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Abstract—With the growing complexity of inverter-dominated
grids, there is an emerging need for developing effective modeling
tools to identify the dynamics of inverter-based resources (IBRs)
interconnected to the grid. This paper utilizes a data-driven
approach for identifying the dynamics of grid-tie IBRs in modern
power systems. By leveraging the available measurements of the
grid-tie IBR and estimation of derivatives of the states, sparse
identification of nonlinear dynamics (SINDy) is utilized to obtain
the IBR dynamics by selecting a library of candidate functions.
The obtained data-driven model is then utilized for designing
controllers to regulate the active and reactive powers of the
grid-tie IBR. Time-domain simulations validate the effectiveness
of the proposed data-driven model identification approach for
control purposes in smart grids.

Keywords— Distributed Energy Resources, Sparse Identification,
Koopman Theory, Data-driven System Identification.

I. INTRODUCTION

N an effort reducing the carbon emissions in electricity

grid, renewable energy resources are widely being
integrated into the grid [1]-[6]. The governing equations
of these inverter-based resources (IBRs) in smart grids
is a critical step in the modeling and control of these
distributed energy resources (DERs) for guaranteed stability
of the grid. Data-driven modeling of smart grid assets is
currently undergoing a revolution due to the availability of
high-resolution measurements from field devices.

System identification tools comprise a large collection of
approaches that can be utilized to characterize dynamics from
data. Many approaches have been utilized for data-driven
model identification of dynamics including dynamic mode
decomposition (DMD) [7], [8], neural networks (NNs) [9],
[10], Koopman operator [11], [12], and sparse identification of
nonlinear dynamics (SINDy) [13], [14]. In power system area,
several recent studies have focused on data-driven modeling
using these approaches [15]-[20]. For example, dynamic mode
decomposition was utilized in [15] for microgrid control that
is delay tolerant, or Koopman operator was utilized in [17]
to identify the dynamics of generators for state-estimation
purposes. As another example, a data-driven approach using
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machine learning tools was proposed in [19] to identify the
lifetime of lithium-ion batteries.

Among these methods, dynamic mode decomposition
heavily relies on a linear dynamics assumption but can handle
high-dimensional data. Neural network-based approaches
require a large amount of training data and are not
interpretable [13], [14]. Koopman operator connects dynamic
mode decomposition to nonlinear dynamics through an
infinite dimensional linear operator also known as Koopman
operator. Under special circumstances and provided that a
good measurement basis is selected, Koopman operator may
converge to a finite dimensional space, but it is not guaranteed
for many systems [11], [12]. Sparse identification uses the
sparse regression technique to identify dominant dynamics
of candidate functions, and has shown promise in accurately
modeling the unknown dynamics of nonlinear systems [21],
[22]. Among the major advantages of SINDy is the sparsity
approach which is easy to implement, reduces the training
time, is interpretable, and provides an accurate formulation
that outperforms other model identification techniques. While
the existing research shows the significant potential of SINDy
for identifying nonlinear dynamics of dynamical systems, their
application for DER control have not been reported yet.

To address the existing knowledge gaps for identifying
DER dynamics in smart grids, this paper investigates the
application of sparse identification theory for control purposes
in smart grids. Using sparse identification, dynamics of
DERs will be identified using measurements. The learned
nonlinear dynamics can then be used control purposes. Such
control framework can significantly reduce the complexities of
existing IBR control designs that heavily rely on physics-based
models.

The rest of the paper is organized as follows: Section II
formulates the IBR dynamics. Sparse identification of IBR
dynamics is included in Section III. Time-domain validations
are included in Section IV and Section V concludes the paper.

II. PROBLEM FORMULATION

Fig. 1 depicts an IBR that is connected to the main
grid through point of common coupling (PCC). The IBR is
composed of the energy source (i.e., solar, wind, storage), a
voltage source converter (VSC), and an LCL filter. In this



figure, L. and 7., and C are the inverter filtering components,
and L4, r, are the grid impedance components.
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Figure. 1 Schematic of a grid-tie IBR.

A. AC-side Dynamics

Referring to Fig. 1, dynamics of the system in dq frame can
be expressed as:
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where s = 4 is the Laplace operator, wy is the nominal

frequency of the system, i.e., 377 rad/s, v.q, Veq,%cd, and
icq are the dg-frame components of the converter output
voltage and current, respectively. Also, vpq, Vpg;Vgd,
and vy, are the dg-frame components of the voltage
at the PCC and grid, respectively, and i,q and i,, are
the dg-frame components of the grid current. The above
equation can be written in the following state space form:
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B. Inner Current Controller

In the VSC, the inner current controller generates the
reference voltages in the dg-frame, which are fed to the pulse
width modulation (PWM) generation unit. Dynamics of the
inner current control loop in the dq frame can be represented
as:
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where v7; and v, are the reference voltages of the convert
in dq frame, iy and ¢ are the reference currents generated by
the outer control loop, i14 and i1, are the currents measured
at the PCC and the feed forward voltage components, v, and
Upq. are measured at the PCC. Furthermore, kj; and k;; are
the PI controller gains for the inner current loop controller.

C. Active and Reactive Power Controller

Assuming that a phase-locked loop is implemented that
can synchronize the converter to the grid by forcing the g
component of the PCC voltage to zero referring to [23], the
outer loops of the IBR can directly control the active and
reactive powers, P, (), delivered to the grid. Two proportional
controllers generate the reference currents (i; and iy) using:
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The outer control loop dynamics in the dg-frame are expressed
in (9), where P* and Q* are active and reactive power
demanded by the grid, P and () are active and reactive
power measured at the PCC, which can be calculated using
P = 1.5(vpdlca + Upglcq)s @ = 1.5(—Vpaicq + Upgica) [23].

D. Data-Driven Model Identification

In the absence of detailed information about DERs and
their converter parameters, the objective is to identify the
lumped dynamic model of DERs in equation (7) from
available measurements of the states. We will utilize sparse
identification of nonlinear dynamics (SINDy) to identify the
dynamics from measurements and utilize the data-driven
model to design a controller that regulates the active and
reactive power of the IBRs. An overview of the proposed
approach for data-driven model identification and control of
DERs using SINDy is depicted in Figure. 2. By perturbing the
input (converter voltage) and collecting enough measurement
samples, sparse regression can be utilized to identify the
nonlinear dynamics by selecting a good library of candidate
functions. The identified data-driven model can then be used
for control design purposes. The control design includes the
inner current control loop that regulates the converter current
through proportional integral (PI) regulators and the outer loop
regulates the active and reactive powers of the converter in
grid-tie mode of operation.

III. MODEL-FREE IDENTIFICATION OF DERS

The sparsity promoting techniques are commonly used to
identify the candidate functions with the greatest impact on
the dynamics of dynamical systems containing few nonlinear
terms. Originally proposed in [21], SINDy utilizes a symbolic
regression technique to identify the system dynamics. The
sparse identification is based on the fact that many dynamical
systems with the form %X = f(x,u) have very few terms on
the right. Considering the physical dynamics of a DER is
represented by x = f(x) + g(x)u, where x(t) € R" is the
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Figure. 2 Identified DER dynamics using SINDy.

state vector, u(¢) € RY is the input or control vector, and
f(x(t),u(t)) : R™ x R? — R™, the objective is to reconstruct
(7) from data. The process is explained in below.

A. Data Collection

The first step involves collecting m samples of data from
the states and inputs by collecting a time-history of the state
vector x(t), input u(t), and %(¢). The measurement data is
sampled at m intervals ¢1, ta, ..., t,, and is arranged into a
matrix X € R™**™,

[ | | ]
X =|x(t1) x(t2) X(tm) (10)
[ | |
and inputs for ¢, samples are written into a matrix U €
Rnxm’
[ | | ]
U= | u(t1) u(t) u(tm) (11)
| | |

since in most practical systems the derivative measurements
are not observable, the measurements for derivatives can be
approximated numerically from X.

B. Estimating the Derivatives, X

A difference approximation is used to solve ordinary and
partial differential equations numerically. If a smooth function
is considered in the neighborhood of point x, the derivatives
can be approximated using Taylor series expansions. This

paper uses the central difference approximation since it is
more accurate for smooth functions. Therefore, X can be
approximated by:

X(i41)—X(i—1)
2h

where X (i) is the measured data at sample ¢ and h is the
sampling interval of the simulation or data collection process
[24]. Fig. 3 depicts a comparison between the estimated
derivatives of the IBR with the measured ones using central
difference approximation technique with a sampling time of 50
microseconds. As it can be observed, the derivatives accurately
match the actual derivatives of the states.
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C. Sparse Identification of IBR Dynamics

If the IBR dynamics can be represented by a library of
p candidate functions ®(X,U) € R"*P(e.g., polynomials,
or sinusoids), the vector of measured derivatives is a linear
combination of columns from the candidate function library.
The linear combination of columns is observed by the entries
of matrix Z € RP*" such that [21]:

X =0O(X,U)=. (13)

Having estimated X from measurements, the library of
candidate functions will be developed by including linear and
nonlinear functions of the columns of X and U. Typical
candidate functions include polynomials and trigonometric
functions for nonlinear systems, as shown in equation (14).
In this equation, P;(X, U) denotes a nonlinear combination
of i-order polynomials of X and U. For example, P5(X, U)
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Figure. 3 Comparison between estimated derivatives and measured derivatives of the states for IBRs.
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includes polynomials up to second order such as z;x;,
xf x;u;, and uf. Having the estimated derivatives X and
O(X,U), (13) can be solved to obtain a sparse matrix =
columns of which denote which candidate functions are active
in the dynamics of the IBR. This process is normally solved
iteratively using a sparse regression algorithm. The algorithm
converges by solving an optimization of the form:
§n = argmin || Xy, — O(X, U)&nl2 + All€nllo

h

15)

where &, is the h-th column of £ represented by &, =
(61 & ... §p}T and X, represents the h-th column of X.
The objective function in (15) has two components: the L2
norm ||.||2 that minimizes the error between the derivatives
X and estimated derivatives through an iterative least-squares
problem and the LO norm ||.||o that minimizes the number of
nonzero elements in & to promote sparsity in the coefficients
matrix £. It is noted that A is the sparsity-promoting
hyperparameter that is tuned imperially to result in the best
estimation of the dynamics.

The minimization problem in (15) is solved using a
sequentially thresholded least squares technique proposed in
[25]:

st={jebl:[g|=A}, k=0
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€k+1 _
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(14)

where k is the iteration number, ©(X,U)" is the
pseudo-inverse of ©(X, U) and is defined as

X, U)l =X, U)feox, U 'exXu)l 19

and the support set of &, is defined by supp(&r,) := {j € [p] :
&; # 0}. Algorithm 1 explains the step-by-step procedure for
obtaining the matrix = using the sparse regression method.
If the intent is to identify the signal U for feedback control,
ie., U= G(s)X, where G(s) is the transfer function of the
controller, the matrix of inputs can be identified using U =
0, (X)E,, where ®,(X) is the matrix of candidate functions
with the terms corresponding to U have been removed from
O©(X,U) and E,, can be found using the sparse regression
algorithm similar to =.

IV. CASE STUDIES

To validate the effectiveness of the proposed model-free IBR
control in grid-tie mode, several case studies are carried out
using time-domain simulations in MATLAB.

A. Training SINDy to Learn IBR Dynamics

First, the SINDy model is trained by perturbing the inputs
of a simulated IBR model and capturing measurements.
The measurements from states and inputs were utilized in
Algorithm 1 to obtain the matrix of sparse coefficients.
For ©(X,U), the candidate terms include polynomials up
to degree 2 and sinusoidal functions, i.e., w;, x;, ;v ,
x2, x; cosxj, x;sinx;, u;cosx;, u;sinx;. The identified
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Figure. 4 Training of SINDy to learn the dynamics of IBR.

Algorithm 1 Sparse Regression Algorithm
Input: Measurements X, U
Input: Estimated derivativesX

1: procedure STLS
2= @\X (least-square solution)
for k =1 : 10 do (number of iterations)
Set A (sparcification knob)
|E‘| <A — 7:ndsn%all
E(’L"rldsma”) — 0
for k =1 :n do (n dimension of state X)
Z‘ndbig 7& indsmall(za k) .
E(indpig, k) = O(:,indyig) \ X (:, k)
end for
end for

3
4
S:
6:
7
8
9

10:
11:

[1]

Qutput: sparse matrix

coefficients = for the studied IBR model were used to develop
a data-driven model in MATLAB. A comparison between the
physical model and the identified model is shown in Figure. 4.
This data-driven IBR model accurately reflects the dynamics
of the physical model, as can be seen.

B. IBR’s Active
Data-Driven Model

In the second case, the control architecture shown in Fig.
2 was implemented on the data-driven model and then was
applied to the simulated IBR using the parameters provided
in [23]. The PI control gains for the data-driven model include
kip = 0.11 and k;; = 11 whereas for the physical systems with
actual dynamics, these gains were calculated to be k;, = 0.1
and k;; = 10. Simulation results for the states are illustrated
in Fig. 5 and the active and reactive power tracking results

and Reactive Power Control using

are shown in Fig. 6. It is noted that the results of the
proposed data-driven control design accurately match with the
physics-based design.

V. CONCLUSION

In this paper, a model-free identification of IBR dynamics
for control purposes was studied. Using sparse identification
of nonlinear dynamics with control along with available
measurements, dynamics of the IBRs were predicted utilizing
a library of candidate functions from measurement basis. The
learned dynamics were then used to design a controller that
can regulate the converter current and provide active/reactive
power control capabilities in grid-tie mode of operation. It
was demonstrated that sparse identification can accurately
identify the IBR dynamics with limited measurement data
(0.15 seconds with 50 microseconds sampling time) and the
data-driven control design can provide accurate active and
reactive power control as a physics-based control design.
Such data-driven control framework can significantly reduce
the existing complexities of control design in modern power
systems. Future research will focus on hardware validation
of the proposed data-driven control in a three-phase voltage
source converter.

REFERENCES

[1] S. M. Ho, A. Lomi, E. C. Okoroigwe, and L. R. Urrego, “Investigation
of solar energy: The case study in malaysia, indonesia, colombia and
nigeria,” International Journal of Renewable Energy Research, vol. 9,
no. 1, 2019.

K. Kumar, N. R. Babu, and K. Prabhu, “Design and analysis of an
integrated cuk-sepic converter with mppt for standalone wind/pv hybrid
system,” International Journal of Renewable Energy Research (IJRER),
vol. 7, no. 1, pp. 96-106, 2017.

K. Anwar and S. Deshmukh, “Assessment and mapping of solar energy
potential using artificial neural network and gis technology in the
southern part of india,” International Journal of Renewable Energy
Research (IJRER), vol. 8, no. 2, pp. 974-985, 2018.

[2]

[3]



Q (VAR)

10 0
8
6 -20
T4 3
) -40
0
-4 -60
0 2 4 6 0 2 4 6 0 2 4 6
Time (sec) Time (sec) Time (sec)
10 300 0
0 -200
200
£-10 3 £ -400
100
-20 -600
s Vg (0T gL )
0d(SIN Dy)
-30 0 -800
0 2 4 6 0 2 4 6 0 2 4 6
Time (sec) Time (sec) Time (sec)

Figure. 5 Trajectory of states for active and reactive power control.

3000 3000
1=
2000 :
=
& 1000 |
0
0 2 4 6
Time (sec)
1500 1500
1000 1000
500 Z 500
0 g o
-500 < 500
1000 - Qs -1000
1500 Q(Physics-based) 1500 e () (SINDy)
0 2 4 6 0 2 4 6

[4]

[5]

[7]

[8]

[10]

Time (sec) Time (sec)

Figure. 6 Active and reactive power measurements.

Y. Althuwaini and S. P. Philbin, “Techno-economic analysis of solar
power plants in kuwait: Modelling the performance of pv and csp
systems,” International Journal of Renewable Energy Research (IJRER),
vol. 11, no. 4, pp. 2009-2024, 2021.

V. Suresh and S. Sreejith, “Power flow analysis incorporating renewable
energy sources and facts devices,” International Journal of Renewable
Energy Research (IJRER), vol. 7, no. 1, 2017.

T. Tawfik, M. Badr, O. Abdellatif, H. Zakaria, and M. EL-Bayoumi,
“Techno-enviro-economic evaluation for hybrid energy system
considering demand side management,” International Journal of
Renewable Energy Research (IJRER), vol. 12, no. 2, pp. 623-635,
2022.

M. Liu, L. Tan, and S. Cao, “Method of dynamic mode decomposition
and reconstruction with application to a three-stage multiphase pump,”
Energy, vol. 208, p. 118343, 2020.

H. Lu and D. M. Tartakovsky, “Prediction accuracy of dynamic mode
decomposition,” SIAM Journal on Scientific Computing, vol. 42, no. 3,
pp. A1639-A1662, 2020.

T. Qin, K. Wu, and D. Xiu, “Data driven governing equations
approximation using deep neural networks,” Journal of Computational
Physics, vol. 395, pp. 620-635, 2019.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Multistep neural
networks for data-driven discovery of nonlinear dynamical systems,”
arXiv preprint arXiv:1801.01236, 2018.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

M. Al-Gabalawy, “Deep learning for koopman operator optimal control,”
ISA transactions, 2021.

A. Mauroy, I. Mezi¢, and Y. Susuki, The Koopman Operator in Systems
and Control: Concepts, Methodologies, and Applications.  Springer
Nature, 2020, vol. 484.

S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the National Academy of Sciences, vol. 113,
no. 15, pp. 3932-3937, 2016.

U. Fasel, E. Kaiser, J. N. Kutz, B. W. Brunton, and S. L. Brunton, “Sindy
with control: A tutorial,” arXiv preprint arXiv:2108.13404, 2021.

G. Kandaperumal, K. P. Schneider, and A. K. Srivastava, “A data-driven
algorithm for enabling delay tolerance in resilient microgrid controls
using dynamic mode decomposition,” IEEE Transactions on Smart Grid,
vol. 13, no. 4, pp. 2500-2510, 2022.

J. Bedi and D. Toshniwal, “Empirical mode decomposition based deep
learning for electricity demand forecasting,” IEEE access, vol. 6, pp.
49 144-49 156, 2018.

M. Netto and L. Mili, “A robust data-driven koopman kalman filter for
power systems dynamic state estimation,” IEEE Transactions on Power
Systems, vol. 33, no. 6, pp. 7228-7237, 2018.

Y. Hirase, Y. Ohara, N. Matsuura, and T. Yamazaki, “Dynamics analysis
using koopman mode decomposition of a microgrid including virtual
synchronous generator-based inverters,” Energies, vol. 14, no. 15, p.
4581, 2021.

K. A. Severson, P. M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. H.
Chen, M. Aykol, P. K. Herring, D. Fraggedakis er al., “Data-driven
prediction of battery cycle life before capacity degradation,” Nature
Energy, vol. 4, no. 5, pp. 383-391, 2019.

Y. Li, Y. Liao, X. Wang, L. Nordstrom, P. Mittal, M. Chen, and H. V.
Poor, “Neural network models and transfer learning for impedance
modeling of grid-tied inverters,” in 2022 IEEE 13th International
Symposium on Power Electronics for Distributed Generation Systems
(PEDG). IEEE, 2022, pp. 1-6.

S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the national academy of sciences, vol. 113,
no. 15, pp. 3932-3937, 2016.

“Sparse identification of nonlinear dynamics with control
(sindyc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710-715, 2016.

A. Yazdani and R. Iravani, Voltage-sourced converters in power systems:
modeling, control, and applications. John Wiley & Sons, 2010.

S. Larsson and V. Thomée, Partial differential equations with numerical
methods. Springer, 2003, vol. 45.

L. Zhang and H. Schaeffer, “On the convergence of the sindy algorithm,”
Multiscale Modeling & Simulation, vol. 17, no. 3, pp. 948-972, 2019.



