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Abstract—With the growing complexity of inverter-dominated
grids, there is an emerging need for developing effective modeling
tools to identify the dynamics of inverter-based resources (IBRs)
interconnected to the grid. This paper utilizes a data-driven
approach for identifying the dynamics of grid-tie IBRs in modern
power systems. By leveraging the available measurements of the
grid-tie IBR and estimation of derivatives of the states, sparse
identification of nonlinear dynamics (SINDy) is utilized to obtain
the IBR dynamics by selecting a library of candidate functions.
The obtained data-driven model is then utilized for designing
controllers to regulate the active and reactive powers of the
grid-tie IBR. Time-domain simulations validate the effectiveness
of the proposed data-driven model identification approach for
control purposes in smart grids.

Keywords— Distributed Energy Resources, Sparse Identification,
Koopman Theory, Data-driven System Identification.

I. INTRODUCTION

IN an effort reducing the carbon emissions in electricity

grid, renewable energy resources are widely being

integrated into the grid [1]–[6]. The governing equations

of these inverter-based resources (IBRs) in smart grids

is a critical step in the modeling and control of these

distributed energy resources (DERs) for guaranteed stability

of the grid. Data-driven modeling of smart grid assets is

currently undergoing a revolution due to the availability of

high-resolution measurements from field devices.

System identification tools comprise a large collection of

approaches that can be utilized to characterize dynamics from

data. Many approaches have been utilized for data-driven

model identification of dynamics including dynamic mode

decomposition (DMD) [7], [8], neural networks (NNs) [9],

[10], Koopman operator [11], [12], and sparse identification of

nonlinear dynamics (SINDy) [13], [14]. In power system area,

several recent studies have focused on data-driven modeling

using these approaches [15]–[20]. For example, dynamic mode

decomposition was utilized in [15] for microgrid control that

is delay tolerant, or Koopman operator was utilized in [17]

to identify the dynamics of generators for state-estimation

purposes. As another example, a data-driven approach using
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machine learning tools was proposed in [19] to identify the

lifetime of lithium-ion batteries.

Among these methods, dynamic mode decomposition

heavily relies on a linear dynamics assumption but can handle

high-dimensional data. Neural network-based approaches

require a large amount of training data and are not

interpretable [13], [14]. Koopman operator connects dynamic

mode decomposition to nonlinear dynamics through an

infinite dimensional linear operator also known as Koopman

operator. Under special circumstances and provided that a

good measurement basis is selected, Koopman operator may

converge to a finite dimensional space, but it is not guaranteed

for many systems [11], [12]. Sparse identification uses the

sparse regression technique to identify dominant dynamics

of candidate functions, and has shown promise in accurately

modeling the unknown dynamics of nonlinear systems [21],

[22]. Among the major advantages of SINDy is the sparsity

approach which is easy to implement, reduces the training

time, is interpretable, and provides an accurate formulation

that outperforms other model identification techniques. While

the existing research shows the significant potential of SINDy

for identifying nonlinear dynamics of dynamical systems, their

application for DER control have not been reported yet.

To address the existing knowledge gaps for identifying

DER dynamics in smart grids, this paper investigates the

application of sparse identification theory for control purposes

in smart grids. Using sparse identification, dynamics of

DERs will be identified using measurements. The learned

nonlinear dynamics can then be used control purposes. Such

control framework can significantly reduce the complexities of

existing IBR control designs that heavily rely on physics-based

models.

The rest of the paper is organized as follows: Section II

formulates the IBR dynamics. Sparse identification of IBR

dynamics is included in Section III. Time-domain validations

are included in Section IV and Section V concludes the paper.

II. PROBLEM FORMULATION

Fig. 1 depicts an IBR that is connected to the main

grid through point of common coupling (PCC). The IBR is

composed of the energy source (i.e., solar, wind, storage), a

voltage source converter (VSC), and an LCL filter. In this



figure, Lc and rc, and Cf are the inverter filtering components,

and Lg , rg are the grid impedance components.
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Figure. 1 Schematic of a grid-tie IBR.

A. AC-side Dynamics

Referring to Fig. 1, dynamics of the system in dq frame can

be expressed as:

vcd − vpd + ω0Lcicq = (Lcs+ rc)icd (1)

vcq − vpq − ω0Lcicd = (Lcs+ rc)icq (2)

vpd − vgd + ω0Lninq = (Lns+ rn)ind (3)

vpq − vgq − ω0Lnind = (Lns+ rn)inq (4)

icd − ind + ω0Cfvpq = Cfsvpd (5)

icq − inq − ω0Cfvpd = Cfsvpq (6)

where s =
d

dt
is the Laplace operator, ω0 is the nominal

frequency of the system, i.e., 377 rad/s, vcd, vcq, icd, and

icq are the dq-frame components of the converter output

voltage and current, respectively. Also, vpd, vpq, vgd,
and vgq are the dq-frame components of the voltage

at the PCC and grid, respectively, and ind and inq are

the dq-frame components of the grid current. The above

equation can be written in the following state space form:

⎡
⎢⎢⎢⎢⎢⎢⎣

i̇cd
i̇cq
v̇pd
v̇pq
i̇nd
i̇nq

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− rc
Lc
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0
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0 0 − rg
Lg

ω0
1

Lg
0

0 0 −ω0 − rg
Lg

0
1

Lg
1

Cf
0 − 1

Cf
0 0 ω0

0
1

Cf
0 − 1

Cf
−ω0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

icd
icq
vpd
vpq
ind
inq

⎤
⎥⎥⎥⎥⎥⎥⎦
+ g(u)

g(u) =

[
vcd
Lc

vcq
Lc

0 0
−vgd
Lg

−vgq
Lg

]T
. (7)

B. Inner Current Controller

In the VSC, the inner current controller generates the

reference voltages in the dq-frame, which are fed to the pulse

width modulation (PWM) generation unit. Dynamics of the

inner current control loop in the dq frame can be represented

as:

v∗cd =

(
kpi +

kii
s

)
(i∗cd − icd)− ωLf icq + vpd,

v∗cq =

(
kpi +

kii
s

)
(i∗cq − icq) + ωLf icd + vpq.

(8)

where v∗cd and v∗cq are the reference voltages of the convert

in dq frame, i∗d and i∗q are the reference currents generated by

the outer control loop, i1d and i1q are the currents measured

at the PCC and the feed forward voltage components, vpd and

vpq , are measured at the PCC. Furthermore, kpi and kii are

the PI controller gains for the inner current loop controller.

C. Active and Reactive Power Controller

Assuming that a phase-locked loop is implemented that

can synchronize the converter to the grid by forcing the q
component of the PCC voltage to zero referring to [23], the

outer loops of the IBR can directly control the active and

reactive powers, P,Q, delivered to the grid. Two proportional

controllers generate the reference currents (i∗d and i∗q) using:

i∗cd =
2

3vpd
P ∗,

i∗cq = − 2

3vpd
Q∗.

(9)

The outer control loop dynamics in the dq-frame are expressed

in (9), where P ∗ and Q∗ are active and reactive power

demanded by the grid, P and Q are active and reactive

power measured at the PCC, which can be calculated using

P = 1.5(vpdicd + vpqicq), Q = 1.5(−vpdicq + vpqicd) [23].

D. Data-Driven Model Identification

In the absence of detailed information about DERs and

their converter parameters, the objective is to identify the

lumped dynamic model of DERs in equation (7) from

available measurements of the states. We will utilize sparse

identification of nonlinear dynamics (SINDy) to identify the

dynamics from measurements and utilize the data-driven

model to design a controller that regulates the active and

reactive power of the IBRs. An overview of the proposed

approach for data-driven model identification and control of

DERs using SINDy is depicted in Figure. 2. By perturbing the

input (converter voltage) and collecting enough measurement

samples, sparse regression can be utilized to identify the

nonlinear dynamics by selecting a good library of candidate

functions. The identified data-driven model can then be used

for control design purposes. The control design includes the

inner current control loop that regulates the converter current

through proportional integral (PI) regulators and the outer loop

regulates the active and reactive powers of the converter in

grid-tie mode of operation.

III. MODEL-FREE IDENTIFICATION OF DERS

The sparsity promoting techniques are commonly used to

identify the candidate functions with the greatest impact on

the dynamics of dynamical systems containing few nonlinear

terms. Originally proposed in [21], SINDy utilizes a symbolic

regression technique to identify the system dynamics. The

sparse identification is based on the fact that many dynamical

systems with the form ẋ = f(x,u) have very few terms on

the right. Considering the physical dynamics of a DER is

represented by ẋ = f(x) + g(x)u, where x(t) ∈ R
n is the
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Figure. 2 Identified DER dynamics using SINDy.

state vector, u(t) ∈ R
q is the input or control vector, and

f(x(t),u(t)) : Rn ×R
q → R

n, the objective is to reconstruct

(7) from data. The process is explained in below.

A. Data Collection

The first step involves collecting m samples of data from

the states and inputs by collecting a time-history of the state

vector x(t), input u(t), and ẋ(t). The measurement data is

sampled at m intervals t1, t2, . . . , tm and is arranged into a

matrix X ∈ R
n×m,

X =

⎡
⎢⎢⎣ x(t1) x(t2) . . . x(tm)

⎤
⎥⎥⎦ (10)

and inputs for tm samples are written into a matrix U ∈
R

n×m,

U =

⎡
⎢⎢⎣ u(t1) u(t2) . . . u(tm)

⎤
⎥⎥⎦ (11)

since in most practical systems the derivative measurements

are not observable, the measurements for derivatives can be

approximated numerically from X.

B. Estimating the Derivatives, Ẋ

A difference approximation is used to solve ordinary and

partial differential equations numerically. If a smooth function

is considered in the neighborhood of point x, the derivatives

can be approximated using Taylor series expansions. This

paper uses the central difference approximation since it is

more accurate for smooth functions. Therefore, Ẋ can be

approximated by:

Ẋ ≈ X(i+ 1)−X(i− 1)

2h
(12)

where X(i) is the measured data at sample i and h is the

sampling interval of the simulation or data collection process

[24]. Fig. 3 depicts a comparison between the estimated

derivatives of the IBR with the measured ones using central

difference approximation technique with a sampling time of 50

microseconds. As it can be observed, the derivatives accurately

match the actual derivatives of the states.

C. Sparse Identification of IBR Dynamics

If the IBR dynamics can be represented by a library of

p candidate functions Θ(X,U) ∈ R
n×p(e.g., polynomials,

or sinusoids), the vector of measured derivatives is a linear

combination of columns from the candidate function library.

The linear combination of columns is observed by the entries

of matrix Ξ ∈ R
p×n such that [21]:

Ẋ = Θ(X,U)Ξ. (13)

Having estimated Ẋ from measurements, the library of

candidate functions will be developed by including linear and

nonlinear functions of the columns of X and U. Typical

candidate functions include polynomials and trigonometric

functions for nonlinear systems, as shown in equation (14).

In this equation, Pi(X,U) denotes a nonlinear combination

of i-order polynomials of X and U. For example, P2(X,U)



Figure. 3 Comparison between estimated derivatives and measured derivatives of the states for IBRs.

Θ(X,U) =

⎡
⎢⎢⎣ 1 X U P2(X,U) P3(X,U) . . . sin(X,U) cos(X,U) sin(2(X,U)) . . .

⎤
⎥⎥⎦ (14)

includes polynomials up to second order such as xixj ,

x2
i , xiui, and u2

i . Having the estimated derivatives Ẋ and

Θ(X,U), (13) can be solved to obtain a sparse matrix Ξ
columns of which denote which candidate functions are active

in the dynamics of the IBR. This process is normally solved

iteratively using a sparse regression algorithm. The algorithm

converges by solving an optimization of the form:

ξh = argmin
ξ̂h

||Ẋh −Θ(X,U)ξ̂h||2 + λ||ξ̂h||0 (15)

where ξh is the h-th column of ξ represented by ξh =[
ξ1 ξ2 . . . ξp

]T
and Ẋh represents the h-th column of Ẋ.

The objective function in (15) has two components: the L2

norm ||.||2 that minimizes the error between the derivatives

Ẋ and estimated derivatives through an iterative least-squares

problem and the L0 norm ||.||0 that minimizes the number of

nonzero elements in ξh to promote sparsity in the coefficients

matrix ξ. It is noted that λ is the sparsity-promoting

hyperparameter that is tuned imperially to result in the best

estimation of the dynamics.

The minimization problem in (15) is solved using a

sequentially thresholded least squares technique proposed in

[25]:

Sk =
{
j ∈ [p] :

∣∣ξkj ∣∣ ≥ λ
}
, k ≥ 0 (16)

ξ̂0h =Θ(X,U)†Ẋh (17)

ξk+1 = argmin
ξ̂h∈Rp:supp(ξh)⊆Sk

‖Ẋh −Θ(X,U)ξ̂h‖2, (18)

where k is the iteration number, Θ(X,U)† is the

pseudo-inverse of Θ(X,U) and is defined as

Θ(X,U)† := [Θ(X,U)TΘ(X,U)]−1Θ(X,U)T (19)

and the support set of ξh is defined by supp(ξh) := {j ∈ [p] :
ξj �= 0}. Algorithm 1 explains the step-by-step procedure for

obtaining the matrix Ξ using the sparse regression method.

If the intent is to identify the signal U for feedback control,

i.e., U = G(s)X, where G(s) is the transfer function of the

controller, the matrix of inputs can be identified using U =
Θu(X)Ξu, where Θu(X) is the matrix of candidate functions

with the terms corresponding to U have been removed from

Θ(X,U) and Ξu can be found using the sparse regression

algorithm similar to Ξ.

IV. CASE STUDIES

To validate the effectiveness of the proposed model-free IBR

control in grid-tie mode, several case studies are carried out

using time-domain simulations in MATLAB.

A. Training SINDy to Learn IBR Dynamics

First, the SINDy model is trained by perturbing the inputs

of a simulated IBR model and capturing measurements.

The measurements from states and inputs were utilized in

Algorithm 1 to obtain the matrix of sparse coefficients.

For Θ(X,U), the candidate terms include polynomials up

to degree 2 and sinusoidal functions, i.e., ui, xi, xixj ,

x2
i , xi cosxj , xi sinxj , ui cosxj , ui sinxj . The identified
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Figure. 4 Training of SINDy to learn the dynamics of IBR.

Algorithm 1 Sparse Regression Algorithm

Input: Measurements X,U
Input: Estimated derivativesẊ

1: procedure STLS

2: Γ = Θ\Ẋ (least-square solution)

3: for k = 1 : 10 do (number of iterations)

4: Set λ (sparcification knob)

5: |Ξ| < λ −→ indsmall

6: Ξ(indsmall) −→ 0
7: for k = 1 : n do (n dimension of state X)

8: indbig �= indsmall(:, k)
9: Ξ(indbig, k) = Θ(:, indbig)\Ẋ(:, k)

10: end for
11: end for

Output: sparse matrix Ξ

coefficients Ξ for the studied IBR model were used to develop

a data-driven model in MATLAB. A comparison between the

physical model and the identified model is shown in Figure. 4.

This data-driven IBR model accurately reflects the dynamics

of the physical model, as can be seen.

B. IBR’s Active and Reactive Power Control using
Data-Driven Model

In the second case, the control architecture shown in Fig.

2 was implemented on the data-driven model and then was

applied to the simulated IBR using the parameters provided

in [23]. The PI control gains for the data-driven model include

kip = 0.11 and kii = 11 whereas for the physical systems with

actual dynamics, these gains were calculated to be kip = 0.1
and kii = 10. Simulation results for the states are illustrated

in Fig. 5 and the active and reactive power tracking results

are shown in Fig. 6. It is noted that the results of the

proposed data-driven control design accurately match with the

physics-based design.

V. CONCLUSION

In this paper, a model-free identification of IBR dynamics

for control purposes was studied. Using sparse identification

of nonlinear dynamics with control along with available

measurements, dynamics of the IBRs were predicted utilizing

a library of candidate functions from measurement basis. The

learned dynamics were then used to design a controller that

can regulate the converter current and provide active/reactive

power control capabilities in grid-tie mode of operation. It

was demonstrated that sparse identification can accurately

identify the IBR dynamics with limited measurement data

(0.15 seconds with 50 microseconds sampling time) and the

data-driven control design can provide accurate active and

reactive power control as a physics-based control design.

Such data-driven control framework can significantly reduce

the existing complexities of control design in modern power

systems. Future research will focus on hardware validation

of the proposed data-driven control in a three-phase voltage

source converter.
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