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Abstract—Configuring millimeter wave links following a con-
ventional beam training protocol, as the one proposed in the
current cellular standard, introduces a large communication
overhead, especially relevant in vehicular systems, where the
channels are highly dynamic. In this paper, we propose the use of
a passive radar array to sense automotive radar transmissions
coming from multiple vehicles on the road, and a radar pro-
cessing chain that provides information about a reduced set of
candidate beams for the links between the road-infrastructure
and each one of the vehicles. This prior information can be
later leveraged by the beam training protocol to significantly
reduce overhead. The radar processing chain estimates both the
timing and chirp rates of the radar signals, isolates the individual
signals by filtering out interfering radar chirps, and estimates
the spatial covariance of each individual radar transmission.
Then, a deep network is used to translate features of these radar
spatial covariances into features of the communication spatial
covariances, by learning the intricate mapping between radar and
communication channels, in both line-of-sight and non-line-of-
sight settings. The communication rates and outage probabilities
of this approach are compared against exhaustive search and
pure radar-aided beam training methods (without deep learning-
based mapping), and evaluated on multi-user channels simulated
by ray tracing. Results show that: (i) the proposed processing
chain can reliably isolate the spatial covariances for individual
radars, and (ii) the radar-to-communications translation strategy
based on deep learning provides a significant improvement over
pure radar-aided methods in both LOS and NLOS channels.

Index Terms—Radar-aided mmmWave communication,
vechicle-to-infrastructure (V2I), mmWave MIMO, automotive
radar, deep learning-based link configuration, out-of-band
information, beyond 5G, 6G.

I. INTRODUCTION

THE automotive industry is incorporating advanced sens-
ing and communication technologies to produce vehicles

that are both more aware of their surroundings and able to
communicate with others. This perceptual awareness has been
achieved through the use of several onboard sensors, most
notably automotive radars. The ability to communicate with
infrastructure, referred to as vehicle-to-infrastructure (V2I)
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communication, allows for the sharing of sensor data, navi-
gation information, multimedia, and more. These applications
need high data rates to operate seamlessly.

Wireless communications at millimeter wave (mmWave)
bands can achieve such high data rates. Communication at
mmWave bands, however, typically requires gains through
beamforming to reach acceptable signal-to-noise ratios (SNR),
often requiring large antenna arrays. The configuration of
these large arrays following standard beam training protocols
introduces a large overhead (time required to configure the
link). For example, for initial access (initial configuration of
the link when the user enters the cell), when the number of
antennas at the base station (BS) and the user are 64 and 16
respectively, and considering an analog MIMO architecture
at both ends, the overhead of the beam training protocol
associated to the 3GPP 5G NR standard varies in the range
750 ms to 5 s as a function of the number of synchronization
blocks per burst [1]. This training overhead becomes even
more demanding in multiuser V2I links, because the channel
coherence times are short and users are rapidly entering and
exiting the communication cell, resulting in a high probability
that users are in initial access.

The onboard radars on many of these next-generation vehi-
cles provide a unique signal of opportunity that contains out-
of-band information that can be leveraged to reduce training
overhead during initial access [2]. Since many automotive
radars operate in a mmWave band adjacent to mmWave
communications bands, the spatial covariance obtained at a
passive radar receiver can be similar enough to the spatial
covariance of the communication link, and therefore, it can be
utilized to reduce the training overhead required to configure
the link, as established in prior work [3].

This paper proposes the use of a roadside unit (RSU)
equipped with a passive radar to aid in establishing multi-
user (MU)-MIMO communication links at mmWave. The
passive radar senses the transmitted frequency modulated
continuous wave (FMCW) signals from multiple automotive
radars at once, isolates the signal from each individual vehicle,
estimates the spatial covariance of the individual FMCW
signals, and then predicts the mmWave communication spatial
covariance. This predicted communication covariance is then
used to extract the main channel directions and select the
beams that will act as analog precoders and combiners at the
RSU, significantly reducing training overhead.
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A. Contributions

The main contributions of this paper are as follows:
• We propose to leverage the spatial covariance information

obtained with a passive radar receiver at the RSU to
configure the different mmWave communication links
between the RSU and different vehicles in the road.

• We propose a passive radar processing chain that uses a
filter bank architecture to isolate the individual FMCW
signals from a reception containing multiple interfering
FMCW signals from different vehicles. These isolated
signals are then used to estimate the individual spa-
tial covariances corresponding to the radar transmissions
coming from different vehicles.

• We design multiple deep learning architectures to predict
the communication spatial covariance from an estimated
noisy radar spatial covariance. These neural networks
learn the intricate relations and differences between
the spatial covariances in the radar and communication
bands. Three variations of neural networks are proposed
to predict different functions useful for beamformer de-
sign: azimuth power spectrum (APS) prediction, eigen-
vector prediction, and covariance vector prediction.

• We create a ray tracing simulation of the radar-aided
MU vehicular communication scenario to evaluate the
performance of the proposed systems in terms of both
the sum-rates and outage probabilities of different beam
training strategies. This setup is consistent with the 3GPP
V2X evaluation methodology for vehicular communica-
tion systems, and emulates the deployment of automo-
tive radars in commercial vehicles. The obtained radar-
communication channels dataset is made available to the
research community to enable further work on radar-aided
communication at mmWave [4].

B. Prior work

Out-of-band information to aid mmWave communication
[2] can come from several sources, including sub-6 GHz
systems [5]–[7], or sensors such as radar [3], [8]–[10], lidar
[11], [12], inertial-measurement-units [13], [14], or position
information [15]–[17].

Different approaches that exploit sub-6GHz signals have
been proposed to reduce the beam training time or to estimate
the spatial covariance, which is later used to design the
beamformers. MmWave link configuration assisted by sub-6
GHz systems has, however, many limitations. The use of sub-
6 GHz information in [5] is restricted to line-of-sight (LOS)
channels. The strategies in [6], [7] are applicable to non-line-
of-sight (NLOS) channels, but require that both the mmWave
and sub-6 GHz channels have identical states (both LOS or
both NLOS), which does not hold in general.

Position information extracted from a Global Positoning
System (GPS) has also been used in different ways to reduce
the overhead of mmWave link configuration. For example,
inverse fingerprinting learns a subset of location-dependent
beam-pairs based on past measurements in similar locations,
such that with a high probability at least one of the vectors
in the subset works well [18] [19] [20] [21]. A more so-
phisticated version of this idea exploits the sparsity of the

MIMO channel to also provide beam recommendations in
new positions where channel measurements are not available
[17]. Further reductions in overhead can happen if there is
also knowledge of other connected vehicles (which may have
different sizes and act as blockages) [22] or other context [23]
information. Beam-tracking for automotive vehicles aided by
inertial-measurement-units (IMU) was proposed in [13], [14].
The common limitation of all these approaches is that they
only target LOS scenarios.

A mmWave communication system aided by lidar is de-
scribed in [11]. It considers two scenarios: the lidar is located
at the base station (BS), or lidar data from two neighboring
vehicles are fused. In [12], [24], different learning strategies
predict V2I beam selections using precomputed spatial infor-
mation collected from lidar sensors. The main limitation of
these systems is that they are designed to operate only in LOS
propagation.

The first work that proposed leveraging a radar sensor to
aid millimeter wave link configuration considers an active
radar at the RSU [8] to illuminate receivers on the vehicle
and estimate the radar covariance. This is also the first study
that experimentally shows there is a similarity between the
angular information extracted from the radar and the commu-
nication spatial covariances, even when the center frequencies
of operation are different. In [9], a dual function radar and
communication system was proposed for simultaneously sens-
ing vehicles and establishing the communication link aided by
the sensing information. Position information obtained with
a radar unit at the road infrastructure was also used in [25]
to reduce the overhead of the beam training protocol. The
accuracy of position information provided by radar is higher
than that provided by GPS, which leads to a larger reduction in
communication overhead when exploiting position information
provided by a radar sensor than when leveraging GPS-based
position, as shown in the field measurements provided in [26].
The high accuracy of radar locations was also exploited in [10]
in the context of vehicle-to-vehicle (V2V) communication.

Although all these approaches based on an active radar
provide an interesting reduction of the link configuration over-
head, they only perform well in LOS scenarios. An additional
limitation is that the allocation of power to active radar sensing
may be prohibitive given a power budget at the roadside unit.
Alternatively, a passive radar approach was taken in [3], where
the RSU senses signals transmitted from automotive radars
onboard the vehicles themselves. This solves the power con-
sumption issue and allows NLOS estimation, but the study was
restricted to a single-user case without interference from multi-
ple radars. Furthermore, there is an inherent mismatch between
the estimated radar covariance and the true communication
covariance due to different operation frequencies or different
locations of the radars and communication transceivers in the
vehicles.

In this paper, we overcome these limitations by building
upon our preliminary work in [27] to add multiuser capabilities
and to further refine the covariance estimate by translating the
radar covariance to the communication domain. To this aim,
we use neural networks which effectively learn the mismatches
between radar and communication channels. Although the
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work in [27] already explores the idea of learning mismatches,
only a single user scenario and the estimation of the APS are
considered.

Notation: We use the following notation throughout the
paper. Bold lowercase x is used for column vectors, bold
uppercase X is used for matrices, non-bold letters x, X are
used for scalars. [x]i and [X]i,j , denote ith entry of x and
entry at the ith row and jth column of X, respectively. We
use the serif font, e.g., x, for the frequency-domain variables.
Superscript T, ∗ and † represent the transpose, conjugate
transpose and pseudo inverse, respectively. 0 and I denote
the zero vector and identity matrix respectively. CN (x,X)
denotes a complex circularly symmetric Gaussian random
vector with mean x and covariance X, and U [a, b] is a Uniform
random variable with support [a, b]. We use E[·] and ∥·∥F to
denote expectation and Frobenius norm, respectively.

II. SYSTEM MODEL

We consider the MU-MIMO V2I communication system
represented in Fig. 1, where the RSU is located on the side
of a roadway and U ego-vehicles are driving along the road
with other non-connected vehicles. The RSU is equipped
with a passive radar uniform linear array (ULA) and a com-
munications ULA. Both the radar and the communication
system operate at mmWave bands. The ego vehicles have 4
ULAs for communications and 4 single-antenna automotive
radars. The communication arrays in the vehicles are placed
in accordance with 3rd Generation Partnership Project (3GPP)
proposals [28], and the radar arrays are placed at the 4 corners
of the vehicle as in many commercial models. The passive
radar array at the RSU will use receptions of the automotive
radar signals to estimate the radar spatial covariances for each
link. These covariances will then be used to configure the MU-
MIMO mmWave communication link.

Red: Radar paths
Blue: Comm paths

Communication array

Communication array

Automotive Radar

Passive radar array

Fig. 1: A multiuser V2I communication system where the
RSU is equipped with a communication array and a pas-
sive radar receiver, both operating at mmWave although in
different bands. The radar array receives transmissions from
the automotive radars (red), while the RSU and the vehicles
transmit/receive data over the communication channel (blue).
There is similarity between the radar and communication
channels.

A. Communication system model
The communication array on the RSU is equipped with

NRSU antennas and MRSU ≤ NRSU RF-chains. We let

A denote the number of communication arrays at the ego
vehicle. Each vehicle array has NV antenna elements and
MV ≤ NV RF-chains. This hybrid architecture supports
Ns ≤ min{MRSU,MV} data streams. The communication
link is based on a K sub-carrier orthogonal frequency-
division multiplexing (OFDM) system, with modulated sym-
bols s[k] ∈ CNs×1 such that E[s[k]s∗[k]] = Pc

KNs
INs

and Pc

denotes the total average transmitted power. The baseband
precoder FBB[k] ∈ CMRSU×Ns and RF precoder FRF ∈
CNRSU×MRSU are combined to form the hybrid precoder
F[k] = FRFFBB[k] ∈ CNRSU×Ns on sub-carrier k. The RF
precoder is realized using quantized phase shifters and is the
same across all subcarriers. Letting ζi,j , i = 1, . . . , NRSU,
j = 1, . . . ,MRSU, be the quantized phase shift, the RF
precoder is described as [FRF]i,j = 1√

NRSU
ejζi,j . The total

power constraint is enforced as
∑K

k=1 ∥F[k]∥2F = KNs. The
baseband combiner W

(a)
BB[k] ∈ CMV×Ns and RF combiner

W
(a)
RF ∈ CNV×MV , a = 1, . . . , A, are multiplied to form the

hybrid combiner W(a)[k] = W
(a)
RFW

(a)
BB[k] ∈ CNV×Ns on

sub-carrier k. In the simulations we will assume that the num-
ber of streams and RF chains is equal to the number of vehicles
supported by the RSU, and that the analog precoder/combiner
corresponding to the link between the RSU and the uth vehicle
is denoted as [FRF]u/[WRF]u, u = 1, ..., U .

The NV×NRSU frequency-domain MIMO channel at array
a ∈ A in vehicle u is denoted as H(a)

u [k]. Assuming perfect
synchronization, the received signal on sub-carrier k after
processing is

y(a)u [k] = W(a)u∗[k]H(a)
u [k]F[k]s[k] +W(a)∗

u [k]n(a)[k], (1)

where n(a) ∼ CN (0, σ2
nI) is additive white Gaussian noise.

B. Channel model
The wideband channel is modeled geometrically with C

clusters. Each of the clusters experiences a mean time delay
τc ∈ R, mean angle-of-arrival (AoA) θc ∈ [0, 2π), and mean
angle-of-departure (AoD) ϕc ∈ [0, 2π). Assuming there are Rc

paths in each cluster, each path rc ∈ [Rc] has complex gain
αrc , relative time-delay τrc , relative arrival angle shift ϑrc , and
relative departure angle shift φrc . The array response vectors
are aRSU(ϕ) at the RSU and aV(θ) at the ego-vehicle. The
uniform spacing between array elements is ∆, normalized to
units of wavelength. The RSU response vector and ego-vehicle
response vectors are defined as

aRSU(θ) = [1, ej2π∆sin(θ), · · · , ej(NRSU−1)2π∆sin(θ)]T. (2)

aV(ϕ) = [1, ej2π∆sin(ϕ), · · · , ej(NV−1)2π∆sin(ϕ)]T. (3)

Weremove the notation (a) in the channel H for the following
equations. We define the analog filtering and pulse shaping
effect at delay τ as p(τ). Tc denotes the signaling interval.
The delay-d MIMO channel matrix Hu[d] is [29]

Hu[d] =
C∑

c=1

Rc∑
rc=1

αrc,up(dTc − τc,u − τrc,u)×

aV(ϕc,u + φrc,u)a
∗
RSU(θc,u + ϑrc,u).

(4)
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If there are D delay-taps in the channel, the channel at sub-
carrier k, H[k] is [29]

Hu[k] =
D−1∑
d=0

Hu[d]e
−j

2πk
K d. (5)

C. Covariance model

We define the spatial covariance at the RSU for the
link with the uth vehicle on sub-carrier k as RRSU,u[k] =
1

NV
E[H∗

u[k]Hu[k]]. By assuming that the covariance does not
change across sub-carriers [30], we can create an estimate by
averaging over all sub-carriers R̂RSU,u = 1

K

∑K
k=1 R̂RSU,u[k].

As we will describe in Sec. II-E, our proposed system uses the
covariance estimates to design the RF precoder at the RSU,
while training symbols are used to design the baseband pre-
coder, which can account for sub-carrier-dependent covariance
variations [3] and multiuser interference.

D. Radar system model

Each automotive radar in the environment is assumed to
operate in the mmWave band, transmiting a unique FMCW
signal. We will assume there are M radars transmitting. The
mth radar, for m ∈ [M ], has a chirp rate of βm, a time offset
of ∆tm, and a phase offset of ∆ϕm. We will assume all radars
operate with the same bandwidth B. Then the chirp period is
defined as Tm = B

βm
.

Then the transmitted signal can be defined as

sm(t) =
√

Pr exp

(
j2π

(
frt+

βmt2

2

)
+ jϕm

)
for t ∈ [∆tm,∆tm + Tm]. (6)

This transmitted signal repeats every Tm seconds. The received
signal on the Nr element antenna array on the RSU will be
denoted as a vector x(t) ∈ CNr . Assume that due to multipath
effects, the radar transmission propagates along Rm paths.
Each path rm ∈ [Rm] experiences an attenuation of αrm and
a time delay of τn,rm during propagation to the nth antenna.
The received signal at antenna n is

[x(t)]n =
M∑

m=1

Rm∑
rm=1

αrms(t− τn,rm). (7)

We can model the propagation delay as the sum of two
components: one accounting for common distance τ and
another accounting for the difference among antenna elements
at the ULA τ ′n. This delay at antenna n is described as
τn,rm = τrm + τ ′n,rm [31]. We assume our ULA has half-
wavelength spacing and that the signal from radar m and path
rm arrives at an angle of θrm , so

τ ′n,rm =
sin θrm(n− 1)

2fr
. (8)

Then we collect the I samples of the signal into a matrix
Y ∈ CNr×I . Let i ∈ {1, 2, · · · , I} denote the sample index,
and Tr denote the sampling time. Then the ith sample on the
nth antenna is [Y]n,i = [x(iTr)]n. The spatial covariance of
the received radar signal could then be estimated as R̂ =
1
IYY∗.

However, this covariance estimate is not particularly useful
when multiple vehicular radars are transmitting. The covari-
ance will contain all of the interfering signals from all M
vehicular radars that are transmitting. As a result, the azimuth
power spectrum (APS) computed from such an estimate may
be dominated by the contributions from higher SNR signals
while the contributions from low SNR signals are undetectable
due to the interference and sidelobes. A more useful covari-
ance would be the isolated covariance of each transmitting
radar signal. Let us define the true spatial covariance for signal
m. This will be done by propagating a unit power Dirac-delta
signal through the radar channel from radar m, i.e.

[x̌m(t)]n =

Rm∑
rm=1

αrmδ(t− τn,rm). (9)

Then perform the same sampling and covariance estimation as
before:

[Y̌m]n,i = [x̌m(iTr)]n, (10)

Rm =
1

I
Y̌mY̌∗

m. (11)

Rm is our ideal isolated spatial covariance from the radar
signal m. Section III-A describes our designed signal pro-
cessing chain that creates estimates R̂m of the isolated spatial
covariance from the total received signal x(t).

For this paper, we assume that the communication links
and automotive radars operate in separate bands where mutual
interference between the two bands is negligible. This assump-
tion is supported by the study in [32], which describes ex-
perimental results that show that the radar-to-communication
interference can be neglected in this context.

E. Link configuration
We assume that the link configuration system at the RSU

receives the estimated radar covariance for the link with each
vehicle from the passive radar receiver. Then, an additional
processing stage translates these estimated radar covariances
into the averaged communication covariance R̂RSU,u for the
link with the uth vehicle in initial access. Note that the
radar and communication covariances are similar, but there
are mismatches due to, for example, the different operation
frequencies or different locations of the radar and commu-
nication antenna arrays. Section III-B includes our proposed
solutions for this stage.

Once the estimate of the averaged communication covari-
ance is available, the RF precoder phase shifts are configured
based on a standard beam search over a restricted codebook.
The subset of beams in this restricted codebook are selected as
those around the direction of maximum power in the azimuth
power spectrum (related to the communication covariance
through the Fourier transform). The number of beams in the
restricted codebook is a parameter of the system. The RF
combiner is defined at the vehicle using a beam search over
a full codebook. Note that overhead reduction in the beam
training stage is achieved by the great reduction in the size of
the restricted codebook used at the RSU.

To obtain the digital precoders and combiners after the RF
stage has been designed, a practical system could use different
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algorithms that can provide an estimation of the beamformed
channel (propagation channel plus RF stage) based on the
transmission of a sequence of training symbols. From the
estimated channels, different state-of-the-art solutions for the
frequency selective digital precoders and combiners are also
available [33], [34]. In our simulations in Section IV, we show
the performance of the analog counterpart of the proposed
system, since our only goal is to show the effectiveness of the
radar-aided beam training strategy (the innovation proposed
in this work) independently of the approach for digital beam-
forming.

III. RADAR-AIDED MULTIUSER LINK CONFIGURATION

A. Multiuser Separation and Radar Covariance Estimation

As mentioned, the received signal Y contains contributions
from all transmitting radars in the environment. However,
the RSU must now attempt to estimate the individual radar
covariances for each vehicle, which will later be used to
assist in RF precoder design for downlink communications.
We assume that for vehicles in initial access, the RSU has
no knowledge of the automotive radar chirp rate or timing.
Furthermore, the RSU may have no knowledge whether or
not a new vehicle has entered its area-of-coverage and must be
able to detect radar transmissions from new vehicles. As such,
we propose a FMCW mixing filter bank processing chain to
detect vehicles, suppress interference from other automotive
radar signals, and estimate the spatial covariance for each
vehicle in the area-of-coverage individually. The FMCW mix-
ing filter bank correlates the received passive radar signals
with several FMCW chirps, each with a different chirp rate.
This correlation is effectively a matched filter, maximizing
the output power of the correlator when the chirp rate of
a received signal matches the chirp rate of the filter bank.
Individual FMCW signals can be detected from the peaks of
the filter bank correlator output. These detections provide an
estimate of each FMCW signal’s chirp rate and time-delay.
With knowledge of the chirp rate and time-delay, the mixed
signals corresponding to each detection can be multiplied by
a time-delay correction signal, concentrating the power of the
matched signal near DC. A lowpass filter is then applied,
filtering out interference from other FMCW signals, thereby
isolating the individual radar signals corresponding to each
detection. These isolated signals are then used to estimate the
spatial covariance of each detected radar.

For now, let’s consider a single block within the mixing
bank, which is visualized in Fig. 2. The received signal is
mixed with a reference FMCW signal sref(t) with the desired
chirp rate βmix. Much like the transmitted FMCW signals, the
reference FMCW signal has a chirp period of Tmix and repeats
every Tmix seconds,

sref(t) = exp

(
−j2π

(
frt+

βrt
2

2

))
for t ∈ [0, Tm].

(12)
The output mixed signal is denoted as xmix(t), and can be
written as

xmix(t) = x(t)sref(t). (13)

Correlator

Chirp Signal

correlation
Detector

mixed signal

(before summation)
Covariance

Calculation

to 

communications 

controller 

passive 

radar signal

Mixing Block

to the rest of the 

mixing bank blocks
…

Fig. 2: Visualization of a single mixing block within the
mixing bank. The received signal is mixed with a chirp
signal, sampled, and correlated. The detector then determines
whether a FMCW signal is present corresponding to the
block’s chirp rate and finds the chirp timing. The covariance
is then estimated based on the mixed signal.

This signal after sampling is then called Ymix, and can be
expressed as

[Ymix]n,i = [xmix(iTr)]n,i. (14)

Note that the received chirp signals are not time-aligned with
the reference chirp signal. The output of this mixer is then
sampled and processed digitally.

The next stage in the processing block is the correlator.
The sampled signal is then digitally mixed with an offset-
correction signal before the I samples are summed together.
This digital mixing and summation is repeated for every lag.
The output of the correlator is then passed to a detector. The
digital correction signal for lag l is defined as

[Scorr]l,i = exp

(
j2π

(
βm(lTr)

2

2
iTr

))
. (15)

The corrected sampled mixed signal at lag l is defined as

[Ymix,l]n,i = ([Ymix]n,i)([Scorr]l,i). (16)

And finally, the correlator output is defined as

[C]n,l =
I∑

i=1

[Ymix,l]n,i. (17)

The digital correction signal accounts for the frequency of
the reference FMCW signal at the start of lag l. This makes
the correlator output equivalent to mixing and summing with
an FMCW signal that starts at frequency fr at every lag l.
This saves on hardware complexity by allowing each mixing
block to only require mixing with a single FMCW reference
signal. The digital correction is then an element-wise complex
multiplication. Assuming that the FMCW reference signal
is controlled by a voltage-controlled oscillator (VCO), the
digital processor can have knowledge of the reference signals
frequency at each sample time.

When the chirp start and chirp rate of the block align
with the chirp start and chirp rate of a received signal, the
magnitude of the output of the correlator will exhibit a sharp
peak. For chirp rates that do not align, the output of the
correlator will have its power spread out over the lag domain.
To show this, consider a case where 51 mixing blocks are
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Fig. 3: The correlator output of 3 mixing blocks with reference FMCW chirp rates of 11, 12, and 19 MHz/µs. Sharp peaks are
shown in the first and last output corresponding to passive radar receptions of signals with a matching chirp rate. The second
output has no such peak.

used in the filter bank, each with a uniformly spaced chirp
rate between 10 and 60 MHz/µs. This is visualized in Fig. 3,
where the correlator output of the same received signals is
shown for 3 of the 51 mixing blocks. In the 11 MHz/µs bank
and 20 MHz/µs bank, sharp peaks exist because the received
signal contains FMCW pulses matched to their mixing chirp
rates of 11 and 20 MHz/µs. The 12 MHz/µs bank has no such
peak, because the received signal contained no FMCW pulses
with a chirp rate of 12 MHz/µs. In the 12 MHz/µs bank, the
power of the chirp detected in the 11 MHz/µs bank becomes
spread out over the lag domain. This spreading effects grow as
the signal and mixing chirp rates become further separated. In
the 20 MHz/µs bank, the chirp detected in the 11 MHz/µs bank
is spread out significantly, allowing for the individual FMCW
signal matching 20 MHz/µs to be detected. The remaining
interference from the spread out signal is not present across
the entire lag domain, however, so the detector of these peaks
must be able to adapt to changing interference and noise levels.
The objective of the detector is to determine whether such a
peak exists in the output of the correlator and to remain robust
against the interference power from other signals that have
different chirp starts and chirp rates.

Threshold

Ceiling

Floor

Fig. 4: A visualization of the max CFAR detector. For each
lag, the boundary box defined by the guard cells and floor
cells is defined relative to the power at the lag being tested. If
the signal does not conflict with the boundary box, a detection
is marked at that particular lag.

For our purposes, we propose the use of a max CFAR
(constant false alarm rate) detector. The interference power at
any given time delay and mixing block may not be known
beforehand, especially as vehicles enter and exit the area-
of-coverage. As such, an adaptive detection algorithm that
estimates the interference power and determines a threshold
dynamically is desirable. The max CFAR detector is visualized
in Fig. 4. Max CFAR estimates the noise and interference
power around a cell-under-test (CUT) by taking the maximum
power of a set of cells that neighbor the CUT. A set of guard
cells close to the CUT are ignored in this estimation, because
power from the CUT may leak into close-by cells. However,
we enforce that the power at the CUT is greater than all the
powers in the guard cells. In our application, the set of guard
cells must account for the delay spread of the radar channel.
Once the noise and interference power has been estimated, a
detection threshold is determined by multiplying the power by
some scaling factor. This scaling factor can be tuned by the
system designer to achieve a desired false alarm rate. If the
power in the CUT exceeds this threshold, the system considers
this a detection. Max CFAR can be implemented efficiently
digitally with an FPGA (see [35] for example).

Let the Nguard be the number of guard cells, Nfloor be
the number of cells beyond the guard cells that are used
to estimate the noise and interference power, and Pdet be
the power threshold for detection. Define the set of guard
cell offsets as ∆Lguard = [−Nguard, 1]

⋃
[1, Nguard]. Define

the set of floor cell offsets as ∆Lfloor = [−Nguard −
Nfloor,−Nguard]

⋃
[Nguard, Nguard +Nfloor]. Assume that the cor-

relator output at lag l is our CUT. We decide to take the
maximum power across antennas in these detection steps as
well. The CUT power PCUT is defined as

PCUT = max
n
|[C]n,l|2. (18)

The noise and interference estimate is defined as

Pfloor = max
n

max
∆l∈∆Lfloor

|[C]n,l+∆l|2. (19)

The power in the guard cells is also defined as

Pguard = max
n

max
∆l∈∆Lguard

|[C]n,l+∆l|2. (20)

The CUT is then marked as a detection if the following
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conditions are met:

PCUT > Pguard,

PCUT > PdetPfloor.
(21)

Let D be the set of lags where detections are found. The
sampled output of the mixer corresponding to these detected
lags, [Ymix,l]n,i∀l ∈ D, is passed to the covariance estimator.
It should be clarified that the samples passed to the covariance
estimator are samples before the summation operation in the
correlator. By detecting the correct time delay and chirp rate
of a particular FMCW reception and then mixing it with
a reference chirp corresponding to these exact parameters,
we experience a power gain in this particular FMCW signal
and a suppression of the other interfering FMCW signals.
Furthermore, this power is concentrated in spikes near DC
since the correct lag and time delay have been estimated.
Therefore, a lowpass filter with a bandwidth Bf greater
than the multipath spread of the propagation channel can be
applied to the detected signals to filter out the interfering radar
transmissions.

Ŷl = lowpass{Ymix,l} (22)

Assuming the detection is accurate, this process isolates the
received FMCW signals from each vehicle, allowing the RSU
to estimate each vehicle’s radar spatial covariance separately.
These spatial covariances are then subsequently passed to the
communications controller, which will establish a link with
the newly detected vehicles in the area-of-coverage.

B. Radar-to-Communication Covariance Mapping
The communications controller will now leverage the spa-

tial covariance estimates collected from the passive radar to
establish a communications link. While the radar channel
and communications channels are not equivalent, the spatial
covariances may be similar since both systems operate at
mmWave and have receivers that are physically separated by
a distance no greater than the size of the vehicle. To establish
the communication link, a neural network will take the radar
spatial covariance estimate and predict the communication link
spatial covariance. The communications controller will then
compute the direction of maximum power in the APS of this
predicted covariance, select a restricted subset of beams from
its codebook closest to this direction of maximum power,
and then perform a standard beam search over this restricted
codebook. The RF precoder phase shifts are configured to
the communication controller’s selection of beams from the
codebook, and the baseband precoder can be configured using
the training symbols. By restricting the codebook of the beam
search, fewer training blocks need to be transmitted.

As per the previous section, the detector outputs a set of
sampled post-mixing signals [Ymix,l]n,i∀l ∈ D that are filtered
out to obtain Ŷl. The radar spatial covariance can be estimated
independently for each of these signals

R̂l =
1

I
ŶlŶ

∗
l . (23)

The filtering and mixing results in a large gain in the SIR,
but some interference power may still remain. Assuming

that detection l corresponds to the vehicle our system is
establishing a communication link with, The controller must
now estimate RRSU from the noisy radar covariance estimate
R̂l. A neural network will be trained and applied to handle
this mapping between the radar and communication domains.
However, direct prediction of the complete covariance matrices
ignores much of the spatial structure and requires unreasonably
high dimensional inputs and outputs. Instead, we train neural
networks to input and predict three lower-dimensional features
related to the covariance: the APS, the dominant eigenvector,
and the covariance vector, which is obtained as the first column
of the covariance matrix.

A straightforward way to realize radar-to-communication
mapping is to extract the APS from the radar and the com-
munication covariance matrices using the DFT, and use them
to train a neural network. Such a network, which predicts
the communication APS using the radar APS as input, was
described in the preliminary work [27]. Let F be a DFT
matrix. The APS d of a spatial covariance matrix R ∈ RN×N

is defined as
d = |diag (F ∗RF ) |. (24)

The directions of the beams formed by this APS are given in
radians as θn = arcsin

(
2n−N−1

N

)
, n = 1, ..., N , assuming

uniform λ/2 antenna spacing. In implementation, the radar
APS will be computed and input into the trained neural
network, which outputs a prediction of the communication
APS. If the DFT beamforming matrix is not oversampled, this
reduces the dimensionality of the neural network input and
output from N2 to N .

An alternative approach consists of using the dominant
eigenvector of the estimated radar covariance to predict the
dominant eigenvector of the communication covariance. Sim-
ilar to APS prediction, it reduces the dimensionality of the
neural network input and output from N2 to N , simplifying
the training and implementation of the neural network. Second,
it can help further isolate the signal of interest from the
remaining interference after isolation and filtering. In our
communication protocol, which will be described in detail
in Section IV-A, only a single stream will be transmitted to
each target to ensure each link has the highest possible SNR.
Therefore, predicting the dominant eigenvector of the com-
munication covariance will naturally approximate the spatial
weights corresponding to this stream. Consider the eigende-
compositions R̂l = QlΛlQ

−1
l and RRSU = QRSUΛRSUQ

−1
RSU,

where the columns of Ql and QRSU are the eigenvectors
of each covariance, and Λl and ΛRSU are diagonal matrices
containing the eigenvalues of each covariance. Let vl be the
eigenvector in Ql corresponding to the greatest eigenvalue in
Λl. Let vRSU be the eigenvector in QRSU corresponding to the
greatest eigenvalue in ΛRSU. The neural network Neig(·) will
take vl as input and predict v̂RSU. Just as the covariance has
an APS, we can define the APS d of an eigenvector v as

d = |F ∗v|2. (25)

Finally, the third alternative relies on translating the radar
covariance vector to the communication covariance vector
[27]. In this alternative, the special structure of the covariance
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Fig. 5: The neural network architecture for APS predictions.

matrix is leveraged to reduce dimensionality. Toeplitz comple-
tion [3], [36] is first used to project the measured covariance
matrix to the Toeplitz, Hermitian and positive semi-definite
cone TN

+ , i.e.,

R̃l(R̃RSU) = arg min
X∈TN

+

||X− [R̂l(R̃RSU)− σ2
nI]||F, (26)

where R̃l and R̃RSU are the projected covariance matrix for the
radar and communication channels, which could be fully rep-
resented by their first columns, denoted as r̃l, r̃RSU ∈ CNRSU×1

and called covariance vectors. This projection keeps most of
the information of a covariance matrix as it approximates
the closest Toeplitz matrix. Then, a neural network Ncol(·) is
trained to predict this communication covariance vector from
the radar covariance vector. This method also reduces the
dimensionality of the neural network input and output from
N2 to N .

C. Neural network architectures
Different network architectures are designed in this sec-

tion for the 3 covariance features described: APS, dominant
eigenvector, and covariance vector. Fig. 5 shows the network
designed to predict the communication APS from the radar
APS. 1D convolutional layers are well-known for extracting
local features and are adopted in the proposed neural network.
LeakyReLU is used as the activation function in the network to
help avoid both dying ReLU and vanishing gradient problems.
The loss function, which defines how error in the predictions
is penalized and how the gradients are determined when opti-
mizing the network, is set as the MSE between the predicted
and true communication APS.

Fig. 6 illustrates the network design for dominant eigen-
vector prediction. Unlike the APS network, the eigenvector
prediction neural network has to handle complex data. The
input to the network is a 64 element vector containing the
complex values of the input eigenvector. This complex input
vector is then converted from complex values to magnitude
and phase components. The magnitude and phase components
are then stacked together in a single vector of 128 elements.
After this restructuring, the vectorized data passes through 5
fully-connected layers containing 128, 256, 512, 256, and 128
activation units each. Each activation unit uses a LeakyReLU

activation function with a shape parameter of α = 0.1. A
dropout layer is also placed after the activations of the 3rd
fully-connected layer, with a dropout rate of 50%. The output
of the last layer is then scaled to unit norm before being output.
The output data is a 128-element real-valued vector where the
first 64 elements correspond to the real components of the
predicted eigenvector and the last 64 elements correspond to
the imaginary components of the predicted eigenvector. For
optimizing this network, the loss function shown in Algorithm
1 is used. This loss function computes the mean squared
error between the predicted eigenvector’s APS and the true
eigenvector’s APS. Each APS is computed using a Fast-
Fourier-Transform (FFT) with a 35 dB Chebyshev windowing
function applied.

Output 64 x 2

128 x 1
256 x 1 512 x 1 256 x 1

Fully-Connected layer

128 x 1

Activation layer

Input 64 x 2

Fig. 6: The neural network architecture that is trained to
predict communication link spatial eigenvectors from radar
spatial eigenvector estimates.

The final network is designed for mapping the radar covari-
ance vector to the communication covariance vector. r̃l and
r̃RSU contain both real and imaginary parts, so the network
should also take a two-channel input and output the predicted
real and imaginary part of r̃RSU, i.e.,

[R{r̂RSU}, I{r̂RSU}] = Ncol([R{r̃l}, I{r̃l}];u), (27)

where u is the network parameter to be trained. As the
covariance column is structure agnostic, and the real and
imaginary parts are processed separately, special assumptions
(e.g., the input follows any distributions or there are observable
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Algorithm 1: APS Loss
Inputs:
vpred ∈ CN×1 - Predicted eigenvector
vtrue ∈ CN×1 - True eigenvector

Begin:
c← chebwin(N,35)
zpred ← |FFT(c⊙ vpred)|2
ztrue ← |FFT(c⊙ vtrue)|2
loss← 1

N

∑N
n=1 |[zpred]n − [ztrue]n|2

return loss

spatial features) are not necessary for the input. As such, layers
that serve specific functions such as extracting local features
or keeping historical memories are not used. Fully-connected
layers, which allow learning from all the combinations of
the features embedded in the covariance, are still suited for
this situation. The network architecture used for eigenvector
prediction is reused here with slight modifications. The middle
layer containing 512 neurons is neglected, and dropout is not
used as the network is not very deep. Here we use Tanh
[37] to constrain the passing values to be in [−1, 1]. The
predicted covariance vector is transformed back to the Toeplitz
covariance matrix R̃(r̂RSU), then the loss is calculated as

L(u) = E{||diag(F∗R̃(r̂RSU)F)− dc}, (28)

where dc is the true communication APS.

IV. SIMULATION RESULTS

We will now present simulation data demonstrating the
utility of multiuser covariance separation, machine-learning
based covariance prediction, and our downlink MU-MIMO
communication scheme using these new methods to reduce
training overhead.

Fig. 7: The ray-tracing propagation environment. This models
an urban roadway with 4 lanes.

A. Simulation setup

To generate our V2I communication and radar channels,
ray-tracing simulations were conducted in Wireless Insite [38].
The simulated communication channels operate at 73 GHz
and the simulated radar channels operate at 76 GHz. The
ray-tracing environment models an urban roadway, which is
visualized in Fig. 7. In this environment, a mix of medium and
large buildings are located along both sides of the roadway. For
simulation purposes, the material of the buildings is assumed
to be concrete with a relative permittivity of 5.31, conductivity
of 1.0509 Sm−1 in the communication band at 73GHz, and
a conductivity of 1.0858 Sm−1 in the radar band at 76GHz
[39, Table 3]. The surface of the roadway is assumed to be
asphalt that has a relative permittivity of 3.18, a conductivity of
0.4061 Sm−1 at 73GHz, and a conductivity of 0.4227 Sm−1

at 76GHz [40]. Root-mean-square (RMS) surface roughness
is also modeled as 0.2mm for concrete and 0.34mm for
asphalt [40, Table 1]. In Wireless Insite, diffuse scattering is
parameterized by a scattering coefficient in the range [0, 1],
which we select to be 0.4 for concrete and 0.5 for asphalt
[41]. The fraction of diffuse reflections that experience cross-
polarization is also parameterized with another coefficient in
the range [0, 0.5], which we select to be 0.5 for both concrete
and asphalt. The material for the vehicles is assumed to be a
perfect electric conductor metal.

The placement of the vehicles along the roadway is in
accordance with option B for Urban scenarios as suggested
by 3GPP [28, 6.1.2]. In this setup, we simulate 80% of
vehicles being cars of size 5 × 2 × 1.6m and the remaining
20% of vehicles being trucks of size 13 × 2.6 × 3m. We
assume the speed of vehicles is dependent upon the lane they
are positioned in, and that the spacing between vehicles is
exponentially distributed with a mean dependent upon the
vehicle speed. The speed of vehicles in each lane are 60,
50, 25, and 15 kmh−1, denoted sl. For each vehicle, let
dl ∼ Exp(0.5/sl). Then the distance from the previous vehicle
is given by max(2, dl) [28, 6.1.2]. Note that despite ascribing
a velocity to each vehicle, each ray-tracing simulation operates
in a static environment frozen in time. For each simulation,
the type and placement of vehicles are generated randomly
and independently according to the above distributions. After
generating the vehicle placements, M cars are selected within
the area-of-coverage to be active vehicles equipped with radar
and communication arrays. In our simulations, M = 4 and
the area-of-coverage is defined as the 60m section of roadway
centered around the RSU.

The active cars are equipped with 4 communication arrays
and 4 radar arrays. The communication arrays are placed at
the front, sides, and rear of the car at a height of 1.6m.
The radar arrays are placed at the 4 corners of the car with
10◦ rotation toward the front or rear of the car and a height
of 0.75m. The antenna patterns for both the communication
and radar antenna elements are chosen to have a half-power
beamwidth of 120◦. The arrays are assumed to be ULA with
an inter-element spacing of half a wavelength. The radar and
communication channels generated this way are available at
[4].
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Active Vehicles

Roadside Unit

Antenna Arrays

Fig. 8: An aerial view of the ray-tracing environment that shows the location of the RSU and multiple active vehicles equipped
with both radar and communication transceivers.

We simulate our communication link with a transmit power
of 24 dBm. We assume rectangular pulse-shaping for sim-
plicity. We use K = 2048 subcarriers with a subcarrier
spacing of 240 kHz. D = 512 time-domain channel taps are
used to capture the delay spread of the ray-traced channels.
Furthermore, a cyclic-prefix (CP) of D−1 samples is included
in each OFDM symbol. At the RSU, the system has 4 RF-
chains and 64 antenna elements. At the vehicle, the system has
1 RF-chain and 16 antenna elements per array. The downlink
protocol is visualized in Fig. 9. This protocol is modeled
after the standalone-downlink (SA-DL) scheme proposed in
the beam management tutorial for 3GPP NR. In our protocol,
synchronization (SS) blocks are transmitted every channel
coherence time. Each SS block spans 100% of the available
subcarriers, uses 4 OFDM symbols, and supports up to 4
simultaneous beams in accordance with the number of RF-
chains. Tracking (CSI-RS) blocks are transmitted 4 times
per coherence time. Each CSI-RS block spans 25% of the
available subcarriers, uses 1 OFDM symbol, and also supports
up to 4 simultaneous beams. All other resources not occupied
with SS or CSI-RS blocks are used to transmit data to the
UE vehicles. We will explore 3 different protocol variants
for initial access: exhaustive search, assisted narrow search,
and assisted wide search. The exhaustive variant requires
all possible beam configurations to be searched over when
establishing a link. This corresponds to a typical approach
unaided by out-of-band or radar information. The assisted
variants use either the direct radar covariance estimates or
any of the three neural network predictions. In these assisted
variants, the search space of beam configurations is reduced
to a set of beams significantly smaller than the full codebook
which the exhaustive search uses. Table I lists the number of
RSU beams that are searched over for each variant, as well as
the number of SS blocks required to search over that quantity
of beams. This can be determined since each SS block supports
4 beams and the UE vehicle needs to search over 16 beams
for every RSU. The narrow search only uses 4 beams, while
the wide search uses 12 beams. For too small of a search size,
the best beam may not be selected. For too large of a search
size, the training overhead may become too costly and leave

little to no resources available for data transmission.
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Fig. 9: The downlink-based protocol. SS blocks use 100% of
the subcarriers for training data. The CSI-RS blocks use 25%
of the subcarriers for training data to track the channel.

TABLE I: Required search parameters for the three protocols.

Protocol Beam Search Size SS Blocks

Exhaustive Search 64 256
Assisted Narrow Search 4 16
Assisted Wide Search 12 48

The FMCW radars are capable of transmitting at chirp rates
in the range [10, 60]MHz s−1. Each vehicle independently
selects a chirp rate β ∼ U [10, 60]MHz s−1. Regardless of
the chirp rate, each radar transmits an FMCW waveform
with bandwidth of Br = 1GHz without downtime. The
chirp period is defined as Tp = Br

β . A random timing offset
∆t ∼ U [0, Tp]s is also selected for each vehicle. Each vehicle
uses this chirp rate and timing offset for all 4 of its radars,
assuming that all 4 radars transmit in a synchronized manner.
An additional random phase offset ϵ ∼ U [0, 2π] is added to
each transmitted radar signal.

B. Neural network training

A learning dataset was generated using the true covari-
ances of the communication channels and the estimated radar
covariances after detection and filtering. 3000 independent
environments were generated, each with 4 covariance pairs
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corresponding to the 4 active vehicles. This resulted in 12000
unique covariance training pairs. Of the 12000 pairs, 208 pairs
were not detected from their radar transmissions and were
discarded from the learning dataset, leaving 11792 properly
detected pairs. This learning dataset was isolated and kept
independent from the evaluation set used for the results shown
later. The learning dataset was randomly sampled into a
training dataset of 9434 entries and a validation dataset of 2358
entries. For each of the 3 neural networks, these covariances
were pre-processed into APS’s, dominant eigenvectors, and 1st
columns of the covariance matrices.

The neural network was trained using the Adam optimizer.
Early-stopping was used to halt training after a plateau of 16
training epochs and to restore the best weights that minimized
the validation set. The learning rate was also halved after
plateaus of 6 training epochs, down to a minimum learning
rate of 1e − 6. The training was run using Tensorflow and
accelerated using an Nvidia GTX 1060 GPU.
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Fig. 10: An example of the trained network predicting an
eigenvector input from the evaluation dataset. This example
shows good alignment with the main beam of the communi-
cation APS and the predicted eigenvector’s APS.

C. MmWave link configuration
Using the parameters above, we will now simulate the

communication link in a Monte Carlo fashion to character-
ize the performance of the analog beamforming stage, and
compare the three proposed network architectures for radar-
to-communication mapping. 1000 independent environments
were generated. For each environment, one active vehicle was
selected at random to be in initial access, while the remaining
three vehicles were selected to be in tracking. Channels were
labeled as LOS if a direct path with zero reflections existed in
the ray-tracing results. Otherwise, the channels were labeled
as NLOS. Since the communication link operates in the band
from 73GHz to 74GHz and the automotive radars operate in
the band from 76GHz to 77GHz, we assume that spectral
leakage is negligible.

As mentioned in Section IV-A, three beam training proto-
cols were evaluated: exhaustive search, assisted narrow search,
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Fig. 11: A second example of the trained network predicting
an eigenvector input from the evaluation dataset. This example
shows a prediction where there is still some angular error
between the peak of the predicted APS and the communication
APS.

and assisted wide search. Each protocol defines a search space
of beams which will be evaluated during the SS transmissions
and requires a different number of SS blocks to be sent.
Assume the RSU uses the same 2-bit DFT codebook for its
NRSU = 64 beams, and that the UE uses the same 2-bit DFT
codebook for its NV = 16 beams. Let Q(.) define the 2-
bit quantization function. Then the RSU codebook CRSU is
defined as

[CRSU]i = Q
(

1

NRSU
aRSU

(
arcsin

(
2i−NRSU − 1

NRSU

)))
∀i ∈ [NRSU]. (29)

Similarly, the UE codebook CV is defined as

[CV]i = Q
(

1

NV
aRSU

(
arcsin

(
2i−NV − 1

NV

)))
∀i ∈ [NV]. (30)

Let the beam search spaces for vehicle u be defined as a
set SRSU,u and SV,u. Then the best RF-precoder fu and RF-
combiner wu are selected as

{fu,wu} = arg max
fu∈SRSU,wu∈SV

K∑
k=1

log2
(
1 + (w∗

uHu[k]fu)
2
)
.

(31)
We assume that the vehicles in tracking always select the best
pair of RF-precoders and RF-combiners, so for those vehicles
SRSU,u = [NRSU] and SV,u = [NV]. Let the selected RF-
precoders and RF-combiners be stacked into matrices such that
[FRF]u = fu and [WRF]u = wu. If we assume that FBB[k]
and WBB[k] are diagonal matrices, then the signal power and
interference power for the stream to UE u at subcarrier k can
be defined as

Psig,u[k] = ([WRF]
∗
uHu[k][FRF]u)

2, (32)
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and
Pint,u[k] =

∑
l ̸=u

([WRF]
∗
lHu[k][FRF]l)

2. (33)

Recall that we transmit each stream with a power of Pt =
24 dBm. With equal power allocation across all subcarriers,
each subcarrier in each stream has a transmit power of Pt =
−9.1 dBm. Assume a thermal noise of N0 = −174 dBm/Hz,
a system noise factor of 10dB, and a subcarrier spacing of
Bsc = 240MHz. Then the noise power per subcarrier is Pn =
−110.2 dBm. The signal-to-interference-noise ratio (SINR)
can be defined as

SINRu[k] =
Psig,u[k]Pt

Pint,u[k]Pt + Pn
. (34)

After computing the SINR, the spectral efficiency can be
defined as

su =
K∑

k=1

log2 (1 + SINRu[k]) . (35)

Let Ttrain be the effective time spent transmitting training data
from the SS and CSI-RS blocks. “Effective” refers to an
average over all subcarriers. Let NSS be the number of SS
blocks and NCSI-RS be the number of CSI-RS blocks sent in the
transmitted frame. Also let ν denote the fraction of subcarriers
used by CSI-RS blocks. The effective training time is then
computed as

Ttrain = Tsym
NSSNsym-per-SS + νNCSI-RSNsym-per-CSI-RS

Nbeams
. (36)

Now define Tcoh as the channel coherence time and assume
that the communication system repeats its training protocol
every Tcoh seconds. We can then compute the effective rate
Ru for each link as

Ru = (1− Ttrain

Tcoh
)Bscsu. (37)

The sum-rate is then defined as

RΣ =
∑
u

Ru. (38)

The sum-rate results are plotted in Fig. 12 for the assisted
narrow search and Fig. 13 for the assisted wide search. Both
plots include the exhaustive search results for comparison. Due
to the large training overhead of the exhaustive search, the ex-
haustive strategy achieves poor sum-rates for short coherence
times. Below 0.005 s, the exhaustive strategy requires more
training symbols than what can be fit within one coherence
interval, resulting in no data transmission. Comparatively,
the assisted strategies allow the links to be established for
even short coherence intervals. In Fig. 12, the assisted search
based on covariance vector prediction achieves the highest
rate for the entire range of coherence times, with the assisted
search based on the eigenvector prediction slightly below.
The pure radar-assisted search without learning based radar-
to-communication mapping has similar performance at long
coherence times, but the performance declines much faster at
shorter times. The APS prediction neural network provides the
lowest sum-rates of the assisted strategies at longer coherence
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Fig. 12: The Monte Carlo sum rate results over all 4 users
using an exhaustive search and all versions of the assisted
narrow search.
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Fig. 13: The Monte Carlo sum rate results over all 4 users
using an exhaustive search and all versions of the assisted
wide search.

times, yet outperforms the radar-assisted search at very short
coherence times. All of the assisted strategies show signifi-
cant rate improvements over the exhaustive search, which is
infeasible for short coherence times due to the large training
overhead required. In Fig. 13, all the assisted methods use
slightly more training overhead to reduce the likelihood that
the optimal beam is missed. As a result, the difference in sum-
rates between assisted strategies based on covariance vector
prediction, eigenvector prediction, and pure radar-assisted is
reduced.

D. Outage and Detection Errors

Our system can experience two main failures. The first is
a failure to detect an FMCW signal that was transmitted.
This will be called the probability of missed detection Pm.
The second is failure to achieve a high enough SNR in the
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communication link to transmit at a meaningful data rate. This
will be called the probability of outage Po. These metrics are
evaluated on the vehicle in initial access for each simulation
instance. Of the 1000 instances each with a single vehicle
in initial access, the FMCW transmissions were not detected
in 15 instances giving Pm = 0.015. Of the remaining 985
instances, the sum rate results were computed. Let us define
the minimum supported rate as Rmin and the index of the
vehicle in initial access in instance i, out of Ni total instances,
as ui. The rate for this vehicle is Rui

. Then the probability of
outage is defined as

Po =
1

Ni

Ni∑
i=1

1(Rui < Rmin). (39)

Set Rmin = 100Mbps. Of the 985 instances with correct
detection, 775 were classified as LOS and 210 were classified
as NLOS. The assisted wide search (12 beams) was used
for these results. The LOS probability of outage is shown
in Fig. 14, and the NLOS probability of outage is shown in
Fig. 15. As expected, the NLOS cases tend to have a higher
probability of outage for all beam training methods. Below co-
herence times of Tcoh = 5ms, the exhaustive search requires
too many spectral resources to complete before the channel is
incoherent, resulting in a probability of outage of 1. In both
the LOS and NLOS cases, the covariance vector prediction
neural network yields a reduction in the probability of outage
compared to all other methods for coherence times below
approximately 6ms. Eigenvector prediction and pure radar-
assisted strategies have roughly similar performance, while
APS prediction has a notably higher outage probability in
the same region. This demonstrates that our assisted strategies
provide clear benefits over an exhaustive search in both LOS
and NLOS propagation environments at short coherence times.
Furthermore, learning-based assisted methods, especially the
covariance vector prediction, can provide even further benefits
compared to a pure radar-assisted search.
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Fig. 14: The LOS probability of outage for the vehicle in initial
access with an outage rate of Rmin = 100Mbps.
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Fig. 15: The NLOS probability of outage for the vehicle in
initial access with an outage rate of Rmin = 100Mbps.

V. CONCLUSION AND FUTURE WORK

In this work, we extended the application of radar-assisted
beam training to multi-user communications. We designed a
processing chain to estimate the individual spatial covariances
of multiple interfering FMCW signals measured at a passive
antenna array, and trained a neural network to predict selected
features of the communication spatial covariances based on the
estimated radar covariances. The proposed approaches were
evaluated against a traditional exhaustive beam search strategy
and an approach that used the APS of the estimated radar
covariance without any further refinement based on a neural
network. The features used for neural network prediction
include the APS, the dominant eigenvector, and the covariance
vector. Ray tracing software was used to generate mmWave
radar and communication channels to create a training set for
optimizing the neural network, and an evaluation dataset for
comparing the beam training methods. The proposed assisted
methods show drastic increases in the sum-rate compared to
the exhaustive search. Our study additionally showed that the
assisted search based on the learned covariance vector provides
higher sum-rates and a lower probability of outage than all
other assisted methods, in both LOS and NLOS environments.

These results show that out-of-band spatial information from
passive radars can be used for multi-user systems when special
processing is implemented to estimate signal parameters and
filter out interference. In addition, the intricate differences
between radar spatial characteristics and the communication
channel spatial characteristics can be learned through deep
learning, yielding more accurate channel predictions even in
NLOS channels. This improved accuracy allows the system
to reduce the size of its beam search, significantly reducing
overhead and increasing the data rate.

Future work should explore the detection of automotive
radars beyond FMCW, including OFDM and PMCW radar.
On the communications side, addressing the problem of radar-
aided beam reconfiguration, to track the variations of the
vehicular channels after the link has been established, is also
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an interesting area of research.
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