Data-Driven Feedback Linearization Control of
Distributed Energy Resources using Sparse
Regression

Javad Khazaei, Senior Member, IEEE and Ali Hosseinipour, Student Member, IEEE

Abstract—A complex physics-based modeling procedure and
the uncertainty and confidentiality of internal parameters of dis-
tributed energy resources (DERs) motivate system identification
tools for control purposes in smart grids. This paper develops
a framework for data-driven nonlinear modeling and control of
DERs using sparse identification of nonlinear dynamics (SINDy).
Using the proposed data-driven model for closed-loop control, we
demonstrate the effectiveness of a model-free design in stability
analysis of DERs in smart grids. Feedback linearization control
of DERs was chosen over conventional vector control in this
research due to its superior capability of accounting for DER
nonlinearities and weak AC grid integration. Compared with
existing physics-based designs that heavily rely on knowing the
detailed system dynamics or uninterpretable data-driven designs
that rely on large historical data, the proposed model-free DER
identification and control framework can accurately capture the
dynamics of the DERs based on available measurements and
provide guaranteed performance for black-start, weak AC grid
integration, microgrid integration, and stability analysis. Real-
time and offline simulations in addition to a detailed eigenvalue
analysis are conducted to compare the effectiveness of the
proposed data-driven approach with physics-based controllers.

Index Terms—Sparse Identification of Nonlinear Dynamics
(SINDy), Feedback Linearization, Distributed Energy Resource
(DER).

I. INTRODUCTION

Numerous inverter-based distributed energy resources
(DERs) are currently being integrated into the energy grid.
According to the electric reliability council of Texas (ERCOT),
the grid may become inoperable once DER penetration passes
80% of annual energy demand. In addition, although these
DERs are nonlinear in nature, they are typically controlled
by cascaded linear regulators, which do not guarantee perfor-
mance when the operating points of the system change, result-
ing in grid instability. For instance, a three-phase fault in July
2020 reduced the output of a solar photovoltaic (PV) system in
Southern California by approximately 1000 MW. According
to the north American electric reliability corporation (NERC),
the failure was caused by the instability of linear current
regulators [1]. This shows a clear limitation of existing DER
controllers that heavily rely on linear regulators and thus calls
for advanced controllers that could provide more robustness
and guaranteed stability for the integration of DERs to the
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grid. One of the key knowledge gaps in controlling DERSs is
the lack of robust controller designs that properly account for
DERs nonlinear nature and can improve the grid dynamics
without involving expensive controller redesigns/tuning as a
result of numerous expansions in the power grid.

The stability issues of DERs in smart grids have received
significant attention over the past decade. These studies can
be categorized into a) stability analysis approaches [1]-[3],
b) supplementary control design [4]-[6], and c) controller
redesign [7]-[9]. These studies often suggest an operating
range/controller gain to stabilize interactions, which might
not be feasible when the system expands or if there are
uncertainties/faults. As a result, advanced control techniques
are needed to provide a wider operating range without the
need for controller re-design. With nonlinear controllers, these
barriers can be overcome and predictable performance can
be achieved over a wide operating range. There have been
several studies focused on the design of nonlinear controllers
(i.e., sliding-mode control [10], model predictive control [11],
and feedback linearization control [12], [13]) for inverter-
based DERs to improve the grid resilience. While nonlinear
controllers are robust, they require a detailed mathematical
model of the system for guaranteed performance [14]-[16].
The question is, can we reduce the complexities of nonlinear
control designs for DERs by solving the modeling challenges
via machine learning?

Machine learning has recently provided new tools for pre-
dicting physics-based models of dynamical systems. Many
approaches have been utilized for data-driven model identi-
fication of dynamics such as dynamic mode decomposition
(DMD) [17], neural networks (NNs) [18], Koopman operator
[19], and sparse identification of nonlinear dynamics (SINDy)
[20]. In power systems application, several recent studies
have focused on data-driven modeling using these approaches
[21]-[26]. For example, dynamic mode decomposition was
utilized in [21] for a microgrid control method that is delay
tolerant, or Koopman operator was utilized in [23] to identify
the dynamics of generators for state estimation purposes.
As another example, a data-driven approach using machine
learning tools was proposed in [25] to identify the lifetime of
lithium-ion batteries. Among these methods, dynamic mode
decomposition heavily relies on a linear dynamics assump-
tion, but can handle high-dimensional data. Neural-network-
based approaches require a large amount of training data
and are also infamous for not being interpretable [20], [27].
A Koopman operator connects dynamic mode decomposition



to nonlinear dynamics through an infinite dimensional linear
operator. Under special circumstances and provided that a
good measurement basis is selected, Koopman operator may
converge to a finite dimensional space, which is not guaranteed
for many systems [19], [28]. On the other hand, sparse
identification uses the sparse regression technique to identify
dominant dynamics of candidate functions, and has shown
promise in accurately modeling the unknown dynamics of
nonlinear systems [29], [30]. Among the major advantages
of SINDy is its sparsity, which enables easy implementation,
reduces the training time, results in an interpretable model,
and provides an accurate formulation that outperforms other
model identification techniques.

While the existing research shows the significant potential
of SINDy in identifying nonlinear dynamics of dynamical
systems, its application in DER control has not been reported
yet. The paper aims to explore such a data-driven control
framework by identifying the nonlinear dynamics of DERs
using SINDy and utilizing the data-driven model for nonlin-
ear control purposes in smart grids. In particular, the main
contributions of the paper are listed as:

1- Many classical control techniques including feedback
linearization require a detailed mathematical model of
DERs in order to provide robustness and guaranteed
performance. This paper addresses the heavy reliance
of feedback linearization technique on physical models
and instead utilize a data-driven model that is obtained
exclusively from measurements for control design.

2- This paper utilizes sparse identification technique,
which is a statistical machine learning framework lever-
aged for the model identification of nonlinear DERs in
smart grids. The proposed method utilizes available mea-
surements and a library of potential candidate functions
without extensive training and is computationally robust
unlike deep learning methods that require a large amount
of data. The proposed data-driven framework reduces
the complexity of state-of-the-art physics-based modeling
and provides a scalable framework for DER control to
resolve the grid stability issues.

3- Utilizing the obtained data-driven DER models for
the nonlinear control of DERs via feedback linearization
technique, which resolves the grid stability problems
caused by classical linear controllers.

4- Detailed stability analysis of the proposed data-driven
DER model under various grid strength conditions and
sensitivity analysis of controller gains to test the robust-
ness of the designed framework.

5- Evaluating the effectiveness of the proposed data-
driven DER control framework in microgrid integration,
weak AC grid integration, black-start conditions and real-
time simulation using an OPAL-RT platform.

The rest of the paper is organized as follows: Section II
formulates the converter modeling and Section III discusses
the data-driven converter modeling using SINDy. Data-driven
control design using feedback linearization theory is included
in Section IV. Section V elaborates the case studies and results,
and section VI concludes the paper.

II. DYNAMIC MODELING OF THE CONVERTER

As Fig. 1 depicts a voltage source converter (VSC)-
interfaced DER that is connected to the main grid through
an LCL filter composed of L., 7., and Cy. L, and 7, rep-
resent the inductive and resistive parts of the grid impedance,
respectively. Through the VSC, DC voltage (such as batteries
or solar panels) is converted to AC, enabling the integration
to the grid.
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Fig. 1: Typical configuration of a grid-connected DER.

A. Modeling LCL Filter Dynamics

Assuming we have access to the measurements at the point
of common coupling (PCC), the AC-side dynamics of the DER
in dq frame can be expressed as [13]:

Ved — Upd + WoLicicqg = (Les 4 7¢)icd (D
Veqg — Vpg — WoLcted = (LeS 4 1¢)icq 2)
Vpd — Vgd + woLning = (LnS + 70 )ind 3)
Upg — Ugq — WoLning = (Lns + 79)ing 4)
led — ind + wWoCvpg = Cysvpqg (5)
teq — ing — WoCrvpg = Csvpg (6)

where s is the Laplace operator, wg is the nominal frequency
of the system, i.e., 377 rad/s, and vcq, Veq,lcd, and icq
are the dg-frame components of the converter output
voltage and current, respectively. The dg-frame components
of the voltage at the PCC and grid are denoted by
Upd, Upg,Vgd, and vgq, respectively. In addition, the dg-frame
components of the grid current are expressed by 7,,q and i,,4.
The above equations can be written in a matrix form as:
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III. MODEL-FREE IDENTIFICATION OF DERS

Dynamical systems with few nonlinear terms are often stud-
ied using sparsity promoting techniques to identify candidate
functions with the greatest impact on the system dynamics.
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Fig. 2: Identified DER dynamics using SINDy.

Originally proposed in [29], SINDy utilizes a symbolic regres-
sion technique to identify nonlinear dynamics. The concept
behind the sparse identification theory is that many real-world
dynamical systems in form of X = f(x,u) may have a few
terms on the right-hand side. Therefore, following (7), the
dynamics of a DER is expressed by x = f(x) 4+ g(x)u, where
x(t) € R™ denotes the state vector, u(t) € R? is the input
(control) vector, and f(x(t),u(t)) : R x R? — R™. The goal
of SINDy is to reconstruct (7) from the available measurement.
If our knowledge of the model is limited, we can utilize
available measurements (voltages and currents at the PCC) to
identify this model using SINDy and then utilize a data-driven
model (which is almost identical to the physical model with
slightly different parameters) for the control design. Therefore,
the control design can be treated as a grey-box model, where
the control gains are obtained from a data-driven model instead
of a physical model.

A. Data Collection

First, the measurements are sampled at m intervals
t1, ta, ..., t,, and are arranged into a state matrix X €
R™ ™ and input matrix U € R™"*™,

x(t1) x(t2) X(tm)
. | |
[ | |

u(tm)

X = ()

)

As derivative measurements in most systems cannot be ob-
served, they can be approximated numerically from X.

B. Estimating the Derivative Matrix X

Differential equations can be numerically solved using a
difference approximation. Taylor series expansions can be
used to approximate the derivatives of a smooth function
in the neighborhood of point x. For smooth functions, the
central difference approximation is more accurate. Therefore,
following the central difference approximation concept, the X
can be obtained by:

X(i+1)—X(i—1)
2h

In the above formula, X () is the ith measurement vector and
h is the sampling interval of the measurement system [31].

X ~ (10)

C. Sparse Identification of DER Dynamics

If limited knowledge of the DER dynamics is available
(i.e., type of filter used is not known) or the impedance of
the line connecting the inverter from PCC to the grid is not
known, the DER dynamics can be expressed by a library
of p candidate functions ®(X,U) € R"*P. This library
can include polynomials, monomials, or sinusoids in general
that can represent any dynamical system of interest. It is
known that the vector of measured derivatives, X, is a linear
combination of columns in the candidate function library,
which is observed by the entries of matrix E € RP*"™ [29],
ie.,

X = ©(X,U)E. (11)



After estimating X from the available state feedback using
central difference approximation in (10), and having measured
the control input data, U, the candidate function library is built
by including linear and nonlinear functions of the columns of
X and U as shown in equation (12).

In (12), P;(X,U) is a nonlinear combination of i-order
polynomials of X and U. For example, P3(X, U) includes
polynomials up to third order such as: z;z;, 27, z?x;, =3,
Tuj, uiw;, r2u;, and u?. The unknown in (11) is a sparse
matrix 2 , columns of which denote which candidate functions
are active in the dynamics of the DER. Knowing the estimated
derivatives X and calculating ©(X,U) from available mea-
surements, we can utilize the sparse regression theory to solve
for the sparse matrix of coefficients, =. This is achieved by
iteratively solving an optimization of the form:

&k = arg Hg}in Xk — OX, U)éxll2 + Anll€llo (13)
k
where & is the k-th column of = represented by &, =
(61 & ... fp}T and X, represents the k-th column of X.
The L2 norm |[|.||2 in the objective function in (13) tries
to minimize the error between the actual derivatives X and
estimated derivatives X = @(X,U) via an iterative least-
squares optimization and the LO norm ||.||o tries to promote
sparsity in the matrix of coefficients = by minimizing its
number of nonzero elements. In addition, a sparsity promoting
hyperparameter Ay is defined and tuned for kth column of X
imperially to result in the best estimation of the dynamics.
The closer the Ay is to zero, the less sparse the coefficient
matrix 2 is. It was recommended to approximately solve the
optimization problem in (13) using the sequentially thresh-
olded least squares estimation [27]. The method is originally
proposed in [32], which is briefly explained in the following.

Sm:{je[p]:lfgﬂz)\k}, m >0 (14)
]TH _ argmin ||X;C - @)(X,U)ékH27 (16)

€rERP:supp(£,)CS™

where m is the iteration number, (X, U)' is the pseudo-
inverse of (X, U) expressed as

(X, U) .= [OX,U)TeoX,U) 'eX,U)" (17
and supp(&;) == {j € [p] : & # 0} is the support set of &j.
The iterative approach for obtaining the sparse coefficients
of the system dynamics using the SINDy method is listed
in Algorithm 1. Applying the SINDy algorithm to the mea-
surements of the DER, one can obtain the sparse coefficients
matrix and identify the AC-side dynamics in the form of

X = ©(X,U), which can be re-arranged into the original

sin(X,U) cos(X,U) sin(2(X,U))

(12)

Algorithm 1 Sparse Regression Algorithm

Input: Measurements X, U
Input: Estimate derivatives X using (10)

1: procedure SINDY ALGORITHM
2 I'= @\X (least-square solution)
3 for k =1 :10 do (number of iterations)

4 Set A (sparsity promoting constant)

5 |E| < A — indgmall

6: E(inds’mull) —0

7 for k =1 :n do (n dimension of state X)
8 indbig 7é indsma”(:, k)

9 Z(indpig, k) = O(:, indpig)\X(:, k)

10: end for

11: end for

Output: sparse matrix =

form represented by (7). To validate the effectiveness of the
SINDy for identifying the DER dynamics in (7), time-domain
simulations were carried out and the results are illustrated in
Fig. 3. The collected data include the measurements of 6 states
and 4 inputs, i.e., & = [icd,%cqs Upd, Upg, Ind, ing] and inputs
Veds Veg, Vgds Vgq Tor 1.5 seconds with a sampling time of 50
microseconds (300,000 samples). Therefore, the size of X is
6 x 300,000 and the size of U is 4 x 300, 000. By applying
step changes to the control inputs v.q and v.4, accompanied
by a Guassian noise with a zero mean and a variance of 5 V,
the required data for training the sparse regression algorithm
is acquired. The candidate function terms in @(X, U) include
polynomials of up to the 2nd degree and sinusoidal functions,
ie., uj, Ti, T;Tj, xf T4 COS T, T; SIN T, U; COSTj, Ui SINT;.
The identified coefficient matrix = for the studied DER model
is used to develop a data-driven model in MATLAB. As it will
be shown later in the study, the obtained data-driven dynamics
closely track the original states and the SINDy algorithms
is shown to successfully identify the DER dynamics. The
obtained data-driven dynamics will be used for control design
purposes, which will be elaborated in the next section.

D. Impact of Number of Candidate Functions

To analyze the impact of number of candidate func-
tions in the library ©(X,U) on prediction accuracy, a
case study is presented in this section. First, only z; and
u; terms are included in the model (ie., O(X,U) =
[€1,...,26,u1,...ug]), then the number of candidate func-
tions were increased to 22 by adding wx;u; terms, ie.,
[ml.ul, r1.Ug, r1.Uu3, T1.U4, T1.U5, T2.U1, T2.U2, T2.U3,
Zo.uyg, To.us]. Similarly, the number of functions were in-
creased to 42 and 54 by adding more terms including z?
(polynomials up to degree 2) and sinusoidal terms (i.e.,
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Fig. 3: Training results of SINDy to learn the dynamics of the DER.

sin(x;)). It is noted that the hyperparameter A has to be re-
tuned when the number of candidate functions is increased.
Fig. 4 depicts the normalized prediction error as a function
of number of candidate functions. As it can be seen, by
increasing the number of candidate functions, the prediction
error increases. The results suggest that the best prediction is
achieved when we have some knowledge about the possible
terms in the dynamics in order to avoid the large number of
candidate functions that can increase the prediction error. This
is one of the challenges of utilizing SINDy for real-world
problems that necessitates some background knowledge about
the dynamics for better results. In the following analyses, we
utilized 54 candidate functions to run the experiments.
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Fig. 4: Impact of number of library functions on prediction
accuracy of DER models.

IV. DATA-DRIVEN CONTROL DESIGN

To avoid the stability challenges of linear regulators elab-
orated in the introduction section, we will design a data-
driven nonlinear controller using feedback linearization theory,
which has proven to be effective in improving the dynamic
performance of DERs in various grid integration scenarios
[13]. In this section, we will lay out the fundamentals of
feedback linearization, followed by the development of control
strategies. Readers are encouraged to refer to [33] for more
information on the theory of feedback linearization technique.

A. Feedback Linearization Theory

To generalize the DER dynamics in (7) for various configu-
rations, assume a multi-input multi-output (MIMO) dynamical
system is represented by x = f(x) + g(x)u, where x is
an n-dimensional state vector, u € R™ is the vector of
control input, and g(x) is a smooth matrix field on R™. In
addition, the output dynamics is expressed as y = h(x), with
f(x) is a smooth vector field on R™, and h(z) is a smooth
output function. One should note that the DER model in (7)
can easily be transformed into the standard MIMO model
represented above. In feedback linearization control, to deal
with the nonlinearities of the system, the output y will be
differentiated repeatedly until at least one input variable wu;
appears. For instance, repeated derivatives (also known as Lie
derivatives) can be defined as [33]:

oLy Vn(x)

(k) _ (k=1) _
Ly h(x)=Lg(L; "h(x) = I

fx) 18
where Lyh(x) and L,h(x) are Lie derivatives of h(x) and
g(x), respectively. If the input appears after r,, derivations of

the output, then,
m
i = LY hi(x) + 3 Ly, LY Vhi(x)uy,  (19)
j=1

where i = {1, 2, ..., m}. The above equation can be written
in a matrix form as:

yi LY (%) w
L | = LB || @)
yr(r’;,.7n) L;”nl)hm(x) um
where
Lo, LY Vhy () Ly, LY Vi (x)
E(X): . .

Lo, LY Ph(x) oo Ly, L™V (x)



and LyLyh(z) = Mgi}i(x)
OLh(x) f(x). The number of times that the output needs
to bg( differentiated until the input u appears is called the
relative degree of the system and is denoted by a vector relative
degree vyq = {r1, 72, ..., T} at an equilibrium point xg.
According to [33], a solution can be found for choices of
output functions h;(x),i € {1,2,...,m} if the total relative
degree of the system, e.g., Y., 7, is equal to the dimension
of the system’s state-space model n. In this condition, the
control input can be designed by:

g(x) and LyLsh(x) = Lfch(x) =

L(frl)hl(x) V1
u=-F(x) : + E7(x) (1)
LY (x U
f (x)

v

where v is the new input vector to be designed to achieve
a control objective, i.e., zero tracking error of y;'ef -y
[33]. By replacing the control input from (21) in the MIMO
model of the system, the system is converted to a linear
decoupled closed-loop model represented by y,irk) =, k€
{1,2,...,m}, which is written in a matrix form as:

o o] @

() g
y = |:y£7"1)’ . y%M)} =V =

B. Data-Driven Nonlinear Control Design

The structure of the control system is depicted in Fig. 5.
As it can be observed, the diagram includes the DER model,
inner current and voltage regulators to be designed using
feedback linearization theory, and output power controller. The
transfer function of the DER model can be obtained via the
proposed data-driven SINDy. For this purpose, the obtained
SINDy model X = ©(X, U) is re-arranged into the original
form represented by (7). The transfer function is then obtained
from the state-space model, details of which can be found in
[13]. Power and voltage regulation at the PCC are the control
objectives. As a result, the nonlinear controller regulates the
output power through an outer loop control input and regulates
the voltage through an inner loop control input. In this design,
the main objective of the controller is to regulate voltage
instead of reactive power at the point of common coupling.
This is mainly because VSCs suffer from voltage stability
issues when tied to a grid with high penetration of DERs,
which is why it was recommended in [34] to maintain the AC
voltage level at the PCC instead of reactive power control. The
measured active power of the DER at the PCC, p,,,, will pass
through a low-pass filter with the bandwidth of w,, therefore,
the dynamics of active power measurement can be expressed
as:

pm = —WcPm + 1~5(Updind + quinq)wc (23)

To regulate the output power of the DER, the active power
tracking error (p* — p,,,) will be passed through a compensator
Gp(s) that generates the converter voltage angle, §. The
converter angle along with the nominal magnitude of the

AC voltage, V,,om, are then used to generate the dg-frame
reference voltages, v;d and v;q, according to:

ki * *
5 = (kp—i— ) 0"~ p) = Col) 0" —pr) 24
* (25)

Vpg = Viom cos (%) Uy = Viom sin(6)

where G)p(s) = (kp + ) is a proportional integral (PI)
s

regulator for active power control of the DER.

C. Inner Control Design using Feedback Linearization

The inner controllers include voltage and current regulators,
which will be designed using feedback linearization theory and
will be tested on the obtained data-driven DER model.

1) Inner Voltage Controller: The voltage regulator tries to
minimize the voltage tracking error, i.e., e,q = v;d — Upd
and e, = v, — Upq. According to the feedback linearization
theory, we need to first find the derivative of the voltage
tracking errors (i.e., é,q = @;d — Upg and é,4 = v;q — Upg)-
Next, by replacing v,q and v,, from (5) and (6), voltage
tracking dynamics is expressed as:

Cod = i’;d + E(an — icd) — WUpq (26)
. oy 1. .
bug = Upg + C—f(znq — leq) + WoUpd 27)

To decouple the dynamics in dq frame, we will first define

L +
~ n
cy ™

to simplify the voltage tracking dynamics to

g(epqd) = C—ind — WoUpg + Uy and g(eyq) =

Wolpd + U

pq

) ) ) 1. .
évd = g(€pd) — C—fzcd and é,4 = g(eyq) — C—fch. By defining
[évds €va] = [U1, 2], the above equation can be written in a
matrix form as:

vi| _ [Laha(z)| 1 Jica
y2 Lth(x) Cf Z‘cq
where Lihi(x) = g(eypq). and L1ha(x) = g(e,q). Looking at

the above equation and comparing it with the input design for
the feedback linearization theory expressed in (21), it is ob-

served that B, (z) = Byl (z) = = — B,/ (v) = =Cy,

(28)

vq
one can design the control inputs u = [i},,i,] referring to
(2.1) as —E~(z) ([g’}ggﬂ + [Z;D which is simplified
i:d = Cf [79(61”1) + vl] = Gvd(s)evd (29)
ing = Cf [—g(evq) + v2] = Gug(s)evq (30)

where v; and vy are two new inputs to regulate the voltage
tracking error to zero. In the above equations, G4 and G,
can be calculated by:

Goa(s) = Cf {(Kl + I?) - g(eedd)} 31)
Crgls) = C KK n K) - g”} 32)

K. K
where v; = (K + —Z)evd and vy, = (K3 + —Q)evq are two
s
PI regulators to force the voltage dynamics to zero.
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Fig. 5: Block diagram of the proposed data-driven DER control with feedback linearization technique.

2) Inner Current Controller: Next, to limit the converter
current during faults and contingencies, an inner current con-
troller needs to be developed utilizing the current tracking
error, which is denoted by e;q = i}, —icq and e;q = i:q — g
Similar to the voltage controller design and following the
feedback linearization theory, the derlvatlve of current tracklng
error will be obtained (i.e., ¢;q = ch ch and ¢;, = zpq zppq)
By replacing the dynamics of dg frame converter current, e.g.,
1cq and %4, from (1) and (2), the current tracking dynamics is
expressed as:

. - Te . .
€id = log + led — Woleq + f(vcd —vpa)  (33)
. % Te . . 1
€iqg = lpq T 7T feq + wolcd + L—(ch — Upg) (34)
. . Te . . 1

By defining g(eq) = ', + 7 led — Woleg = 7 Upd: and

. R. . . .
gleiq) = zzq + L—°ch + Woled — L—qu, the above equations
C C

1 1
simplify to: é;q4 = g(eiq) + 7 Ved and €, = g(eiq) + I
Then, using the control desién law from the feedback lin-

earization theory in (21), the converter voltage control inputs
can be defined using a proportional controller K3 as:

Veq-

Ved = —ch(eid) + LCngid = Gid(s)eid
Veq = —Leg(eiq) + LeKzeig = Gig(s)eiq

(35)
(36)

D. Impact of Phase-locked Loop

By measuring the voltage at the PCC and forcing the ¢
component of the PCC voltage to zero, phase-locked loop
(PLL) provides the transformation angle for dg-frame conver-
sion denoted by 6,,;(t) = wt. The PLL’s closed-loop transfer
function is obtained by [35]:

A6 G
Gol(s) = pi(s) _ pi(5) 37)
Avpg(s) s+ Gpu(s)Vpa
kpll
where Gpu(s) = kB + —— is a PI regulator to force the

g-component of PCC voltage to zero, and V)4 denotes the

voltage amplitude at the PCC. According to [35], [36], the im-
pact of PLL on the control structure of the DER is studied by
supplementing two terms including AZy;(s) = —Ab($)Ieqo
to the reference converter current in ¢ frame and AV, (s) =
Abp(t)Vpao to the reference converter voltage in the ¢ frame.
By replacing A6,,;;(s) from (37) in these feedforward items,
the PLL dynamics are expressed as:

AIpll(S) = _Ggll(s)choAqu = Gipll(S)Aqu(S)
AVpi(s) = G2 (8)Vpao Avpg = Gupin(s) Avpy(s)

(38)
(39)

which will be added to the overall control block diagram of
the converter as illustrated in Fig. 5. The block diagram of
the closed-loop control of the DER with data-driven nonlinear
controller will be used for stability analysis purposes. Fig. 6
depicts the detailed implementation of the proposed data-
driven control.

V. CASE STUDIES

To validate the effectiveness of the proposed model-free
nonlinear DER control in the grid-tied mode, several case
studies are carried out using time-domain simulations and
eigenvalue analysis in MATLAB. The DER parameters used
for time-domain simulations are obtained from [13].

A. Sensitivity Analysis

To analyze the impact of the proposed data-driven DER
control on the stability of the system, eigenvalue analysis is
carried out to compare the data-driven DER control with a
model-based control. Two block diagram of the DER con-
troller shown in Fig. 5 were developed in MATLAB/Simulink,
one using an actual model represented by (7) and the other
one using the SINDy model. Next, the “LINMOD” function
of MATLAB was used to derive the state-space linearized
A, B,C, D matrices of the closed-loop system for eigenvalue
analysis. Table I illustrates a detailed comparison between the
eigenvalues of the actual model and the proposed data-driven
model. As it can be observed, the system has 12 eigenvalues
with detailed participation factor analysis shown in the X
column that relates the modes to the state variables of the
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TABLE I: Eigenvalue comparison of the physical DER controller with the data-driven one.

Actual Data-Driven

Xpf A fMH) 1 (%) | A fHz) 1 (%)
Py W, Ved,bed A1 = —4.3 + 52037 324 021 | A = —4.44 52778 442 0.15
Py W, Ved,eqg Ao = —4.3 — 52037 324 021 | Ao =—4.4—;52788 442 0.15

Py w A3 = —2.2 + 51283 204 0.17 | A3 =—1.5+4 51524 242 0.1

P, w Ay = —2.2 — 51283 204 0.17 | Ay =—1.5—751524 242 0.1
0,vp A5 = —1.3 + 5377 60 034 | A5 =—1.24 5377 60 0.34
0,vp X6 = —1.3 — 5377 60 034 | g =—1.2—75377 60 0.34

Ved A7 = —56.6 0 100 | A7 = —56.6 0 100

icq g = —6.96 0 100 | Ag =—7.25 0 100

ing Xo = —0.1 0 100 | Xo =—0.1 0 100

ind Ao = —8.5¢ 6 0 100 Ao = —4.9¢6 0 100

Upgq A1 = —8.5¢7 6 0 100 | A\p = —4.7¢=6 0 100

Vpd A2 = —8.5e 6 0 100 | A2 = —4.7e 6 0 100

system. Each mode’s frequency and damping are also listed
in the table. As shown in the Table, the data-driven eigenvalues
closely match the actual ones, indicating the effectiveness of
the proposed data-driven model and control design for stability
analysis in smart grids. As can be observed in both cases, all
modes reside in the left half-plane (LHP) and the system is
stable. In the case studies, we will investigate the impact of
system parameters on these eigenvalues.

4000

4000

¥ SCR=1 ¥ % SCR=1 *
* SCR=2 v % SCR=2 * %
% SCR=3 * % SCR=3 A
2000 = * ook 2000
*
] Increasing ] Increasing > %
g o He K Grid * F 0 K Grid *
< 8 * ¥ *
= Stregth _ = Stregth
A T x = o~
- T *
-2000 ATy -2000 &«
*
— *
Original Model ¥ SINDy Model x *
-4000 -4000 *
-10 -8 6 4 -2 0 -10 -8 -6 4 2 0

Real Real

Fig. 7: Impact of grid weakness on eigenvalues.

1) Impact of Grid Strength: To analyze the sensitivity of
the proposed data-driven DER controller in various AC grid
conditions, three short circuit ratios (SCRs) are considered,
where SCR=1 represents a very weak AC grid (or ultra weak

AC grid), SCR=2 represents a weak AC grid, and SCR=3 is
a strong grid. The eigenvalues of the original model (actual
model) and the data-driven SINDy are compared for these
three grid integration case studies and the trajectory of eigen-
values is plotted in Fig. 7. First, the results show a good match
between the trajectory of the eigenvalues in the proposed
data-driven DER control (SINDy) and the model-based DER
control (original model). Furthermore, it is observed that
by reducing the strength of the AC grid, the eigenvalues
move towards the right half-plane (RHP), but the system
remains stable thanks to the superiority of feedback linearized
controller.
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Fig. 8: Impact of PLL gains on eigenvalues.



2) Impact of Control Parameters: To analyze whether the
proposed data-driven DER control can accurately track the
trajectory of eigenvalues when the parameters of the controller
change, the impact of PLL gains on stability of the designed
controller was studied as shown in Fig. 8. By modifying
the PLL gains in both proposed data-driven and actual DER
control, the trajectory of the eigenvalues were plotted. It can
be observed that by increasing the PLL gains, four eigenvalues
move towards the origin denoting the increase in the PLL gains
might destabilize the system. A comparison of the trajectory
of the eigenvalues in a data-driven DER model (right subplot)
and a physical model (left subplot) shows a close agreement
between the two models, indicating that the proposed data-
driven model can be successfully used for smart grid stability
analysis.
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Fig. 9: Simulation results for weak AC grid integration of the
proposed data-driven DER control.

B. Time-domain Simulations

To validate the effectiveness of the designed feedback-
linearization-based nonlinear controller, time-domain simu-
lations on a grid-connected converter are carried out using
MATLAB Simscape power system toolbox. Three case studies
are considered: (1) DER’s active power response when the AC
grid is (ultra weak) (SCR=1), (2) black-start capability of the
proposed data-driven DER controller when SCR=1, and (3)
microgrid integration of the proposed data-driven DER control.

1) DER’s Active Power Response: Fig. 9 shows the com-
parison results for capability of a data-driven DER control and
a model-based DER control in transferring an active power of
1 p.u. in an (ultra weak) weak AC grid with SCR=1. The active
power setpoint of the converter is first set to 0.5 p.u., which is
increased to 1 p.u. at t = 1 sec. Using SINDy, a data-driven
DER controller is shown to successfully deliver 1 p.u. active
power in an (ultra weak) weak AC grid condition with SCR=1.
In addition, as the figure confirms, the trajectory of system
states including active power, frequency, voltage magnitude,
and reactive power in a data-driven DER closely matches that
of a physical model. The results confirm the success of the

proposed data-driven framework for DER control in weak AC
grid scenarios.
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Fig. 10: Simulation results for blackstart capability of the

proposed data-driven DER control.

2) Black-start Capability: This case examines the capabil-
ity of proposed data-driven DER controller in a black-start
scenario. To test the black-start capability, the reference active
power of the DER is suddenly changed from O to 1 p.u. at
t = 0 sec and the simulation results are shown in Fig. 10.
As it can be observed, a feedback linearization controller can
successfully deliver 1 p.u. of active power from a black-start
condition. In addition, the trajectory of the system states in the
proposed data-driven model based on SINDy closely matches
that of the DER control that was designed using a detailed
physical model. Therefore, a data-driven control design using
SINDy proves to be effective for blackstart conditions.

3) Microgrid Operation: To study whether the data-driven
DER control can perform as expected in the islanded mode,
the proposed data-driven DER controller was tested in a
microgrid. The microgrid model is composed of a DER with
the proposed data-driven feedback linearization controller and
three solar photovoltaic (PV) plants, all of which are connected
to the AC grid through the point of common coupling depicted
in Fig. 11. Through a three-phase VSC and a filter, each
solar array is connected to the PCC. Vector control in the
synchronous reference frame is used with maximum power
point tracking (MPPT) to control the solar inverters. The
PV systems operate at a constant solar irradiance input of
900W /m? supplemented with random noise to account for the
uncertain behavior of the output PV power. More information
on developing the solar photovoltaic system can be found in
[371, [38].

Simulation results for microgrid integration of the nonlinear
controlled VSC is demonstrated in Fig. 12, where the last
subplot depicts the aggregated solar PV power that averages
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Fig. 12: Simulation results for fault ride through capability of
nonlinear-based controller when SCR=1.

around 0.9 p.u. The active power reference of the data-driven
DER was set to 0.5 p.u. initially, which was increased to 0.75
att = 1.5 sec and to 1 p.u. at ¢t = 2.5 sec. It is evident that PV
farms’ output is highly uncertain due to irradiance variations.
There were a few spikes in voltage and frequency at the PCC
as a result of the intermittency of the solar farm. Comparing
the trajectory of the states in the data-driven DER and the
original DER using physical model, one can confirm the close
match between the two. It is observed that the proposed data-
driven control of DERs using SINDy can successfully operate
when controlling DERs that are integrated to the grid or a mi-
crogrid with high penetration of renewables. Therefore, data-
driven nonlinear control frameworks open up new possibilities

for accurate control with performance guarantees in smart grid
applications, which would otherwise be very challenging. It is
noted that since the control design is usually carried out for
individual DERs and the control algorithm is embedded in the
inverter of the DER before integrating it to the grid, model
identification also needs to be carried out before integrating the
DER to the grid. In addition, since the prediction is very close
to real parameters (physics-based model), the control gains in
the data-driven design are fairly close to the control gains in
physics-based models. Therefore, as confirmed by simulation
results, even if there are multiple DERs operating in parallel,
the proposed data-driven control can successfully achieve the
control objectives.

C. Real-time Verification

The active power response scenario for the proposed data-
driven method in Section V-B is replicated in real time using
the OPAL-RT real-time testbed shown in Fig. 13. To this end,
first the grid-connected DER with the SINDy-based control is
built in Simulink® and compiled in RT-LAB. The model is
then executed on one of the CPU cores of the OP4510 real-
time target and is controlled through a TCP/IP link by the
Simulink® GUI running on the host PC. Desired measurements
are then sent to a digital oscilloscope in real-time via the
analog outputs of the OP4510 target.

As can be seen from Fig. 14, the waveforms obtained for
P, f, V, and @ using the SINDy-based control that is run in
real time, closely follow their offline simulation counterparts
shown in Fig. 9. The real-time results also exhibit close
trajectories to the detailed physics-based design, verifying the
capability of the proposed method for implementation in real
time.

Host PC Real-time Target
Model ’i .

m Compilation TCP/IP Link

‘RT-LAB SIMULINK

Digital Oscilloscope

Analog Output

Fig. 13: Real-time testbed configuration.

VI. CONCLUSION

In this paper, a model-free nonlinear control of DERs
using feedback linearization technique was studied. Using the
sparse identification of nonlinear dynamics with control that
utilized the available measurements from the point of common
coupling of DERs to the grid, dynamics of the DER were
predicted by leveraging a library of candidate functions. The
learned dynamics were then used to develop control designs
for voltage regulation, active power regulation, and current
control of DERs using the feedback linearization technique.
The proposed research demonstrates the effectiveness of sparse
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identification for data-driven model identification of nonlinear
DER systems and successfully tracking the dynamic trajectory
of DER states during contingencies or operating point changes.
We also demonstrated the effectiveness of the proposed data-
driven approach for stability analysis of DERs in smart grids,
which could significantly reduce the complexities of existing
model-based stability analysis approaches. We showed that
without having a physical model, complex dynamics of DERs
can be identified using measurements and the data-driven
model can be utilized for nonlinear control designs that could
provide stability guarantees and robustness in smart grid appli-
cations. Such formulation can significantly reduce the existing
complexities of control design in smart grid. One of the
main challenges of utilizing SINDy for model identification

of DERs is that it requires some initial knowledge about the
DER dynamics as randomly generating the library of candidate
functions and increasing the components of library functions
can reduce the prediction accuracy. In the future work, we
will explore other techniques such as deep learning to learn
the best candidate functions that could be applied for DER
model identification using SINDy.
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