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Abstract	

Multiperiod blending has a number of important applications in a range of industrial sectors. It is 

typically formulated as a nonconvex Mixed Integer Nonlinear Program (MINLP), which involves 

binary variables and bilinear terms. In this study, we first propose a reformulation of the constraints 

involving bilinear terms using lifting. We introduce a method for calculating tight bounds on the lifted 

variables calculated by aggregating multiple constraints. We propose valid constraints derived from 

Reformulation-Linearization Technique (RLT) that utilize the bounds on the lifted variables to 

further tighten the formulation. Computational results indicate our method can substantially reduce 

the solution time and optimality gap. 
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List	of	Symbols	

Indices/Sets	
𝑖 ∈ 𝐈:  Inputs (Streams) 

𝑗 ∈ 𝐉:  Blenders 

𝑘 ∈ 𝐊:  Products 

𝑙 ∈ 𝐋:  Properties 

𝑡 ∈ 𝐓:  Time points: ሼ0,1, … , |𝐓|ሽ/time periods: ሼ1,2, … , |𝐓|ሽ 

Subset	
𝐋௜௞:  Properties for product k	whose specification is violated by stream 𝑖  

𝐈௟௞:  Streams that violate the specification for property l for product k  

Parameters:	problem	data	
𝛼௝௞
୊ : Fixed cost for flow from blender j to product k 

𝛼௜
୚: Variable cost for stream 𝑖  

𝛽௞: Price of product k	

𝛾௝:  Inventory capacity of blender j 

𝛿௝௞:  Upper bound on flow between blender j	and product k	 

𝜉௜:  Availability of stream 𝑖  

𝜋௜௟  :  Value of property 𝑙 for stream 𝑖	

𝜋௞௟
୙  :  Upper bounding specification for property 𝑙 for product k	

𝜔௞ :  Maximum demand for product k	

Parameters:	calculated	during	preprocessing		
𝛾ො௜௝௞௟: Tightened bound on inventory of stream 𝑖 in blender j	when it is feeding product k	derived 

from property 𝑙 
𝛾̅௜௝௞: Tightened bound on inventory of stream 𝑖 in blender j	when it is feeding product k	 
𝜇௜௞௟: Violation of specification for property 𝑙 for product k	from stream 𝑖 
𝜇௟
∗: Value of property 𝑙 of the “best” stream for property 𝑙  
𝜇௟
ା: Value of property 𝑙 of the “second best” stream for property 𝑙  

Variables:	nonnegative	continuous		
𝐹௜௝௧:  Flow of stream 𝑖 to blender j at time point t 

𝐼௜௝௧:  Inventory of stream 𝑖 in blender j during time period t 

𝑅௝௞௧:  Split fraction for inventory in blender j to product k at time point t 

𝐹෠௜௝௞௧:  Flow of stream 𝑖 from blender j to product k at time point t	

𝑈௜௝௞௧: Inventory of stream 𝑖 in blender j during time period t	when not feeding product k  

𝑉௜௝௞௧: Inventory of stream 𝑖 in blender j during time period t	when feeding product k  

Variables:	binary		
𝑋௝௞௧:  = 1 when blender j	feeds product k	at time point t	

𝑌௝௧:  = 1 when blender j	feeds products at time point t  	 	
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1.	Introduction	

Planning and scheduling for blending processes over multiple time periods have received 

considerable attention. Since the introduction of the pooling problem (Haverly 1978), blending 

processes have been studied extensively, with the bilinearities required to model the blending 

process receiving considerable attention (Wicaksono and Karimi 2008; Gounaris, Misener, and 

Floudas 2009; Misener and Floudas 2012; Kolodziej, Castro, and Grossmann 2013; Gupte et al. 2017; 

Chen and Maravelias 2020). Previous works have been focused on both crude oil blending (Reddy, 

Karimi, and Srinivasan 2004; Li et al. 2007; Li, Misener, and Floudas 2012; Castro and Grossmann 

2014; Castro 2016) as well as final product blending (Li and Karimi 2011; Kolodziej et al. 2013; 

Castillo and Mahalec 2014; Neiro, Murata, and Pinto 2014; Li, Xiao, and Floudas 2016). Multiperiod 

blending also arises in wastewater management (Bagajewicz 2000; Jeżowski 2010) and mining 

(Blom et al. 2014; Blom, Pearce, and Stuckey 2016; Boland et al. 2016). In the multiperiod setting, 

binary variables are introduced to enforce additional operating rules, which lead to a nonconvex 

Mixed Integer Nonlinear Program (MINLP). Such problems are important in terms of the potential 

economic benefits that can be achieved (DeWitt et al. 1989; Kelly and Mann 2003). 

Global optimization of nonconvex MINLPs is performed using branch-and-bound algorithms which 

involve solving convex relaxations of the original problem. The tightness of the convex relaxation 

strongly depends on variable bounds. Various bounds tightening methods have been proposed 

(Belotti et al. 2009; Puranik and Sahinidis 2017), including, for example, methods based on reduced 

cost (Ryoo and Sahinidis 1996), which utilizes the optimal solution to the relaxed problem. Bounds 

tightening techniques that do not require such information have also been proposed. A well-known 

technique is Optimality Based Bound Tightening (OBBT) which typically relies on solving linear 

programs (LP) (Quesada and Grossmann 1995; Maranas and Floudas 1997; Shectman and Sahinidis 

1998; Smith and Pantelides 1999). OBBT can be computationally expensive, and methods aim to 

improve its efficiency have been studied (Gleixner et al. 2017). Feasibility Based Bound Tightening 

(FBBT), which considers a single constraint at a time and utilizes interval arithmetic to infer variable 

bounds, has been employed in solving both mixed integer linear program (MILP) (Savelsbergh 1994; 

Achterberg et al. 2020) and MINLP (Achterberg 2007). FBBT has received considerable attention in 

both mathematical programming and artificial intelligence communities (Street 1989). Though 

computationally inexpensive, FBBT is known to be less effective compared to OBBT in terms of the 

tightness of the bounds found. 

Tightening methods that utilize information from multiple constraints at a time have also been 

studied. For example, Achterberg et al. (Achterberg et al. 2020) studied presolve methods for MILP 

that consider multiple constraints simultaneously. Specifically, for variable bounds tightening 

purpose, their methods are based on special block structure in the problem matrix. Domes and 



  4   

Neumaier (Domes and Neumaier 2016) proposed constraint aggregation method for rigorous global 

optimization that utilizes information from local solutions. Belotti (Belotti 2013) proposed a 

procedure that infers variable bounds using a pair of constraints. Aggregating multiple constraints 

can lead to tighter variable bounds compared to FBBT, while it is computationally inexpensive 

compared to OBBT. However, which constraints to be aggregated and their weights require further 

investigation. 

In this paper, we propose a bound tightening method for multiperiod blending problem based on 

aggregating multiple constraints. The selection of constraints and weights assignment are based on 

the understanding of the physical system we model. Our method works on reformulations of the 

multiperiod blending problem that contain certain structure; however, such structure may be found 

in a range of models in different fields. 

This paper is structured as follows. In section 2, we present background material, including the 

problem statement and two formulations. In section 3, we introduce reformulations of the two 

formulations and a preprocessing method for variable bounds tightening. In section 4, we propose 

valid constraints derived from Reformulation-Linearization Technique (RLT) utilizing the bounds 

obtained from preprocessing. We demonstrate the effectiveness of our method in section 5. 

2.	Background	

We present the problem statement and two formulations for multiperiod blending problem. 

Throughout the paper we use Roman lowercase italic letters for indices, Roman uppercase bold 

letters for sets, Greek lowercase letters for parameters, and Roman uppercase italics for variables. 

2.1.	Problem	statement 

We use a discrete uniform time representation, where time point t is at the end of time period t. 

The problem we study is defined in terms of the following sets: 

𝑖 ∈ 𝐈:  Inputs (streams) 

𝑗 ∈ 𝐉:  Blenders 

𝑘 ∈ 𝐊:  Products 

𝑙 ∈ 𝐋:  Properties 

𝑡 ∈ 𝐓:  Time points: ሼ0,1, … , |𝐓|ሽ/time periods: ሼ1,2, … , |𝐓|ሽ 

It can be stated as follows: 

Given are: 

𝛼௝௞
୊ : Fixed cost for flow from blender j to product k 

𝛼௜
୚: Variable cost for stream 𝑖  

𝛽௞: Price of product k	
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𝛾௝:  Inventory capacity of blender j 

𝛿௝௞:  Upper bound on flow between blender j	and product k	 

𝜉௜:  Availability of stream 𝑖  

𝜋௜௟  :  Value of property 𝑙 for stream 𝑖	

𝜋௞௟
୙  :  Upper bounding specification for property 𝑙 for product k	

𝜔௞ :  Maximum demand for product k	

The flow from blender to product must satisfy the corresponding specifications, and blender feeding 

and withdrawing cannot occur simultaneously. We aim to find a blend schedule that leads to the 

highest profit. We assume that all product properties are the average of the properties of the streams 

blended weighted by volume fraction. Finally, we assume no flow between blenders in this study.   

2.2.	Source‐based	formulation 

We first present a source-based formulation inspired from the literature (Lotero et al. 2016). We 

define the following nonnegative continuous variables: 

𝐹௜௝௧:  Flow of stream 𝑖 to blender j at time point t 

𝐼௜௝௧:  Inventory of stream 𝑖 in blender j during time period t 

𝑅௝௞௧:  Split fraction for inventory in blender j to product k at time point t 

𝐹෠௜௝௞௧:  Flow of stream 𝑖 from blender j to product k at time point t 

We also define the following binary variable: 

𝑋௝௞௧:  = 1 when blender j	feeds product k	at time point t	

We illustrate the variables in the source-based formulation in Figure 1. 

 
Figure	1. Illustrative graph for sets and variables in the source-based formulation.  

We have the following constraints: 

Stream availability:	

෍ ෍ 𝐹௜௝௧
௧∈𝐓௝∈𝐉

൑ 𝜉௜ , 𝑖 ∈ 𝐈 (1) 
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Blender capacity: 

෍ 𝐼௜௝௧
௜∈𝐈

൑ 𝛾௝ , 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓 (2) 

Flow variable upper bound: 

෍ 𝐹෠௜௝௞௧
௜∈𝐈

൑ 𝛿௝௞𝑋௝௞௧ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (3) 

We note that ∑ 𝐹෠௜௝௞௧௜∈𝐈  is also upper bounded by 𝛾௝𝑋௝௞௧; however, in practice we typically have 𝛿௝௞ ൑

𝛾௝ . 

Maximum product demand: 

෍ ෍ ෍ 𝐹෠௜௝௞௧
௧∈𝐓௝∈𝐉௜∈𝐈

൑ 𝜔௞ , 𝑘 ∈ 𝐊  
 

(4) 

Nonlinear constraint for inventory splitting: 

𝐹෠௜௝௞௧ ൌ 𝐼௜௝௧𝑅௝௞௧ ,      𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓   (5) 

For split fraction we have: 

෍ 𝑅௝௞௧
௞∈𝐊

൑ 1, 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓  (6) 

Operating logic: 

𝑅௝௞௧ ൑ 𝑋௝௞௧ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (7) 

෍ 𝐹௜௝௧
௜∈𝐈

൑ 𝛾௝൫1 െ 𝑋௝௞௧൯, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (8) 

Eqn. (3) and (7)– (8) enforce the operating rule that blender feeding and withdrawing cannot occur 

simultaneously. 

The inventory balance is: 

𝐼௜௝,௧ାଵ ൌ 𝐼௜௝௧ ൅ 𝐹௜௝௧ െ෍ 𝐹෠௜௝௞௧
௞∈𝐊

,   𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓  (9) 

The specification for flow from blenders to products: 

෍ 𝜋௜௟𝐹෠௜௝௞௧
௜∈𝐈

൑ 𝜋௞௟
୙ ෍ 𝐹෠௜௝௞௧

௜∈𝐈
, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓  (10) 

while the inventory specification is:  

෍ 𝜋௜௟𝐼௜௝௧
௜∈𝐈

൑ 𝜋௞௟
୙ ෍ 𝐼௜௝௧

௜∈𝐈
൅ 𝛾௝𝜋௞௟

୙ ൫1 െ 𝑋௝௞௧൯, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓 (11) 
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We assume, without loss of generality, that we have only upper bounding specifications. 

Tightening constraint for product flow: 

෍ 𝐹෠௜௝௞௧
௜∈𝐈

൑ 𝛾௝𝑅௝௞௧ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊 (12) 

Finally, we have the objective function: 

max෍ ෍ ෍ ൤෍ ሺ𝛽௞𝐹෠௜௝௞௧
௞∈𝐊

െ 𝛼௝௞
୊ 𝑋௝௞௧ሻ െ 𝛼௜

୚𝐹௜௝௧൨
௧∈𝐓௝∈𝐉௜∈𝐈

 (13) 

Eqn. (1) – (13) comprise the source-based formulation, henceforth referred to as Mୗ୆. 

2.3.	Proportion‐based	formulation 

The multiperiod blending problem can also be reformulated using a proportion-based formulation. 

We define the following nonnegative continuous variable: 

𝑃௜௝௧:  Proportion of stream 𝑖 in the inventory of blender j at time point t 

We have: 

෍ 𝑃௜௝௧
௜∈𝐈

ൌ 1, 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓  (14) 

We also have the following nonlinear constraints: 

𝐼௜௝௧ ൌ 𝑃௜௝௧෍ 𝐼௜ᇲ௝௧
௜ᇲ∈𝐈

, 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓  (15) 

𝐹෠௜௝௞௧ ൌ 𝑃௜௝௧෍ 𝐹෠௜ᇲ௝௞௧
௜ᇲ∈𝐈

, 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (16) 

Finally, similar to Eqn. (11), the proportion specification can be expressed as: 

෍ 𝜋௜௟𝑃௜௝௧
௜∈𝐈

൑ 𝜋௞௟
୙ ൅ ሺmax௜ሼ𝜋௜௟ሽ െ 𝜋௞௟

୙ ሻ൫1 െ 𝑋௝௞௧൯, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓 (17) 

Eqn. (1) - (4), (8) - (11), and (13) - (17) comprise the proportion-based formulation, henceforth 

referred to as M୔୆. 

Note that the proportion-based formulation is similar to the PQ-formulation (Tawarmalani and 

Sahinidis 2002) and the TP-formulation (Alfaki and Haugland 2013) for the pooling problem; and the 

source-based formulation is similar to a model proposed by Boland et al. (Boland, Kalinowski, and 

Rigterink 2016). To the best of our knowledge, there are no theoretical results regarding the relative 

tightness of the aforementioned three formulations. No formulation is known to be tighter of clearly 

faster than the other two.   
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3.	Reformulation	and	preprocessing	method 

We first introduce a reformulation of Mୗ୆ using lifting, and a preprocessing method to calculate tight 

bounds and then present the reformulation and preprocessing method for model M୔୆. 

3.1.	Reformulation	of	bilinear	terms 

Eqn. (5), an equality constraint with a bilinear term, is of particular interest.   

We lift 𝐼௜௝௧ , and partition it into nonnegative continuous variables 𝑈௜௝௞௧  and 𝑉௜௝௞௧: 

𝐼௜௝௧ ൌ 𝑈௜௝௞௧ ൅ 𝑉௜௝௞௧ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (18) 

෍ 𝑈௜௝௞௧
௜∈𝐈

൑ 𝛾௝൫1 െ 𝑋௝௞௧൯, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (19) 

෍ 𝑉௜௝௞௧
௜∈𝐈

൑ 𝛾௝𝑋௝௞௧ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (20) 

where 𝑈௜௝௞௧  represents the inventory of stream 𝑖 in blender j during time period t	when there is no 

flow from blender j to product k (𝑋௝௞௧ ൌ 0), and 𝑉௜௝௞௧  represents such inventory when 𝑋௝௞௧ ൌ 1. 

Eqn. (5) now becomes: 

𝐹෠௜௝௞௧ ൌ 𝑉௜௝௞௧෍ 𝐹෠௜ᇲ௝௞௧
௜ᇲ∈𝐈

,      𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (21) 

and Eqn. (11) can be re-written as: 

෍ 𝜋௜௟𝑉௜௝௞௧
௜∈𝐈

൑ 𝜋௞௟
୙ ෍ 𝑉௜௝௞௧

௜∈𝐈
, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓  (22) 

The reformulated model, with variables 𝑈௜௝௞௧  and 𝑉௜௝௞௧ , henceforth referred to as M୙୚ , consists of 

Eqn. (1) – (4), (6) – (10), and (12) – (18). In M୙୚, the variables involved in a bilinear term are 𝑉௜௝௞௧  

and 𝑅௝௞௧ . We aim to tighten bounds on 𝑉௜௝௞௧ .  

3.2.	Preprocessing	method	for	variable	bounds	tightening 

A relaxation of Eqn. (20) is: 

෍ 𝑉௜௝௞௧
௜∈𝐈

൑ 𝛾௝ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓   (23) 

The right hand side (RHS) parameter 𝛾௝  can be tightened. We first rewrite Eqn. (22) as: 

෍ ሺ𝜋௜௟ െ 𝜋௞௟
୙ ሻ𝑉௜௝௞௧

௜∈𝐈
൑ 0, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓  (24) 
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We define a parameter 𝜇௜௞௟  to represent the margin by which stream 𝑖 violates the specification for 

property 𝑙 for product k: 𝜇௜௞௟ ൌ 𝜋௜௟ െ 𝜋௞௟
୙  (note that 𝜇௜௞௟  can be positive or negative). Eqn. (24) can 

thus be written as:  

෍ 𝜇௜௞௟𝑉௜௝௞௧
௜∈𝐈

൑ 0, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓  (25) 

We aim to calculate a tighter upper bound on 𝑉௜௝௞௧ using Eqn. (23) and (25). For simplicity, we drop 

indices j, k, and t for now, thus 𝜇௜௞௟  becomes 𝜇௜௟ ൌ 𝜋௜௟ െ 𝜋௟
୙. We consider the following: 

෍ 𝑉௜
௜∈𝐈

൑ 𝛾  (26) 

෍ 𝜇௜௟𝑉௜
௜∈𝐈

൑ 0, 𝑙 ∈ 𝐋      (27) 

Eqn. (26) - (27), which contain ሺ1 ൅ |𝐋|ሻ constraints, will be used to find tight variable bounds on 𝑉௜  

for model Mୗ୆.  

To illustrate the bound tightening procedure, we first define a parameter 𝜇௟
∗ ൌ min௜ሼ𝜇௜௟ሽ and a set 

function 𝑏ሺ𝑙ሻ ൌ arg min௜ሼ𝜇௜௟ሽ that returns the “best” stream for property 𝑙. It is possible that, for a 

property 𝑙, there are multiple streams with 𝜇௜௟ ൌ 𝜇௟
∗ (i.e., multiple “best” streams). In that case, we 

consider 𝑏ሺ𝑙ሻ being the stream with the smallest index among all such streams.  We assume 𝜇௟
∗ ൏ 0 

because (1) if 𝜇௟
∗ ൐ 0 then 𝜇௜௟ ൐ 0,∀𝑖 and since 𝑉௜ ൒ 0, Eqn. (23) can be satisfied only if 𝑉௜ ൌ 0,∀𝑖; and 

(2) if 𝜇௟
∗ ൌ 0, then Eqn. (23) can be satisfied only if 𝑉௜ ൌ 0,∀𝑖: 𝜇௜௟ ് 0).  

We also define subset 𝐋௜ ൌ ሼ𝑙: 𝜇௜௟ ൐ 0ሽ, that is, the set of properties with specification violated by 

stream 𝑖 . Similarly, we define subset 𝐈௟ ൌ ሼ𝑖: 𝜇௜௟ ൐ 0ሽ , that contains streams that violate the 

specification for property 𝑙. 

To illustrate, we consider an illustrative example with 𝐈 ൌ ሼ1,2,3ሽ,𝐋 ൌ ሼL1, L2ሽ. Parameters 𝜋௜௟ ,𝜋௟
୙ 

and 𝜇௜௟ calculated from them are given in Figure 2.   

3.2.1. Bounds	tightening	using	a	pair	of	constraints  

From Eqn. (26) it is clear that 𝛾  is a valid upper bound on 𝑉௜ . To tighten such upper bound, we 

combine Eqn. (26) with one constraint in Eqn. (27). For 𝑉௜  with positive coefficient in at least one 

constraint in Eqn. (27) (i.e., streams that violates at least one specification), bounds derived from 

such pairs of constraints will be tighter than 𝛾. 

To calculate bounds using aforementioned pairs of constraints, we first multiply all inequalities in 

Eqn. (27) by െ
ଵ

ఓ೗
∗ (recall that 𝜇௟

∗ ൏ 0) to obtain: 

෍ ሺെ
𝜇௜௟
𝜇௟
∗ ሻ𝑉௜

௜∈𝐈
൑ 0, 𝑙 ∈ 𝐋      
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Figure	2. An illustrative example for parameters 𝜋௜௟ ,𝜋௟
୙, 𝜇௜௟ , and 𝜇௟

∗. 

Next, we combine Eqn. (26) with a weight equal to 1, with each individual constraint above, 

෍ ሺ1 െ
𝜇௜௟
𝜇௟
∗ ሻ𝑉௜

௜∈𝐈
൑ 𝛾, 𝑙 ∈ 𝐋         (28) 

Each constraint in Eqn. (28) is obtained by combing a pair of constraints: Eqn. (26) and one constraint 

in Eqn. (27). Next, we derive bounds on 𝑉௜  from Eqn. (28).  

After using 𝑖′ instead of 𝑖, we obtain: 

෍ ሺ1 െ
𝜇௜ᇲ௟
𝜇௟
∗ ሻ𝑉௜ᇲ

௜ᇲ∈𝐈
൑ 𝛾, 𝑙 ∈ 𝐋      

For each 𝑙 ∈ 𝐋, we consider streams in the set 𝐈௟ , and isolate such streams, one at a time, from the 

summation in the left hand side (LHS): 

ሺ1 െ
𝜇௜௟
𝜇௟
∗ ሻ𝑉௜ ൅෍ ሺ1 െ

𝜇௜ᇲ௟
𝜇௟
∗ ሻ𝑉௜ᇲ

௜ᇲ∈𝐈\ሼ௜ሽ
൑ 𝛾, 𝑙 ∈ 𝐋, 𝑖 ∈ 𝐈௟       

We examine the second term on the LHS of the above equation. By the definition of 𝜇௟
∗ we have 𝜇௜ᇲ௟ ൒

𝜇௟
∗ . Thus, if 𝜇௜ᇲ௟ ൏ 0 then  

ఓ೔ᇲ೗
ఓ೗
∗ ∈ ሾ0,1ሿ  and therefore 1 െ

ఓ೔ᇲ೗
ఓ೗
∗ ൒ 0; and if 𝜇௜ᇲ௟ ൒ 0, then െ

ఓ೔ᇲ೗
ఓ೗
∗ ൒ 0 and 

therefore 1 െ
ఓ೔ᇲ೗
ఓ೗
∗ ൐ 1 ൐ 0 . Given that 𝑉௜ᇲ  is nonnegative, we have ∑ ሺ1 െ

ఓ೔ᇲ೗
ఓ೗
∗ ሻ𝑉௜ᇲ௜ᇲ∈𝐈\ሼ௜ሽ ൒ 0. Thus, the 

following inequality, obtained by dropping the summation in the LHS of the above equation, is valid: 

ሺ1 െ
𝜇௜௟
𝜇௟
∗ ሻ𝑉௜ ൑ 𝛾, 𝑖 ∈ 𝐈, 𝑙 ∈ 𝐋௜         (29) 

and since 1 െ
ఓ೔೗
ఓ೗
∗ ൐ 0 ∀𝑖, 𝑙 ∈ 𝐋௜  we have: 
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𝑉௜ ൑ 𝛾/ሺ1 െ
𝜇௜௟
𝜇௟
∗ ሻ, 𝑖 ∈ 𝐈, 𝑙 ∈ 𝐋௜          

Or 

𝑉௜ ൑ 𝛾ො௜௟ ൌ െ
𝜇௟
∗𝛾

𝜇௜௟ െ 𝜇௟
∗ , 𝑖 ∈ 𝐈, 𝑙 ∈ 𝐋௜     (30) 

Note that 𝛾ො௜௟  is smaller than 𝛾 and serves as an upper bound on 𝑉௜  derived from property 𝑙.  

The physical interpretation of 𝛾ො௜௟ is as follows. Suppose we have to meet demand for volume 𝛾 for a 

product. Parameter 𝛾ො௜௟ represents the maximum volume of stream 𝑖 that can be used towards volume 

𝛾 based on property 𝑙 ∈ 𝐋௜ . In other words, 𝛾ො௜௟/𝛾 is the maximum fraction of stream 𝑖 that can be used 

for such product. This stream-specific volume, 𝛾ො௜௟, is derived by considering the binary mixture of 

streams 𝑖 and 𝑏ሺ𝑙ሻ that satisfies the specification for property 𝑙 exactly.  

Once we calculate 𝛾ො௜௟ from Eqn. (30), the upper bound on 𝑉௜ , denoted as 𝛾̅௜ , is set to the smallest 𝛾ො௜௟ , 

considering all properties that stream  𝑖  violates (i.e., ∀𝑙 ∈ 𝐋௜ ), 𝛾̅௜ ൌ min௟∈𝐋೔ሼ𝛾ො௜௟ሽ . For illustration 

purpose, we introduce a set function 𝑚ሺ𝑖ሻ that returns the property 𝑙 from which 𝛾̅௜  is derived (i.e., 

𝑚ሺ𝑖ሻ ൌ arg min௟∈𝐋೔ሼ𝛾ො௜௟ሽ). 

Consider the illustrative example shown in Figure 2 with 𝛾 ൌ 1. Based on the calculated parameter 

𝜇௜௟ shown in Figure 2, we have the following constraints for Eqn. (26) – (27): 

𝑉ଵ ൅ 𝑉ଶ ൅ 𝑉ଷ ൑ 1   

െ𝑉ଵ ൅ 2𝑉ଶ ൅ 𝑉ଷ ൑ 0     

𝑉ଵ െ 3𝑉ଶ ൅ 2𝑉ଷ ൑ 0      

The calculations described above lead to bounds on 𝑉௜  given in Table 1. 

Table	1.	Bounds calculated by aggregating pair of constraints	
 𝑖 ൌ 1 𝑖 ൌ 2 𝑖 ൌ 3 
𝛾ො௜,୐ଵ  െ 1/3 1/2 
𝛾ො௜,୐ଶ  3/4 െ 3/5 
𝛾̅௜   3/4 1/3 1/2 
Note: “-” indicates the corresponding 𝛾ො௜௟ is not calculated since L1 ∉ 𝐋ଵ and L2 ∉ 𝐋ଶ. 

3.2.2. Bounds	updating 

In this subsection, we discuss how we can further tighten 𝛾ො௜௟. Recall that bounds on 𝑉௜  are derived 

using pairs of constraints. For each such pair, we can derive bounds tighter than 𝛾ො௜௟ by considering 

one additional constraint in Eqn. (27) that is not included in such pair.  
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We elaborate the aforementioned idea in the context of blending. Recall that 𝛾ො௜௟ is based on the binary 

mixture of streams 𝑖  and 𝑏ሺ𝑙ሻ  with volume 𝛾 , which satisfies the specification for property 𝑙  and 

contains ሺ𝛾 െ 𝛾ො௜௟ሻ volume of stream 𝑏ሺ𝑙ሻ. It is possible that stream 𝑏ሺ𝑙ሻ violates specifications for 

other properties, and its maximum volume in 𝛾  volume of product is less than ሺ𝛾 െ 𝛾ො௜௟ሻ . For all 

൫𝑖, 𝑙 ∈ 𝐋௜ , 𝑏ሺ𝑙ሻ൯ combinations, we check if the following holds: 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟ .  

If 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟ , then there exists a property 𝑚ሾ𝑏ሺ𝑙ሻሿ (the property from which 𝛾̅௕ሺ௟ሻ is derived, see 

section 3.2.1) whose specification is violated by the binary mixture of stream 𝑖 and 𝑏ሺ𝑙ሻ that satisfies 

specification for property 𝑙  exactly (i.e., 𝜇௜,௠ሾ௕ሺ௟ሻሿ𝛾ො௜௟ ൅ 𝜇௕ሺ௟ሻ,௠ሾ௕ሺ௟ሻሿሺ𝛾 െ 𝛾ො௜௟ሻ ൐ 0). Note that property 

𝑚ሾ𝑏ሺ𝑙ሻሿ is not considered when deriving 𝛾ො௜௟; when taking it into account, the binary mixture of stream 

𝑖  and 𝑏ሺ𝑙ሻ  will not be able to satisfy the specifications for property 𝑙  and property 𝑚ሾ𝑏ሺ𝑙ሻሿ 

simultaneously. In such case, we include one additional stream to the binary mixture. Note that by 

including one additional stream, 𝛾ො௜௟ will be tightened since it is previously obtained from the binary 

mixture of streams 𝑖 and 𝑏ሺ𝑙ሻ that satisfies specification for property 𝑙 exactly. 

Specifically, we tighten 𝛾ො௜௟ by considering the “second best” stream for property 𝑙. We define 𝜇௟
ା ൌ

min௜ᇲ∈𝐈\ሼ௕ሺ௟ሻሽሼ𝜇௜ᇲ௟ሽ . Let 𝑏ାሺ𝑙ሻ  be a set function that returns the “second best” stream:  𝑏ାሺ𝑙ሻ ൌ

arg min௜ᇲ∈𝐈\ሼ௕ሺ௟ሻሽሼ𝜇௜ᇲ௟ሽ, which implies 𝜇௟
ା ൌ 𝜋௕శሺ௟ሻ,௟ െ 𝜋௞௟

୙ . If there are multiple “second best” streams, 

we proceed as follows: for the specific ൫𝑖, 𝑙 ∈ 𝐋௜ , 𝑏ሺ𝑙ሻ൯ combination being considered, if 𝜇௜௟ ൌ 𝜇௟
ା (i.e., 

stream 𝑖  is one of the “second best” streams), then 𝑏ାሺ𝑙ሻ ൌ 𝑖 ; else, 𝑏ାሺ𝑙ሻ  is the stream with the 

smallest index among all such streams. 

To tighten 𝛾ො௜௟ , we prove three propositions. In Proposition 1, we consider a special case where 

𝑏ାሺ𝑙ሻ ൌ 𝑖 , while in Propositions 2 and Propositions 3 we consider the more general case where 

𝑏ାሺ𝑙ሻ ് 𝑖. For Propositions 2 and Propositions 3, we consider a mixture with volume 𝛾 that contains 

stream 𝑖, 𝑏ሺ𝑙ሻ, and 𝑏ାሺ𝑙ሻ, and satisfies the specification for property 𝑙. Note that for volume 𝛾 of such 

mixture, the (current) upper bound on volume of stream 𝑏ሺ𝑙ሻ is 𝛾̅௕ሺ௟ሻ. Assume we have volume 𝛾ො௜௟ for 

stream 𝑖 and volume (𝛾 െ 𝛾̅௕ሺ௟ሻ െ 𝛾ො௜௟) for stream 𝑏ାሺ𝑙ሻ. Then, for property 𝑙 we have: 

𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௜௟𝛾ො௜௟ ൅ 𝜇௟

ାሺ𝛾 െ 𝛾̅௕ሺ௟ሻ െ 𝛾ො௜௟ሻ  ൑ 0, 𝑖 ∈ 𝐈, 𝑙 ∈ 𝐋௜          

which is equivalent to: 

ሺ𝜇௜௟ െ 𝜇௟
ାሻ𝛾ො௜௟ ൑ 𝜇௟

ା൫𝛾̅௕ሺ௟ሻ െ 𝛾൯ െ 𝜇௟
∗𝛾̅௕ሺ௟ሻ, 𝑖 ∈ 𝐈, 𝑙 ∈ 𝐋௜          

For Propositions 2 and Propositions 3, since 𝑏ାሺ𝑙ሻ ് 𝑖, by the definition of 𝜇௟
ା it follows that 𝜇௜௟ െ

𝜇௟
ା ൐ 0. Thus, we have: 

𝛾ො௜௟ ൑
𝜇௟
ା൫𝛾̅௕ሺ௟ሻ െ 𝛾൯ െ 𝜇௟

∗𝛾̅௕ሺ௟ሻ
ሺ𝜇௜௟ െ 𝜇௟

ାሻ
, 𝑖 ∈ 𝐈, 𝑙 ∈ 𝐋௜          
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Note that the RHS of the above equation can be nonpositive.  Proposition 2 shows that in such case 

zero is a valid upper bound on 𝑉௜ . If the RHS is positive, Proposition 3 shows that it is a valid upper 

bound on 𝑉௜ . 

Proposition	1 For ൫𝑖, 𝑙 ∈ 𝐋௜ , 𝑏ሺ𝑙ሻ൯ with 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟ and 𝑏ାሺ𝑙ሻ ൌ 𝑖, if ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈 ൑ 0, then 𝛾ො௜௟ ൑ 0. 

Proof	(by	contradiction). 

Since 𝑏ାሺ𝑙ሻ ൌ 𝑖  and 𝑙 ∈ 𝐋௜ , it follows that the “second best” stream violates the specification for 

property 𝑙, thus 𝜇௟
ା ൌ 𝜇௜௟ ൐ 0. 

From Eqn. (30), we have 𝛾ො௜௟ ൌ െ
ఓ೗
∗ఊ

ఓ೗
శିఓ೗

∗,  which leads to ሺ𝜇௟
ା െ 𝜇௟

∗ሻ𝛾ො௜௟ ൌ െ𝜇௟
∗𝛾. If we move all terms to 

the LHS, we have 𝜇௟
ା𝛾ො௜௟ െ 𝜇௟

∗𝛾ො௜௟ ൅ 𝜇௟
∗𝛾 ൌ 0, and thus, we have  

𝜇௟
ା𝛾ො௜௟ ൅ 𝜇௟

∗ሺ𝛾 െ 𝛾ො௜௟ሻ ൌ 0  (31) 

To simplify the notation, we introduce 𝜀 ൌ 𝛾ො௜௟ , which means that Eqn. (31) can be written as: 

𝜇௟
ା𝜀 ൅ 𝜇௟

∗ሺ𝛾 െ 𝜀ሻ ൌ 0 (32) 

Next, to prove the result using contradiction, we assume that 𝛾ො௜௟ ൌ 𝜀 ൐ 0.  

Recall that 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟ ൌ 𝛾 െ 𝜀, and thus, if we multiply both sides of the inequality with 𝜇௟
∗ ൏ 0, 

we obtain 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൐ 𝜇௟

∗ሺ𝛾 െ 𝜀ሻ. Therefore, from Eqn. (32), we have: 

𝜇௟
ା𝜀 ൅ 𝜇௟

∗𝛾̅௕ሺ௟ሻ ൐ 0 (33) 

We also have 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

ൌ 𝜇௜௟𝑉௜ ൅෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈\ሼ௜ሽ

 (34) 

If 𝑉௜ ൌ 𝛾ො௜௟ ൌ 𝜀, then  

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

ൌ 𝜇௟
ା 𝜀 ൅෍ 𝜇௜ᇲ௟𝑉௜ᇲ

௜ᇲ∈𝐈\ሼ௜ሽ
 (35) 

Note that 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ ൌ
௜ᇲ∈𝐈\ሼ௜ሽ

𝜇௟
∗𝑉௕ሺ௟ሻ ൅෍ 𝜇௜ᇲ௟𝑉௜ᇲ

௜ᇲ∈𝐈\ሼ௕ሺ௟ሻ,௜ሽ
 (36) 

with 𝜇௟
∗ ൏ 0 and 𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ. 

Since the “second best” stream, in this case stream 𝑖, violates the specification for property 𝑙 (i.e., 

𝜇௜௟ ൐ 0), it follows that 𝜇௜ᇲ௟ ൐ 0,∀𝑖ᇱ ∈ 𝐈\ሼ𝑏ሺ𝑙ሻ, 𝑖ሽ, while 𝜇௟
∗ ൏ 0. Since 𝑉௜ᇲ  is nonnegative, the RHS of 

Eqn. (36) decreases as the value of 𝑉௕ሺ௟ሻ increases. With 𝑉௕ሺ௟ሻ upper bounded by  𝛾̅௕ሺ௟ሻ, we have: 
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෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈\ሼ௜ሽ

൒ 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅෍ 𝜇௜ᇲ௟𝑉௜ᇲ

௜ᇲ∈𝐈\ሼ௕ሺ௟ሻ,௜ሽ
 (37) 

Combing Eqn. (35) and (37) we obtain: 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

ൌ 𝜇௟
ା 𝜀 ൅෍ 𝜇௜ᇲ௟𝑉௜ᇲ

௜ᇲ∈𝐈\ሼ௜ሽ
൒ 𝜇௟

ା𝜀 ൅ 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅෍ 𝜇௜ᇲ௟𝑉௜ᇲ

௜ᇲ∈𝐈\ሼ௕ሺ௟ሻ,௜ሽ
 (38) 

with ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈\ሼ௕ሺ௟ሻ,௜ሽ ൒ 0  (since 𝜇௜ᇲ௟ ൐ 0,∀𝑖ᇱ ∈ 𝐈\ሼ𝑏ሺ𝑙ሻ, 𝑖ሽ  and 𝑉௜ᇲ  is nonnegative) and 𝜇௟
ା𝜀 ൅

𝜇௟
∗𝛾̅௕ሺ௟ሻ ൐ 0 (see Eqn. (33)).  

Thus, from Eqn. (38) it follows that ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈 ൐ 0, which leads to a contradiction.             ∎ 

Before presenting Proposition 2 and Proposition 3, we introduce some prerequisites. To derive a 

valid upper bound on 𝑉௜ , for ൫𝑖, 𝑙 ∈ 𝐋௜ , 𝑏ሺ𝑙ሻ൯  with 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟  and 𝑏ାሺ𝑙ሻ ് 𝑖 , we again consider 

volume 𝛾 for a product (i.e., ∑ 𝑉௜ᇲ௜ᇲ∈𝐈 ൌ 𝛾) where we assume 𝑉௜ ൌ 𝛾ො௜௟ . Such assumptions imply (1) 

∑ 𝑉௜ᇲ௜ᇲ∈𝐈\ሼ௜ሽ ൌ 𝛾 െ 𝛾ො௜௟ and (2) 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

ൌ 𝜇௜௟𝛾ො௜௟  ൅෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈\ሼ௜ሽ

 (39) 

The LHS of Eqn. (39) should be nonpositive (see Eqn. (27)). To prove Proposition 2 and Proposition 

3 by contradiction, we show that under certain conditions, the RHS of Eqn. (39) is positive. We first 

investigate the second term in the RHS of Eqn. (39). We are interested in the lower bound on 

∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈\ሼ௜ሽ  subject to ∑ 𝑉௜ᇲ௜ᇲ∈𝐈\ሼ௜ሽ ൌ 𝛾 െ 𝛾ො௜௟ and 𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ. In other words, we are interested in 

the solution of the following LP (LP1): 

min ෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈\ሼ௜ሽ

s. t.

෍ 𝑉௜ᇲ
௜ᇲ∈𝐈\ሼ௜ሽ

൑ 𝛾 െ 𝛾ො௜௟

െ෍ 𝑉௜ᇲ
௜ᇲ∈𝐈\ሼ௜ሽ

൑ 𝛾ො௜௟ െ 𝛾

𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ
𝑉௜ᇲ ൒ 0, 𝑖ᇱ ∈ 𝐈\ሼ𝑖ሽ

 

The optimal objective function value for LP1 provides a lower bound on ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲஷ௜ . LP1 contains 

(|𝐈| െ 1) variables and three inequality constraints. Here, we note that the optimal solution to LP1 is   

𝑉௕శሺ௟ሻ ൌ 𝛾 െ 𝛾ො௜௟ െ  𝛾̅௕ሺ௟ሻ, 𝑉௕ሺ௟ሻ ൌ  𝛾̅௕ሺ௟ሻ , with all other variables being zero. When 𝜇௟
ା ൑ 0 , the 

corresponding dual variables for the three inequality constraints are  0, 𝜇௟
ା , and ሺ𝜇௟

∗ െ 𝜇௟
ାሻ; when 

𝜇௟
ା ൐ 0, the corresponding dual variables for the three constraints are  െ𝜇௟

ା, 0, and ሺ𝜇௟
∗ െ 𝜇௟

ାሻ. One 

can verify the optimality of such solution with strong duality. We show the optimal tableau for LP1 

in Appendix A. 
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The optimal solution mentioned above leads to an objective function value of 𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ ൅

ሺ𝜇௟
∗ െ 𝜇௟

ାሻ𝛾̅௕ሺ௟ሻ. Thus, from LP1 we have ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈\ሼ௜ሽ ൒ 𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ ൅ ሺ𝜇௟

∗ െ 𝜇௟
ାሻ𝛾̅௕ሺ௟ሻ.  

We now revisit Eqn. (39). From LP1, we have a lower bound on the second term of its RHS, so we 

have: 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

൒ 𝜇௜௟𝛾ො௜௟  ൅ 𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ ൅ ሺ𝜇௟

∗ െ 𝜇௟
ାሻ𝛾̅௕ሺ௟ሻ (40) 

if ∑ 𝑉௜ᇲ௜ᇲ∈𝐈 ൌ 𝛾 െ 𝛾ො௜௟ and 𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ hold. 

We next present Proposition 2 and Proposition 3. 

Proposition	 2 For ൫𝑖, 𝑙 ∈ 𝐋௜ , 𝑏ሺ𝑙ሻ൯  with 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟ , 𝑏ାሺ𝑙ሻ ് 𝑖 ,  ∑ 𝑉௜ᇲ௜ᇲ∈𝐈 ൌ 𝛾 , 𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ , and 
ఓ೗
శ൫ఊഥ್ሺ೗ሻିఊ൯ିఓ೗

∗ఊഥ್ሺ೗ሻ
ሺఓ೔೗ିఓ೗

శሻ
൑ 0, if ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈 ൑ 0, then 𝛾ො௜௟ ൑ 0. 

Proof	(by	contradiction) 

Since ∑ 𝑉௜ᇲ௜ᇲ∈𝐈 ൌ 𝛾, if 𝑉௜ ൌ 𝛾ො௜௟ , then ∑ 𝑉௜ᇲ௜ᇲ∈𝐈\ሼ௜ሽ ൌ 𝛾 െ 𝛾ො௜௟ . We also have 𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ . Thus from Eqn. 

(40) we have: 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

൒ 𝜇௜௟  𝛾ො௜௟ ൅ 𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ ൅ ሺ𝜇௟

∗ െ 𝜇௟
ାሻ𝛾̅௕ሺ௟ሻ ൌ 𝜇௟

∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟
ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯ ൅ ሺ𝜇௜௟ െ 𝜇௟

ାሻ𝛾ො௜௟  (41) 

We examine the signs of 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟

ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯ and ሺ𝜇௜௟ െ 𝜇௟
ାሻ𝛾ො௜௟  in the RHS of Eqn. (41) separately.  

For 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟

ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯: since 𝑙 ∈ 𝐋௜  and 𝑏ାሺ𝑙ሻ ് 𝑖, it follows that 𝜇௜௟ ൐ 𝜇௟
ା, and thus 𝜇௜௟ െ 𝜇௟

ା ൐ 0. 

Since 
ఓ೗
శ൫ఊഥ್ሺ೗ሻିఊ൯ିఓ೗

∗ఊഥ್ሺ೗ሻ
ሺఓ೔೗ିఓ೗

శሻ
൑ 0  and the denominator is positive, it follows that the numerator 

𝜇௟
ା൫𝛾̅௕ሺ௟ሻ െ 𝛾൯ െ 𝜇௟

∗𝛾̅௕ሺ௟ሻ ൑ 0, which is equivalent to 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟

ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯ ൒ 0. 

For ሺ𝜇௜௟ െ 𝜇௟
ାሻ𝛾ො௜௟: we have 𝜇௜௟ െ 𝜇௟

ା ൐ 0. To prove Proposition 2 using contradiction, we assume that 

𝛾ො௜௟ ൐ 0, so it follows that ሺ𝜇௜௟ െ 𝜇௟
ାሻ𝛾ො௜௟ ൐ 0. 

Thus, from Eqn. (41) we have ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ ൐ 0, which leads to a contradiction.              ∎ 

Proposition	 3 For ൫𝑖, 𝑙 ∈ 𝐋௜ , 𝑏ሺ𝑙ሻ൯  with 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟ , 𝑏ାሺ𝑙ሻ ് 𝑖 , ∑ 𝑉௜ᇲ௜ᇲ∈𝐈 ൌ 𝛾 , 𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ , and 
ఓ೗
శ൫ఊഥ್ሺ೗ሻିఊ൯ିఓ೗

∗ఊഥ್ሺ೗ሻ
ሺఓ೔೗ିఓ೗

శሻ
൐ 0, if ∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈 ൑ 0,  then 𝛾ො௜௟ ൑

ఓ೗
శ൫ఊഥ್ሺ೗ሻିఊ൯ିఓ೗

∗ఊഥ್ሺ೗ሻ
൫ఓ೔೗ିఓ೗

శ൯
. 

Proof	(by	contradiction) 

Since ∑ 𝑉௜ᇲ௜ᇲ∈𝐈 ൌ 𝛾, if 𝑉௜ ൌ 𝛾ො௜௟ , then ∑ 𝑉௜ᇲ௜ᇲஷ௜ ൌ 𝛾 െ 𝛾ො௜௟ . We also have 𝑉௕ሺ௟ሻ ൑ 𝛾̅௕ሺ௟ሻ. Thus, from Eqn. (40) 

we have: 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

൒ 𝜇௜௟  𝛾ො௜௟ ൅ 𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ ൅ ሺ𝜇௟

∗ െ 𝜇௟
ାሻ𝛾̅௕ሺ௟ሻ ൌ 𝜇௟

∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟
ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯ ൅ ሺ𝜇௜௟ െ 𝜇௟

ାሻ𝛾ො௜௟  (42) 

To prove Proposition 3 using contradiction, we assume that 𝛾ො௜௟ ൌ
ఓ೗
శ൫ఊഥ್ሺ೗ሻିఊ൯ିఓ೗

∗ఊഥ್ሺ೗ሻ
൫ఓ೔೗ିఓ೗

శ൯
൅ 𝜀 with 𝜀 ൐ 0. 

From Eqn. (41) we have: 
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෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

൒ 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟

ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯ ൅ ሺ𝜇௜௟ െ 𝜇௟
ାሻሺ

𝜇௟
ା൫𝛾̅௕ሺ௟ሻ െ 𝛾൯ െ 𝜇௟

∗𝛾̅௕ሺ௟ሻ
ሺ𝜇௜௟ െ 𝜇௟

ାሻ
൅ 𝜀ሻ 

or 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

൒ 𝜇௟
∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟

ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯ ൅ 𝜇௟
ା൫𝛾̅௕ሺ௟ሻ െ 𝛾൯ െ 𝜇௟

∗𝛾̅௕ሺ௟ሻ ൅ ሺ𝜇௜௟ െ 𝜇௟
ାሻ𝜀 

After rearranging terms, we obtain, 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

൒ 𝜇௟
∗𝛾̅௕ሺ௟ሻ െ 𝜇௟

∗𝛾̅௕ሺ௟ሻ ൅ 𝜇௟
ା൫𝛾 െ 𝛾̅௕ሺ௟ሻ൯ ൅ 𝜇௟

ା൫𝛾̅௕ሺ௟ሻ െ 𝛾൯ ൅ ሺ𝜇௜௟ െ 𝜇௟
ାሻ𝜀 

which leads to 

෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲ∈𝐈

൒ ሺ𝜇௜௟ െ 𝜇௟
ାሻ𝜀 

Since 𝑙 ∈ 𝐋௜  and 𝑏ାሺ𝑙ሻ ് 𝑖 , it follows that 𝜇௜௟ ൐ 𝜇௟
ା , and thus 𝜇௜௟ െ 𝜇௟

ା ൐ 0 . With 𝜀 ൐ 0  we have 

∑ 𝜇௜ᇲ௟𝑉௜ᇲ௜ᇲ∈𝐈 ൐ 0, which leads to a contradiction.                              ∎  

From Proposition 2 and Proposition 3, it follows that for ൫𝑖, 𝑙 ∈ 𝐋௜ ,𝑏ሺ𝑙ሻ൯  with 𝛾̅௕ሺ௟ሻ ൏ 𝛾 െ 𝛾ො௜௟  and 

𝑏ାሺ𝑙ሻ ് 𝑖, we can calculate a valid upper bound on 𝑉௜  𝛾ො௜௟ ൌ max ൜0,  
ఓ೗
శ൫ఊഥ್ሺ೗ሻିఊ൯ିఓ೗

∗ఊഥ್ሺ೗ሻ
ሺఓ೔೗ିఓ೗

శሻ
ൠ 

Utilizing the above results, we update bounds as follows: for 𝑖 ∈ 𝐈	and 𝑙 ∈ 𝐋௜ , we first check if 𝛾̅௕ሺ௟ሻ ൏

𝛾 െ 𝛾ො௜௟ (𝛾ො௜௟ is calculated from Eqn. (30)); if that is the case, we have:  

 𝛾ො௜௟ ൌ ቐ
0,   if 𝑏ାሺ𝑙ሻ ൌ 𝑖

max ቊ0,  
𝜇௟
ା൫𝛾̅௕ሺ௟ሻ െ 𝛾൯ െ 𝜇௟

∗𝛾̅௕ሺ௟ሻ
ሺ𝜇௜௟ െ 𝜇௟

ାሻ
ቋ , otherwise

 

To illustrate, we consider the example in Figure 2.	Note that we have 𝑏ሺL2ሻ ൌ 2, 𝑏ାሺL2ሻ ൌ 1, and 

from Table 1 we have 𝛾̅௕ሺ୐ଶሻ ൌ 𝛾̅ଶ ൌ 1/3, and 1/3 ൏ 𝛾 െ 𝛾ොଷ,୐ଶ ൌ 2/5. Thus, we update 𝛾ොଷ,୐ଶ . Since 

𝑏ାሺL2ሻ ് 3 , and ሾ𝜇୐ଶ
ା ሺ𝛾̅ଶ െ 𝛾ሻ െ 𝜇୐ଶ

∗ 𝛾̅ଶሿ/൫𝜇ଷ,୐ଶ െ 𝜇୐ଶ
ା ൯ ൌ 1/3 ൐ 0,  we have 𝛾ොଷ,୐ଶ ൌ 1/3 , and 𝛾̅ଷ  is 

updated to 1/3. 

The bounds calculated by our method are given in Table 2. For comparison, we also show the bounds 

which would have been obtained by FBBT and OBBT for the same example. We note that for this 

example, bounds on all 𝑉௜  obtained from our method are tighter than the bounds obtained from FBBT. 

For 𝑉ଵ and 𝑉ଶ, the bounds obtained from our method are as tight as the bounds obtained from OBBT. 

Table	2.	Bounds calculated by different methods	
𝛾̅௜   𝑖 ൌ 1 𝑖 ൌ 2 𝑖 ൌ 3 
FBBT  1 1/2 3/4 
OBBT   3/4 1/3 1/11 
Our method 3/4 1/3 1/3 
Note: Calculation performed by FBBT and OBBT can be found in Appendix B. 
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3.2.3. Complete	procedure	for	bound	tightening 

The complete procedure, which combines the calculations described in the previous subsections, is 

summarized below. The pseudocode, where we bring back indices j,	k, t	and thus 𝐋௜௞ ൌ ሼ𝑙: 𝜇௜௞௟ ൐ 0ሽ, 

is as follows: 

 
Complete	procedure	for	bound	tightening	
For	𝑘 ∈ 𝐊 do	
  For	𝑗 ∈ 𝐉 do	
				For	𝑖 ∈ 𝐈 do	
      𝛾̅௜௝௞ ൌ 𝛾௝   
      For	𝑙 ∈ 𝐋௜௞  do	

        𝛾ො௜௝௞௟ ൌ െ
𝜇௟
∗𝛾௝

𝜇௜௞௟ െ 𝜇௟
∗    	

        𝛾̅௜௝௞ ൌ minሼ𝛾̅௜௝௞ , 𝛾ො௜௝௞௟ሽ 
      End		
    End			
For	𝑖 ∈ 𝐈 do	

						For	𝑙 ∈ 𝐋௜௞  do	
				If	𝛾̅௕ሺ௟ሻ,௝௞ ൏ 𝛾 െ 𝛾ො௜௝௞௟  then	
						If 𝑏ାሺ𝑙ሻ ൌ 𝑖  then      
        𝛾ො௜௝௞௟ ൌ 0 
      Else	

            𝛾ො௜௝௞௟ ൌ max ൜0,  
ఓೖ೗
శ ൫ఊഥ್ሺ೗ሻ,ೕೖିఊ൯ିఓ೗

∗ఊഥ್ሺ೗ሻ,ೕೖ
ሺఓ೔೗ೖିఓ೗ೖ

శ ሻ
ൠ 

          End		
										𝛾̅௜௝௞ ൌ minሼ𝛾̅௜௝௞ , 𝛾ො௜௝௞௟ሽ  
								End			
      End      
    End 	
  End		
End  
Output: 𝛾̅௜௝௞  

3.2.4. Reformulation	and	preprocessing	for	M୔୆ 

We lift 𝑃௜௝௧ , and partition it into nonnegative continuous variables 𝑈௜௝௞௧  and 𝑉௜௝௞௧: 

𝑃௜௝௧ ൌ 𝑈௜௝௞௧ ൅ 𝑉௜௝௞௧ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (43) 

෍ 𝑈௜௝௞௧
௜∈𝐈

൑ 1 െ 𝑋௝௞௧ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (44) 

෍ 𝑉௜௝௞௧
௜∈𝐈

൑ 𝑋௝௞௧ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (45) 
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where 𝑈௜௝௞௧  now represents the proportion of stream 𝑖 in blender j during time period t	when there 

is no flow from blender j to product k (𝑋௝௞௧ ൌ 0), and 𝑉௜௝௞௧  represents such proportion when 𝑋௝௞௧ ൌ 1. 

Eqn. (16) now becomes: 

𝐹෠௜௝௞௧ ൌ 𝑉௜௝௞௧෍ 𝐹෠௜ᇲ௝௞௧
௜ᇲ∈𝐈

, 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (46) 

and Eqn. (17) can be re-written as follow: 

෍ 𝜋௜௟𝑉௜௝௞௧
௜∈𝐈

൑ 𝜋௞௟
୙ ෍ 𝑉௜௝௞௧

௜∈𝐈
, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓  (47) 

Eqn. (1) - (4), (8) - (11), and (13) -(15), and (43) - (47) comprise a reformulation for the proportion-

based formulation, henceforth referred to as M୙୚ି୔. 

From Eqn. (45) and (47) with previously defined parameter 𝜇௜௟ , we have: 

෍ 𝑉௜
௜∈𝐈

൑ 1  (48) 

෍ 𝜇௜௟𝑉௜
௜∈𝐈

൑ 0, 𝑙 ∈  𝐋      (49) 

Comparing Eqn. (48) and (49) with Eqn. (26) and (27) (from which bounds on 𝑉௜  are calculated for 

model Mୗ୆), the only difference is that instead of parameter 𝛾 in the RHS of Eqn. (26), here we have 

constant 1 in the RHS of Eqn. (48). It is therebefore straightforward to tighten bounds on 𝑉௜  with the 

procedure shown in 3.2.3 by setting 𝛾௝ ൌ 1, and thus the initial value for 𝛾̅௜௝௞  is 1. 

4.	Valid	constraints 

4.1.	Model	Mୗ୆ 

We first present valid constraints for Mୗ୆ . Since 𝑅௝௞௧ ∈ ሾ0,1ሿ , ሺ1 െ 𝑅௝௞௧ሻ ∈ ሾ0,1ሿ , so multiplying 

𝑉௜௝௞௧ ൑ 𝛾̅௜௝௞ by ሺ1 െ 𝑅௝௞௧ሻ yields: 

ሺ1 െ 𝑅௝௞௧ሻ𝑉௜௝௞௧ ൑ ൫1 െ 𝑅௝௞௧൯𝛾̅௜௝௞ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓    

and then: 

𝑉௜௝௞௧ െ 𝑉௜௝௞௧𝑅௝௞௧ ൑ ൫1 െ 𝑅௝௞௧൯𝛾̅௜௝௞ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓        

Note that 𝐹෠௜௝௞௧ ൌ 𝑉௜௝௞௧𝑅௝௞௧ , thus: 

𝑉௜௝௞௧ െ 𝐹෠௜௝௞௧ ൑ ൫1 െ 𝑅௝௞௧൯𝛾̅௜௝௞ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓      (50) 

If we reintroduce indices 𝑗, 𝑘, and 𝑡, Eqn. (28) can be written as:  
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෍ ሺ1 െ
𝜇௜௞௟
𝜇௟
∗ ሻ𝑉௜௝௞௧

௜∈𝐈
൑ 𝛾௝ , 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓   

Multiplying both sides with ൫1 െ 𝑅௝௞௧൯ leads to: 

෍ ሺ1 െ
𝜇௜௞௟
𝜇௟
∗ ሻ𝑉௜௝௞௧൫1 െ 𝑅௝௞௧൯ 

௜∈𝐈
൑ ൫1 െ 𝑅௝௞௧൯𝛾௝ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓         

or 

෍ ሺ1 െ
𝜇௜௞௟
𝜇௟
∗ ሻ൫𝑉௜௝௞௧ െ 𝑉௜௝௞௧𝑅௝௞௧൯ 

௜∈𝐈
൑ ൫1 െ 𝑅௝௞௧൯𝛾௝ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓   (51) 

Since 𝐹෠௜௝௞௧ ൌ 𝑉௜௝௞௧𝑅௝௞௧ , Eqn. (51) can be written as follows:  

෍ ሺ1 െ
𝜇௜௞௟
𝜇௟
∗ ሻሺ𝑉௜௝௞௧ െ 𝐹෠௜௝௞௧ሻ

௜∈𝐈
൑ ൫1 െ 𝑅௝௞௧൯𝛾௝ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓           (52) 

Both Eqn. (50) and (52) are RLT constraints (Sherali and Adams 1999). Finally, we also have:  

𝑉௜௝௞௧ ൑ 𝛾̅௜௝௞ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓      (53) 

Eqn. (53) enforces upper bounds on 𝑉௜௝௞௧  which may be tighter than the bounds obtained through 

general purpose bound tightening techniques such as FBBT. 

Eqn. (50) and (52) - (53) are added to model M୙୚,resulting in model Mୖ,୘
୙୚ . We show an illustrative 

graph for our tightening methods using the example introduced in Figure 2 in Appendix B. We also 

introduce model Mୖ
୙୚, which has the same constraints as Mୖ,୘

୙୚ , but without tightened bounds on 𝑉௜௝௞௧  

(i.e., 𝛾̅௜௝௞ ൌ 𝛾௝  in Eqn. (50), (52) - (53)). We summarize the models we consider in Table 3.  

Table	3.	Model description 
Models	 Constraints	and	variable	bounds	
Mୗ୆ Eqn. (1) – (13) 

M୙୚ Eqn. (1) – (4), (6) – (10), (12) – (18)  
Mୖ
୙୚  M୙୚ + Eqn. (50), (52) - (53) 

𝛾̅௜௝௞ ൌ 𝛾௝  
Mୖ,୘
୙୚  M୙୚ + Eqn. (50), (52) - (53) 

𝛾̅௜௝௞  obtained from our method 

4.2.	Model	M୔୆ 

For M୔୆ we have: 

෍ 𝐹෠௜ᇲ௝௞௧
௜ᇲ∈𝐈

൑ 𝛿௝௞ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (54) 
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Multiplying both sides of 𝑉௜௝௞௧ ൑ 𝛾̅௜௝௞ with ሺ𝛿௝௞ െ ∑ 𝐹෠௜ᇲ௝௞௧௜ᇲ ሻ leads to: 

𝛿௝௞𝑉௜௝௞௧ െ 𝐹෠௜௝௞௧ ൑ 𝛾̅௜௝௞ ൬𝛿௝௞ െ෍ 𝐹෠௜ᇲ௝௞௧
௜ᇲ∈𝐈

൰ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (55) 

Similarly, from Eqn. (28) we have: 

෍ ሺ1 െ
𝜇௜௞௟
𝜇௟
∗ ሻ𝑉௜௝௞௧

௜∈𝐈
൑ 1, 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓    

Multiplying both sides in the above equation with ሺ𝛿௝௞ െ ∑ 𝐹෠௜௝௞௧௜∈𝐈 ሻ leads to: 

෍ ሺ1 െ
𝜇௜௞௟
𝜇௟
∗ ሻሺ𝛿௝௞𝑉௜௝௞௧ െ 𝐹෠௜௝௞௧ሻ

௜∈𝐈
൑ ൬𝛿௝௞ െ෍ 𝐹෠௜௝௞௧

௜∈𝐈
൰ , 𝑘 ∈ 𝐊, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓  (56) 

For the proportion-based formulation we test the following models: (1) the original model  

M୔୆; (2) the reformulated model M୙୚ି୔; (3) the model with RLT constraints (55) and (56) without 

bound tightening ሺ𝛾̅௜௝௞ ൌ 1ሻ, Mୖ
୙୚ି୔ ; and  (4) the model with RLT constraints (55) and (56) and 

tightened variable bounds, Mୖ,୘
୙୚ି୔. 

5.	Computational	results	

We test our methods on different models. Computational experiments are conducted on a Windows 

10 machine with Intel Core i7 at 2.80 GHz and 8 GB of RAM. Models are coded in GAMS 28.2. We use 

BARON 19.7.13 with default options. Instances have five to eight streams, two to ten blenders, four 

products, four to six properties, and four to ten time points. Instances  are modified from Adhya et al. 

(Adhya, Tawarmalani, and Sahinidis 1999), Ben-Tal et al. (Ben-Tal, Eiger, and Gershovitz 1994), and 

D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011). 	

5.1.	Case	study	 

We first show the results for a case study. It has eight streams, three blenders, four products, six 

properties and five time periods. The parameters are given in Appendix C. An optimal schedule, with 

an objective function value of 3448.7, is shown in Figure 3 and the corresponding inventory profile 

in Figure 4.  The model and solution statistics for different models are given in Table 4. After 300 

seconds Mୗ୆ has an optimality gap of 2.43% while Mୖ,୘
୙୚  is solved to optimality in less than 50 seconds, 

indicating the effectiveness of the tighter bounds and RLT constraints. 
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Figure	3. An optimal schedule for the case study. 

  
Figure	4. Inventory profile for the schedule shown in Figure 3. 

Table	4.	Model and solution statistics for the case study	

 Mୗ୆ M୙୚ Mୖ
୙୚ Mୖ,୘

୙୚  
Con. Var. 1009 2161 2161 2161 
Bin. Var. 72 72 72 72 
Constraints 1921 2641 3649 2161 
CPU Time (s) >300 109.8 >300 47.7 
Opt. Gap 2.4% 0 2.4% 0 

5.2.	MINLP	models		 

We test our method on variants of the two MINLP models with 30 instances, and the show 

performance profiles in Figure 5. Each instance included in the performance profile satisfies the 

following two conditions: (1) it is solved by at least one of the models in 300 seconds, and (2) the 
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slowest model for a given instance takes at least 15 seconds to solve it. Figure 5(a) is generated with 

22 instances that satisfy the two conditions for variants for Mୗ୆ . Overall, we observe that Mୖ,୘
୙୚  

performs the best over the tested instances, with substantial improvement over the performance of 

Mୗ୆ for most instances. Further, we note that Mୖ,୘
୙୚  performs better than both of M୙୚ and Mୖ

୙୚. These 

results indicate the effectiveness of the RLT constraints combined with the proposed bound 

tightening methods. We also test variants for M୔୆  on the same 30 instances, with 14 of them 

satisfying the two aforementioned conditions. The performance profile generated using those 14 

instances is shown in Figure 5(b). Similar to Mୗ୆, we observe that the model with RLT constraints 

and tightened bounds, Mୖ,୘
୙୚ି୔, performs the best. The CPU times for all 30 instances can be found in 

Appendix D. Note that neither Mୗ୆ nor M୔୆ is consistently superior on those instances. 

 
Figure	5. Performance profile for different variants of (a) Mୗ୆ and (b) M୔୆ 

5.3.	MILP	Models 

Mixed-integer linear models that approximate the MINLP models can be developed through 

discretization. In addition to providing approximate solutions, MILP models can also be used in 

solution methods (Kolodziej, Castro, and Grossmann 2013; Kolodziej et al. 2013; Gupte et al. 2017). 

Here, we allow the split fraction, 𝑅௝௞௧ , to take values only from a discrete set 𝐃ୖ, thereby linearizing 

nonlinear constraints Eqn. (5) and/or Eqn. (17). Specifically, we have 𝐃ୖ ൌ ሼ0, 𝛿ଵ, 𝛿ଶ, … , 𝛿௡, 1ሽ with 

𝛿ଵ ൌ 𝛿ଶ െ 𝛿ଵ ൌ ⋯ ൌ 𝛿௡ െ 𝛿௡ିଵ ൌ 1 െ 𝛿௡ ൌ 𝛿. The MILP obtained from such discretization, referred 

to as M୐ଵ , is guaranteed to return only feasible solutions to the original MINLP. A relaxation of  M୐ଵ , 

referred to as M୐ଶ , is obtained by introducing additional continuous variables to allow 𝑅௝௞௧  to take 

any values in ሾ0,1ሿ. The resulting bilinear terms with two continuous variables are then relaxed using 

linear constraints. A comprehensive list of the constraints of the two MILP models can be found in 

Appendix E. We test MILP models (both with and without our methods) over 20 instances. 
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Performance profiles for the MILP models are shown in Figure 6. The CPU times and objective 

function values for the MILP models can be found in Appendix F. 

 
Figure	6. Performance profile for MILP models. (a) M୐ଵ  with 𝛿 ൌ 0.01. (b) M୐ଶ  with 𝛿 ൌ 0.1 

Overall we observe that Mୖ,୘
୙୚

୐ଵ  and Mୖ,୘
୙୚

୐ଶ  perform best over the tested instances, indicating the 

effectiveness of our method. For M୐ଶ , we see substantial improvement from the reformulation 

( M୙୚
୐ଶ ) and bound tightening ( Mୖ,୘

୙୚
୐ଶ ) compared to the original model.  

5.4.	Decomposition	method 

We further test our methods on an MILP-MINLP decomposition method for multiperiod blending 

proposed by (Lotero et al. 2016). We briefly describe the method below: (1). A new binary variable 

𝑌௝௧  is introduced, which equals to 1 if blender 𝑗 feeds products at time point 𝑡. (2). A relaxed problem 

(MILP) is solved in which Eqn. (17), the constraint that contains bilinear term, is replaced using 

McCormick envelopes with tightened bounds. (3). Binary 𝑌௝௧  is fixed to the value obtained from the 

solution to the relaxed problem, and a reduced problem (MINLP) containing all constraints in  

Mୖ,୘
୙୚  is solved (“reduced” in the sense that after fixing 𝑌௝௧ , some 𝑋௝௞௧  are also fixed, resulting in a 

reduced feasible space compared to Mୖ,୘
୙୚). Solving one relaxed problem and one reduced problem 

completes one iteration, from which an upper bound and a lower bound (if the reduced problem is 

feasible) are obtained. A feasibility or optimality cut is added to the relaxed problem after solving the 

reduced problem in each iteration. We give the formulation of both the relaxed and reduced problem 

in Appendix G. More details about the decomposition method can be found in (Lotero et al. 2016). 

We show computational results for five instances modified from D’Ambrosio et al. (D’Ambrosio, 

Linderoth, and Luedtke 2011) in Table 5. We set the maximum number of iterations to five, and time 

limits for the relaxed problem and reduced problem are set at 10 seconds and 30 seconds, 

respectively. We use CPLEX 12.9 to solve the relaxed problem. 
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Table	5.		Computational results for decomposition method with different MINLP models	

Inst. 
Mୗ୆  Mୖ,୘

୙୚ 	
# of Iter. Opt. Gap CPU Time (s) # of Iter. Opt. Gap CPU Time (s) 

1 5 0.3% 162.1 2 0 50.8 
2 5 0.4% 155.7 2 0 42.6 
3 5 0 171.6 5 0.1% 200 
4 4 0 92.2 1 0 16.2 
5 5 0.5% 194.3 1 0 18.6 

Model Mୗ୆ and Mୖ,୘
୙୚  do not solve the above five instances to global optimality in 300 seconds. The 

decomposition method using  Mୗ୆ solves two instances to global optimality within five iterations, 

whereas the decomposition using Mୖ,୘
୙୚  solves four instances to global optimality. We also observe 

that the decomposition method using Mୖ,୘
୙୚   typically closes the optimality gap in fewer iterations. 

6.	Conclusion	

We developed variable bound tightening methods, based on multiple constraints, for multiperiod 

blending. We first proposed a reformulation of the constraints involving bilinear terms using lifting. 

We introduced a preprocessing method to tighten the bounds on the lifted variables using multiple 

constraints. The reformulation and the selection of constraints to be considered for bound tightening 

are based on the understanding of the physical system. We proposed valid constraints derived from 

Reformulation-Linearization Technique (RLT) that utilize the bounds on the lifted variables to 

further tighten the formulation. We also discussed how the proposed methods can be coupled with 

other solution strategies for multiperiod blending problems. Computational results show the 

effectiveness of our methods in reducing computational requirements.   
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Appendix	A.	Solving	LP1	

	After introducing slack variables 𝑆ଵ, 𝑆ଶ, and 𝑆ଷ, LP1 is written as follows: 

min ෍ 𝜇௜ᇲ௟𝑉௜ᇲ
௜ᇲஷ௜

s. t.

෍ 𝑉௜ᇲ
௜ᇲஷ௜

൅ 𝑆ଵ ൌ 𝛾 െ 𝛾ො௜௟

െ෍ 𝑉௜ᇲ
௜ᇲஷ௜

൅ 𝑆ଶ ൌ 𝛾ො௜௟ െ 𝛾

𝑉௕ሺ௟ሻ ൅ 𝑆ଷ ൌ 𝛾̅௕ሺ௟ሻ
𝑉௜ᇲ ൒ 0, 𝑆ଵ, 𝑆ଶ, 𝑆ଷ ൒ 0  

 

By inspection, we have 𝑉௕శሺ௟ሻ ൌ 𝛾 െ 𝛾ො௜௟ ,𝑉௜ᇲ ൌ 0 ∀𝑖ᇱ ∉ ሼ𝑖, 𝑏ାሺ𝑙ሻሽ, 𝑆ଵ ൌ 𝑆ଶ ൌ 0, and𝑆ଷ ൌ 𝛾̅௕ሺ௟ሻ  as initial 

feasible solution. Let 𝑆ଵ,𝑉௕శሺ௟ሻ, and 𝑆ଷ be basic variables, we have the following tableau: 
Basic var. 𝑉௕ሺ௟ሻ 𝑉௕శሺ௟ሻ ሾ𝑉௜ᇲ ,∀𝑖

ᇱ ∉ ሼ𝑖, 𝑏ሺ𝑙ሻ, 𝑏ାሺ𝑙ሻሽሿ 𝑆ଵ 𝑆ଶ 𝑆ଷ  
𝑆ଵ 0 0 ሾ0, … … ,0ሿ 1 1 0 0 
𝑉௕శሺ௟ሻ 1 1 ሾ1, … … ,1ሿ 0 െ1 0 𝛾 െ 𝛾ො௜௟ 
𝑆ଷ  1 0 ሾ0, … … ,0ሿ 0 0 1 𝛾̅௕ሺ௟ሻ 
𝑧 𝜇௟

ା െ 𝜇௟
∗ 0 ሾ𝜇௟

ା െ 𝜇௜ᇲ௟ ,∀𝑖
ᇱ ∉ ሼ𝑖, 𝑏ሺ𝑙ሻ, 𝑏ାሺ𝑙ሻሽሿ 0 𝜇௟

ା 0 𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ 

where ሾ. ሿ denotes a row vector of dimension ሺ|𝐈| െ 3ሻ. 

When 𝜇௟
ା ൑ 0, we have the following optimal tableau: 

Basic var. 𝑉௕ሺ௟ሻ 𝑉௕శሺ௟ሻ ሾ𝑉௜ᇲ ,∀𝑖
ᇱ ∉ ሼ𝑖, 𝑏ሺ𝑙ሻ, 𝑏ାሺ𝑙ሻሽሿ 𝑆ଵ 𝑆ଶ 𝑆ଷ  

𝑆ଵ 0 0 ሾ0, … … ,0ሿ 1 1 0 0 
𝑉௕శሺ௟ሻ 0 1 ሾ1, … … ,1ሿ 0 െ1 0 𝛾 െ 𝛾ො௜௟ െ 𝛾̅௕ሺ௟ሻ 
𝑉௕ሺ௟ሻ  1 0 ሾ0, … … ,0ሿ 0 0 1 𝛾̅௕ሺ௟ሻ 

𝑧 0 0 ሾ𝜇௟
ା െ 𝜇௜ᇲ௟ ,∀𝑖

ᇱ ∉ ሼ𝑖, 𝑏ሺ𝑙ሻ, 𝑏ାሺ𝑙ሻሽሿ 0 𝜇௟
ା 𝜇௟

∗ െ 𝜇௟
ା 

𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ
൅ ሺ𝜇௟

∗ െ 𝜇௟
ାሻ𝛾̅௕ሺ௟ሻ 

When 𝜇௟
ା ൐ 0, we have the following optimal tableau: 

Basic var. 𝑉௕ሺ௟ሻ 𝑉௕శሺ௟ሻ ሾ𝑉௜ᇲ ,∀𝑖
ᇱ ∉ ሼ𝑖, 𝑏ሺ𝑙ሻ, 𝑏ାሺ𝑙ሻሽሿ 𝑆ଵ 𝑆ଶ 𝑆ଷ  

𝑆ଵ 0 0 ሾ0, … … ,0ሿ 1 1 0 0 
𝑉௕శሺ௟ሻ 1 1 ሾ1, … … ,1ሿ 0 െ1 0 𝛾 െ 𝛾ො௜௟ െ 𝛾̅௕ሺ௟ሻ 
𝑉௕ሺ௟ሻ  1 0 ሾ0, … … ,0ሿ 0 0 1 𝛾̅௕ሺ௟ሻ 

𝑧 0 0 ሾ𝜇௟
ା െ 𝜇௜ᇲ௟ ,∀𝑖

ᇱ ∉ ሼ𝑖, 𝑏ሺ𝑙ሻ, 𝑏ାሺ𝑙ሻሽሿ െ𝜇௟
ା 0 𝜇௟

∗ െ 𝜇௟
ା 

𝜇௟
ାሺ𝛾ො௜௟ െ 𝛾ሻ
൅ ሺ𝜇௟

∗ െ 𝜇௟
ାሻ𝛾̅௕ሺ௟ሻ 

Appendix	B.	Illustrative	example		

B.1.	Feasibility	Based	Bound	Tightening	

Recall that for the illustrative example we have: 

𝑉ଵ ൅ 𝑉ଶ ൅ 𝑉ଷ ൑ 1   

െ𝑉ଵ ൅ 2𝑉ଶ ൅ 𝑉ଷ ൑ 0     
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𝑉ଵ െ 3𝑉ଶ ൅ 2𝑉ଷ ൑ 0      

Assume we use 0 and 1 as the initial lower and upper bound, that is, 𝑉ଵ,𝑉ଶ,𝑉ଷ ∈ ሾ0,1ሿ. FBBT uses the 

following inequality to find tighter upper bounds (note that 0 is the tightest lower bound on 𝑉௜): 

𝑉௜ ൑
1

𝛼௠∗,௜
൤𝛽௠∗ െ෍ min

௜ᇲஷ௜
൫𝑎௠∗,௜ᇲ𝛾̅௜ᇲ , 0൯൨     𝑎௠∗,௜ ൐ 0  (57) 

where 𝛼௠∗,௜  is the coefficient of 𝑉௜  for inequality 𝑚∗ , 𝛽௠∗  is the RHS of inequality 𝑚∗ , and 𝛾̅௜  is the 

upper bound on 𝑉௜ . In FBBT we choose an inequality with positive coefficient for 𝑉௜ , to evaluate the 

RHS of Eqn. (57) to find its upper bound: 

𝑉ଵ ൑
1
1
ሾ1 െ minሺ1,0ሻ െ minሺ1,0ሻሿ ൌ 1       

𝑉ଵ ൑
1
1
ሾ0 െ minሺെ3,0ሻ െ minሺ2,0ሻሿ ൌ 3      

𝑉ଶ ൑
1
1
ሾ1 െ minሺ1,0ሻ െ minሺ1,0ሻሿ ൌ 1       

𝑉ଶ ൑
1
2
ሾ0 െ minሺെ1,0ሻ െ minሺ1,0ሻሿ ൌ 1/2       

Note that we now have a tighter upper bound on 𝑉ଶ, so we update 𝛾̅ଶ: 𝛾̅ଶ ൌ 1/2. 

𝑉ଷ ൑
1
1
ሾ1 െ minሺ1,0ሻ െ minሺ1/2,0ሻሿ ൌ 1     

𝑉ଷ ൑
1
1
ሾ0 െ minሺെ1,0ሻ െ minሺ1,0ሻሿ ൌ 1     

 

𝑉ଷ ൑
1
2
ሾ0 െ minሺ1,0ሻ െ minሺെ3/2,0ሻሿ ൌ 3/4       

Note that we now have a tighter upper bound on 𝑉ଷ, so we update 𝛾̅ଷ: 𝛾̅ଷ ൌ 3/4. 

In FBBT we typically start another round of evaluation using the tightened bounds. For the 

illustrative example, no further improvement can be obtained. FBBT thus returns:  𝛾̅ଵ ൌ 1, 𝛾̅ଶ ൌ

1/2, 𝛾̅ଷ ൌ 3/4.	

B.2.	OBBT	for	the	illustrative	example		

OBBT is based on the solution of the following LP: 

max 𝑉௜   ሺ𝑖 ൌ 1,2,3ሻ

s. t
𝑉ଵ ൅ 𝑉ଶ ൅ 𝑉ଷ ൑ 1 

െ𝑉ଵ ൅ 2𝑉ଶ ൅ 𝑉ଷ ൑ 0 
𝑉ଵ െ 3𝑉ଶ ൅ 2𝑉ଷ ൑ 0  
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The value of 𝛾̅௜  is equal to the objective function value of the 𝑖-th LP. After solving three LPs, OBBT 

returns: 𝛾̅ଵ ൌ 3/4, 𝛾̅ଶ ൌ 1/3, 𝛾̅ଷ ൌ 1/11. 

B.3.	Illustrative	graph	for	our	tightening	methods	

Consider the following nonlinear set: 

𝐒ଵ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

൫𝐹෠ଵ,𝐹෠ଶ,𝐹෠ଷ,𝑅,𝑉ଵ,𝑉ଶ,𝑉ଷ൯ ∈ ℝା:

𝑉ଵ ൅ 𝑉ଶ ൅ 𝑉ଷ ൑ 1 
െ𝑉ଵ ൅ 2𝑉ଶ ൅ 𝑉ଷ ൑ 0
𝑉ଵ െ 3𝑉ଶ ൅ 2𝑉ଷ ൑ 0

𝐹෠ଵ ൌ 𝑉ଵ𝑅
𝐹෠ଶ ൌ 𝑉ଶ𝑅
𝐹෠ଶ ൌ 𝑉ଷ𝑅 ⎭

⎪⎪
⎬

⎪⎪
⎫

 

which contains three linear constraints that are identical to the constraints in the illustrative example 

in section 3, along with three nonlinear equality constraints to model the flows.  

We introduce a hyperplane: 

𝐒ଶ ൌ ൞ሺ𝑅,𝑉ଵ,𝑉ଶ,𝑉ଷሻ ∈ ℝା:

𝑅 ൌ 1/2
𝑉ଵ ൌ 2/3
𝑉ଶ ൌ 1/3
𝑉ଷ ൌ 0

ൢ 

The intersection of 𝐒ଵ and 𝐒ଶ is shown in Figure 7. It is point 𝐴 on the ሺ𝐹෠ଵ,𝐹෠ଶሻ plane. 

We consider a linear relaxation of 𝐒ଵ, denoted as 𝐒ଵ
୑େ, using McCormick envelopes without bound 

tightening. Since 𝑉ଵ,𝑉ଶ,𝑉ଷ ∈ ሾ0,1ሿ, we have: 

𝐹෠௜ ൑ 𝑅,   𝑖 ൌ ሼ1,2,3ሽ        (58) 

𝐹෠௜ ൑ 𝑉௜ ,   𝑖 ൌ ሼ1,2,3ሽ       (59) 

𝐹෠௜ ൒ 𝑅 ൅ 𝑉௜ െ 1,   𝑖 ൌ ሼ1,2,3ሽ       (60) 

𝐹෠௜ ൒ 0,   𝑖 ൌ ሼ1,2,3ሽ       (61) 

We also have the following RLT constraints: 

𝐹෠ଵ ൅ 𝐹෠ଶ ൅ 𝐹෠ଷ ൑ 𝑅  (62) 

െ𝐹෠ଵ ൅ 2𝐹෠ଶ ൅ 𝐹෠ଷ ൑ 0 (63) 

𝐹෠ଵ െ 3𝐹෠ଶ ൅ 2𝐹෠ଷ ൑ 0 (64) 

The set 𝐒ଵ
୑େ is thus defined as: 
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𝐒ଵ
୑େ ൌ

⎩
⎪
⎨

⎪
⎧

൫𝐹෠ଵ,𝐹෠ଶ,𝐹෠ଷ,𝑅,𝑉ଵ,𝑉ଶ,𝑉ଷ൯ ∈ ℝା:

𝑉ଵ ൅ 𝑉ଶ ൅ 𝑉ଷ ൑ 1 
െ𝑉ଵ ൅ 2𝑉ଶ ൅ 𝑉ଷ ൑ 0
𝑉ଵ െ 3𝑉ଶ ൅ 2𝑉ଷ ൑ 0

Eqn. ሺ58ሻ െ ሺ60ሻ
Eqn. ሺ62ሻ െ ሺ64ሻ ⎭

⎪
⎬

⎪
⎫

 

The intersection of 𝐒ଵ
୑େ and 𝐒ଶ is the quadrilateral 𝐴𝐵𝐶𝐷. 

We consider a linear relaxation of 𝐒ଵ , denoted as 𝐒ଵ
୘ , using McCormick envelopes with tightened 

bounds. Our methods lead to: 𝑉ଵ ∈ ሾ0, 3/4ሿ,  𝑉ଶ ∈ ሾ0, 1/3ሿ , 𝑉ଷ ∈ ሾ0, 1/3ሿ . McCormick envelopes 

constructed using such bounds are: 

𝐹෠ଵ ൑
3
4
𝑅  (65) 

𝐹෠ଶ ൑
1
3
𝑅 (66) 

𝐹෠ଷ ൑
1
3
𝑅 (67) 

𝐹෠ଵ ൒
3
4
𝑅 ൅ 𝑉ଵ െ

3
4

 (68) 

𝐹෠ଶ ൒
1
3
𝑅 ൅ 𝑉ଶ െ

1
3

 (69) 

𝐹෠ଷ ൒
1
3
𝑅 ൅ 𝑉ଷ െ

1
3

 (70) 

together with Eqn. (59) and Eqn. (61). Note that Eqn. (68) – (70) are identical to Eqn. (50) for the 

illustrative example. 

The set 𝐒ଵ
୘ is thus defined as: 

𝐒ଵ
୘ ൌ

⎩
⎪
⎨

⎪
⎧

൫𝐹෠ଵ,𝐹෠ଶ,𝐹෠ଷ,𝑅,𝑉ଵ,𝑉ଶ,𝑉ଷ൯ ∈ ℝା:

𝑉ଵ ൅ 𝑉ଶ ൅ 𝑉ଷ ൑ 1 
െ𝑉ଵ ൅ 2𝑉ଶ ൅ 𝑉ଷ ൑ 0
𝑉ଵ െ 3𝑉ଶ ൅ 2𝑉ଷ ൑ 0

Eqn. ሺ59ሻ, ሺ61ሻ, ሺ65ሻ െ ሺ70ሻ
Eqn. ሺ62ሻ െ ሺ64ሻ ⎭

⎪
⎬

⎪
⎫

 

The intersection of 𝐒ଵ
୘ and 𝐒ଶ is also point 𝐴, which coincides with the intersection of the nonlinear 

set 𝐒ଵ and 𝐒ଶ.  
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Figure	7. Illustrative graph for tightening constraints 

Appendix	C.	Parameters	for	the	Case	Study		

Table	6.	Stream availability and cost, maximum product demand, and product price 
	 I1 I2 I3 I4 I5 I6 I7 I8 K1 K2 K3 K4 
𝜉௜  450 450 450 450 450 450 450 450 - - - - 
𝛼௜
୚  7 3 2 10 5 5 9 11 - - - - 

𝛽௞   - - - - - - - - 16 25 15 10 
𝜔௞ - - - - - - - - 60 150 180 60 

Table	7.	Stream properties and product specifications	
	 𝜋௜௟  𝜋௞௟

୙  
I1 I2 I3 I4 I5 I6 I7 I8 K1 K2 K3 K4 

L1 1 4 4 5 1 1.8 5 3 3 4 1.5 3 
L2  6 1 5.5 3 2.7 2.7 1 3 3 2.5 5.5 4 
L3  4 3 3 3 4 4 1.7 3 3.25 3.5 3.9 4 
L4  0.5 2 0.9 1 1.6 3.5 2.9 1 0.75 1.5 0.8 1.8 
L5  5 4 7 3 3 6.1 3.5 5 6 7 7 8 
L6 9 4 10 4 7 3 2.9 2 5 6 6 6 

Table	8.	Flow upper bound	
𝛿௝௞ 	 J1 J2 J3 
K1 10 10 30 
K2  25 10 10 
K3  30 25 10 
K4 10 30 25 

All blenders have capacity of 75, and we do not consider fixed costs.   
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Appendix	D.	CPU	time	for	MINLP	models	

Table	9. CPU time for variants of Mୗ୆  

Instance	
CPU	Time	(in	seconds)	 	

Mୗ୆ M୙୚ Mୖ
୙୚ Mୖ,୘

୙୚  
6 28.615 6.666 8.519 14.918 
7 200.41 >300 >300 >300 
8 40.26 5.374 10.479 6.717 
9 7.728 9.104 10.357 20.228 
10 6.634 2.233 2.346 2.625 
11 27.249 17.249 28.078 19.598 
12 3.078 9.912 13.584 11.758 
13 12.745 93.531 28.992 16.787 
14 5.758 8.32 11.398 10.774 
15 49.25 144.03 19.543 29.24 
16 10.771 11.491 9.887 13.413 
17 15.869 67.67 31.696 32.988 
18 >300 37.919 35.161 31.799 
19 287.808 267.84 >300 184.849 
20 15.31 41.77 17.99 18.677 
21 3.844 7.851 11.278 9.489 
22 127.652 76.042 90.028 132.989 
23 204.151 207.901 >300 143.268 
24 39.983 56.587 77.448 77.129 
25 32.329 56.916 76.232 62.605 
26 >300 39.106 39.657 32.401 
27 294.944 37.343 36.291 30.194 
28 293.779 37.82 38.06 30.168 
29 5.425 5.62 13.088 6.356 
30 15.778 6.137 6.431 5.422 
31 15.152 36.418 35.636 19.792 
32 >300 296.73 224.94 72.01 
33 135.662 291.935 >300 279.031 
34 28.615 6.666 8.519 14.918 
35 200.41 >300 >300 >300 
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Table	10. CPU time for variants of M୔୆  

Instance	
CPU	Time	(in	seconds)	 	

M୔୆ M୙୚ି୔ Mୖ
୙୚ି୔ Mୖ,୘

୙୚ି୔ 
6 3.835 9.23 5.509 5.751 
7 >300 >300 >300 >300 
8 4.744 4.261 9.277 6.155 
9 >300 >300 >300 >300 
10 >300 >300 >300 >300 
11 0.975 5.151 9.871 2.113 
12 116.591 41.741 8.729 19.012 
13 0.965 1.946 8.383 7.959 
14 69.524 27.557 67.814 44.317 
15 73.422 196.148 82.157 105.66 
16 1.862 9.251 8.838 5.027 
17 49.268 24.718 19.033 37.207 
18 >300 >300 >300 >300 
19 63.105 202.299 >300 12.159 
20 16.953 16.169 7.275 4.962 
21 16.069 7.014 6.285 8.077 
22 9.807 >300 12.442 8.356 
23 141.06 231.052 >300 11.388 
24 20.357 16.419 15.859 15.858 
25 8.713 10.417 10.85 11.541 
26 >300 >300 >300 >300 
27 >300 >300 >300 >300 
28 >300 >300 >300 >300 
29 13.085 27.595 3.973 12.532 
30 11.813 7.493 6.871 6.749 
31 41.358 229.15 >300 83.994 
32 3.082 3.564 3.52 50.9 
33 48.323 199.432 259.681 12.952 
34 3.835 9.23 5.509 5.751 
35 >300 >300 >300 >300 

Appendix	E.	MILP	models	

E.1.	Discretized	model	

We introduce an index 𝑚 ∈ 𝐌 for the discrete values 𝛿 that 𝑅௝௞௧  can assume, and define a set 𝐃ୖ for 

these values: 𝑅௝௞௧ ∈ 𝐃ୖ ൌ ൛𝛿ଵ, … , 𝛿|𝐌|ൟ with 𝛿௠ ൏ 𝛿௠ାଵ. We introduce variable 𝑍௝௞௧௠ to model the 

selection of the discrete value for 𝑅௝௞௧: 

෍ 𝑍௝௞௧௠
௠∈𝐌

ൌ 1, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓    (71) 

Split fraction 𝑅௝௞௧  is calculated as: 

𝑅௝௞௧ ൌ෍ 𝛿௠𝑍௝௞௧௠
𝑚∈𝐌

, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓   (72) 
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We introduce continuous variable 𝐼௜௝௞௧௠
ୈ : 	

𝐼௜௝௧ ൌ ෍ 𝐼௜௝௞௧௠
ୈ

௠∈𝐌
, 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓    (73) 

෍ 𝐼௜௝௞௧௠
ୈ

௜∈𝐈
൑ 𝛾௝𝑍௝௞௧௠, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  	 (74) 

Flow from blender to product, 𝐹෠௜௝௞௧ , now becomes: 

𝐹෠௜௝௞௧ ൌ෍ 𝛿௠𝐼௜௝௞௧௠
ୈ

௠∈𝐌
, 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓    (75) 

Eqn. (1) – (4), (6) – (13) and (71)– (75) comprise Mୗ୆
୐ଵ .  

For M୙୚, we have: 

𝑉௜௝௞௧ ൌ෍ 𝐼௜௝௞௧௠
ୈ

௠∈𝐌
, 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (76) 

𝐼௜௝௞௧௠
ୈ ൑ 𝛾̅௜௝௞𝑍௝௞௧௠, 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊,𝑚 ∈ 𝐌, 𝑡 ∈ 𝐓  	 (77) 

Eqn. (1) – (4), (6) – (13) and (71) – (72) and (75) – (77) comprise M୙୚
୐ଵ . Mୖ,୘

୙୚
୐ଵ  contains Eqn. (50), 

(52) - (53), and all constraints in M୙୚
୐ଵ . 

E.2.	Discretized	–	relaxed	model	

We introduce two positive continuous variables: 𝑍௝௞௧௠
ା  and 𝑍௝௞௧௠

ି . We have: 

𝑍௝௞௧௠ ൌ 𝑍௝௞௧௠
ା ൅ 𝑍௝௞௧௠

ି , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊,𝑚 ∈ 𝐌, 𝑡 ∈ 𝐓   (78) 

while 𝑍௝௞௧௠ satisfies: 

෍ 𝑍௝௞௧௠
௠∈𝐌\ሼ|𝐌|ሽ

ൌ 1, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓   (79) 

Split fraction 𝑅௝௞௧  is now calculated as: 

𝑅௝௞௧ ൌ෍ 𝛿௠𝑍௝௞௧௠
௠∈𝐌\ሼ|𝐌|ሽ

൅෍ ሺ𝛿௠ାଵ െ 𝛿௠ሻ𝑍௝௞௧௠
ା

௠∈𝐌\ሼ|𝐌|ሽ
, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓    (80) 

Similarly for 𝐼௜௝௞௧௠
ୈ  we define positive continuous variables 𝐼௜௝௞௧௠

ୈା  and 𝐼௜௝௞௧௠
ୈି . We have: 

𝐼௜௝௞௧௠
ୈ ൌ 𝐼௜௝௞௧௠

ୈା ൅ 𝐼௜௝௞௧௠
ୈି , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊,𝑚 ∈ 𝐌, 𝑡 ∈ 𝐓  (81) 

For 𝐹෠௜௝௞௧we now have: 

𝐹෠௜௝௞௧ ൌ෍ 𝛿௠𝐼௜௝௞௧௠
ୈ

௠∈𝐌\ሼ|𝐌|ሽ
൅෍ 𝛾̅௜௝௞ሺ𝛿௠ାଵ െ 𝛿௠ሻ𝐼௜௝௞௧|𝐌|

ୈା

௠∈𝐌\ሼ|𝐌|ሽ
,

𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  
(82) 
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Eqn. (1) – (4), (6) – (13), (56) – (58), and (61) – (65) comprise Mୗ୆
୐ଶ . Eqn. (1) – (4), (6) – (13), (75) 

– (82) comprise M୙୚
୐ଶ . Mୖ,୘

୙୚
୐ଶ  contains Eqn. (50), (52) - (53), and all constraints in M୙୚

୐ଶ . 

Appendix	F.	CPU	time	and	objective	function	value	for	MILP	models	

Table	11. CPU time for variants of M୐ଵ   

Instance	
CPU	Time	(in	seconds)	

M୐ଵ
ୗ୆	 M୐ଵ

ୗ୆	 M୐ଵ ୖ,୘
ୗ୆ 	

36 >300 >300 190 
37 270 >300 196 
38 >300 >300 >300 
39 >300 >300 >300 
40 117 71 48 
41 4 20 55 
42 33 216 227 
43 10 9 8 
44 26 26 25 
45 110 124 69 
46 >300 >300 >300 
47 >300 >300 >300 
48 >300 >300 >300 
49 >300 >300 >300 
50 54 88 93 
51 >300 >300 >300 
52 >300 >300 >300 
53 >300 >300 >300 
54 >300 >300 >300 
55 >300 >300 >300 

 

Table	12. CPU time for variants of M୐ଶ   

Instance	
CPU	Time	(in	seconds)	

M୐ଶ
ୗ୆	 M୐ଶ

ୗ୆	 M୐ଶ ୖ,୘
ୗ୆ 	

36 4 4 6 
37 30 15 45 
38 >300 108 260 
39 7 82 91 
40 120 12 13 
41 1 1 1 
42 1 4 4 
43 1 1 1 
44 2 2 3 
45 3 4 4 
46 77 7 2 
47 81 3 2 
48 >300 4 2 
49 >300 4 2 
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50 23 1 1 
51 12 42 39 
52 77 28 18 
53 >300 104 16 
54 5 5 7 
55 >300 >300 108 

Table	13. Objective function value of M୐ଵ  and M୐ଶ  

Instance	
Obj.	function	value	

M୐ଵ 	 M୐ଶ 	
36 743.9 760.7 
37 765.4 766.25 
38 3332.0(3357.1) 3335 
39 2202.8(2212.5) 2204.13 
40 514.32 517.78 
41 574.78 574.78 
42 3347.5 3448.7 
43 2057.1 2127.2 
44 2127.36 2129.13 
45 3180.1 3203.7 
46 804.8(806.2) 806.2 
47 3245.8(3331.5) 3329.4 
48 804.8(806.2) 806.2 
49 805.1(806.1) 806.2 
50 805.1(806.3) 806.2 
51 22799.5(22824.8) 22850.6 
52 28619.4(28646.4) 28726.4 
53 0(large) 28905.8 
54 8813.9(8828.0) 8851 
55 0(25766.7) 25766.7 

Note: for M୐ଵ , we report the best objective function value found in all three variants, and the best 

possible objective function value in the parentheses if all three variants cannot solve the instance in 

300 seconds. 

Appendix	G.	Decomposition	method	

We show the decomposition method proposed in (Lotero et al. 2016). 

G.1.	Relaxed	problem		

A binary variable 𝑌௝௧  is introduced, which equals 1 if blender j	feeds products at time point t. We have: 

෍ 𝐹௜௝௧
௜∈𝐈

൑ ൫1 െ 𝑌௝௧൯𝛾௝ , 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓       (83) 

𝑋௝௞௧ ൑ 𝑌௝௧ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (84) 
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෍ 𝑋௝௞௧
௞∈𝐊

൒ 𝑌௝௧ , 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓   (85) 

which are derived from the operating rule that blender feeding and withdrawing cannot occur 

simultaneously and the definition of 𝑌௝௧ . 

Recall that we have 𝐹෠௜௝௞௧ ൌ 𝑉௜௝௞௧𝑅௝௞௧ , which is relaxed using McCormick envelopes: 

𝐹෠௜௝௞௧ ൒ 𝑉௜௝௞௧ ൅ 𝛾̅௜௝௞𝑅௝௞௧ െ 𝛾̅௜௝௞ ,   𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓     (86) 

𝐹෠௜௝௞௧ ൑ 𝑉௜௝௞௧ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓 (87) 

𝐹෠௜௝௞௧ ൑ 𝛾̅௜௝௞𝑅௝௞௧ , 𝑖 ∈ 𝐈, 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓  (88) 

We also have the following optimality cut (Eqn. (89)) and feasibility cut (Eqn. (90)) to be added: 

𝑍 ൑ െሺ𝑈𝐵 െ 𝑍௡ሻ ቆ෍ 𝑌௝௧
ሺ௝,௧ሻ:௒ೕ೟೙

∗ ୀଵ
െ෍ 𝑌௝௧

ሺ௝,௧ሻ:௒ೕ೟೙
∗ ୀ଴

ቇ ൅ ሺ𝑈𝐵 െ 𝑍௡ሻ ቆ෍ 𝑌௝௧௡
∗

ሺ௝,௧ሻ
െ 1ቇ ൅ 𝑈𝐵,

𝑛 ∈ 𝐍෩   
(89) 

෍ ሺ1 െ 𝑌௝௧ሻ
ሺ௝,௧ሻ:௒ೕ೟೙

∗ ୀଵ
൅෍ 𝑌௝௧

ሺ௝,௧ሻ:௒ೕ೟೙
∗ ୀ଴

൒ 1, 𝑛 ∈ 𝐍෡     
(90) 

where 𝑛 is the iteration index, 𝐍෩  denotes the set of iterations where the reduced problem (to be 

introduced later) is feasible, and 𝐍෡  denotes the set of iterations where the reduced problem is 

infeasible. 𝑍 is the value of the objective function, 𝑈𝐵 is the global upper bound for the objective 

function, and 𝑍௡ (a parameter) is the best possible value of the objective function at iteration 𝑛 after 

solving the relaxed problem.  

Eqn. (1) – (4), (6) – (10), (12) – (16), (18), (83) – (90) comprise the relaxed problem, which is an 

MILP.  

G.2.	Reduced	problem		

After solving the relaxed problem, variable 𝑌௝௧  is fixed to 𝑌௝௧௡
∗ . Eqn. (83) – (85) become: 

෍ 𝐹௜௝௧
௜∈𝐈

൑ ൫1 െ 𝑌௝௧௡
∗ ൯𝛾௝ , 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓,𝑛 ൌ 𝑛∗       (91) 

𝑋௝௞௧ ൑ 𝑌௝௧௡
∗ , 𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐓,𝑛 ൌ 𝑛∗ (92) 

෍ 𝑋௝௞௧
௞∈𝐊

൒ 𝑌௝௧௡
∗ , 𝑗 ∈ 𝐉, 𝑡 ∈ 𝐓,𝑛 ൌ 𝑛∗  (93) 

where 𝑛∗ denotes the current iteration. 

Eqn. (1) – (4), (6) – (10), (12) – (18), (91) – (93) comprise the relaxed problem, which is an MINLP.  
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G.3.	Workflow	for	the	decomposition	method		

The flowchart for the decomposition method is shown in Figure 8 where 𝑍∗  denotes the optimal 

solution to the reduced problem at the current iteration. More details for the workflow can be found 

in (Lotero et al. 2016).   

 

Figure	8. Flowchart for the decomposition method 
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