
On the Utility of Production Scheduling Formulations Including Record Keeping
Variables

Nathan Adelgrena,∗, Christos T. Maraveliasa,b

aAndlinger Center for Energy and the Environment, Princeton University, Princeton, 08544, NJ, United States
bDepartment of Chemical and Biological Engineering, Princeton University, Princeton, 08544, NJ, United States

Abstract

In this work we propose several reformulations of a general discrete-time mixed-integer formulation for production

scheduling problems. Each reformulation involves the addition of new integer variables that we refer to as record keeping

variables. Computational results show that the required CPU time is greatly reduced when record keeping variables are

present in the optimization model. Additionally, we assess which of the individual aspects of traditional branch-and-

bound solution procedures benefit from the inclusion of record keeping variables.

Keywords: production scheduling, mixed integer programming, reformulation, record keeping variables

Declaration of Competing Interest

The authors declare that they have no known compet-

ing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

CRediT Authorship Contribution Statement

Nathan Adelgren: Conceptualization, Methodology,

Software, Validation, Formal Analysis, Visualization, Writ-

ing - Original Draft, Writing - Review & Editing. Chris-

tos T. Maravelias: Conceptualization, Supervision, Fund-

ing Acquisition, Writing - Review & Editing.

∗Corresponding author

Email addresses: na4592@princeton.edu (Nathan Adelgren),

maravelias@princeton.edu (Christos T. Maravelias)

Preprint submitted to Computers and Industrial Engineering April 10, 2023

1. Introduction

In recent years considerable attention has been given to

the utilization of mathematical optimization to aid deci-

sion makers in developing high quality production sched-

ules. Employing such techniques not only improves the

quality of the schedules used in practice, but also allows

for better asset utilization as they reduce the amount of

human-interaction required when designing a production

schedule. Production scheduling is a necessary component

of decision making in almost every manufacturing-related

industry and, as such, much work has been done in order to

develop specialized modeling techniques and optimization

methods that account for the various process characteris-

tics present in each application within each industry. We

point the interested reader to the works of Harjunkoski

et al. [1] and Georgiadis et al. [2] for extensive lists of

the many works dedicated to applications of production

scheduling within various industries.

As one might imagine, though, the development of so-

phisticated optimization models capable of aiding one in

making complicated decisions often comes with a price.

Namely, these optimization models can become extremely

large and complex, to the point where they may become in-

tractable. Examples of complex process characteristics for

which optimization models and techniques have recently

been proposed include required changeover times between

tasks (Avalos-Rosales et al. [3], Velez et al. [4], Cafaro and

Grossmann [5], Kramer et al. [6], Berkhout et al. [7], Cas-

tro [8]), task interruption at specified break points (Castro

et al. [9]), and tracking and limiting utility consumption

(Wang et al. [10]). In each of these cited works, consider-

able effort is given to developing modeling or optimization

techniques that combat the added computational effort re-

quired in order to solve the scheduling problem once the as-

sociated process characteristics are accounted for. We note

that large CPU time requirements are particularly trouble-

some in cases in which a production scheduling problem

needs to be iteratively resolved in order to obtain updated

schedules [11, 12, 13].

Traditionally, mixed-integer linear programming (MILP)

methods have been the primary tool used in the litera-

ture for modeling and solving production scheduling prob-

lems. Most of the MILP models that have been employed

can be classified as either continuous-time-based models

or discrete-time-based models. As these names suggest, in

the former class of problems time is represented using a

continuous scale, whereas in the latter class time is repre-

sented using a discrete set of time points that are typically

evenly spaced. Floudas and Lin [14] and Sundaramoorthy

and Maravelias [15] provide excellent overviews of these

two types of models as well as thorough comparisons of

their strengths and weaknesses. The primary strength of

continuous formulations is that they are relatively small

and produce extremely accurate solutions. It is often diffi-

cult to expand them in order to account for complex pro-

cess characteristics, though, and this is their main short-

coming. On the other hand, it is often straightforward to

2

adjust discrete formulations in order to account for compli-

cated process characteristics. However, they often require

relatively fine discretizations of time in order to obtain

accurate solutions, and this can cause models to become

quite large and utilize significant CPU time.

Several works in the literature have been devoted to

the study and development of alternatives and/or exten-

sions to MILPs that can be used to model and solve chal-

lenging scheduling problems. Examples of approaches that

have been proposed include column generation (Chen and

Powell [16, 17], Gélinas and Soumis [18], Lopes and de Car-

valho [19], Van den Akker et al. [20], Ghoniem and Farhadi

[21], Xiong et al. [22]), constraint programming (Jain and

Grossmann [23], Baptiste et al. [24], Bockmayr and Pis-

aruk [25], El Khayat et al. [26], Sadykov and Wolsey [27],

Zeballos et al. [28], Edis and Ozkarahan [29], Ham [30],

Gedik et al. [31], Meng et al. [32], Awad et al. [33]), and dis-

junctive programming (Castro and Grossmann [34], Cas-

tro et al. [35], Castro and Marques [36], Mostafaei et al.

[37], Wu et al. [38]).

We note, however, that most of the sophisticated tech-

niques mentioned above are specifically designed for use

with a single application. For this reason, we focus on

a general, widely applicable class of scheduling problems

that we model as a discrete-time-based MILP. We choose

to employ a discrete-time model in order to allow for sim-

ple extensions of our proposed methodology that account

for the incorporation of complex process characteristics

into the MILP model we employ. Specifically, we focus

this work on MILP modeling techniques that allow one to

significantly reduce the computational overhead of solving

general production scheduling problems. Our motivation

is that, by improving the quality of the formulation used to

represent the general production scheduling problem that

serves as the foundation for more complex variants, we

may achieve improved performance for a wide variety of

classes of challenging problems.

Our current work is highly motivated by that of Velez

and Maravelias [39] in which the authors showed that the

incorporation of a relatively small number of additional

integer variables and associated constraints into the for-

mulation can significantly reduce the CPU time required

to solve instances of that problem. We extend this work

by considering additional integer variables and associated

constraints that can be incorporated alongside those pro-

posed in [39] in order to achieve further reductions in uti-

lized computational resources.

The remainder of this article is organized as follows. In

Section 2 we present the notation that we employ through-

out the work as well as a commonly used MILP formula-

tion. In Section 3 we review the primary reformulation of

the aforementioned MILP model that is proposed in [39]

and also propose several additional reformulations. We

then assess the strengths of the proposed reformulations

and provide a comparison with the primary reformulation

of [39] in Section 4. Section 5 contains a study of the

impact of imposing a hierarchical set of branching prior-

ities on the various binary and integer variables. A de-

3

tailed study of the effects of our proposed reformulations

on several phases of a traditional branch-and-bound (BB)

solution procedure is presented in Section 6. Section 7

contains the results of a set of tests designed to assess

the utility of our proposed reformulations when applied to

complex problem variations. Finally, we provide conclud-

ing remarks in Section 8.

2. Background

We consider a general manufacturing facility and em-

ploy a state-task network (STN) for its representation (see,

for example, [40, 41]). The rest of this section is divided

into two parts. In the first we present the notation that

we employ, and in the second we provide a MILP formula-

tion for the production scheduling problem that serves as

the foundation for the alternate formulations we propose

in Section 3.

2.1. Notation

We employ the following convention for notation:

Sets bold, upper-case, roman letters

Indices lower-case roman letters

Parameters lower-case greek letters

Variables non-bold, upper-case, roman letters

The STN representation of a facility then relies on the

elements (and their associated sets)

i ∈ I tasks,

j ∈ J units, and

k ∈ K materials;

the sets

I+
k /I

−
k tasks producing/consuming material k and

Ji units permitted to carry out task i;

and several related parameters, defined in Section 2.2.

Specifically, the STN is the directed graph G = (V,E),

where the set V of vertices is given by V := K∪ I and for

each pair (i, k) with i ∈ I and k ∈ K, there exists an arc

eik ∈ E from i to k if and only i ∈ I+
k and an arc eki ∈ E

from k to i if and only i ∈ I−k . We note that processing

units (and other shared utilities, when applicable) are rep-

resented implicitly in the STN through: (i) the mappings

implied by subset definitions, and (ii) the values of cor-

responding parameters. An example STN representing a

facility that creates two products (k8 and k9) from three

feedstocks (k1, k2 and k3), taken from [40], is displayed in

Figure 1.

2.2. Problem Formulation

We now present a MILP model for the scheduling prob-

lem, as first proposed by Shah et al. [41]. To begin, we

discretize the scheduling horizon η by dividing it into n

periods of length δ = η/n. We then define the set T =

{0, 1, . . . , n} of time points, where each t ∈ T corresponds

to the point in time that is tδ time units beyond the start

4

Figure 1: Example STN – Kondili et al. [40]

Task-unit mapping: Ji1 = {j1}; Ji2 = Ji3 = Ji4 = {j2, j3}; Ji5 =

{j4}.

of the horizon. We note that each t ∈ T \ {0} can also be

used to identify the time period [(t − 1)δ, tδ). For use in

the MILP model, we define the parameters

βmin
j /βmax

j minimum/maximum capacity of unit j,

ξkt net shipment of material k at time t

(positive for incoming quantities,

negative for outgoing),

ρik conversion coefficient of material k

produced or consumed by task i (positive

for production, negative for

consumption),

τij time required to process task i in unit j,

and

χmax
k maximum amount of material k that can

be stored;

and the variables

Xijt ∈ {0, 1} 1 if task i begins in unit j at time t,

Bijt ∈ R+ batch size of task i processed in unit j

at time t, and

Ikt ∈ R+ inventory level of material k during

time period t.

A general version of the MILP model is then given by

P := min f(·)

s.t.
∑
i: j∈Ji

t∑
t′=t−dτij/δe+1

Xijt′ ≤ 1

∀ j ∈ J, t ∈ T (1)

βmin
j Xijt ≤ Bijt ≤ βmax

j Xijt

∀ i ∈ I, j ∈ Ji, t ∈ T (2)

Ik(t+1) = Ikt +
∑
i∈I+k

∑
j∈Ji

ρikBij(t−dτij/δe)

+
∑
i∈I−k

∑
j∈Ji

ρikBijt + ξkt ≤ χmax
k

∀ k ∈ K, t ∈ T. (3)

We note that in problem P: (i) f(·) denotes an arbitrary

function that we will specify later; (ii) Equation (1) ensures

that at most one task is performed in each unit at each

time point, and moreover, that once a task begins in a unit,

that unit can perform no other task until the first has been

completed; (iii) Equation (2) ensures that any batch of a

task performed within a unit remains within that unit’s

minimum and maximum capacity; and (iv) Equation (3)

serves to keep track of the quantity of each material that

is in inventory and ensures that the amount of any given

material in inventory does not exceed the maximum al-

lowable storage for that material. We also point out that

5

in a slight abuse of notation, Equation (3) defines vari-

ables Ik0 and Ik(n+1) for each k ∈ K even though we have

not formally introduced the concepts of 0th and (n+ 1)th

time periods. As the former would be prior to the start

of the scheduling horizon, for each k ∈ K we treat Ik0

as a parameter representing initial inventory. Similarly,

as the latter time period would be beyond the end of the

scheduling horizon, we take Ik(n+1) to represent the final

inventory of each material k ∈ K.

Another point worth mentioning is that the task time

τij for a given i ∈ I and j ∈ Ji may not be an integer mul-

tiple of δ. In this case, a certain amount of discretization

error is introduced into problem P in order to ensure that

no unit processes more than one task at a time and that

material balances are handled appropriately. This can be

seen by the use of dτij/δe in Equations (1) and (3). Prac-

tically, the implication is that each execution of task i in

unit j will be followed by δdτij/δe − τij units of idle time.

For the majority of this work we consider two vari-

ants of problem P: (i) cost minimization, and (ii) profit

maximization. We note that makespan minimization was

also considered, but we do not discuss it further here due

to the relatively small CPU times observed when solving

these problems. The interested reader can find results

for makespan minimization in the Supplementary Mate-

rial. For cost minimization, we introduce a parameter

γij to represent the cost of performing task i in unit j

and set f(·) =
∑
i∈I
∑
j∈Ji γijXijt. For profit maximiza-

tion, we again utilize γij , introduce an additional parame-

ter πk representing the revenue obtained from selling one

unit of material k, and set f(·) =
∑
i∈I
∑
j∈Ji γijXijt −∑

k∈K πkIk(n+1). Recognize that, although problem P is

formulated as a minimization problem, we have defined

f(·) here as cost minus revenue, and minimizing this quan-

tity is equivalent to maximizing revenue minus cost.

3. Reformulations

We divide this section into two subsections. In Sec-

tion 3.1 we discuss a reformulation from the literature that

serves as a foundation for our current work. Our proposed

extensions are then presented in Section 3.2.

3.1. Previous Work

In [39], the authors propose reformulating problem P

by adding an integer variable Nij that represents the num-

ber of times task i is carried out in unit j. Specifically,

problem P is modified by adding the constraint

∑
t∈T

Xijt = Nij ∀ i ∈ I, j ∈ Ji (4)

and bounding Nij as

0 ≤ Nij ≤ bη/τijc ∀ i ∈ I, j ∈ Ji. (5)

The authors of [39] state that their motivation for propos-

ing this reformulation is the fact that for many instances of

problem P, there are multiple feasible solutions having the

same objective value. Specifically, they argue that many of

these solutions having the same objective value share the

same (task, unit) pair assignments, but that these assign-

ments occur at different time points in different solutions.

6

Hence, they suspect (and later confirm) that branching on

Nij can lead to faster solution times due to the fact that

each such branching decision may eliminate multiple sub-

optimal solutions simultaneously. As a result, tightening

of the dual bound generally occurs after the exploration of

fewer nodes when branching is permitted to occur on Nij

as opposed to only Xijt.

We conjecture, however, that the benefits of defining

Nij and adding Equations (4) and (5) to P extend beyond

those mentioned by Velez and Maravelias [39]. Specifically,

we believe that it is not only the branching phase of BB

that benefits from these additions. This line of reasoning is

explored further in Section 6 and serves as the motivation

for the extended reformulations we propose in the following

subsection.

3.2. Further Considerations

In this subsection we define several new integer vari-

ables that were not considered in [39], and present asso-

ciated constraints and bounds that, when added to the

structure of P, may serve to further enhance the perfor-

mance of BB beyond the improvements observed by Velez

and Maravelias [39]. Consider the variables

Ni ∈ Z+ the number of times task i is performed,

Nj ∈ Z+ the number of times unit j performs a task,

Nt ∈ Z+ the number of tasks performed at time t, and

N ∈ Z+ the total number of tasks performed,

that can be incorporated into P using the following con-

straints and bounds:

Ni =
∑
j∈Ji

∑
t∈T

Xijt ∀ i ∈ I (6)

0 ≤ Ni ≤
∑
j∈Ji

⌊
η

τij

⌋
∀ i ∈ I (7)

Nj =
∑
i: j∈Ji

∑
t∈T

Xijt ∀ j ∈ J (8)

0 ≤ Nj ≤

 η

min
i: j∈Ji

{τij}

 ∀ j ∈ J (9)

Nt =
∑
i∈I

∑
j∈Ji

Xijt ∀ t ∈ T (10)

0 ≤ Nt ≤ min{|I|, |J|} ∀ t ∈ T (11)

N =
∑
i∈I

∑
j∈Ji

∑
t∈T

Xijt (12)

0 ≤ N ≤ min

∑
i∈I

∑
j∈Ji

⌊
η

τij

⌋
,
∑
j∈J

 η

min
i: j∈Ji

{τij}

 (13)

The variables Ni, Nj , Nt, and N can be incorporated into

P simultaneously using Equations (6)–(13), or individually

by including Equations (6)–(7) for Ni, Equations (8)–(9)

for Nj , Equations (10)–(11) for Nt, and Equations (12)–

(13) forN . Moreover, as any subset of {Nij , Ni, Nj , Nt, N}

can be incorporated into P, we have 25−1 = 31 reformula-

tions of P to consider. Recognize that each of the variables

Nij , Ni, Nj , Nt, and N serves to keep record of a quan-

tity of interest when solving P. As such, throughout the

7

remainder of this work we refer to each of these variables

as a record keeping variable. In Section 4 we present the

results of a study in which we compare the performance of

BB when applied to P and a carefully chosen subset of the

proposed reformulations that involve these record keeping

variables.

4. Initial Assessment of Reformulations

4.1. Preliminaries

In this section we present the results of two computa-

tional studies. The tests conducted throughout the rest

of this work are performed using three sets of instances

of the scheduling problem. The first two sets are obtained

from minlp.org and from the authors of [39], respectively.

The final set was randomly generated. We note that, while

there is only one base instance obtained from minlp.org,

the problem structure of this instance is designed in such

a way that modifying the event horizon η results in a dis-

tinct variant of the instance. Thus, we utilize seven vari-

ants of this instance by setting η = 24, 28, 32, 36, 40, 44,

and 48. The authors of [39] also graciously shared with

us eight instances of the scheduling problem, derived from

seven unique network structures that were originally pre-

sented by Kondili et al. [40], Papageorgiou and Pantelides

[42], Maravelias [43], and Velez et al. [44]. In order to ex-

pand our test set, we randomly generated 100 additional

instances. We make these instances available for the inter-

ested reader at https://github.com/Nadelgren/RNBBS_

Instances.

All of the computational tests described in this work,

with the exception of Section 6.4, were conducted using

Princeton University’s Della cluster (https://researchcomputing.

princeton.edu/systems/della). Specifically, tests were

conducted using nodes on a Dell Linux cluster running

Springdale Linux 8. Each node had 2.4 – 2.8 GHz and

128 – 768 GB of RAM. Each job submitted to the clus-

ter utilized 4 threads, with a request for 16 GB of RAM

per thread. All tests for individual instances were run

using identical hardware in order to ensure a reliable com-

parison between the various reformulations. All instances

were solved using CPLEX 20.1 [45] via GAMS 36.1.0 and

an execution time limit of 5 hours was imposed for each

instance. We note that in a small number of cases, the

processing of an instance on the cluster was killed prior to

reaching the 5 hour time limit because memory utilization

became too large. For reporting purposes, we record such

cases as having failed to solve in 5 hours and assign an

optimality gap of 100%.

We adopt a notation that allows us to simultaneously

specify the CPLEX settings and (re)formulation of P used

for each test run. Specifically, we utilize a string comprised

of two substrings, separated by a period. The first sub-

string consists of a single character specifying the CPLEX

settings used, and the second substring consists of a set

of characters indicating which, if any, record keeping vari-

ables are added to P. When specifying CPLEX settings,

we utilize one of the following characters:

8

minlp.org
minlp.org
https://github.com/Nadelgren/RNBBS_Instances
https://github.com/Nadelgren/RNBBS_Instances
https://researchcomputing.princeton.edu/systems/della
https://researchcomputing.princeton.edu/systems/della

N CPLEX default settings were used

P priority settings were employed for selecting the

branching variable

When specifying a formulation, we utilize the following

characters:

N no additional variables/constraints are added to P

B Nij and Equations (4)–(5) are added to P

I Ni and Equations (6)–(7) are added to P

J Nj and Equations (8)–(9) are added to P

T Nt and Equations (10)–(11) are added to P

A N and Equations (12)–(13) are added to P

Hence, the string “N.BIJ”, for example, indicates that de-

fault CPLEX settings were used and that Nij , Ni, and Nj

were added to P using Equations (4)–(9).

In the remainder of this section we present the results

of a computational test designed to determine which, if

any, of the record keeping variables should be added to

the structure of P. For the sake of space, we present two

carefully selected subsets of the results for this test. The

first is presented in Section 4.2 and the second in Section

4.3. Each subset of results is presented in two parts: (i)

a figure displaying performance profiles of relative CPU

time for instances that all considered formulations were

able to solve in under 5 hours, and (ii) a table displaying

CPU time and optimality gap results for instances that at

least one of the considered formulations was able to solve

in under 5 hours and at least one was unable to solve in

under 5 hours.

4.2. Reformulations Containing at Most One Record Keep-

ing Variable

Here we present results for N.N, N.B, N.I, N.J, N.T,

and N.A. Figure 2 contains a performance profile of rel-

ative CPU time for instances that all formulations were

able to solve in under 5 hours and Table 1 displays CPU

time and optimality gap results for instances that at least

one of the formulations was able to solve in under 5 hours

and at least one was not.

For the results displayed in Figure 2, we see that N.I

displayed the strongest performance for cost minimization

and both N.I and N.J displayed strong performance for

profit maximization. We also note that N.B performed

reasonably well for both objective types, while N.T and

N.N performed relatively poorly for both objective types.

Interestingly, the performance of N.A was reasonable for

cost minimization, but poor for profit maximization. We

do remind the reader, however, that the results displayed

in Figure 2 should be interpreted with some caution as

the results displayed therein are for instances that all of

the considered formulations were able to solve in under

five hours. Hence, these instances are, in some sense, the

easiest of the instances considered.

We now turn our attention to Table 1 which contains

results for instances that at least one formulation was able

to solve in under five hours and at least one was not. As

such, we view these instances as being of medium difficulty.

9

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Fr
ac

tio
n

of
 In

st
an

ce
s

So
lv

ed
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

●
● ●

●
● ● ●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● N.N
N.B
N.I

N.J
N.T
N.A

(a) Cost

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Fr
ac

tio
n

of
 In

st
an

ce
s

So
lv

ed
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

l

l l

l l l l l l l l l l l

l l l l l l l l l l

l l l l

l N.N
N.B
N.I

N.J
N.T
N.A

(b) Profit

Figure 2: Performance profiles of CPU time (s) for formulations

containing at most one additional variable – Instances considered

are those for which all formulations solved the instance in 5hrs

Table 1: Results for instances for which at least one formulation

failed to solve the instance in 5hrs and at least one formulation suc-

cessfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel

Solved Time Gap

Cost

N.N 15/39 90.7 (235.9) 6.1 (16.0)

N.B 20/39 64.1 (124.9) 6.2 (12.1)

N.I 34/39 3.6 (4.1) 1.4 (1.6)

N.J 25/39 7.4 (11.6) 7.3 (11.4)

N.T 4/39 65.3 (636.6) 20.8 (203.1)

N.A 14/39 121.7 (339.0) 26.0 (72.4)

Profit

N.N 8/41 413.6 (2119.6) 58.2 (298.4)

N.B 19/41 148.0 (319.4) 158.8 (342.6)

N.I 25/41 11.6 (19.0) 83.4 (136.7)

N.J 23/41 18.9 (33.7) 6.3 (11.3)

N.T 10/41 323.3 (1325.5) 229.0 (938.9)

N.A 16/41 200.9 (514.8) 408.9 (1047.9)

(Gray): (Average Relative Value) ÷ (Fraction Solved)

We note that because most of the considered instances

come from different network structures and because the

time required to solve each instance can vary so drasti-

cally, we do not consider actual CPU times or optimality

gaps, but rather relative versions of each, and we then re-

port averages for these two relative values. Specifically, we

10

compute relative time as

Relative Time For Instance `

=
CPU Time For Instance `

Minimum of CPU Times For All Instances

and relative optimality gap in an analogous way. We point

out that reporting results in this way is consistent with

the way results are displayed in performance profiles (see

[46] for more information). Recognize that relative val-

ues computed as described above will always be greater

than or equal to one, with values close to one indicating

relatively good performance and values much larger than

one indicating relatively poor performance. We also make

the following important notes about the results displayed

in Table 1: (i) relative CPU times are only averaged over

instances that were solved in under five hours, and (ii)

relative optimality gaps are only averaged over instances

that failed to solve in under five hours. Together, points (i)

and (ii) indicate that while relative CPU time and relative

optimality gap may be better metrics than their absolute

counterparts, both are still flawed in the sense that neither

takes into consideration the number of instances that were

actually successfully solved in under five hours. In an at-

tempt to take the number of successfully solved instances

into consideration, we divide each relative value by the

fraction of instances solved and report this value in gray

to the right of the relative value. As an example of the use-

fulness of this proposed metric, consider the N.T row of

the cost minimization section of Table 1. Note that when

considering relative CPU time, one may conclude that N.T

performs relatively well for these types of instances if they

overlook the fact that N.T only solved four of the consid-

ered 39 instances in under five hours. Using the proposed

metric, however, the modified relative time for N.T is sig-

nificantly higher, greatly exceeding the values associated

with all other formulations. Hence, this provides some in-

dication that the performance of N.T should be considered

poor even though its reported average relative time is not

extremely large.

4.3. Reformulations Containing More Than One Record

Keeping Variable

We now shift our focus to a comparison of N.N, N.B,

N.I, N.BIA, N.BIJA, and N.BIJTA. We note that N.N

and N.B are included here because N.N provides a com-

parison with the original formulation of P and N.B pro-

vides a comparison with the primary formulation consid-

ered in [39]. N.I is included because, among the reformula-

tions considered in Section 4.2, it is the reformulation that

showed the most promising results for cost minimization

instances and it is one of the top performing reformula-

tions for profit maximization instances. We include only

formulations N.BIA, N.BIJA, and N.BIJTA rather than

all formulations containing two or more record keeping

variables in order to save space and because of the strong

performance that N.BIA, N.BIJA, and N.BIJTA displayed

relative to that of the other formulations containing two or

more record keeping variables. Results for the aforemen-

tioned formulations are presented in Figure 3 and Table

11

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Fr
ac

tio
n

of
 In

st
an

ce
s

So
lv

ed
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

l
l

l
l

l l l l
l

l l l l l
l l l l l l l l l l l l l l

l N.N
N.B
N.I

N.BIA
N.BIJA
N.BIJTA

(a) Cost

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Fr
ac

tio
n

of
 In

st
an

ce
s

So
lv

ed
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

l

l l
l l

l l l
l l l

l l l l
l

l l l l l l l l l l l l

l N.N
N.B
N.I

N.BIA
N.BIJA
N.BIJTA

(b) Profit

Figure 3: Performance profiles of CPU time (s) for formulations N.N,

N.B, N.I, N.BIA, N.BIJA, and N.BIJTA – Instances considered are

those for which all formulations solved the instance in 5hrs

2. The information presented in each is analogous to that

contained in Figure 2 and Table 1, respectively. From the

results displayed in Figure 3 and Table 2, we observe: (i)

the performance of both N.N and N.B is relatively poor in

all cases, (ii) N.I performs moderately well, and (iii) all of

N.BIA, N.BIJA, and N.BIJTA perform quite well on all

instances, though N.BIA consistently displays the weakest

performance of the three. Additionally, it is worth noting

Table 2: Results for instances for which at least one formulation

failed to solve the instance in 5hrs and at least one formulation suc-

cessfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel

Solved Time Gap

Cost

N.N 5/39 246.0 (1918.5) 5.4 (42.1)

N.B 8/39 188.6 (919.3) 6.5 (31.8)

N.I 22/39 25.7 (45.5) 2.2 (3.8)

N.BIA 30/39 29.9 (38.8) 1.9 (2.5)

N.BIJA 35/39 2.0 (2.2) 2.6 (2.9)

N.BIJTA 34/39 14.7 (16.8) 2.8 (3.3)

Profit

N.N 3/64 831.6 (17740.2) 44.7 (953.5)

N.B 13/64 47.6 (234.4) 304.9 (1501.0)

N.I 20/64 18.9 (60.4) 321.1 (1027.5)

N.BIA 42/64 107.3 (163.5) 468.2 (713.5)

N.BIJA 55/64 3.5 (4.0) 44.1 (51.4)

N.BIJTA 52/64 6.0 (7.4) 7.5 (9.2)

(Gray): (Average Relative Value) ÷ (Fraction Solved)

12

that N.BIJA solves more instances in under 5 hours than

any of the other formulations.

The results presented in this section show that refor-

mulations of P containing a single record keeping variable

can be useful in reducing the CPU time required to com-

pute an optimal solution to P. While this result is to be

expected based on the previous work of Velez and Mar-

avelias [39], we note that the reformulations considered

herein (namely, N.I and N.J) offer significant reductions

in CPU time beyond those observed in Velez and Mar-

avelias [39]. Moreover, our results further show that ad-

ditional reductions in CPU time can often be obtained by

using extended reformulations of P in which combinations

of record keeping variables are simultaneously added to P.

We point out that, while it may be difficult to know a pri-

ori which formulation of P will produce the best results

for a given instance, in many real-world applications the

scheduling problem P is solved periodically, rather than

only once. In such cases the underlying network structure

defining P often remains unchanged and the modifications

to P result from changes in parameter values. Hence, it is

quite likely that, in practice, once a decision maker deter-

mines a formulation of P that offers strong performance for

their specific application, the same formulation will con-

tinue to provide strong results even as parameter values

are adjusted.

5. Prioritized Branching

We now consider the impact of imposing a hierarchical

set of branching priorities on the various binary and integer

variables present in P. Specifically, we adjust the default

parameter settings in GAMS so that each type of binary

and/or integer variable is given a priority score. In this

way, each time a branching decision is made we ensure that

the branching variable is selected from the set of variables

having the highest priority score among all variables that

are candidates for branching.

Before presenting any results, we make two notes. First,

we do not consider the case in which the variable Xijt is

given a higher priority score than any of Nij , Ni, Nj , Nt or

N . To see why, consider the variable Ni, for example, and

suppose that the integrality restrictions on Ni and Xijk

are relaxed. Observe from Equation (6) that if there ex-

ists an i′ ∈ I such that Ni′ is fractional, then there must

exist at least one j′ ∈ J and t′ ∈ T such that Xi′j′t′ is frac-

tional. Hence, if Xijt is given a higher priority score than

any of Nij , Ni, Nj , Nt or N , then branching will never

occur on the record keeping variable(s) having a lower pri-

ority score than Xijt and it would therefore be pointless

to include these variables in P. Second, all record keep-

ing variables are given a priority score that is exactly one

greater than the priority score of Xijt. We did run pre-

liminary tests in which each of the variables Xijt, Nij , Ni,

Nj , Nt and N were assigned unique priority scores, but

the results were not significantly different from those we

13

present here.

The formulations we now consider are N.BIA, N.BIJA,

N.BIJTA and their respective prioritized counterparts P.BIA,

P.BIJA, and P.BIJTA. For the sake of space, and because

of the relatively poor performance of N.N, N.B, and N.I

observed in Section 4.3, we no longer consider these for-

mulations. Results are presented in Figure 4 and Table 3.

We note that to aid in distinguishing between formulations

containing prioritized variables and those that do not, in

Figure 4 each formulation containing prioritized variables

is presented using the same color as its non-prioritized

counterpart, but with an opacity setting of 0.5.

From Figure 4 and Table 3 we observe that P.BIJA

clearly outperforms all other approaches for instances that

all approaches are able to solve in under 5 hours. Inter-

estingly, though, for instances that at least one approach

failed to solve and one approach successfully solved in un-

der 5 hours, both N.BIJA and N.BIJTA perform compa-

rably to, or perhaps even better than, P.BIJA.

6. BB Impacts

We now shift our focus from the overall solution time

for each formulations and instead consider the impact of

each formulation on each of the following aspects of BB: (i)

preprocessing, (ii) heuristics, and (iii) branching. Our goal

here is to determine why the reductions in CPU time ob-

served in Section 4 are occurring, or said differently, which

specific aspects of BB are able to exploit the presence of the

record keeping variables in order to reduce the overall solu-

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
k

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 S

ol
ve

d
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

N.BIA
N.BIJA
N.BIJTA

P.BIA
P.BIJA
P.BIJTA

(a) Cost

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 S

ol
ve

d
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

N.BIA
N.BIJA
N.BIJTA

P.BIA
P.BIJA
P.BIJTA

(b) Profit

Figure 4: Performance profiles of CPU time (s) for formulations

N.BIA, N.BIJA, N.BIJTA, P.BIA, P.BIJA, and P.BIJTA – Instances

considered are those for which all formulations solved the instance

in 5hrs

14

Table 3: Results for instances for which at least one formulation

failed to solve the instance in 5hrs and at least one formulation suc-

cessfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel

Solved Time Gap

Cost

N.BIA 20/31 60.9 (94.3) 2.4 (3.7)

N.BIJA 26/31 4.3 (5.1) 1.2 (1.5)

N.BIJTA 24/31 29.2 (37.7) 2.0 (2.5)

P.BIA 16/31 22.3 (43.3) 1.8 (3.4)

P.BIJA 23/31 3.5 (4.7) 1.6 (2.2)

P.BIJTA 8/31 11.0 (42.6) 2.9 (11.1)

Profit

N.BIA 16/39 17.1 (41.7) 509.0 (1240.8)

N.BIJA 31/39 9.8 (12.3) 418.3 (526.3)

N.BIJTA 27/39 11.0 (15.8) 10.7 (15.5)

P.BIA 21/39 132.3 (245.8) 563.7 (1046.8)

P.BIJA 29/39 8.0 (10.7) 2.5 (3.4)

P.BIJTA 5/39 2.0 (15.9) 31.7 (247.4)

(Gray): (Average Relative Value) ÷ (Fraction Solved)

tion time. We divide the remainder of this section into four

subsections, one for each of the aforementioned BB com-

ponents, and one in which we provide a deeper analysis of

our obtained results for a small subset of the considered

instances and also compare the performance of CPLEX to

that of other state-of-the-art MILP solvers. For all tests

discussed in the following dialogue, we compare formula-

tions N.N, N.BIA, N.BIJA, and N.BIJTA. We include N.N

as it serves as a base case, showing the performance when

no record keeping variables are added to P, and we include

N.BIA, N.BIJA, and N.BIJTA due to the relatively strong

performance they displayed in Sections 4 and 5. We also

note that we did conduct two preliminary tests in which

we sought to determine whether or not the proposed for-

mulations had any impact on the initial LP bound or on

the presolve phase of BB. To test the former, we turned

off the presolve functions of CPLEX, solved the LP relax-

ation of each formulation, and compared the resulting ob-

jective values. In all cases, all formulations resulted in the

same objective value, showing that the initial LP bound is

unchanged for any of the reformulations, i.e, none of the

reformulations are tighter than the original. To test the

latter, we turned the presolve functions of CPLEX back on,

solved the LP relaxation of the presolved version of each

formulation, and compared the resulting objective values.

In all cases, all formulations resulted in the same presolved

LP bound. We do note, however, that for approximately

12% of instances the presolved LP bound improved over

its non-presolved counterpart. Hence, we conclude that

15

all of the formulations contain identical information that

can be exploited during the presolve phase of BB in order

to obtain a tighter LP bound. Please note that we do not

claim that there are no differences in the way that presolve

functions for each of the formulations. Certainly presolve

does function differently as each formulation contains dif-

ferent sets of variables and, as a result, row, column, and

nonzero reductions can be significantly different among the

formulations. We claim only that these reductions, though

different, did not result in differences in initial LP bounds

for any of the instances we studied.

6.1. Preprocessing

We note here that by preprocessing we mean all oper-

ations that are performed by a solver after the completion

of presolve, but prior to the start of branching, that serve

to further tighten the dual bound. To our knowledge, in

CPLEX, preprocessing consists of probing, bound tighten-

ing, cut generation, and possibly other operations. In or-

der to determine the impact of the proposed formulations

on the preprocessing phase of BB, we turn off all heuris-

tics and allow CPLEX to process only the root node of

the BB tree. After processing the root node, we compute

the percent difference between the obtained dual bound

and the LP bound obtained in the second of our previous

tests described at the start of Section 6. The larger the

percent difference, the better, as this indicates that the

reductions performed resulted in a tighter relaxation. Re-

sults for this test are presented in Table 4 where, for each

Table 4: Testing the impact of the proposed formulations on the

preprocessing phase of BB

Fraction Avg Avg

Better Absolute Percent

Than N.N Difference Difference

Cost

N.N – 7.0 46.78%

N.BIA 103/115 14.1 62.95%

N.BIJA 105/115 15.3 69.40%

N.BIJTA 105/115 15.4 79.99%

Profit

N.N – 5.7 2.22%

N.BIA 98/115 13.9 5.35%

N.BIJA 96/115 15.2 5.87%

N.BIJTA 96/115 15.5 6.01%

objective type and each formulation, we report the frac-

tion of instances for which the dual bound obtained after

preprocessing was better, i.e., lower, than the dual bound

obtained using N.N, and the average absolute and percent

differences between the dual bounds obtained before and

after preprocessing. From Table 4 we observe that pre-

processing provides improvements to the dual bound in

all cases, but that, on average, improvements are greater

for problems with cost objectives than profit objectives.

Additionally, the dual bounds obtained after preprocess-

ing are significantly better, on average, for our proposed

reformulations than for the original formulation.

16

6.2. Heuristics

We now consider the impact of the proposed formula-

tions on the heuristics employed by CPLEX. In order to

test this, we turn off all cut generation and again allow

CPLEX to process only the root node. After processing

the root node, we record whether or not the heuristics

were able to identify an integer feasible solution, which we

henceforth refer to as an incumbent. For each instance,

formulation pair for which an incumbent was successfully

identified by the heuristics, we also record the optimality

gap after processing the root node. Additionally, for each

objective type, the fraction of instances for which the op-

timality gap found for each reformulation is better, i.e.,

smaller, than that of N.N is recorded. Results of this test

are summarized in Table 5. We note that in Table 5 we

report modified optimality gaps in a similar fashion to the

modified values we reported earlier in Tables 1, 2, and 3.

Specifically, we report in gray the optimality gap divided

by the fraction of instances for which an incumbent solu-

tion was found. The motivation for the inclusion of this

metric is that, in some sense, it penalizes each formulation

proportionately to the number of instances for which the

heuristics were not able to identify an incumbent.

It is interesting to recognize from Table 5 that in most

cases the incumbents obtained from the reformulations

proposed herein are not as high quality as those obtained

from the original formulation. On one hand, this is sur-

prising because, as seen in Section 4, using these reformu-

lations generally results in an overall reduction in the CPU

Table 5: Testing the impact of the proposed formulations on the BB

heuristic

Fraction Fraction Avg

Incumbent Better Optimality

Found Than N.N Gap

Cost

N.N 99/115 – 42.9% (49.8)

N.BIA 90/115 22/115 44.9% (57.4)

N.BIJA 92/115 18/115 44.6% (55.8)

N.BIJTA 90/115 18/115 45.0% (57.5)

Profit

N.N 101/115 – 44.7% (50.9)

N.BIA 99/115 42/115 84.2% (97.8)

N.BIJA 99/115 39/115 82.1% (95.4)

N.BIJTA 99/115 41/115 78.7% (91.4)

(Gray): (Average Optimality Gap) ÷ (Fraction Incumbent Found)

17

time required to solve instances to optimality and it is well

known that the overall solution time of BB is often highly

dependent on the ability of an optimizer to obtain quality

incumbent solutions quickly. On the other hand, though,

there are reasons that this result is to be expected. For

one, we know that each reformulation involves the addition

of several new integer variables and several new constraints

to P and so, as these changes increase the size and com-

plexity of each instance, it does make sense that this might

have a negative impact on the performance of a heuristic.

While we do not study the impact of doing so in this work,

we note that in the future it may be interesting to develop

an implementation in which, when P is reformulated using

one of our proposed reformulations, a heuristic is applied

to the unmodified version of P and the obtained incum-

bents are mapped to the reformulated problem using the

appropriate subset of Equations (4)–(13).

6.3. Branching

We next study the branching phase of BB. In order

to determine the impact of our proposed formulations on

this phase of the BB procedure, we compare the number

of nodes required to solve each instance. We note that

for this test both cut generation and heuristics are turned

back on, because without these features the performance

of BB dramatically suffers. As a result, strictly speaking,

the strong performance of our proposed reformulations dis-

played in the following data should not be interpreted as

being due solely to differences in branching, but rather

Table 6: Testing the impact of the proposed formulations on the

branching phase of BB

Fraction Avg Rel Avg Rel

Solved Nodes† Nodes‡

Cost

(46 instances) (22 instances)

N.N 69/115 1.00 1.0000

N.BIA 95/115 0.46 0.0668

N.BIJA 101/115 0.30 0.0047

N.BIJTA 99/115 0.24 0.0604

Profit

(16 instances) (27 instances)

N.N 24/115 1.00 1.0000

N.BIA 62/115 0.46 0.0797

N.BIJA 78/115 0.28 0.0031

N.BIJTA 75/115 0.18 0.0038

†: Instances solved in < 5 hours by all formulations above, and N.N

not solved at the root node

‡: Instances solved in > 5 hours by N.N and < 5 hours by all others

differences in the BB process as a whole. However, as the

primary metric we report for this test is the number of

nodes required to solve each instance, significant differ-

ences in these numbers can still be attributed primarily

to the benefits of branching on record keeping variables.

Results for this test are displayed in Table 6. The first

piece of information recorded in Table 6 is the fraction

of instances solved in under five hours. The remaining

data is displayed for two specific subsets of instances: (i)

18

those that all considered formulations were able to solve

in under five hours, but that were not solved by N.N at

the root node, and (ii) those that N.BIA, N.BIJA, and

N.BIJTA were able to solve in under five hours, but N.N

was not. For each subset, we report average values for

relative numbers of nodes calculated as

Relative # Nodes For Instance `, Formulation k

=
Nodes to Solve Instance ` Using Formulation k

Nodes to Solve Instance ` Using N.N

for the former subset, and

Relative # Nodes For Instance `, Formulation k

=
Nodes to Solve Instance ` Using Formulation k

Nodes Explored in 5 hrs by N.N for Instance `

for the latter. As can be seen from Table 6, all the con-

sidered reformulations greatly reduce the number of nodes

required to solve instances of P.

We end our discussion on the branching phase of BB

by noting that our presented results are, again, not sur-

prising. In fact, branching on record keeping variables can

be viewed as a type of constraint branching as introduced

by Ryan and Foster [47] and later generalized by Appleget

and Wood [48], which has been shown to be useful in many

other applications of MILP.

6.4. Further Analysis

Recall from the work done so far in this section that

preprocessing and branching have been identified as the

main phases of BB during which CPLEX is able to exploit

certain features of our proposed reformulations to reduce

Figure 5: STN – Network from Velez et al. [44]

Task-unit mapping: Ji1 = Ji2 = {j1}; Ji3 = {j2}; Ji4 = {j3};

Ji5 = {j4}.

solution time. We now seek to answer the following two

questions:

1. Can we gain a deeper insight into what specific prob-

lem features CPLEX is exploiting to improve perfor-

mance?

2. Are the results we observe unique to CPLEX, or do

other MILP solvers display similar results?

In pursuit of answering Question 1, we take a deeper look

at the reductions made by CPLEX when solving one of the

instances we considered in our previous tests. Specifically,

we consider the network referred to as “network 3” by

Velez and Maravelias [39], which was originally presented

in [44], and we employ the cost objective. The STN repre-

sentation of this network is given in Figure 5, and we note

that the optimal objective value of the problem is 1145.

To conduct our analysis, we employ the CPLEX C API,

together with a solve callback, in order to access the mod-

ified MILP problem that CPLEX actually solves at each

node of the BB tree. We then access this problem for the

root node once it has been fully processed. In this way

we are able to see the cuts that CPLEX has generated

(and retained) as well as any variable bounds that have

19

been tightened prior to the start of the branching phase

of BB. For this instance, when using the N.N formula-

tion, CPLEX adds 25 cuts that are retained throughout

the processing of the root node. We next solve the LP re-

laxation of the obtained problem, which gives an objective

value of 1133.32. We note that at this solution, 15 of the

abovementioned 25 cuts are binding. Similarly, when us-

ing the N.BIJTA formulation, CPLEX adds 36 cuts that

are retained, 20 of which are binding at the LP solution.

More interestingly, though, CPLEX is also able to gener-

ate the following bounds on record keeping variables that

are binding at the LP solution:

Ni1,j1 = 25

Ni3,j2 = 15

Ni1 ≥ 25

Ni2 ≥ 7

Ni4 ≥ 14

Ni5 ≥ 11

Nj1 ≥ 32

Nj2 ≥ 15

It is important to point out here that the objective value of

this LP is 1145, which shows that CPLEX has fully tight-

ened the dual bound. It is also interesting to note that

if we add constraints enforcing these same bounds to the

LP obtained after processing the root node of the N.N for-

mulation, the optimal value improves to 1145. This serves

as evidence that the bound tightening phase of CPLEX’s

solution procedure significantly contributes to the reduc-

tions in solution time that are obtained when using our

proposed reformulations.

In pursuit of answering Question 2, we select 18 of

the instances considered in our previous tests for which

CPLEX displayed an extreme difference in performance

using formulation N.N as opposed to N.BIJTA, and we

compare the performance of three different MILP solvers

on the selected instances using these two formulations.

Specifically, we employ the commercial solvers CPLEX

22.1.1 [49] and Gurobi 10.0.0 [50], as well as the open-

source solver HiGHS 1.5.1 [51, 52], all via GAMS 42.4.0.

The tests were run on a Dell Latitude 7420 with a 2.60GHz

Intel i5-1145G7 processor and 16GB of RAM running Linux

Mint 20.3. We note that the reason for the discrepancy in

software used here compared to earlier parts of this work

is our desire to employ the HiGHS solver for these tests,

which is not available in the GAMS version used for our

prior tests. We set a one hour time limit for all solvers

for this test, the results of which are given in Table 7.

We note that for the instance identifiers given in Table

7, “V” indicates an instance from [39], “M” indicates an

instance from minlp.org, and “R” indicates a randomly

generated instance. Furthermore, for instances from [39]

the value given indicates the number assigned to the asso-

ciated network in that work, for instances from minlp.org

the value given indicates the horizon length, and for ran-

domly generated instances the three underscore delimited

values indicate |I|, |J|, and |K|, respectively. Interestingly,

20

minlp.org
minlp.org

Table 7: Comparing MILP solver performance on selected instances

CPLEX Gurobi HiGHS

N.N N.BIJTA N.N N.BIJTA† N.BIJTA‡ N.N N.BIJTA

Instance Obj Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap

V2 Profit 3600 3.32 2.4 0 3600 3.86 3600 3.43 3600 3.87 3600 3.62 127.6 0

V3 Cost 3600 0.65 0.0 0 2.0 0 3.3 0 1.0 0 523.5 0 59.9 0

V4 Cost 3600 0.46 2.4 0 3.5 0 3.1 0 4.7 0 1034.1 0 12.6 0

V4 Profit 3600 0.21 6.1 0 3600 0.12 3600 0.21 3600 0.12 573.8 0 60.9 0

M32 Profit 3600 0.31 246.9 0 3600 0.50 3600 0.54 4.3 0 3600 1.16 166.0 0

M40 Cost 1175.4 0 0.7 0 76.3 0 24.1 0 0.6 0 3600 0.77 5.0 0

M44 Profit 3600 1.63 544.6 0 3600 0.79 3600 1.02 206.3 0 3600 2.74 1543.4 0

R5 3 6 Profit 402.7 0 3.7 0 5.3 0 27.0 0 0.8 0 3600 0.26 8.3 0

R5 3 7 Profit 3600 5.88 30.5 0 3600 1.75 3600 2.31 3600 1.11 3600 3.73 83.2 0

R5 4 5 Profit 3600 0.05 0.7 0 3.7 0 1.4 0 1.9 0 1843.3 0 15.0 0

R6 5 7 Profit 3600 0.36 8.0 0 3600 0.36 32.0 0 2.9 0 1986.7 0 39.0 0

R8 5 8 Cost 1429.0 0 13.1 0 21.5 0 926.9 0 5.1 0 3600 4.14 27.3 0

R8 11 8 Cost 3600 4.01 26.7 0 3600 5.64 3600 4.19 7.6 0 3600 12.74 1346.7 0

R9 11 7 Profit 3600 0.39 3600 0.02 3600 0.25 3600 0.42 3600 0.01 3600 0.48 1060.3 0

R10 8 11 Profit 3600 1.57 3600 0.01 3600 1.04 3600 1.29 3600 0.15 3600 1.72 3579.0 0

R11 15 13 Cost 3600 16.40 26.4 0 534.5 0 2949.2 0 59.4 0 3600 26.65 236.3 0

R12 10 11 Profit 3600 0.18 1169.7 0 94.3 0 153.0 0 51.6 0 3600 1.07 372.7 0

R13 26 12 Cost 3600 18.75 90.9 0 3600 12.90 3600 11.90 3600 5.32 3600 28.40 667.3 0

†: Gurobi not preceded by bound tightening

‡: Gurobi preceded by bound tightening

from Table 7 we observe a very similar pattern of perfor-

mance between CPLEX and HiGHS, but not Gurobi. In

studying the log files from our tests, we find it likely that

this difference in performance is caused by Gurobi substi-

tuting all record keeping variables out of the model prior

to running its probing and/or bound tightening schemes.

To test whether or not this is the case and help determine

if Gurobi’s performance could be improved by exploiting

valid bounds on record keeping variables, we reran the

N.BIJTA portion of our tests with Gurobi, but this time

we tightened the bounds on each record keeping variable

prior to passing the problem to Gurobi. Assume that N∗

represents an arbitrary record keeping variable. The ap-

proach we employ for computing a tight lower bound `∗

on N∗ consists of solving the LP relaxation of problem P

with f(·) = N∗ and setting `∗ to be the ceiling of the opti-

mal objective value. Similarly, we compute a tight upper

bound u∗ on N∗ by solving the LP relaxation of problem P

with f(·) = −N∗ and setting u∗ to be the floor of the neg-

ative of the optimal objective value. Results for our tests

without bound tightening are indicated in Table 7 by the

symbol † and the tests with bound tightening are indicated

21

by the symbol ‡. Additionally, we note that the solution

time reported for the tests with bound tightening do not

include time spent employing the bound tightening proce-

dure. As can be seen in Table 7, in most cases Gurobi’s

performance significantly improves when provided tighter

bounds for the record keeping variables.

From the tests conducted in this section, we are now

quite confident that the main phases of BB in which in-

formation about record keeping variables can be exploited

in order to improve the performance of a MILP solver are

preprocessing (especially probing/bound tightening) and

branching. Moreover, we also conclude that this improve-

ment in performance is not unique to CPLEX, though we

do note that not all solvers are equally able to achieve these

improvements, seemingly due to the order in which certain

presolve and/or preprocessing operations are carried out.

7. Utility of Proposed Reformulations for Other

Problem Classes

Given the reductions in solution time that we observed

when record keeping variables are added to P, we now an-

alyze the impact of incorporating record keeping variables

when solving more complicated classes of problems. For

this purpose we modify the instances from minlp.org that

we utilized throughout the earlier sections of this work.

These instances are provided in such a way that the user

is able to employ one of two sets of modifications: (i) the

incorporation of restrictions based on the availability of

utility resources, or (ii) the incorporation of variable pro-

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 S

ol
ve

d
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

l l l

l l l l l l l l l l l l l l l l l l l

l l l l l l

l N.N
N.BIA

N.BIJA
N.BIJTA

(a) Cost

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 S

ol
ve

d
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

l l l l l l l l l l l l l l l l

l l l l l l l l l l l l

l N.N
N.BIA
N.BIJA
N.BIJTA

(b) Profit

Figure 6: Performance profiles of CPU time (s) for selected formu-

lations on UTL problems – Instances considered are those for which

all formulations solved the instance in 5hrs

cessing times based on batch size. We employ both mod-

ifications and refer to the first set of problems as UTL

instances and the second as VPT instances. We utilize

the same objective types mentioned earlier, i.e., cost, and

profit.

Results for the UTL instances are presented in Fig-

ure 6 and Table 8 and results for the VPT instances are

presented in Figure 7 and Table 9. Interestingly, the

22

minlp.org

Table 8: Results for UTL instances for which at least one formula-

tion failed to solve the instance in 5hrs and at least one formulation

successfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel

Solved Time Gap

Cost

N.N 1/2 13.0 (26.0) 1.0 (2.0)

N.BIA 1/2 1.8 (3.5) 1.0 (2.0)

N.BIJA 2/2 2.1 (2.1) –

N.BIJTA 2/2 2.8 (2.8) –

Profit

N.N 0/3 – 1.0 (∞)

N.BIA 3/3 6.9 (6.9) –

N.BIJA 3/3 3.0 (3.0) –

N.BIJTA 3/3 13.0 (13.0) –

(Gray): (Average Relative Value) ÷ (Fraction Solved)

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

k

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 S

ol
ve

d
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e
l l

l

l l l l l l l l l l l l l l l l

l l l l l l l l l

l N.N
N.BIA
N.BIJA
N.BIJTA

(a) Cost

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 S

ol
ve

d
In

 L
es

s
Th

an
 'k

' T
im

es
 T

he
Fa

st
es

t I
ns

ta
nc

e

l

l

l l

l N.N
N.BIA
N.BIJA
N.BIJTA

(b) Profit

Figure 7: Performance profiles of CPU time (s) for selected formu-

lations on VPT problems – Instances considered are those for which

all formulations solved the instance in 5hrs

23

Table 9: Results for VPT instances for which at least one formula-

tion failed to solve the instance in 5hrs and at least one formulation

successfully solved the instance in 5hrs

Fraction Avg Rel Avg Rel

Solved Time Gap

Cost

N.N 0/1 – 1.0 (∞)

N.BIA 1/1 2.4 (2.4) –

N.BIJA 1/1 1.0 (1.0) –

N.BIJTA 1/1 2.5 (2.5) –

Profit

N.N 0/3 – 4.9 (∞)

N.BIA 2/3 5.4 (8.1) 1.0 (1.5)

N.BIJA 3/3 3.1 (3.1) –

N.BIJTA 2/3 3.1 (4.6) 434.8 (652.2)

(Gray): (Average Relative Value) ÷ (Fraction Solved)

results for both UTL and VPT instances are quite sim-

ilar. In observing Figures 6 and 7 and Tables 8 and 9,

we observe the strongest performance from N.BIJA and

N.BIJTA, slightly weaker performance from N.BIA, and

relatively poor performance from N.N.

8. Conclusion

We have introduced the concept of a record keeping

variable as well as several ways to formulate certain classes

of production scheduling problems as discrete-time based

mixed-integer linear programs that incorporate record keep-

ing variables. Moreover, we have shown empirically that

the presence of record keeping variables in a problem’s

formulation can drastically reduce the CPU time required

to solve the problem. In all, we considered 230 instances

of chemical production scheduling problems (excluding the

UTL and VPT variants). Of these, there were 27 instances

that both our proposed method N.BIJA and method N.N

(representative of employing default CPLEX to solve the

base formulation of problem P) were able to solve in un-

der 5 hours and that at least one of these approaches was

unable to solve in 3 minutes. For these instances, the

CPU time used by our approach N.BIJA was 2.79% of

that used by N.N, on average. Additionally, N.BIJA was

able to solve 83 instances in under 5 hours that N.N was

not. Similarly, there were 25 instances that both our pro-

posed method N.BIJA and method N.B (representative of

employing default CPLEX to solve the most promising for-

mulation proposed in [39]) were able to solve in under 5

24

hours and that at least one of these approaches was unable

to solve in 3 minutes. For these instances, the CPU time

used by our approach N.BIJA was 3.25% of that used by

N.B, on average. Additionally, N.BIJA was able to solve

70 instances in under 5 hours that N.B was not.

Later we showed that prioritizing branching on record

keeping variables over other integer variables works well

in certain cases, particularly when Nij , Ni, Nj and N are

simultaneously included in the model and the overall so-

lution time is estimated to be less than 5 hours. In ad-

dition to showing the impact of our proposed reformu-

lations on the CPU time required to solve instances, we

sought to determine why the improvements that we ob-

served were obtained by exploring the impact of our pro-

posed reformulations on the preprocessing, heuristic, and

branching phases of the branch-and-bound procedure. Our

results showed that the incorporation of record keeping

variables in a problem’s formulation can result in signifi-

cant improvements in the quality of the variable bounds

and/or cuts generated and the number of nodes required

to solve the problem. Interestingly, we found that simi-

lar improvements were not achieved in generating quality

heuristic solutions. Finally, we showed that the incorpo-

ration of record keeping variables into the formulation of

more complex classes of scheduling problems can also re-

sult in significant reduction in solution time. We note that

this last point is of particular importance as it provides ev-

idence that one can still expect to achieve improved per-

formance by applying the techniques proposed herein to

process scheduling problems whose formulations account

for specialized, application specific process characteristics.

References

[1] I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro,

S. Engell, I. E. Grossmann, J. Hooker, C. Méndez, G. Sand,

J. Wassick, Scope for industrial applications of production

scheduling models and solution methods, Computers & Chem-

ical Engineering 62 (2014) 161–193.

[2] G. P. Georgiadis, A. P. Elekidis, M. C. Georgiadis,

Optimization-based scheduling for the process industries: from

theory to real-life industrial applications, Processes 7 (2019)

438.

[3] O. Avalos-Rosales, A. Alvarez, F. Angel-Bello, A reformulation

for the problem of scheduling unrelated parallel machines with

sequence and machine dependent setup times, in: Proceedings

of the International Conference on Automated Planning and

Scheduling, volume 23, 2013, pp. 278–282.

[4] S. Velez, Y. Dong, C. T. Maravelias, Changeover formulations

for discrete-time mixed-integer programming scheduling mod-

els, European Journal of Operational Research 260 (2017) 949–

963.

[5] D. C. Cafaro, I. E. Grossmann, Strengthening discrete-time

scheduling formulations by introducing the concept of cam-

paigns, Computers & Chemical Engineering 143 (2020) 107101.

[6] A. Kramer, M. Iori, P. Lacomme, Mathematical formulations

for scheduling jobs on identical parallel machines with family

setup times and total weighted completion time minimization,

European Journal of Operational Research 289 (2021) 825–840.

[7] J. Berkhout, E. Pauwels, R. van der Mei, J. Stolze,

S. Broersen, Short-term production scheduling with non-

triangular sequence-dependent setup times and shifting produc-

tion bottlenecks, International Journal of Production Research

59 (2021) 727–751.

[8] P. M. Castro, Optimal scheduling of a multiproduct batch

25

chemical plant with preemptive changeover tasks, Computers

& Chemical Engineering 162 (2022) 107818.

[9] P. M. Castro, I. Harjunkoski, I. E. Grossmann, Discrete and

continuous-time formulations for dealing with break periods:

Preemptive and non-preemptive scheduling, European Journal

of Operational Research 278 (2019) 563–577.

[10] Y. Wang, X. Jin, S. Lu, Enhanced discrete time formulation

for a short-term batch process scheduling problem with utility

constraints, Industrial & Engineering Chemistry Research 58

(2019) 14559–14568.

[11] D. Gupta, C. T. Maravelias, J. M. Wassick, From reschedul-

ing to online scheduling, Chemical Engineering Research and

Design 116 (2016) 83–97.

[12] D. Gupta, C. T. Maravelias, On the design of online production

scheduling algorithms, Computers & Chemical Engineering 129

(2019) 106517.

[13] R. D. McAllister, J. B. Rawlings, C. T. Maravelias, The inherent

robustness of closed-loop scheduling, Computers & Chemical

Engineering 159 (2022) 107678.

[14] C. A. Floudas, X. Lin, Continuous-time versus discrete-time ap-

proaches for scheduling of chemical processes: a review, Com-

puters & Chemical Engineering 28 (2004) 2109–2129.

[15] A. Sundaramoorthy, C. T. Maravelias, Computational study

of network-based mixed-integer programming approaches for

chemical production scheduling, Industrial & Engineering

Chemistry Research 50 (2011) 5023–5040.

[16] Z.-L. Chen, W. B. Powell, Solving parallel machine scheduling

problems by column generation, INFORMS Journal on Com-

puting 11 (1999) 78–94.

[17] Z.-L. Chen, W. B. Powell, Exact algorithms for scheduling mul-

tiple families of jobs on parallel machines, Naval Research Lo-

gistics (NRL) 50 (2003) 823–840.

[18] S. Gélinas, F. Soumis, Dantzig-wolfe decomposition for job shop

scheduling, in: Column generation, Springer, 2005, pp. 271–302.

[19] M. J. P. Lopes, J. V. de Carvalho, A branch-and-price algo-

rithm for scheduling parallel machines with sequence depen-

dent setup times, European journal of operational research 176

(2007) 1508–1527.

[20] J. Van den Akker, J. Hoogeveen, J. W. van Kempen, Using

column generation to solve parallel machine scheduling prob-

lems with minmax objective functions, Journal of Scheduling

15 (2012) 801–810.

[21] A. Ghoniem, F. Farhadi, A column generation approach for

aircraft sequencing problems: a computational study, Journal

of the Operational Research Society 66 (2015) 1717–1729.

[22] X. Xiong, P. Zhou, Y. Yin, T. Cheng, D. Li, An exact branch-

and-price algorithm for multitasking scheduling on unrelated

parallel machines, Naval Research Logistics (NRL) 66 (2019)

502–516.

[23] V. Jain, I. E. Grossmann, Algorithms for hybrid milp/cp models

for a class of optimization problems, INFORMS Journal on

computing 13 (2001) 258–276.

[24] P. Baptiste, C. Le Pape, W. Nuijten, Constraint-based schedul-

ing: applying constraint programming to scheduling problems,

volume 39, Springer Science & Business Media, 2001.

[25] A. Bockmayr, N. Pisaruk, Detecting infeasibility and generating

cuts for mip using cp, in: 5th International Workshop on Inte-

gration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems-CPAIOR’03, 2003,

pp. 11–p.

[26] G. El Khayat, A. Langevin, D. Riopel, Integrated production

and material handling scheduling using mathematical program-

ming and constraint programming, European Journal of Oper-

ational Research 175 (2006) 1818–1832.

[27] R. Sadykov, L. A. Wolsey, Integer programming and constraint

programming in solving a multimachine assignment scheduling

problem with deadlines and release dates, INFORMS Journal

on Computing 18 (2006) 209–217.

[28] L. Zeballos, O. Quiroga, G. P. Henning, A constraint program-

ming model for the scheduling of flexible manufacturing systems

with machine and tool limitations, Engineering Applications of

Artificial Intelligence 23 (2010) 229–248.

26

[29] E. B. Edis, I. Ozkarahan, A combined integer/constraint pro-

gramming approach to a resource-constrained parallel machine

scheduling problem with machine eligibility restrictions, Engi-

neering Optimization 43 (2011) 135–157.

[30] A. M. Ham, Integrated scheduling of m-truck, m-drone, and

m-depot constrained by time-window, drop-pickup, and m-visit

using constraint programming, Transportation Research Part

C: Emerging Technologies 91 (2018) 1–14.

[31] R. Gedik, D. Kalathia, G. Egilmez, E. Kirac, A constraint

programming approach for solving unrelated parallel machine

scheduling problem, Computers & Industrial Engineering 121

(2018) 139–149.

[32] L. Meng, C. Zhang, Y. Ren, B. Zhang, C. Lv, Mixed-integer lin-

ear programming and constraint programming formulations for

solving distributed flexible job shop scheduling problem, Com-

puters & Industrial Engineering 142 (2020) 106347.

[33] M. Awad, K. Mulrennan, J. Donovan, R. Macpherson,

D. Tormey, A constraint programming model for makespan

minimisation in batch manufacturing pharmaceutical facilities,

Computers & Chemical Engineering 156 (2022) 107565.

[34] P. M. Castro, I. E. Grossmann, Generalized disjunctive

programming as a systematic modeling framework to derive

scheduling formulations, Industrial & Engineering Chemistry

Research 51 (2012) 5781–5792.

[35] P. M. Castro, I. E. Grossmann, P. Veldhuizen, D. Esplin, Opti-

mal maintenance scheduling of a gas engine power plant using

generalized disjunctive programming, AIChE journal 60 (2014)

2083–2097.

[36] P. M. Castro, I. Marques, Operating room scheduling with

generalized disjunctive programming, Computers & Operations

Research 64 (2015) 262–273.

[37] H. Mostafaei, P. M. Castro, A. Ghaffari-Hadigheh, Short-term

scheduling of multiple source pipelines with simultaneous in-

jections and deliveries, Computers & Operations Research 73

(2016) 27–42.

[38] O. Wu, G. Dalle Ave, I. Harjunkoski, L. Imsland, A rolling

horizon approach for scheduling of multiproduct batch produc-

tion and maintenance using generalized disjunctive program-

ming models, Computers & Chemical Engineering 148 (2021)

107268.

[39] S. Velez, C. T. Maravelias, Reformulations and branching

methods for mixed-integer programming chemical production

scheduling models, Industrial & Engineering Chemistry Re-

search 52 (2013) 3832–3841.

[40] E. Kondili, C. C. Pantelides, R. W. Sargent, A general algo-

rithm for short-term scheduling of batch operations—i. milp for-

mulation, Computers & Chemical Engineering 17 (1993) 211–

227.

[41] N. Shah, C. C. Pantelides, R. W. H. Sargent, A general algo-

rithm for short-term scheduling of batch operations. 2. compu-

tational issues, Computers & Chemical Engineering 17 (1993)

229–244.

[42] L. G. Papageorgiou, C. C. Pantelides, Optimal campaign plan-

ning/scheduling of multipurpose batch/semicontinuous plants.

1. mathematical formulation, Industrial & engineering chem-

istry research 35 (1996) 488–509.

[43] C. T. Maravelias, Mixed-time representation for state-task net-

work models, Industrial & engineering chemistry research 44

(2005) 9129–9145.

[44] S. Velez, A. Sundaramoorthy, C. T. Maravelias, Valid inequal-

ities based on demand propagation for chemical production

scheduling mip models, AIChE Journal 59 (2013) 872–887.

[45] IBM-ILOG, CPLEX Optimization Studio 20.1 User’s Man-

ual, IBM, 2020. Available from https://www.ibm.com/docs/en/

icos/20.1.0?topic=cplex-users-manual.

[46] E. D. Dolan, J. J. Moré, Benchmarking optimization soft-

ware with performance profiles, Mathematical programming

91 (2002) 201–213.

[47] D. M. Ryan, B. A. Foster, An integer programming approach

to scheduling, Computer scheduling of public transport urban

passenger vehicle and crew scheduling (1981) 269–280.

[48] J. A. Appleget, R. K. Wood, Explicit-constraint branching for

27

https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual

solving mixed-integer programs, in: Computing Tools for Mod-

eling, Optimization and Simulation, Springer, 2000, pp. 245–

261.

[49] IBM-ILOG, CPLEX Optimization Studio 22.1.1 User’s Man-

ual, IBM, 2022. Available from https://www.ibm.com/docs/en/

icos/22.1.1?topic=optimizers-users-manual-cplex.

[50] Gurobi Optimization, LLC, Gurobi Optimizer Reference Man-

ual, 2023. URL: https://www.gurobi.com.

[51] HiGHS, Documentation, HiGHS, 2022. Available from https:

//highs.dev/#docs.

[52] Q. Huangfu, J. J. Hall, Parallelizing the dual revised simplex

method, Mathematical Programming Computation 10 (2018)

119–142.

28

https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.gurobi.com
https://highs.dev/#docs
https://highs.dev/#docs

	Introduction
	Background
	Notation
	Problem Formulation

	Reformulations
	Previous Work
	Further Considerations

	Initial Assessment of Reformulations
	Preliminaries
	Reformulations Containing at Most One Record Keeping Variable
	Reformulations Containing More Than One Record Keeping Variable

	Prioritized Branching
	BB Impacts
	Preprocessing
	Heuristics
	Branching
	Further Analysis

	Utility of Proposed Reformulations for Other Problem Classes
	Conclusion

