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A B S T R A C T   

In this article, we investigate the nanoscale soil-water retention mechanism of unsaturated clay through mo-
lecular dynamics and machine learning. Pyrophyllite was chosen due to its stable structure and as the precursor 
of other 2:1 clay minerals. A series of molecular dynamics simulations of clay at low degrees of saturation were 
conducted. Soil water was represented by a point cloud through the center-of-mass method. Water-air interface 
area was measured numerically by the alpha-shape method. The soil-water retention mechanism at the nanoscale 
was analyzed by distinguishing adsorptive pressure and capillary pressure at different mass water contents and 
considering the apparent capillary interface area (i.e., water-air interface area per unit water volume). The water 
number density profile was used to quantify the adsorption effect. A neural-network based machine learning 
technique was utilized to construct functional relationships among matric suction, the mass water content, and 
the apparent water-air interface area. Our numerical results have demonstrated from a nanoscale perspective 
that the adsorption effect is dominated by the van der Waals force and hydroxyl hydration between the clay 
surface and water. As the mass water content increases, the adsorption pressure decreases, and capillarity plays a 
prominent role in the soil-water retention mechanism at the nanoscale.   

1. Introduction 

The physics and mechanics of unsaturated soils are important in 
geotechnical and geoenvironmental engineering (e.g., Terzaghi et al., 
1996; Gens, 2010; Fredlund, 2006; Ng and Menzies, 2014; Song, 2017; 
Alonso, 2021; Menon and Song, 2022, 2023). Soil-water retention/ 
characteristic curve (SWRC) is a mathematical relationship between soil 
water content and matric suction (e.g., Brooks, 1965; Van Genuchten, 
1980; Fredlund and Rahardjo,1993; Fredlund and Xing, 1994; Niu et al., 
2020; Cao et al., 2018; Chen et al., 2019). It is a fundamental consti-
tutive law for modeling the physics and mechanics of unsaturated soils. 
For instance, a soil water retention curve is required in modeling 
multiphase fluid flow, shear strength, deformation, and stress–strain 
relationships of unsaturated soils (e.g., Alonso et al., 1990; Wheeler 
et al., 2003; Macari et al., 2003; Hoyos and Arduino, 2008; Alonso et al., 
2010). In unsaturated soil mechanics and continuum-based numerical 
methods for modeling unsaturated soils with no osmosis effect, matric 
suction is usually assumed to be the difference between pore air pressure 
and pore water pressure and the latter is usually assumed to be the 
capillary pressure due to water meniscus (e.g., Fredlund and Rahardjo, 

1993; Borja, 2004, 2006; Menon and Song, 2020, 2021; Song et al., 
2017; Wang and Song, 2020) without considering adsorptive water 
pressure. The adsorptive water pressure might be ignored at a high de-
gree of saturation. However, at a low degree of saturation, it should be 
considered to interpret high matric suction (e.g., on the order of hundred 
megapascals) (Fredlund and Rahardjo, 1993; Lu and Likos, 2006; Zhang 
and Lu, 2019). It is noted that the pressure of capillary water is lower 
than air pressure due to the curve water–air interface (i.e., meniscus), 
and pressure of adsorptive water is higher than air pressure due to 
adsorptive force (Luo et al., 2022). Furthermore, both experimental and 
theoretical studies have suggested that the water–air interface should be 
taken into account to better describe soil water retention curves of un-
saturated soils (Fredlund and Morgenstern, 1977; Hassanizadeh and 
Gray, 1990; Joekar-Niasar et al., 2008; Lourenc¸o et al., 2012; Lu and 
Likos, 2006; Likos, 2014; Fredlund, 2006). We refer to the related 
literature for a thermodynamic justification (e.g., Houlsby, 1997; 
Nikooee et al., 2013) of including the water–air interface in the soil–-
water retention curve of unsaturated soils. In Fredlund and Morgenstern 
(1977), the water–air interface was first incorporated into stress analysis 
of unsaturated soils where the air–water interface is treated as an 
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independent phase. In Lu and Likos (2006), the interfacial effects are 
lumped into the suction stress in addition to capillary pressure. In 
Nikooee et al. (2013), the interfacial energy and air–water specific 
interfacial area are integrated into an effective stress tensor using a 
thermodynamic approach. Interfacial force arises due to the unbalanced 
force exerted on two sides of interfaces, which may influence the 
macroscopic soil behavior. Several physicochemical effects contribute to 
the origin of interface force, such as van der Waals forces, surface ten-
sion, and electric double-layer forces. These interface forces could pro-
duce surface energy change and deformation of soil (Butt et al., 2013). 

Over the past decades, computational modeling through physics- 
based numerical methods has gained success in resolving and quanti-
fying water–air interfaces in porous media. One standard method is the 
pore-network modeling technology (Lowry and Miller, 1995; Joekar- 
Niasar et al., 2008). Several techniques have also been developed to 
measure the water–air interface area in porous media (Costanza-Rob-
inson and Brusseau, 2002; Chen and Kibbey, 2006; Wildenschild et al., 
2002; Brusseau et al., 2007; Lourenc¸o et al., 2012). However, the 
configuration of pore network is user-defined instead of the actual pore 
space in nature. Moreover, it remains challenging to quantify the impact 
of adsorption on SWRC and explain the mechanism of soil–water 
adsorption at the nanoscale. At the nanoscale adsorptive forces in fine- 
grained clay become pronounced and could modify the water struc-
ture, e.g., adsorptive water film tightly attached to clay surface (Evans 
et al., 1986; Tuller et al., 1999). It is noted that the laboratory mea-
surement techniques only suffice to account for capillary effects in the 
water retention mechanism (Likos et al., 2019). Indeed no viable 
experimental technique exists to quantify adsorption and its impact on 
SWRC in unsaturated soils at the nanoscale (Lu, 2016). 

As a numerical method at the atomic scale, molecular dynamics 

(MD) can naturally consider adsorption at the nanoscale. With advances 
in high-performance supercomputers, MD simulations have been 
extensively used to gain detailed insights into the physics and mechanics 
of unsaturated soils at the atomic scale (e.g., Cygan et al., 2004; Katti 
et al., 2015; Song and Zhang, 2021; Song et al., 2018; Song and Wang, 
2019). MD is a computational simulation technique that numerically 
solves Newton’s equations of a classical N-body system at equilibrium 
(Frenkel and Smit, 2001; Allen and Tildesley, 2017; Plimpton, 1995). It 
is a viable numerical tool to study the effect of soil–water interactions on 
the physics and mechanics of unsaturated soils. The strong atomic 
interaction across the clay-water interface could cause a divergence 
from the bulk phase behavior of water. Examples include capillary 
condensation and solid-water adsorption (e.g., Shi and Dhir, 2009; Leroy 
and Muller-Plathe, 2010; Scocchi et al., 2011; Botan et al., 2011). To the 
best of our knowledge, few studies have used MD simulations to inves-
tigate soil–water retention curves accounting for water–air interface and 
soil–water adsorption. In this article, MD is utilized to study the impacts 
of the water–air interface and soil–water adsorption on the nanoscale 
soil–water retention mechanism at low degrees of saturation. 

The area of the water–air interface (i.e., concave water meniscus) in 
unsaturated soils is nontrivial to compute from the MD simulation data. 
In this article, the point cloud method coupled with surface recon-
struction, as detailed in Section 2, will be used to calculate the water–air 
interface area at different degrees of saturation (water mass content). 
Note that surface reconstruction is a subject in computer graphics that 
deals with surface/shape properties of a point set, such as surface 
normal estimation (Boissonnat, 1984; Edelsbrunner and Mucke, 1994). 
Among various surface reconstruction techniques, the alpha-shape 
method has been successfully employed to characterize the shape of 
molecules like proteins (Peters et al., 1996; Liang et al., 1998). In Wilson 
et al. (2009), the author validated the robustness and effectiveness of the 
alpha-shape method in characterizing the shapes of small molecules 
compared to other shape predictors. In Singh et al. (1996), the authors 
applied the alpha-shape method in molecular recognition and identified 
binding sites in proteins. Inspired by the broad applications in molecular 
biology, in this study, the alpha-shape method was utilized to calculate 
the water–air interface area from the MD results. Section 2 presents the 
unsaturated clay model for the MD simulations and the alpha shape 
method for the interfacial area calculation. Section 3 concerns the nu-
merical results of the water–air interface area, capillary and adsorptive 
pressures and conducts data analytics regarding SWRC through a 
machine-learning curve fitting technique. Section 4 compares the 
nanoscale water retention mechanisms of kaolinite and pyrophyllite and 
discusses the effect of clay particle configurations and pore sizes on the 
clay-water retention mechanism, followed by a summary in Section 5. 

2. Material model and MD modeling 

In this study, pyrophyllite that is a 2:1 clay mineral composed of 
silicon tetrahedral and aluminum octahedral layers was chosen due to 
its stable structure and being a precursor to other smectite clay minerals. 
The aluminum octahedral (O) sheet is bounded by two opposing silicon 
tetrahedral (T) sheets, which form a T-O-T structure. The chemical 
formula of pyrophyllite is Al2[Si4O10](OH)2. The unit cell of pyrophyllite 
has the dimensions of 5.28 Å × 9.14 Å × 6.56 Å in the x-y-z Cartesian 
coordinate system (Skipper et al., 1995). 

Fig. 1 shows one unit cell of pyrophyllite made up of six types of 
atoms. In Fig. 1, ao is aluminum in the octahedral layer, ocl and hcl are 
oxygen and hydrogen in the octahedral layer that form the covalent 
hydroxyl bond, sz is silicon in the tetrahedral layer, oss is oxygen in Si-O- 
Si linkages, and oas is oxygen in Si-O-Al linkages in the tetrahedral layer. 
Unlike other smectite clay minerals with a strong cation exchange ca-
pacity, pyrophyllite has a weak capacity to swell or shrink because of its 
neutral surface charge. Considering its structural stability, the clay 
particle is treated as a rigid body, and its motion was frozen during the 
simulation. 

Fig. 1. Unit cell of pyrophyllite.  

Fig. 2. Initial configuration of the clay-water model.  
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Fig. 2 shows the initial configuration of the clay-water model. Each 
clay layer consists of 36 × 21 × 1 unit cells in the x-y-z directions, 
corresponding to 190.08 Å × 191.94 Å in the x-y plane. Water is 
modeled by the TIP3P model (Jorgensen et al., 1983). Water molecule 
was considered a rigid body during the simulation. The space between 
the parallel clay layers is d = 50 Å which could avoid any possible 
interlayer interactions between clay plates (Amarasinghe et al., 2014). 

In this study, CHARMM force field (Brooks et al., 1983) is employed 
to describe the soil–water interaction in that CHARMM force field is 
compatible with the TIP3P water model (Berendsen et al., 1987). 
CHARMM force field has been widely utilized to study clay-water 

systems (Katti et al., 2015; Song and Wang, 2019). The non-bonded 
potential energy U in the CHARMM force field can be defined as 

U =
∑

i∕=j
4∊ij

[(
Rij

rij

)12
−
(

Rij

rij

)6
]
+
∑

i∕=j

qiqj

4π∊0rij
, (1) 

where εij is the well-depth of Lennard-Jones (LJ) potential and Rij is 
the distance at the minimum LJ interaction energy, qi and qj are the 
charge of atoms i and j, respectively, ε0 is the vacuum permittivity, rij is 
the distance between atoms i and j. In this study, clay particles are 
assumed immobilized and only non-bonded interactions between clay 
and water were simulated (Song et al., 2018). 

The cutoff radii for van der Waals and Coulombic interactions are 10 
Å. Table 1 lists the nonbonded parameters for the clay-water system. 
Note that hw and ow denote water hydrogen and water oxygen, 
respectively. Fig. 3 presents an example of nonbonded interactions (i.e., 
van der Waals energy and Coulombic energy) between clay surface ox-
ygen (oss) and water hydrogen (hw) as a function of interatomic dis-
tance. The interaction between oss and hw was chosen as an example 
because of the strong clay-water interaction such as surface hydration 
between the two types of atoms. The minimum potential energy occurs 
when the two atoms are at a distance of 1.4 Å. This indicates that the 
forces between the two atoms are repulsive within the distance of 1.4 Å. 

All MD simulations were performed on LAMMPS, a large-scale 
atomic/molecular massively parallel simulator (Plimpton, 1995) using 
NVT ensemble at 298 K. Periodic boundary conditions were assigned in 
all directions. Water molecules were kept rigid using the SHAKE algo-
rithm (Ryckaert et al., 1977) with constraints applied to hydrogen bonds 
and angles. The velocity Verlet algorithm with a time step of 0.5 fs (1 fs 
= 1 × 10−15 s) was employed to integrate the equations of motion of 
water. The simulation was first run for 2 ns to bring the system into 
equilibrium. Then the production simulation was run for 1 ns to output 
averaged water trajectories and water pressure. The potential energy 
profile was monitored to check the equilibrium state. Fig. 4 shows the 
time evolution of potential energy for the clay-water system during the 
equilibration. It can be seen that the system reached a dynamic equi-
librium after 0.6 ns. 

In this study, mass water content or moisture content (Θg) was 
chosen to represent the degree of water saturation. Mass water content is 
defined as the ratio between the mass of water and the mass of the solid 

Θg =
NwMw

NxNyNzMp
, (2) 

where Nw is the total number of water molecules, Mw ≈ 18 g/mol is 
the molar mass of water, Mp ≈ 360 g/mol is the molar mass of pyro-
phyllite, and Nx = 36, Ny = 21, and Nz = 1 are the number of unit cells in 
the x, y and z directions, respectively. The variation of mass water 
content was realized by adjusting the number of water molecules be-
tween the clay particles. The degree of saturation is calculated by 

Sr = ΘgGs
/

e, (3) 

where e is void ratio and Gs is specific gravity of dry clay. In MD, the 
pressure tensor of a group of atoms can be expressed through the virial 
stress tensor (Clausius, 1870) as 

σij =
∑N

k mkvkivkj

V +
∑N

k rkifkj

V , (4) 

where k is the atom index, N is the number of atoms in the water 
group, V is the volume of confined water, i, j = 1,2,3, and mk, vk, rk and 
fk denote the mass, velocity, position, and force of atom k, respectively. 
The pore water pressure can be determined from equation (4) as 

pw = 1
3 (σ11 + σ22 + σ33), (5) 

Next, the method for determining the water–air interface area will be 
introduced. 

Table 1 
Values of the input parameters for CHARMM force field.  

Symbol qi(e) ∊i(kcal/mol) Ri(Å) 

hw  0.417 0.046 0.44 
ow  −0.834 0.152 3.53 
ocl  −0.96 6 2.8 
hcl  0.4 0.0001 2.4 
oas  −0.91 6 2.8 
oss  −0.7 1 3 
sz  1.4 0.001 7.4 
ao  1.68 0.15 6.3  

Fig. 3. Interactions between clay surface oxygen (oss) and water hydrogen 
(hw) as a function of the interatomic distance. 

Fig. 4. Variation of potential energy during the MD simulation.  
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2.1. Procedure of the interfacial area calculation via the alpha-shape 
method 

In this study, the point cloud concept and alpha shape method were 

adopted to determine the water–air interface area. Point clouds are 
commonly produced by 3D scanners, which collect points on the 
external surfaces bounding the objects. In this work, the MD simulator 
functions as a 3-D scanner. Fig. 5 illustrates the construction of a water 
point cloud based on trajectories of water molecules. Once the clay- 
water system reaches equilibrium, we can obtain time-averaged trajec-
tories of water molecules and convert the water body into a 3-D point 
cloud using the center-of-mass method (Song and Zhang, 2021). The 

Fig. 5. Construction of the water point cloud by extracting the center-of-mass 
of water molecules. 

Fig. 6. Schematic procedure of the interfacial area calculation using the alpha-shape method.  

Fig. 7. Comparison of alpha shapes of the water point cloud with α = 2 Å, 5 Å, 
and 8 Å. 
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coordinate of center-of-mass rc of a water molecule can be expressed as 

rc =
∑

m0r0 + mh(rh1 + rh2)
m0 + 2mh

, (6) 

where m and r = (x, y, z) denote the atomic mass and Cartesian co-
ordinate system vector, and subscripts o and h stands for water oxygen 
and hydrogen, respectively. 

After obtaining the water point cloud, we reconstruct its surface 
using the alpha-shape method (Edelsbrunner and Mucke, 1994). The 
general idea is to find piece-wise triangles (the so-called alpha shapes) to 
represent the surface of the water point cloud. Fig. 6 shows the 

schematic procedure of interfacial area calculation using the alpha- 
shape method. We could define a point set A where each point repre-
sents the center-of-mass of one water molecule. Let B be an open ball 
with radius α. We restrict B to be empty such that it can occupy its space 
without enclosing any of the points of A, i.e., B ∩ A = ∅. Let T = {Si, Sj,

Sk} be a subset of A. Given T , we could define a 2-simplex ΔT (i.e., a 
triangle) as the convex hull of T. Here, the convex hull is the smallest 
convex set that contains all points in T (Barber et al., 1996). The 2-sim-
plex is said to be α-exposed if T = ∂B ∩ A. Here, ∂B is the boundary of B. 

For implementation, we first perform the Delaunay triangulation of 
the surface of the water point cloud and then define the alpha complex 

Fig. 8. Effect of the alpha value on total interfacial area.  

Table 2 
Summary of the MD simulations in this study and their corresponding values of 
mass water content and degree of saturation.  

Simulation No. θg(%) Sr(%) Simulation No. θg(%) Sr(%) 

1  6.2  2.3 2  7.3  2.8 
3  8.4  3.2 4  9.7  4.0 
5  11.0  4.7 6  12.4  5.4 
7  13.9  6.1 8  14.7  6.3 
9  15.5  6.9 10  17.2  7.6 
11  18.1  8.0 12  19.0  8.5 
13  20.8  9.5 14  22.7  10.5 
15  24.8  10.6 16  26.9  12.0 
17  27.9  12.6 18  29.1  13.6 
19  31.3  14.7 20  32.5  15.1 
21  33.7  16.0 22  34.9  16.2 
23  36.2  17.3 24  37.4  17.4  

Fig. 9. Number density profiles of soil water at various mass water contents.  

Fig. 10. Percentage of adsorptive and capillary water pressure as a function of 
mass water content. 

Table 3 
Summary of percentages of adsorptive and capillary water pressures in the pore 
space for several MD simulations.  

θg(%) Adsorption (%) Capillarity (%) 

6.2  62.9  37.1 
7.3  58.1  41.94 
8.4  61.9  38.1 
9.7  64.1  35.9 
11.0  61.5  38.5 
13.9  51.4  48.6 
15.5  49.7  50.3 
17.2  47.3  52.7 
20.8  44.9  55.1 
24.  44.1  55.9 
27.9  46.2  53.8 
31.3  47.0  53.0 
34.9  42.7  57.3 
37.4  43.3  56.7  

Table 4 
Sorptive energy between clay and adsorptive water at 
different mass water contents.  

θg(%) Sorptive energy (kcal/mol)  

9.7  −263.9  
11.0  −297.1  
12.4  −328.3  
13.9  −355.8  
14.7  −371.3  
17.2  −388.0  
18.1  −424.2  
20.8  −460.8  
27.9  −597.5  
31.3  −671.7  
34.9  −721.5  
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that associates Delaunay triangulation with the alpha shape (Edels-
brunner and Mucke, 1994). The algorithm adopted is summarized as 
follows.  

(a) Compute the Delaunay triangulation of A, knowing that the 
boundary of α-shape is contained in Delaunay triangulation.  

(b) Determine a-complex by inspecting all simplices DT in Delaunay 
triangulation. If the circumsphere of DT is empty and the radius 
of the circumsphere is smaller than α, we accept DT as a member 
of α-complex.  

(c) All simplices on the boundary of α-complex form the α-shape. 

In Fig. 6 (2), the gray object is an empty open ball B, the red sphere is 
the boundary ∂B, and T = ∂B ∩ A = {Si, Sj, Sk}. Meanwhile, we must 
have B ∩ A = ∅ and B is exterior to A. The spherical cap is straightened 
by a 2-simplex (i.e., triangle in red) connected by points S1,S2, and S3. 
Thus, the alpha shape of A is the polytope whose boundary consists of all 
the 2-simplices/triangles. The interfacial area is the sum of the area of 
each boundary triangle. The parameter α controls the desired level of 
shape detail. We note that the critical α calculated by MATLAB is 
assumed as the value of parameter α in this study. It is the smallest alpha 
that produces an alpha shape with no inner cavities developed. Fig. 7 

compares the configurations of alpha shapes when α equals 2 Å, 5 Å, and 
8 Å, respectively. Alpha smaller than the critical value produces cavities 
and would generate an unreasonable interfacial area. Fig. 8 shows the 
parameter α sensitivity of the wetting-nonwetting interfacial area. The 
results correspond to a mass water content of 29.1%. The critical alpha 
for this case is 4.9 Å. It can be found that α has little to no effect on the 
interfacial area when α is greater than 5 Å. Thus, we assume α = 5 Å in 
this study. 

3. Numerical results 

In this section, we present the numerical results of capillary and 
adsorptive pressures, the water–air interface area and thickness at 
different mass water contents, and conduct data analytics regarding 
adsorptive and capillary water pressure curves through a machine- 
learning based curving fitting. Table 2 summarizes MD simulations 
with corresponding values of mass water content and degree of satura-
tion. For each simulation, we computed pore-water pressure (capillary 
water pressure and adsorptive water pressure), water number density, 
and interface area and thickness. Through machine learning, we have 
generated the soil–water retention curve in terms of matric suction, mass 
water content, and apparent water–air interface area without prescrib-
ing a specific functional relationship among those variables. To 
demonstrate the usefulness of machine-learning based data analytics, 
the trained and validated neural network was used to predict the matric 
suction given a mass water content that is beyond the range of the MD 
simulations in this study. 

3.1. Adsorptive and capillary water pressures at the nanoscale 

At the nanoscale, adsorption becomes important in the soil water 
retention mechanism. In general, the water in the nanoscale clay pore 
space can be assumed as discrete layers rather than a continuum as bulk 
water. Thus, in this study, the water number density profile from the MD 
results is utilized to distinguish adsorption and capillarity in pore water. 
First, the nanopore space is evenly divided into a number of parallel 
layers along the z direction. Then, the number density of each layer is 
computed as the number of water molecules divided by the volume of 
the layer. We note that water number density is computed for describing 
water distribution rather than mass density in that the local mass density 

Fig. 11. Variation of the adsorptive force with mass water content.  

Fig. 12. Soil-water retention surface from the MD results through a standard curve fitting technique.  
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of water at the nanoscale deviates substantially from that of bulk water 
at the macroscale. 

Fig. 9 shows the water number density profiles at various water 
contents. Despite the different magnitudes of number density, these 
density curves exhibit a similar mode: the first and second density peaks 
are located at the distances of 3.75 Å and 6.75 Å from the clay surface (i. 
e., zclay = ±25 Å), respectively. Further away from the clay surface, 
water number density gradually decreases. At the center of the clay 
nanopore (i.e., z = 0), the water number density reaches the minimum 

value. The maximum number density is 2.36 × 10−2Å
−3 

that is about 

three times the minimum number density (e.g., 0.73 × 10−2Å
−3 

at θg =
17.2%). Large number density fluctuations in the vicinity of the clay- 
water interface could indicate a strong effect of soil–water adsorption. 
It also results in a layered water structure. From the number density 
profile, the soil water could be partitioned into two parts, e.g., the 
adsorptive water and the capillary water. The adsorptive water layer 
extends from the clay surface to the trough after the second peak in the 
number density profile. The capillary region lies in the remaining pore 
water space where the capillary effect is dominant. The interfaces be-
tween the two regions are approximately located at zclay = ±16.75Å 
from the MD simulation as shown in Fig. 9. 

Fig. 10 plots the variation in percentages of adsorptive and capillary 
water pressures versus mass water content. Table 3 summarizes the 
percentages of adsorptive and capillary water pressure in the total pore 
water pressure at different mass water contents. At a low mass water 
content, e.g., θg = 6.2%, the adsorptive water pressure occupies 62.9% 
of the total pore water pressure. As water content increases, the effect of 

Fig. 13. Comparison of water point clouds for six mass water contents.  

Fig. 14. Variation of the clay water contact angle with the mass water content.  
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adsorption is gradually weakened. When the mass water content is 
around 15%, the effects of adsorption and capillarity are similar. The 
percentage of adsorptive pressure fluctuates around 45% when mass 

water content exceeds 20%, and capillarity becomes a dominant factor 
in the overall negative pore water pressure (i.e., matric suction). The MD 
results have demonstrated that adsorption plays a significant role in the 
soil water retention mechanism at a low degree of saturation in clay. 

The adsorptive water pressure from our MD simulations was 
compared to that from an empirical formula (Tuller et al., 1999) that 
reads 

ϕads ≈ ϕvdW = AH

6πt3, (7) 

where AH is the Hamaker constant and t is the thickness of adsorptive 
water layer. For a soil–water system, AH is on the order of −10 × 10−20 

Joules to −10 × 10−19 Joules. In this study, it was adopted that AH =
−6 × 10−20 Joules. The results in Fig. 9 show that the first non-zero 
water density occurs near z = ±22.875Å, i.e., 2.125 Å away from the 
clay surface. The thickness of the adsorptive water layer t is 

Fig. 15. Schematic representation of the water–air interface.  

Fig. 16. Schematic representation of the clay-water interface.  

Fig. 17. Variations of the water–air interface area and the soil–water interface 
area versus the mass water content. 

Fig. 18. Comparison of the water–air interface area calculated via the center- 
of-mass (COM) method and the default water point cloud method. 
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approximately 6 Å, e.g., the distance between the trough after the sec-
ond peak density (z = ±16.875Å) and the outermost water layer (z =
±22.875Å). From equation (7), we have fads = − 14.74 MPa, which is 
comparable to the adsorptive pressure from our MD results, as illus-
trated in Fig. 22. We note that it lacks experimental testing data to 
validate the thickness of the adsorptive water layer assumed in our MD 
simulations. 

The pairwise energy and interaction force between the clay and the 
adsorptive water layer can be used to describe clay-water interactions. 
Pairwise energy includes the van der Waals component and the long- 
range Coulombic component. Since only adsorptive water is included, 
this energy term specifically refers to sorptive energy. Table 4 summa-
rizes the sorptive energy between clay and adsorptive water at different 
mass water contents. As the mass water content increases from 9.7% to 
34.9%, the magnitude of sorptive energy increases by 170% due to 
increased adsorptive interactions. Fig. 11 plots the variation of 

interaction force with the mass water content. The increase in the 
adsorptive force is mainly due to the increase of accumulated water 
molecules in the adsorptive water layer during the wetting process (i.e., 
increasing water in the pore space). 

3.2. Area and thickness of the water–air interface at various mass water 
contents 

Fig. 12 shows a soil -water retention surface in terms of generalized 
matric suction (ϕm), mass water content (θg), and apparent water–air 
interface area (Aa) through a standard curve fitting technique. The 
water–air interface area was computed through the method introduced 
in the previous section. Fig. 13 shows the water point clouds for 6 
simulations. Since clay particles were fixed, the height of soil water 
remains almost unchanged (hw = 43.5 ± 0.1 Å) and the soil water body 
expands along the radial direction with increasing mass water content. 
We further demonstrate that the mass water contents have a mild effect 
on the shape of the water meniscus through the contact angle. The 
contact angle was computed using the method proposed in Song and 
Zhang (2021). 

Fig. 19. Water number density at the pore center along (a) the x-direction and 
(b) y-direction. 

Fig. 20. Matric suction versus the apparent water–air interfacial area.  

Fig. 21. Matric suction versus the mass water content.  
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Fig. 14 plots the variation of the clay-water contact angle with 
respect to the mass water content. In Fig. 14 “top” and “bot” denote the 
top and bottom clay-water interfaces, respectively. From the results in 
Fig. 14 it can be postulated that the shape of the water meniscus is 
almost identical at the different degrees of saturation due to the fixed 
pore space. 

Figs. 15 and 16 present the schematic of the water–air interface and 
the clay-water interface, respectively. Fig. 17 plots the water–air inter-
face area versus water mass content. For comparison, the total interface 
area (i.e., summation of the water–air interface area and the water-soil 
interface area) and the water-soil interface area are also plotted. The 
total interface area increases from 9350 Å2 to 31984 Å2 as the mass 
water content varies from 6.2% to 37.4%. Both the water–air interface 
area and the clay-water interface area show a nearly linear increase with 
respect to the mass water content. It can be found that the clay-water 
interfacial area has a relatively larger growth rate than the water–air 
interface area with respect to the mass water content. The two curves for 
the water–air and clay-water interface areas intercept at around θg =
20%. 

The efficacy of the center-of-mass (COM) method in the surface area 
calculation was evaluated by comparing the results with the ones from 
the original (default) water point cloud. The major difference between 
the two methods is the total number of points in the point cloud. In the 
default water point cloud, the total number of points is 3Nw, and each 
atom determines the coordinate of the corresponding point. In the 
center-of-mass implementation, the total number of points is Nw. Fig. 18 
compares the water–air interface area calculated from the COM-based 
point cloud and the default point cloud. The deviation is less than 
0.1% for all mass water contents. 

The thickness of the water–air interface is an important physical 
property of water–air interface (Fredlund, 2006). Based on our MD 
simulations, we could determine the interface thickness from the num-
ber density distribution of water in the middle plane of the clay pore. 
The water between the planes that are parallel to the clay surface at z =
− 0.5 Å and z = 0.5 Å were collected and analyzed to avoid the effect of 
water-clay interactions. Fig. 19 presents the number density distribution 
of water at the pore center along the x and y directions. It can be found 
that the water number density increases sharply from zero to a peak 
value near the clay surface. The first density peak is marked with a black 
circle in Fig. 19. For example, a density jump up to 0.036 Å−3 can be 
seen within a distance of Δx = 5 Å at θg = 37.4%. Since water density 
shows a significant change across the water–air interface, we assume 
that the thickness of the water–air interface is equal to the distance 
between the outermost water layer and the first density peak. Based on 

Fig. 22. Adsorptive water pressure versus the mass water content and the 
apparent interfacial area. 

Fig. 23. Capillary water pressure versus the mass water content and the 
apparent interfacial area. 

Fig. 24. Architecture of the feed-forward neural network.  
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this assumption, the values of interfacial thickness at the mass water 
contents of 11.0%, 22.7%, and 37.4% are 5 Å, 5.5 Å, and 5.75 Å, 
respectively. Previous studies have shown that the thickness of the 
water–air interface is on the order of 1.5–2 water molecular diameters, 
e.g., approximately 5 Å (Townsend and Rice, 1991; Fredlund and 
Rahardjo, 1993; Israelachvili, 2015). This consistency could imply that 
the water number density from our MD simulations is viable in deter-
mining the thickness of the water–air interface in unsaturated clay. 

3.3. Soil-water retention curves through neural networks 

In this section, the results of our MD simulations were analyzed to 
distinguish adsorption and capillarity in the soil–water retention 
mechanism. We investigate the relation between matric suction and 
mass water contents through a neural network (Goodfellow et al., 2016). 
We first present the results from the MD simulations. Fig. 20 plots the 

variation of matric suction with the apparent interfacial area. The dot 
represents the mean value, and the error bar represents the standard 
deviation. Note that the same notations apply to the following figures. In 
general, matric suction increases with the apparent interfacial area. 
Here, the apparent water–air interfacial area is defined as the water–air 
interfacial area per water volume. The experimental data on the 
water–air interfacial area at the nanoscale is not available in the liter-
ature. It is noted that the Aa −θg relationship obtained from our MD 
simulations follows the general trend as shown in the results of labo-
ratory tests at the continuum scale (Costanza-Robinson and Brusseau, 

Fig. 25. Variation of matric suction versus the mass water content through FNN.  

Fig. 26. Performance of the training for the relation bewteen matric suction 
and the mass water content. 

Fig. 27. Plot of the regression during training for the curve of matric suction 
versus the mass water content. 
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2002). Fig. 21 plots the variation of matric suction with the mass water 
content. The results in Fig. 21 show that as the mass water content in-
creases from 4.30% to 26.87%, matric suction decreases from 65.4 MPa 
to 35.86 MPa. Matric suction drops faster as the mass water content is 
less than 10 %. As the mass water content is greater than 10 %, the 
decreasing rate of matric suction is lower. Adsorptive water pressure and 
capillary pressure can be distinguished based on the water density dis-
tribution. Fig. 22 presents the adsorptive water pressure with the mass 
water content. The results indicate that the higher the mass water con-
tent, the lower the absolute value of adsorptive water pressure. Fig. 23 
presents the capillary water pressure with the mass water content. The 
results show that the capillary water pressure oscillates at the average 
value of −20.71 ± 1.9 MPa. These results are corroborated by the slight 
variations of contact angles of the clay-water systems at different water 
contents (See Fig. 14). 

Next, we apply a neural-network deep learning model to predict the 
relationship between matric suction, the mass water content, and the 
apparent interfacial area. Given the input (e.g., mass water contents) 
and the corresponding output (e.g., matric suction), the neural network 
can generate a model function without any preliminary knowledge 

about the structure of the function. This is the fundamental difference 
from the traditional curve fitting of known model functions such as 
polynomial and power functions. In what follows, we briefly introduce 
the neural network designed for this study. Fig. 24 plots the architecture 
of the feed-forward neural network (FNN) adopted in this study. With 
hidden sigmoid neurons and linear output neurons, the neural network 
allows for fitting 2-dimensional mapping problems. The neural network 
is trained with the Bayesian regularization algorithm. Therefore, the 
neural network adopted is named by Bayesian regularized feed-forward 
neural network (BRFNN). Bayesian regularization is a mathematical 

Fig. 28. Plot of the variation of matric suction versus the apparent interfacial 
area through FNN. 

Fig. 29. Performance of the training for the curve of matric suction versus the 
apparent interfacial area. 

Fig. 30. Plot of the regression during the training for the relationship between 
matric suction and the apparent interfacial area. 

Fig. 31. Variation of matric suction with the mass water content from the MD 
results and the trained FNN. 
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process that converts a nonlinear regression into a “well-posed” statis-
tical problem (MacKay, 1992). The initial weights are assigned by the 
algorithm in (Nguyen and Widrow, 1990), and the optimization is per-
formed by the Gauss-Newton algorithm (Foresee and Hagan, 1997). The 
Bayesian regularization approach involves the probability distribution 
of neuron network weights, which differs from conventional network 
training algorithms (i.e., the optimal weight set chosen by minimizing 
the error function). 

Thus, the network predictions are in the form of a probability dis-
tribution. The salient feature of BRFNN is that the validation process is 

not needed (Burden and Winkler, 2009). The input of the neural network 
is the vector of mass water content. Once received by the hidden layer 
and multiplication, they are passed to the neurons of the output layer. In 
the hidden layer, a neuron first computes the weighted sum of input 
vectors. Then, a constant bias is added to the weighted sum. Finally, the 
value is fed into the activation function to obtain the output. In the 
backpropagation, the cost function E to be minimized is 

E = μED + νEW , (8) 

Fig. 32. Variation of matric suction with the apparent interfacial area from the 
MD results and the trained FNN. 

Fig. 33. Relationship among matric suction, the mass water content, and the 
apparent interfacial area. 

Fig. 34. Number density of the water oxygen in the clay pore.  

Fig. 35. Number density of the water hydrogen in the clay pore.  

Fig. 36. Radial distribution function of the atom pair Oc-Ow near the 
clay surface. 

Fig. 37. Radial distribution function of the atom pair Oc-Hw near the 
clay surface. 
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where μ and η are hyperparameters, ED is the sum of squared errors, 
and EW is the error of the weights. The sum of squared errors reads 

ED =
∑ND

i=1
(yi − ŷi)

2, ŷi =
∑NN

j=1
Fact

(
wjxi + bj

)
, (9) 

where ND is the dimensions of the input vector, yi is the target value 
(e.g., matric suction), ŷi is the predicted value (e.g., matric suction) as a 
function of the input value xi (e.g., mass water content), NN is the 
number of neurons, wj and bj are the weight and bias corresponding to 
the j-th neuron, respectively, and Fact is the activation function in the 
form of a hyperbolic tangent sigmoid (Vogl et al., 1988). The error of 
weights EW is written as 

EW =
∑NN

j=1
w2

j . (10) 

The input vector of the mass water content and the target vector of 
matric suction are randomly divided into two groups. For instance, 75% 
of the input data was used for training, and 25% of the input data was 
used as an independent test of the neural network generalization. 

Fig. 25 plots the output and target values of matric suction during 
training and testing and the errors. Fig. 26 plots the mean squared error 
(MSE) variation versus the number of epochs for the training and test 
data. Here MSE measures the average squared difference between the 
predicted values of matric suction and the actual values from MD sim-
ulations. The number of epochs is a hyperparameter. An epoch is when 
all the training data is used at once and is defined as the total number of 
iterations of all the training data in one cycle for training the machine 
learning model. As shown in Fig. 26, the MSE drops significantly with 
the initial increase of the epoch number. After the oscillation around 
epoch 4, the mean squared error continues to decrease. The best training 
performance is 0.43053 at epoch 22. Fig. 27 plots the linear regression 

Fig. 38. Snapshots of the water molecules in the pyrophyllite pore.  

Fig. 39. Snapshots of the water molecules in the kaolinite pore.  
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coefficient R between the target matric suction and the predicted matric 
suction for (a) training, (b) test, and (c) the whole dataset. The regres-
sion values of the training phase (R = 0.9951) and the test phase (R =
0.99976) indicate a good match between the target and the model 
output. 

Fig. 28 plots the predicted and the target matric suction during 
training and testing, given the input of the apparent interfacial area. 
Fig. 29 shows the variation of mean squared errors with the epoch 

number. The results indicate that the best performance is 0.06977, ob-
tained at epoch 51. Fig. 30 plots the linear regression coefficient R be-
tween the target and the predicted matric suction during (a) training, (b) 
test, and (c) the total dataset. The regression values of the training phase 
(R = 0.99915) and the test phase (R = 0.98939) indicate a good fit 
between the target and the model output. 

Furthermore, we use the trained model to predict matric suction and 
the apparent interfacial area at mass water contents outside the range of 
the trained data. Fig. 31 shows the variation of matric suction with the 
mass water content. Fig. 32 plots the variation of matric suction and the 
apparent interfacial area. Combining the results in Figs. 31 and 32, 
Fig. 33 presents the relation among matric suction, the mass water 
content, and the apparent interfacial area. Overall, the results show that 
neural-networks-based machine learning is a useful tool to analyze the 
MD results that explicitly consider the soil–water adsorption and 
generate the soil–water retention curves without prescribing a specific 
functional relationship between matric suction, the water mass content, 
and the apparent interfacial area. 

4. Discussions 

In this section, we first present the water adsorptive mechanisms in 
pyrophyllite and kaolinite through density functions, radial distribution 
functions, and water molecule orientations on the clay surface. Then we 
discuss the effect of clay particle configurations and pore geometrical 
sizes on the clay-water adsorption mechanism at the nanoscale through 
MD simulations with different clay particle configurations and pore 
geometrical dimensions. 

4.1. Clay mineral types 

It is known that clay mineral types impact the clay-water adsorption 
mechanism. We compare the water adsorption mechanism between 
kaolinite and pyrophyllite at the atomic scale. Kaolinite is a 1:1 type clay 
mineral. The primary water adsorption mechanism of kaolinite is sur-
face hydroxyl hydration. For comparison, we construct an unsaturated 
kaolinite-water model with the exact dimensions of the pyrophyllite- 
water model in Section 2. The mass water content is assumed 
22.741%. Figs. 34 and 35 compare the number densities of water oxygen 
and water hydrogen in the pyrophyllite pore and the kaolinite pore, 
respectively. The larger peak density and shorter distance from the first 
peak to the clay surface demonstrate that kaolinite has a greater water 
adsorption capacity. This is corroborated by the larger matric suction in 
the kaolinite-water model than that in the pyrophyllite-water model, i. 
e., 49.50 MPa versus 38.67 MPa. The radial distribution function (RDF) 
is used to detect the location of the adsorptive water layer. Figs. 36 and 
37 plot the RDF of the atom pairs Oc-Ow (i.e., clay tetrahedral oxygen- 
water oxygen) and Oc-Hw (i.e., clay tetrahedral oxygen-water 
hydrogen) near the two clay surfaces, respectively. The results show 
that the larger RDF of water in the kaolinite pore implies greater water 
absorption at the kaolinite surface. For instance, the distance between 
the first peak of RDF to the kaolinite surface is about 4 Å which agrees 
with the location of the first peak water number density as shown in 
Figs. 34 and 35. 

Furthermore, the snapshots of the MD simulations are presented to 
show the water molecular distribution due to adsorption at the two clay 
surfaces. Figs. 38 and 39 show the snapshots of the water molecule in the 
pyrophyllite and kaolinite pores during the adsorptive process at 
different run times, respectively. The results show that the water mol-
ecules move closer to the clay surface and exhibit orientation in both 
clay pores from 1.5 ps to 10.5 ps due to adsorption. The difference is the 
distance between the closest water molecule layer to the clay surface. 
The distances are 1.48 Å for the kaolinite platelet and 2.01 Å for the 
pyrophyllite platelet, which indicates the difference in water adsorption 
mechanisms and adsorption strength between kaolinite and 
pyrophyllite. 

Fig. 40. Clay-water models with the two clay particles aligned with an angle at 
(a) 10◦, (b) 20◦, and (c) 30◦. 

Table 5 
Percentages of the soil–water interface area and the air–water interface area for 
the three angled clay particle configurations.  

Angle between two clay particles (◦) Clay-water area (%) Air-water area (%) 

10  48.5  51.5 
20  50.0  50.0 
30  55.0  45.0  

Table 6 
Percentages of the adsorptive water pressure and the capillary water pressure 
under three clay particle configurations.  

Angle between two clay 
particles (◦) 

Adsorptive water 
pressure (%) 

Capillarity water 
pressure (%) 

10  46.4  53.6 
20  46.0  54.0 
30  47.5  52.5  

Table 7 
Summary of matric suctions and water–air interface areas for three pore widths 
under the same water mass content.  

Pore width (nm) Matric suction (MPa) Water-air interface area (Å2) 

4 46.4 ± 5.69 7659 
5 42.23 ± 6.68 8762 
6 39.06 ± 4.09 9930  
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4.2. Clay particle configurations 

The configuration of the two clay platelets could affect the soil water 
retention mechanism. To study the effect of clay platelet configurations 
on soil water retention, we simulated three cases where two clay par-
ticles are aligned with angles of 10◦, 20◦, and 30◦, respectively. The 
three configurations are denoted by cases 1, 2, and 3, respectively. The 
center-to-center distance between the two clay particles remains the 
same, i.e., 5 nm. The mass water content is 31.3% for each case. Due to 
the particle rotation, the dimension of the simulation box in the z- 
dimension is increased as well. The equilibrated configurations are 
shown in Fig. 40. Using the alpha- shape method, we computed the 
water–air interface area for the three cases. The total interface areas, i.e., 
the summation of the soil–water interface area and the air–water 
interface area, are approximately 28338 Å2, 28242 Å2, and 29035 Å2, 
respectively. Table 5 summarizes the percentages of the soil–water 
interface area and the air–water interface area for the three angled clay 
particle configurations. MD results show that the soil–water model with 
a larger angle between the two clay particles generates larger matric 
suction. The matric suctions for cases 1, 2, and 3 are 37.19 ± 5.57 MPa, 
39.75 ± 4.74 MPa, 45.83 ± 3.24 MPa, respectively. Table 6 compares 
the percentages of the adsorptive water pressure and the capillary water 
pressure under the three clay particle configurations. Thus, the 
adsorptive water pressures under the three configurations are −17.26 ±
2.59 MPa, −18.30 ± 2.18 MPa, and −21.75 ± 1.54 MPa, respectively. 

4.3. Effect of the pore width 

In this part, we investigate the effect of pore widths, i.e., the distance 
between the two clay particles, on matric suction and the interfacial 
area. We compare the results from the three pore widths, i.e., 4 nm, 5 
nm, and 6 nm, under the mass water content of 15.1%. Table 7 sum-
marizes the results. It is found that the matric suction decreases with 
increasing pore width. This is partially due to the reduced capillary force 
with increasing pore width. The water–air interface area rises with the 
pore width. To interpret this, we compare the point clouds of soil water 
molecules for the three cases, as shown in Fig. 41. The radii of the clay- 
water interface are 7.9 nm, 7.4 nm, and 6.9 nm for the three pores, 
respectively. However, the change in the pore width might be a domi-
nant factor in that the case for a larger width generates a larger water-
–air interface area under the same conditions. 

5. Concluding remarks 

We have conducted MD simulations to investigate the soil–water 
adsorptive and capillary mechanisms of unsaturated clay. The MD 
model consists of two parallel clay plates and water confined in the clay 
nanopore. MD simulations were performed at low mass water contents. 
For processing the MD results, soil water was represented by a point 
cloud through the center-of-mass method. The water–air interfacial area 
was calculated using the alpha-shape method. Adsorption was explicitly 
considered by distinguishing adsorptive pressure from capillary pres-
sure. We have characterized the adsorptive water layer based on the 
water density profile. The thickness of the adsorptive water layer and 

the adsorptive water pressure from our MD results are consistent with 
the results in the literature. For the first time, the feed-forward neural 
network that does not require a prior function was utilized to generate 
the nanoscale soil–water retention curve in terms of matric suction, the 
mass water content, and the apparent interfacial area. The application of 
the trained neural network was demonstrated by predicting matric 
suction beyond the range of trained mass water contents. The MD results 
have demonstrated that adsorption is a dominant mechanism of the 
nanoscale soil water retention under a low mass water content. For 
instance, the adsorptive water pressure accounts for more than 60% of 
the total pore-water pressure at the low mass water content in this study. 
We note that the study in this article is limited to the pore between two 
clay particles. The assemblage of clay particles should be considered to 
study the nanoscale clay-water retention mechanism through MD, which 
is ongoing research and will be reported in a future publication. 
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