Chemical and Biological Engineering, University of Wisconsin-Madison
1415 Engineering Dr., Madison, WI 53706, USA
b. Department of Chemical and Biological Engineering, Princeton University
Princeton, N] 08544, USA
c. Andlinger Center for Energy and the Environment, Princeton University
86 Olden Street, Princeton, N] 08544
*Corresponding author

maravelias@princeton.edu

Abstract

Multiperiod blending has a number of important applications in a range of industrial sectors. It is
typically formulated as a nonconvex Mixed Integer Nonlinear Program (MINLP), which involves
binary variables and bilinear terms. In this study, we first propose a reformulation of the constraints
involving bilinear terms using lifting. We introduce a method for calculating tight bounds on the lifted
variables calculated by aggregating multiple constraints. We propose valid constraints derived from
Reformulation-Linearization Technique (RLT) that utilize the bounds on the lifted variables to
further tighten the formulation. Computational results indicate our method can substantially reduce

the solution time and optimality gap.

Keywords: Preprocessing, Reformulation-Linearization Technique, Variable Lifting, Bilinear Terms

List of Symbols

Indices/Sets

i €1: Inputs (Streams)

j €]J: Blenders

k € K: Products

l € L: Properties

t € T: Time points: {0,1, ..., |T|}/time periods: {1,2, ..., |T|}

Subset
L;.: Properties for product k whose specification is violated by stream i
Ijg: Streams that violate the specification for property I for product k

Parameters: problem data

aﬁ{: Fixed cost for flow from blender j to product k
a): Variable cost for stream i

i-

Br: Price of product k

4L Inventory capacity of blender j
O Upper bound on flow between blender j and product k
& Availability of stream i
m;;: Value of property [for stream i
u

i - Upper bounding specification for property [for product k

Wy : Maximum demand for product k

Parameters: calculated during preprocessing

Vijii: Tightened bound on inventory of stream i in blender j when it is feeding product k derived
from property [

Yiji: Tightened bound on inventory of stream i in blender j when it is feeding product k

Wir: Violation of specification for property [for product k from stream i

[Tk Value of property [of the “best” stream for property [

ThE Value of property [of the “second best” stream for property [

Variables: nonnegative continuous
Fijz: Flow of stream i to blender j at time point ¢
Lije: Inventory of stream i in blender j during time period ¢t

Rjxe: Split fraction for inventory in blender j to product k at time point ¢

-~

Fijke: Flow of stream i from blender j to product k at time point ¢
Uijke: Inventory of stream i in blender j during time period ¢t when not feeding product k

Vijke: Inventory of stream i in blender j during time period t when feeding product k

Variables: binary

Xje: =1 when blender j feeds product k at time point ¢

Y =1 when blender j feeds products at time point ¢

1. Introduction

Planning and scheduling for blending processes over multiple time periods have received
considerable attention. Since the introduction of the pooling problem (Haverly 1978), blending
processes have been studied extensively, with the bilinearities required to model the blending
process receiving considerable attention (Wicaksono and Karimi 2008; Gounaris, Misener, and
Floudas 2009; Misener and Floudas 2012; Kolodziej, Castro, and Grossmann 2013; Gupte etal. 2017;
Chen and Maravelias 2020). Previous works have been focused on both crude oil blending (Reddy,
Karimi, and Srinivasan 2004; Li et al. 2007; Li, Misener, and Floudas 2012; Castro and Grossmann
2014; Castro 2016) as well as final product blending (Li and Karimi 2011; Kolodziej et al. 2013;
Castillo and Mahalec 2014; Neiro, Murata, and Pinto 2014; Li, Xiao, and Floudas 2016). Multiperiod
blending also arises in wastewater management (Bagajewicz 2000; Jezowski 2010) and mining
(Blom et al. 2014; Blom, Pearce, and Stuckey 2016; Boland et al. 2016). In the multiperiod setting,
binary variables are introduced to enforce additional operating rules, which lead to a nonconvex
Mixed Integer Nonlinear Program (MINLP). Such problems are important in terms of the potential

economic benefits that can be achieved (DeWitt et al. 1989; Kelly and Mann 2003).

Global optimization of nonconvex MINLPs is performed using branch-and-bound algorithms which
involve solving convex relaxations of the original problem. The tightness of the convex relaxation
strongly depends on variable bounds. Various bounds tightening methods have been proposed
(Belotti et al. 2009; Puranik and Sahinidis 2017), including, for example, methods based on reduced
cost (Ryoo and Sahinidis 1996), which utilizes the optimal solution to the relaxed problem. Bounds
tightening techniques that do not require such information have also been proposed. A well-known
technique is Optimality Based Bound Tightening (OBBT) which typically relies on solving linear
programs (LP) (Quesada and Grossmann 1995; Maranas and Floudas 1997; Shectman and Sahinidis
1998; Smith and Pantelides 1999). OBBT can be computationally expensive, and methods aim to
improve its efficiency have been studied (Gleixner et al. 2017). Feasibility Based Bound Tightening
(FBBT), which considers a single constraint at a time and utilizes interval arithmetic to infer variable
bounds, has been employed in solving both mixed integer linear program (MILP) (Savelsbergh 1994;
Achterberg et al. 2020) and MINLP (Achterberg 2007). FBBT has received considerable attention in
both mathematical programming and artificial intelligence communities (Street 1989). Though
computationally inexpensive, FBBT is known to be less effective compared to OBBT in terms of the

tightness of the bounds found.

Tightening methods that utilize information from multiple constraints at a time have also been
studied. For example, Achterberg et al. (Achterberg et al. 2020) studied presolve methods for MILP
that consider multiple constraints simultaneously. Specifically, for variable bounds tightening

purpose, their methods are based on special block structure in the problem matrix. Domes and

Neumaier (Domes and Neumaier 2016) proposed constraint aggregation method for rigorous global
optimization that utilizes information from local solutions. Belotti (Belotti 2013) proposed a
procedure that infers variable bounds using a pair of constraints. Aggregating multiple constraints
can lead to tighter variable bounds compared to FBBT, while it is computationally inexpensive
compared to OBBT. However, which constraints to be aggregated and their weights require further

investigation.

In this paper, we propose a bound tightening method for multiperiod blending problem based on
aggregating multiple constraints. The selection of constraints and weights assignment are based on
the understanding of the physical system we model. Our method works on reformulations of the
multiperiod blending problem that contain certain structure; however, such structure may be found

in a range of models in different fields.

This paper is structured as follows. In section 2, we present background material, including the
problem statement and two formulations. In section 3, we introduce reformulations of the two
formulations and a preprocessing method for variable bounds tightening. In section 4, we propose
valid constraints derived from Reformulation-Linearization Technique (RLT) utilizing the bounds

obtained from preprocessing. We demonstrate the effectiveness of our method in section 5.
2. Background

We present the problem statement and two formulations for multiperiod blending problem.
Throughout the paper we use Roman lowercase italic letters for indices, Roman uppercase bold

letters for sets, Greek lowercase letters for parameters, and Roman uppercase italics for variables.
2.1. Problem statement
We use a discrete uniform time representation, where time point t is at the end of time period t.

The problem we study is defined in terms of the following sets:
i €1: Inputs (streams)

j €]: Blenders

k € K: Products

l € L: Properties

t € T: Time points: {0,1, ..., |T|}/time periods: {1,2, ..., |T|}

It can be stated as follows:

Given are:
aﬁ(: Fixed cost for flow from blender j to product k
a’: Variable cost for stream i

i-

Br: Price of product k

4% Inventory capacity of blender j

Ojk: Upper bound on flow between blender j and product k
&: Availability of stream i
m;;: Value of property [for stream i

i - Upper bounding specification for property [for product k

Wy : Maximum demand for product k

The flow from blender to product must satisfy the corresponding specifications, and blender feeding
and withdrawing cannot occur simultaneously. We aim to find a blend schedule that leads to the
highest profit. We assume that all product properties are the average of the properties of the streams

blended weighted by volume fraction. Finally, we assume no flow between blenders in this study.
2.2, Source-based formulation

We first present a source-based formulation inspired from the literature (Lotero et al. 2016). We
define the following nonnegative continuous variables:

Fijz: Flow of stream i to blender j at time point ¢

Lije: Inventory of stream i in blender j during time period ¢t

Rjie: Split fraction for inventory in blender j to product k at time point ¢

Fijke: Flow of stream i from blender j to product k at time point ¢

We also define the following binary variable:

Xjke: =1 when blender j feeds product k at time point ¢

We illustrate the variables in the source-based formulation in Figure 1.

Ul

Fije

Xjkt

~

Fijkt

Rt
i € I: Streams

k € K Products
J € J: Blenders

Figure 1. [llustrative graph for sets and variables in the source-based formulation.

We have the following constraints:

F; i <&, i€l
2oy D it <6 (1)

Stream availability:

Blender capacity:

E. Iijtsyj' JEJLtET (2)
i€l
Flow variable upper bound:
§ . ﬁ'ijkt < §jiXjke) JELKEKLtET 3)
i€l

We note that ¥;¢; Fyjx; is also upper bounded by y;Xj.; however, in practice we typically have 6j, <
Vi

Maximum product demand:
Z Z Z Fjie <o, k€K (4)
i€l &= jej &=iteT

Nonlinear constraint for inventory splitting:

Fiue = lijeRiner (€ELjELKEKLET)
For split fraction we have:
Z Rixe =1, JEJLET (6)
keK
Operating logic:
Rjxe < Xjkt, jeELkeKteT)
- ' (8)
, IFijtSYj(l Xike) JELKEKtET
e

Eqn. (3) and (7)- (8) enforce the operating rule that blender feeding and withdrawing cannot occur

simultaneously.

The inventory balance is:

Lijes1 = lije + Fije — ZkEKﬁijkt' leELjE]teT (9)

The specification for flow from blenders to products:

2' nilﬁijktSﬂIICJlZ, ﬁijkt! jE],kEK,lEL,tET (10)
i€l i€l

while the inventory specification is:

Z'e]ﬂillijt < nl[(JlZ'E]Iijt +)/]T[,I('Il(l — Xjkt)! JjE l,k eKleLteT (11)
i i

We assume, without loss of generality, that we have only upper bounding specifications.

Tightening constraint for product flow:
Z, Fijke <vjRjxe» JjELKkEK (12)
i€l

Finally, we have the objective function:
maxz Z Z [Z (BrFijie — @i Xjee) — o) Fije (13)
i€l b= jEJ bmd teT keK

Eqn. (1) - (13) comprise the source-based formulation, henceforth referred to as MSE.
2.3. Proportion-based formulation

The multiperiod blending problem can also be reformulated using a proportion-based formulation.
We define the following nonnegative continuous variable:

P;j;: Proportion of stream i in the inventory of blender j at time point ¢

We have:

Z Pj,=1, jEJLET (14)
i€l

We also have the following nonlinear constraints:

Iijt = Pijt Zilelli,jt’ IS I!] €]'t S T (15)
Fi,-ktzpijtZ Pijuer» IELjELKEKLET (16)
i'el
Finally, similar to Eqn. (11), the proportion specification can be expressed as:
Z' Ini,Pijt < my + (maxi{my} —md)(1 —Xjxe), Jj€EJLkEKIELLET (17)
e

Eqn. (1) - (4), (8) - (11), and (13) - (17) comprise the proportion-based formulation, henceforth

referred to as MFB,

Note that the proportion-based formulation is similar to the PQ-formulation (Tawarmalani and
Sahinidis 2002) and the TP-formulation (Alfaki and Haugland 2013) for the pooling problem; and the
source-based formulation is similar to a model proposed by Boland et al. (Boland, Kalinowski, and
Rigterink 2016). To the best of our knowledge, there are no theoretical results regarding the relative
tightness of the aforementioned three formulations. No formulation is known to be tighter of clearly

faster than the other two.

3. Reformulation and preprocessing method

We first introduce a reformulation of M5B using lifting, and a preprocessing method to calculate tight

bounds and then present the reformulation and preprocessing method for model MF®,
3.1. Reformulation of bilinear terms
Eqn. (5), an equality constraint with a bilinear term, is of particular interest.

We lift I;,, and partition it into nonnegative continuous variables U; i, and V.

Lije = Ujie + Vijie, ielje]keKteT (18)
Z_EI Uijre < Vj(l _Xjkt); jELkKEKLtET (19)
L
Z, Vijkt < ViXjkts jeELkeKteT 20)
i€l

where U;j; represents the inventory of stream i in blender j during time period ¢t when there is no

flow from blender j to product k (Xj,; = 0), and V., represents such inventory when Xj; = 1.

Eqn. (5) now becomes:

-~

Fijre :Vijktzllelﬁi'jkt: ieLje)keKteT (21)
l

and Eqn. (11) can be re-written as:

Z ﬂilvijktSﬂ'}{le Vijkt' jE],kEK,IEL,tET (22)
i€l i€l

The reformulated model, with variables U jx; and V;ji., henceforth referred to as MYV, consists of
Eqn. (1) - (4), (6) - (10), and (12) - (18). In MYV, the variables involved in a bilinear term are Vijke

and Ry, We aim to tighten bounds on V; j;.
3.2. Preprocessing method for variable bounds tightening

A relaxation of Eqn. (20) is:

Z, Vijke <vj» jE€LkeKteT (23)
i€l

The right hand side (RHS) parameter y; can be tightened. We first rewrite Eqn. (22) as:

Z (g — Vit <0, jELKkEKIELLET (24)
i€l

We define a parameter p;; to represent the margin by which stream i violates the specification for
property [for product k: iz, = m; — my, (note that u;,; can be positive or negative). Eqn. (24) can

thus be written as:

Zie[‘uiklvijktso' jE],kEK,lEL,tET (25)

We aim to calculate a tighter upper bound on V., using Eqn. (23) and (25). For simplicity, we drop

indices j, k, and t for now, thus p;;,; becomes y; = m;; — . We consider the following:
zielVi % (26)

iEIMuVi <0, I[€EL 27)
Eqn. (26) - (27), which contain (1 + |L|) constraints, will be used to find tight variable bounds on V;

for model MSEB,

To illustrate the bound tightening procedure, we first define a parameter y; = min;{;;} and a set
function b(1) = arg min;{y;;} that returns the “best” stream for property l. It is possible that, for a
property [, there are multiple streams with y;; = y; (i.e., multiple “best” streams). In that case, we
consider b(l) being the stream with the smallest index among all such streams. We assume y; < 0
because (1) if u; > 0 then y; > 0, Vi and since V; > 0, Eqn. (23) can be satisfied only if V; = 0, Vi; and
(2) if y; = 0, then Eqn. (23) can be satisfied only if V; = 0, Vi: y; # 0).

We also define subset L; = {l: u;; > 0}, that is, the set of properties with specification violated by
stream i. Similarly, we define subset I; = {i:u;; > 0}, that contains streams that violate the

specification for property L.

To illustrate, we consider an illustrative example with I = {1,2,3}, L = {L1, L2}. Parameters n”,nlU

and y;; calculated from them are given in Figure 2.
3.2.1. Bounds tightening using a pair of constraints

From Eqn. (26) it is clear that y is a valid upper bound on V;. To tighten such upper bound, we
combine Eqn. (26) with one constraint in Eqn. (27). For V; with positive coefficient in at least one
constraint in Eqn. (27) (i.e., streams that violates at least one specification), bounds derived from

such pairs of constraints will be tighter than y.

To calculate bounds using aforementioned pairs of constraints, we first multiply all inequalities in

Eqn. (27) by —’% (recall that y; < 0) to obtain:
> thrso lel
. u

i€l

Properties 1 =2 i=3 T,
=11 1 4 3 2
=12 5 1 6 4
I L1 my C1 L2 my
2 T 4 o 1 3 T 6 =
1
: T
E 1 —+ 5 MaLz =2
Hary = 2; wiz=1
3 1 3 i
I R
Mz =1 :
| i
Y, + 24 ! Ha12 = —3
1
.
UL = —1 '
1
b
1+ 1= L2+ 1—
bL) =1 | ni=-1 b(L2) =2| wip=-3

Figure 2. An illustrative example for parameters m;;, 7, i, and u}.
Next, we combine Eqn. (26) with a weight equal to 1, with each individual constraint above,

Z (1—ﬂ)v_y, el 28)

Each constraint in Eqn. (28) is obtained by combing a pair of constraints: Eqn. (26) and one constraint

in Eqn. (27). Next, we derive bounds on V; from Eqn. (28).

After using i’ instead of i, we obtain:

Z Hl vy <y, leL
i’el

For each | € L, we consider streams in the set I;, and isolate such streams, one at a time, from the

summation in the left hand side (LHS):
Hit Z Py, < leELi€]
i i’e\{i} I

We examine the second term on the LHS of the above equation. By the definition of y; we have p;r; >
. Thus, 1f,ull<0then M”E [0,1] p:’>0 and 1f;1”>0 then—lZilZOand

l
a ’)Vr > 0. Thus, the

I
following inequality, obtained by droppmg the summation in the LHS of the above equation, is valid:

Ui
l

i = iEI,lELi (29)

andsincel—%>0\7’z [€ L; we have:

10

ViSy/(l—%), ieLlEL
l

Or

*

-~ my ,
Visvu=-— -, LeLlel (30)

Ui — I

Note that 7;; is smaller than y and serves as an upper bound on V; derived from property l.

The physical interpretation of y;; is as follows. Suppose we have to meet demand for volume y for a
product. Parameter 7;; represents the maximum volume of stream i that can be used towards volume
y based on property [€ L;. In other words, ¥;; /v is the maximum fraction of stream i that can be used
for such product. This stream-specific volume, 7;;, is derived by considering the binary mixture of

streams i and b(l) that satisfies the specification for property [exactly.

Once we calculate ¥;; from Eqn. (30), the upper bound on V;, denoted as y;, is set to the smallest 7;;,
considering all properties that stream i violates (i.e., VI € L;), ¥; = minjey, {7;;}. For illustration

purpose, we introduce a set function m(i) that returns the property [from which y; is derived (i.e.,
m(i) = arg minge {7})-

Consider the illustrative example shown in Figure 2 with y = 1. Based on the calculated parameter

w;; shown in Figure 2, we have the following constraints for Eqn. (26) - (27):

Vi+V,+V; <1
-V +2V,+V3 <0
Vi =3V, +2V3<0
The calculations described above lead to bounds on V; given in Table 1.

Table 1. Bounds calculated by aggregating pair of constraints

i=1 i =2 i=3
Vi - 1/3 1/2
ViL2 3/4 - 3/5
i 3/4 1/3 1/2

Note: “-” indicates the corresponding ¥;; is not calculated since L1 € L; and L2 ¢ L,.
3.2.2. Bounds updating

In this subsection, we discuss how we can further tighten 7;;. Recall that bounds on V; are derived
using pairs of constraints. For each such pair, we can derive bounds tighter than ;; by considering

one additional constraint in Eqn. (27) that is not included in such pair.

11

We elaborate the aforementioned idea in the context of blending. Recall that ;; is based on the binary
mixture of streams i and b(l) with volume y, which satisfies the specification for property [and
contains (y — ¥;;) volume of stream b(l). It is possible that stream b(l) violates specifications for
other properties, and its maximum volume in y volume of product is less than (y — 7;;). For all

(i,1 € L;, b(1)) combinations, we check if the following holds: Yooy <Y — Vi

If ¥,y <y — Vi, then there exists a property m[b(1)] (the property from which y,,(; is derived, see
section 3.2.1) whose specification is violated by the binary mixture of stream i and b(l) that satisfies
specification for property [exactly (i.e., timp@) Vi + bo@mp@) ¥ — i) > 0). Note that property
m[b(1)] is not considered when deriving 7;;; when taking it into account, the binary mixture of stream
i and b(l) will not be able to satisfy the specifications for property [and property m[b(l)]
simultaneously. In such case, we include one additional stream to the binary mixture. Note that by
including one additional stream, y;; will be tightened since it is previously obtained from the binary

mixture of streams i and b (1) that satisfies specification for property [exactly.

Specifically, we tighten 7;; by considering the “second best” stream for property I. We define ujt =
minrep p it} - Let b¥ (1) be a set function that returns the “second best” stream: b* () =
arg min;sep gp 317}, which implies U=y — ny;. If there are multiple “second best” streams,
we proceed as follows: for the specific (i, leL, b(l)) combination being considered, if u; = y" (i.e.,
stream i is one of the “second best” streams), then b* (1) = i; else, b*(l) is the stream with the

smallest index among all such streams.

To tighten ¥;;, we prove three propositions. In Proposition 1, we consider a special case where
b*(l) = i, while in Propositions 2 and Propositions 3 we consider the more general case where
b* (1) # i. For Propositions 2 and Propositions 3, we consider a mixture with volume y that contains
stream i, b(1), and b (1), and satisfies the specification for property L. Note that for volume y of such
mixture, the (current) upper bound on volume of stream b(l) is ¥}, (;). Assume we have volume ¥;; for

stream i and volume (y — ¥p(;) — 7i;) for stream b* (1). Then, for property [we have:
W¥pay + tafu + w v = Vo) — 7i) <0, leELlEL;
which is equivalent to:
(i — w0 < Toay —v) — W Vb, leLlEL;
For Propositions 2 and Propositions 3, since b* (1) # i, by the definition of y; it follows that p; —

ui > 0. Thus, we have:

o < ui (Foy —v) — Wi7b@)
*e (4 — 1)

., i€eLlel

12

Note that the RHS of the above equation can be nonpositive. Proposition 2 shows that in such case
zero is a valid upper bound on V;. If the RHS is positive, Proposition 3 shows that it is a valid upper

bound on V;.
Proposition 1 For (i, € L;, b(1)) with Yoy <V —Puand b* (D) =i, if Xy pyrVyr < 0, then 9 < 0.
Proof (by contradiction).

Since b*(l) =i and [€ L;, it follows that the “second best” stream violates the specification for
property [, thus uj = p;; > 0.

From Eqn. (30), we have y;; = — #f’y -, which leads to (u;f — u})P;; = —u;y. If we move all terms to
—H

the LHS, we have uj 9;; — uj 7 + ujy = 0, and thus, we have

WP +m—7)=0 (31)
To simplify the notation, we introduce € = ¥;;, which means that Eqn. (31) can be written as:
wetpuy—e=0 (32)
Next, to prove the result using contradiction, we assume that §; = ¢ > 0.

Recall that y,;) <y — 7 = ¥ — &, and thus, if we multiply both sides of the inequality with y; <0,
we obtain p; ¥py > p; (v — €). Therefore, from Eqn. (32), we have:

Hie+ UV >0 (33)
We also have
Zi,elﬂi’lVi’ = Vi + Zi’el\{i}‘ui,lVi’ (34)
IfV; = 9;; = ¢ then
Zi’el bk = ui e+ zi’el\{i}#i’lVi’ (35)
Note that
Zi’el\{i} bV =HiVo ¥ Zi’el\{b(l),i}ui’lVi, (36)

with ‘le: < 0and Vb(l) < Vb(l)-

Since the “second best” stream, in this case stream i, violates the specification for property ! (i.e,
Ui > 0), it follows that y;r; > 0,Vi' € I\{b(1), i}, while y; < 0. Since V; is nonnegative, the RHS of
Eqn. (36) decreases as the value of Vj,;) increases. With V;,;y upper bounded by y;,(;), we have:

13

i’ V~I 2 v +Z -1 V-/
Ei,EI\{i}#ll i = MYb@ ENBO.G HinVi (37)
Combing Eqn. (35) and (37) we obtain:

Z~ Ve =i’ e+ Z Ve 2 e+ wvpay + Z WV (38)
i'el i’el\{i} i'enN{b(D),i}

with Yirenpy,iy i Vyr 2 0 (since pyry > 0,vi' € I\{b(]), i} and V;/ is nonnegative) and uj e +
U Vb > 0 (see Eqn. (33)).

Thus, from Eqn. (38) it follows that Y;;r¢r p;7,V;r > 0, which leads to a contradiction. [

Before presenting Proposition 2 and Proposition 3, we introduce some prerequisites. To derive a
valid upper bound on V;, for (i, € L;, b(1)) with 7,y <y — 95 and b* (1) # i, we again consider
volume y for a product (i.e., X;7¢; Vi = y) where we assume V; = 7;;. Such assumptions imply (1)

YirenyVir =v — vuand (2)
0 Vo = unv; +Z 1 Ve
Zi’elull i = HaYu i’el\{i}‘ull i (39)

The LHS of Eqn. (39) should be nonpositive (see Eqn. (27)). To prove Proposition 2 and Proposition
3 by contradiction, we show that under certain conditions, the RHS of Eqn. (39) is positive. We first
investigate the second term in the RHS of Eqn. (39). We are interested in the lower bound on
Yirengiy 4irVir subject to Yirengy Vir = v — ¥y and Vp gy < ¥p(p). In other words, we are interested in
the solution of the following LP (LP1):

min Z wir Vir
i'en{i}
2, Ve sy —vu
i’el\{i}

s.t. _Zi’el\{i} Vi <va—v
by < Vb
Vi 2 0,i" € I\{i}
The optimal objective function value for LP1 provides a lower bound on }};r; #;7;V;r. LP1 contains
(JI] = 1) variables and three inequality constraints. Here, we note that the optimal solution to LP1 is
Vpray =Y —Vu — Yoy Yo = Vp@ » with all other variables being zero. When ut <0, the
corresponding dual variables for the three inequality constraints are 0,y;", and (u; — yf); when
uf > 0, the corresponding dual variables for the three constraints are —u;",0, and (u; —). One
can verify the optimality of such solution with strong duality. We show the optimal tableau for LP1

in Appendix A.

14

The optimal solution mentioned above leads to an objective function value of uf(7; —vy) +
(u; = 1)7p(y- Thus, from LP1 we have ¥ren gy iy Vir = i G — v) + () — 1)V 0)-

We now revisit Eqn. (39). From LP1, we have a lower bound on the second term of its RHS, so we

have:

leelﬂi’zV" > upPu +u Gu—v) + W — wHvse (40)
L

ifZi’EI Vi' =Y - i/\il and Vb(l) <]71,([) hold.
We next present Proposition 2 and Proposition 3.
Proposition 2 For (i,l € L;,b(D)) with 75y <y —Pu, b*) # i, YoV =7, Vo) < Vpy» and

(o N ke
MLMOIV MO0 < 0,3 5 ey Vi < O, then 7 < 0,
il—Hy

Proof (by contradiction)

Since Yyre1 Vi = v, if Vi = 7y, then Xyren gy Vir = ¥ — - We also have V,,y < ¥p,(y. Thus from Eqn.
(40) we have:

Z.,El i Vir 2 py Vi + 0 @u —v) + Wi = w)¥say) = K Vb + ut (v -)7b(1)) + (ui —)7 (41)
L

We examine the signs of ;v + u (y — Vb(z)) and (u; — 4)7y inthe RHS of Eqn. (41) separately.
For u;7uy + 1t (v — ¥pry): since | € L; and b* (1) # i, it follows that py; > pjf, and thus p;; — i > 0.
u (T —Y) -1V

(ma—u)
uf (Foay —) — K 7p@ < 0, which is equivalent to 7y + i (v — 7o) = 0.

Since < 0 and the denominator is positive, it follows that the numerator

For (u; — u;)7 we have y;; — pf > 0. To prove Proposition 2 using contradiction, we assume that
7u > 0, so it follows that (u;; — 4)7y > 0.

Thus, from Eqn. (41) we have ;s p;7;V;» > 0, which leads to a contradiction.]
Proposition 3 For (i,l € Li,b(l)) with ¥py <¥ — Purs b*() #1i, YiaVir =v, Voay < ¥py, and

+(*— + (= -
ui To—v) -1V . ~ W Tb=Y)-HT0
> 0,if), Ve <0, theny;; <
(ﬂil_.u?—) Zl el 1"V Yil (l"il‘ﬂ?—)

Proof (by contradiction)

Since Y;re1 Vi = v, if V; = 9y, then Y1 Vir = y — 7. We also have Vy, ;) < 7). Thus, from Eqn. (40)

we have:
Z"El winVir 2 i P + 1 Gu —v) + (W — D7 = mivew + 15 (v — Vo) + (a —)7 (42)
L

L R Y
= MO0 N MTo0 4 oyt ¢ > o,
(mi—ny)

To prove Proposition 3 using contradiction, we assume that ¥;;

From Eqn. (41) we have:

15

ui Foy —v) — Vb0
(i — 1)

Zi,EIMi'lVi’ > w7pw + 1 (v = 7o) + (a — 1(+e)
or

z:z"ellli,lvil = mvpe + iy - 71’(1)) + '“l+(]7b(l) ~v) - w¥pqy + (g — e
After rearranging terms, we obtain,

Zi'a“i'lvi' > Ww7pw — mi7sw + 1y — o) + 1 Fowy —v) + (a — 1
which leads to

Z, i Vir = (uy — 17)e
i’el

Since | € L; and b*(l) # i, it follows that u; >y, and thus u; — pu; > 0. With £ > 0 we have
Yirer4;7V;r > 0, which leads to a contradiction.]

From Proposition 2 and Proposition 3, it follows that for (i,l € Li,b(l)) with ¥y <y — ¥y and

(o LNk
b* (1) # i, we can calculate a valid upper bound on V; #;; = max {0, a (Yb((z Vi+;tzyb(z)
il Ky

Utilizing the above results, we update bounds as follows: for i € I'and [€ L;, we first check if y ;) <
¥y — Vi (¥i; is calculated from Eqn. (30)); if that is the case, we have:
0, ifp*() =i
uf oy —v) — Wb
(Ha —)

A

Yiu =

max {0, }, otherwise

To illustrate, we consider the example in Figure 2. Note that we have b(L2) = 2,b*(L2) = 1, and
from Table 1 we have yj2) =72 =1/3,and 1/3 <y — 3, = 2/5. Thus, we update 73;,. Since
b*(L2) # 3, and [uf,(7, —¥) — .UEZ]?Z]/(.“&LZ - .“Ifz) =1/3>0, we have y31, =1/3, and y3 is
updated to 1/3.

The bounds calculated by our method are given in Table 2. For comparison, we also show the bounds
which would have been obtained by FBBT and OBBT for the same example. We note that for this
example, bounds on all V; obtained from our method are tighter than the bounds obtained from FBBT.

For V; and V,, the bounds obtained from our method are as tight as the bounds obtained from OBBT.

Table 2. Bounds calculated by different methods

Vi i=1 i=2 i =3
FBBT 1 1/2 3/4
OBBT 3/4 1/3 1/11
Our method 3/4 1/3 1/3

Note: Calculation performed by FBBT and OBBT can be found in Appendix B.

16

3.2.3. Complete procedure for bound tightening

The complete procedure, which combines the calculations described in the previous subsections, is
summarized below. The pseudocode, where we bring back indices j, k, t and thus L;; = {l: y;; > 0},

is as follows:

Complete procedure for bound tightening
Fork € Kdo
Forj € Jdo
Fori eldo
Yijk = Vj
For!l € L;, do
W Yj
Mkt — M)
Yijk = min{y;ji, Vijia}
End
End
Fori €ldo
For!l € L;, do
fVy0),jk <V — Viji then
Ifb*(l) =i then
Viji =0
Else

Yijki = —

o e (Tow,jk=Y)—1iVbQ),j
T p—— {0’ a(b(l();;k_lfk)z b(l),]k}
End
Yijie = min{y;ji, Vijii}
End
End
End
End
End
Output: y;

3.2.4. Reformulation and preprocessing for MFB

We lift P;j;, and partition it into nonnegative continuous variables U i, and V;

Pije = Uijie + Vijke, lELje)keEKLLET (43)
Z, Uijkt <1 — Xje, jeE)LkeKteT (44)
i€l
Z_ Vijke < Xjkev JEJKEKTLET (45)
i€l

17

where Ujj,; now represents the proportion of stream i in blender j during time period t when there

is no flow from blender j to product k (Xj,; = 0), and V;; represents such proportion when Xj;, = 1.

Eqn. (16) now becomes:

Pijee = Vifkt2~fel Poje, I€LjELKEKLET (46)
L

and Eqn. (17) can be re-written as follow:

Z nilVi,-ktSn}ng Vike, JELKEKIELLET (47)
i€l i€l

Eqn. (1) - (4), (8) - (11),and (13) -(15), and (43) - (47) comprise a reformulation for the proportion-

based formulation, henceforth referred to as MUV-P,

From Eqn. (45) and (47) with previously defined parameter y;;, we have:

2= (9

ZiEI,uilVi <0, le L (49)

Comparing Eqn. (48) and (49) with Eqn. (26) and (27) (from which bounds on V; are calculated for
model MSB), the only difference is that instead of parameter y in the RHS of Eqn. (26), here we have
constant 1 in the RHS of Eqn. (48). It is therebefore straightforward to tighten bounds on V; with the

procedure shown in 3.2.3 by setting y; = 1, and thus the initial value for y; is 1.
4. Valid constraints
4.1. Model M%®

We first present valid constraints for MSE. Since Rikt € [0,1], (1 — Rjx¢) € [0,1], so multiplying
Vijke < Vijk by (1 — Rjy¢) yields:
(1= Rje)Vijke < (1 = Rie)Vijio LELjELKEKLET

and then:

Vijiee = VijieRike < (1 — Rike)Vijies IELjELkEKLET

Note that Fijkt = VijktRjkt' thus:

Vit = Fijee < (1= Rjge)Vije 1E€ELjELKEKTLET (50)

If we reintroduce indices j, k, and t, Eqn. (28) can be written as:

18

Z (1_“i_’f)yijktgyj, keKleLteT
iel 127

Multiplying both sides with (1 - Rjkt) leads to:

Uikt ,
Z' A=Wt~ Fue) < (- Ru)y;, JELKEKIELLET
i€ 1

or

Hikt ;
Z. (1 == (Vijr = VijieRie) < (1= Rje)v;, JELKEKIELLET (51)
i€l H

Since Fijkt = VijktRjke, Eqn. (51) can be written as follows:

Hiki A ,
ziﬂu ~E Ve~ F) < (L= Fya)yy, JELKERIELLET 52)

Both Eqn. (50) and (52) are RLT constraints (Sherali and Adams 1999). Finally, we also have:
Vijke < Vijrr 1ELjELKEKLET (53)

Eqgn. (53) enforces upper bounds on V;,; which may be tighter than the bounds obtained through

general purpose bound tightening techniques such as FBBT.

Eqgn. (50) and (52) - (53) are added to model MUV,resulting in model MHYF. We show an illustrative
graph for our tightening methods using the example introduced in Figure 2 in Appendix B. We also
introduce model My, which has the same constraints as MH_‘{, but without tightened bounds on V;

(i.e. Vijx = vj in Eqn. (50), (52) - (53)). We summarize the models we consider in Table 3.

Table 3. Model description
Models Constraints and variable bounds
MSB Eqn. (1) - (13)
MY Eqn. (1) - (4), (6) - (10), (12) - (18)
MRV MYV + Eqn. (50), (52) - (53)
Yijk = Vj
MRY MYV + Eqn. (50), (52) - (53)
Yijkx obtained from our method

4.2. Model M"B

For MPB we have:

Z_ Firie <8, JjELKEKLET (54)
i’'el

19

Multiplying both sides of V;jr < ¥;j, with (8 — X7 Fy1 4., leads to:

8iVijke — Fijke < Viji (5jk - Z_,EI Fi’jkt)' IELjELLKkEKTLET (55)
L

Similarly, from Eqn. (28) we have:

Z (1_%)%,“31, keEKIELLET
i l

i€l

Multiplying both sides in the above equation with (§j, — Xier ﬁijkt) leads to:
Hikl A ~
1By s v — Bl s(& —Z £),keK,leL,teT
Ziel(i)(jkVijkt ijt) j el ijkt (56)

For the proportion-based formulation we test the following models: (1) the original model
MFB; (2) the reformulated model MUV~F; (3) the model with RLT constraints (55) and (56) without
bound tightening (75 = 1), MR' "; and (4) the model with RLT constraints (55) and (56) and

tightened variable bounds, Mgy .

5. Computational results

We test our methods on different models. Computational experiments are conducted on a Windows
10 machine with Intel Core i7 at 2.80 GHz and 8 GB of RAM. Models are coded in GAMS 28.2. We use
BARON 19.7.13 with default options. Instances have five to eight streams, two to ten blenders, four
products, four to six properties, and four to ten time points. Instances are modified from Adhya et al.
(Adhya, Tawarmalani, and Sahinidis 1999), Ben-Tal et al. (Ben-Tal, Eiger, and Gershovitz 1994), and
D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011).

5.1. Case study

We first show the results for a case study. It has eight streams, three blenders, four products, six
properties and five time periods. The parameters are given in Appendix C. An optimal schedule, with
an objective function value of 3448.7, is shown in Figure 3 and the corresponding inventory profile
in Figure 4. The model and solution statistics for different models are given in Table 4. After 300
seconds M has an optimality gap of 2.43% while M}{,‘% is solved to optimality in less than 50 seconds,

indicating the effectiveness of the tighter bounds and RLT constraints.

20

29.74
n
22.44
12 p
9.3
5 Hiz30
 Mlies7 11.22
J1 |
K2 75 75 75 75
TO T1 T2 T3 T4 s
12 30
B T
15 fo
2
K4 30 30
TO T1 T2 T3 T4 s
1 |2e00
5 [os7
1 l13.04
13
K2 10 10 10 10 10
TO T1 T2 T3 T4 TS

Figure 3. An optimal schedule for the case study.

75

50

25

0K

TO T1 T2 T3 T4 T5

Figure 4. Inventory profile for the schedule shown in Figure 3.

Table 4. Model and solution statistics for the case study
MSB MU MYV M}{,‘%
Con. Var. 1009 2161 2161 2161
Bin. Var. 72 72 72 72
Constraints 1921 2641 3649 2161
CPUTime(s) >300 1098 >300 47.7
Opt. Gap 2.4% 0 2.4% 0

5.2. MINLP models

We test our method on variants of the two MINLP models with 30 instances, and the show
performance profiles in Figure 5. Each instance included in the performance profile satisfies the

following two conditions: (1) it is solved by at least one of the models in 300 seconds, and (2) the

21

slowest model for a given instance takes at least 15 seconds to solve it. Figure 5(a) is generated with
22 instances that satisfy the two conditions for variants for MSB, Overall, we observe that Mg}’r
performs the best over the tested instances, with substantial improvement over the performance of
M5B for most instances. Further, we note that Mg}’r performs better than both of MUY and M}V. These
results indicate the effectiveness of the RLT constraints combined with the proposed bound
tightening methods. We also test variants for M*® on the same 30 instances, with 14 of them
satisfying the two aforementioned conditions. The performance profile generated using those 14
instances is shown in Figure 5(b). Similar to M5B, we observe that the model with RLT constraints
and tightened bounds, MH}’F‘P, performs the best. The CPU times for all 30 instances can be found in

Appendix D. Note that neither MSE nor MPB is consistently superior on those instances.

(a) (b)

1 1F
prmeme—e=t
0.8 ———t
!
........... PB
0.6 M
- w2 Sk s MUYV-P
— — —MYV-P
0.4 MYV R
i RT MUv-P
H RT
!
1
0.2 0.2
]
4
i
0 . . A . A . . . ol— A A A . A . A A
1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20
R R

Figure 5. Performance profile for different variants of (a) M5B and (b) MPB

5.3. MILP Models

Mixed-integer linear models that approximate the MINLP models can be developed through
discretization. In addition to providing approximate solutions, MILP models can also be used in
solution methods (Kolodziej, Castro, and Grossmann 2013; Kolodziej et al. 2013; Gupte et al. 2017).
Here, we allow the split fraction, Ry, to take values only from a discrete set DR, thereby linearizing
nonlinear constraints Eqn. (5) and/or Eqn. (17). Specifically, we have DR = {0, 5;, 85, ..., 8,, 1} with
6=6,—6,=+=6,—08,_1 =1—6, =38. The MILP obtained from such discretization, referred
to as 1M, is guaranteed to return only feasible solutions to the original MINLP. A relaxation of |;M,
referred to as ,M, is obtained by introducing additional continuous variables to allow Rj;; to take
any values in [0,1]. The resulting bilinear terms with two continuous variables are then relaxed using
linear constraints. A comprehensive list of the constraints of the two MILP models can be found in

Appendix E. We test MILP models (both with and without our methods) over 20 instances.

22

Performance profiles for the MILP models are shown in Figure 6. The CPU times and objective

function values for the MILP models can be found in Appendix F.

@ .| | (b) |
08T 8 08f
uM
uv
==mpM
06 uv 0.6
- LMe T -
04l - S 04l
_I i
57 ez]
02f 1 0.2f
r
s
0 . 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
R R

Figure 6. Performance profile for MILP models. (a) ; ;M with § = 0.01. (b) ;[,M with§ = 0.1

Overall we observe that LlMH} and LZMEX perform best over the tested instances, indicating the
effectiveness of our method. For |,M, we see substantial improvement from the reformulation

(.;M"") and bound tightening (LZMHX) compared to the original model.
5.4. Decomposition method

We further test our methods on an MILP-MINLP decomposition method for multiperiod blending
proposed by (Lotero et al. 2016). We briefly describe the method below: (1). A new binary variable
Y;; is introduced, which equals to 1 if blender j feeds products at time point ¢. (2). A relaxed problem
(MILP) is solved in which Eqn. (17), the constraint that contains bilinear term, is replaced using
McCormick envelopes with tightened bounds. (3). Binary Y}, is fixed to the value obtained from the
solution to the relaxed problem, and a reduced problem (MINLP) containing all constraints in
M}{‘{ is solved (“reduced” in the sense that after fixing Yj;, some X, are also fixed, resulting in a
reduced feasible space compared to ME%). Solving one relaxed problem and one reduced problem
completes one iteration, from which an upper bound and a lower bound (if the reduced problem is
feasible) are obtained. A feasibility or optimality cut is added to the relaxed problem after solving the
reduced problem in each iteration. We give the formulation of both the relaxed and reduced problem

in Appendix G. More details about the decomposition method can be found in (Lotero et al. 2016).

We show computational results for five instances modified from D’Ambrosio et al. (D’Ambrosio,
Linderoth, and Luedtke 2011) in Table 5. We set the maximum number of iterations to five, and time
limits for the relaxed problem and reduced problem are set at 10 seconds and 30 seconds,

respectively. We use CPLEX 12.9 to solve the relaxed problem.

23

Table 5. Computational results for decomposition method with different MINLP models

MSB MUV
Inst. - RT -
of Iter. Opt. Gap CPU Time (s) # of Iter. Opt. Gap CPU Time (s)

1 5 0.3% 162.1 2 0 50.8
2 5 0.4% 155.7 2 0 42.6
3 5 0 171.6 5 0.1% 200
4 4 0 92.2 1 0 16.2
5 5 0.5% 194.3 1 0 18.6

Model MB and MEX do not solve the above five instances to global optimality in 300 seconds. The
decomposition method using MSEB solves two instances to global optimality within five iterations,
whereas the decomposition using MEX solves four instances to global optimality. We also observe

that the decomposition method using M}'{X typically closes the optimality gap in fewer iterations.
6. Conclusion

We developed variable bound tightening methods, based on multiple constraints, for multiperiod
blending. We first proposed a reformulation of the constraints involving bilinear terms using lifting.
We introduced a preprocessing method to tighten the bounds on the lifted variables using multiple
constraints. The reformulation and the selection of constraints to be considered for bound tightening
are based on the understanding of the physical system. We proposed valid constraints derived from
Reformulation-Linearization Technique (RLT) that utilize the bounds on the lifted variables to
further tighten the formulation. We also discussed how the proposed methods can be coupled with
other solution strategies for multiperiod blending problems. Computational results show the

effectiveness of our methods in reducing computational requirements.

Acknowledgement

The authors acknowledge financial support from the National Science Foundation under grant
CBET2028960.

24

Appendix A. Solving LP1

After introducing slack variables S;, S5, and S5, LP1 is written as follows:

min z pin Vi
i'#i
Z_, Vi +S1=v =7V
"+l
s.t. —Z,, Vit S, = Vu—v
U #1

Voay +S3 =V
Vi’ 2 0,51,52,53 2 O

By inspection, we have Vy+y =y — 73,V = 0Vi' € {i,b* (D)}, S; = S, = 0, andS; = 7, as initial

feasible solution. Let S, Vb+(l), and S; be basic variables, we have the following tableau:

Basic var. oy Vot Vi, vi" & {i,b(1), b*(D}] S S, S
S, 0 0 [0,,0] 1 1 0 0
Vo) 1 1 [1,.....,1] 0 -1 0 Y =P
S, 1 0 [0, 0] 0 0 1 7o)
z uf = 0 [=, Vit b, 0 w0 | uGu-v)
where [.] denotes a row vector of dimension (|I] — 3).
When y; < 0, we have the following optimal tableau:
Basicvar. | Vpqy Vit [Vir,vi" & {i, (D), b* (D}] S1 5 S3
S, 0 0 [0,,0] 1 1 0 0
Vot 0 1 [1,.... 1] 0 -1 0 Y = Vi — Vb
0! 1 0 [0,, 0] 0 0 1 1430
L Ga—v)

z 0 0 [uf —w Vi € ,bD,b (DY 0wt o —pr | ATV

[= piny &, b, b* (D}] R I O T
When y;f > 0, we have the following optimal tableau:
Basicvar. | Vyy Vprqy Vi, Vi' € {i, b(D),b* (D}] S1 S 83
S, 0 0 [0,,0] 1 1 0 0
e+ 1 1 [1,.... 1] 0 -1 0 Y — Y~V
Vo) 1 0 [0,,0] 0 0 1 Vo)

L Gu—v)

z 0 0 [uf —wvi' € {,b,b DY -t 0 w—pr | ATV

(i — miny {L.b,b* DY -4 R

Appendix B. [llustrative example
B.1. Feasibility Based Bound Tightening

Recall that for the illustrative example we have:

V,+V, + Vs <1

—V, 42V, + V5 <0

25

V, =3V, +2V3 <0

Assume we use 0 and 1 as the initial lower and upper bound, that is, V;,V,, V5 € [0,1]. FBBT uses the
following inequality to find tighter upper bounds (note that 0 is the tightest lower bound on V;):

= D e e 0)] a0 (57)

where a,,+; is the coefficient of V; for inequality m*, 8, is the RHS of inequality m”, and y; is the
upper bound on V;. In FBBT we choose an inequality with positive coefficient for V;, to evaluate the
RHS of Eqn. (57) to find its upper bound:

7 < %[1 —min(1,0) — min(1,0)] =1

1
V< 1 [0 — min(—3,0) — min(2,0)] =3

v,

»—kl»—x

[1 —min(1,0) —min(1,0)] =1

=
N|+—x

[0 — min(—1,0) — min(1,0)] = 1/2

Note that we now have a tighter upper bound on V,, so we update y,: y, = 1/2.
1
V3 [1 — min(1,0) — min(1/2,0)] =1

V3

=7
%[0 min(—1,0) —min(1,0)] =1

[0 — min(1,0) — min(—3/2,0)] = 3/4

o~
NIH

Note that we now have a tighter upper bound on V3, so we update y5: y3 = 3/4.

In FBBT we typically start another round of evaluation using the tightened bounds. For the
illustrative example, no further improvement can be obtained. FBBT thus returns: y; = 1,7, =
1/2,75 = 3/4.

B.2. OBBT for the illustrative example

OBBT is based on the solution of the following LP:

max V; (i=123)
M+, +V;<1
s.t Vi +2,+V3 <0
Vi =3V, +2V3<0

26

The value of ; is equal to the objective function value of the i-th LP. After solving three LPs, OBBT
returns: y; = 3/4,7, = 1/3,73 = 1/11.

B.3. Illustrative graph for our tightening methods

Consider the following nonlinear set:

r Vi+V,+Vs<1
—V, 42V, + V3 <0
V, — 3V, +2V5 <0

S, =< (F, By, B3, RV, V,, Vs) € RY: £, = V,R
FZ - VzR
FZ == V3R

which contains three linear constraints that are identical to the constraints in the illustrative example

in section 3, along with three nonlinear equality constraints to model the flows.

We introduce a hyperplane:

R=1/2
Vv, =2/3

_ +. 1
SZ - (RIV11VZI V3) € R™: V2 — 1/3
V3 =0

The intersection of S; and S, is shown in Figure 7. It is point 4 on the (F;, F,) plane.

We consider a linear relaxation of S;, denoted as SMC, using McCormick envelopes without bound

tightening. Since V3, V,, V5 € [0,1], we have:

F, <R, i={1,23} (58)
Fo<v, i={123} (59)
FF=R+V,—1, i={123} (60)
F,>0, i={1,23} (61)

We also have the following RLT constraints:

P1+F2+F3SR (62)
F,—3F,+2F,<0 (64)

The set SM€ is thus defined as:

27

(i+ +1<1

-V, +2V,+V3 <0

SYC = (P, E, F5, RV, V,, V) €RY: V=3V, +2V3 <0
Eqgn. (58) — (60)

Eqn. (62) — (64)

The intersection of SM¢ and S, is the quadrilateral ABCD.

We consider a linear relaxation of S;, denoted as sT, using McCormick envelopes with tightened
bounds. Our methods lead to: V; € [0,3/4], V, € [0,1/3], V5 €[0,1/3]. McCormick envelopes

constructed using such bounds are:

. 3
1SZR (65)
~ <1
2 =3k (66)
~ <1
3s3R (67)
~ >3 3
~ >1 1
~ >1 1
3ZzR+V; -3 (70)

together with Eqn. (59) and Eqn. (61). Note that Eqn. (68) - (70) are identical to Eqn. (50) for the

illustrative example.

The set ST is thus defined as:

M+ +1<1

—V,+2V,+V3<0

ST =< (F, By, F3, RV, V,, Vs) € RY: Vi—=3V,+2V3<0
Eqn. (59), (61), (65) — (70)

Eqn. (62) — (64)

The intersection of ST and S, is also point A, which coincides with the intersection of the nonlinear

setS, and S,.

28

—Eqn. (62) - (64)
_____ Eqn. (60),i = 1
S N ()
Sl n Sz = {A}
sMCn's, = conv(4,B,C,D)
ST ns, = {4}
i f

0

Figure 7. lllustrative graph for tightening constraints

Appendix C. Parameters for the Case Study

Table 6. Stream availability and cost, maximum product demand, and product price

11 12 I3 14 15 16 17 18 K1 K2 K3 K4
& 450 450 450 450 450 450 450 450 - - - -
a 7 3 2 10 5 5 9 11 - - - -
B - - - - - - - - 16 25 15 10
Wy - - - - - - - - 60 150 180 60

Table 7. Stream properties and product specifications
TTj; ﬂ]lcjl

11 12 I3 14 15 16 17 I8 K1 K2 K3 K4
L1 1 4 4 5 1 1.8 5 3 3 4 1.5 3
L2 6 1 5.5 3 2.7 2.7 1 3 3 2.5 5.5 4
L3 4 3 3 3 4 4 1.7 3 3.25 3.5 3.9 4
L4 0.5 2 0.9 1 1.6 3.5 2.9 1 0.75 1.5 0.8 1.8
L5 5 4 7 3 3 6.1 3.5 5 6 7 7 8
L6 9 4 10 4 7 3 2.9 2 5 6 6 6

Table 8. Flow upper bound

8; J1]2]3
K1 10 10 30
K2 25 10 10
K3 30 25 10
K4 10 30 25

All blenders have capacity of 75, and we do not consider fixed costs.

29

Appendix D. CPU time for MINLP models

Table 9. CPU time for variants of M52

CPU Time (in seconds)

Instance VB MOV MUV M }{‘4
6 28.615 6.666 8.519 14.918
7 200.41 >300 >300 >300
8 40.26 5.374 10.479 6.717
9 7.728 9.104 10.357 20.228
10 6.634 2.233 2.346 2.625
11 27.249 17.249 28.078 19.598
12 3.078 9.912 13.584 11.758
13 12.745 93.531 28.992 16.787
14 5.758 8.32 11.398 10.774
15 49.25 144.03 19.543 29.24
16 10.771 11.491 9.887 13.413
17 15.869 67.67 31.696 32.988
18 >300 37.919 35.161 31.799
19 287.808 267.84 >300 184.849
20 15.31 41.77 17.99 18.677
21 3.844 7.851 11.278 9.489
22 127.652 76.042 90.028 132.989
23 204.151 207.901 >300 143.268
24 39.983 56.587 77.448 77.129
25 32.329 56.916 76.232 62.605
26 >300 39.106 39.657 32.401
27 294.944 37.343 36.291 30.194
28 293.779 37.82 38.06 30.168
29 5.425 5.62 13.088 6.356
30 15.778 6.137 6.431 5.422
31 15.152 36.418 35.636 19.792
32 >300 296.73 224.94 72.01
33 135.662 291.935 >300 279.031
34 28.615 6.666 8.519 14.918
35 200.41 >300 >300 >300

30

Table 10. CPU time for variants of M"B
CPU Time (in seconds)

Instance

MPB MUV-P MgV—P M}{J\%—P
6 3.835 9.23 5.509 5.751
7 >300 >300 >300 >300
8 4,744 4.261 9.277 6.155
9 >300 >300 >300 >300
10 >300 >300 >300 >300
11 0.975 5.151 9.871 2.113
12 116.591 41.741 8.729 19.012
13 0.965 1.946 8.383 7.959
14 69.524 27.557 67.814 44.317
15 73.422 196.148 82.157 105.66
16 1.862 9.251 8.838 5.027
17 49.268 24.718 19.033 37.207
18 >300 >300 >300 >300
19 63.105 202.299 >300 12.159
20 16.953 16.169 7.275 4.962
21 16.069 7.014 6.285 8.077
22 9.807 >300 12.442 8.356
23 141.06 231.052 >300 11.388
24 20.357 16.419 15.859 15.858
25 8.713 10.417 10.85 11.541
26 >300 >300 >300 >300
27 >300 >300 >300 >300
28 >300 >300 >300 >300
29 13.085 27.595 3.973 12.532
30 11.813 7.493 6.871 6.749
31 41.358 229.15 >300 83.994
32 3.082 3.564 3.52 50.9
33 48.323 199.432 259.681 12.952
34 3.835 9.23 5.509 5.751
35 >300 >300 >300 >300

Appendix E. MILP models
E.1. Discretized model

We introduce an index m € M for the discrete values § that Rj; can assume, and define a set DR for
these values: Rjy; € DR = {61, s 5|M|} with &, < &p,41. We introduce variable Zjy,, to model the

selection of the discrete value for Ry,

ZmEMijtm = 1: JE]:k € K;t €T (71)

Split fraction Ry, is calculated as:

Rjke = Z SmZjktm, JEJLKEKTLET 72)
meM

31

We introduce continuous variable I

Uktm:
— D , .
lyje = ZmEM lijkem, 1ELjELKEKTLET (73)
Z,El Ii[])'ktm < ¥iZjktm jJELkeEKTtET (74)
l

Flow from blender to product, Fijkt, now becomes:

Fijie = Z SmlDkem, 1ELjELKEKLET (75)
mMmeM

Eqn. (1) - (4), (6) - (13) and (71)- (75) comprise L1MSB.

For MYV, we have:
_ D . .
Vijkt_szMlijktm, i€ELjeELkeKteT (76)
IDkem < VijZigems 1ELjELKEKMEMtET (77)

Eqn. (1) - (4), (6) - (13) and (71) - (72) and (75) - (77) comprise ;M"". | ;MY contains Eqn. (50),
(52) - (53), and all constraints in LlMUV.

E.2. Discretized - relaxed model

. e . . . + _ .
We introduce two positive continuous variables: Zjy,, and Zj;,,,. We have:

Ziem = Ziem + Zigemy JELKEKMEMLET (78)

while Zjy., satisfies:

Z Zigem =1, JjELKkEKLET (79)
meM\(1M[}

Split fraction Ry is now calculated as:

Rjke = Z SmZjiem + Z Oms1 = Sm)Zjiem, JELKEKLET (80)
meM\{|M|} meM\{|M[}

Similarly for ngtm we define positive continuous variables Ig,ttm and Ig,:tm. We have:
D _ D D- ; ;
Iiem = Likem + lijkem, 1ELjEJkEKmMmEMtET (81)

For F}j,swe now have:

ﬁijkt = z 5m15ktm + Z 7ijk(5m+1 - 5m)lgltt|M| ’
meM\{IM[} meM\{|M|} (82)
i€eLje)keKteT

32

Eqn. (1) - (4), (6) - (13), (56) - (58), and (61) - (65) comprise LZMSB. Eqn. (1) - (4), (6) - (13), (75)

- (82) comprise LZMUV. LZME,\{“ contains Eqn. (50), (52) - (53), and all constraints in LZMUV.
Appendix F. CPU time and objective function value for MILP models

Table 11. CPU time for variants of ; ;M
CPU Time (in seconds)

Instance LlMSB L1MSB LlMIS{?F
36 >300 >300 190
37 270 >300 196
38 >300 >300 >300
39 >300 >300 >300
40 117 71 48
41 4 20 55
42 33 216 227
43 10 9 8
44 26 26 25
45 110 124 69
46 >300 >300 >300
47 >300 >300 >300
48 >300 >300 >300
49 >300 >300 >300
50 54 88 93
51 >300 >300 >300
52 >300 >300 >300
53 >300 >300 >300
54 >300 >300 >300
55 >300 >300 >300

Table 12. CPU time for variants of ; ,M
CPU Time (in seconds)

Instance LZMSB LZMSB Lleng
36 4 4 6
37 30 15 45
38 >300 108 260
39 7 82 91
40 120 12 13
41 1 1 1
42 1 4 4
43 1 1 1
44 2 2 3
45 3 4 4
46 77 7 2
47 81 3 2
48 >300 4 2
49 >300 4 2

33

50 23 1 1

51 12 42 39
52 77 28 18
53 >300 104 16
54 5 5 7

55 >300 >300 108

Table 13. Objective function value of | ;M and ;,M
Obj. function value

Instance

1M 12M
36 743.9 760.7
37 765.4 766.25
38 3332.0(3357.1) 3335
39 2202.8(2212.5) 2204.13
40 514.32 517.78
41 574.78 574.78
42 3347.5 3448.7
43 2057.1 2127.2
44 2127.36 2129.13
45 3180.1 3203.7
46 804.8(806.2) 806.2
47 3245.8(3331.5) 3329.4
48 804.8(806.2) 806.2
49 805.1(806.1) 806.2
50 805.1(806.3) 806.2
51 22799.5(22824.8) 22850.6
52 28619.4(28646.4) 28726.4
53 0(large) 28905.8
54 8813.9(8828.0) 8851
55 0(25766.7) 25766.7

Note: for | ;M, we report the best objective function value found in all three variants, and the best
possible objective function value in the parentheses if all three variants cannot solve the instance in
300 seconds.

Appendix G. Decomposition method
We show the decomposition method proposed in (Lotero et al. 2016).
G.1. Relaxed problem

Abinary variable Y}; is introduced, which equals 1 if blender j feeds products at time point t. We have:
Fiie <(1-=Y:)vy;, EJ,tET
Ziel ijt (Jt)V] J €] (83)

34

Do 2V TELLET (85)
which are derived from the operating rule that blender feeding and withdrawing cannot occur
simultaneously and the definition of Vj;.

Recall that we have Fijkt = VijktRjke, which is relaxed using McCormick envelopes:

Fijke = Vijke + VijkRike — Vijko 1ELjEJLKEKET

(86)
Fije <Vijke, 1€ELjEJKEKLET (87)
Fije < VijkRike» 1ELjELKEKTELET (88)

We also have the following optimality cut (Eqn. (89)) and feasibility cut (Eqn. (90)) to be added:

Z<-(UB-12,) <Z Y — Z th> + (UB - Z,) <z Yiin — 1) + UB,
(j,t):Yj*m=1 (j,t):Yj*tn=0 3,0

neN

1-Y; +2 Y,>1, neN
Z(j.t):Yj*m=1(it) G, =0 " (90)

itn=0

(89)

where n is the iteration index, N denotes the set of iterations where the reduced problem (to be
introduced later) is feasible, and N denotes the set of iterations where the reduced problem is
infeasible. Z is the value of the objective function, UB is the global upper bound for the objective
function, and Z,, (a parameter) is the best possible value of the objective function at iteration n after

solving the relaxed problem.

Eqgn. (1) - (4), (6) - (10), (12) - (16), (18), (83) - (90) comprise the relaxed problem, which is an
MILP.

G.2. Reduced problem

After solving the relaxed problem, variable Y, is fixed to Y;;,,. Eqn. (83) - (85) become:

Ziel Fpe<(1-Yi)y, jeElteTn=n’ (91)
XjktSYj;n' jE],kEK,tET,Tl=Tl* (92)

Xie = Y5, €], teT,n=n"
ZREK jkt jtn j€] n=n (93)

where n* denotes the current iteration.

Eqn. (1) - (4), (6) - (10), (12) - (18), (91) - (93) comprise the relaxed problem, which is an MINLP.

35

G.3. Workflow for the decomposition method

The flowchart for the decomposition method is shown in Figure 8 where Z* denotes the optimal

solution to the reduced problem at the current iteration. More details for the workflow can be found
in (Lotero et al. 2016).

n"=1,N=¢,N=¢
UB = +,LB = 0,set¢

!
4-|Solve relaxed problem|<7

|UB = min(UB, Z,,)] W =n +1

|Solve reduced problem|

N=Nu @y

Reduced proble

N=Nufn)

Figure 8. Flowchart for the decomposition method

36

References

Achterberg, Tobias. 2007. “Constraint Integer Programming.” Technische Universitat Berlin,
Fakultat II - Mathematik und Naturwissenschaften. https://depositonce.tu-
berlin.de/handle/11303/1931.

Achterberg, Tobias, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. 2020.
“Presolve Reductions in Mixed Integer Programming.” INFORMS Journal on Computing 32 (2):
473-506. https://doi.org/10.1287 /ijoc.2018.0857.

Adhya, Nilanjan, Mohit Tawarmalani, and Nikolaos V. Sahinidis. 1999. “A Lagrangian Approach to
the Pooling Problem.” Industrial and Engineering Chemistry Research 38 (5): 1956-72.
https://doi.org/10.1021/ie980666q.

Alfaki, Mohammed, and Dag Haugland. 2013. “Strong Formulations for the Pooling Problem.” In
Journal of Global Optimization, 56:897-916. Springer. https://doi.org/10.1007 /s10898-012-
9875-6.

Bagajewicz, Miguel. 2000. “A Review of Recent Design Procedures for Water Networks in Refineries
and Process Plants.” Computers & Chemical Engineering 24 (9-10): 2093-2113.
https://doi.org/10.1016/S0098-1354(00)00579-2.

Belotti, Pietro. 2013. “Bound Reduction Using Pairs of Linear Inequalities.” Journal of Global
Optimization 56 (3): 787-819. https://doi.org/10.1007/s10898-012-9848-9.

Belotti, Pietro, Jon Lee, Leo Liberti, Francois Margot, and Andreas Wachter. 2009. “Branching and
Bounds Tighteningtechniques for Non-Convex MINLP.” Optimization Methods and Software 24
(4-5): 597-634. https://doi.org/10.1080/10556780903087124.

Ben-Tal, Aharon, Gideon Eiger, and Vladimir Gershovitz. 1994. “Global Minimization by Reducing
the Duality Gap.” Mathematical Programming 63 (1-3): 193-212.
https://doi.org/10.1007/BF01582066.

Blom, Michelle L., Christina N. Burt, Adrian R. Pearce, and Peter]. Stuckey. 2014. “A Decomposition-
Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines.” INFORMS
Journal on Computing 26 (4): 658-76. https://doi.org/10.1287 /ijoc.2013.0590.

Blom, Michelle L., Adrian R. Pearce, and Peter]. Stuckey. 2016. “A Decomposition-Based Algorithm
for the Scheduling of Open-Pit Networks Over Multiple Time Periods.” Management Science 62
(10): 3059-84. https://doi.org/10.1287 /mnsc.2015.2284.

Boland, Natashia, Thomas Kalinowski, and Fabian Rigterink. 2016. “New Multi-Commodity Flow
Formulations for the Pooling Problem.” Journal of Global Optimization 66 (4): 669-710.
https://doi.org/10.1007/s10898-016-0404-x.

Boland, Natashia, Thomas Kalinowski, Fabian Rigterink, and Martin Savelsbergh. 2016. “A Special
Case of the Generalized Pooling Problem Arising in the Mining Industry.”
http://www.optimization-online.org/DB_FILE/2015/07 /5025.pdf.

Castillo, Pedro A Castillo, and Vladimir Mahalec. 2014. “Inventory Pinch Based, Multiscale Models
for Integrated Planning and Scheduling-Part II: Gasoline Blend Scheduling.” AIChE Journal 60
(6): 2158-78. https://doi.org/10.1002/aic.14444.

Castro, Pedro M. 2016. “Source-Based Discrete and Continuous-Time Formulations for the Crude Oil
Pooling Problem.” Computers and Chemical Engineering 93 (4): 382-401.
https://doi.org/10.1016/j.compchemeng.2016.06.016.

Castro, Pedro M., and Ignacio E. Grossmann. 2014. “Global Optimal Scheduling of Crude Oil Blending
Operations with RTN Continuous-Time and Multiparametric Disaggregation.” Industrial and
Engineering Chemistry Research. https://doi.org/10.1021/ie503002k.

Chen, Yifu, and Christos T. Maravelias. 2020. “Preprocessing Algorithm and Tightening Constraints

37

for Multiperiod Blend Scheduling: Cost Minimization.” Journal of Global Optimization 77 (3):
603-25. https://doi.org/10.1007/s10898-020-00882-3.

D’Ambrosio, Claudia, Jeff Linderoth, and James Luedtke. 2011. “Valid Inequalities for the Pooling
Problem with Binary Variables.” In Integer Programming and Combinatoral Optimization,
edited by Oktay Gilinliik and Gerhard] Woeginger, 117-29. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Domes, Ferenc, and Arnold Neumaier. 2016. “Constraint Aggregation for Rigorous Global
Optimization.” Mathematical Programming 155 (1-2): 375-401.
https://doi.org/10.1007/s10107-014-0851-4.

Gleixner, Ambros M., Timo Berthold, Benjamin Miiller, and Stefan Weltge. 2017. “Three
Enhancements for Optimization-Based Bound Tightening.” Journal of Global Optimization 67
(4): 731-57. https://doi.org/10.1007 /s10898-016-0450-4.

Gounaris, Chrysanthos E., Ruth Misener, and Christodoulos A. Floudas. 2009. “Computational
Comparison of Piecewise-Linear Relaxations for Pooling Problems.” Industrial & Engineering
Chemistry Research 48 (12): 5742-66. https://doi.org/10.1021/ie8016048.

Gupte, Akshay, Shabbir Ahmed, Santanu S. Dey, and Myun Seok Cheon. 2017. “Relaxations and
Discretizations for the Pooling Problem.” Journal of Global Optimization 67 (3): 631-69.
https://doi.org/10.1007/s10898-016-0434-4.

Haverly, C. A. 1978. “Studies of the Behavior of Recursion for the Pooling Problem.” ACM SIGMAP
Bulletin, no. 25 (December): 19-28. https://doi.org/10.1145/1111237.1111238.

Jezowski, Jacek. 2010. “Review of Water Network Design Methods with Literature Annotations.”
Industrial & Engineering Chemistry Research 49 (10): 4475-4516.
https://doi.org/10.1021/ie901632w.

Kolodziej, Scott P., Pedro M. Castro, and Ignacio E. Grossmann. 2013. “Global Optimization of
Bilinear Programs with a Multiparametric Disaggregation Technique.” Journal of Global
Optimization 57 (4): 1039-63. https://doi.org/10.1007/s10898-012-0022-1.

Kolodziej, Scott P., Ignacio E. Grossmann, Kevin C. Furman, and Nicolas W. Sawaya. 2013. “A
Discretization-Based Approach for the Optimization of the Multiperiod Blend Scheduling
Problem.” Computers and Chemical Engineering 53: 122-42.
https://doi.org/10.1016/j.compchemeng.2013.01.016.

Li, Jie, and I. A. Karimi. 2011. “Scheduling Gasoline Blending Operations from Recipe Determination
to Shipping Using Unit Slots.” Industrial and Engineering Chemistry Research.
https://doi.org/10.1021/ie102321b.

Li, Jie, Wenkai Lj, I. A. Karimi, and Rajagopalan Srinivasan. 2007. “Improving the Robustness and
Efficiency of Crude Scheduling Algorithms.” AIChE Journal 53 (10): 2659-80.
https://doi.org/10.1002 /aic.11280.

Li, Jie, Ruth Misener, and Christodoulos A. Floudas. 2012. “Continuous-Time Modeling and Global
Optimization Approach for Scheduling of Crude Oil Operations.” AIChE Journal 58 (1): 205-26.
https://doi.org/10.1002/aic.12623.

Li, Jie, Xin Xiao, and Christodoulos A. Floudas. 2016. “Integrated Gasoline Blending and Order
Delivery Operations: Part I. Short-Term Scheduling and Global Optimization for Single and
Multi-Period Operations.” AIChE Journal 62 (6): 2043-70.

Lotero, Irene, Francisco Trespalacios, Ignacio E. Grossmann, Dimitri]. Papageorgiou, and Myun
Seok Cheon. 2016. “An MILP-MINLP Decomposition Method for the Global Optimization of a
Source Based Model of the Multiperiod Blending Problem.” Computers and Chemical
Engineering. https://doi.org/10.1016/j.compchemeng.2015.12.017.

38

Maranas, Costas D., and Christodoulos A. Floudas. 1997. “Global Optimization in Generalized
Geometric Programming.” Computers & Chemical Engineering 21 (4): 351-69.
https://doi.org/10.1016/S0098-1354(96)00282-7.

Misener, Ruth, and Christodoulos A. Floudas. 2012. “Global Optimization of Mixed-Integer
Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear and Edge-
Concave Relaxations.” Mathematical Programming 136 (1): 155-82.
https://doi.org/10.1007/s10107-012-0555-6.

Neiro, Sérgio M. S., Valéria V. Murata, and José M. Pinto. 2014. “Hybrid Time Formulation for Diesel
Blending and Distribution Scheduling.” Industrial & Engineering Chemistry Research 53 (44):
17124-34. https://doi.org/10.1021/ie5009103.

Puranik, Yash, and Nikolaos V. Sahinidis. 2017. “Domain Reduction Techniques for Global NLP and
MINLP Optimization.” Constraints 22 (3): 338-76. https://doi.org/10.1007/s10601-016-
9267-5.

Quesada, I, and LE. Grossmann. 1995. “Global Optimization of Bilinear Process Networks with
Multicomponent Flows.” Computers & Chemical Engineering 19 (12): 1219-42.
https://doi.org/10.1016/0098-1354(94)00123-5.

Reddy, P. Chandra Prakash, I. A. Karimi, and R. Srinivasan. 2004. “Novel Solution Approach for
Optimizing Crude Oil Operations.” AIChE Journal. https://doi.org/10.1002/aic.10112.

Ryoo, Hong S., and Nikolaos V. Sahinidis. 1996. “A Branch-and-Reduce Approach to Global
Optimization.” Journal of Global Optimization 8 (2): 107-38.
https://doi.org/10.1007/BF00138689.

Savelsbergh, M. W. P. 1994. “Preprocessing and Probing Techniques for Mixed Integer
Programming Problems.” ORSA Journal on Computing 6 (4): 445-54.
https://doi.org/10.1287 /ijoc.6.4.445.

Shectman,]. Parker, and Nikolaos V. Sahinidis. 1998. “A Finite Algorithm for Global Minimization of
Separable Concave Programs.” Journal of Global Optimization 12 (1): 1-36.
https://doi.org/10.1023/A:1008241411395.

Sherali, Hanif D., and Warren P. Adams. 1999. A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems. Vol. 31. Nonconvex Optimization and Its
Applications. Boston, MA: Springer US. https://doi.org/10.1007 /978-1-4757-4388-3.

Smith, E.M.B., and C.C. Pantelides. 1999. “A Symbolic Reformulation/Spatial Branch-and-Bound
Algorithm for the Global Optimisation of Nonconvex MINLPs.” Computers & Chemical
Engineering 23 (4-5): 457-78. https://doi.org/10.1016/50098-1354(98)00286-5.

Street, Larimer. 1989. “Constraint Propagation, Relational Arithmetic in Al Systems and
Mathematical Programs.” Annals of Operations Research 21: 143-48.

Tawarmalani, Mohit., and Nikolaos V. Sahinidis. 2002. Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming : Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers.

Wicaksono, Danan Suryo, and 1. A. Karimi. 2008. “Piecewise MILP Under- and Overestimators for
Global Optimization of Bilinear Programs.” AIChE Journal 54 (4): 991-1008.
https://doi.org/10.1002/aic.11425.

39

