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Abstract. Modern attacks against enterprises often have multiple tar-
gets inside the enterprise network. Due to the large size of these networks
and increasingly stealthy attacks, attacker activities spanning multiple
hosts are extremely difficult to correlate during a threat-hunting effort.
In this paper, we present a method for an efficient cross-host attack cor-
relation across multiple hosts. Unlike previous works, our approach does
not require lateral movement detection techniques or host-level modifica-
tions. Instead, our approach relies on an observation that attackers have
a few strategic mission objectives on every host that they infiltrate, and
there exist only a handful of techniques for achieving those objectives.
The central idea behind our approach involves comparing (OS agnos-
tic) activities on different hosts and correlating the hosts that display
the use of similar tactics, techniques, and procedures. We implement
our approach in a tool called Ostinato and successfully evaluate it in
threat hunting scenarios involving DARPA-led red team engagements
spanning 500 hosts and in another multi-host attack scenario. Ostinato
successfully detected 21 additional compromised hosts, which the under-
lying host-based detection system overlooked in activities spanning mul-
tiple days of the attack campaign. Additionally, Ostinato successfully
reduced alarms generated from the underlying detection system by more
than 90%, thus helping to mitigate the threat alert fatigue problem.

1 Introduction

Modern advanced persistent threats (APT) often spread stealthily across mul-
tiple hosts in their target enterprises. Detecting APT activities across multiple
hosts inside such networks is very challenging. Approaches that deal with this
challenge are often network-based [22,38,50]. They focus on finding a strong pres-
ence of attack artifacts in network data (e.g., DDOS, botnets). However, modern
APTs are increasingly stealthy and usually have a minimal footprint on network
logs, and are often characterized as “slow and low”. Often, most of their actions
occur inside hosts, while activities like scanning internal hosts or gaining access
to new hosts happen over a long period of time.

To be able to detect suspicious in-host activities, host-based solutions are
needed. Current host-based approaches and Intrusion Detection Systems (IDSes)
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[27,28,45] rely on audit logs to detect attack activities represented as Indicators
of Compromise (IOCs) or Tactics Techniques and Procedures (TTPs). However,
they are focused on single-host detection and the alerts they raise are mostly
about activities inside single hosts. To be able to deal with multi-host attacks,
alerts raised on single hosts must be correlated with one another.

One way to correlate alerts from multiple hosts involves understanding and
detecting lateral movement tactics, techniques, and procedures (TTPs) employed
by attackers [4,20,34]. In particular, if a lateral movement TTP is detected, the
two hosts involved in that TTP can be assumed to be victims of the same
campaign. However, because such TTPs may be based on zero-day exploits or
because of threat alert fatigue in human operators of Security Operation Centers
[14,16], they may not be detected and the alerts from multiple hosts may not
be connected with one another.

In this paper, we present Ostinato, a tool for efficient cross-host attack
correlation across multiple hosts. Ostinato’s design relies on the key observa-
tion that a specific APT group uses a finite (possibly large) set of tools during
a campaign. In fact, according to MITRE’s ATT&CK page listing the cyber
threat groups observed in the wild, a vast majority of those groups employ only
a handful of techniques and procedures [1,13].

Based on this observation, we design an approach that compares (OS-
agnostic) activities on different hosts and correlates those hosts that display sim-
ilar suspicious techniques used to achieve similar objectives across those hosts.
In particular, if similar tactics appear on two different hosts, then it is likely that
the two hosts are victims of the same attack and they are, therefore, correlated.

The main challenge in realizing this approach lies in defining an activity sim-
ilarity computation method that can be applied independently of attack pecu-
liarities and thus be used in a general setting in networks with a large number
of hosts. To address this challenge, Ostinato first models the attacker’s tech-
niques and the underlying operational procedures as tagged provenance graphs,
which represent audit logs as graphs that are tagged with attacker-related pro-
cedures. Next, Ostinato defines a novel approximate graph similarity compu-
tation method that can be applied to the set of tagged provenance graphs in a
pairwise fashion. The main contributions of the paper are as follows.

Graph- and Similarity-Based Correlation. We propose a novel approxi-
mate graph similarity-based alert correlation technique by addressing the (often
overlooked) problem of determining when entities (e.g., processes, files, sockets,
and its respective information flow) associated with alerts from different hosts
are similar during an attack campaign. This is particularly useful for cross-host
attack correlation involving hundreds of hosts in an enterprise network.

Threat Hunting Application. The second contribution of this paper is
the detection of compromised hosts through the correlation between detected
attacker activities and other activities across multiple hosts using graph simi-
larity. In this kind of application, Ostinato can enhance the threat hunting
capabilities of existing Security Information and Event Management (SIEM)
systems.
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Threat Alert Fatigue Mitigation Application. Threat alert fatigue is a
common problem in Security Operation Centers (SOC), where human operators
pour over hundreds of thousands of alerts generated by the network- and host-
based systems. Ostinato can boost alert scores related to attack activities that
are similar across multiple hosts and thus help reduce alert fatigue.

Along with these contributions, we perform the experimental evaluation
(Sect. 4) where we use two different datasets collected from several red team
engagements organized by DARPA. In the first dataset, the red teams performed
various attacker activities across a network of 500 Windows hosts, resembling
modern APTs. In this evaluation, the single host-based detection system either
missed attacker activities having small footprints that evade its detection thresh-
old or produced many false positives at lower thresholds. In turn, because of sim-
ilarities among these activities Ostinato was able to detect 21 additional hosts
compromised by the attacker. We also created and evaluated an extensive dataset
of more than 1000 graphs (of different sizes) generated by varying the detection
threshold of the underlying IDS in each of the hosts from the same data. In the
second dataset, we further evaluated Ostinato on a different attack scenario
involving multiple hosts of different OSes and successfully correlated cross-host
attacker activities.

This paper is structured as follows: Sect. 2 provides a high level description of
the problem. Section 3 describes the approach and architecture, Sect. 4 contains
the evaluation, Sect. 5 describes the related work and Sect. 6 the conclusion.

2 Problem Description

In a multi-host system, one of the primary methods for expanding threat-hunting
activities to new hosts relies on detection of lateral movement activities. In par-
ticular, if lateral movement events are seen on one host – e.g., suspicious traffic to
a remote Windows SMB host – SOC operators may decide to escalate the alerts
on both those hosts to more scrutiny. However, this strategy relies on known
lateral movement indicators, and it may not always work if those indicators are
missing, incorrectly modeled, if attackers modify their tactics so that they do not
match known indicators, or if they move laterally via existing benign network
communications (living off the land).

Alert fatigue is another cause for failing to process lateral movement indica-
tors. In modern SOC centers, with thousands of hosts and hundreds of thousands
of alerts (the majority of which are false positives), without a (relatively) strong
signal about lateral movement or initial compromise on a host, it is counterpro-
ductive to escalate alerts to a higher level of scrutiny. Operations in such centers
are finely tuned to deal with alert fatigue, and almost every system incorporates
techniques, filtering mechanisms, and knobs that adjust the signals to forward
to human operators [10]. Setting such filters to low values ensures reducing false
negatives at the cost of having more false positives. Setting them at higher val-
ues reduces false positives but can potentially miss true positives. As a result,
legitimate lateral movement indicators may be ignored by analysts.
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Fig. 1. Example of alarms raised by underlying IDS in multiple hosts in the form of
tagged provenance graph

To illustrate the problem, consider the following running example (Fig. 1).
An attacker obtains an initial foothold in a host (Host-101) inside a network of
several hundred hosts. There (s)he performs several actions on the compromised
host using powershell commands. These include pinging other hosts, monitoring
running processes, reading sensitive system files, password hashes, and so on.
The host-based intrusion detection system (IDS) raises alerts for some of these
activities. These alerts are related to events in the audit logs that have some
suspicious connotations. However, because they are similar to benign activities,
they do not pass the threshold needed to be forwarded to a human operator
or, if they do, they may appear together with many other false positive alerts,
and thus be missed by human operators. Next, the attacker uses compromised
passwords from Host-101 to gain access to another host (Host-499), which is
usually accessed remotely by a benign user from Host-101. Because the attacker
is mimicking a benign activity, this lateral movement remains undetected. The
attacker performs similar actions in the new host including pinging other hosts,
monitoring daily activities, sensitive file systems, and password hashes. The IDS
running on Host-499 is identical to that on Host-101 and raises similar alerts.
However, because the connection between Host-101 and Host 499 is considered
benign, alerts are again missed. As a result, the attack is not detected or ignored.

Problem Statement. Our problem statement is as follows: How can we cor-
relate alerts across hosts without relying on lateral movement detection in a
network with hundreds of hosts? How can we obtain an additional suspicious
signal related to correlation for SOC operators? Our key observation to solve
this problem is that those attacker activities that are observable in audit logs are
a manifestation of the attackers’ overall goals (i.e., kill-chain steps) and related
techniques [5]. Often, these goals overlap across hosts. For instance, for every
host that is compromised, there must exist an initial access step. Often, initial
access is followed by a discovery step, where the attacker explores the newly
compromised host. To spread to a new host, the attacker must perform lateral
movement. To be able to maintain their presence in the hosts for a long time,
the attackers must execute some form of persistence.

Another key insight at the basis of our solution is that the tactics and proce-
dures available to carry out these common goals in multiple hosts during an APT
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campaign are not infinite but are limited in number. The attackers must, there-
fore, execute similar procedures in several hosts. In particular, by the pigeonhole
principle, the larger the number of compromised hosts in a network, the more
likely it is that similar activities are carried on those hosts. While it is certainly
possible that attackers use different procedures for the same goals on different
hosts, this would significantly raise the bar of difficulty for the attackers as this
would require exploiting several vulnerabilities and increasing the chances of
being detected by the underlying IDSes. Several research and survey papers, in
fact, confirm the validity of our insight in the wild [3,9,15]. As evidenced by
some observations [25], creating novel TTPs often requires significant resources
and motivation from attackers.

The main challenge, in correlating cross-host alerts resides in producing a
similarity definition for alerts that is general enough to be used across multiple
hosts in a network. In particular, because each host can execute processes in
many different ways, we must be able to capture the similarity between processes’
behaviors inside different hosts. We solve this challenge with Ostinato, a system
that can detect similar behaviors present in the alerts generated by IDS-es, and
create additional alerts. Ostinato’s goal is to be used as companion to existing
IDS-es and provide an additional signal for attack detection.

3 Approach and Architecture

Threat Model. We assume that the attacker is able to initially compromise
a host and, starting from that host, spread to other hosts inside the network,
either via relying on vulnerable processes or by using existing tools from the
compromised host (e.g., remote desktop services, SSH, etc.). We assume that
there is an intrusion detection system in each host that is generating alerts,
which may detect part of the attacker’s activities. However, these alerts are also
buried inside a large number of false positive alerts. Similar to prior research
in this area, we also assume that the audit logs data are trustworthy and not
modified by the attackers. We also assume that the alerts are derived from
existing audit logs systems (ETW, Auditd) and that they contain the system
calls generated by the running processes and the process invocations with their
command line arguments. We represent the information in these logs and alerts
as tagged provenance graphs.

3.1 Tagged Provenance Graphs

Provenance graphs [27,28,35,37,39,44,45,52] are well-known, widely-popular
representation of audit logs, where nodes represent system entities (processes,
files, registry entries, sockets) labeled by the entity names or paths together with
command line arguments (in the case of processes) and directed edges represent
system events and system calls (and are labeled by the system call name, e.g.,
read, write, fork, mmap) that connect those entities.

To represent both the high-level attacker goals and their low-level opera-
tional details at the same plane, Ostinato enhances provenance graphs with
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tags (additional labels) on the edges of the graph representing semantic level
details (attacker goals, tactics names, and others). This enhancement is done by
Ostinato based on the graph and its respective alarms generated by the under-
lying IDS where the edge names are augmented with additional information
before storing them in a common database. Examples of such graphs are shown
in Fig. 1. The nodes represent different system entities, while edges are labeled by
both system call labels (exec, remove) and suspiciousness labels, which capture
the attacker’s goal (Untrusted Exec, Untrusted Remove), as a TTP [2] name.
This novel enhanced representation, which we call tagged provenance graphs,
allows us to represent alerts including both system behavior and attacker goals
and include these high level details in the search for similar alerts.

Using tagged provenance graphs, Ostinato models the process of alert cor-
relation across different hosts as a search for similar tagged provenance graphs
representing those alerts. In particular, Ostinato first determines node simi-
larity between nodes in different graphs. Next, it uses the edge labels and tags
to determine edge similarity, and finally combines the nodes and edge similarity
values into an overall similarity score for a pair of tagged provenance graphs.

Ostinato’s architecture is shown at the top half of Fig. 2. At the bottom of
the figure, we show the hosts of an enterprise network. The IDSes inside each
of these hosts produce alerts that are next transformed into tagged provenance
graphs and stored in a central database by Ostinato. It serves as a companion to
these IDSes and utilizes the respective tagged provenance graphs. Each of these
tagged provenance graphs in the central database are processed by the first phase
of our approach, Node Similarity Detection (Sect. 3.2), which is responsible for
grouping different nodes from different graphs into buckets containing similar
nodes. Next, the Graph Similarity Detection step uses these buckets and a set
of edge label similarity rules to compute the final similarity value among the
tagged provenance graphs (Sects. 3.3, 3.4). Finally, if the similarity value crosses
a specific threshold, Ostinato raises an alert. The details of each of these stages
along with their challenges are explained in the remainder of this section.

3.2 Identifying Similar Nodes

There is a large body of work dedicated to computing graph similarity and
related problems, including graph isomorphism [42], iterative (or structural)
methods [29], graph pattern matching [24]. At the foundation of these algo-
rithms, often there is an assumption that an initial mapping between nodes on
different graphs already exists. Such mapping informs these algorithms on which
nodes in one graph are similar or match which nodes in another graph. They often
assume that nodes have simple labels (e.g., single letters of the alphabet), which
can be trivially used to provide an initial similarity measure between nodes. In
our setting, however, nodes in the provenance graphs represent different entities,
including processes, files, sockets, etc. An initial mapping that can inform about
similar nodes across hosts does not exist. Therefore, one question at the core of
our problem is: how can we produce such mapping? When can we claim that,
for instance, two processes from two different hosts are the same or similar? Is,
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for instance, a PowerShell process from one host similar to a PowerShell process
from another host? To answer this question, we focus on two aspects of nodes
in the graphs: node label content and approximate node behavior.

Fig. 2. Ostinato architecture.

Node Label Content. Node labels consist of text extracted from audit logs
information. They typically contain identifiers, e.g., the names and paths of the
entities, command line invocation (for processes), flags, and other entity def-
initions. Because these entities are in different hosts, such labels may not be
the same, even for processes often presumed to be similar. For instance, exact
string comparison would be unable to identify the two nodes from two different
graphs C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell -noP
-w 1 and C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe
-NoP -NonI -w as similar when actually they behave similarly in the host level.
Furthermore, attackers may also invoke processes differently by using different
order of similar command-line arguments and other means. An effective node
similarity computation method must take into consideration all these factors.

Approximate Node Behavior. Different variations of string comparison would
also not result in accurate node similarity. For instance, one can extract only the
file name from the path of an image before performing the string comparison so
that different directory structures do not interfere with the matching. In this case,
labels like C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe
would match. While such a solution might perform better than string compari-
son in certain cases, it would perform poorly for complex processes such as Power-
Shell, python that act as interpreters. These processes can exhibit multiple differ-
ent behaviors depending on their input and command-line arguments and cannot
be assumed to be similar only because they have the same name.
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Solution. In our solution, we consider the node labels as textual representations
of the nodes’ behavior and use a notion of text similarity to determine node
similarity. Beyond the two naive string-based approaches that we mentioned,
there are several other approaches used for dealing with text similarity like Bag
of Words [31], Word2Vec [43], or ConceptNet [40]. These approaches, however,
incorporate concepts derived from natural text, such as synonyms, and cannot
be directly used in our problem where the text is composed of processes, file
names, and command-line options. In practice, a good solution should: 1) be
applicable to the domain of terms appearing in audit logs and not rely or depend
on assumptions of natural text, 2) use general intuitions about anomalies in data
related to attacker activities.

We first consider each node label as a text document and use the Term
Frequency-Inverse Document Frequency (TF-IDF) method [32] to create a fea-
ture matrix that captures the presence of words inside the nodes and their impor-
tance. TF-IDF makes no assumptions on the kind of text it acts on, and it allows
evaluating how relevant a phrase is to a document in a group of documents as a
statistical measure. Next, we use Locality-Sensitive Hashing (LSH) on the fea-
ture matrix [53] to create similarity buckets, where nodes in the same bucket are
similar to each other. We describe these two steps next.

3.2.1 Feature Extraction
The first step in our approach creates a matrix representation of the node labels
in the tagged provenance graphs, which can be used in the next step of the
approach. This matrix, which we call feature matrix is built by considering the
node labels as text documents and applying the TF-IDF measure over them.
TF-IDF is a measure for determining how relevant a word is inside a set of
documents [32]. The TF part represents the number of times a term appears
in a single document (node). The IDF part, on the other hand, represents the
informativeness of a term. In particular, a term that appears more frequently
in all the nodes is expected to be less informative compared to one that rarely
appears in those nodes. In our approach, we define as ‘terms’ the words inside the
node labels separated by white spaces, and we consider each node as a separate
document. In particular, each node (i.e., subject or object) is a document di:
di = {t1, t2, t3, ..., tn}. We create two sets of such documents Dsub, representing
all subject nodes (processes), and Dobj representing all object nodes (registry,
files, IP). In the following details, we describe only the steps related to Dsub for
space reasons. Steps for Dobj are identical. In the first step, we calculate the
TF-IDF score for each term appearing in the documents in Dsub. This score is
the product of the two features: The term frequency of term t in document di is
shown in Equation 1 where the numerator is the number of times t appears in di,
and the denominator represents the total number of terms (t′) in di. The inverse
document frequency of the term is shown in Equation 2 where the numerator is
the total number of documents (subject nodes), and the denominator represents
the number of documents (subject nodes) that contain term t.
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Fig. 3. Example feature matrix. The rows represent node labels. The columns represent
words and the cells represent words with TF-IDF higher than median TF-IDF of the
corresponding document.

(1) tf(t, di) =
ft,di∑

t′∈di
ft′,di

idf(t,Dsub) = log
|Dsub|

|{di ∈ Dsub : t ∈ di}|
(2)

After calculating the TF-IDF score for all terms in the documents in Dsub,
for each di ∈ Dsub, we calculate the median score µ̂ of the TF-IDF values of its
terms. Next, we build a matrix Msub with dimensions m×n where m equals the
number of documents |Dsub| and n equals the total number of terms appearing
in the documents in Dsub. A row in the matrix represents a document, while a
column represents a term. If term t exists in di:

Mditi =
{

1, if TF-IDFt ≥ µ̂
0, otherwise

}

The Msub matrix represents the relevance of each term inside each document.
The intuition behind this matrix is that we want to keep track of the terms which
have appeared in the nodes and, at the same time, are important (≥µ̂). This
means two 1 in two different nodes (i.e., rows) in the same column indicate the
presence of an important (relatively rare) term which is ≥µ̂ in both nodes. On
the other hand, the terms that are non-relevant and therefore less informative
and important (<µ̂) will be represented as zeros. Figure 3 depicts an example
of a Msub matrix. The 10 subject nodes in the tagged provenance graphs are
shown at the top of the figure. These correspond to 10 rows in the matrix. Each
column in the matrix represents one of the words presented in the node labels.
The matrix cells represent the presence (1) or absence (0) of a TF-IDF value
that is larger than the median TF-IDF in each row.

3.2.2 Node Bucketization
The next step in our approach is to determine the (approximate) similarity
between nodes, represented by the rows of the feature matrix Msub (and Mobj

for the object nodes). In particular, we want to cluster similar nodes into similar
‘buckets’. To do this, we compute the similarity between each pair of rows in the
TF-IDF matrix M by using the Jaccard similarity measure among them [46].
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This measure is calculated using both the number of elements that the two rows
share and the number of elements they do not. However, using this measure
directly on the rows of matrix M would present some scalability issues. For a
matrix of m rows and n columns, the time complexity of these comparisons is
O(nm2). Given that there could be millions of nodes and several (hundreds in
some cases) terms, this method would be computationally expensive.

To deal with this issue, we use a version of Locality-Sensitive Hashing (LSH)
with Minhash [21]. LSH traditionally employs shingling, which breaks down
large documents into sequences of length k of characters called k -shingles. Used
traditionally for detecting near-duplicate documents (e.g., plagiarism detection),
LSH methods hash data records into buckets such that records similar to each
other are placed in the same bucket with a high probability. In contrast, records
distant from each other are likely to be placed in separate buckets.

In Ostinato, we adapt LSH to solve our problem by using the TF-IDF
feature matrix M rows instead of k-shingles as input. Because the TF-IDF fea-
ture matrix encodes a semantic representation of documents (i.e., nodes) that
k -shingles do not have, we believe this is a better approach than using only
the LSH method over the documents. In particular, its Minhash function, can
project high-dimensional binary vectors like Msub to a low-dimensional vector of
integers H by reducing the sparseness of the former. This transformation has the
property that if the Jaccard index, J(di, dj) between two rows of Msub is high,
then the probability value Pr(H(di) == H(dj)) is also high. After creating the
signature matrix HM , we calculate pairwise row similarities using the formula:

Sim(H(di),H(dj)) =
|H(di) ∩ H(dj)|

D

where the numerator is the size of the row intersection operator (over integers)
and the denominator is the size of the rows. The value of this similarity is
between 0 and 1. We finally place two nodes in the same bucket if their cor-
responding similarity is above a threshold JT . This threshold is specific to the
kind of data a system produces and can be tweaked by a domain expert based
on their knowledge of the hosts and audit logs they produce.

An evasion technique that attackers may try to use is to change the number of
command line arguments in order to have two subject nodes in different buckets.
This technique, however, is not likely to be successful for several reasons. To
carry this out, the attacker has to include the command line arguments that
carry out the objectives in the two subject nodes. To be able to place the nodes
in different buckets, the attacker must change the values of the corresponding
terms so that the terms’ TF-IDF values are below the median in one node (so as
to be represented as a 0 in the feature matrix) and above the median in the other
node (so as to be represented as a 1 in the feature matrix). We point out that,
due to the presence of the IDF, these median values cannot be controlled by the
attacker but are a parameter of the system as a whole. Thus, if for instance, an
attacker tries to modify the TF term by adding more values in the command
line, they would also inherently change the IDF term. This effectively raises the
bar of difficulty for the attacker.
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Table 1. Edge label similarity rules. S(name) denotes the suspiciousness label,
Label.sub is the subject and Label.obj is the object. ≈ denotes string containment.

Information flow similarity Prerequisites

Ei ≡ Ej System call labels Ei and Ej are the same

Load ≡ Exec For all cases

Fork ≡ Exec For all cases

Write ≡ Create For all cases

Read ≡ Exec (Read.sub ≈ PowerShell) ∧ (Exec.sub ≈ PowerShell)

∧ Read.obj ≈ {.ps1, .psd1, .psm1}
∧ Exec.obj ≈ {.ps1, .psd1, .psm1}

TaskStart ≡ ProcessCreate (S(TaskStart) ∈ {Untrusted Exec}
∧S(OpenProcess) ∈ {Untrusted Exec})

Read ≡ Load if (Read.obj ∈ {shared objects} ∧ Load.obj ∈ {shared objects})

3.3 Edge Label Similarity

The edge labels can be very valuable in determining the similarity among tagged
provenance graphs. In particular, system call labels can inform us about activity
similarity at OS level, while suspiciousness labels carry much more meaningful
information about attackers’ goals. To capture edge label similarity, we incorpo-
rate several matching rules in Ostinato. Given the finite number of suspicious-
ness and system call labels, this task does not need to be automated and can
take advantage of domain knowledge. The edge label similarity rules that are
used in Ostinato are shown in Table 1. The first column shows the similarity
between edges using system call label names, while the second column shows the
prerequisites that must be met for two edges to be considered similar. We also
require that the suspiciousness labels are the same for all edge pairs (we do not
show this in the table for space reasons). For instance, two edges with exec sys-
tem calls labels are considered similar only if their suspiciousness labels are also
the same (e.g., Untrusted Exec). In Table 1 the first row represents the trivial
cases where both types of labels are the same (e.g., read and read). The following
rows represent cases where edges with different labels can be considered similar.
For instance, the fifths row represents a rule that states that a read in host i is
equivalent to an exec in host j if either subject contains (≈) ‘PowerShell’ and
if the suspiciousness label of either edge is different from Initial Compromise.
This rule captures the duality of PowerShell scripts, which can be both read
and execute. We point out that this table only deals with similarity among edge
labels without considering the nodes. In other words, the table only captures
information flow similarity. To fully evaluate if an event is similar to another,
we also need to make sure that the nodes connected by that edge are similar to
one another. We provide the details about this procedure in the next section.
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Algorithm 1: Graph Similarity Algorithm.
1: function Similarity
2: Input: Gl, Gs, Buckets map B : nodes → buckets, Edge label similarity rules

EL, MPS = {(Ns, Nl)|Ns ∈ Gs ∧ Nl ∈ Gl ∧ B(Ns) = B(Nl)}, LenMPS = |MPS|
3: Output: Final Sim(Gl, Gs)
4: for (Ns, Nl) ∈ MPS do
5: MPS = MPS \ (Ns, Nl)
6: Total Acc += Parallel BFS(Ns, Nl)

7: Final Sim(Gl, Gs) = Total Acc
LenMPS

8: function Parallel BFS(Ns, Nl)
9: Sim = 0

10: Enqueue(Ns, Qs); Enqueue(Nl, Ql)
11: while (Qs �= ∅ ∧ Ql �= ∅) do
12: Ns = Dequeue(Qs); Nl = Dequeue(Ql)
13: MPS = MPS \ (Ns, Nl)
14: NNs = {V |(Ns, V ) ∈ E(Gs) ∨ (V,Ns) ∈ E(Gs)}
15: NNl = {V |(Nl, V ) ∈ E(Gl) ∨ (V,Nl) ∈ E(Gl)}
16: for v1 ∈ NNs do
17: for v2 ∈ NNl do
18: if (v1, v2) ∈ MPS then
19: Enqueue(v1, Qs); Enqueue(v2, Ql)
20: if EL(Ns, v1) == EL(Nl, v2) then
21: Sim+= W1

22: else
23: Sim+= W2

24: else
25: if EL(Ns, v1) == EL(Nl, v2) then
26: Sim+= W3

return Sim

3.4 Graph Similarity Detection

The final step of Ostinato, is to determine whether two tagged provenance
graphs belonging to two different hosts are similar or not. These graphs, how-
ever, can: 1) have widely different sizes, depending on the number of suspicious
activities detected in each host, 2) be composed of different activities that may
or may not be similar. To determine the final similarity score between two tagged
provenance graphs, we use Algorithm 1, which performs in parallel two modified
breadth first searches over the two tagged provenance graphs while updating a
similarity score value during the traversal. This algorithm uses both the bucket
information representing the node mappings and the edge label similarity rules
to determine whether an initial attack graph is similar to another graph (or a set
of graphs) in comparison to the attack behavior and the structure of the graph.

Algorithm 1 takes in input the two tagged provenance graphs, the edge label
similarity rules EL (Table 1), and Matched Pairs Set (MPS), which is the set of
pairs of nodes from the two graphs that are in the same bucket. The algorithm
chooses one such pair of nodes and performs a breadth first search traversal on
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each graph using those nodes as roots. Before the traversal, it removes that pair
of nodes from the set, so that it does not traverse them a second time later.
During the traversal, it only follows the nodes of the two neighborhoods that
are in the same bucket (lines 11–16). At any iteration of the loop in line 16,
considers three cases of similarity, to which it assigns three different weights: 1)
W1 corresponding to complete edge matching (nodes and edge labels), 2) W2

corresponding to the two nodes matching but the edge labels being different
(E.g., firefox writes to a file in one host and firefox reads from the same file in
another host), 3) W3 corresponding to the case where the subject node and edge
labels match but the object names do not match. This approach works across
hosts with different OS because even though the names of processes are varied
across different OSes, the malicious behaviour and its usage would place the
nodes into the respective similar bucket. We use different weights in order to take
into account the differences in the number of buckets of subjects and of objects
discussed earlier (see end of Sect. 3.2.2). The weights we used in our evaluation
for W1,W2 and W3 are 1, 0.2 and 0.8 respectively. From our evaluation, we
conclude that these values can be generalized for different OSes or platforms.
Additionally, the value of these weights can be customized further by analysts
to look for specific nodes during forensic analysis or threat hunting.

After the final similarity score between two graphs is determined in line 7, we
raise an alert if it is higher than a predefined similarity threshold. The value of
this threshold depends on several factors, including the systems and the filtering
actions of the local IDS detectors. We include a discussion about this threshold
and others in the Evaluation.

4 Evaluation

This section evaluates Ostinato by two different experiments using different
datasets generated by DARPA red team exercises. The first experiment is part
of large-scale 3-day long red team exercise [12] in an environment containing
500 Windows hosts in which the major attacker activities were concentrated in
the first two days. The details of this experiment are discussed in Sect. 4.1. We
further evaluate Ostinato on a second experiment which contains two separate
multi-host attack campaigns involving hosts with different OSes [11].

We deployed Ostinato on a desktop with Intel Xeon W CPU @ 3.2 GHz
and 32 GB memory running macOS Big Sur. As a local IDS, we used Holmes,
which we obtained from its developers [45]. Holmes uses rules of connected
TTPs to detect attacks unfolding inside a single host. Its final output consists of
provenance graphs representing the activities detected as TTPs. These graphs
are next sent to Ostinato, which determines similarities among them.

Results Summary. We performed our experiments in a threat hunting scenario
where, given some attacker activities in one host, we use Ostinato to find
similar activities in other hosts. Thanks to this kind of search, Ostinato was
able to uncover attacks in 14 more hosts than Holmes on the first day (detailed
description in Sect. 4.1) and 7 more (21 in total) on the second day. This is due
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to the lighter footprint of the attacks on the additional hosts, which fall under
Holmes’ detection threshold. In fact, to make Holmes detect the same attacks
as Ostinato on those additional hosts, we had to lower Holmes’ detection
threshold significantly, producing several hundreds of alerts and false positives.

4.1 Ostinato Efficacy

Dataset Overview. We evaluate Ostinato over two datasets: first, OpTC-
NCR2 a large dataset [12] of audit logs produced as part of DARPA’s CHASE
program. The dataset was collected over a period of two days on 500 hosts.
During these days, a red team performed several APT-like attacks on 24 of those
hosts. Benign activities were generated both manually and by running scripts.
The second dataset was collected as part of DARPA’s Transparent Computing
(TC) program [11]. During this engagement, the attackers replicated APT-type
scenarios across multiple hosts on different platforms.

Ground Truth. The data are accompanied by PDF documents written by the
red team describing the attackers’ activities performed on each host. The ground
truth was built from these descriptions and the process ids contained in those
descriptions. In particular, if a tagged provenance graph contains one or more
of those process id-s it is considered as an attack graph. In addition, we build a
ground truth of pairs of similar attack graphs manually.

Detailed Results. Table 2 shows Ostinato’s results for the first two days of the
OpTC-NCR2 dataset. The left table (a) contains the results of the first day, while
the right table the results of the second day. The tables contain pair-wise simi-
larity scores among tagged provenance graphs that were a part of the attackers’
activities and the maximum similarity score (Column Bmax), and mean similar-
ity score (Column BM1) between each graph that represents attacker activities
and the other provenance graphs that represent benign activities. In Table 2(b),
Ga, Gb, and Gc represent 3 tagged provenance graphs generated by Holmes (and
enhanced by Ostinato) in its default optimal detection threshold setting, which
produces true positives and a low number of false positives. These were present
on only one host, hence comparisons among them are not calculated. The rest of
the tagged provenance graphs from 7 distinct hosts (Gd − Gj) represent activ-
ities with a smaller footprint, which were not detected as attacks by Holmes
in its default detection threshold. In our experiments, we reduced Holmes’s
detection threshold obtaining a total of 689 more graphs from 500 hosts. Using
Ostinato, we identified 7 (from 7 distinct hosts) out of 689 graphs that were
similar to the initial 3 tagged provenance graphs as part of the attacker’s activi-
ties, while the rest were false positives. In these hosts, the attack’s footprint was
smaller because the attackers performed only a small number of malicious activ-
ities like running some PowerShell scripts in some hosts or communicating to an
untrusted C2 server in other hosts. There were several benign graphs generated
in those 7 affected hosts, for which Ostinato generated low similarity scores as
per expectations. Ostinato was able to successfully correlate attacker activities
found in the initial attack graphs (Ga, Gb, Gc) among hundreds of other graphs.
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Table 2. (a) Day-1 evaluation results, (b) Day-2 evaluation results. Similarity matrices
representing the similarity score between attack graph Gx (represented in diagonal) and
other attack graphs. The columns Bmean represent the average similarity score between
the attack graph (Gx) and other benign graphs, and Bmax represent the maximum
similarity score between the attack graph (Gx) and other benign graphs.

Table 2(a) represents the results of the first day of activities. During this
day, at its “optimal” threshold, Holmes detected only four initial attack graphs
from three distinct hosts in its default detection threshold with no false posi-
tives. However, the attackers conducted activities in several other hosts. These
activities do not cross Holmes’ detection threshold. We subsequently reduce
Holmes’ detection threshold to capture all possible attacker activities. As a
result, we generated 424 more graphs from those 500 hosts. Ostinato corre-
lated 14 graphs (G5–G18) out of those 424 graphs from 14 distinct hosts to be
similar to the initial starting points (G1–G4). As can be seen from the table,
the average pair-wise similarity values obtained among the attack graphs are
significantly higher than those obtained when an attack graph is compared with
benign graphs (even with other benign graphs produced from those 14 compro-
mised hosts).

Evaluation on TC Dataset. We evaluated Ostinato on one additional
dataset generated as part of Engagement-5 organized by DARPA [11]. The
results are shown in Table 3. The red team used secure ssh sessions to move from
one host to another, starting from a pivot host. In each host, the red team per-
formed some suspicious operations (like nmap, ls, ifconfig) and exfiltrated a
file (passwd) back to the pivot machine before moving to a new host. Cadets-1
was a FreeBSD machine in this setup, Theia-1 and Trace-2 were Linux machines,
and FiveD-3 was a windows machine. Although the attacks on these different
hosts were not identical, due to similar attacker-created processes and invoca-
tions across the 4 hosts of different platforms, Ostinato was able to detect the
similarity across hosts successfully.
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Table 3. Engagement-5 evaluation results. Multi-host ssh campaign.

Similarity Threshold, Precision and Recall. We define a false positive as a
comparison between a benign graph and an attack graph that results in a value
above a specific similarity threshold. In turn, a false negative is a comparison
between two attack graphs that results in a value below the similarity threshold.
To determine the optimal threshold in our dataset, we varied the threshold over
a specific range and collected the false positives, false negatives, true positives,
and true negatives using the ground truth. The results of this experiment are
shown in Fig. 4(a), which depicts the values of the precision, recall, F1-score, and
accuracy as a function of the similarity threshold. The accuracy metric measures
the ratio of correct outcomes over the total number of outcomes (Accuracy =
(TP + TN)/(TP + TN + FP + FN)). As can be seen in Fig. 4(a) Ostinato
achieves a high accuracy (∼0.97), Evidently, the optimal value for the F1-score
is for values of the similarity threshold around 0.5, which produces a total of 15
false positives over both days.

4.2 Node Similarity Accuracy

In this subsection, we describe an independent evaluation of the approach
described in Sects. 3.2.1 comparing it with other possible similarity detection
methods, in particular, string matching (SM) and k -means clustering technique
with a different number of clusters.

Fig. 4. (a) Precision, Recall, F-Score, Accuracy as a function of the similarity detec-
tion threshold. (b) Clustering performance comparison between Ostinato and other
methods using NMI and ARS.

Ground-Truth Dataset. To measure our approach’s performance, we created
a ground truth dataset of expected buckets for a subset of nodes in the dataset
of 3700 subject nodes. We asked multiple security experts to assign each node
to a bucket of similar nodes that represents a specific behavior. After this step,
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the experts met to discuss their assignments, and if there were disagreements,
a new step of assignments were executed. This cycle of assignment-discussions
was repeated until consensus was reached.

Fig. 5. (a) Ostinato performance representing the running times of different steps.
(b) Total time comparison against manual analysis.

Comparison Against Other Approaches. We compare our approach against
several common approaches, including SM and the common clustering approach
of k -means clustering with TF-IDF with different k values. To evaluate our
approach against the k -means clustering, the most fundamental step is to define
the optimum number of clusters (i.e., k). For this step, we chose two approaches.
First, we used the number of clusters based on the number of clusters in the
ground truth (i.e., k = 29). Second, to choose the number of clusters, we used
the elbow method [33], a common heuristic approach to determine the optimum
number of k which picks the elbow of the curve as k = 11 as the optimum k .
Choosing two values for k enables us to evaluate our approach against the two
probable number of clusters, 1) expected number of clusters based on the ground
truth 2) suggested number of (optimum) clusters by elbow method.

To measure the performance of our bucketizing approach against other
approaches, we use two standard quality metrics for clustering algorithms: the
Adjusted Rand Score (ARS) and the Normalized Mutual Information (NMI)
metrics [23] which use different methods to compare the quality of clustering
algorithms when the number of clusters in ground truth clustering and that in
the prediction are different. The overall results are shown in Fig. 4(b). As can
be seen from this figure, our approach outperforms both SM and k -means for
different values of k. The main reason for the better performance of our approach
is the LSH step, which is able to better capture approximate similarity.

4.3 Run-Time Performance

We measure the run-time performance of Ostinato by creating sets of tagged
provenance graphs of different sizes by varying the underlying IDS detection
threshold on the Day 1 campaign data. The run time performance of the different
steps of Ostinato is shown in Fig. 5(a). To obtain different datapoints, we group
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the graphs into 7 sets of increasing sizes. The number of nodes and edges in
each of these sets is shown in the primary x-axis. The secondary x-axis at the
top reflects the total number of words (or terms) present in the nodes of each
set. As can be seen from the figure, the most expensive part of the approach
is node bucketization, amounting to approximately 90% of the total time when
comparing thousands of nodes. This is mainly due to the large size of the feature
matrix. Graph similarity (Algorithm 1), represented by the blue line, is the
fastest component, usually taking just a few seconds.

4.4 Threat Alert Fatigue Mitigation

Our evaluation of Ostinato for threat alert fatigue mitigation shows promising
results. In situations where local host-based detection systems produce a large
number of alerts, Ostinato can help cyber analysts to pinpoint hosts where
similar attacker activities are occurring, filtering out thousands of benign alerts
(or false positives from IDS). Across the attack campaign [12] for two days,
the underlying IDS produced more than 1000 alerts, which is really unfeasible
for manual analysis. Comparatively, when those graphs are fed into Ostinato
along with the 7 initial attack graphs, it successfully correlated to 21 alerts
from distinct hosts where it found similar attack behavior. According to several
studies [6–8], it usually takes about 10–30 min to investigate an alert manually
by cyber analysts. Assuming 15 min on average for each alarm, a cyber analyst
would require 140 h to investigate the average alarms of each day produced by
the IDS in our experiment. Alternatively, as shown in Fig. 5(b), Ostinato takes
around 167 min to complete the analysis of all the alarms generated, reducing
false positives of the underlying IDS by more than 90%.

4.5 Comparison with Other Tools

We compare some of Ostinato’s aspects with some popular graph matching
approaches. Ostinato is much better suited for cross-host attack correlation
than compared to other popular graph matching techniques. The features that
stand out in comparison with other graph pattern matching approaches is that
Ostinato can perform accurate node label approximations even when simi-
lar nodes exhibit different behaviors, does not require training to implement,
and performs context relative edge comparison, which is essential for cross-host
attack correlation purposes. We outline the qualitative comparison against the
existing tools in Table 4. Since majority of such tools are not open source or eas-
ily available, an experimental comparison of Ostinato with those approaches
is unfeasible. Out of these only SimGNN [18] is publicly available, however the
nodes and edges are much more simpler in it’s evaluated datasets and only con-
tains of integers instead of actual names of processes, objects or edges.

5 Related Work

Several approaches have been proposed to deal with cross-host attack detection
via cross-host information tracking. These approaches rely on the presence of
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Table 4. Ostinato vs. other approaches

Approach Node label
approximation

Node
embeddings

Context-relative
edge comparison

Training
required

SimGNN [18] ✗ � ✗ �

Poirot [44] ✗ ✗ ✗ ✗

Deltacon [36] ✗ � ✗ ✗

Ostinato � � � ✗

information flow data between entities (e.g., processes) across hosts [30,51]. This
approach, however, requires fine-grained taint tracking, which relies on system
instrumentation it requires some modifications to existing systems.

Log-Based Threat Hunting: A wide variety of systems leverages different
types of logs for threat-hunting purposes. Hercule [48] is a log-based detection
system modeled on the community discovery problem. It correlates logs from
multiple sources and detects attack communities. Oprea et al. [47], Romero-
Gomez et al. [49] leveraged DNS, web-proxy logs in order to detect and visualize
threats in a network. Bilge et al. [19] leveraged NetFlow logs to detect Botnet
C&C servers and distinguish them from the benign traffic. The DNS logs are also
leveraged extensively [17] for the detection of malicious domains. Several systems
[27,41,45] make use of different logs just as Ostinato for efficient threat hunting,
forensic analysis, or real-time detection of cyberattacks. Most of the mentioned
approaches that deal with cross-host activities rely on network logs, however,
while Ostinato is used over audit host logs.

Provenance Graph Analysis: BackTracker [35] first introduced the concept
of generating a provenance graph from the kernel audit logs. In recent years,
significant progress has been made for log reduction, compression techniques
and tracking OS-level dependencies [26,28,37] in order to facilitate detection of
benign events from the suspicious ones as well as to reduce storage overheads.
Moreover, recent studies have used provenance graphs effectively for a wide vari-
ety of security problems such as identification of zero-day attack paths in ZePro
[54], automated provenance triage in NoDoze [27], real-time attack detection
and attack scenario reconstruction [45]. While sharing use of provenance graphs,
Ostinato’s approach is different from these works. In fact, Ostinato looks for
similar subgraphs across multiple provenance graphs as a signal for multi-host
attack correlation.

6 Conclusion

We present Ostinato, which is based on the intuition that attackers have similar
goals on multiple hosts during a campaign. Ostinato implements an approach
for correlating similar attacker activities across different hosts and implements a
novel approximate node matching technique. It further uses the attack semantics
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to detect similarities among tagged provenance graphs. We successfully evaluate
Ostinato on two datasets created by DARPA red team engagements.
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