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High-dimensional feature vectors are likely to contain sets of measurements that are approximate replicates of one
another. In complex applications, or automated data collection, these feature sets are not known a priori, and need
to be determined.

This work proposes a class of latent factor models on the observed, high-dimensional, random vector X € RP,
for defining, identifying and estimating the index set of its approximately replicate components. The model class
is parametrized by a p X K loading matrix A that contains a hidden sub-matrix whose rows can be partitioned into
groups of parallel vectors. Under this model class, a set of approximate replicate components of X corresponds to
a set of parallel rows in A: these entries of X are, up to scale and additive error, the same linear combination of the
K latent factors; the value of K is itself unknown.

The problem of finding approximate replicates in X reduces to identifying, and estimating, the location of the
hidden sub-matrix within A, and of the partition H of its row index set H. Both H and H can be fully characterized
in terms of a new family of criteria based on the correlation matrix of X, and their identifiability, as well as that
of the unknown latent dimension K, are obtained as consequences. The constructive nature of the identifiability
arguments enables computationally efficient procedures, with consistency guarantees.

Furthermore, when the loading matrix A has a particular sparse structure, provided by the errors-in-variable
parametrization, the difficulty of the problem is elevated. The task becomes that of separating out groups of
parallel rows that are proportional to canonical basis vectors from other, possibly dense, parallel rows in A. This
is met under a scale assumption, via a principled way of selecting the target row indices, guided by the successive
maximization of Schur complements of appropriate covariance matrices. The resulting procedure is an enhanced
version of that developed for recovering general parallel rows in A. It is also computationally efficient, consistent.
It has immediate applications to latent space overlapping clustering and the estimation of loading matrices that
satisfy a canonical parametrization.

Keywords: High-dimensional statistics; identification; latent factor model; matrix factorization; replicate
measurements; pure variables; overlapping clustering

1. Introduction

Latent factor models are simple, ubiquitous, tools for describing data generating mechanisms that yield
random vectors X € R” with possibly very correlated entries, and subsequently approximately low-
rank covariance matrix. The history of factor analysis can be traced back to the 1940s [31-34,37-39],
with foundational work established by [5], and a wealth of recent works motivated by applications
to economy and finance, educational testing and psychology, forecasting, biology, to give a limited
number of examples.
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A factor model assumes the existence of an integer 1 < K < p and of a random vector Z € RK of
unobservable, latent, factors, such that the observed X € R” has the representation

X=AZ+E, (1.1)

for some real-valued loading matrix A € RP*K and random noise E € R” uncorrelated with Z. The
corresponding covariance matrix of X has the expression £ = AXz AT + X, where X7 is the covariance
matrix of Z and X that of E. A large amount of literature has been and continues to be devoted to the
estimation of approximately low-rank covariance matrices corresponding to factor models, for instance,
[1,16-18,22-25,27], to name a few.

A related, but different, line of research is devoted to the estimation of the loading matrix A itself, in
identifiable factor models that place structure on A [2-10,12,20,23,24,28,29].

We treat a problem of an intermediate nature in this work: we also model the dependency between
the components of a high-dimensional random vector X € R” via latent factors, as in the covariance
estimation literature, and place structure on A, as in the literature devoted to loading matrix estimation,
but our focus is different. We study factor models relative to matrices A that are allowed to have groups
of parallel rows, a structure that in general is not sufficient for identifying A. The indices of rows
that are respectively parallel form a partition H of the collection H of all indices of parallel rows in
A. The components X; of X, with j in a group of H are, up to scale and additive error, the same
linear combination of the background latent factors. This parametrization of A thus provides a way
of modeling those components of X that are very highly dependent, in that they are “approximate
replicates” of each other, while allowing for general dependency between the other entries in X, albeit
modeled via a factor model.

Very high-dimensional random vectors do typically have entries that are approximately redundant,
and we give only a few motivating examples from biology. For instance, in human systems immunol-
ogy, in addition to measuring serological features (cytokines, chemokines, antibody titers etc) that are
highly correlated with each other, one often measures the same feature under slightly different technical
conditions (e.g. same titer measured at different serum dilutions, same cytokines measured using differ-
ent technical platforms). In genetic perturbation experiments, one could quantify the effect of the exact
same genetic perturbation using different reporter assays. Although some of these redundancies may
be obvious based on the experimental design (technical redundancies), others are known to be induced
by latent, underlying biological mechanisms, but it is unknown which of the collected measurements
reflect them. We address the latter problem in this work.

We study factor models on high-dimensional vectors X € RP that contain approximate replicate com-
ponents, in unknown positions. The focus of our work is in determining their locations, a problem that
reduces to that of identifying and estimating the location of a hidden sub-matrix of A, with unknown
row index set H, and of unknown partition /. Since the entirety of a matrix A with such structure
is typically not identifiable, we also study an instance of it, provided by an added sparsity constraint,
under which both a hidden sparse sub-matrix of A, and A itself are identifiable.

The following section provides a detailed summary of our approach and results.

1.1. Our contributions

To state our results, we will assume that X follows a factor model (1.1) with A € RP*X and rank(A) = K,
E[E]=0  and  Xp=E[EE"]=diag(o7}....,07)>0

and Z is standardized such that

E[Z]=0 and diag(Zz)=1 with Xz:=E[ZZ'] and rank(Zz)=K.
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We make the following assumption, which we will show later identifies K. It is based on the intuition
that for p > K, the matrix A is expected to contain many parallel rows.

Assumption 1. The index set of parallel rows

H:= {ie {L,...,p}: Ai. [| Aj. for some j e{l,...,p}\{i}}

of A is non-empty and rank(Ag.) = K.

The partition of H consists of disjoint sets H,. ..,Hg, and all indices i, j € Hy correspond to parallel
rows A;. and A;., for each k € [G] :={1,2,...,G}. The assumption H # & and rank(Ag.) = K implies
that G > K, and |Hy| > 2 for each k € [G]. While we are not aware of a study of factor models under
Assumption 1, we mention that it is a generalization of the errors-in-variables parametrization, see for
instance [45], which we discuss in more detail below.

With the parametrization of A provided by Assumption 1, we define approximate replicate measure-
ments relative to the parallel rows in A as the groups of variables X;, with j € Hy and k € [G]: they are,
up to scale, the same linear combination of the K background factors, up to the additive measurement
error term £E;. The problem of detecting approximate replicate features X; reduces to that of recovering
the parallel rows of A, and their partition.

In the context of this problem and modelling assumptions, we give below the organization of the
paper, section by section, and summarize our contributions.

1.1.1. Section 2: Identification and recovery of approximately replicate features

The results of our Section 2 can be summarized as follows.

1. A new score function for an if and only if characterization of the partition of parallel rows of
a loading matrix. We show in Section 2.1 that Assumption 1 is sufficient for the unique, and con-
structive, determination of H, its partition H = {H,,...,Hg}, and K from the correlation matrix
R = [Corr(X;, Xj)]; je[p]- In Proposition 1, we prove the non-trivial fact that the parallelism between
rows of A is preserved by appropriately modified rows in R. To be precise, we show that the vectors
R;.\(i,jy and R;.\ (; jy, each defined by leaving out, respectively, the ith and jth entries from the rows
R;. and Rj., are parallel in RP =2 if and only if A;. and A ;. are parallel. This realization, combined with
the fact that two non-zero vectors v, w are parallel if and only if

min ||av+ Bw|,; =0
ll(@,B)ll=1 Fwla

for any 0 < r < oo and 0 < g < oo, naturally leads to defining the class of criteria

Sqrli-))=(p=271 min _ [laRiugizy + BRia - Forany iej € [p] (12)
for identifying parallel vectors in A via the model-independent correlation matrix R.
In Proposition 2, we establish the following characterization of both H and its partition H,

Sq.r(i,j)=0 & i jeH, forsomeac]|G] (1.3)

for any 0 < r < 00 and 0 < g < co. The new criteria (1.2) are indexed by two parameters (g,r). Propo-
sition 2 shows that r = co is optimal. In practice, we prefer (g,r) = (2,00) since S o, can be written in
closed form, as proved in Proposition 3. In Theorem 4, we prove that Assumption 1 identifies not only
H and H, but the dimension K as well.
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To the best of our knowledge, the only criterion similar in spirit to our proposed (1.2) is that in [14],
introduced in the much more restricted setting of a factor model in which the matrix A has only 0/1
entries, each row is a canonical basis vector e; € RX, and the p rows can be partitioned in K groups
of replicates of ey, for each k € [K]. Thus, in our notation, H = [p] and G = K. In this mathematically
simpler setting, it suffices to compute the supremum-norm

IZie\ 0,73 = Zje\ i, leo

of the differences between rows ;.\ (; j3 and Z;. (; j; of the covariance matrix £ = Cov(X), for all
pairs i, j € [p]. When A has general real-valued entries, this criterion no longer discriminates between
general parallel rows, which we prove is made possible by an additional minimization over (@,() on
the set {(e,8) € R? : ||(a, B)|l = 1}. Furthermore, our proposed class of criteria is based on the scale
invariant correlation matrix R.

2. A new method for estimating the approximate replicate index set, its partition, and the latent
dimension. As the identifiability proofs of H and K are constructive, they lead to a practical estimation
procedure, stated in Section 2.2, that is easy to implement, even for large p. Section 2.2 first introduces
the empirical counterpart :S'\q,r of the criterion S, , in (1.2), by simply replacing R by the empirical
correlation matrix R. From the ti ght, in probability, bound

max Sy, . J) = Sq.r(0,)] < 26

in Theorem 6 of Section 2.3, with §,, = O(4/log(p V n)/n), in conjunction with the characterization of
H in (1.3), we estimate H by the set H of all pairs (i, j) with §q,r(i,j) < 26,. In this paper, we derive
the order of magnitude of §,, under the assumption that X is sub-Gaussian.

In Corollary 7 of Section 2.3 we show that H and its partition H consistently estimates H and H,
respectively. After estimating H and H, Section 2.2 devises the estimation of K, exploiting the fact that
Y —Xg = AXzAT has rank K. Theorem 8 in Section 2.3 shows that this procedure is consistent under
mild regularity conditions.

1.1.2. Section 3: Identification and recovery under a canonical parametrization

While in Section 2 we studied the recovery of generic approximate replicates, in this section we shift
focus to replicates generated in a particular way, and motivate our interest in this problem below.
1. Pure variables with arbitrary loadings. A particular instance of Assumption 1 is

Assumption 2. There exists a subset / € H such that A;. (up to row permutation) contains at least two
K x K diagonal matrices with non-zero diagonal entries,

to which we refer in the sequel as a canonical parametrization. This assumption can be re-stated,
equivalently as

Assumption 2’. For any k € [K], there exist at least two i, j € H with i # j such that A; #0, Ajx #0
and Ajir = Ajir =0 for all k" € [K] \ {k}.

This version of the assumption will be referred to as the pure variable parametrization. The collec-
tion of the set of indices with existence postulated by Assumption 2’ is the set /, defined in Assump-
tion 2. We let 7 = {I;,...,Ix} denote its partition.

One arrives at this sparse parametrization of A from both mathematical and applied statistics per-
spectives. It has been long understood, see for instance [5,7], that a particular version of Assumption 2
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determines A uniquely. When [ and Zg are known, it is sufficient to assume the existence of only one
diagonal sub-matrix in A, whereas the existence of a duplicate is a sufficient identifiability condition,
when neither I nor Xg are known [8].

From an applied perspective, the interest in this parametrization can be most easily seen from its
equivalent formulation, Assumption 2’. It is popular in the social sciences literature [36,41], and is rou-
tinely used in educational and psychological testing, where the latent variables are viewed as aptitudes
or psychological states [5,13,42]. The components of X are test results, with some tests specifically
designed to measure only a single aptitude Z;, for each aptitude, whereas others test mixtures of apti-
tudes.

This brings into focus a particular type of the replicate measurements considered here, sparse repli-
cates, which satisfy X; = Ajx Z + Ej, for all j € I, and each 1 < k < K. By experimental design, the
index sets I and the dimension K are known in the classical applications mentioned above, and in this
case Assumption 2’ is known as the errors-in-variables parametrization, see for instance the review
paper [45].

In modern applications, when p is very large, as in genetic applications, or when many features are
automatically collected, neither / nor K are known in advance, and are not identifiable without fur-
ther modeling assumptions. We show in Section 3 that Assumption 2, or equivalently, Assumption 2,
is sufficient for this task. We call the latter the pure-variable parametrization by following earlier
terminology used in conjunction with models similar in spirit to ours, such as non-negative matrix fac-
torization [19] and network analysis (see, for instance, [30]), but which are otherwise mathematically
different.

A noteworthy aspect of Assumption 2 is that the loadings A;; and Aj; of two pure variables X; and
X, connected to the same latent factor Zy, are allowed to be different. This is in line with assumptions
made in topic models [6,9], but has not yet been extended, to the best of our knowledge, to latent factor
models for arbitrary random vector X € RP, corresponding to Z € RX and a matrix A with arbitrary real
values. The work of [8] uses a restricted version of Assumption 2’, motivated by biological applications,
in which |A;x| = |Ajx| = 1. Their entire estimation procedure of I and A is crucially tailored to a model
in which all pure variables, in all groups, have the same loading, by convention taken to be equal to one,
and it cannot be generalized to the model under the parametrization considered here. The procedure we
propose, and therefore its analysis, are new, and entirely different from existing work.

2. Identifying the pure variable index set when the loading matrix has additional, non-pure, par-
allel, rows. Allowing for different loadings of the pure variables brings challenges in establishing the
identifiability of I and therefore of A, especially when we allow for the existence of other parallel, but
with arbitrary entries, rows in A. In Section 3.1, we formally establish the identifiability of I and of
its partition I = {[y,...,Ix} under Assumption 2’, and an additional assumption that we will discuss
shortly.

Based on the observation that / C H, the first step towards identifying / finds the set of parallel rows
H and its partition /. When there are no parallel rows of A corresponding to non-pure variables, H
and H reduce to I and 7, respectively, and the results of Section 2 apply directly. However, if there
exist non-pure variables corresponding to rows in A that are parallel, it turns out that the set I is not
identifiable: the index set J; corresponding to these non-pure variables is also included in H, and
H=1U/J.

Separating  from J; reduces to selecting K distinct indices from H, and proving that they corre-
spond to pure variables. One has liberty in selecting these indices. We opted for selecting those that
correspond to variables that contain as much information as possible. A systematic way of selecting K
representive variables is given in Lemma 9 of Section 3.1 based on successively maximizing certain
Schur complements of the low-rank matrix Cov(AZ) = AXzAT. These quantities are equivalent with
conditional variances, when Z follows a Gaussian distribution. Whereas this selection process may be
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of interest in its own right, we guarantee that its output is indeed a set of pure variables under the addi-
tional Assumption 4, stated in Section 3.1. It is a scaling assumption, that compares the loading |A |,
for each j € J; and k € [K], with max;¢j, ||A;.||1, the largest loading of pure variables in /.

We formally prove in Theorem 10 of Section 3.1 that the pure variable index set /, its partition, as well
as the assignment matrix A, are indeed identifiable under Assumptions 2’ & 4. We give a constructive
proof that determines these quantities uniquely from the correlation matrix R.

3. Estimating the pure variable set and its partition, with guarantees. The estimation of I follows the
steps of the identifiability proofs. As the first step estimates H and K by the procedure in Section 2.2, we
revisit theoretical guarantees of / and K under Assumption 2’. We show, in Corollary 11 of Section 3.3,
that H estimates /, while possibly including a few indices i, j belonging to non-pure variables that are
near-parallel in the sense that S, (i, j) < 465,.

Theorem 12 in Section 3.3 further shows the consistency of K under mild assumptions, in particular
on the size of the indices corresponding to the non-pure variables that are near-parallel.

After consistently estimating K, Section 3.2 gives a principled way for sifting the pure variables from
other variables with indices in the set H. This pruning step is a sample adaptation of the constructive
method given, at the population level, in Lemma 9 of Section 3.1. Theorem 13 of Section 3.3 shows
that this procedure consistently yields the pure variable index set, under certain regularity conditions.
Its technical proof involves comparing estimated Schur complements of appropriate sub-matrices of
AXzAT. These quantities are not easy to handle, especially under the additional layer of complexity
induced by the existence of near parallel variables, and a delicate uniform control between these ma-
trices and their empirical counterparts is required. Nevertheless, under a simple set of conditions, we
prove that our proposed procedure consistently finds the partition of the pure variable index set.

An application of the new procedure is provided by latent overlapping clustering, using the rationale
in [8], but adding the flexibility provided by Assumption 2’.

A second application is to the estimation of a loading matrix A which satisfies Assumption 2’. The
most difficult step in estimating A is the construction of an estimator / of the set /, which is one of the
focus points of this work. Once an estimator / is found, [8] proposed the following strategy: estimate A
by concatenating estimators A7,, A7, of the sub-matrices A7. and A., where J = [p]\ 1, J =[p]\ I, and
for any matrix M and row index set S, we denote by Ms. the sub-matrix formed from M by retaining
S rows. The authors showed that the resulting A is minimax-rate optimal and adaptive, but worked
under the assumption that all pure variables loadings in Assumption 2’ are equal to 1, and therefore
A7, is a matrix consisting in canonical basis vectors. While we adopt the same strategy as in [8] for

the overall estimation of A, we complement it by providing, in Section 3.4.1, an estimator A}. tailored
to Assumption 2’. Under fairly mild regularity conditions, we establish its consistency in Theorem 14,
and show that the resulting estimator of A continues to be minimax-rate adaptive in Theorem 15.

1.1.3. Appendix: Proofs and simulations

All proofs are collected in the Appendix A [11]. Perhaps of independent interest, as a byproduct of
our proof, we establish in Appendix A.3 deviation inequalities in operator norm for the empirical
sample correlation matrix based on n independent sub-Gaussian random vectors in R”, with p allowed
to exceed n. While similar deviation inequalities for the sample covariance matrix have been well
understood [15,35,40,43], the operator norm concentration inequalities of the sample correlation matrix
is relatively less explored. [21] studied the asymptotic behaviour of the limiting spectral distribution
of the sample correlation matrix when p/n — (0,00). [26,44] prove a similar result for Kendall’s tau
sample correlation matrix.

Appendix B contains all simulation results and practical considerations associated with the imple-
mentation of our procedure, including the selection of tuning parameters and a pre-screening procedure
that detects variables with weak signal.
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1.2. Notation

For any positive integer d, we write [d] := {1,...,d}. For two real numbers a and b, we write a V b =
max{a,b} and a A b = min{a, b}.

For any vector v € R, we write its {g-norm as ||v||, for 0 < g < co. We denote the k-th canonical
unit vector in R? by ey, that has zero coordinates except for the k-th coordinate, which equals 1. Two
vectors u,v € R¥ are parallel, and we write v // u, if and only if | sin(£(u,v))| = 0. For a subset S c [d],
we define vg as the subvector of v with corresponding indices in S.

Let M € R4%% be any matrix. For any set S; C [d;] and S, C [da], we use Ms, s, to denote the
submatrix of M with corresponding rows S; and columns S;. We also write Mg, s, by removing the
comma when there is no confusion. In particular, Ms,. (M.s,) stands for the whole rows (columns) of
M in Sy (S>). We use ||[M]||op, ||M||r and || M || to denote the operator norm, the Frobenius norm and
elementwise sup-norm, respectively. For any positive semi-definite matrix M, we denote by Ay (M) its
k-th eigenvalue with non-increasing order.

Let § =8; U--- U Sk be the collection of K sets of indices with S C [p]. For any i,j € [p], the

notation i 3 j means that there exists k € [K] such that i, j € Si. Its complement i ; j means i and j do
not simultaneously belong to any S;. Let X := Cov(X) be the covariance matrix of the random vector
X € R? with diagonal matrix Dy = diag(X1i,...,Xpp) and we denote the correlation matrix of X by

12w n-1/2
R=D3'"*xD7'?.

2. Identification and recovery of approximately replicate features

In this section we show that under Assumption 1 stated in the Introduction, both H and its partition
H introduced in Section 1.1, as well as the latent dimension K, can be uniquely determined from the
scale invariant correlation matrix R. Our identifiability proofs are constructive, and are the basis of the
estimation procedures described in Section 2.2, and further analyzed in Section 2.3.

2.1. Identification of the parallel row index set and latent dimension of A

We begin by noting that model (1.1) implies the decomposition
Y = AS,AT + 3,

and consequently
R = D;'?sD;'? = BS,BT 4T, @1

where

-1/2

-1/2 -1/2
s .

B:=D A and T := Dy ZED2

Since the matrix B has the same support as A, both matrices A and B share the same index set H of
parallel rows, and its partition H.

The following proposition provides an if and only if characterization of both A and H. Its proof is
deferred to Appendix A.1.1. We assume min;¢[p] [|A;.|l2 > 0. Otherwise, we remove all zero rows of A

in the pre-screening step described in Appendix B.6. The notation i 2 J means that both i, j € Hy, for
some k € [G]. For any i,j € [p], let R; \(; j} € RP~2 denote the ith row of R, with the entries in the ith
and jth columns removed.
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Proposition 1. Under model (1.1) and Assumption 1,

H .

1~] — Ai- // Aj. — Ri,\{i,j} // R],\{l,]} (22)
Furthermore, H and H are uniquely defined."

The first equivalence in (2.2) trivially follows from the definition of H. The second equivalence in
(2.2) is key, especially with a view towards estimation, as it shows that the connection between H and
A can be transferred over to the correlation matrix R, a model-free estimable quantity.

To make use of Proposition 1, first recall that for any two non-zero vectors v and w, we have

vijiw = min |lav +bwl|, =0
ll(a.b)lly=1 4

for any integers 0 < ¢ < o0 and 0 < r < co, with (a,b) € R2. This observation, in conjunction with
Proposition 1, suggests the usage of the following general score function for determining, construc-
tively, the index set H:

Sq.r )= =274 min R\ + bR vipll, (2.3)
lta.b)l-=1
forany i # j,0 < r < oo and 0 < ¢ < co. The factor (p —2)~'/4 serves as a normalizing constant. The

following proposition justifies its usage, and offers guidelines on the practical choices of r and g. Its
proof can be found in Appendix A.1.2.

Proposition 2 (A general score function for finding parallel rows). Under model (1.1) and Assump-
tion 1, we have:

(1) iRj = S,,0.j)=0forany0<r<ocoand0<q < co.
(2) For any fixed i, j € [p], Sq,r(i,]) defined in (2.3) satisfies

Q) Syus(if) = Sq.r(inj) forall 0 <r <t < oo;

(i) S;,-(i,j) = Sq,r(i,j) forall t > q.

In view of part (1) of Proposition 2, one should select (g,r) such that S (i, j) is as large as possible

whenever i ¥ j. Part (2)(i) of Proposition 2 immediately suggests taking r = co and considering the
class of score functions

Sq(i,]) = Sg.e0(ts )= (p=2)""9 min  |laR; )iy + bR\ (i, - (2.4)
(a.b) =1

In conjunction with part (2)(ii) of Proposition 2, the most ideal score function is

Seolis):= Soooliof) = | min _ [laRin iy + bRjippll  Vins € pL
corresponding to g = co. While this score function could in principle be computed via linear program-
ming, it is expensive for very large p since Seo,o0(i,j) needs to be computed for each pair (i,j). A
compromise is to choose g = 2, especially because the score function

S2(i, ) 1= 82,00(1, ) = (2.5)

\/ 3 @bl in _[laRe i,y +BRj gl

IThe partition H is unique up to a group permutation.
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has a closed form expression, given in Proposition 3 below and proved in Appendix A.1.3. To simplify
our notation, and recalling that R; \ ; j1, Rj\(i,j} € RP~2, we define

Vil = Ry Ry Vi = Ry Ry Vi €lpl

Proposition 3. The score function S»(i, j) defined in (2.5) satisfies

(lj) (i) (i)q2
(s p)? = [y Vijelp]
2 p-2 V) Sl
i jj
In particular, under model (1.1) and Assumption 1, we have:
i~j = S>(i,j) =0. (2.6)

We showed in Proposition 1 that H and its partition H are identifiable under Assumption 1, via
an if and only if characterization of H, and further provided, in Proposition 3, a constructive if and
only if characterization of H. The latter is used in the proof of Theorem 4 below to show that the
latent dimension K = rank(Mpgpg), with M := AZzAT, can be uniquely determined, by showing that
the matrix My g itself is identifiable. Theorem 4 summarizes these identifiability results and its proof
is given in Appendix A.1.4.

Theorem 4 (Partial identifiability). Under model (1.1) and Assumption 1, the set H, its partition H
and G = |'H| are unique. Moreover, if additionally

H .,
IR\ (i, jyllg >0, Vi~ j, 2.7)
holds, for any q > 0, then K is uniquely determined.

Condition (2.7) ensures the uniqueness of Mg g. It holds if there exists at least one € € [p] \ {i,j}
such that R;, # 0 for all i 1 Jj. Equivalently, under Assumption 1, (2.7) holds if each column of AZIZ/ 2
contains at least three non-zero entries. The latter is known to be necessary for identifying M, see
Theorem 5.6 of [5].

Assumption 1 and (2.7) are sufficient for identifying K, but not the entire matrix A. To see this, note
that for any invertible matrix Q € REXK there exists some diagonal (scaling) matrix D € RKXK such
that AZ = AZ, where A = AQD has the same index set H as A, and the covariance matrix COV(Z) of
Z:=D"'Q" 1Z is positive definite and satisfies dlag[Cov(Z)] 1, as Cov(Z). We therefore term partial
identifiability the results of Theorem 4. We revisit them in Section 3, where we introduce assumptions
under which not only K, but also A of model (1.1) can be identified.

2.2. Estimation of the parallel row index set H, its partition /{ and latent
dimension K

Suppose we have access to n i.i.d. copies of X € R?, collected in a n X p data matrix X. We write the
sample covariance matrix as

< 1
T=-X"X
n
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and denote the sample correlation matrix by ﬁ, with entries
Rij = %ij/\[Zii%))s Vi, jel[p].

Our estimation procedure is the sample level analogue of Theorem 4 of Section 2.1 above: we first
estimate the parallel row index set H and its partition 7, then we estimate K. The statistical guarantees
of these estimates are provided in Section 2.3.

Recall from part (2)(i) of Proposition 2 that we use S, (i, j) := Sq (i, j) as a generic score for finding
H, with any ¢ > 1. We propose to estimate S (i, j) by solving the optimization problem

Sain == min _|aR i+ bR; )| 2.8)
(@) eo=1 g

for each i, j € [p] and i # j. In particular, Proposition 3 implies that §2(i, J) has the closed form

AN VR 12

2

2.9)
—2 SN
P V” V

with ‘71(;]) = [Ei,\{i,j}]-rﬁj,\{i,j} for all i, € [p].

Remark 1. For any pair (i, j) and any ¢ > 1, the criterion §q(i, Jj) in (2.8) can be computed by solving
two convex optimization problems because S, (i, /) is equal to

(p=2)""/% min :ﬁﬂis“l laRi iy + Rjvgillgs mi 1Ry + bEj,\{i,j}llq} :

In particular, for g = co, computation of Seo (i, j) requires solving two linear programs, while for g = 2,
we have the closed form expression in (2.9).

Algorithm 1 gives the procedure of estimating parallel row index set, which reduces to finding all
pairs (i, j) with Sq(z J) below the threshold level 2§. It returns not only the estimated index set H,
but also its partition ‘H = {H Iy H } Algorithm 1 requires one single tuning parameter §, with an
explicit rate stated in Section 2.3. A fully data-driven criterion of selecting ¢ is stated in Appendix B.1,
relying on the following lemma that shows that the number of estimated parallel rows of Algorithm 1
increases in d.

Lemma 5. Let H (6) be the estimated set of parallel rows from Algorithm 1. Then
|H(S)| < |H(")| V<&

Proof. For a given 6 > 0, suppose i € H((S) Then, from Algorithm 1, there exists some j # i such that
Sq(z j) <26. This implies Sq(z J) <26’ for any 6§’ > 6. Hence, i € H(6"), as desired. O

Since G estimates G and G is typically larger than K, unless there are exactly K sets of parallel

rows in A, we propose the following procedure for estimating K by using the output H = {ﬁ] ..o Hgt

of Algorithm 1. It relies on the observation that [BXzB" ] has rank K where L = {{i,...,{g} with
(. € H foreach 1 <k <G.
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Algorithm 1 Estimate the parallel row index set H by H and its partition H by H

Require: Matrix ReRP*P a positive integer ¢ > 1, a tuning parameter ¢ > 0.
1: procedure PARALLEL(R, ¢)

H— 2.
fori=1,....,p—1do
for j=i+ 1,.’.\.,p do
Compute S, (i, j) by solving (2.8)
if 5, (i, j) < 26 then
H — MERGE({i,j}, ?A()
return H, G = I‘]:?I and H = Ukﬁk

9: function MERGE(S, H)

Add =True _ _
for all g € H do > HH is a collection of sets
if g NS # & then
g—gus >Replaceg€7?bygUS
Add = False
if Add then _
H=HU{S} >add S in H
return '7-7

For each k € [6], we select one representative variable index from ﬁk as

b = arg mgx”ﬁi’\{i}”q, (2.10)
i€eH}

and create the set of representative indices
L:={f,....05}. 2.11)

Next, motivated by (A.2) and (A.3) in the proof of Theorem 4, we propose to estimate the subma-
trix Myp7 of M := BXzB' by

Mij=Rij, VijeH i#] (2.12)
and

R Al _ _
My = R —12 i Ay ke[G) 2.13)

RS 1.7l
f:arg min §q(i,€).
ten\{i}

Instead of choosing ffor each i € Hy as above, we could alternatively estimate M;; via (2.13) by
averaging over j € Hy \ {i}. Our numerical experiments indicate that these two procedures have
similar performance.
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o Finally, we determine the approximate rank K of the matrix M 77 from (2.12) - (2.13) by

K := max {k €[G] : /lk(MZZ) > ,u} (2.14)

for some tuning parameter p > 0.

2.3. Statistical guarantees for H , H and K

We will assume that the feature X is a sub-Gaussian random vector. Recall that a centered random
vector X € R? is y—sub-Gaussian if E[exp(u” X)] < exp( ||u||§y2 /2) for any fixed u € R4. The quantity
v is called the sub-Gaussian constant. In this work, we treat y as some absolute constant and write
¢ =c(y) and C = C(y) for numerical constants depending on 7y only.

Assumption 3. There exists a constant y such that ¥~1/2X is y—sub-Gaussian.?

The only tuning parameter in Algorithm 1 is ¢ with theoretical order given by

On :=c(y)Wlog(p v n)/n (2.15)

for some constant ¢(y) depending on vy only. &, is a key quantity that controls the deviation R from R.
Indeed, under Assumption 3 and log p < n, Lemma A.14 in Appendix A.5 shows that, with probability
1-4/(pV n), the event

8::{ max |Rij — Rijl san} (2.16)
1<i,j<p
holds. Throughout the rest of the paper, we make the blanket assumption that log p < n.

The following theorem provides the uniform deviation bounds for Eq(i, J) =84, j)overalli,j€[p]
for any 1 < g < 0. Its proof is deferred to Appendix A.1.5. At this point, it is useful to discuss the value
of g in the criterion §q used in Algorithm 1. We found in our simulations that Eq with g =2 performs
well in terms of statistical accuracy and computational speed, the latter due to its closed form. While
we present our conditions and statements in terms of a general, fixed ¢ > 1, our preferred choice is
qg=2.

Theorem 6. On the event &, one has, for any 1 < g < oo,

max S, (i, j) = Sqg(i, /)| < 26,
P

1<i,j<

If, in addition, model (1.1) and Assumption 1 hold, one has

Sy(irj) < 260, forall iRj,
SqgGi,j) = max{0, S,Gi,j) —26,},  forall ijelp]

forany 1 < g < oo.

/

2Under model (1.1), if there exist constants yz,yg > 0, such that 2; 2z and EEI/zE are sub-Gaussian random vectors with

sub-Gaussian constants yz and yg, respectively, then s 12x s y—sub-Gaussian with y = max{yz,yg }.
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Algorithm 1 with § = §,, selects those indices i,j € H for which §q(i, j) < 26,. On the event &,
Theorem 6 tells us that

H C H C {ielp]: Sy6,j) <46, for some j #i} . (2.17)

Hence, with probability at least 1 —4/(p V n), H includes all parallel rows in H and may mistakenly
include near-parallel rows corresponding to S, (i, j) < 49,,. Note that this holds without imposing any
signal strength condition.

On the other hand, the partition H , however, may not include all the groups that make up the partition
9H. For instance, there may be two distinct groups of parallel rows with weak signals that get merged,
while some subgroups of parallel rows may be enlarged by a few near-parallel rows. Nevertheless,
Theorem 6 immediately implies that

Sy(inj) > 46,, foralli} j (2.18)

is a sufficient condition for consistent estimation of both H and /H, as summarized in the following
corollary.

Corollary 7. Under model ( 1.1) and Assumption 1, assume that (2.18) holds. Then, on the event &, the
outputG and H = {Hl, . H } from Algorithm 1 with 6 = &,, satisfy: G=G, H=H and Hy = Hy)
for all k € [G], for some permutatlon n:[G] — [G].

The following proposition states the explicit rate of the tuning parameter y under which we provide
theoretical guarantees for K as an estimator of K, for any ¢ > 1. For any L = {{y,...,{g} with £ € Hy,
for all k € [G], define

o(L):= Ak (BL.EzBL.).  @(L):=i(BL.EzBL.). (2.19)
Theorem 8. Under model (1.1), Assumptions 1 & 3 and condition (2.18), suppose there exists some

constant ¢ > 0 such that

IR\ llg = e (p=2"9 Vit (2.20)
For u=C( 65% + 66,%) in (2.14), and for some C > 0 depending on &(L), we have
P{K<K}>1-c'(nvp)c.
If, additionally, maxy [c(L)/ g(L)]Gé,% < ¢ for some sufficiently small constant cy > 0, we further have
P{K=K}>1-c'(nvp) <.

The proof of Theorem 8 is deferred to Appendix A.1.6. We first prove that K<K always holds on the
event & with the specified choice of u. Proving consistency K = K requires u to be sufficiently small
so that u < Q(Z), which is guaranteed by maxy [¢(L)/c(L)]G62 = o(1). When both ¢(L) and ¢(L) are
bounded away from 0 and co, consistency only requires G2 = o(1), that is, we allow G = |H| to grow
but no faster than O(n/log(n Vv p)). The data-driven choice of the leading constant of u is discussed
in Appendix B.1. Condition (2.20) is a mild regularity condition and can be viewed as the sample
analogue of (2.7). For instance, it requires minigj maxex; ¢+ |Rie| > ¢ for g = co. Sufficient conditions

of (2.20) for g = 2 are provided in Theorem 12 of Section 3.3.
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3. Identifiability and recovery under canonical parametrization

As argued in Section 2.1, although Assumption 1 is sufficient for identifying H, its partition H and
the dimension of the model, it only determines A up to rotations. Considering the parametrization
provided by Assumption 2’ is a first step towards the unique determination of A. If I is known, one can
use the results of Section 3.1 below to identify A. However, as I is also unknown, Assumption 2’ is
not sufficient for identifying /, hence neither for A. In Section 3.1 we provide another assumption that,
combined with Assumption 2’, is provably sufficient for determining /, and therefore A, uniquely. As
the identifiability proofs are constructive, they naturally lead to the procedure of estimating the pure
variable index set, as stated in Section 3.2. Section 3.3 provides the statistical guarantees for its output.
Finally, the estimation of the loading matrix A and its statistical guarantees are provided in Section 3.4.

We begin by introducing the notation employed in the following sections. For model (1.1) satisfying
Assumption 2’, we let J :=[p] \ I be the index set corresponding to non-pure variables. We introduce
the index set corresponding to parallel, but non-pure, rows of A as

Ji:={jeJ:Aj [ Ap forsome €€ J\{j}}, (3.1

and its partition 9} := {J L JIN }. With this notation, the index set H of all parallel rows of A and its
partition, decompose as

H=1UJ; and H={H,... . Hc}={l,....Ix.J},....J}.

The total number of groups in H is G =K + N.

3.1. Model identifiability under a canonical parametrization

Recall that H and H, as well as G = |H| and K, are identifiable under Assumption 1, hence under
Assumption 2. To begin discussing when I is also identifiable, we distinguish between two cases
J1 =@ and J| # &, by simply comparing G with K.

If the only parallel rows in A correspond to pure variables (J; = & or, equivalently, G = K), then
I is identifiable as an immediate consequence of Theorem 4. If J; # & (or equivalently, G > K), the
pure variable set I cannot be distinguished from J; (see, Appendix C for an example), unless further
structure is imposed on the model.

Our general identifiability result of I and its partition, stated in Theorem 10 below, allows for J; # .
The rationale behind its proof is the following:

Step 0. Show that H, HH and K can be uniquely determined, as in Theorem 4. With |H| = G, if
G =K, appeal to Theorem 4 to identify I and its partition.

Step 1. If G > K, provide a statistically meaningful criterion for selecting K representative indices
from H. There is freedom in the choice of such a criterion, and we build one such that: (i) each rep-
resentative contains as much information as possible; (ii) representatives of different groups are as
uncorrelated as possible.

Step 2. Provide further conditions on A under which the thus selected indices correspond to distinct
pure variable indices. Then, use Proposition 2 to reconstruct the entire set /, and its partition, by the
aid of the score function S, (or any ;).

For Step 1, we propose to select indices of variables that maximize, successively, Schur complements
of appropriately defined matrices, with general form given by (3.2). For the second step, we make
Assumption 4, which is sufficient for proving the following fact: if the index iy is given by (3.2), then
X;, is indeed a pure variable, and can be taken as the representative of its group. This is formally stated
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in Lemma 9 and explained in its subsequent remark. With a view towards estimation, we note that this
selection criterion will be constructively used in Section 3.2.

Assumption 4. Let & := max;cy, [|A;.||1 be the largest loading in group I, in absolute value. We have

K
A.
[Aji] <1,  Vjed.
=k

We note, trivially, that the assumption is automatically met when J; = &. Assumption 4 imposes a
scaling constraint between / and J;, without placing any restriction on the rows of A corresponding to
J\ J1. A sufficient condition for Assumption 4 is ||A;.||; = & foralli € I and ||A.||; < & for all j € Jy,
which reduces it to the condition employed in [8] with J; = J and ¢ = 1, and thus generalizes that work.

Under Assumption 4, the lemma below states a systematic way of finding K group representatives
by successively maximizing certain Schur complements of ® := AXzAT. Its proof can be found in
Appendix A.2.1. A toy example is provided in Appendix C.

Lemma 9. Assume model (1.1) and Assumptions 2’ & 4. Forany 1 < k < K, let S = {i1,...,ix_1} with
S1 = D satisfying iq € Iy for all 1 < a < k — 1 and some permutation n : [K] — [K]. Then one has

i = argma}_}(@jj‘sk € In(k)’ foralll <k <K, 3.2)
JE

— -1 —
where ©; s, =0j; — @}Sk(@SkSk@SU and H=1U J;.

Remark 2. The procedure in Lemma 9 is based on the following rationale which achieves the previous
two goals (i) and (ii). Let Wy := Xy — Ey = Ag.Z for H C [p] and observe that @ is the degenerate
(rank K) covariance matrix of W € RP. To add intuition, if Z has a multivariate normal distribution,
then O®gc ge|g = Cov(Wpye [Wy ). In this case, display (3.2) in Lemma 9 becomes

i = a.rgmz;)I(Var(WﬂWSk ), forall 1 <k <K,
je

and the procedure returns the K largest conditional variances Var (W;|W;,,...,W;,_,). Suppose we
have already selected W;, and we are considering the selection of a new index, i,. Since

Val‘(Wj|Wi1) = @11 [1 - COrr(Wj, Wi] )] )

we see that maximizing the above conditional variance retains more information (for goal (i)), while
avoiding linear dependence by reducing Corr(W;,,W;,) (for goal (ii)). While one can always select K
variables, from a given collection, in this manner, it is Assumption 4 that ensures that their indices do
indeed correspond to pure variables in this parametrization of the model. The de-noising step implicit
in Lemma 9 is crucial for this procedure. It is made possible by the determination of the superset
H =1U J, which in turn enables the identifiability of ® and of its various functionals employed above,
as shown in the proof of Theorem 4. In Section 3.2, these arguments will be used constructively for
estimation purposes.

Based on the procedure in Lemma 9, both / and 7 are identifiable, and so is the entire loading
matrix A. We summarize these results in the theorem below. Its proof is constructive and is deferred to
Appendix A.2.2.
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Theorem 10. Under model (1.1), Assumptions 2’ & 4 and condition (2.7), I is identifiable and its
partition I is identifiable up to a group permutation. Furthermore, the matrix A is identifiable up to a
K X K signed permutation matrix.

Remark 3 (Discussion of Assumptions 2’ and 4).

1. Discussion of Assumption 2’: quasi-pure variables. As discussed in detail in the Introduction, one
way to parametrize a factor model (1.1) in which rank(A) = K is via the errors-in-variables parametriza-
tion, which refers to loading matrices A that contain a K X K diagonal sub-matrix. In the terminology of
this paper, this requires the existence of one pure variable per latent factor, and it fixes A uniquely, when
I and X are known. From this perspective, when I and g are not known, Assumption 2’ requires the
existence of only one additional pure variable per latent factor.

To preserve full generality, it is perhaps more realistic to assume the existence of one extra quasi-
pure variable, provided that it also leads to the identifiability results proved above. We argue below
that this is possible, although it may lead to unnecessarily heavy techniqualities that would obscure the
main message of this work. We therefore content ourselves to explaining how such an assumption can
be used, without pursuing it fully throughout the paper.

Suppose that there exists only one pure variable i; for some group k € [K], that is, |I| = 1. Assume
also that there exists some guasi-pure variable j for this group k, in the sense that for that index j we
have:

Zuik |Ajfl| -1 |Ajk| <2
1A .l 1Al —

As we can see, when ¢ is small, the jth variable is close to the pure variable iy, as the majority of the
weights in its corresponding row of A are placed on the kth factor. We show in Appendix A.5.1 that, for
this i and j, the score in (2.5) satisfies S» (i, j) < 2¢. By slight abuse of notation, we write I = {i,j}

and provided that S (¢,£”) > 2¢ for all £ 716 ¢’ with S»(¢,¢”) defined in (2.5), both I and its partition can
be recovered uniquely by applying Algorithm 1 to the population correlation matrix R, with ¢ =2 and
0> 2e.

2. Discussion of Assumption 4. This assumption is only active when J; # &. If J; # & and Assump-
tion 2" holds, but Assumption 4 does not hold, then the representative selection of Lemma 9, as well
as group reconstruction, can still be performed in an identical manner. However, one cannot guarantee
that all groups consist of only pure variables. Nevertheless, their representatives will continue to have
properties (i) and (ii) in Step 1, by construction, and therefore still be statistically meaningful.

(3.3)

3.2. Estimation of the pure variables index set

The estimation procedure follows, broadly, the Steps 0 — 2 employed in the proof of Theorem 10 of the
previous section. We first use Algorlthm 1 and the procedure of estimating K described in Section 2.2
to obtain estimates H = {H 1s-- H } and K.If K = G, no further action is taken; if K < G, we add the
pruning step stated below, based on the sample analogue of Lemma 9.

For any input r< G (for instance, r = K when K < G), the pruning step consists of the following
steps to estimate I collected in Algorithm 2.

e Estimate I';; 5 by fij =0foralli #j and

Ti=1-M;  VieH (3.4)

where AZ-,- is obtained from (2.13) with ¢ = 2.
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Algorithm 2 Prune the parallel row index set obtained from Algorithm 1

Requlre T, R e RP*P, the partltlon H with G = I(ﬁ |, the integer 1 <r < G.
1: procedure PRUNING(Z R, ‘H r)
Compute 0, i fi from (3.5)
SetS=9
fork=1,...,rdo
Compute i from (3.7) and add i € S

return 7 obtained from (3.8)

S kv

e Set®:= AX7AT and, in view of (2.1), estimate ®ﬁﬁ by

057 =|S-%k| . =[|S-DYFDL| (3.5)
HH z X IHH
with Dg = diag(Zy.. .. A,,,,)
e For any set S C Hand S =H \ S, write the Schur complement of ®ss of ® G as

Ogese)s = Osese — OgesO5@sse (3.6)

with M~ denoting the Moore-Penrose pseudo-inverse of M. Set S| = &, and let S, = {iy,...,ix_1}
for each 2 < k < r, and define

i :argmaz(@msk. 3.7
jeH

When there are ties, arbitrarily pick one of the maximizers.
o The final estimate of 7 is defined as

I= {{ﬁk}lskg : there exists a € [r] such that i, € ﬁk} ) (3.8)

We note that Algorithm 2 can take any 1 < r < K as input, including a random r. This adds flexibility
to the procedure, should one want to use a value of r different from the value of K defined in (2.14),
for instance if one uses a different estimator of K, or one is interested in a pre-specified value of ». We

analyze 7 in the next section.

3.3. Statistical guarantees for the estimated pure variables index set

We provide statistical guarantees for the estimated pure variable index set obtained via Algorithm B.1.
As Algorlthm 1 is used to estimate H, H and K first, we start by revisiting the statlstlcal guarantees
for H, H and K under the canonical parametrization of A. The theoretical properties of T are given in
Theorem 13. _

As shown in (2.17) of Section 2.3, on the event & in (2.16), H from Algorithm 1 includes H =1 U J;
with J; defined in (3.1), but may mistakenly include other variable indices, for instance, pairs satisfying
Sq(i,j) <46,. Under Assumption 1, if the signal condition (2.18) holds, we further showed that both H

and its partition H are consistent.
Under the canonical parametrization provided by Assumption 2’, the set of indices involved in con-
dition (2.18) can be reduced, and the following weaker condition suffices for consistent recovery:

Sy(i.j)> 46, forallitj,icl. (3.9)
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Note that we still allow
Sq(i,j) <46, forsomei#j,i,jelJ,

by recalling that J = [p] \ I. We show, in Lemma A.11 of Appendix A.4, that non-pure variables with
indices satisfying the above display have near-parallel corresponding rows in A. By collecting these
near-parallel rows with indices in J in the new set

Ji = {jed: S4(j,6) <46, forsome €€ J\{j}}, (3.10)

we have J; C J;. In fact, as the quantity 45, in (3.10) originates from the estimation error of the score
function S, the set Ji can be viewed as the sample analogue of J;.

We begm by presenting the analogue of the results of Section 2.3, by giving recovery guarantees
for H and H, in Corollary 11, and for K in Theorem 12, under model (1.1) satisfying the canonical
parametrization given by Assumption 2’. Write | x] to denote the largest integer that is no greater than
X.

Corollary 11. Under model (1.1), Assumption 2’ and (3.9), on the event &, the outputs G and H =
{H\,....Hg} of Algorithm 1, applied with 6 = 6y, satisfy

(1) K <G <K+[|1/2);
(2 (IUJ)CHCIUL); ~
(3) Ix = Hz( for all 1 < k < K for some permutation 1 : [G] — [G].

Proof. The result is a direct consequence of Theorem 6 and (3.9) in conjunction with the fact that H
contains at most | |J;|/2] groups that only consist of variables in J;. O

Since (3.9) is weaker than (2.18) as I € H, Corollary 11 is a stronger result than Corollary 7. Ap-
pendix A.4 provides insight into condition (3.9) in terms of its induced restrictions on the model pa-
rameters. Summarizing the discussion therein, we show, under mild regularity conditions on BXz BT,
that (3.9) holds under the following mild separation condition between pure and non-pure variables,

L A
ier}{lj%l sin(£(A;., Aj.) 2 0n.

We proceed to revisit and analyze K , constructed in Section 2.2, with ¢ = 2. Theorem 12 below
states the explicit rate of the tuning parameter u required for its estimation. The theorem offers the
same guarantees as Theorem 8, but they are established under slightly different conditions, that reflect
the usage of the canonical parametrization given by Assumption 2’, and of the weaker condition (3.9)
enabled by this parametrization. Define

Cp,1 := min IBll3, ¢ :=A1(Zz), ¢ =Ak(Z2), (3.11)
JeluJy

and

1
o= min > Ik (B\)22BT 5. - (3.12)

Theorem 12. Under model (1.1) and Assumptions 2’ & 3, assume (3.9) and log p = o(n). In addition,
suppose there exist absolute constants 0 < ¢ < C < oo such that

min(cp,1,¢z,¢r) > C, ¢, <C (3.13)
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For u= C’(\/K_('S,z1 + K62 + |J116,,) in (2.14), and for a large enough constant C' > 0, we have
JLIEOP{ESK} =1.

If, in addition, max{K&2,|J1|6,} = o(1) as n — oo, we further have

lim P{K =K} =1.

n—oo

The proof of Theorem 12 is deferred to Appendix A.2.3. It relies on a careful analysis of ||1l2 [
M 7 llop» performed when allowing J; # &.

We first prove that K<K always holds on the event & in (2.16). In conjunction with part (1) of
Corollary 11, this ensures that, with high probability, the event {G = K} implies the event {G = K}. In
this case, our procedure stops and the output of Algorithm B.1 is H from Algorithm 1. On the other
hand, if K < G, as explained in Section 3.2, Algorithm B.1 uses the pruning step from Algorithm 2 to
estimate / and its partition.

Proving consistency K = K requires u to be sufficiently small so that u < ¢, jc,, which is guaranteed
by max{Kd2,|J1|6,} = o(1). See Remark 4 below for a discussion of this condition and of (3.13).

The following theorem gives theoretical guarantees for the output of Algorithm 2 withany 1 <r < K,
and, in particular, the output of Algorithm B.1 if r is set to K. Recall that & 1s defined in Assumption 4.

Theorem 13. Under model (1.1) and Assumptions 2’ & 3, assume (3.9) and (3.13). Suppose that

lim K62 =0 (3.14)

n—oo

and, if J; # @, assume that there exist absolute constants 0 < Cy < oo and 0 < & < 1 such that

<C , 3.15
1T<1}<3<XK€/< 0 H}(m &k (3.15)
K
A.
max Z' ]k| <l-e. (3.16)
jeh \F

Then, there exists some permutation n : [K] — [K] such that the output 7 of Algorithm 2 by using any
1 <r < K satisfies

hm P{ a = ,r(a)foralll<a<r} =1.

In particular, the claim is valid for r = K deﬁned in (2.14). In this case, zfaddmonally |J116n = o(1),

tAhen with probability tending to one as n — oo, K = K and the output T from Algorithm B.1 satisfies
Iy =In(q), forall 1 <a <K.

As already mentioned, the statement of Theorem 13 is formulated in terms of r groups, for any
1 < r < K. In this way, in case we use some estimator that under-estimates K, Theorem 13 still ensures
that a subset of the groups consisting in pure variable indices (corresponding to the largest conditional
variances) can be consistently estimated. When K is consistently estimated, consistent estimation of
the entire pure variable index set, and of its partition, is guaranteed.

Allowing for a general statement in Theorem 13, which is valid for a general 1 <r < K, brings tech-
nical difficulty to its proof, which is stated in Appendix A.2.4. One of the main challenges is to control
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the difference between the estimated Schur complement ) ij1s, and its population-level counterpart,
uniformly for all j € H, all Sk selected from (3.7) and all 1 < k < r. The difficulty is further elevated
by the fact that J; # @. We provide this uniform control in Lemma A.6 of Appendix A.2.4 and its
proof further relies on the uniform controls of the sup-norm of M i — Mg - the operator norm of
MSkSk — Mg, s, and the quadratic form MzTSk Mgklsk Mski, collected in Lemmas A.4, A.5 and A.7 of
Appendices A.2.3 and A.2.4.

Remark 4 (On the conditions of Theorems 12 & 13). The proofs for both results are non-asymptotic,
in the sense that their statements continue to hold when K (5,21 < ¢, for some sufficiently small constant
c, instead of the assumed K62 = o(1) in (3.14). Then, they would hold on an event with probability 1 —
c(pVv n)"'” for some constants ¢’,¢”” > 0. To avoid the delicate interplay between different constants,
we opted for the current asymptotic formulation.

Condition (3.14) requires K not to grow too fast relative to n, K log(p V n) = o(n). Condition |J; |6, =
o(1) in Theorem 12 allows the size of the index set corresponding to near-parallel rows in A to grow,
but slower than y/n/log(n V p).

Conditions (3.15) and (3.16) are only needed when J; # @. Condition (3.16) is the analogue of As-
sumption 4 and allows us to distinguish, at the sample level, pure variables from non-pure variables
corresponding to rows in A that are close to parallel (in the sense S, (i, /) < 45,). Condition (3.15)
allows us to eventually separate two pure groups, I, and I, with a # b, from each other. It prevents
the pure variable variances from being very different. For instance, (3.15) holds if max; max;ej, Zi; <
C ming max;ey, Z;; coupled with (3.13). Finally, condition (3.13) is a mild regularity condition on the
matrix B and Xz, which is needed in our rather technically involved proofs. More discussion of this
condition can be found in Appendix A.4.

3.4. Application: Estimation of A under a canonical parametrization

As announced in the Introduction, an immediate application of estimating the index set of pure vari-
ables I is to the estimation of a loading matrix A that satisfies Assumption 2’. Following [8], we first
l/2A1. and Bj. := D;/z
this is done, A is easily estimated by A obtained by concatenating the sub-matrices

estimate By. := Dy Aj. by the estimators By, and By, presented below. Once

=~ _Al2n T _#5l2m = LS S
A =D/’B;, A;,=D/*Bj,  with Dg=diagEn.---.Zpp). (3.17)

3.4.1. Estimation of By., Xz and Aj.

Since Assumption 2’ and diag(Xz) = 1 imply that M;; = Bl.zk for any i € Iy, and given the estimated
partition of the pure variables I= {Tl,. " % }» we propose to estimate Bj. by

B2 =My, Viel kelK] (3.18)

with M;; defined in (2.13). Since we can only identify By. up to a signed permutation matrix, we use the
convention that iy is the first element in I;. Using the rationale in (A.20), in the proof of Theorem 13,
we set

sen(Bi k) =1,  sgn(Bjx) =sgn(Ri ;) Vjelx \{ix). (3.19)
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We estimate the diagonal of £z by diag(iz) =1 and, following (A.21) and (A.22), we estimate the
off-diagonal elements of X by the corresponding entries of

B}, (Eﬁ‘ r Ti) [E,i.] ' (3.20)

with Eli = [EII B:] _IEII. being the left inverse of B7,, and T'7; estimated from (3.4).

We provide theoretical guarantees for the estimated loadings of the pure variable sub-matrix Ay., and
for the estimates of the covariance matrix Xz of Z, obtained from the above procedure for any g > 2.
The proofs are deferred to Appendix A.2.5.

Theorem 14. Under the conditions of Theorem 13, assume |J116, = o(1), with 6, given in (2.15).
With probability tending to one, as n — oo, we have Ii = Iy for k € [K] and for some permutation
m:[K]— [K], and

min max ||Bi. — PBi.|leo < 6,

PePk i€ly
min |2z = PTE2Plleo < 6,
PePk

. A. - PA;.
min max N4i. = Phiclleo < 6.
PePk i€l ‘/Zii

The minimum is taken over the set Pk of K X K signed permutation matrices.

Similar to Theorem 13, the results of Theorem 14 can be easily stated non-asymptotically, as ex-
plained in Remark 4 of the preceding section.

3.4.2. Estimation of Ay.

Our proposed estimation of Aj. is identical to that in [8], and we include the main steps for complete-
ness. Since the correlation matrix R takes the form BXzB" +I', we can write

[R” R[J] _ [B].ZzB}r. B[.ZzB‘—]r. [FH

Ryr Ryj| ™ BJ.EzB;—. BJ.ZzB}—.

FJJ] ’

In particular, from R;; = B;.2zB],, the submatrix By. is solved via
B].=%,'[B].B1.]"'B], Ry;.

Hence, after estimating Xz and By, using the estimate R, we obtain a plug—in estimate for By, with
T=[pI\1I. Alternatively, we can regress ETJA on E;:iz, or [EII EIA.]—IEII.I’Q\IAJA on Xz. This approach
has been adopted in [8] (and [9] in the context of topic models), and allows for incorporating sparsity
restrictions on B and hence on A, and ultimately can result in estimation at minimax-optimal rates.
Although there exists a large body of literature on loading matrix estimation, results accompanied
by finite sample risk bounds are very scarce, and limited to the case when [ is known [5,7]. A full
discussion on the estimation of A is beyond the scope of this paper, but we refer the reader to pages
2073-2075 in Section 4.4. of [8], for an overview of existing approaches. We also refer to Appendix
C.1 in [8], for a detailed comparison with a pseudo-likelihood based method proposed by [7]. This
method is, to the best of our knowledge, the only procedure accompanied by theoretical guarantees for
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estimating A in a framework similar to ours, albeit with focus on asymptotic results, derived under the
classical version of Assumption 2’, when / and K are known.

As an illustration, suppose we take the approach in (3.13) — (3.14) of [8] to estimate each row B;. of
By., and estimate A via (3.17). More precisely, we estimate Bj. for each j € J by

Bj.= argn};n Bl subjectto |ZzB - [B}.Br.] ' B].Rijlleo < Codn (3.21)

for some constant Cy > 0. Here EZ is consgucted via (3.20) above with diag(iz) = 1. The following
theorem provides the convergence rate of [|A — AP|| 4 for all ¢ > 1, in the setting of bounded || - ||, 1-
norms of A and 221 as in [8]. Its proof can be found in Appendix A.2.6. Let s = max; ||A;.||o-

Theorem 15. Under conditions of Theorem 14, assume there exists positive finite constants ¢,C,C’,C"’
such that ¢ < min; ¥;; < max; X;; < C, ||221 lloo,1 £ C" and ||Alles,1 < C". Then, with probability tend-
ing to one, we have, for all 1 < q < oo,

min ||A- AP < sllag, .
nin I lleog S n

According to Theorem 6 of [8], the rate in Theorem 15 is minimax optimal, up to a multiplicative
factor of +/log(p V n). Note that C”” = 1 in [8] and we refer to Remark 4 of [8] for a detailed discussion
on |2 loo,1-
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