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In this article, we investigate the nanoscale soil-water retention mechanism of unsaturated clay through mo-
lecular dynamics and machine learning. Pyrophyllite was chosen due to its stable structure and as the precursor
of other 2:1 clay minerals. A series of molecular dynamics simulations of clay at low degrees of saturation were
conducted. Soil water was represented by a point cloud through the center-of-mass method. Water-air interface
area was measured numerically by the alpha-shape method. The soil-water retention mechanism at the nanoscale
was analyzed by distinguishing adsorptive pressure and capillary pressure at different mass water contents and
considering the apparent capillary interface area (i.e., water-air interface area per unit water volume). The water
number density profile was used to quantify the adsorption effect. A neural-network based machine learning
technique was utilized to construct functional relationships among matric suction, the mass water content, and
the apparent water-air interface area. Our numerical results have demonstrated from a nanoscale perspective
that the adsorption effect is dominated by the van der Waals force and hydroxyl hydration between the clay
surface and water. As the mass water content increases, the adsorption pressure decreases, and capillarity plays a

prominent role in the soil-water retention mechanism at the nanoscale.

1. Introduction

The physics and mechanics of unsaturated soils are important in
geotechnical and geoenvironmental engineering (e.g., Terzaghi et al.,
1996; Gens, 2010; Fredlund, 2006; Ng and Menzies, 2014; Song, 2017;
Alonso, 2021; Menon and Song, 2022, 2023). Soil-water retention/
characteristic curve (SWRC) is a mathematical relationship between soil
water content and matric suction (e.g., Brooks, 1965; Van Genuchten,
1980; Fredlund and Rahardjo,1993; Fredlund and Xing, 1994; Niu et al.,
2020; Cao et al., 2018; Chen et al., 2019). It is a fundamental consti-
tutive law for modeling the physics and mechanics of unsaturated soils.
For instance, a soil water retention curve is required in modeling
multiphase fluid flow, shear strength, deformation, and stress—strain
relationships of unsaturated soils (e.g., Alonso et al., 1990; Wheeler
et al., 2003; Macari et al., 2003; Hoyos and Arduino, 2008; Alonso et al.,
2010). In unsaturated soil mechanics and continuum-based numerical
methods for modeling unsaturated soils with no osmosis effect, matric
suction is usually assumed to be the difference between pore air pressure
and pore water pressure and the latter is usually assumed to be the
capillary pressure due to water meniscus (e.g., Fredlund and Rahardjo,
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1993; Borja, 2004, 2006; Menon and Song, 2020, 2021; Song et al.,
2017; Wang and Song, 2020) without considering adsorptive water
pressure. The adsorptive water pressure might be ignored at a high de-
gree of saturation. However, at a low degree of saturation, it should be
considered to interpret high matric suction (e.g., on the order of hundred
megapascals) (Fredlund and Rahardjo, 1993; Lu and Likos, 2006; Zhang
and Lu, 2019). It is noted that the pressure of capillary water is lower
than air pressure due to the curve water-air interface (i.e., meniscus),
and pressure of adsorptive water is higher than air pressure due to
adsorptive force (Luo et al., 2022). Furthermore, both experimental and
theoretical studies have suggested that the water—air interface should be
taken into account to better describe soil water retention curves of un-
saturated soils (Fredlund and Morgenstern, 1977; Hassanizadeh and
Gray, 1990; Joekar-Niasar et al., 2008; Lourenc,o et al., 2012; Lu and
Likos, 2006; Likos, 2014; Fredlund, 2006). We refer to the related
literature for a thermodynamic justification (e.g., Houlsby, 1997;
Nikooee et al., 2013) of including the water—air interface in the soil—
water retention curve of unsaturated soils. In Fredlund and Morgenstern
(1977), the water—air interface was first incorporated into stress analysis
of unsaturated soils where the air-water interface is treated as an
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Fig. 2. Initial configuration of the clay-water model.

independent phase. In Lu and Likos (2006), the interfacial effects are
lumped into the suction stress in addition to capillary pressure. In
Nikooee et al. (2013), the interfacial energy and air-water specific
interfacial area are integrated into an effective stress tensor using a
thermodynamic approach. Interfacial force arises due to the unbalanced
force exerted on two sides of interfaces, which may influence the
macroscopic soil behavior. Several physicochemical effects contribute to
the origin of interface force, such as van der Waals forces, surface ten-
sion, and electric double-layer forces. These interface forces could pro-
duce surface energy change and deformation of soil (Butt et al., 2013).

Over the past decades, computational modeling through physics-
based numerical methods has gained success in resolving and quanti-
fying water-air interfaces in porous media. One standard method is the
pore-network modeling technology (Lowry and Miller, 1995; Joekar-
Niasar et al., 2008). Several techniques have also been developed to
measure the water—air interface area in porous media (Costanza-Rob-
inson and Brusseau, 2002; Chen and Kibbey, 2006; Wildenschild et al.,
2002; Brusseau et al., 2007; Lourenc o et al., 2012). However, the
configuration of pore network is user-defined instead of the actual pore
space in nature. Moreover, it remains challenging to quantify the impact
of adsorption on SWRC and explain the mechanism of soil-water
adsorption at the nanoscale. At the nanoscale adsorptive forces in fine-
grained clay become pronounced and could modify the water struc-
ture, e.g., adsorptive water film tightly attached to clay surface (Evans
et al., 1986; Tuller et al., 1999). It is noted that the laboratory mea-
surement techniques only suffice to account for capillary effects in the
water retention mechanism (Likos et al., 2019). Indeed no viable
experimental technique exists to quantify adsorption and its impact on
SWRC in unsaturated soils at the nanoscale (Lu, 2016).

As a numerical method at the atomic scale, molecular dynamics
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(MD) can naturally consider adsorption at the nanoscale. With advances
in high-performance supercomputers, MD simulations have been
extensively used to gain detailed insights into the physics and mechanics
of unsaturated soils at the atomic scale (e.g., Cygan et al., 2004; Katti
et al., 2015; Song and Zhang, 2021; Song et al., 2018; Song and Wang,
2019). MD is a computational simulation technique that numerically
solves Newton’s equations of a classical N-body system at equilibrium
(Frenkel and Smit, 2001; Allen and Tildesley, 2017; Plimpton, 1995). It
is a viable numerical tool to study the effect of soil-water interactions on
the physics and mechanics of unsaturated soils. The strong atomic
interaction across the clay-water interface could cause a divergence
from the bulk phase behavior of water. Examples include capillary
condensation and solid-water adsorption (e.g., Shi and Dhir, 2009; Leroy
and Muller-Plathe, 2010; Scocchi et al., 2011; Botan et al., 2011). To the
best of our knowledge, few studies have used MD simulations to inves-
tigate soil-water retention curves accounting for water—air interface and
soil-water adsorption. In this article, MD is utilized to study the impacts
of the water—air interface and soil-water adsorption on the nanoscale
soil-water retention mechanism at low degrees of saturation.

The area of the water—air interface (i.e., concave water meniscus) in
unsaturated soils is nontrivial to compute from the MD simulation data.
In this article, the point cloud method coupled with surface recon-
struction, as detailed in Section 2, will be used to calculate the water—air
interface area at different degrees of saturation (water mass content).
Note that surface reconstruction is a subject in computer graphics that
deals with surface/shape properties of a point set, such as surface
normal estimation (Boissonnat, 1984; Edelsbrunner and Mucke, 1994).
Among various surface reconstruction techniques, the alpha-shape
method has been successfully employed to characterize the shape of
molecules like proteins (Peters et al., 1996; Liang et al., 1998). In Wilson
etal. (2009), the author validated the robustness and effectiveness of the
alpha-shape method in characterizing the shapes of small molecules
compared to other shape predictors. In Singh et al. (1996), the authors
applied the alpha-shape method in molecular recognition and identified
binding sites in proteins. Inspired by the broad applications in molecular
biology, in this study, the alpha-shape method was utilized to calculate
the water—air interface area from the MD results. Section 2 presents the
unsaturated clay model for the MD simulations and the alpha shape
method for the interfacial area calculation. Section 3 concerns the nu-
merical results of the water-air interface area, capillary and adsorptive
pressures and conducts data analytics regarding SWRC through a
machine-learning curve fitting technique. Section 4 compares the
nanoscale water retention mechanisms of kaolinite and pyrophyllite and
discusses the effect of clay particle configurations and pore sizes on the
clay-water retention mechanism, followed by a summary in Section 5.

2. Material model and MD modeling

In this study, pyrophyllite that is a 2:1 clay mineral composed of
silicon tetrahedral and aluminum octahedral layers was chosen due to
its stable structure and being a precursor to other smectite clay minerals.
The aluminum octahedral (O) sheet is bounded by two opposing silicon
tetrahedral (T) sheets, which form a T-O-T structure. The chemical
formula of pyrophyllite is Al5[SisO10](OH),. The unit cell of pyrophyllite
has the dimensions of 5.28 A x 9.14 A x 6.56 A in the x-y-z Cartesian
coordinate system (Skipper et al., 1995).

Fig. 1 shows one unit cell of pyrophyllite made up of six types of
atoms. In Fig. 1, ao is aluminum in the octahedral layer, ocl and hcl are
oxygen and hydrogen in the octahedral layer that form the covalent
hydroxyl bond, sz is silicon in the tetrahedral layer, oss is oxygen in Si-O-
Si linkages, and oas is oxygen in Si-O-Al linkages in the tetrahedral layer.
Unlike other smectite clay minerals with a strong cation exchange ca-
pacity, pyrophyllite has a weak capacity to swell or shrink because of its
neutral surface charge. Considering its structural stability, the clay
particle is treated as a rigid body, and its motion was frozen during the
simulation.
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Table 1
Values of the input parameters for CHARMM force field.
Symbol qi(e) €;(kcal/mol) Ri(A)
hw 0.417 0.046 0.44
ow —0.834 0.152 3.53
ocl —0.96 6 2.8
hcl 0.4 0.0001 2.4
oas -0.91 6 2.8
0ss -0.7 1 3
Sz 1.4 0.001 7.4
ao 1.68 0.15 6.3
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Fig. 3. Interactions between clay surface oxygen (oss) and water hydrogen
(hw) as a function of the interatomic distance.
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Fig. 4. Variation of potential energy during the MD simulation.

Fig. 2 shows the initial configuration of the clay-water model. Each
clay layer consists of 36 x 21 x 1 unit cells in the x-y-z directions,
corresponding to 190.08 A x 191.94 A in the x-y plane. Water is
modeled by the TIP3P model (Jorgensen et al., 1983). Water molecule
was considered a rigid body during the simulation. The space between
the parallel clay layers is d = 50 A which could avoid any possible
interlayer interactions between clay plates (Amarasinghe et al., 2014).

In this study, CHARMM force field (Brooks et al., 1983) is employed
to describe the soil-water interaction in that CHARMM force field is
compatible with the TIP3P water model (Berendsen et al., 1987).
CHARMM force field has been widely utilized to study clay-water
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systems (Katti et al., 2015; Song and Wang, 2019). The non-bonded
potential energy U in the CHARMM force field can be defined as

U= 4 (Iﬁ)li(&)() +y 419 )
i7 T\ Tij T meor

where ¢; is the well-depth of Lennard-Jones (LJ) potential and R; is
the distance at the minimum LJ interaction energy, g; and g; are the
charge of atoms i and j, respectively, & is the vacuum permittivity, ry; is
the distance between atoms i and j. In this study, clay particles are
assumed immobilized and only non-bonded interactions between clay
and water were simulated (Song et al., 2018).

The cutoff radii for van der Waals and Coulombic interactions are 10
A. Table 1 lists the nonbonded parameters for the clay-water system.
Note that hw and ow denote water hydrogen and water oxygen,
respectively. Fig. 3 presents an example of nonbonded interactions (i.e.,
van der Waals energy and Coulombic energy) between clay surface ox-
ygen (oss) and water hydrogen (hw) as a function of interatomic dis-
tance. The interaction between oss and hw was chosen as an example
because of the strong clay-water interaction such as surface hydration
between the two types of atoms. The minimum potential energy occurs
when the two atoms are at a distance of 1.4 A. This indicates that the
forces between the two atoms are repulsive within the distance of 1.4 A.

All MD simulations were performed on LAMMPS, a large-scale
atomic/molecular massively parallel simulator (Plimpton, 1995) using
NVT ensemble at 298 K. Periodic boundary conditions were assigned in
all directions. Water molecules were kept rigid using the SHAKE algo-
rithm (Ryckaert et al., 1977) with constraints applied to hydrogen bonds
and angles. The velocity Verlet algorithm with a time step of 0.5 fs (1 fs
=1 x 107!5 5) was employed to integrate the equations of motion of
water. The simulation was first run for 2 ns to bring the system into
equilibrium. Then the production simulation was run for 1 ns to output
averaged water trajectories and water pressure. The potential energy
profile was monitored to check the equilibrium state. Fig. 4 shows the
time evolution of potential energy for the clay-water system during the
equilibration. It can be seen that the system reached a dynamic equi-
librium after 0.6 ns.

In this study, mass water content or moisture content (®,) was
chosen to represent the degree of water saturation. Mass water content is
defined as the ratio between the mass of water and the mass of the solid

N,M,,

®, = N,N,N.M,’ 2

where N, is the total number of water molecules, M,, ~ 18 g/mol is
the molar mass of water, M, ~ 360 g/mol is the molar mass of pyro-
phyllite, and N, = 36, N, = 21, and N, = 1 are the number of unit cells in
the x, y and z directions, respectively. The variation of mass water
content was realized by adjusting the number of water molecules be-
tween the clay particles. The degree of saturation is calculated by

S, = 0,G, /e, 3

where e is void ratio and G is specific gravity of dry clay. In MD, the
pressure tensor of a group of atoms can be expressed through the virial
stress tensor (Clausius, 1870) as

vy N > ridi @
1% v

ojj

where k is the atom index, N is the number of atoms in the water
group, V is the volume of confined water, i, j = 1,2,3, and my, v, r, and
fi denote the mass, velocity, position, and force of atom k, respectively.
The pore water pressure can be determined from equation (4) as

1
DPw :g(ﬂll+022+533)7 5)

Next, the method for determining the water—air interface area will be
introduced.
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Fig. 5. Construction of the water point cloud by extracting the center-of-mass

of water molecules.

2.1. Procedure of the interfacial area calculation via the alpha-shape

method
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adopted to determine the water-air interface area. Point clouds are
commonly produced by 3D scanners, which collect points on the
external surfaces bounding the objects. In this work, the MD simulator
functions as a 3-D scanner. Fig. 5 illustrates the construction of a water
point cloud based on trajectories of water molecules. Once the clay-
water system reaches equilibrium, we can obtain time-averaged trajec-
tories of water molecules and convert the water body into a 3-D point
cloud using the center-of-mass method (Song and Zhang, 2021). The

Fig. 7. Comparison of alpha shapes of the water point cloud with a = 2 A, 5 A,

In this study, the point cloud concept and alpha shape method were and 8 A.

1

0B, 6BnA={S19S29S3}
open ball B

Interfacial area
= ZAtriangle

Alpha shape -
a set of all boundary triangles

2 3)

Fig. 6. Schematic procedure of the interfacial area calculation using the alpha-shape method.
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Table 2

Summary of the MD simulations in this study and their corresponding values of
mass water content and degree of saturation.

Simulation No. 0,(%) S (%) Simulation No. 0,(%) S (%)
1 6.2 2.3 2 7.3 2.8
3 8.4 3.2 4 9.7 4.0
5 11.0 4.7 6 12.4 5.4
7 13.9 6.1 8 14.7 6.3
9 15.5 6.9 10 17.2 7.6
11 18.1 8.0 12 19.0 8.5
13 20.8 9.5 14 22.7 10.5
15 24.8 10.6 16 26.9 12.0
17 27.9 12.6 18 29.1 13.6
19 31.3 14.7 20 325 15.1
21 33.7 16.0 22 34.9 16.2
23 36.2 17.3 24 37.4 17.4
25 T T
15} .
Gg=6.2%
o —— 05=11.0% |
oL —_— 99=17.2%
~ 084=22.7%
-5} Bg=27.9% i
 — 69=37.4%
-15} i

30 10 20 30 40 50
Number density (x1072A~%)

Fig. 9. Number density profiles of soil water at various mass water contents.

coordinate of center-of-mass r, of a water molecule can be expressed as

_ Zmoro + my(ry +ri)
mo + 2my,

3 (6)

where m and r = (x,y, 2) denote the atomic mass and Cartesian co-
ordinate system vector, and subscripts o and h stands for water oxygen
and hydrogen, respectively.

After obtaining the water point cloud, we reconstruct its surface
using the alpha-shape method (Edelsbrunner and Mucke, 1994). The
general idea is to find piece-wise triangles (the so-called alpha shapes) to
represent the surface of the water point cloud. Fig. 6 shows the
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Fig. 10. Percentage of adsorptive and capillary water pressure as a function of
mass water content.

Table 3
Summary of percentages of adsorptive and capillary water pressures in the pore
space for several MD simulations.

0,(%) Adsorption (%) Capillarity (%)
6.2 62.9 37.1
7.3 58.1 41.94
8.4 61.9 38.1
9.7 64.1 35.9
11.0 61.5 38.5
13.9 51.4 48.6
15.5 49.7 50.3
17.2 47.3 52.7
20.8 44.9 55.1
24. 44.1 55.9
27.9 46.2 53.8
31.3 47.0 53.0
34.9 42.7 57.3
37.4 43.3 56.7
Table 4

Sorptive energy between clay and adsorptive water at
different mass water contents.

0,(%) Sorptive energy (kcal/mol)
9.7 —263.9
11.0 —-297.1
12.4 —328.3
13.9 —355.8
14.7 —371.3
17.2 —388.0
18.1 —424.2
20.8 —460.8
27.9 —597.5
31.3 —671.7
34.9 -721.5

schematic procedure of interfacial area calculation using the alpha-
shape method. We could define a point set A where each point repre-
sents the center-of-mass of one water molecule. Let B be an open ball
with radius a. We restrict B to be empty such that it can occupy its space
without enclosing any of the points of A, i.e., BNA =@.LetT = {S;, Sj,
Sk} be a subset of A. Given T , we could define a 2-simplex Ay (i.e., a
triangle) as the convex hull of T. Here, the convex hull is the smallest
convex set that contains all points in T (Barber et al., 1996). The 2-sim-
plex is said to be a-exposed if T = dB N A. Here, 0B is the boundary of B.

For implementation, we first perform the Delaunay triangulation of
the surface of the water point cloud and then define the alpha complex
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Fig. 11. Variation of the adsorptive force with mass water content.

that associates Delaunay triangulation with the alpha shape (Edels-
brunner and Mucke, 1994). The algorithm adopted is summarized as
follows.

(a) Compute the Delaunay triangulation of A, knowing that the
boundary of a-shape is contained in Delaunay triangulation.

(b) Determine a-complex by inspecting all simplices DT in Delaunay
triangulation. If the circumsphere of DT is empty and the radius
of the circumsphere is smaller than a, we accept DT as a member
of a-complex.

(c) All simplices on the boundary of a-complex form the a-shape.

In Fig. 6 (2), the gray object is an empty open ball B, the red sphere is
the boundary 0B, and T = dBNA = {S;, Sj, Sx}. Meanwhile, we must
have BN A = @ and B is exterior to A. The spherical cap is straightened
by a 2-simplex (i.e., triangle in red) connected by points S;,S3, and Ss.
Thus, the alpha shape of A is the polytope whose boundary consists of all
the 2-simplices/triangles. The interfacial area is the sum of the area of
each boundary triangle. The parameter a controls the desired level of
shape detail. We note that the critical a calculated by MATLAB is
assumed as the value of parameter « in this study. It is the smallest alpha
that produces an alpha shape with no inner cavities developed. Fig. 7

so///

55 e

50

45

Matric suction (MPa)

40
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compares the configurations of alpha shapes when a equals 2 A, 5 A, and
8A, respectively. Alpha smaller than the critical value produces cavities
and would generate an unreasonable interfacial area. Fig. 8 shows the
parameter « sensitivity of the wetting-nonwetting interfacial area. The
results correspond to a mass water content of 29.1%. The critical alpha
for this case is 4.9 A. It can be found that « has little to no effect on the
interfacial area when « is greater than 5 A. Thus, we assume a = 5 A in
this study.

3. Numerical results

In this section, we present the numerical results of capillary and
adsorptive pressures, the water-air interface area and thickness at
different mass water contents, and conduct data analytics regarding
adsorptive and capillary water pressure curves through a machine-
learning based curving fitting. Table 2 summarizes MD simulations
with corresponding values of mass water content and degree of satura-
tion. For each simulation, we computed pore-water pressure (capillary
water pressure and adsorptive water pressure), water number density,
and interface area and thickness. Through machine learning, we have
generated the soil-water retention curve in terms of matric suction, mass
water content, and apparent water—air interface area without prescrib-
ing a specific functional relationship among those variables. To
demonstrate the usefulness of machine-learning based data analytics,
the trained and validated neural network was used to predict the matric
suction given a mass water content that is beyond the range of the MD
simulations in this study.

3.1. Adsorptive and capillary water pressures at the nanoscale

At the nanoscale, adsorption becomes important in the soil water
retention mechanism. In general, the water in the nanoscale clay pore
space can be assumed as discrete layers rather than a continuum as bulk
water. Thus, in this study, the water number density profile from the MD
results is utilized to distinguish adsorption and capillarity in pore water.
First, the nanopore space is evenly divided into a number of parallel
layers along the z direction. Then, the number density of each layer is
computed as the number of water molecules divided by the volume of
the layer. We note that water number density is computed for describing
water distribution rather than mass density in that the local mass density

30

15 20
Mass water content (%)

Fig. 12. Soil-water retention surface from the MD results through a standard curve fitting technique.
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Fig. 13. Comparison of water point clouds for six mass water contents.
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Fig. 14. Variation of the clay water contact angle with the mass water content.

of water at the nanoscale deviates substantially from that of bulk water
at the macroscale.

Fig. 9 shows the water number density profiles at various water
contents. Despite the different magnitudes of number density, these
density curves exhibit a similar mode: the first and second density peaks
are located at the distances of 3.75 A and 6.75 A from the clay surface (i.
€., Zgy = £25 }o\), respectively. Further away from the clay surface,
water number density gradually decreases. At the center of the clay
nanopore (i.e., z = 0), the water number density reaches the minimum

value. The maximum number density is 2.36 x 10-2A > that is about

three times the minimum number density (e.g., 0.73 x 102A"° at 0y =
17.2%). Large number density fluctuations in the vicinity of the clay-
water interface could indicate a strong effect of soil-water adsorption.
It also results in a layered water structure. From the number density
profile, the soil water could be partitioned into two parts, e.g., the
adsorptive water and the capillary water. The adsorptive water layer
extends from the clay surface to the trough after the second peak in the
number density profile. The capillary region lies in the remaining pore
water space where the capillary effect is dominant. The interfaces be-
tween the two regions are approximately located at zqq = +16.75A
from the MD simulation as shown in Fig. 9.

Fig. 10 plots the variation in percentages of adsorptive and capillary
water pressures versus mass water content. Table 3 summarizes the
percentages of adsorptive and capillary water pressure in the total pore
water pressure at different mass water contents. At a low mass water
content, e.g., ; = 6.2%, the adsorptive water pressure occupies 62.9%
of the total pore water pressure. As water content increases, the effect of
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Fig. 15. Schematic representation of the water—air interface.
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Fig. 16. Schematic representation of the clay-water interface.
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Fig. 17. Variations of the water—air interface area and the soil-water interface
area versus the mass water content.

adsorption is gradually weakened. When the mass water content is
around 15%, the effects of adsorption and capillarity are similar. The
percentage of adsorptive pressure fluctuates around 45% when mass

13000 I I I I I =
—@&— COM
12000 | —®— Default

<C 11000 | o .
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© 10000} . §
s ./
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2 9000} / §
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i= »
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6000 . . .
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Fig. 18. Comparison of the water—air interface area calculated via the center-
of-mass (COM) method and the default water point cloud method.

water content exceeds 20%, and capillarity becomes a dominant factor
in the overall negative pore water pressure (i.e., matric suction). The MD
results have demonstrated that adsorption plays a significant role in the
soil water retention mechanism at a low degree of saturation in clay.

The adsorptive water pressure from our MD simulations was
compared to that from an empirical formula (Tuller et al., 1999) that
reads

Ag
6nt’’

GDads = Draw = @)

where Ay is the Hamaker constant and ¢ is the thickness of adsorptive
water layer. For a soil-water system, Ay is on the order of —10 x 102
Joules to —10 x 107° Joules. In this study, it was adopted that Ay =
—6 x 10720 Joules. The results in Fig. 9 show that the first non-zero
water density occurs near z = +22.875A, i.e., 2.125 A away from the
clay surface. The thickness of the adsorptive water layer t is
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Fig. 19. Water number density at the pore center along (a) the x-direction and
(b) y-direction.

approximately 6 A, e.g., the distance between the trough after the sec-
ond peak density (z = i16.875A) and the outermost water layer (z =

122.875A). From equation (7), we have f,4, = — 14.74 MPa, which is
comparable to the adsorptive pressure from our MD results, as illus-
trated in Fig. 22. We note that it lacks experimental testing data to
validate the thickness of the adsorptive water layer assumed in our MD
simulations.

The pairwise energy and interaction force between the clay and the
adsorptive water layer can be used to describe clay-water interactions.
Pairwise energy includes the van der Waals component and the long-
range Coulombic component. Since only adsorptive water is included,
this energy term specifically refers to sorptive energy. Table 4 summa-
rizes the sorptive energy between clay and adsorptive water at different
mass water contents. As the mass water content increases from 9.7% to
34.9%, the magnitude of sorptive energy increases by 170% due to
increased adsorptive interactions. Fig. 11 plots the variation of
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Fig. 21. Matric suction versus the mass water content.

interaction force with the mass water content. The increase in the
adsorptive force is mainly due to the increase of accumulated water
molecules in the adsorptive water layer during the wetting process (i.e.,
increasing water in the pore space).

3.2. Area and thickness of the water—air interface at various mass water
contents

Fig. 12 shows a soil -water retention surface in terms of generalized
matric suction (¢,,), mass water content (6,), and apparent water-air
interface area (A,) through a standard curve fitting technique. The
water-air interface area was computed through the method introduced
in the previous section. Fig. 13 shows the water point clouds for 6
simulations. Since clay particles were fixed, the height of soil water
remains almost unchanged (h, = 43.5+0.1 10\) and the soil water body
expands along the radial direction with increasing mass water content.
We further demonstrate that the mass water contents have a mild effect
on the shape of the water meniscus through the contact angle. The
contact angle was computed using the method proposed in Song and
Zhang (2021).
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Fig. 14 plots the variation of the clay-water contact angle with
respect to the mass water content. In Fig. 14 “top” and “bot” denote the
top and bottom clay-water interfaces, respectively. From the results in
Fig. 14 it can be postulated that the shape of the water meniscus is
almost identical at the different degrees of saturation due to the fixed
pore space.

Figs. 15 and 16 present the schematic of the water—air interface and
the clay-water interface, respectively. Fig. 17 plots the water—air inter-
face area versus water mass content. For comparison, the total interface
area (i.e., summation of the water-air interface area and the water-soil
interface area) and the water-soil interface area are also plotted. The
total interface area increases from 9350 A to 31984 A2 as the mass
water content varies from 6.2% to 37.4%. Both the water-air interface
area and the clay-water interface area show a nearly linear increase with
respect to the mass water content. It can be found that the clay-water
interfacial area has a relatively larger growth rate than the water-air
interface area with respect to the mass water content. The two curves for
the water-air and clay-water interface areas intercept at around 6,
20%.

The efficacy of the center-of-mass (COM) method in the surface area
calculation was evaluated by comparing the results with the ones from
the original (default) water point cloud. The major difference between
the two methods is the total number of points in the point cloud. In the
default water point cloud, the total number of points is 3N,,, and each
atom determines the coordinate of the corresponding point. In the
center-of-mass implementation, the total number of points is N,,. Fig. 18
compares the water—air interface area calculated from the COM-based
point cloud and the default point cloud. The deviation is less than
0.1% for all mass water contents.

The thickness of the water—air interface is an important physical
property of water—air interface (Fredlund, 2006). Based on our MD
simulations, we could determine the interface thickness from the num-
ber density distribution of water in the middle plane of the clay pore.
The water between the planes that are parallel to the clay surface at z =
—0.5A and z = 0.5 A were collected and analyzed to avoid the effect of
water-clay interactions. Fig. 19 presents the number density distribution
of water at the pore center along the x and y directions. It can be found
that the water number density increases sharply from zero to a peak
value near the clay surface. The first density peak is marked with a black
circle in Fig. 19. For example, a density jump up to 0.036 A~3 can be
seen within a distance of Ax = 5 A at 0, = 37.4%. Since water density
shows a significant change across the water—air interface, we assume
that the thickness of the water—air interface is equal to the distance
between the outermost water layer and the first density peak. Based on

Output layer
A Output
- Mat_ric
suction

Fig. 24. Architecture of the feed-forward neural network.
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this assumption, the values of interfacial thickness at the mass water
contents of 11.0%, 22.7%, and 37.4% are 5 A, 5.5 A, and 5.75 A,
respectively. Previous studies have shown that the thickness of the
water—air interface is on the order of 1.5-2 water molecular diameters,
e.g., approximately 5 A (Townsend and Rice, 1991; Fredlund and
Rahardjo, 1993; Israelachvili, 2015). This consistency could imply that
the water number density from our MD simulations is viable in deter-
mining the thickness of the water—air interface in unsaturated clay.

3.3. Soil-water retention curves through neural networks

In this section, the results of our MD simulations were analyzed to
distinguish adsorption and capillarity in the soil-water retention
mechanism. We investigate the relation between matric suction and
mass water contents through a neural network (Goodfellow et al., 2016).
We first present the results from the MD simulations. Fig. 20 plots the
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Fig. 27. Plot of the regression during training for the curve of matric suction
versus the mass water content.

variation of matric suction with the apparent interfacial area. The dot
represents the mean value, and the error bar represents the standard
deviation. Note that the same notations apply to the following figures. In
general, matric suction increases with the apparent interfacial area.
Here, the apparent water—air interfacial area is defined as the water—air
interfacial area per water volume. The experimental data on the
water—air interfacial area at the nanoscale is not available in the liter-
ature. It is noted that the A, —6, relationship obtained from our MD
simulations follows the general trend as shown in the results of labo-
ratory tests at the continuum scale (Costanza-Robinson and Brusseau,
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2002). Fig. 21 plots the variation of matric suction with the mass water
content. The results in Fig. 21 show that as the mass water content in-
creases from 4.30% to 26.87%, matric suction decreases from 65.4 MPa
to 35.86 MPa. Matric suction drops faster as the mass water content is
less than 10 %. As the mass water content is greater than 10 %, the
decreasing rate of matric suction is lower. Adsorptive water pressure and
capillary pressure can be distinguished based on the water density dis-
tribution. Fig. 22 presents the adsorptive water pressure with the mass
water content. The results indicate that the higher the mass water con-
tent, the lower the absolute value of adsorptive water pressure. Fig. 23
presents the capillary water pressure with the mass water content. The
results show that the capillary water pressure oscillates at the average
value of —20.71 + 1.9 MPa. These results are corroborated by the slight
variations of contact angles of the clay-water systems at different water
contents (See Fig. 14).

Next, we apply a neural-network deep learning model to predict the
relationship between matric suction, the mass water content, and the
apparent interfacial area. Given the input (e.g., mass water contents)
and the corresponding output (e.g., matric suction), the neural network
can generate a model function without any preliminary knowledge

12
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Fig. 31. Variation of matric suction with the mass water content from the MD
results and the trained FNN.

about the structure of the function. This is the fundamental difference
from the traditional curve fitting of known model functions such as
polynomial and power functions. In what follows, we briefly introduce
the neural network designed for this study. Fig. 24 plots the architecture
of the feed-forward neural network (FNN) adopted in this study. With
hidden sigmoid neurons and linear output neurons, the neural network
allows for fitting 2-dimensional mapping problems. The neural network
is trained with the Bayesian regularization algorithm. Therefore, the
neural network adopted is named by Bayesian regularized feed-forward
neural network (BRFNN). Bayesian regularization is a mathematical
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process that converts a nonlinear regression into a “well-posed” statis-
tical problem (MacKay, 1992). The initial weights are assigned by the
algorithm in (Nguyen and Widrow, 1990), and the optimization is per-
formed by the Gauss-Newton algorithm (Foresee and Hagan, 1997). The
Bayesian regularization approach involves the probability distribution
of neuron network weights, which differs from conventional network
training algorithms (i.e., the optimal weight set chosen by minimizing
the error function).

Thus, the network predictions are in the form of a probability dis-
tribution. The salient feature of BRFNN is that the validation process is
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not needed (Burden and Winkler, 2009). The input of the neural network
is the vector of mass water content. Once received by the hidden layer
and multiplication, they are passed to the neurons of the output layer. In
the hidden layer, a neuron first computes the weighted sum of input
vectors. Then, a constant bias is added to the weighted sum. Finally, the
value is fed into the activation function to obtain the output. In the
backpropagation, the cost function E to be minimized is

E = pEp + VEy, (8)
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Fig. 39. Snapshots of the water molecules in the kaolinite pore.

where y and 5 are hyperparameters, Ej, is the sum of squared errors,
and Ey is the error of the weights. The sum of squared errors reads

Np

En=Y (i=3)%5, =

i=1

Ny

Z Foet (iji + bj) s

J=1

©)]

where Np is the dimensions of the input vector, y; is the target value
(e.g., matric suction), y, is the predicted value (e.g., matric suction) as a
function of the input value x; (e.g., mass water content), Ny is the
number of neurons, w; and b; are the weight and bias corresponding to
the j-th neuron, respectively, and F,; is the activation function in the
form of a hyperbolic tangent sigmoid (Vogl et al., 1988). The error of
weights Ey is written as

Ny
Ey = E wf.
J=1

(10)

14

The input vector of the mass water content and the target vector of
matric suction are randomly divided into two groups. For instance, 75%
of the input data was used for training, and 25% of the input data was
used as an independent test of the neural network generalization.

Fig. 25 plots the output and target values of matric suction during
training and testing and the errors. Fig. 26 plots the mean squared error
(MSE) variation versus the number of epochs for the training and test
data. Here MSE measures the average squared difference between the
predicted values of matric suction and the actual values from MD sim-
ulations. The number of epochs is a hyperparameter. An epoch is when
all the training data is used at once and is defined as the total number of
iterations of all the training data in one cycle for training the machine
learning model. As shown in Fig. 26, the MSE drops significantly with
the initial increase of the epoch number. After the oscillation around
epoch 4, the mean squared error continues to decrease. The best training
performance is 0.43053 at epoch 22. Fig. 27 plots the linear regression
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Fig. 40. Clay-water models with the two clay particles aligned with an angle at
(a) 10°, (b) 20°, and (c) 30°.

Table 5
Percentages of the soil-water interface area and the air-water interface area for
the three angled clay particle configurations.

Angle between two clay particles (°) Clay-water area (%) Air-water area (%)

10 48.5 51.5

20 50.0 50.0

30 55.0 45.0
Table 6

Percentages of the adsorptive water pressure and the capillary water pressure
under three clay particle configurations.

Angle between two clay
particles (°)

Adsorptive water
pressure (%)

Capillarity water
pressure (%)

10 46.4 53.6

20 46.0 54.0

30 47.5 52.5
Table 7

Summary of matric suctions and water—air interface areas for three pore widths
under the same water mass content.

Pore width (nm) Matric suction (MPa) Water-air interface area (A%)

4 46.4 + 5.69 7659
5 42.23 +£6.68 8762
6 39.06 +4.09 9930

coefficient R between the target matric suction and the predicted matric
suction for (a) training, (b) test, and (c) the whole dataset. The regres-
sion values of the training phase (R = 0.9951) and the test phase (R =
0.99976) indicate a good match between the target and the model
output.

Fig. 28 plots the predicted and the target matric suction during
training and testing, given the input of the apparent interfacial area.
Fig. 29 shows the variation of mean squared errors with the epoch
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number. The results indicate that the best performance is 0.06977, ob-
tained at epoch 51. Fig. 30 plots the linear regression coefficient R be-
tween the target and the predicted matric suction during (a) training, (b)
test, and (c) the total dataset. The regression values of the training phase
(R = 0.99915) and the test phase (R = 0.98939) indicate a good fit
between the target and the model output.

Furthermore, we use the trained model to predict matric suction and
the apparent interfacial area at mass water contents outside the range of
the trained data. Fig. 31 shows the variation of matric suction with the
mass water content. Fig. 32 plots the variation of matric suction and the
apparent interfacial area. Combining the results in Figs. 31 and 32,
Fig. 33 presents the relation among matric suction, the mass water
content, and the apparent interfacial area. Overall, the results show that
neural-networks-based machine learning is a useful tool to analyze the
MD results that explicitly consider the soil-water adsorption and
generate the soil-water retention curves without prescribing a specific
functional relationship between matric suction, the water mass content,
and the apparent interfacial area.

4. Discussions

In this section, we first present the water adsorptive mechanisms in
pyrophyllite and kaolinite through density functions, radial distribution
functions, and water molecule orientations on the clay surface. Then we
discuss the effect of clay particle configurations and pore geometrical
sizes on the clay-water adsorption mechanism at the nanoscale through
MD simulations with different clay particle configurations and pore
geometrical dimensions.

4.1. Clay mineral types

It is known that clay mineral types impact the clay-water adsorption
mechanism. We compare the water adsorption mechanism between
kaolinite and pyrophyllite at the atomic scale. Kaolinite is a 1:1 type clay
mineral. The primary water adsorption mechanism of kaolinite is sur-
face hydroxyl hydration. For comparison, we construct an unsaturated
kaolinite-water model with the exact dimensions of the pyrophyllite-
water model in Section 2. The mass water content is assumed
22.741%. Figs. 34 and 35 compare the number densities of water oxygen
and water hydrogen in the pyrophyllite pore and the kaolinite pore,
respectively. The larger peak density and shorter distance from the first
peak to the clay surface demonstrate that kaolinite has a greater water
adsorption capacity. This is corroborated by the larger matric suction in
the kaolinite-water model than that in the pyrophyllite-water model, i.
e., 49.50 MPa versus 38.67 MPa. The radial distribution function (RDF)
is used to detect the location of the adsorptive water layer. Figs. 36 and
37 plot the RDF of the atom pairs Oc-Ow (i.e., clay tetrahedral oxygen-
water oxygen) and Oc-Hw (i.e.,, clay tetrahedral oxygen-water
hydrogen) near the two clay surfaces, respectively. The results show
that the larger RDF of water in the kaolinite pore implies greater water
absorption at the kaolinite surface. For instance, the distance between
the first peak of RDF to the kaolinite surface is about 4 A which agrees
with the location of the first peak water number density as shown in
Figs. 34 and 35.

Furthermore, the snapshots of the MD simulations are presented to
show the water molecular distribution due to adsorption at the two clay
surfaces. Figs. 38 and 39 show the snapshots of the water molecule in the
pyrophyllite and kaolinite pores during the adsorptive process at
different run times, respectively. The results show that the water mol-
ecules move closer to the clay surface and exhibit orientation in both
clay pores from 1.5 ps to 10.5 ps due to adsorption. The difference is the
distance between the closest water molecule layer to the clay surface.
The distances are 1.48 A for the kaolinite platelet and 2.01 A for the
pyrophyllite platelet, which indicates the difference in water adsorption
mechanisms and adsorption strength between kaolinite and
pyrophyllite.
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(c) 6nm

Fig. 41. Configurations of equilibrated soil water in the clay pore of width: (a) 4 nm, (b) 5 nm, and (c) 6 nm.

4.2. Clay particle configurations

The configuration of the two clay platelets could affect the soil water
retention mechanism. To study the effect of clay platelet configurations
on soil water retention, we simulated three cases where two clay par-
ticles are aligned with angles of 10°, 20°, and 30°, respectively. The
three configurations are denoted by cases 1, 2, and 3, respectively. The
center-to-center distance between the two clay particles remains the
same, i.e., 5 nm. The mass water content is 31.3% for each case. Due to
the particle rotation, the dimension of the simulation box in the z-
dimension is increased as well. The equilibrated configurations are
shown in Fig. 40. Using the alpha- shape method, we computed the
water—air interface area for the three cases. The total interface areas, i.e.,
the summation of the soil-water interface area and the air-water
interface area, are approximately 28338 ;\2, 28242 ;\2, and 29035 ;\2,
respectively. Table 5 summarizes the percentages of the soil-water
interface area and the air-water interface area for the three angled clay
particle configurations. MD results show that the soil-water model with
a larger angle between the two clay particles generates larger matric
suction. The matric suctions for cases 1, 2, and 3 are 37.19 & 5.57 MPa,
39.75 + 4.74 MPa, 45.83 + 3.24 MPa, respectively. Table 6 compares
the percentages of the adsorptive water pressure and the capillary water
pressure under the three clay particle configurations. Thus, the
adsorptive water pressures under the three configurations are —17.26 +
2.59 MPa, —18.30 + 2.18 MPa, and —21.75 + 1.54 MPa, respectively.

4.3. Effect of the pore width

In this part, we investigate the effect of pore widths, i.e., the distance
between the two clay particles, on matric suction and the interfacial
area. We compare the results from the three pore widths, i.e., 4 nm, 5
nm, and 6 nm, under the mass water content of 15.1%. Table 7 sum-
marizes the results. It is found that the matric suction decreases with
increasing pore width. This is partially due to the reduced capillary force
with increasing pore width. The water-air interface area rises with the
pore width. To interpret this, we compare the point clouds of soil water
molecules for the three cases, as shown in Fig. 41. The radii of the clay-
water interface are 7.9 nm, 7.4 nm, and 6.9 nm for the three pores,
respectively. However, the change in the pore width might be a domi-
nant factor in that the case for a larger width generates a larger water-
—air interface area under the same conditions.

5. Concluding remarks

We have conducted MD simulations to investigate the soil-water
adsorptive and capillary mechanisms of unsaturated clay. The MD
model consists of two parallel clay plates and water confined in the clay
nanopore. MD simulations were performed at low mass water contents.
For processing the MD results, soil water was represented by a point
cloud through the center-of-mass method. The water-air interfacial area
was calculated using the alpha-shape method. Adsorption was explicitly
considered by distinguishing adsorptive pressure from capillary pres-
sure. We have characterized the adsorptive water layer based on the
water density profile. The thickness of the adsorptive water layer and
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the adsorptive water pressure from our MD results are consistent with
the results in the literature. For the first time, the feed-forward neural
network that does not require a prior function was utilized to generate
the nanoscale soil-water retention curve in terms of matric suction, the
mass water content, and the apparent interfacial area. The application of
the trained neural network was demonstrated by predicting matric
suction beyond the range of trained mass water contents. The MD results
have demonstrated that adsorption is a dominant mechanism of the
nanoscale soil water retention under a low mass water content. For
instance, the adsorptive water pressure accounts for more than 60% of
the total pore-water pressure at the low mass water content in this study.
We note that the study in this article is limited to the pore between two
clay particles. The assemblage of clay particles should be considered to
study the nanoscale clay-water retention mechanism through MD, which
is ongoing research and will be reported in a future publication.
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