On the Utility of Production Scheduling Formulations Including Record Keeping
Variables

Nathan Adelgren®*, Christos T. Maravelias®"

% Andlinger Center for Energy and the Environment, Princeton University, Princeton, 08544, NJ, United States
b Department of Chemical and Biological Engineering, Princeton University, Princeton, 08544, NJ, United States

Abstract

In this work we propose several reformulations of a general discrete-time mixed-integer formulation for production
scheduling problems. Each reformulation involves the addition of new integer variables that we refer to as record keeping
variables. Computational results show that the required CPU time is greatly reduced when record keeping variables are
present in the optimization model. Additionally, we assess which of the individual aspects of traditional branch-and-

bound solution procedures benefit from the inclusion of record keeping variables.

Keywords: production scheduling, mixed integer programming, reformulation, record keeping variables

Declaration of Competing Interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

CRediT Authorship Contribution Statement

Nathan Adelgren: Conceptualization, Methodology,
Software, Validation, Formal Analysis, Visualization, Writ-
ing - Original Draft, Writing - Review & Editing. Chris-
tos T. Maravelias: Conceptualization, Supervision, Fund-

ing Acquisition, Writing - Review & Editing.

*Corresponding author

Email addresses: na4592@princeton.edu (Nathan Adelgren),
maravelias@princeton.edu (Christos T. Maravelias)

Preprint submitted to Computers and Industrial Engineering April 10, 2023

1. Introduction

In recent years considerable attention has been given to
the utilization of mathematical optimization to aid deci-
sion makers in developing high quality production sched-
ules. Employing such techniques not only improves the
quality of the schedules used in practice, but also allows
for better asset utilization as they reduce the amount of
human-interaction required when designing a production
schedule. Production scheduling is a necessary component
of decision making in almost every manufacturing-related
industry and, as such, much work has been done in order to
develop specialized modeling techniques and optimization
methods that account for the various process characteris-
tics present in each application within each industry. We
point the interested reader to the works of Harjunkoski
et al. [1] and Georgiadis et al. [2] for extensive lists of
the many works dedicated to applications of production
scheduling within various industries.

As one might imagine, though, the development of so-
phisticated optimization models capable of aiding one in
making complicated decisions often comes with a price.
Namely, these optimization models can become extremely
large and complex, to the point where they may become in-
tractable. Examples of complex process characteristics for
which optimization models and techniques have recently
been proposed include required changeover times between
tasks (Avalos-Rosales et al. [3], Velez et al. [4], Cafaro and

Grossmann [5], Kramer et al. [6], Berkhout et al. [7], Cas-

tro [8]), task interruption at specified break points (Castro
et al. [9]), and tracking and limiting utility consumption
(Wang et al. [10]). In each of these cited works, consider-
able effort is given to developing modeling or optimization
techniques that combat the added computational effort re-
quired in order to solve the scheduling problem once the as-
sociated process characteristics are accounted for. We note
that large CPU time requirements are particularly trouble-
some in cases in which a production scheduling problem
needs to be iteratively resolved in order to obtain updated
schedules [11, 12, 13].

Traditionally, mixed-integer linear programming (MILP)
methods have been the primary tool used in the litera-
ture for modeling and solving production scheduling prob-
lems. Most of the MILP models that have been employed
can be classified as either continuous-time-based models
or discrete-time-based models. As these names suggest, in
the former class of problems time is represented using a
continuous scale, whereas in the latter class time is repre-
sented using a discrete set of time points that are typically
evenly spaced. Floudas and Lin [14] and Sundaramoorthy
and Maravelias [15] provide excellent overviews of these
two types of models as well as thorough comparisons of
their strengths and weaknesses. The primary strength of
continuous formulations is that they are relatively small
and produce extremely accurate solutions. It is often diffi-
cult to expand them in order to account for complex pro-
cess characteristics, though, and this is their main short-

coming. On the other hand, it is often straightforward to

adjust discrete formulations in order to account for compli-
cated process characteristics. However, they often require
relatively fine discretizations of time in order to obtain
accurate solutions, and this can cause models to become
quite large and utilize significant CPU time.

Several works in the literature have been devoted to
the study and development of alternatives and/or exten-
sions to MILPs that can be used to model and solve chal-
lenging scheduling problems. Examples of approaches that
have been proposed include column generation (Chen and
Powell [16, 17], Gélinas and Soumis [18], Lopes and de Car-
valho [19], Van den Akker et al. [20], Ghoniem and Farhadi
[21], Xiong et al. [22]), constraint programming (Jain and
Grossmann [23], Baptiste et al. [24], Bockmayr and Pis-
aruk [25], El Khayat et al. [26], Sadykov and Wolsey [27],
Zeballos et al. [28], Edis and Ozkarahan [29], Ham [30],
Gedik et al. [31], Meng et al. [32], Awad et al. [33]), and dis-
junctive programming (Castro and Grossmann [34], Cas-
tro et al. [35], Castro and Marques [36], Mostafaei et al.
[37], Wu et al. [38]).

We note, however, that most of the sophisticated tech-
niques mentioned above are specifically designed for use
with a single application. For this reason, we focus on
a general, widely applicable class of scheduling problems
that we model as a discrete-time-based MILP. We choose
to employ a discrete-time model in order to allow for sim-
ple extensions of our proposed methodology that account
for the incorporation of complex process characteristics

into the MILP model we employ. Specifically, we focus

this work on MILP modeling techniques that allow one to
significantly reduce the computational overhead of solving
general production scheduling problems. Our motivation
is that, by improving the quality of the formulation used to
represent the general production scheduling problem that
serves as the foundation for more complex variants, we
may achieve improved performance for a wide variety of
classes of challenging problems.

Our current work is highly motivated by that of Velez
and Maravelias [39] in which the authors showed that the
incorporation of a relatively small number of additional
integer variables and associated constraints into the for-
mulation can significantly reduce the CPU time required
to solve instances of that problem. We extend this work
by considering additional integer variables and associated
constraints that can be incorporated alongside those pro-
posed in [39] in order to achieve further reductions in uti-
lized computational resources.

The remainder of this article is organized as follows. In
Section 2 we present the notation that we employ through-
out the work as well as a commonly used MILP formula-
tion. In Section 3 we review the primary reformulation of
the aforementioned MILP model that is proposed in [39]
and also propose several additional reformulations. We
then assess the strengths of the proposed reformulations
and provide a comparison with the primary reformulation
of [39] in Section 4. Section 5 contains a study of the
impact of imposing a hierarchical set of branching prior-

ities on the various binary and integer variables. A de-

tailed study of the effects of our proposed reformulations
on several phases of a traditional branch-and-bound (BB)
solution procedure is presented in Section 6. Section 7
contains the results of a set of tests designed to assess
the utility of our proposed reformulations when applied to
complex problem variations. Finally, we provide conclud-

ing remarks in Section 8.

2. Background

We consider a general manufacturing facility and em-
ploy a state-task network (STN) for its representation (see,
for example, [40, 41]). The rest of this section is divided
into two parts. In the first we present the notation that
we employ, and in the second we provide a MILP formula-
tion for the production scheduling problem that serves as
the foundation for the alternate formulations we propose

in Section 3.

2.1. Notation

We employ the following convention for notation:

Sets bold, upper-case, roman letters
Indices lower-case roman letters
Parameters lower-case greek letters

Variables non-bold, upper-case, roman letters

The STN representation of a facility then relies on the

elements (and their associated sets)

1€l tasks,
7 €J units, and
k € K materials;
the sets
I /I, tasks producing/consuming material k and
J; units permitted to carry out task i;

and several related parameters, defined in Section 2.2.
Specifically, the STN is the directed graph G = (V, E),
where the set V of vertices is given by V := KUT and for
each pair (i,k) with ¢ € I and k € K, there exists an arc
eir € E from i to k if and only i € Ii and an arc e; € E
from k to 7 if and only ¢ € I,,. We note that processing
units (and other shared utilities, when applicable) are rep-
resented implicitly in the STN through: (i) the mappings
implied by subset definitions, and (ii) the values of cor-
responding parameters. An example STN representing a
facility that creates two products (kg and kg) from three

feedstocks (k1, ko and k3), taken from [40], is displayed in

Figure 1.

2.2. Problem Formulation

‘We now present a MILP model for the scheduling prob-
lem, as first proposed by Shah et al. [41]. To begin, we
discretize the scheduling horizon n by dividing it into n
periods of length § = 7/n. We then define the set T =

{0,1,...,n} of time points, where each t € T corresponds

to the point in time that is ¢4 time units beyond the start

Figure 1: Example STN — Kondili et al. [40]

Task-unit mapping: J;; = {j1}; Ji, = Jiz = Jiy, = {j2,43}; Jis =

{Ja}

of the horizon. We note that each ¢ € T \ {0} can also be
used to identify the time period [(t — 1), t§). For use in

the MILP model, we define the parameters

ﬁ;»“i“ /B3 minimum/maximum capacity of unit j,

Ext net shipment of material k£ at time ¢
(positive for incoming quantities,
negative for outgoing),

Dik conversion coefficient of material k
produced or consumed by task i (positive
for production, negative for
consumption),

Tij time required to process task ¢ in unit j,
and

X maximum amount of material k£ that can

be stored;

and the variables

X, €{0,1} 1 if task ¢ begins in unit j at time ¢,

B;jr € Ry batch size of task ¢ processed in unit j
at time ¢, and
It € Ry inventory level of material k during

time period t.

A general version of the MILP model is then given by

P:=min f(-)

t
s.t. Z Z Xijt/ S 1
it j€T; t'=t—[7u/s]+1
VielJ,teT (1)
B Xije < Bijr < B Xije

Viel,jelJ,teT (2)

Ty = It + Z Z PikBij(t—[r/57)

ielf j&€di
+)Y pikBije + &kt < X
iel, J€J;

VkeK,teT. (3)
We note that in problem P: (i) f(-) denotes an arbitrary
function that we will specify later; (ii) Equation (1) ensures
that at most one task is performed in each unit at each
time point, and moreover, that once a task begins in a unit,
that unit can perform no other task until the first has been
completed; (iii) Equation (2) ensures that any batch of a
task performed within a unit remains within that unit’s
minimum and maximum capacity; and (iv) Equation (3)
serves to keep track of the quantity of each material that
is in inventory and ensures that the amount of any given
material in inventory does not exceed the maximum al-

lowable storage for that material. We also point out that

in a slight abuse of notation, Equation (3) defines vari-
ables Io and Ij(,41) for each k € K even though we have
not formally introduced the concepts of 0" and (n + 1)th
time periods. As the former would be prior to the start
of the scheduling horizon, for each k € K we treat Iy
as a parameter representing initial inventory. Similarly,
as the latter time period would be beyond the end of the
scheduling horizon, we take I;(,,1) to represent the final
inventory of each material k € K.

Another point worth mentioning is that the task time
7;; for a given ¢ € I and j € J; may not be an integer mul-
tiple of . In this case, a certain amount of discretization
error is introduced into problem P in order to ensure that
no unit processes more than one task at a time and that
material balances are handled appropriately. This can be
seen by the use of [7ii/s] in Equations (1) and (3). Prac-
tically, the implication is that each execution of task 7 in
unit j will be followed by 6[7ii/s] — 7;; units of idle time.

For the majority of this work we consider two vari-
ants of problem P: (i) cost minimization, and (ii) profit
maximization. We note that makespan minimization was
also considered, but we do not discuss it further here due
to the relatively small CPU times observed when solving
these problems. The interested reader can find results
for makespan minimization in the Supplementary Mate-
rial. For cost minimization, we introduce a parameter
7vij to represent the cost of performing task ¢ in unit j
and set f(-) = > ,cr 2 eg, VijXijt- For profit maximiza-

tion, we again utilize v;;, introduce an additional parame-

ter 7y, representing the revenue obtained from selling one
unit of material k, and set f(-) = > ;01> ey, VijXije —
> ke Thli(nt1).- Recognize that, although problem P is
formulated as a minimization problem, we have defined
f(*) here as cost minus revenue, and minimizing this quan-

tity is equivalent to maximizing revenue minus cost.

3. Reformulations

We divide this section into two subsections. In Sec-
tion 3.1 we discuss a reformulation from the literature that

serves as a foundation for our current work. Our proposed

extensions are then presented in Section 3.2.

3.1. Previous Work

In [39], the authors propose reformulating problem P
by adding an integer variable N;; that represents the num-
ber of times task ¢ is carried out in unit j. Specifically,

problem P is modified by adding the constraint

ZX”t:NZ] VZGI,jéJZ (4)
teT
and bounding N;; as
0 < Nij < [/r] Viel,jed; (5)

The authors of [39] state that their motivation for propos-
ing this reformulation is the fact that for many instances of
problem P, there are multiple feasible solutions having the
same objective value. Specifically, they argue that many of
these solutions having the same objective value share the
same (task, unit) pair assignments, but that these assign-

ments occur at different time points in different solutions.

Hence, they suspect (and later confirm) that branching on
N;j can lead to faster solution times due to the fact that
each such branching decision may eliminate multiple sub-
optimal solutions simultaneously. As a result, tightening
of the dual bound generally occurs after the exploration of
fewer nodes when branching is permitted to occur on Nj;
as opposed to only Xj;;.

We conjecture, however, that the benefits of defining
N;; and adding Equations (4) and (5) to P extend beyond
those mentioned by Velez and Maravelias [39]. Specifically,
we believe that it is not only the branching phase of BB
that benefits from these additions. This line of reasoning is
explored further in Section 6 and serves as the motivation
for the extended reformulations we propose in the following

subsection.

3.2. Further Considerations

In this subsection we define several new integer vari-
ables that were not considered in [39], and present asso-
ciated constraints and bounds that, when added to the
structure of P, may serve to further enhance the perfor-
mance of BB beyond the improvements observed by Velez

and Maravelias [39]. Consider the variables

N; € Z' the number of times task i is performed,

N; € Z" the number of times unit j performs a task,
N, € Z* the number of tasks performed at time ¢, and
N € Z% the total number of tasks performed,

that can be incorporated into P using the following con-

straints and bounds:

N; = ZZXijt Viel (6)
jeJ; teT
n .
0<N; < L
< z_z LUJ Viel (7)
Jj€d:
Nj= > Y Xy Vjeld (8)
i:j€J; teT
n .
0<N; < |——— Vied (9)
min {7;;}
i:jed;
Ne=> Y Xy VteT (10)
i€l jed;
0< N, <min{[I,|J]} VteT (11)

YT YN, @
i€l jeJ; teT
0 < N < min ZZLZJ’Z ﬁ{n;} 13)

i€l jedJ; Jjed |ijed;

The variables IV;, N;, Nt, and N can be incorporated into
P simultaneously using Equations (6)—(13), or individually
by including Equations (6)—(7) for N;, Equations (8)—(9)
for N;, Equations (10)—(11) for N;, and Equations (12)-
(13) for N. Moreover, as any subset of {N;;, N;, Nj, Ny, N}
can be incorporated into P, we have 2° —1 = 31 reformula-
tions of P to consider. Recognize that each of the variables
N;

j» Ni, Nj, Ni, and N serves to keep record of a quan-

tity of interest when solving P. As such, throughout the

remainder of this work we refer to each of these variables
as a record keeping variable. In Section 4 we present the
results of a study in which we compare the performance of
BB when applied to P and a carefully chosen subset of the
proposed reformulations that involve these record keeping

variables.

4. Initial Assessment of Reformulations

4.1. Preliminaries

In this section we present the results of two computa-
tional studies. The tests conducted throughout the rest
of this work are performed using three sets of instances
of the scheduling problem. The first two sets are obtained
from minlp.org and from the authors of [39], respectively.
The final set was randomly generated. We note that, while
there is only one base instance obtained from minlp.org,
the problem structure of this instance is designed in such
a way that modifying the event horizon 7 results in a dis-
tinct variant of the instance. Thus, we utilize seven vari-
ants of this instance by setting n = 24,28, 32, 36, 40, 44,
and 48. The authors of [39] also graciously shared with
us eight instances of the scheduling problem, derived from
seven unique network structures that were originally pre-
sented by Kondili et al. [40], Papageorgiou and Pantelides
[42], Maravelias [43], and Velez et al. [44]. In order to ex-
pand our test set, we randomly generated 100 additional
instances. We make these instances available for the inter-
ested reader at https://github.com/Nadelgren/RNBBS_

Instances.

All of the computational tests described in this work,

with the exception of Section 6.4, were conducted using

Princeton University’s Della cluster (https://researchcomputing

princeton.edu/systems/della). Specifically, tests were
conducted using nodes on a Dell Linux cluster running
Springdale Linux 8. Each node had 2.4 — 2.8 GHz and
128 — 768 GB of RAM. Each job submitted to the clus-
ter utilized 4 threads, with a request for 16 GB of RAM
per thread. All tests for individual instances were run
using identical hardware in order to ensure a reliable com-
parison between the various reformulations. All instances
were solved using CPLEX 20.1 [45] via GAMS 36.1.0 and
an execution time limit of 5 hours was imposed for each
instance. We note that in a small number of cases, the
processing of an instance on the cluster was killed prior to
reaching the 5 hour time limit because memory utilization
became too large. For reporting purposes, we record such
cases as having failed to solve in 5 hours and assign an
optimality gap of 100%.

We adopt a notation that allows us to simultaneously
specify the CPLEX settings and (re)formulation of P used
for each test run. Specifically, we utilize a string comprised
of two substrings, separated by a period. The first sub-
string consists of a single character specifying the CPLEX
settings used, and the second substring consists of a set
of characters indicating which, if any, record keeping vari-
ables are added to P. When specifying CPLEX settings,

we utilize one of the following characters:

minlp.org
minlp.org
https://github.com/Nadelgren/RNBBS_Instances
https://github.com/Nadelgren/RNBBS_Instances
https://researchcomputing.princeton.edu/systems/della
https://researchcomputing.princeton.edu/systems/della

N CPLEX default settings were used
P priority settings were employed for selecting the

branching variable

When specifying a formulation, we utilize the following

characters:

N no additional variables/constraints are added to P
B N,; and Equations (4)-(5) are added to P

I N, and Equations (6)—(7) are added to P

J N, and Equations (8)—(9) are added to P

T N, and Equations (10)—(11) are added to P

A N and Equations (12)—(13) are added to P

Hence, the string “N.BILJ”, for example, indicates that de-
fault CPLEX settings were used and that N;;, V;, and N;
were added to P using Equations (4)—(9).

In the remainder of this section we present the results
of a computational test designed to determine which, if
any, of the record keeping variables should be added to
the structure of P. For the sake of space, we present two
carefully selected subsets of the results for this test. The
first is presented in Section 4.2 and the second in Section
4.3. Each subset of results is presented in two parts: (i)
a figure displaying performance profiles of relative CPU
time for instances that all considered formulations were
able to solve in under 5 hours, and (ii) a table displaying
CPU time and optimality gap results for instances that at
least one of the considered formulations was able to solve

in under 5 hours and at least one was unable to solve in

under 5 hours.

4.2. Reformulations Containing at Most One Record Keep-

ing Variable

Here we present results for N.N, N.B, N.I, N.J, N.T,
and N.A. Figure 2 contains a performance profile of rel-
ative CPU time for instances that all formulations were
able to solve in under 5 hours and Table 1 displays CPU
time and optimality gap results for instances that at least
one of the formulations was able to solve in under 5 hours
and at least one was not.

For the results displayed in Figure 2, we see that N.I
displayed the strongest performance for cost minimization
and both N.I and N.J displayed strong performance for
profit maximization. We also note that N.B performed
reasonably well for both objective types, while N.T and
N.N performed relatively poorly for both objective types.
Interestingly, the performance of N.A was reasonable for
cost minimization, but poor for profit maximization. We
do remind the reader, however, that the results displayed
in Figure 2 should be interpreted with some caution as
the results displayed therein are for instances that all of
the considered formulations were able to solve in under
five hours. Hence, these instances are, in some sense, the
easiest of the instances considered.

We now turn our attention to Table 1 which contains
results for instances that at least one formulation was able
to solve in under five hours and at least one was not. As

such, we view these instances as being of medium difficulty.

Table 1: Results for instances for which at least one formulation
failed to solve the instance in 5hrs and at least one formulation suc-

cessfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel
o Solved Time Gap
T o S Ainseins
. ~x
E 2 3 -F'+—++-+++ x> -"‘x*xﬁ%xfiﬁ-z Cost
85 S e e baeme N |
783 FTox NN 15/39 907 (2359 6.1 (16.0)
QECS ©
erF e S
§x2 ° NB 20/39 641 (1249) 62 (121
5% <
EEL@ e N.I 34/39 3.6 (4.1) 1.4 (1.6)
I
fe o — NN —-x NJ N.J 25/39 7.4 (11.6) 7.3 (11.4)
3 -=A NB =--© N.T
244 Tt NI NA N.T 4/39 653 (636.6) 20.8 (203.1)
T T T I
2 4 6 8 10
) N.A 14/39 1217 (339.0) 260 (72.4)
(a) Cost Profit
Q
- 2 X X X X N.N 8/41 413.6 (2119.6) 58.2 (298.4)
e «
ZE o N.B 19/41 1480 (319.4) 1588 (342.6)
0wy
2ES o -
8ES 3 NI 25/41 116 (19.0) 834 (136.7)
S Xx ¢
[——
%Eg < N.J 2341 189 (337) 63 (11.3)
cg 8
53 « N.T 10/41 323.3 (1325.5) 229.0 (938.9)
EE o"@ —4 N.N —-x N.J
--4 NB =---& N.T 514 1047 ¢
- | CANB e Ny NA 16/41 2009 (514.8) 408.9 (1047.9)
o
2‘ 4‘1 6 é 16 (Gray): (Average Relative Value) + (Fraction Solved)
k
(b) Profit We note that because most of the considered instances

Figure 2: Performance profiles of CPU time (s) for formulations come from different network structures and because the

containing at most one additional variable — Instances considered time required to solve each instance can vary so drasti-

are those for which all formulations solved the instance in 5hrs
cally, we do not consider actual CPU times or optimality

gaps, but rather relative versions of each, and we then re-

port averages for these two relative values. Specifically, we

10

compute relative time as

Relative Time For Instance ¢

B CPU Time For Instance ¢
" Minimum of CPU Times For All Instances

and relative optimality gap in an analogous way. We point
out that reporting results in this way is consistent with
the way results are displayed in performance profiles (see
[46] for more information). Recognize that relative val-
ues computed as described above will always be greater
than or equal to one, with values close to one indicating
relatively good performance and values much larger than
one indicating relatively poor performance. We also make
the following important notes about the results displayed
in Table 1: (i) relative CPU times are only averaged over
instances that were solved in under five hours, and (ii)
relative optimality gaps are only averaged over instances
that failed to solve in under five hours. Together, points (i)
and (ii) indicate that while relative CPU time and relative
optimality gap may be better metrics than their absolute
counterparts, both are still flawed in the sense that neither
takes into consideration the number of instances that were
actually successfully solved in under five hours. In an at-
tempt to take the number of successfully solved instances
into consideration, we divide each relative value by the
fraction of instances solved and report this value in gray
to the right of the relative value. As an example of the use-
fulness of this proposed metric, consider the N.T row of
the cost minimization section of Table 1. Note that when

considering relative CPU time, one may conclude that N.T

11

performs relatively well for these types of instances if they
overlook the fact that N.T only solved four of the consid-
ered 39 instances in under five hours. Using the proposed
metric, however, the modified relative time for N.T is sig-
nificantly higher, greatly exceeding the values associated
with all other formulations. Hence, this provides some in-
dication that the performance of N.T should be considered
poor even though its reported average relative time is not

extremely large.

4.8. Reformulations Containing More Than One Record

Keeping Variable

We now shift our focus to a comparison of N.N, N.B,
N.I, N.BIA, N.BIJA, and N.BIJTA. We note that N.N
and N.B are included here because N.N provides a com-
parison with the original formulation of P and N.B pro-
vides a comparison with the primary formulation consid-
ered in [39]. N.Iis included because, among the reformula-
tions considered in Section 4.2, it is the reformulation that
showed the most promising results for cost minimization
instances and it is one of the top performing reformula-
tions for profit maximization instances. We include only
formulations N.BIA, N.BIJA, and N.BIJTA rather than
all formulations containing two or more record keeping
variables in order to save space and because of the strong
performance that N.BIA, N.BIJA, and N.BIJTA displayed
relative to that of the other formulations containing two or
more record keeping variables. Results for the aforemen-

tioned formulations are presented in Figure 3 and Table

(=} —
i It i
o o | @,éﬁsa o e S S
= l'E o ‘é'y xX _++#.. o
3% g B
w23 N - AAA
- [72) *.
Sxc o pl
2 c
“—_g‘gjvifu(PP - - T e
OFun O H
§3¢
LR
i £ S| a —4 N.N —-x N.BIA
--A NB ---& N.BIJA Table 2: Results for instances for which at least one formulation
) ===+ N.I -==v N.BIJTA
o | ‘ ‘ ‘ ‘ ‘ failed to solve the instance in 5hrs and at least one formulation suc-
2 4 6 8 10
cessfully solved the instance in 5hrs
k
(a) Cost Fraction Avg Rel Avg Rel
‘C_>' = 3a V—VWMW
,ﬁe e Solved Time Gap
o] ° o FZ-V e =D = DI = ==
0~ ;- | st el
£ S @;i.-l-x_x-x_x- Cost
23 g Fo e e e e o ok b
2EC o o e oo AL A . _ o
SEs 2 g a ; N.N 5/39 246.0 (1918.5) 5.4 (42.1)
gx 2 Ha b ;
5w = : B
f E E < | N.B 8/39 188.6 (919.3) 6.5 (31.8)
OFun ©
§ gL -
£33 N.I 22/39 25.7 (45.5) 2.2 (3.8)
o~
fe o —s NN —-x NBIA ’
--A N.B —--& N.BIJA N.BIA 30/39 299 (38.8) 1.9 (2.5)
o | ===+ N.I -==v N.BIJTA
© : ‘ ‘ ‘ ‘ N.BIJA 35/39 2.0 (2.2) 2.6 (2.9)
2 4 6 8 10
K N.BIJTA 34/39 14.7 (16.8) 2.8 (3.3)
(b) Profit Profit
7740.2 953.5
Figure 3: Performance profiles of CPU time (s) for formulations N.N, N.N 3/64 8316 (17740.2) 447 (953.5)
N.B, N.I, N.BIA, N.BLJA, and N.BIJTA — Instances considered are N.B 13/64 476 (234.4) 304.9 (1501.0)
those for which all formulations solved the instance in 5hrs N.I 20/64 18.9 (60.4) 321.1 (1027.5)

N.BIA 42/64 107.3 (163.5) 468.2 (713.5)

2. The information presented in each is analogous to that
N.BIJA 55/64 35 (4.0) 441 (51.4)

contained in Figure 2 and Table 1, respectively. From the
N.BLJITA 52/64 6.0 (74) 15 (9.2)

results displayed in Figure 3 and Table 2, we observe: (i) \) ‘
(Gray): (Average Relative Value) + (Fraction Solved)
the performance of both N.N and N.B is relatively poor in
all cases, (ii) N.I performs moderately well, and (iii) all of
N.BIA, N.BIJA, and N.BIJTA perform quite well on all
instances, though N.BIA consistently displays the weakest

performance of the three. Additionally, it is worth noting

12

that N.BIJA solves more instances in under 5 hours than
any of the other formulations.

The results presented in this section show that refor-
mulations of P containing a single record keeping variable
can be useful in reducing the CPU time required to com-
pute an optimal solution to P. While this result is to be
expected based on the previous work of Velez and Mar-
avelias [39], we note that the reformulations considered
herein (namely, N.I and N.J) offer significant reductions
in CPU time beyond those observed in Velez and Mar-
avelias [39]. Moreover, our results further show that ad-
ditional reductions in CPU time can often be obtained by
using extended reformulations of P in which combinations
of record keeping variables are simultaneously added to P.
We point out that, while it may be difficult to know a pri-
ori which formulation of P will produce the best results
for a given instance, in many real-world applications the
scheduling problem P is solved periodically, rather than
only once. In such cases the underlying network structure
defining P often remains unchanged and the modifications
to P result from changes in parameter values. Hence, it is
quite likely that, in practice, once a decision maker deter-
mines a formulation of P that offers strong performance for
their specific application, the same formulation will con-
tinue to provide strong results even as parameter values

are adjusted.

13

5. Prioritized Branching

We now consider the impact of imposing a hierarchical
set of branching priorities on the various binary and integer
variables present in P. Specifically, we adjust the default
parameter settings in GAMS so that each type of binary
and/or integer variable is given a priority score. In this
way, each time a branching decision is made we ensure that
the branching variable is selected from the set of variables
having the highest priority score among all variables that
are candidates for branching.

Before presenting any results, we make two notes. First,
we do not consider the case in which the variable X;;; is
given a higher priority score than any of N;;, N;, N;, Ny or
N. To see why, consider the variable N;, for example, and
suppose that the integrality restrictions on INV; and Xjji
are relaxed. Observe from Equation (6) that if there ex-
ists an 7’ € I such that N; is fractional, then there must
exist at least one j' € J and ¢ € T such that X, ;4 is frac-
tional. Hence, if Xj;; is given a higher priority score than
any of N;;, N;, Nj, Ny or N, then branching will never
occur on the record keeping variable(s) having a lower pri-
ority score than X;;; and it would therefore be pointless
to include these variables in P. Second, all record keep-
ing variables are given a priority score that is exactly one
greater than the priority score of X;j;;. We did run pre-
liminary tests in which each of the variables X;;¢, N;j, Ny,
Nj, Ny and N were assigned unique priority scores, but

the results were not significantly different from those we

present here.

The formulations we now consider are N.BIA, N.BIJA,

N.BIJTA and their respective prioritized counterparts P.BIA,

P.BIJA, and P.BIJTA. For the sake of space, and because
of the relatively poor performance of N.N, N.B, and N.I
observed in Section 4.3, we no longer consider these for-
mulations. Results are presented in Figure 4 and Table 3.
We note that to aid in distinguishing between formulations
containing prioritized variables and those that do not, in
Figure 4 each formulation containing prioritized variables
is presented using the same color as its non-prioritized
counterpart, but with an opacity setting of 0.5.

From Figure 4 and Table 3 we observe that P.BIJA
clearly outperforms all other approaches for instances that
all approaches are able to solve in under 5 hours. Inter-
estingly, though, for instances that at least one approach
failed to solve and one approach successfully solved in un-

der 5 hours, both N.BIJA and N.BIJTA perform compa-

rably to, or perhaps even better than, P.BIJA.

6. BB Impacts

We now shift our focus from the overall solution time
for each formulations and instead consider the impact of
each formulation on each of the following aspects of BB: (i)
preprocessing, (ii) heuristics, and (iii) branching. Our goal
here is to determine why the reductions in CPU time ob-
served in Section 4 are occurring, or said differently, which
specific aspects of BB are able to exploit the presence of the

record keeping variables in order to reduce the overall solu-

14

o
5 ’ -x-k-)%x‘""x'x
) " o x-x'x"(' % +-+-4
nHE © @_9 27 " et e
388 By
2Ec o "
sy © v ¥
pxc P
—_ C 4 T W
5858 <« | B
o »n © ir"
Dy © X
ot AN
50
gs o —-x N.BIA P.BIA
i 8 ---6 N.BIJA P.BIJA
o -== N.BIJTA ----+ P.BUTA
© T T T T T
2 4 6 8 10
k
(a) Cost
o
Va'as
- \ ,@gp@#&'@eee’g oy
g&’ @ OFT T
8; o ?771 __ﬁ_—x_x_x_;ex-xx-x-x-*-x'x
(7] [0 (] 7w g e
oy TR
2EC o oxeﬁ?;’ ok
skg o P+ X
DX c T)
= Cc s b
58 « | 4F%s
O n © I r
Dy © 4 X
Lol ZL'
s o J —-x N.BIA P.BIA
o v ---6 N.BIJA P.BIJA
o -== N.BIJTA ----+ P.BUTA
° T T T T T
2 4 6 8 10
k
(b) Profit

Figure 4: Performance profiles of CPU time (s) for formulations
N.BIA, N.BIJA, N.BIJTA, P.BIA, P.BIJA, and P.BIJTA — Instances
considered are those for which all formulations solved the instance

in 5hrs

Table 3: Results for instances for which at least one formulation
failed to solve the instance in 5hrs and at least one formulation suc-

cessfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel
Solved Time Gap
Cost
N.BIA 20/31 60.9 (94.3) 24 (3.7)
N.BIJA 26/31 4.3 (5.1) 1.2 (1.5)
N.BLJTA 24/31 292 (37.7) 2.0 (2.5)
P.BIA 16/31 22.3 (43.3) 1.8 (3.4)
P.BIJA 23/31 3.5 (4.7) 1.6 (2.2)
P.BIJTA 8/31 11.0 (42.6) 2.9 (11.1)
Profit
N.BIA 16/39 17.1 (41.7) 509.0 (1240.8)
N.BIJA 31/39 98 (12.3) 4183 (526.3)
N.BIJTA 27/39 11.0 (15.8) 10.7 (15.5)
P.BIA 21/39 1323 (245.8) 563.7 (1046.8)
P.BIJA 29/39 8.0 (10.7) 2.5 (3.4)
P.BIJTA 5/39 2.0 (15.9) 317 (247.4)

(Gray): (Average Relative Value) + (Fraction Solved)

15

tion time. We divide the remainder of this section into four
subsections, one for each of the aforementioned BB com-
ponents, and one in which we provide a deeper analysis of
our obtained results for a small subset of the considered
instances and also compare the performance of CPLEX to
that of other state-of-the-art MILP solvers. For all tests
discussed in the following dialogue, we compare formula-
tions N.N, N.BIA, N.BIJA, and N.BIJTA. We include N.N
as it serves as a base case, showing the performance when
no record keeping variables are added to P, and we include
N.BIA, N.BIJA, and N.BIJTA due to the relatively strong
performance they displayed in Sections 4 and 5. We also
note that we did conduct two preliminary tests in which
we sought to determine whether or not the proposed for-
mulations had any impact on the initial LP bound or on
the presolve phase of BB. To test the former, we turned
off the presolve functions of CPLEX, solved the LP relax-
ation of each formulation, and compared the resulting ob-
jective values. In all cases, all formulations resulted in the
same objective value, showing that the initial LP bound is
unchanged for any of the reformulations, i.e, none of the
reformulations are tighter than the original. To test the
latter, we turned the presolve functions of CPLEX back on,
solved the LP relaxation of the presolved version of each
formulation, and compared the resulting objective values.
In all cases, all formulations resulted in the same presolved
LP bound. We do note, however, that for approximately
12% of instances the presolved LP bound improved over

its non-presolved counterpart. Hence, we conclude that

all of the formulations contain identical information that
can be exploited during the presolve phase of BB in order
to obtain a tighter LP bound. Please note that we do not
claim that there are no differences in the way that presolve
functions for each of the formulations. Certainly presolve
does function differently as each formulation contains dif-
ferent sets of variables and, as a result, row, column, and
nonzero reductions can be significantly different among the
formulations. We claim only that these reductions, though
different, did not result in differences in initial LP bounds

for any of the instances we studied.

6.1. Preprocessing

We note here that by preprocessing we mean all oper-
ations that are performed by a solver after the completion
of presolve, but prior to the start of branching, that serve
to further tighten the dual bound. To our knowledge, in
CPLEX, preprocessing consists of probing, bound tighten-
ing, cut generation, and possibly other operations. In or-
der to determine the impact of the proposed formulations
on the preprocessing phase of BB, we turn off all heuris-
tics and allow CPLEX to process only the root node of
the BB tree. After processing the root node, we compute
the percent difference between the obtained dual bound
and the LP bound obtained in the second of our previous
tests described at the start of Section 6. The larger the
percent difference, the better, as this indicates that the
reductions performed resulted in a tighter relaxation. Re-

sults for this test are presented in Table 4 where, for each

16

Table 4: Testing the impact of the proposed formulations on the

preprocessing phase of BB

Fraction Avg Avg
Better Absolute Percent
Than N.N Difference Difference
Cost
N.N - 7.0 46.78%
N.BIA 103/115 14.1 62.95%
N.BIJA 105/115 15.3 69.40%
N.BIJTA 105/115 15.4 79.99%
Profit
N.N - 5.7 2.22%
N.BIA 98/115 13.9 5.35%
N.BIJA 96/115 15.2 5.87%
N.BIJTA 96/115 15.5 6.01%

objective type and each formulation, we report the frac-
tion of instances for which the dual bound obtained after
preprocessing was better, i.e., lower, than the dual bound
obtained using N.N, and the average absolute and percent
differences between the dual bounds obtained before and
after preprocessing. From Table 4 we observe that pre-
processing provides improvements to the dual bound in
all cases, but that, on average, improvements are greater
for problems with cost objectives than profit objectives.
Additionally, the dual bounds obtained after preprocess-
ing are significantly better, on average, for our proposed

reformulations than for the original formulation.

6.2. Heuristics

We now consider the impact of the proposed formula-
tions on the heuristics employed by CPLEX. In order to
test this, we turn off all cut generation and again allow
CPLEX to process only the root node. After processing
the root node, we record whether or not the heuristics
were able to identify an integer feasible solution, which we
henceforth refer to as an incumbent. For each instance,
formulation pair for which an incumbent was successfully
identified by the heuristics, we also record the optimality
gap after processing the root node. Additionally, for each
objective type, the fraction of instances for which the op-
timality gap found for each reformulation is better, i.e.,
smaller, than that of N.N is recorded. Results of this test
are summarized in Table 5. We note that in Table 5 we
report modified optimality gaps in a similar fashion to the
modified values we reported earlier in Tables 1, 2, and 3.
Specifically, we report in gray the optimality gap divided
by the fraction of instances for which an incumbent solu-
tion was found. The motivation for the inclusion of this
metric is that, in some sense, it penalizes each formulation
proportionately to the number of instances for which the
heuristics were not able to identify an incumbent.

It is interesting to recognize from Table 5 that in most
cases the incumbents obtained from the reformulations
proposed herein are not as high quality as those obtained
from the original formulation. On one hand, this is sur-
prising because, as seen in Section 4, using these reformu-

lations generally results in an overall reduction in the CPU

17

Table 5: Testing the impact of the proposed formulations on the BB

heuristic
Fraction Fraction Avg
Incumbent Better Optimality
Found Than N.N Gap
Cost
N.N 99/115 - 42.9% (49.8)
N.BIA 90/115 22/115 44.9% (57.4)
N.BIJA 92/115 18/115 44.6% (55.8)
N.BIJTA 90/115 18/115 45.0% (57.5)
Profit
N.N 101/115 - 44.7% (50.9)
N.BIA 99/115 42/115 84.2% (97.8)
N.BIJA 99/115 39/115 82.1% (95.4)
N.BIJTA 99/115 41/115 78.7% (91.4)

(Gray): (Average Optimality Gap) + (Fraction Incumbent Found)

time required to solve instances to optimality and it is well
known that the overall solution time of BB is often highly
dependent on the ability of an optimizer to obtain quality
incumbent solutions quickly. On the other hand, though,
there are reasons that this result is to be expected. For
one, we know that each reformulation involves the addition
of several new integer variables and several new constraints
to P and so, as these changes increase the size and com-
plexity of each instance, it does make sense that this might
have a negative impact on the performance of a heuristic.
While we do not study the impact of doing so in this work,
we note that in the future it may be interesting to develop
an implementation in which, when P is reformulated using
one of our proposed reformulations, a heuristic is applied
to the unmodified version of P and the obtained incum-
bents are mapped to the reformulated problem using the

appropriate subset of Equations (4)—(13).

6.3. Branching

We next study the branching phase of BB. In order
to determine the impact of our proposed formulations on
this phase of the BB procedure, we compare the number
of nodes required to solve each instance. We note that
for this test both cut generation and heuristics are turned
back on, because without these features the performance
of BB dramatically suffers. As a result, strictly speaking,
the strong performance of our proposed reformulations dis-

played in the following data should not be interpreted as

being due solely to differences in branching, but rather

18

Table 6: Testing the impact of the proposed formulations on the

branching phase of BB

Fraction Avg Rel Avg Rel
Solved Nodes Nodes*
Cost
(46 instances) (22 instances)
N.N 69/115 1.00 1.0000
N.BIA 95/115 0.46 0.0668
N.BIJA 101/115 0.30 0.0047
N.BIJTA 99/115 0.24 0.0604
Profit
(16 instances) (27 instances)
N.N 24/115 1.00 1.0000
N.BIA 62/115 0.46 0.0797
N.BIJA 78/115 0.28 0.0031
N.BIJUTA 75/115 0.18 0.0038

t: Instances solved in < 5 hours by all formulations above, and N.N
not solved at the root node

i: Instances solved in > 5 hours by N.N and < 5 hours by all others

differences in the BB process as a whole. However, as the
primary metric we report for this test is the number of
nodes required to solve each instance, significant differ-
ences in these numbers can still be attributed primarily
to the benefits of branching on record keeping variables.
Results for this test are displayed in Table 6. The first
piece of information recorded in Table 6 is the fraction
of instances solved in under five hours.

The remaining

data is displayed for two specific subsets of instances: (i)

those that all considered formulations were able to solve
in under five hours, but that were not solved by N.N at
the root node, and (ii) those that N.BIA, N.BIJA, and
N.BIJTA were able to solve in under five hours, but N.N
For each subset, we report average values for

was not.

relative numbers of nodes calculated as

Relative # Nodes For Instance ¢, Formulation k

_ Nodes to Solve Instance ¢ Using Formulation k
N Nodes to Solve Instance ¢ Using N.N

for the former subset, and

Relative # Nodes For Instance ¢, Formulation k

_ Nodes to Solve Instance ¢ Using Formulation k
~ Nodes Explored in 5 hrs by N.N for Instance ¢

for the latter. As can be seen from Table 6, all the con-
sidered reformulations greatly reduce the number of nodes
required to solve instances of P.

We end our discussion on the branching phase of BB
by noting that our presented results are, again, not sur-
prising. In fact, branching on record keeping variables can
be viewed as a type of constraint branching as introduced
by Ryan and Foster [47] and later generalized by Appleget
and Wood [48], which has been shown to be useful in many

other applications of MILP.

6.4. Further Analysis

Recall from the work done so far in this section that
preprocessing and branching have been identified as the
main phases of BB during which CPLEX is able to exploit

certain features of our proposed reformulations to reduce

19

k?s _ k@
(2

is —=()

—_— kr

Figure 5: STN — Network from Velez et al. [44]

Task-unit mapping: J;;, = J;p, = {i1}; Jiz = {j2}; Ji, = {43};
J’is = {34}

solution time. We now seek to answer the following two

questions:

1. Can we gain a deeper insight into what specific prob-
lem features CPLEX is exploiting to improve perfor-

mance?

2. Are the results we observe unique to CPLEX, or do

other MILP solvers display similar results?

In pursuit of answering Question 1, we take a deeper look
at the reductions made by CPLEX when solving one of the
instances we considered in our previous tests. Specifically,
we consider the network referred to as “network 3”7 by
Velez and Maravelias [39], which was originally presented
in [44], and we employ the cost objective. The STN repre-
sentation of this network is given in Figure 5, and we note
that the optimal objective value of the problem is 1145.
To conduct our analysis, we employ the CPLEX C API,
together with a solve callback, in order to access the mod-
ified MILP problem that CPLEX actually solves at each
node of the BB tree. We then access this problem for the
root node once it has been fully processed. In this way
we are able to see the cuts that CPLEX has generated

(and retained) as well as any variable bounds that have

been tightened prior to the start of the branching phase
of BB. For this instance, when using the N.N formula-
tion, CPLEX adds 25 cuts that are retained throughout
the processing of the root node. We next solve the LP re-
laxation of the obtained problem, which gives an objective
value of 1133.32. We note that at this solution, 15 of the
abovementioned 25 cuts are binding. Similarly, when us-
ing the N.BIJTA formulation, CPLEX adds 36 cuts that
are retained, 20 of which are binding at the LP solution.
More interestingly, though, CPLEX is also able to gener-
ate the following bounds on record keeping variables that

are binding at the LP solution:

Niyji =25

N, . =15

3,72

It is important to point out here that the objective value of
this LP is 1145, which shows that CPLEX has fully tight-
ened the dual bound. It is also interesting to note that
if we add constraints enforcing these same bounds to the
LP obtained after processing the root node of the N.N for-
mulation, the optimal value improves to 1145. This serves

as evidence that the bound tightening phase of CPLEX’s

20

solution procedure significantly contributes to the reduc-
tions in solution time that are obtained when using our
proposed reformulations.

In pursuit of answering Question 2, we select 18 of
the instances considered in our previous tests for which
CPLEX displayed an extreme difference in performance
using formulation N.N as opposed to N.BIJTA, and we
compare the performance of three different MILP solvers
on the selected instances using these two formulations.
Specifically, we employ the commercial solvers CPLEX
22.1.1 [49] and Gurobi 10.0.0 [50], as well as the open-
source solver HIGHS 1.5.1 [51, 52], all via GAMS 42.4.0.
The tests were run on a Dell Latitude 7420 with a 2.60GHz
Intel i5-1145G7 processor and 16GB of RAM running Linux
Mint 20.3. We note that the reason for the discrepancy in
software used here compared to earlier parts of this work
is our desire to employ the HIGHS solver for these tests,
which is not available in the GAMS version used for our
prior tests. We set a one hour time limit for all solvers
for this test, the results of which are given in Table 7.
We note that for the instance identifiers given in Table
7, “V” indicates an instance from [39], “M” indicates an
instance from minlp.org, and “R” indicates a randomly
generated instance. Furthermore, for instances from [39]
the value given indicates the number assigned to the asso-
ciated network in that work, for instances from minlp.org
the value given indicates the horizon length, and for ran-
domly generated instances the three underscore delimited

values indicate [I], |J|, and |K|[, respectively. Interestingly,

minlp.org
minlp.org

Table 7: Comparing MILP solver performance on selected instances

CPLEX Gurobi HiGHS

N.N N.BIJTA N.N N.BIJTA' N.BIJTA¥ N.N N.BIJTA
Instance Obj Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap
V2 Profit 3600 3.32 2.4 0 3600 3.86 3600 3.43 3600 3.87 3600 3.62 127.6 0
V3 Cost 3600 0.65 0.0 0 2.0 0 3.3 0 1.0 0 523.5 0 59.9 0
V4 Cost 3600 0.46 2.4 0 3.5 0 3.1 0 4.7 0 1034.1 0 12.6 0
V4 Profit 3600 0.21 6.1 0 3600 0.12 3600 0.21 3600 0.12 573.8 0 60.9 0
M32 Profit 3600 0.31 246.9 0 3600 0.50 3600 0.54 4.3 0 3600 1.16 166.0 0
M40 Cost 1175.4 0 0.7 0 76.3 0 24.1 0 0.6 0 3600 0.77 5.0 0
M44 Profit 3600 1.63 544.6 0 3600 0.79 3600 1.02 206.3 0 3600 2.74 1543.4 0
R5.3_6 Profit 402.7 0 3.7 0 5.3 0 27.0 0 0.8 0 3600 0.26 8.3 0
R5.3.7 Profit 3600 5.88 30.5 0 3600 1.75 3600 2.31 3600 1.11 3600 3.73 83.2 0
R5.4.5 Profit 3600 0.05 0.7 0 3.7 0 1.4 0 1.9 0 1843.3 0 15.0 0
R6.5.7 Profit 3600 0.36 8.0 0 3600 0.36 32.0 0 2.9 0 1986.7 0 39.0 0
R8.5_8 Cost 1429.0 0 13.1 0 21.5 0 926.9 0 5.1 0 3600 4.14 27.3 0
R8_11.8 Cost 3600 4.01 26.7 0 3600 5.64 3600 4.19 7.6 0 3600 12.74 1346.7 0
R9.11.7 Profit 3600 0.39 3600 0.02 3600 0.25 3600 0.42 3600 0.01 3600 0.48 1060.3 0
R10-8-11 Profit 3600 1.57 3600 0.01 3600 1.04 3600 1.29 3600 0.15 3600 1.72 3579.0 0
R11.15.13 Cost 3600 16.40 26.4 0 534.5 0 2949.2 0 59.4 0 3600 26.65 236.3 0
R12.10-11 Profit 3600 0.18 1169.7 0 94.3 0 153.0 0 51.6 0 3600 1.07 372.7 0
R13.26.12 Cost 3600 18.75 90.9 0 3600 12.90 3600 11.90 3600 5.32 3600 28.40 667.3 0

t: Gurobi not preceded by bound tightening

i: Gurobi preceded by bound tightening

from Table 7 we observe a very similar pattern of perfor-
mance between CPLEX and HiGHS, but not Gurobi. In
studying the log files from our tests, we find it likely that
this difference in performance is caused by Gurobi substi-
tuting all record keeping variables out of the model prior
to running its probing and/or bound tightening schemes.
To test whether or not this is the case and help determine
if Gurobi’s performance could be improved by exploiting
valid bounds on record keeping variables, we reran the
N.BIJTA portion of our tests with Gurobi, but this time

we tightened the bounds on each record keeping variable

21

prior to passing the problem to Gurobi. Assume that N*
represents an arbitrary record keeping variable. The ap-
proach we employ for computing a tight lower bound ¢*
on N* consists of solving the LP relaxation of problem P
with f(-) = N* and setting £* to be the ceiling of the opti-
mal objective value. Similarly, we compute a tight upper
bound u* on N* by solving the LP relaxation of problem P
with f(-) = —N* and setting u* to be the floor of the neg-
ative of the optimal objective value. Results for our tests
without bound tightening are indicated in Table 7 by the

symbol T and the tests with bound tightening are indicated

by the symbol f. Additionally, we note that the solution
time reported for the tests with bound tightening do not
include time spent employing the bound tightening proce-
dure. As can be seen in Table 7, in most cases Gurobi’s
performance significantly improves when provided tighter
bounds for the record keeping variables.

From the tests conducted in this section, we are now
quite confident that the main phases of BB in which in-
formation about record keeping variables can be exploited
in order to improve the performance of a MILP solver are
preprocessing (especially probing/bound tightening) and
branching. Moreover, we also conclude that this improve-
ment in performance is not unique to CPLEX, though we
do note that not all solvers are equally able to achieve these
improvements, seemingly due to the order in which certain

presolve and/or preprocessing operations are carried out.

7. Utility of Proposed Reformulations for Other

Problem Classes

Given the reductions in solution time that we observed
when record keeping variables are added to P, we now an-
alyze the impact of incorporating record keeping variables
when solving more complicated classes of problems. For
this purpose we modify the instances from minlp.org that
we utilized throughout the earlier sections of this work.
These instances are provided in such a way that the user
is able to employ one of two sets of modifications: (i) the
incorporation of restrictions based on the availability of

utility resources, or (ii) the incorporation of variable pro-

22

2 0060
[}
- H
o © :
58 2 IR B G 7 T G
52 3 ppeee !
ot i
gi_:_é g, ‘.v- I-x-x--x-x-x-x-x-x-x-x-x
0w X
@ xc .
SFE < i
el e S v‘l-x-x—x-x—x-x—x-x—i P—G—G—H—G
Dy @ 1
S okt [
s H
SE g—é A g E— 33—
[}
o — N.N ---© N.BIJA
o | —-x N.BIA ---v N.BUTA
= B
T T T T I
2 4 6 8 10
k
(a) Cost
S - G@OWWWM@W
3 i
22 @] !
B !
§ "E’ g rw-x-x-x-x—x-x—x-x—x-x—x-#x-x—x-ﬂ-x—x-x—x
£ ©
SFZ o7 bl
n X I ‘
£z 1
N ‘7) L)
o g Qo < | |
o
%Eﬁ ‘fv-v!r(Fe 3= 3—3—F—L
53 o . — NN
gg o] i ' —-x N.BIA
o . ---6 N.BIA
Q Hi-n—x—le—a—e—a—e—e—a—a—e—a—e—e- =<7 N.BUTA
e T T T T I
2 4 6 8 10

(b) Profit

Figure 6: Performance profiles of CPU time (s) for selected formu-
lations on UTL problems — Instances considered are those for which

all formulations solved the instance in 5hrs

cessing times based on batch size. We employ both mod-
ifications and refer to the first set of problems as UTL
instances and the second as VPT instances. We utilize
the same objective types mentioned earlier, i.e., cost, and
profit.

Results for the UTL instances are presented in Fig-
ure 6 and Table 8 and results for the VPT instances are

presented in Figure 7 and Table 9. Interestingly, the

minlp.org

3 . lﬁ%%%w&%
. I !
2y o | [o sexco]
SF °7 [
n 2?0 '
Table 8: Results for UTL instances for which at least one formula- § _qé % © :-'i Rafaxaiazadaneiany 4
g3 S
tion failed to solve the instance in 5hrs and at least one formulation 2 i ;‘f) <%J K e n
' _ 5838 <+ 1| |
successfully solved the instance in 5hrs g9 © N N
8 S % Nbia
Fraction Avg Rel Avg Rel S = -6 NBLA
o | -==v N.BIUTA
Solved Time Gap e \ T T T \
2 4 6 8 10
Cost k
N.N 1/2 130 (26.0) 1.0 (2.0) (a) Cost
S T P%O%WWM?W
N.BIA 1/2 1.8 (3.5) 1.0 (2.0) o i ! |
2o o | ! i
N.BLJA 2/2 21 (2.1) - ﬁ% o |¢ prETeTYY X S 2
SEE o | | :
N.BIJTA 2/2 2.8 (2.8) sig © [!
2> c
= C
Y= ©
Profit % S
gL
T o :
N.N 0/3 10 () 3 34 N o NBia
o =--© N.BIUA
N.BIA 3/3 69 (6.9) o | -—=v N.BUTA
o
T T T T T
N.BIJA 3/3 3.0 (30 2 4 6 8 10
k
N.BIJTA 3/3 13.0 (13.0) -

(b) Profit

(Gray): (Average Relative Value) =+ (Fraction Solved)

Figure 7: Performance profiles of CPU time (s) for selected formu-

lations on VPT problems — Instances considered are those for which

all formulations solved the instance in 5hrs

23

Table 9: Results for VPT instances for which at least one formula-

tion failed to solve the instance in 5hrs and at least one formulation

successfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel
Solved Time Gap
Cost
N.N 0/1 1.0 (00)
N.BIA 1/1 24 (24)
N.BIJA 1/1 1.0 (1.0 -
N.BIJTA 1/1 25 (2.5)
Profit
N.N 0/3 - 4.9 (00)
N.BIA 2/3 54 (8.1) 1.0 (1.5)
N.BIJA 3/3 3.1 (3.1)
N.BIJTA 2/3 3.1 (4.6) 434.8 (652.2)

(Gray): (Average Relative Value) =+ (Fraction Solved)

24

results for both UTL and VPT instances are quite sim-
ilar. In observing Figures 6 and 7 and Tables 8 and 9,
we observe the strongest performance from N.BIJA and
N.BIJTA, slightly weaker performance from N.BIA, and

relatively poor performance from N.N.

8. Conclusion

We have introduced the concept of a record keeping
variable as well as several ways to formulate certain classes
of production scheduling problems as discrete-time based
mixed-integer linear programs that incorporate record keep-
ing variables. Moreover, we have shown empirically that
the presence of record keeping variables in a problem’s
formulation can drastically reduce the CPU time required
to solve the problem. In all, we considered 230 instances
of chemical production scheduling problems (excluding the
UTL and VPT variants). Of these, there were 27 instances
that both our proposed method N.BIJA and method N.N
(representative of employing default CPLEX to solve the
base formulation of problem P) were able to solve in un-
der 5 hours and that at least one of these approaches was
unable to solve in 3 minutes. For these instances, the
CPU time used by our approach N.BIJA was 2.79% of
that used by N.N, on average. Additionally, N.BIJA was
able to solve 83 instances in under 5 hours that N.N was
not. Similarly, there were 25 instances that both our pro-
posed method N.BIJA and method N.B (representative of
employing default CPLEX to solve the most promising for-

mulation proposed in [39]) were able to solve in under 5

hours and that at least one of these approaches was unable
to solve in 3 minutes. For these instances, the CPU time
used by our approach N.BIJA was 3.25% of that used by
N.B, on average. Additionally, N.BIJA was able to solve
70 instances in under 5 hours that N.B was not.

Later we showed that prioritizing branching on record
keeping variables over other integer variables works well
in certain cases, particularly when N;;, IV;, N; and N are
simultaneously included in the model and the overall so-
lution time is estimated to be less than 5 hours. In ad-
dition to showing the impact of our proposed reformu-
lations on the CPU time required to solve instances, we
sought to determine why the improvements that we ob-
served were obtained by exploring the impact of our pro-
posed reformulations on the preprocessing, heuristic, and
branching phases of the branch-and-bound procedure. Our
results showed that the incorporation of record keeping
variables in a problem’s formulation can result in signifi-
cant improvements in the quality of the variable bounds
and/or cuts generated and the number of nodes required
to solve the problem. Interestingly, we found that simi-
lar improvements were not achieved in generating quality
heuristic solutions. Finally, we showed that the incorpo-
ration of record keeping variables into the formulation of
more complex classes of scheduling problems can also re-
sult in significant reduction in solution time. We note that
this last point is of particular importance as it provides ev-
idence that one can still expect to achieve improved per-

formance by applying the techniques proposed herein to

25

process scheduling problems whose formulations account

for specialized, application specific process characteristics.

References

[1] I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro,
S. Engell, I. E. Grossmann, J. Hooker, C. Méndez, G. Sand,
J. Wassick, Scope for industrial applications of production

scheduling models and solution methods, Computers & Chem-

ical Engineering 62 (2014) 161-193.

G. P. Georgiadis, A. P. Elekidis, M. C. Georgiadis,

Optimization-based scheduling for the process industries: from

theory to real-life industrial applications, Processes 7 (2019)

438.

O. Avalos-Rosales, A. Alvarez, F. Angel-Bello, A reformulation

for the problem of scheduling unrelated parallel machines with

sequence and machine dependent setup times, in: Proceedings
of the International Conference on Automated Planning and

Scheduling, volume 23, 2013, pp. 278—282.

S. Velez, Y. Dong, C. T. Maravelias, Changeover formulations

for discrete-time mixed-integer programming scheduling mod-

els, European Journal of Operational Research 260 (2017) 949—

963.

D. C. Cafaro, I. E. Grossmann, Strengthening discrete-time
scheduling formulations by introducing the concept of cam-
paigns, Computers & Chemical Engineering 143 (2020) 107101.

[6] A. Kramer, M. Iori, P. Lacomme, Mathematical formulations

for scheduling jobs on identical parallel machines with family

setup times and total weighted completion time minimization,

European Journal of Operational Research 289 (2021) 825-840.

J. Berkhout, R. wvan der J. Stolze,

E. Pauwels, Mei,

S. Broersen, Short-term production scheduling with non-
triangular sequence-dependent setup times and shifting produc-
tion bottlenecks, International Journal of Production Research
59 (2021) 727-751.

[8] P. M. Castro, Optimal scheduling of a multiproduct batch

(9]

[10]

(1]

[12]

(13]

(14]

[16]

(17]

chemical plant with preemptive changeover tasks, Computers
& Chemical Engineering 162 (2022) 107818.

P. M. Castro, I. Harjunkoski, I. E. Grossmann, Discrete and
continuous-time formulations for dealing with break periods:
Preemptive and non-preemptive scheduling, European Journal
of Operational Research 278 (2019) 563-577.

Y. Wang, X. Jin, S. Lu, Enhanced discrete time formulation
for a short-term batch process scheduling problem with utility
constraints, Industrial & Engineering Chemistry Research 58
(2019) 14559-14568.

D. Gupta, C. T. Maravelias, J. M. Wassick, From reschedul-
ing to online scheduling, Chemical Engineering Research and
Design 116 (2016) 83-97.

D. Gupta, C. T. Maravelias, On the design of online production
scheduling algorithms, Computers & Chemical Engineering 129
(2019) 106517.

R. D. McAllister, J. B. Rawlings, C. T. Maravelias, The inherent
robustness of closed-loop scheduling, Computers & Chemical
Engineering 159 (2022) 107678.

C. A. Floudas, X. Lin, Continuous-time versus discrete-time ap-
proaches for scheduling of chemical processes: a review, Com-
puters & Chemical Engineering 28 (2004) 2109—-2129.

A. Sundaramoorthy, C. T. Maravelias, Computational study
of network-based mixed-integer programming approaches for
chemical production scheduling, Industrial & Engineering
Chemistry Research 50 (2011) 5023-5040.

Z.-L. Chen, W. B. Powell, Solving parallel machine scheduling
problems by column generation, INFORMS Journal on Com-
puting 11 (1999) 78-94.

Z.-L. Chen, W. B. Powell, Exact algorithms for scheduling mul-
tiple families of jobs on parallel machines, Naval Research Lo-
gistics (NRL) 50 (2003) 823-840.

S. Gélinas, F. Soumis, Dantzig-wolfe decomposition for job shop
scheduling, in: Column generation, Springer, 2005, pp. 271-302.

M. J. P. Lopes, J. V. de Carvalho, A branch-and-price algo-

rithm for scheduling parallel machines with sequence depen-

26

[20]

21]

22]

[23]

[24]

[25]

[26]

dent setup times, European journal of operational research 176
(2007) 1508-1527.

J. Van den Akker, J. Hoogeveen, J. W. van Kempen, Using
column generation to solve parallel machine scheduling prob-
lems with minmax objective functions, Journal of Scheduling
15 (2012) 801-810.

A. Ghoniem, F. Farhadi, A column generation approach for
aircraft sequencing problems: a computational study, Journal
of the Operational Research Society 66 (2015) 1717-1729.

X. Xiong, P. Zhou, Y. Yin, T. Cheng, D. Li, An exact branch-
and-price algorithm for multitasking scheduling on unrelated
parallel machines, Naval Research Logistics (NRL) 66 (2019)
502-516.

V. Jain, I. E. Grossmann, Algorithms for hybrid milp/cp models
for a class of optimization problems, INFORMS Journal on
computing 13 (2001) 258-276.

P. Baptiste, C. Le Pape, W. Nuijten, Constraint-based schedul-
ing: applying constraint programming to scheduling problems,
volume 39, Springer Science & Business Media, 2001.

A. Bockmayr, N. Pisaruk, Detecting infeasibility and generating
cuts for mip using cp, in: 5th International Workshop on Inte-
gration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems-CPAIOR’03, 2003,
pp. 11-p.

G. El Khayat, A. Langevin, D. Riopel, Integrated production
and material handling scheduling using mathematical program-
ming and constraint programming, European Journal of Oper-
ational Research 175 (2006) 1818-1832.

R. Sadykov, L. A. Wolsey, Integer programming and constraint
programming in solving a multimachine assignment scheduling
problem with deadlines and release dates, INFORMS Journal
on Computing 18 (2006) 209-217.

L. Zeballos, O. Quiroga, G. P. Henning, A constraint program-
ming model for the scheduling of flexible manufacturing systems

with machine and tool limitations, Engineering Applications of

Artificial Intelligence 23 (2010) 229-248.

29]

(31]

32]

(33]

34]

(35]

(36]

[38]

E. B. Edis, I. Ozkarahan, A combined integer/constraint pro-
gramming approach to a resource-constrained parallel machine
scheduling problem with machine eligibility restrictions, Engi-
neering Optimization 43 (2011) 135-157.

A. M. Ham, Integrated scheduling of m-truck, m-drone, and
m-depot constrained by time-window, drop-pickup, and m-visit
using constraint programming, Transportation Research Part
C: Emerging Technologies 91 (2018) 1-14.

R. Gedik, D. Kalathia, G. Egilmez, E. Kirac, A constraint
programming approach for solving unrelated parallel machine
scheduling problem, Computers & Industrial Engineering 121
(2018) 139-149.

L. Meng, C. Zhang, Y. Ren, B. Zhang, C. Lv, Mixed-integer lin-
ear programming and constraint programming formulations for
solving distributed flexible job shop scheduling problem, Com-
puters & Industrial Engineering 142 (2020) 106347.

M. Awad, K. Mulrennan,

J. Donovan, R. Macpherson,

D. Tormey, A constraint programming model for makespan
minimisation in batch manufacturing pharmaceutical facilities,
Computers & Chemical Engineering 156 (2022) 107565.

P. M. Castro, I. E. Grossmann, Generalized disjunctive
programming as a systematic modeling framework to derive
scheduling formulations, Industrial & Engineering Chemistry
Research 51 (2012) 5781-5792.

P. M. Castro, I. E. Grossmann, P. Veldhuizen, D. Esplin, Opti-
mal maintenance scheduling of a gas engine power plant using
generalized disjunctive programming, AIChE journal 60 (2014)
2083-2097.

P. M. Castro, I. Marques, Operating room scheduling with
generalized disjunctive programming, Computers & Operations
Research 64 (2015) 262-273.

H. Mostafaei, P. M. Castro, A. Ghaffari-Hadigheh, Short-term
scheduling of multiple source pipelines with simultaneous in-
jections and deliveries, Computers & Operations Research 73

(2016) 27-42.

O. Wu, G. Dalle Ave, I. Harjunkoski, L. Imsland, A rolling

27

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

horizon approach for scheduling of multiproduct batch produc-
tion and maintenance using generalized disjunctive program-
ming models, Computers & Chemical Engineering 148 (2021)
107268.

S. Velez, C. T. Maravelias, Reformulations and branching
methods for mixed-integer programming chemical production
scheduling models, Industrial & Engineering Chemistry Re-
search 52 (2013) 3832-3841.

E. Kondili, C. C. Pantelides, R. W. Sargent, A general algo-
rithm for short-term scheduling of batch operations—i. milp for-
mulation, Computers & Chemical Engineering 17 (1993) 211-
227.

N. Shah, C. C. Pantelides, R. W. H. Sargent, A general algo-
rithm for short-term scheduling of batch operations. 2. compu-
tational issues, Computers & Chemical Engineering 17 (1993)
229-244.

L. G. Papageorgiou, C. C. Pantelides, Optimal campaign plan-
ning/scheduling of multipurpose batch/semicontinuous plants.
1. mathematical formulation, Industrial & engineering chem-
istry research 35 (1996) 488-509.

C. T. Maravelias, Mixed-time representation for state-task net-
work models, Industrial & engineering chemistry research 44
(2005) 9129-9145.

S. Velez, A. Sundaramoorthy, C. T. Maravelias, Valid inequal-
ities based on demand propagation for chemical production
scheduling mip models, AIChE Journal 59 (2013) 872-887.
IBM-ILOG, CPLEX Optimization Studio 20.1 User’s Man-
ual, IBM, 2020. Available from https://www.ibm.com/docs/en/
icos/20.1.07topic=cplex-users-manual.

E. D. Dolan, J. J. Moré, Benchmarking optimization soft-
ware with performance profiles, Mathematical programming
91 (2002) 201-213.

D. M. Ryan, B. A. Foster, An integer programming approach
to scheduling, Computer scheduling of public transport urban

passenger vehicle and crew scheduling (1981) 269-280.

J. A. Appleget, R. K. Wood, Explicit-constraint branching for

https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual

[49]

[50]

[51]

[52]

solving mixed-integer programs, in: Computing Tools for Mod-
eling, Optimization and Simulation, Springer, 2000, pp. 245—
261.

IBM-ILOG, CPLEX Optimization Studio 22.1.1 User’s Man-
ual, IBM, 2022. Available from https://www.ibm.com/docs/en/
icos/22.1.17topic=optimizers-users-manual-cplex.

Gurobi Optimization, LLC, Gurobi Optimizer Reference Man-
ual, 2023. URL: https://www.gurobi.com.

HiGHS, Documentation, HIGHS, 2022. Available from https:
//highs.dev/#docs.

Q. Huangfu, J. J. Hall, Parallelizing the dual revised simplex
method, Mathematical Programming Computation 10 (2018)

119-142.

28

https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.gurobi.com
https://highs.dev/#docs
https://highs.dev/#docs

	Introduction
	Background
	Notation
	Problem Formulation

	Reformulations
	Previous Work
	Further Considerations

	Initial Assessment of Reformulations
	Preliminaries
	Reformulations Containing at Most One Record Keeping Variable
	Reformulations Containing More Than One Record Keeping Variable

	Prioritized Branching
	BB Impacts
	Preprocessing
	Heuristics
	Branching
	Further Analysis

	Utility of Proposed Reformulations for Other Problem Classes
	Conclusion

