
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 1, JANUARY 2023 1

Data-driven Iterative Optimal Control for Switched
Dynamical Systems

Yuqing Chen1 Member, IEEE, Yangzhi Li2, and David J. Braun3 Member, IEEE

Abstract—This paper presents a data-driven algorithm to
compute optimal control inputs for input constrained nonlinear
optimal control problems with switched dynamics. We consider
multi-stage optimal control problems where the control inputs
and the switching instants are both unknown. Our key con-
tribution is the new iterative online optimal control algorithm
which mitigates sub-optimal control caused by model bias in
the challenging class of under-actuated and intrinsically unstable
switched dynamical systems. This is achieved by estimating
the cost and computing the control inputs along measured
trajectories of the controlled system instead of doing the same
procedure along error-prone trajectories predicted by an inexact
model. The algorithm is evaluated using an under-actuated and
intrinsically unstable hopping robot in a simulation environment.
The algorithm enables real-time data-driven optimal control
using inaccurate models.

Index Terms—Optimization and Optimal Control, Control
Architectures and Programming, Dynamics

I. INTRODUCTION

SWITCHED systems are a class of hybrid dynamical sys-
tems that exhibit both continuous dynamics and discrete

state transitions [1]. Robots that interact with the environment
are often modeled as switched systems [2]. Models of these
robots are composed of local continuous dynamics and discrete
switching laws [3], [4]. Optimal control [5], [6] offers a
systematic approach to control these robots via finding control
inputs that minimize a user-defined cost.

There is an extensive literature on model-based optimal con-
trol of switched systems [7]. For control problems described by
piecewise-affine dynamics and quadratic cost, optimal control
leads to a piecewise-affine time-varying feedback control law
[7], [8]. For a more general class of constrained nonlinear
systems, the analytical form of the optimal solution is not
known, and one typically resorts to efficient trajectory-based

Manuscript received: September 19, 2022; Accepted: November 12, 2022;
date of current version 28 November 2022. This paper was recommended for
publication by Associate Editor K. N. Kaipa and Editor L. Pallottino upon
evaluation of the reviewers’ comments. The work of Y. Chen was supported
by the Jiangsu Science and Technology Program under Grant BK20220283.
This work was supported by the National Science Foundation CMMI DCSD
under Grant 2029181. (Corresponding author: D. J. Braun)

1Y. Chen is with Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road,
215123, Suzhou, Jiangsu, China (e-mail: yuqing.chen@xjtlu.edu.cn).

2Y. Li is with Singapore University of Technology and Design, 8 Somapah
Road, 487372 Singapore (e-mail: yangzhi_li@mymail.sutd.edu.sg).

3D. J. Braun is with the Advanced Robotics and Control Labo-
ratory at the Department of Mechanical Engineering, Vanderbilt Uni-
versity, 2031 Vanderbilt Place, Nashville, TN 37235 USA (e-mail:
david.braun@vanderbilt.edu).

This paper has supplementary downloadable multimedia material available
at https://doi.org/10.1109/LRA.2022.3226075, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3226075.

optimization to find locally optimal feedback control laws.
For example, using the hybrid Maximum Principle [9], a two-
stage iterative optimal control algorithm was proposed in [10]
where the switching sequence is assumed to be known, while
the optimal control inputs and the optimal switching instants
are computed to reduce the cost. The two-stage approach has
also been used to solve optimal switching time problems [11]
and compute optimal controllers for robots with switching
dynamics [12], [13]. In the alternative sequential action control
(SAC) method [14], the authors proposed an optimal control
formulation for trajectory tracking that admits analytical solu-
tion, and thereby an efficient real-time implementation. More
recent works [15] extend SAC to high-dimensional robots with
constrained inputs. It is common to the aforementioned model-
based optimal control methods that (i) the cost is minimized
using trajectories predicted by the model, or (ii) the cost is
estimated along trajectories predicted by the model, where the
former is done in model-predictive control (MPC) while the
latter is done in model-based reinforcement learning (mRL).

While model-based methods can reduce the amount of
measured data to compute the control inputs compared to
model-free methods [16], modeling errors are ubiquitous, and
inexact models lead to inaccurate future prediction and error-
prone estimation of the future cost. The detrimental effect of
modeling errors is evident in systems possessing continuous
dynamics, but it is even more prominent in systems described
by switched dynamics. This is because empirical switching
laws typically poorly capture the physics of the complex
system-environment interaction [17]. Mitigating the effect of
model errors remains an important area of research, especially
important in applications where model-free methods remain
limited due to the lack of a large amount of measured data.

In this paper, we present a data-driven algorithm to solve
optimal control problems defined by nonlinear cost, input
constraints, and switched dynamics. The algorithm calculates
the control inputs and estimates the cost without using error-
prone predicted trajectories. The algorithm extends previously
developed iterative optimal control methods [10], [12], [13],
[18], [19] which use model-based future prediction to calculate
the control input, and recently developed hardware-in-the-loop
optimal control methods (HILOC) [20]–[22] which assume
continuous dynamics.

Similar to model predictive control (MPC), model-based
reinforcement learning (mRL) and iterative learning control
(ILC) methods, the proposed method can be used for real-time
robot control given an analytically derived, offline identified,
or online learned inexact model. However, MPC methods
approximate the optimal feedback controller by recomputing

2 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 1, JANUARY 2023

locally optimal feed-forward or feedback controllers starting
from the measured state of the system [23]–[25]; mRL meth-
ods learn a better model of the dynamics that leads to better
state prediction and therefore a better controller [26]–[28];
while ILC methods use measured trajectory from previous
iterations to calculate the control inputs for the next iteration
[29]. Consequently, the main difference between MPC, mRL,
and our proposed method is that the former two calculate
the controller along an error-prone trajectory predicted by an
estimated or learned inexact model [23]–[25], or estimates
the cost using the trajectories predicted by an inexact model
[26]–[28], while our proposed method calculates the controller
and estimates the cost along the measured trajectory of the
controlled system. ILC methods are by nature closer to our
proposed method. However, ILC methods are developed to
solve tracking problems [29], [30] which are optimal control
problems that use a offline computed pre-defined reference
trajectories as they do not involve online planning, while our
method is developed to solve optimal control problems [22]
which can involve online planning. In summary, this paper
contributes to the algorithmic foundation of robotics by a
novel algorithm suitable for real-time optimal control of robots
characterized by switched dynamics.

The paper is structured as follows: In Section II, we intro-
duce the mathematical formulation of the optimal control prob-
lem. In Section III, we describe the iterative nonlinear optimal
control algorithm. In Section IV, we present the pseudocode of
the algorithm. In Section V, we use the proposed algorithm to
demonstrate stable locomotion of an under-actuated and open-
loop unstable hopping robot. In Section VI, we discuss the
benefits and limitations of the proposed method compared to
prior works.

II. PROBLEM FORMULATION

We consider a switched dynamical system defined by K
different local dynamics. We assume that the local dynamics
switch according to a sequence

k ∈ K ≜ {1, 2, · · · ,K} ⊂ N.

We assume that the switching among the local dynamics
happens instantaneously at switching instants Tk ∈ [0, TK] ⊂
R+. Between two adjacent switchings, the system evolves
according to the continuous dynamics:

ẋ(t) = fk(x(t),u(t)), t ∈ [Tk−1, Tk), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input.
When switching happens, the state of the system changes
according to the discrete switching law

x+(Tk) = gk(x
−(Tk)) ∈ Rn, (2)

where the pre-switching and post-switching states are denoted
by upper indexes (∗)− and (∗)+, respectively. The switching
can be time-based or state-based [10]. In the former case, the
optimal switching times Tk are unconstrained whereas in the
later case, they need to satisfy the following constraint:

hk(x
−(Tk)) = 0. (3)

In order to control the switched system (1)-(3), we formulate
a multi-stage optimal control problem with free switching
instants and control constraints

min
u(·)∈U
T∈T

K∑
k=1

[
ϕk(x

−(Tk)) +

Tk∫
Tk−1

lk(x(t),u(t))dt
]
, (4)

subject to (1), (2), (3) and x(0) = x0, (5)

where u(·) : [0, TK] → Rm is the control function, T =
(T1, T2, ..., TK)⊤ ∈ RK is the vector of undetermined switch-
ing instants, ϕk : Rn → R is the terminal cost at the
kth switching, lk : Rn × Rm → R is the running cost
between adjacent switching instants [Tk−1, Tk), and x0 is the
initial state. The admissible control function is bounded and
measurable, and the time range associated with each local
dynamics is bounded:

U = {u(·) : [0, TK]→ Rm| u(·) is measurable, (6)
∀t ∈ [0, TK] : u(t) ∈ U = [umin,umax]},

T = {T ∈ RK | T k
min ≤ Tk − Tk−1 ≤ T k

max}, (7)

where umin ≺ 0 ≺ umax and ∀k ∈ K : 0 < T k
min < T k

max.

III. OPTIMAL CONTROL WITH SWITCHING DYNAMICS

We aim to iteratively solve the nonlinear optimal control
problem given in (4)-(7), by solving a sequence of simpler
constrained piecewise linear-quadratic sub-problems. In this
section, we will derive the linear-quadratic sub-problem by
(i) reducing (4)-(7) to a time-based switching problem (Sec-
tion III-A), (ii) converting (4)-(7) to a fixed-switching-time
problem (Section III-B), (iii) formulating the linear-quadratic
approximation of (4)-(7) (Section III-C), and (iv) deriving the
necessary conditions of local optimality for the sub-problem
(Section III-D). The formulation enable us to introduce a data-
driven iterative optimal control algorithm in Section IV.

A. Approximating State-based with Time-based Switching

One way to solve complex optimal control problems with
state-based switching is to convert them into simpler optimal
control problems with time-based switching. Such conversion
can be done using the penalty method. The basic idea of the
penalty method is to replace the switching constraint (3) with
a switching cost. This can be done by augmenting the terminal
cost in (4) with the state-based switching cost:

ϕw
k (x) = ϕk(x) + wk∥hk(x)∥2, wk ∈ R+. (8)

In this way, the original event-based switching problem (4)-
(7) is approximated with a new time-based switching problem:

min
u(·)∈U
T∈T

K∑
k=1

[
ϕw
k (x

−(Tk)) +

Tk∫
Tk−1

lk(x(t),u(t))dt
]

︸ ︷︷ ︸
I[u(·),T]

, (9)

subject to (1), (2) and x(0) = x0. (10)

The last term in (8) makes (9)-(10) an inexact approximation
of (4)-(7) where the approximation depends on the user-
defined weights wk. The following condition assure that the

CHEN et al.: DATA-DRIVEN ITERATIVE OPTIMAL CONTROL FOR SWITCHED DYNAMICAL SYSTEMS 3

solution of (9)-(10) does not depend on wk and is the exact
solution of the original problem (4)-(7):

∀wk ∈ R+ : ∥hk(x
−(Tk))∥2= 0. (11)

According to (11), if the switching happens while the state
satisfies the switching constraint, then the optimal solution of
the approximate time-based switching problem (9)-(10) will
be the same as the optimal solution of the original state-
based switching problem (4)-(7). Condition (11) can be used
to numerically check if the solution obtained by (9)-(10) is the
same as the optimal solution of the original problem (4)-(7).

B. Reducing a Free-Switching-Time to a Fixed-Switching-Time

In the next preparatory step, we reduce the free-switching
time problem (9)-(10) to a fixed switching-time problem.

First, we convert the original time variable, t, into a new,
normalized time variable:

τ = (k − 1) +
t− Tk−1

Tk − Tk−1
∈ [0,K]. (12)

Second, we introduce the augmented state z(τ) and the new
control input u(τ):

z(τ) =

[
x(t(τ))

T

]
∈ Rn+K , u(τ) ≜ u(t(τ)) ∈ Rm, (13)

where t(τ) = Tk−1 + (Tk − Tk−1)(τ − k + 1).
Finally, we transform the dynamics (1), the switching law

(2), and the control costs (4) into:

ż(τ) = Fk(z(τ),u(τ)) (14)

=

[
(Tk − Tk−1)fk(x(t(τ)),u(t(τ)))

0

]
, τ ∈ [k − 1, k),

z+(k) = Gk(z
−(k)) =

[
gk[x

−(t(k))]
T

]
, (15)

where z(0) = [x(0)⊤,T⊤]⊤, and

Φk(z
−(k)) = ϕw

k (x
−(t(k))), (16)

Lk(z(τ),u(τ)) = (Tk − Tk−1)lk(x(t(τ)),u(t(τ))). (17)

In summary, the original formulation (9)–(10) has n states
and K unknown switching times while the new formulation
(14)–(17) has n+K states and K unknown initial conditions.

C. Constrained Linear-Quadratic Subproblem

In order to derive the linear-quadratic sub-problem, we
assume that a user-defined nominal control function ui(·) ∈ U
and switching instants Ti ∈ T are given. Furthermore, we
suppose that the control function is applied to the switched
system, and that the resulting state trajectory is bounded

xi(·) : [0, TK]→ X . (18)

In the following we propose a data-driven optimal control
approach where the state trajectory (18) is obtained by mea-
suring the state of the controlled system instead of predicting
the state by forward integration of the inexact system model.

As the first preparation step, we define the variation of the
state δx(t) = x(t)−xi(t), the switching instants δT = T−Ti,
the augmented state, and the control input:

δz(τ) = z(τ)− zi(τ) =
[
δx(t(τ))⊤, δT⊤]⊤ , (19)

δu(τ) = u(τ)− ui(τ). (20)

Subsequently, we derive the first- and second-order approxima-
tions of the dynamics (14)–(15) and the cost (16)–(17) around
the nominal trajectory zi(·) as well as the nominal control
function ui(·). The resulting constrained linear-quadratic sub-
problem is given by:

min
δu(·)∈δUi

δT∈δTi

K∑
k=1

[
∆Φk

(
k, δz−(k)

)
+

k∫
k−1

∆Lk(δz(τ), δu(τ))dτ
]

︸ ︷︷ ︸
∆I[δu(·),δT]

(21)
subject to:

δż(τ) = Fk,z(τ)δz+ Fk,u(τ)δu, τ ∈ [k − 1, k),

δz+(k) = Gk,z(k)δz
−(k), δz(0) = [0⊤, δT⊤]⊤,

where

∆Φk(τ, δz) =Φk,z(τ)δz+
1

2
δz⊤Φk,zz(τ)δz, (22)

∆Lk(τ, δz, δu) =

[
Lk,z(τ)
Lk,u(τ)

]⊤ [
δz
δu

]
(23)

+
1

2

[
δz
δu

]⊤ [
Lk,zz(τ) Lk,zu(τ)
Lk,uz(τ) Lk,uu(τ)

] [
δz
δu

]
.

In (21)–(23), the lower indexes (∗)z, (∗)u denote partial
derivatives with respect to z and u. All partial derivatives
are evaluated along the nominal state trajectory zi(·) and the
nominal control function ui(·). The control constraints and the
constraints imposed on the switching instants are given by:

δU i = {δu(·) : [0, TK]→ Rm| δu(·) is measurable, (24)

∀τ ∈ [0,K] : δu(τ) ∈ δUi(τ) = U− ui(τ)},
δTi = {δT ∈ RK | T k

min − T i
k ≤ δTk ≤ T k

max − T i
k}. (25)

D. Necessary Conditions of Optimality

We derive the necessary condition of optimality for the
linear-quadratic sub-problem (21) using the Maximum Prin-
ciple [6]. We first define the control Hamiltonian

∆Hk(τ, δz, δu, δλ) =∆Lk(τ, δz, δu)

+δλ⊤(Fk,z(τ)δz+ Fk,u(τ)δu
)
, (26)

where δλ ∈ Rn+K is the co-state. Subsequently, we derive the
first-order optimality condition to find the control variation

δui(τ) = argmin
δu∈δUi(τ)

∆Hk(τ, δz, δu, δλ), (27)

where

δλ̇ =−∆Hk,δz(τ, δz, δu
i, δλ),

δλ−(k) =∆Φk,δz(k, δz
−(k)) + δλ+(k).

(28)

4 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 1, JANUARY 2023

In order to convert (27) into a feedback control law, we
approximate the co-state with a linear state-dependent time-
varying function [18], [21]:

δλ = P(τ)δz+ p(τ), (29)

where P(τ) ∈ R(n+K)×(n+K) and p(τ) ∈ Rn+K are
unknown time-dependent functions.

Substituting (29) into (27), we find that the time-dependent
coefficients can be computed by the following piecewise-linear
differential equations:

Ṗ+PFk,z + F⊤
k,zP+ Lk,zz = 0, P(K) = ΦK,zz(K),

ṗ+ (PFk,u + Lk,zu)δu
i−1 + F⊤

k,zp = 0, p(K) = ΦK,z(K),

P−(k) = Φ−
k,zz(k) +G⊤−

k,z (k)P
+(k)G−

k,z(k), (30)

p−(k) = Φ−
k,z(k) +G⊤−

k,z (k)p
+(k).

The coefficients P(τ) and p(τ) are computed by backward
integration of the first two equations in (30), starting from
the known terminal conditions P(K) = ΦK,zz(K), p(K) =
ΦK,z(K), and using the switching rules at τ = k ∈ {K,K −
1, ...2, 1, 0}, given by the last two equations in (30).

E. Updating u and T

We compute the update of the switching instants by mini-
mizing a second order expansion of the cost

δTi
α = argmin

δT∈δTi

1

2
δT⊤P22(0)δT+ αp⊤

2 (0)δT︸ ︷︷ ︸
δIα[0,δT]

(31)

where I[ui(·),Ti+1] − I[ui(·),Ti] ≈ δIα=1[0, δT
i], while

P11(τ) ∈ Rn×n, P12(τ) ∈ Rn×K , P22(τ) ∈ RK×K , p1(τ) ∈
Rn and p2(τ) ∈ RK are defined by:

P(τ) =

[
P11(τ) P12(τ)
P⊤

12(τ) P22(τ)

]
, p(τ) =

[
p1(τ)
p2(τ)

]
. (32)

Using (26)–(27), we compute the optimal control update by
minimizing the approximate time, control, and state-dependent
Hamiltonian

δui
α(τ) = argmin

δu∈δUi(τ)

1

2
δu⊤Lk,uuδu+ αδu⊤b(τ, δxi, δTi

α)︸ ︷︷ ︸
∆Hα

k (τ,δu,δz,P(τ)δz+p(τ))

(33)

where α ∈ (0, 1] is a convergence control parameter, δx(τ) =
xi+1(t(τ))− xi(t(τ)), xi+1(·) is the measured state while

b = (Lk,uz + F⊤
k,uP)

[
δxi

δTi
α

]
+ Lk,u + F⊤

k,up. (34)

For a given α ∈ (0, 1], the new control function, and the new
switching times are computed using

ui+1 = ui + δui
α and Ti+1 = Ti + δTi

α. (35)

The result is accepted if the cost is sufficiently decreased

∆I[δui(·), δTi] = I[ui+1(·),Ti+1]− I[ui(·),Ti] (36)

≤ −c
[∫ K

0

∥δui
α(τ)∥2dτ + ∥δTα∥2

]

where c ∈ (0,∞) is a positive constant.
The purpose of the convergence control parameter α ∈ (0, 1]

in (31) and (33) is to ensure that the cost sufficiently decreases
in every iteration, and therefore, it is similar to the line search
parameter in nonlinear programming [31].

If for α ∈ (0, 1] the inequality condition (36) is satis-
fied, then the cost is sufficiently decreased. When the cost
sufficiently decreases, the control inputs and the switching
instants are improved and the iteration is deemed successful.
If sufficient decrease of the cost (36) is not achieved, then the
convergence control parameter α is reduced using backtrack-
ing [31] until the cost is sufficiently decreased. Otherwise, the
computation is terminated with the control law and switching
instants from the previous iteration.

IV. ONLINE OPTIMAL CONTROL ALGORITHM

In this section, we consolidate the formulas presented in
Section III-E into an iterative optimal control algorithm sum-
marized in Algorithm 1.

In Algorithm 1 we make the following two assumptions:
(i) The state trajectory (18) is measured.
(ii) The exact model Fk and Gk in (30) and (34) is not

known. Consequently, it is replaced with an inexact model F̂k

and Ĝk defined by (14) and (15) using:

∀k ∈ K : ẋ = f̂k(x,u), and x+ = ĝk(x
−). (37)

This models can be derived by first principles, estimated via
offline system identification, or learned from data online.

Algorithm 1 is divided into (i) offline computation (red)
performed between iterations, and (ii) online computation
(blue) performed during each iteration. The offline computa-
tion involves backward integration of 1

2n(n−1)+n piecewise
linear differential equations (30) to find the co-state used
in the subsequent online iteration (29). The switching times
are also computed offline between iterations (31). During the
online computation, the Hamiltonian is minimized under the
control constraints – we solve a box-constrained quadratic
program (33) at each time step. The online computational
cost scales cubically with the number of control inputs
O(m3)/time step but is independent of the time horizon and
the number of states. This feature makes Algorithm 1 feasible
for system controlled with large number of inputs and small
sampling time ∆t (for example, m = 20 and ∆t = 0.001 s,
see [21]).

V. LEARNING LOCOMOTION

In this section, we use Algorithm 1 to iteratively learn
hopping locomotion driven by two variable stiffness actuators
(VSA) [19] (Fig. 1). The one legged hopper [32], [33] is a
redundantly under-actuated and statically unstable system that
exhibits nonlinear hybrid dynamics. We assume that the best
model of the robot (one that cannot be further improved by
model learning) is inexact just as it would be in practical
application. Under this assumption, we aim to show that
Algorithm 1 can iteratively learn stable hopping locomotion
while being robust enough to moderate external disturbances.
In what follows, we define the model of the robot (Section

CHEN et al.: DATA-DRIVEN ITERATIVE OPTIMAL CONTROL FOR SWITCHED DYNAMICAL SYSTEMS 5

Algorithm 1: Data-Driven Iterative Optimal Control
of Switched Dynamical Systems

Input: u0(·) ∈ U , T0 ∈ T, f̂k(x,u), ĝk(x)
Output: Near-optimal solution ucnvg(·) ∈ U , Tcnvg ∈ T
Initialize: cnvg = false, i = 0, γ ∈ (0, 1),
c ∈ (0,∞), 0 < ϵ≪ 1, x0(·)←

(
system,u0(·),T0

)
,

I0 = I[u0(·),T0], δu0(·) = 0, ∆i ∈ N
while cnvg = false do

Offline computation (between iterations):
for j = nT : −1 : 2 do

Evaluate: F̂k,z, F̂k,u, Lk,z, Lk,u, Lk,zz, Lk,uu,
Lk,uz using zij , ui

j

Integrate: Pi
j−1, pi

j−1

end
Set αi = 1, iter = true
Online implementation (during iterations):
while iter = true do

Update: Switching instant δTi
α ← (31), αi

Ti+1 = Ti + δTi
α

for j = 1 : nT do
Measure: xi+1

j ← system; δxi
j = xi+1

j − xi
j

Compute: δui
α,j ← (33), δxi

j , δTi
α, αi

Control: ui+1
j = ui

j + δui
α,j ; apply ui+1

j to
the system

end
Measure: Ti+1

Compute: δTi
α = Ti+1 −Ti

Ii+1,∆Ii ← (36),xi+1(·),ui+1(·),Ti+1

if ∆Ii ≤ −c[
∫K

0
∥δui

α(τ)∥2dτ + ∥δTi
α∥2] then

iter = false
else

αi = γαi

end
end
if
∀i ∈ {i∗, i∗+∆i} :

∫K

0
∥δui

α(τ)∥2dτ+∥δTi
α∥2≤ ϵ

then
ucnvg = ui+1, Tcnvg = Ti+1, cnvg = true

end
i = i+ 1

end

V-A), the optimal control cost to represent locomotion (Section
V-B) and the learned motion (Section V-D). The results are
compared to the result obtained using optimal feedback control
[12] and iterative model-based reinforcement learning [26]
applied to the same problem.

A. Model

The planar, one-legged hopping robot is shown in Fig. 1.
The robot consists of a body of mass M and moment of inertia
Jbody, and a leg which has negligible mass compared to the
body [34], but non-negligible moment of inertia Jleg [33].

The hopper is actuated with two variable stiffness actuators;
one rotating the hip and one extending the leg (Fig. 1). The
motion of the hopper is described by the Cartesian coordinates

of the center-of-mass (x, y), the rotation angle of the body ϕ,
the rotation angle of the leg θ, and the length of the leg r.
The model parameters are given in Table I.

TABLE I

Parameter Symbol Value Unit
Mass M {8,12} kg
Body inertia Jbody 2.5 kg·m2

Leg inertia Jleg 0.25 kg·m2

Leg length r0 0.7 m
Hip torque range τhip [-4,4] N·m
Hip stiffness range khip [10,150] N·m
Leg force range Fleg [-4,4] N
Leg stiffness range kleg [1780,2350] N·m−1

Air resistance cd 0.01 kg·m−1

The state-space representation of the model is given by
ẋ = fk∈{1,2}(x,u) and x+ = gk∈{1,2}(x

−) where the
dynamics switch between flight phase k = 1 : x =
[x, y, θ, ϕ, r, k1, k2, ẋ, ẏ, θ̇, ϕ̇, ṙ, k̇1, k̇2]

⊤ ∈ R14, and stance
phase k = 2 : x = [θ, ϕ, r, k1, k2, θ̇, ϕ̇, ṙ, k̇1, k̇2]

⊤ ∈ R10.
The control input is: u = [τ0hip, F0leg, khip, kleg]

⊤ ∈ R4.
Figure 1 shows the flight and stance phase motions, and

the discrete switching at touch-down and take-off. The flight
phase dynamics is defined by

ẍ = − cd
M

(ẋ|ẋ|), ÿ = −g − cd
M

(ẏ|ẏ|),

θ̈ = −τhip/Jleg, ϕ̈ = τhip/Jbody, r̈ = 0,
(38)

where g denotes the gravitational acceleration, τhip is the
control torque applied at the hip joint, while cd is the air drag
coefficient [35]. The stance phase dynamics is governed by

θ̈ = [M(rg sin θ − 2rṙθ̇)− τhip]/(Jleg +Mr2),

ϕ̈ = τhip/Jbody, r̈ = (rθ̇2 − g cos θ) + Fleg/M,
(39)

where r0 is the natural length of the leg while Fleg is the
control force used to change the length of the leg. We assume
that the hip torque τhip, the leg force Fleg, the hip stiffness khip
and the leg stiffness kleg are provided by two variable stiffness
actuators (Fig. 1) [19]:

τhip = τ0hip − khip(ϕ− θ), k̈hip + 2βk̇hip + β2khip = β2k0hip,

Fleg = F0leg − kleg(r − r0), k̈leg + 2βk̇leg + β2kleg = β2k0leg,

where τ0hip and F0leg are the desired control torque and force,
k0hip and k0leg are the desired hip and leg stiffness, and β ∈
(0,∞) is a parameter that defines how fast can the actuators
modulate stiffness.

The switching between the flight-phase dynamics (38) and
stance-phase dynamics (39) occurs when the leg touches the
ground at T1 or leaves the ground at T2. At T2, the dynamics
switch from stance to flight phase by breaking the foot-ground
contact without impact. At T1, the dynamics switch from flight
to stance phase through a single-contact impact. We assume
that the impact is plastic [36], meaning the pre-impact veloc-
ities (∗)− instantaneously change into post-impact velocities
(∗)+ according to:ẋ+

ẏ+

θ̇+

 =

ẋ−

ẏ−

θ̇−

− Jbody

Jbody +Mr20

cos θsin θ
Mr0
Jbody

 v−fθ , (40)

6 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 1, JANUARY 2023

Offline computation: Backward integration along

Lift-offTouch-down

Flight Stance

Online computation: Update between and

 Measure state along

 Compute between and

variable

stiffness

actuator

Fig. 1. Hopping locomotion. (a) Model of the one legged hopper. (b) Implementation of Algorithm 1. During the iterative optimization, the trajectory in the
previous step is used to compute the controller and evaluate the reduction of the cost for the next step.

where v−fθ = ẋ− cos θ + ẏ− sin θ + r0θ̇
− is the pre-impact

velocity of the foot perpendicular to the leg. Due to the non-
negligible rotational inertia of the leg, the kinetic energy loss
at touchdown is [33], [37]:

∆E = |E+ − E−| = 1

2
M

Jbody

Jbody +Mr20
(v−fθ)

2. (41)

We aim to minimize this loss to achieve efficient locomotion.

B. Task

We use the following cost to model hopping locomotion:

I =
(
x(T2)− x(0)

)⊤
Q
(
x(T2)− x(0)

)︸ ︷︷ ︸
I1

+

1

2

∫ T2

0

u(t)⊤Ru(t)dt︸ ︷︷ ︸
I2

+ ∆E︸︷︷︸
I3

+wyf(T1)
2︸ ︷︷ ︸

I4

,
(42)

where I1 encourages periodicity by penalizing the discrepan-
cies between the initial conditions through subsequent steps,
I2 reduces the magnitude of the control inputs to encourage
energetically passive hopping, I3 encourages efficient loco-
motion by penalizing collision energy loss at touchdown (41)
while I4 encourages event driven switching by penalizing non-
zero vertical distance between the foot and the ground yf. The
last term represents the penalty term in (8) and (9).

C. Online Learning

Figure 1 shows the implementation of Algorithm 1. In this
implementation, the cost defined in (42) is the cost of a single
step, and Algorithm 1 uses the measured trajectory from the
previous step (dashed blue line) to calculate the unknown
parameters (30) in the quadratic program (31)-(33), and to
compute the feedback control inputs in the current step (red
line). Consequently, in our method, the measured trajectory in
the previous step (blue line) is used to calculate the control
inputs for the next step (red line). This approach does not
require trajectory prediction using the inexact model of the
system to estimate the cost and to calculate the control inputs.

D. Results

The results are shown in Fig. 2 and the supplementary video.
Below we summarized the results.

Exact model: We used Algorithm 1 with two different
masses M = 8 kg and M = 12 kg, nonzero air resistance
cd = 0.01, and the parameters given in Table I. Algorithm 1
was able to learn stable locomotion. Algorithm 1 required an
initial control sequence that achieves stable locomotion for the
iterative learning to converge. The results are not presented.

Inexact model: Subsequently, we used Algorithm 1 with
mass M̂ = 10 kg and no air resistance ĉd = 0 when
computing the control inputs for robots of mass M = 8 kg and
M = 12 kg subject to air resistance of cd = 0.01. The results
are shown in Fig. 2 (blue and red lines). We observed that,
despite the deliberately introduced model errors, Algorithm 1
successfully learned stable locomotion.

Disturbance rejection: We applied a horizontal force Fb =
−20 N to the center of mass to push the body backwards
and a subsequent horizontal force Ff = 25 N to push the
body forward (Fig. 2). In these simulations, Algorithm 1 was
used with the inexact model M̂ = 10 kg and assumed no air
resistance ĉd = 0, while the robot was +20% heavier M =
12 kg and was subject to air resistance cd = 0.01. The results
are shown in Fig. 2 (green lines). Despite the combined effect
of the inexact model and the external disturbances, Algorithm
1 provided stable hopping locomotion.

Optimality: We have previously noted that the cost (42)
contains a penalty term I4 that encourages the optimal time-
based switching to coincide with event-based switching at
touchdown and takeoff. This penalty term increases the cost
and leads to sub-optimality in problems where the optimal
time-based switching differs from the optimal state-based
switching. However, in our example, Algorithm 1 led to zero
penalty at convergence, I4 = 0, implying that the optimal
time-based switching coincides with the optimal state-based
switching in the considered example.

Benchmark: We used the method presented in [12] to
compute the model-based optimal feedback controller (OC-
FB). In this benchmark, we used the same cost and the same

CHEN et al.: DATA-DRIVEN ITERATIVE OPTIMAL CONTROL FOR SWITCHED DYNAMICAL SYSTEMS 7

0

0.5

1

y
 [

m
]

0

0.8

1

0.8

1.2

1.6

x
 [

m
/s

]

x [m]
26 27 28 29

30 31 32 33 34 35 36 37 38 39
x [m]

0.8

1.2

1.6

 [
m

/s
]

65 66 67

y
 [

m
]

0 1 2 3 9 10 11 12 13 14 15

.

x.

−20% mass

+20% mass

(a1)

(b1)

(a2)

(b2)

Disturbance

10 -2

100

102

C
o

st

0.75

0.8

0.85

0.9

Ju
m

p
in

g
 p

er
io

d
 [

s]

0.6

0.8

1

1.2

1.4

S
te

p
 l

en
g

th
 [

m
]

(c) (d) (e)

10 20 30 40 50 60 7010 20 30 40 50 60 70
Step number

10 20 30 40 50 60 70

Fig. 2. Hopping locomotion controlled with Algorithm 1. (a) Jumping motion. (b) Speed ẋ. (c) Cost. (d) Jumping period T2. (e) Step length. We use
umin = [−4,−4, 10, 1780] and umax = [4, 4, 150, 2350]. The initial control u0 is defined using the model-based optimal control function. During the
motion, the robot was perturbed with a backward push Fb = −20 N and a forward push Ff = 25 N. Weights for cost in (42) are defined by Q =
diag([0, 0, 600, 1000, 0, 0, 0, 1000, 10, 1, 1, 0, 0, 0]), R = 10−2 × diag([1, 10−2, 10−4, 10−4]), w = 10−3. The motion can be seen in the supplementary
video.

model as in the aforementioned simulations. We found that
when the model was exact, the OC-FB method was able to
generate stable locomotion, and the motion was identical to
the one obtained using Algorithm 1. However, when the model
was inexact, as in Fig. 2, the OC-FB method was unable to
generate stable locomotion, even when we discarded external
disturbances; please see the supplementary video. This result
shows the benefit of using optimal control without model-
based future prediction [21].

Comparison: Subsequently, we compared Algorithm 1 with
the inexact model-based reinforcement learning mRL algo-
rithm proposed in [26]. In both algorithms we used the same
inexact model; we assume that the model is the best inexact
model that can be learned from data. We make this assumption
to isolate the difference between the two methods that comes
solely from the difference in the optimal control calculation,
and therefore unambiguously demonstrate the advantage of
eliminating model-based future prediction.

In our implementation, the mRL algorithm generated iden-
tical result to Algorithm 1 when the model was exact. When
the model was inexact, as in Fig. 2, the mRL algorithm
could generate a couple of steps but was unable to converge
to stable hopping locomotion; please see the supplementary
video. The mRL algorithm performed better than the OC-
FB method because it used line-search based on measured
trajectories to refine the optimal control calculation, and there-
fore decrease the cost in every iteration. However, the mRL

calculated the search direction based on the estimated cost
where the estimation was done along model-based predicted
trajectories. A search direction computed using inexact model
based predicted trajectories can significantly differ from the
optimal search direction computed in Algorithm 1 along the
measured system trajectories. The difference between mRL
and our proposed method demonstrate the benefit of using
measured trajectories as opposed to inexact-model based pre-
dicted trajectories, to calculate both, the control inputs and the
search direction [22].

VI. CONCLUSION

The main contribution of this paper is the data-driven
iterative optimal control algorithm applicable to switched
dynamical systems (Section IV). The key novelty of this
algorithm is that it can be used to compute the control
inputs and the switching instants using measured trajectories
of the controlled system instead of using error-prone predicted
trajectories obtained by forward integration of an inexact
model. We conjectured that Algorithm 1 can reduce the cost
and improve the robustness of the controlled system against
model uncertainty and external disturbances, especially com-
pared to optimal control methods that use model-based future
prediction. Our conjecture is supported by the simulation in
Section V, where we use Algorithm 1 to learn stable hopping
locomotion.

8 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 1, JANUARY 2023

An alternative to the proposed method are model-free re-
inforcement learning (RL) methods that learn the model of
the value function [38]–[40] instead of learning the model
of the dynamics. These RL methods are conceptually similar
to our method, partly because they do not use model-based
future prediction, but also because the sub-optimality in both
of these methods is due to modeling error. In particular, the
sub-optimality in the aforementioned RL methods is due to
the error in the model of the value function, as the value
function cannot be exactly learned for constrained nonlinear
and finite time horizon optimal control problems considered
in this paper. On the other hand, the sub-optimality in our
method is due to the error in the dynamics, because the
dynamics cannot be exactly learned. Learning a value function
that can furnish a near-optimal feedback controller requires
complex neural network function approximators and large
amounts of training data, which make value-function-based
optimal control methods well suited to low dimensional and
unconstrained optimal control problems, as in these problems
exact parametrization of the value function can be done using
finite-dimensional function approximation [40]. The same is
not feasible for the optimal control problem considered in this
paper.

REFERENCES

[1] B. Brogliato, Nonsmooth Mechanics. Springer International Publishing,
2016.

[2] A. M. Johnson, S. A. Burden, and D. E. Koditschek, “A hybrid systems
model for simple manipulation and self-manipulation systems,” The
International Journal of Robotics Research, vol. 35, no. 11, pp. 1354–
1392, 2016.

[3] C. D. Remy, “Ambiguous collision outcomes and sliding with infinite
friction in models of legged systems,” The International Journal of
Robotics Research, vol. 36, no. 12, pp. 1252–1267, 2017.

[4] Y. Li, H. Yu, and D. J. Braun, “Algorithmic resolution of multiple
impacts in nonsmooth mechanical systems with switching constraints,”
in IEEE International Conference on Robotics and Automation (ICRA),
(Montreal, Canada), pp. 7639–7645, May 2019.

[5] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1 ed., 1957.

[6] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishchenko, The
Mathematical Theory of Optimal Processes. John Wiley and Sons Inc.,
1962.

[7] F. Zhu and P. J. Antsaklis, “Optimal control of hybrid switched systems:
A brief survey,” Discrete Event Dynamic Systems, vol. 25, no. 3,
pp. 345–364, 2015.

[8] M. Barić, P. Grieder, M. Baotić, and M. Morari, “An efficient algorithm
for optimal control of PWA systems with polyhedral performance
indices,” Automatica, vol. 44, no. 1, pp. 296–301, 2008.

[9] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: optimization,
estimation and control. CRC Press, 1975.

[10] X. Xu and P. J. Antsaklis, “Optimal control of switched systems based
on parameterization of the switching instants,” IEEE Transactions on
Automatic Control, vol. 49, no. 1, pp. 2–16, 2004.

[11] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. S. Sastry, R. Bajcsy, and
C. Tomlin, “A numerical method for the optimal control of switched sys-
tems,” in IEEE Conference on Decision and Control (CDC), pp. 7519–
7526, 2010.

[12] J. Nakanishi, A. Radulescu, D. J. Braun, and S. Vijayakumar, “Spatio-
temporal stiffness optimization with switching dynamics,” Autonomous
Robots, vol. 41, no. 2, pp. 273–291, 2017.

[13] N. J. Kong, G. Council, and A. M. Johnson, “iLQR for piecewise-smooth
hybrid dynamical systems,” in 2021 60th IEEE Conference on Decision
and Control (CDC), pp. 5374–5381, 2021.

[14] A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-form
optimal control for nonlinear and nonsmooth systems.,” IEEE Trans.
Robotics, vol. 32, no. 5, pp. 1196–1214, 2016.

[15] E. Tzorakoleftherakis and T. D. Murphey, “Iterative sequential action
control for stable, model-based control of nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 64, no. 8, pp. 3170–3183, 2019.

[16] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[17] B. Brogliato, A. ten Dam, L. Paoli, F. Génot, and M. Abadie, “Numer-
ical simulation of finite dimensional multibody nonsmooth mechanical
systems,” Applied Mechanics Reviews, vol. 55, no. 2, pp. 107–150, 2002.

[18] W. Li and E. Todorov, “Iterative linearization methods for approximately
optimal control and estimation of non-linear stochastic system,” Inter-
national Journal of Control, vol. 80, no. 9, pp. 1439–1453, 2007.

[19] D. J. Braun, F. Petit, F. Huber, S. Haddadin, P. van der Smagt, A. Albu-
Schaffer, and S. Vijayakumar, “Robots driven by compliant actuators:
Optimal control under actuation constraints,” IEEE Transactions on
Robotics, vol. 29, no. 5, pp. 1085–1101, 2013.

[20] Y. Chen, L. Roveda, and D. J. Braun, “Efficiently computable con-
strained optimal feedback controllers,” IEEE Robotics and Automation
Letters, vol. 4, no. 1, pp. 121–128, 2019.

[21] Y. Chen and D. J. Braun, “Hardware-in-the-loop iterative optimal feed-
back control without model-based future prediction,” IEEE Transactions
on Robotics, vol. 35, no. 6, pp. 1419–1434, 2019.

[22] Y. Chen and D. J. Braun, “Iterative online optimal feedback control,”
IEEE Transactions on Automatic Control (Accepted), 2020.

[23] E. F. Camacho, D. R. Ramı́rez, D. Limón, D. M. De La Peña, and
T. Alamo, “Model predictive control techniques for hybrid systems,”
Annual Reviews in Control, vol. 34, no. 1, pp. 21–31, 2010.

[24] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[25] U. Rosolia and A. D. Ames, “Iterative model predictive control for
piecewise systems,” IEEE Control Systems Letters, vol. 6, pp. 842–847,
2022.

[26] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models
in reinforcement learning,” in International Conference on Machine
Learning, (Pittsburgh, Pennsylvania, USA), pp. 1–8, 2006.

[27] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, (Atlanta, USA), pp. 1–9, 2013.

[28] B. Thananjeyan, A. Balakrishna, U. Rosolia, F. Li, R. McAllister, J. E.
Gonzalez, S. Levine, F. Borrelli, and K. Goldberg, “Safety augmented
value estimation from demonstrations (SAVED): Safe deep model-based
rl for sparse cost robotic tasks,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 3612–3619, 2020.

[29] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems, vol. 26, no. 3, pp. 96–114,
2006.

[30] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control
using optimal feedback and feedforward actions,” International Journal
of Control, vol. 65, no. 2, pp. 277–293, 1996.

[31] J. Nocedal and S. Wright, Numerical Optimization. Springer Science &
Business Media, 2006.

[32] C. François and C. Samson, “A new approach to the control of the planar
one-legged hopper,” The International Journal of Robotics Research,
vol. 17, pp. 1150–1166, nov 1998.

[33] S.-H. Hyon and T. Emura, “Energy-preserving control of a passive one-
legged running robot,” Advanced Robotics, vol. 18, no. 4, pp. 357–381,
2004.

[34] M. Garcia, “The simplest walking model: Stability, complexity, and
scaling,” Journal of Biomechanical Engineering, vol. 120, pp. 281–288,
apr 1998.

[35] A. V. Hill, “The air-resistance to a runner,” Proceedings of the Royal
Society B: Biological Sciences, vol. 102, pp. 380–385, feb 1928.

[36] C. Glocker, “An introduction to impacts,” in Nonsmooth Mechanics of
Solids, pp. 45–101, Springer Vienna, 2006.

[37] F. Pfeiffer and C. Glocker, Multibody dynamics with unilateral contacts,
vol. 9. John Wiley & Sons, 1996.

[38] A. Heydari and S. N. Balakrishnan, “Optimal switching and control of
nonlinear switching systems using approximate dynamic programming,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 25,
no. 6, pp. 1106–1117, 2013.

[39] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexterous
manipulation with deep reinforcement learning: Efficient, general, and
low-cost,” in IEEE International Conference on Robotics and Automa-
tion, pp. 3651–3657, May 2019.

[40] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, no. 1, pp. 253–279, 2019.

	Introduction
	Problem formulation
	Optimal control with switching dynamics
	Approximating State-based with Time-based Switching
	Reducing a Free-Switching-Time to a Fixed-Switching-Time
	Constrained Linear-Quadratic Subproblem
	Necessary Conditions of Optimality
	Updating u and T

	Online Optimal Control Algorithm
	Learning Locomotion
	Model
	Task
	Online Learning
	Results

	Conclusion
	References

