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Abstract—A complex physics-based modeling procedure and
the uncertainty and confidentiality of internal parameters of dis-
tributed energy resources (DERs) motivate system identification
tools for control purposes in smart grids. This paper develops
a framework for data-driven nonlinear modeling and control of
DERs using sparse identification of nonlinear dynamics (SINDy).
Using the proposed data-driven model for closed-loop control, we
demonstrate the effectiveness of a model-free design in stability
analysis of DERs in smart grids. Feedback linearization control
of DERs was chosen over conventional vector control in this
research due to its superior capability of accounting for DER
nonlinearities and weak AC grid integration. Compared with
existing physics-based designs that heavily rely on knowing the
detailed system dynamics or uninterpretable data-driven designs
that rely on large historical data, the proposed model-free DER
identification and control framework can accurately capture the
dynamics of the DERs based on available measurements and
provide guaranteed performance for black-start, weak AC grid
integration, microgrid integration, and stability analysis. Real-
time and offline simulations in addition to a detailed eigenvalue
analysis are conducted to compare the effectiveness of the
proposed data-driven approach with physics-based controllers.

Index Terms—Sparse Identification of Nonlinear Dynamics
(SINDy), Feedback Linearization, Distributed Energy Resource
(DER).

I. INTRODUCTION

Numerous inverter-based distributed energy resources

(DERs) are currently being integrated into the energy grid.

According to the electric reliability council of Texas (ERCOT),

the grid may become inoperable once DER penetration passes

80% of annual energy demand. In addition, although these

DERs are nonlinear in nature, they are typically controlled

by cascaded linear regulators, which do not guarantee perfor-

mance when the operating points of the system change, result-

ing in grid instability. For instance, a three-phase fault in July

2020 reduced the output of a solar photovoltaic (PV) system in

Southern California by approximately 1000 MW. According

to the north American electric reliability corporation (NERC),

the failure was caused by the instability of linear current

regulators [1]. This shows a clear limitation of existing DER

controllers that heavily rely on linear regulators and thus calls

for advanced controllers that could provide more robustness

and guaranteed stability for the integration of DERs to the
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grid. One of the key knowledge gaps in controlling DERs is

the lack of robust controller designs that properly account for

DERs nonlinear nature and can improve the grid dynamics

without involving expensive controller redesigns/tuning as a

result of numerous expansions in the power grid.

The stability issues of DERs in smart grids have received

significant attention over the past decade. These studies can

be categorized into a) stability analysis approaches [1]–[3],

b) supplementary control design [4]–[6], and c) controller

redesign [7]–[9]. These studies often suggest an operating

range/controller gain to stabilize interactions, which might

not be feasible when the system expands or if there are

uncertainties/faults. As a result, advanced control techniques

are needed to provide a wider operating range without the

need for controller re-design. With nonlinear controllers, these

barriers can be overcome and predictable performance can

be achieved over a wide operating range. There have been

several studies focused on the design of nonlinear controllers

(i.e., sliding-mode control [10], model predictive control [11],

and feedback linearization control [12], [13]) for inverter-

based DERs to improve the grid resilience. While nonlinear

controllers are robust, they require a detailed mathematical

model of the system for guaranteed performance [14]–[16].

The question is, can we reduce the complexities of nonlinear

control designs for DERs by solving the modeling challenges

via machine learning?

Machine learning has recently provided new tools for pre-

dicting physics-based models of dynamical systems. Many

approaches have been utilized for data-driven model identi-

fication of dynamics such as dynamic mode decomposition

(DMD) [17], neural networks (NNs) [18], Koopman operator

[19], and sparse identification of nonlinear dynamics (SINDy)

[20]. In power systems application, several recent studies

have focused on data-driven modeling using these approaches

[21]–[26]. For example, dynamic mode decomposition was

utilized in [21] for a microgrid control method that is delay

tolerant, or Koopman operator was utilized in [23] to identify

the dynamics of generators for state estimation purposes.

As another example, a data-driven approach using machine

learning tools was proposed in [25] to identify the lifetime of

lithium-ion batteries. Among these methods, dynamic mode

decomposition heavily relies on a linear dynamics assump-

tion, but can handle high-dimensional data. Neural-network-

based approaches require a large amount of training data

and are also infamous for not being interpretable [20], [27].

A Koopman operator connects dynamic mode decomposition
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to nonlinear dynamics through an infinite dimensional linear

operator. Under special circumstances and provided that a

good measurement basis is selected, Koopman operator may

converge to a finite dimensional space, which is not guaranteed

for many systems [19], [28]. On the other hand, sparse

identification uses the sparse regression technique to identify

dominant dynamics of candidate functions, and has shown

promise in accurately modeling the unknown dynamics of

nonlinear systems [29], [30]. Among the major advantages

of SINDy is its sparsity, which enables easy implementation,

reduces the training time, results in an interpretable model,

and provides an accurate formulation that outperforms other

model identification techniques.

While the existing research shows the significant potential

of SINDy in identifying nonlinear dynamics of dynamical

systems, its application in DER control has not been reported

yet. The paper aims to explore such a data-driven control

framework by identifying the nonlinear dynamics of DERs

using SINDy and utilizing the data-driven model for nonlin-

ear control purposes in smart grids. In particular, the main

contributions of the paper are listed as:

1- Many classical control techniques including feedback

linearization require a detailed mathematical model of

DERs in order to provide robustness and guaranteed

performance. This paper addresses the heavy reliance

of feedback linearization technique on physical models

and instead utilize a data-driven model that is obtained

exclusively from measurements for control design.

2- This paper utilizes sparse identification technique,

which is a statistical machine learning framework lever-

aged for the model identification of nonlinear DERs in

smart grids. The proposed method utilizes available mea-

surements and a library of potential candidate functions

without extensive training and is computationally robust

unlike deep learning methods that require a large amount

of data. The proposed data-driven framework reduces

the complexity of state-of-the-art physics-based modeling

and provides a scalable framework for DER control to

resolve the grid stability issues.

3- Utilizing the obtained data-driven DER models for

the nonlinear control of DERs via feedback linearization

technique, which resolves the grid stability problems

caused by classical linear controllers.

4- Detailed stability analysis of the proposed data-driven

DER model under various grid strength conditions and

sensitivity analysis of controller gains to test the robust-

ness of the designed framework.

5- Evaluating the effectiveness of the proposed data-

driven DER control framework in microgrid integration,

weak AC grid integration, black-start conditions and real-

time simulation using an OPAL-RT platform.

The rest of the paper is organized as follows: Section II

formulates the converter modeling and Section III discusses

the data-driven converter modeling using SINDy. Data-driven

control design using feedback linearization theory is included

in Section IV. Section V elaborates the case studies and results,

and section VI concludes the paper.

II. DYNAMIC MODELING OF THE CONVERTER

As Fig. 1 depicts a voltage source converter (VSC)-

interfaced DER that is connected to the main grid through

an LCL filter composed of Lc, rc, and Cf . Ln and rn rep-

resent the inductive and resistive parts of the grid impedance,

respectively. Through the VSC, DC voltage (such as batteries

or solar panels) is converted to AC, enabling the integration

to the grid.
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Fig. 1: Typical configuration of a grid-connected DER.

A. Modeling LCL Filter Dynamics

Assuming we have access to the measurements at the point

of common coupling (PCC), the AC-side dynamics of the DER

in dq frame can be expressed as [13]:

vcd − vpd + ω0Lcicq = (Lcs+ rc)icd (1)

vcq − vpq − ω0Lcicd = (Lcs+ rc)icq (2)

vpd − vgd + ω0Lninq = (Lns+ rn)ind (3)

vpq − vgq − ω0Lnind = (Lns+ rn)inq (4)

icd − ind + ω0Cfvpq = Cfsvpd (5)

icq − inq − ω0Cfvpd = Cfsvpq (6)

where s is the Laplace operator, ω0 is the nominal frequency

of the system, i.e., 377 rad/s, and vcd, vcq, icd, and icq
are the dq-frame components of the converter output

voltage and current, respectively. The dq-frame components

of the voltage at the PCC and grid are denoted by

vpd, vpq, vgd, and vgq , respectively. In addition, the dq-frame

components of the grid current are expressed by ind and inq .

The above equations can be written in a matrix form as:

⎡
⎢⎢⎢⎢⎢⎢⎣

i̇cd
i̇cq
v̇pd
v̇pq
i̇nd
i̇nq

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− rc
Lc

ω0 0 0 − 1

Lc
0

−ω0 − rc
Lc

0 0 0 − 1

Lc

0 0 − rg
Lg

ω0
1

Lg
0

0 0 −ω0 − rg
Lg

0
1

Lg
1

Cf
0 − 1

Cf
0 0 ω0

0
1

Cf
0 − 1

Cf
−ω0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

icd
icq
vpd
vpq
ind
inq

⎤
⎥⎥⎥⎥⎥⎥⎦
+ g(u)

g(u) =

[
vcd
Lc

vcq
Lc

0 0
−vgd
Lg

−vgq
Lg

]T
. (7)

III. MODEL-FREE IDENTIFICATION OF DERS

Dynamical systems with few nonlinear terms are often stud-

ied using sparsity promoting techniques to identify candidate

functions with the greatest impact on the system dynamics.
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Fig. 2: Identified DER dynamics using SINDy.

Originally proposed in [29], SINDy utilizes a symbolic regres-

sion technique to identify nonlinear dynamics. The concept

behind the sparse identification theory is that many real-world

dynamical systems in form of ẋ = f(x,u) may have a few

terms on the right-hand side. Therefore, following (7), the

dynamics of a DER is expressed by ẋ = f(x)+g(x)u, where

x(t) ∈ R
n denotes the state vector, u(t) ∈ R

q is the input

(control) vector, and f(x(t),u(t)) : Rn ×R
q → R

n. The goal

of SINDy is to reconstruct (7) from the available measurement.

If our knowledge of the model is limited, we can utilize

available measurements (voltages and currents at the PCC) to

identify this model using SINDy and then utilize a data-driven

model (which is almost identical to the physical model with

slightly different parameters) for the control design. Therefore,

the control design can be treated as a grey-box model, where

the control gains are obtained from a data-driven model instead

of a physical model.

A. Data Collection
First, the measurements are sampled at m intervals

t1, t2, . . . , tm and are arranged into a state matrix X ∈
R

n×m, and input matrix U ∈ R
n×m,

X =

⎡
⎢⎢⎣ x(t1) x(t2) . . . x(tm)

⎤
⎥⎥⎦ (8)

U =

⎡
⎢⎢⎣ u(t1) u(t2) . . . u(tm)

⎤
⎥⎥⎦ (9)

As derivative measurements in most systems cannot be ob-

served, they can be approximated numerically from X.

B. Estimating the Derivative Matrix Ẋ

Differential equations can be numerically solved using a

difference approximation. Taylor series expansions can be

used to approximate the derivatives of a smooth function

in the neighborhood of point x. For smooth functions, the

central difference approximation is more accurate. Therefore,

following the central difference approximation concept, the Ẋ
can be obtained by:

Ẋ ≈ X(i+ 1)−X(i− 1)

2h
(10)

In the above formula, X(i) is the ith measurement vector and

h is the sampling interval of the measurement system [31].

C. Sparse Identification of DER Dynamics

If limited knowledge of the DER dynamics is available

(i.e., type of filter used is not known) or the impedance of

the line connecting the inverter from PCC to the grid is not

known, the DER dynamics can be expressed by a library

of p candidate functions Θ(X,U) ∈ R
n×p. This library

can include polynomials, monomials, or sinusoids in general

that can represent any dynamical system of interest. It is

known that the vector of measured derivatives, Ẋ, is a linear

combination of columns in the candidate function library,

which is observed by the entries of matrix Ξ ∈ R
p×n [29],

i.e.,

Ẋ = Θ(X,U)Ξ. (11)
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Θ(X,U) =

⎡
⎢⎢⎣ 1 X U P2(X,U) P3(X,U) . . . sin(X,U) cos(X,U) sin(2(X,U)) . . .

⎤
⎥⎥⎦ (12)

After estimating Ẋ from the available state feedback using

central difference approximation in (10), and having measured

the control input data, U, the candidate function library is built

by including linear and nonlinear functions of the columns of

X and U as shown in equation (12).

In (12), Pi(X,U) is a nonlinear combination of i-order

polynomials of X and U. For example, P3(X,U) includes

polynomials up to third order such as: xixj , x2
i , x2

ixj , x3
i ,

xiuj , u2
ixj , x2

iuj , and u3
i . The unknown in (11) is a sparse

matrix Ξ , columns of which denote which candidate functions

are active in the dynamics of the DER. Knowing the estimated

derivatives Ẋ and calculating Θ(X,U) from available mea-

surements, we can utilize the sparse regression theory to solve

for the sparse matrix of coefficients, Ξ. This is achieved by

iteratively solving an optimization of the form:

ξk = argmin
ξ̂k

||Ẋk −Θ(X,U)ξ̂k||2 + λk||ξ̂k||0 (13)

where ξk is the k-th column of Ξ represented by ξk =[
ξ1 ξ2 . . . ξp

]T
and Ẋk represents the k-th column of Ẋ.

The L2 norm ||.||2 in the objective function in (13) tries

to minimize the error between the actual derivatives Ẋ and

estimated derivatives Ẋ = Θ(X,U) via an iterative least-

squares optimization and the L0 norm ||.||0 tries to promote

sparsity in the matrix of coefficients Ξ by minimizing its

number of nonzero elements. In addition, a sparsity promoting

hyperparameter λk is defined and tuned for kth column of Ẋ
imperially to result in the best estimation of the dynamics.

The closer the λk is to zero, the less sparse the coefficient

matrix Ξ is. It was recommended to approximately solve the

optimization problem in (13) using the sequentially thresh-

olded least squares estimation [27]. The method is originally

proposed in [32], which is briefly explained in the following.

Sm =
{
j ∈ [p] :

∣∣ξmj ∣∣ ≥ λk

}
, m ≥ 0 (14)

ξ̂0k =Θ(X,U)†Ẋk (15)

ξm+1
k = argmin

ξ̂k∈Rp:supp(ξk)⊆Sm

‖Ẋk −Θ(X,U)ξ̂k‖2, (16)

where m is the iteration number, Θ(X,U)† is the pseudo-

inverse of Θ(X,U) expressed as

Θ(X,U)† := [Θ(X,U)TΘ(X,U)]−1Θ(X,U)T (17)

and supp(ξk) := {j ∈ [p] : ξj �= 0} is the support set of ξk.

The iterative approach for obtaining the sparse coefficients

of the system dynamics using the SINDy method is listed

in Algorithm 1. Applying the SINDy algorithm to the mea-

surements of the DER, one can obtain the sparse coefficients

matrix and identify the AC-side dynamics in the form of

Ẋ = Θ(X,U), which can be re-arranged into the original

Algorithm 1 Sparse Regression Algorithm

Input: Measurements X,U
Input: Estimate derivatives Ẋ using (10)

1: procedure SINDY ALGORITHM

2: Γ = Θ\Ẋ (least-square solution)

3: for k = 1 : 10 do (number of iterations)

4: Set λ (sparsity promoting constant)

5: |Ξ| < λ −→ indsmall

6: Ξ(indsmall) −→ 0
7: for k = 1 : n do (n dimension of state X)

8: indbig �= indsmall(:, k)
9: Ξ(indbig, k) = Θ(:, indbig)\Ẋ(:, k)

10: end for
11: end for

Output: sparse matrix Ξ

form represented by (7). To validate the effectiveness of the

SINDy for identifying the DER dynamics in (7), time-domain

simulations were carried out and the results are illustrated in

Fig. 3. The collected data include the measurements of 6 states

and 4 inputs, i.e., x = [icd, icq, vpd, vpq, ind, inq] and inputs

vcd, vcq, vgd, vgq for 1.5 seconds with a sampling time of 50

microseconds (300,000 samples). Therefore, the size of X is

6 × 300, 000 and the size of U is 4 × 300, 000. By applying

step changes to the control inputs vcd and vcq , accompanied

by a Guassian noise with a zero mean and a variance of 5 V,

the required data for training the sparse regression algorithm

is acquired. The candidate function terms in Θ(X,U) include

polynomials of up to the 2nd degree and sinusoidal functions,

i.e., ui, xi, xixj , x2
i , xi cosxj , xi sinxj , ui cosxj , ui sinxj .

The identified coefficient matrix Ξ for the studied DER model

is used to develop a data-driven model in MATLAB. As it will

be shown later in the study, the obtained data-driven dynamics

closely track the original states and the SINDy algorithms

is shown to successfully identify the DER dynamics. The

obtained data-driven dynamics will be used for control design

purposes, which will be elaborated in the next section.

D. Impact of Number of Candidate Functions

To analyze the impact of number of candidate func-

tions in the library Θ(X,U) on prediction accuracy, a

case study is presented in this section. First, only xi and

ui terms are included in the model (i.e., Θ(X,U) =
[x1, . . . , x6, u1, . . . u6]), then the number of candidate func-

tions were increased to 22 by adding xiuj terms, i.e.,

[x1.u1, x1.u2, x1.u3, x1.u4, x1.u5, x2.u1, x2.u2, x2.u3,
x2.u4, x2.u5]. Similarly, the number of functions were in-

creased to 42 and 54 by adding more terms including x2
i

(polynomials up to degree 2) and sinusoidal terms (i.e.,
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Fig. 3: Training results of SINDy to learn the dynamics of the DER.

sin(xi)). It is noted that the hyperparameter λ has to be re-

tuned when the number of candidate functions is increased.

Fig. 4 depicts the normalized prediction error as a function

of number of candidate functions. As it can be seen, by

increasing the number of candidate functions, the prediction

error increases. The results suggest that the best prediction is

achieved when we have some knowledge about the possible

terms in the dynamics in order to avoid the large number of

candidate functions that can increase the prediction error. This

is one of the challenges of utilizing SINDy for real-world

problems that necessitates some background knowledge about

the dynamics for better results. In the following analyses, we

utilized 54 candidate functions to run the experiments.
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Fig. 4: Impact of number of library functions on prediction

accuracy of DER models.

IV. DATA-DRIVEN CONTROL DESIGN

To avoid the stability challenges of linear regulators elab-

orated in the introduction section, we will design a data-

driven nonlinear controller using feedback linearization theory,

which has proven to be effective in improving the dynamic

performance of DERs in various grid integration scenarios

[13]. In this section, we will lay out the fundamentals of

feedback linearization, followed by the development of control

strategies. Readers are encouraged to refer to [33] for more

information on the theory of feedback linearization technique.

A. Feedback Linearization Theory

To generalize the DER dynamics in (7) for various configu-

rations, assume a multi-input multi-output (MIMO) dynamical

system is represented by ẋ = f(x) + g(x)u, where x is

an n-dimensional state vector, u ∈ R
m is the vector of

control input, and g(x) is a smooth matrix field on R
n. In

addition, the output dynamics is expressed as y = h(x), with

f(x) is a smooth vector field on R
n, and h(x) is a smooth

output function. One should note that the DER model in (7)

can easily be transformed into the standard MIMO model

represented above. In feedback linearization control, to deal

with the nonlinearities of the system, the output y will be

differentiated repeatedly until at least one input variable ui

appears. For instance, repeated derivatives (also known as Lie

derivatives) can be defined as [33]:

L
(k)
f h(x)= Lf (L

(k−1)
f h(x) =

∂L
(k−1)
f h(x)

∂x
f(x) (18)

where Lfh(x) and Lgh(x) are Lie derivatives of h(x) and

g(x), respectively. If the input appears after rm derivations of

the output, then,

y
(rm)
i = L

(rm)
f hi(x) +

m∑
j=1

LgjL
(rm−1)
f hi(x)uj , (19)

where i = {1, 2, . . . , m}. The above equation can be written

in a matrix form as:⎡
⎢⎢⎣
y
(r1)
1
...

y
(rm)
m

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
L
(r1)
f h1(x)

...

L
(rm)
f hm(x)

⎤
⎥⎥⎦+ E(x)

⎡
⎢⎣
u1

...

um

⎤
⎥⎦ (20)

where

E(x) =

⎡
⎢⎢⎣
Lg1L

(r1−1)
f h1(x) . . . LgmL

(r1−1)
f h1(x)

...
. . .

...

Lg1L
(rm−1)
f hm(x) . . . LgmL

(rm−1)
f hm(x)

⎤
⎥⎥⎦
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and LgLfh(x) =
∂Lfh(x)

∂x
g(x) and LfLfh(x) = L2

fh(x) =

∂Lfh(x)

∂x
f(x). The number of times that the output needs

to be differentiated until the input u appears is called the

relative degree of the system and is denoted by a vector relative

degree vrd = {r1, r2, . . . , rm} at an equilibrium point x0.

According to [33], a solution can be found for choices of

output functions hi(x), i ∈ {1, 2, . . . ,m} if the total relative

degree of the system, e.g.,
∑m

i=1 ri, is equal to the dimension

of the system’s state-space model n. In this condition, the

control input can be designed by:

u = −E−1(x)

⎡
⎢⎢⎣
L
(r1)
f h1(x)

...

L
(rm)
f hm(x)

⎤
⎥⎥⎦+ E−1(x)

⎡
⎢⎣
v1
...

vm

⎤
⎥⎦

︸ ︷︷ ︸
v

(21)

where v is the new input vector to be designed to achieve

a control objective, i.e., zero tracking error of yrefi − yi
[33]. By replacing the control input from (21) in the MIMO

model of the system, the system is converted to a linear

decoupled closed-loop model represented by y
(rk)
k = vk, k ∈

{1, 2, ...,m}, which is written in a matrix form as:

y(r) =
[
y
(r1)
1 ,

..., y
(rm)
m

]T
= v =

[
v1,

..., vm

]T
(22)

B. Data-Driven Nonlinear Control Design

The structure of the control system is depicted in Fig. 5.

As it can be observed, the diagram includes the DER model,

inner current and voltage regulators to be designed using

feedback linearization theory, and output power controller. The

transfer function of the DER model can be obtained via the

proposed data-driven SINDy. For this purpose, the obtained

SINDy model Ẋ = Θ(X,U) is re-arranged into the original

form represented by (7). The transfer function is then obtained

from the state-space model, details of which can be found in

[13]. Power and voltage regulation at the PCC are the control

objectives. As a result, the nonlinear controller regulates the

output power through an outer loop control input and regulates

the voltage through an inner loop control input. In this design,

the main objective of the controller is to regulate voltage

instead of reactive power at the point of common coupling.

This is mainly because VSCs suffer from voltage stability

issues when tied to a grid with high penetration of DERs,

which is why it was recommended in [34] to maintain the AC

voltage level at the PCC instead of reactive power control. The

measured active power of the DER at the PCC, pm, will pass

through a low-pass filter with the bandwidth of ωc, therefore,

the dynamics of active power measurement can be expressed

as:

ṗm = −ωcpm + 1.5(vpdind + vpqinq)ωc (23)

To regulate the output power of the DER, the active power

tracking error (p∗−pm) will be passed through a compensator

GP (s) that generates the converter voltage angle, δ. The

converter angle along with the nominal magnitude of the

AC voltage, Vnom, are then used to generate the dq-frame

reference voltages, v∗pd and v∗pq , according to:

δ∗ =

(
kp +

ki
s

)
(p∗ − pm) = Gp(s)(p

∗ − pm) (24)

v∗pd = Vnom cos (δ∗) v∗pq = Vnom sin(δ∗) (25)

where Gp(s) =

(
kp +

ki
s

)
is a proportional integral (PI)

regulator for active power control of the DER.

C. Inner Control Design using Feedback Linearization
The inner controllers include voltage and current regulators,

which will be designed using feedback linearization theory and

will be tested on the obtained data-driven DER model.
1) Inner Voltage Controller: The voltage regulator tries to

minimize the voltage tracking error, i.e., evd = v∗pd − vpd
and evq = v∗pq − vpq . According to the feedback linearization

theory, we need to first find the derivative of the voltage

tracking errors (i.e., ėvd = v̇∗pd − v̇pd and ėvq = v̇∗pq − v̇pq).

Next, by replacing v̇pd and v̇pq from (5) and (6), voltage

tracking dynamics is expressed as:

ėvd = v̇∗pd +
1

Cf
(ind − icd)− ω0vpq (26)

ėvq = v̇∗pq +
1

Cf
(inq − icq) + ω0vpd (27)

To decouple the dynamics in dq frame, we will first define

g(evd) =
1

Cf
ind − ω0vpq + v̇∗pd and g(evq) =

1

Cf
inq +

ω0vpd + v̇∗pq to simplify the voltage tracking dynamics to

ėvd = g(evd)− 1

Cf
icd and ėvq = g(evq)− 1

Cf
icq . By defining

[ėvd, ėvd] = [ẏ1, ẏ2], the above equation can be written in a

matrix form as:[
ẏ1
ẏ2

]
=

[
L1h1(x)
L1h2(x)

]
− 1

Cf

[
icd
icq

]
(28)

where L1h1(x) = g(evd), and L1h2(x) = g(evq). Looking at

the above equation and comparing it with the input design for

the feedback linearization theory expressed in (21), it is ob-

served that E−1
vd (x) = E−1

vq (x) = − 1

Cf
−→ E−1

vd (x) = −Cf ,

one can design the control inputs u = [i∗cd, i
∗
cq] referring to

(21) as −E−1(x)

([
L1h1(x)
L1h2(x)

]
+

[
v1
v2

])
, which is simplified

to:

i∗cd = Cf [−g(evd) + v1] = Gvd(s)evd (29)

i∗cq = Cf [−g(evq) + v2] = Gvq(s)evq (30)

where v1 and v2 are two new inputs to regulate the voltage

tracking error to zero. In the above equations, Gvd and Gvq

can be calculated by:

Gvd(s) = Cf

[(
K1 +

K2

s

)
− g(evd)

evd

]
(31)

Gvq(s) = Cf

[(
K1 +

K2

s

)
− g(evq)

evq

]
(32)

where v1 = (K1 +
K2

s
)evd and v2 = (K1 +

K2

s
)evq are two

PI regulators to force the voltage dynamics to zero.
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Fig. 5: Block diagram of the proposed data-driven DER control with feedback linearization technique.

2) Inner Current Controller: Next, to limit the converter

current during faults and contingencies, an inner current con-

troller needs to be developed utilizing the current tracking

error, which is denoted by eid = i∗cd− icd and eiq = i∗cq − icq .

Similar to the voltage controller design and following the

feedback linearization theory, the derivative of current tracking

error will be obtained (i.e., ėid = i̇∗cd−i̇cd and ėiq = i̇∗cq−i̇pcq).

By replacing the dynamics of dq frame converter current, e.g.,

i̇cd and i̇cq , from (1) and (2), the current tracking dynamics is

expressed as:

ėid = i̇∗cd +
rc
Lc

icd − ω0icq +
1

Lc
(vcd − vpd) (33)

ėiq = i̇∗cq +
rc
Lc

icq + ω0icd +
1

Lc
(vcq − vpq) (34)

By defining g(eid) = i̇∗cd +
rc
Lc

icd − ω0icq − 1

Lc
vpd, and

g(eiq) = i̇∗cq +
Rc

Lc
icq + ω0icd − 1

Lc
vpq , the above equations

simplify to: ėid = g(eid) +
1

Lc
vcd and ėiq = g(eiq) +

1

Lc
vcq .

Then, using the control design law from the feedback lin-

earization theory in (21), the converter voltage control inputs

can be defined using a proportional controller K3 as:

vcd = −Lcg(eid) + LcK3eid = Gid(s)eid (35)

vcq = −Lcg(eiq) + LcK3eiq = Giq(s)eiq (36)

D. Impact of Phase-locked Loop

By measuring the voltage at the PCC and forcing the q
component of the PCC voltage to zero, phase-locked loop

(PLL) provides the transformation angle for dq-frame conver-

sion denoted by θpll(t) = ωt. The PLL’s closed-loop transfer

function is obtained by [35]:

Gpll
c (s) =

Δθpll(s)

Δvpq(s)
=

Gpll(s)

s+Gpll(s)Vpd
(37)

where Gpll(s) = kpllp +
kplli

s
is a PI regulator to force the

q-component of PCC voltage to zero, and Vpd denotes the

voltage amplitude at the PCC. According to [35], [36], the im-

pact of PLL on the control structure of the DER is studied by

supplementing two terms including ΔIpll(s) = −Δθpll(s)Icd0
to the reference converter current in q frame and ΔVpll(s) =
Δθpll(t)Vpd0 to the reference converter voltage in the q frame.

By replacing Δθpll(s) from (37) in these feedforward items,

the PLL dynamics are expressed as:

ΔIpll(s) = −Gpll
c (s)Icd0Δvpq = Gipll(s)Δvpq(s) (38)

ΔVpll(s) = Gpll
c (s)Vpd0Δvpq = Gvpll(s)Δvpq(s) (39)

which will be added to the overall control block diagram of

the converter as illustrated in Fig. 5. The block diagram of

the closed-loop control of the DER with data-driven nonlinear

controller will be used for stability analysis purposes. Fig. 6

depicts the detailed implementation of the proposed data-

driven control.

V. CASE STUDIES

To validate the effectiveness of the proposed model-free

nonlinear DER control in the grid-tied mode, several case

studies are carried out using time-domain simulations and

eigenvalue analysis in MATLAB. The DER parameters used

for time-domain simulations are obtained from [13].

A. Sensitivity Analysis

To analyze the impact of the proposed data-driven DER

control on the stability of the system, eigenvalue analysis is

carried out to compare the data-driven DER control with a

model-based control. Two block diagram of the DER con-

troller shown in Fig. 5 were developed in MATLAB/Simulink,

one using an actual model represented by (7) and the other

one using the SINDy model. Next, the “LINMOD” function

of MATLAB was used to derive the state-space linearized

A,B,C,D matrices of the closed-loop system for eigenvalue

analysis. Table I illustrates a detailed comparison between the

eigenvalues of the actual model and the proposed data-driven

model. As it can be observed, the system has 12 eigenvalues

with detailed participation factor analysis shown in the Xpf

column that relates the modes to the state variables of the
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Fig. 6: Implementation of the proposed data-driven DER control using feedback linearization theory.

TABLE I: Eigenvalue comparison of the physical DER controller with the data-driven one.

Actual Data-Driven
Xpf λ f (Hz) η (%) λ f (Hz) η (%)

pm, ω, vcd, icd λ1 = −4.3 + j2037 324 0.21 λ1 = −4.4 + j2778 442 0.15
pm, ω, vcd, icd λ2 = −4.3− j2037 324 0.21 λ2 = −4.4− j2788 442 0.15

pm, ω λ3 = −2.2 + j1283 204 0.17 λ3 = −1.5 + j1524 242 0.1
pm, ω λ4 = −2.2− j1283 204 0.17 λ4 = −1.5− j1524 242 0.1
θ, γP λ5 = −1.3 + j377 60 0.34 λ5 = −1.2 + j377 60 0.34
θ, γP λ6 = −1.3− j377 60 0.34 λ6 = −1.2− j377 60 0.34
vcd λ7 = −56.6 0 100 λ7 = −56.6 0 100
icq λ8 = −6.96 0 100 λ8 = −7.25 0 100
inq λ9 = −0.1 0 100 λ9 = −0.1 0 100
ind λ10 = −8.5e−6 0 100 λ10 = −4.9e−6 0 100
vpq λ11 = −8.5e−6 0 100 λ11 = −4.7e−6 0 100
vpd λ12 = −8.5e−6 0 100 λ12 = −4.7e−6 0 100

system. Each mode’s frequency and damping are also listed

in the table. As shown in the Table, the data-driven eigenvalues

closely match the actual ones, indicating the effectiveness of

the proposed data-driven model and control design for stability

analysis in smart grids. As can be observed in both cases, all

modes reside in the left half-plane (LHP) and the system is

stable. In the case studies, we will investigate the impact of

system parameters on these eigenvalues.
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4000

Fig. 7: Impact of grid weakness on eigenvalues.

1) Impact of Grid Strength: To analyze the sensitivity of

the proposed data-driven DER controller in various AC grid

conditions, three short circuit ratios (SCRs) are considered,

where SCR=1 represents a very weak AC grid (or ultra weak

AC grid), SCR=2 represents a weak AC grid, and SCR=3 is

a strong grid. The eigenvalues of the original model (actual

model) and the data-driven SINDy are compared for these

three grid integration case studies and the trajectory of eigen-

values is plotted in Fig. 7. First, the results show a good match

between the trajectory of the eigenvalues in the proposed

data-driven DER control (SINDy) and the model-based DER

control (original model). Furthermore, it is observed that

by reducing the strength of the AC grid, the eigenvalues

move towards the right half-plane (RHP), but the system

remains stable thanks to the superiority of feedback linearized

controller.
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Fig. 8: Impact of PLL gains on eigenvalues.



9

2) Impact of Control Parameters: To analyze whether the

proposed data-driven DER control can accurately track the

trajectory of eigenvalues when the parameters of the controller

change, the impact of PLL gains on stability of the designed

controller was studied as shown in Fig. 8. By modifying

the PLL gains in both proposed data-driven and actual DER

control, the trajectory of the eigenvalues were plotted. It can

be observed that by increasing the PLL gains, four eigenvalues

move towards the origin denoting the increase in the PLL gains

might destabilize the system. A comparison of the trajectory

of the eigenvalues in a data-driven DER model (right subplot)

and a physical model (left subplot) shows a close agreement

between the two models, indicating that the proposed data-

driven model can be successfully used for smart grid stability

analysis.
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Fig. 9: Simulation results for weak AC grid integration of the

proposed data-driven DER control.

B. Time-domain Simulations

To validate the effectiveness of the designed feedback-

linearization-based nonlinear controller, time-domain simu-

lations on a grid-connected converter are carried out using

MATLAB Simscape power system toolbox. Three case studies

are considered: (1) DER’s active power response when the AC

grid is (ultra weak) (SCR=1), (2) black-start capability of the

proposed data-driven DER controller when SCR=1, and (3)

microgrid integration of the proposed data-driven DER control.

1) DER’s Active Power Response: Fig. 9 shows the com-

parison results for capability of a data-driven DER control and

a model-based DER control in transferring an active power of

1 p.u. in an (ultra weak) weak AC grid with SCR=1. The active

power setpoint of the converter is first set to 0.5 p.u., which is

increased to 1 p.u. at t = 1 sec. Using SINDy, a data-driven

DER controller is shown to successfully deliver 1 p.u. active

power in an (ultra weak) weak AC grid condition with SCR=1.

In addition, as the figure confirms, the trajectory of system

states including active power, frequency, voltage magnitude,

and reactive power in a data-driven DER closely matches that

of a physical model. The results confirm the success of the

proposed data-driven framework for DER control in weak AC

grid scenarios.
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Fig. 10: Simulation results for blackstart capability of the

proposed data-driven DER control.

2) Black-start Capability: This case examines the capabil-

ity of proposed data-driven DER controller in a black-start

scenario. To test the black-start capability, the reference active

power of the DER is suddenly changed from 0 to 1 p.u. at

t = 0 sec and the simulation results are shown in Fig. 10.

As it can be observed, a feedback linearization controller can

successfully deliver 1 p.u. of active power from a black-start

condition. In addition, the trajectory of the system states in the

proposed data-driven model based on SINDy closely matches

that of the DER control that was designed using a detailed

physical model. Therefore, a data-driven control design using

SINDy proves to be effective for blackstart conditions.

3) Microgrid Operation: To study whether the data-driven

DER control can perform as expected in the islanded mode,

the proposed data-driven DER controller was tested in a

microgrid. The microgrid model is composed of a DER with

the proposed data-driven feedback linearization controller and

three solar photovoltaic (PV) plants, all of which are connected

to the AC grid through the point of common coupling depicted

in Fig. 11. Through a three-phase VSC and a filter, each

solar array is connected to the PCC. Vector control in the

synchronous reference frame is used with maximum power

point tracking (MPPT) to control the solar inverters. The

PV systems operate at a constant solar irradiance input of

900W/m2 supplemented with random noise to account for the

uncertain behavior of the output PV power. More information

on developing the solar photovoltaic system can be found in

[37], [38].

Simulation results for microgrid integration of the nonlinear

controlled VSC is demonstrated in Fig. 12, where the last

subplot depicts the aggregated solar PV power that averages
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Fig. 12: Simulation results for fault ride through capability of

nonlinear-based controller when SCR=1.

around 0.9 p.u. The active power reference of the data-driven

DER was set to 0.5 p.u. initially, which was increased to 0.75

at t = 1.5 sec and to 1 p.u. at t = 2.5 sec. It is evident that PV

farms’ output is highly uncertain due to irradiance variations.

There were a few spikes in voltage and frequency at the PCC

as a result of the intermittency of the solar farm. Comparing

the trajectory of the states in the data-driven DER and the

original DER using physical model, one can confirm the close

match between the two. It is observed that the proposed data-

driven control of DERs using SINDy can successfully operate

when controlling DERs that are integrated to the grid or a mi-

crogrid with high penetration of renewables. Therefore, data-

driven nonlinear control frameworks open up new possibilities

for accurate control with performance guarantees in smart grid

applications, which would otherwise be very challenging. It is

noted that since the control design is usually carried out for

individual DERs and the control algorithm is embedded in the

inverter of the DER before integrating it to the grid, model

identification also needs to be carried out before integrating the

DER to the grid. In addition, since the prediction is very close

to real parameters (physics-based model), the control gains in

the data-driven design are fairly close to the control gains in

physics-based models. Therefore, as confirmed by simulation

results, even if there are multiple DERs operating in parallel,

the proposed data-driven control can successfully achieve the

control objectives.

C. Real-time Verification

The active power response scenario for the proposed data-

driven method in Section V-B is replicated in real time using

the OPAL-RT real-time testbed shown in Fig. 13. To this end,

first the grid-connected DER with the SINDy-based control is

built in Simulink® and compiled in RT-LAB. The model is

then executed on one of the CPU cores of the OP4510 real-

time target and is controlled through a TCP/IP link by the

Simulink® GUI running on the host PC. Desired measurements

are then sent to a digital oscilloscope in real-time via the

analog outputs of the OP4510 target.

As can be seen from Fig. 14, the waveforms obtained for

P , f , V , and Q using the SINDy-based control that is run in

real time, closely follow their offline simulation counterparts

shown in Fig. 9. The real-time results also exhibit close

trajectories to the detailed physics-based design, verifying the

capability of the proposed method for implementation in real

time.

Fig. 13: Real-time testbed configuration.

VI. CONCLUSION

In this paper, a model-free nonlinear control of DERs

using feedback linearization technique was studied. Using the

sparse identification of nonlinear dynamics with control that

utilized the available measurements from the point of common

coupling of DERs to the grid, dynamics of the DER were

predicted by leveraging a library of candidate functions. The

learned dynamics were then used to develop control designs

for voltage regulation, active power regulation, and current

control of DERs using the feedback linearization technique.

The proposed research demonstrates the effectiveness of sparse
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Fig. 14: Real-time verification of the proposed data-driven

DER control. (a) P (p.u.), (b) f (p.u.), (c)V (p.u.), and (d)

Q (p.u.).

identification for data-driven model identification of nonlinear

DER systems and successfully tracking the dynamic trajectory

of DER states during contingencies or operating point changes.

We also demonstrated the effectiveness of the proposed data-

driven approach for stability analysis of DERs in smart grids,

which could significantly reduce the complexities of existing

model-based stability analysis approaches. We showed that

without having a physical model, complex dynamics of DERs

can be identified using measurements and the data-driven

model can be utilized for nonlinear control designs that could

provide stability guarantees and robustness in smart grid appli-

cations. Such formulation can significantly reduce the existing

complexities of control design in smart grid. One of the

main challenges of utilizing SINDy for model identification

of DERs is that it requires some initial knowledge about the

DER dynamics as randomly generating the library of candidate

functions and increasing the components of library functions

can reduce the prediction accuracy. In the future work, we

will explore other techniques such as deep learning to learn

the best candidate functions that could be applied for DER

model identification using SINDy.
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