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Abstract—Low overhead channel estimation based on
compressive sensing (CS) has been widely investigated
for hybrid wideband millimeter wave (mmWave) multiple-
input multiple-output (MIMO) systems. The channel spar-
sifying dictionaries used in prior work are built from
ideal array response vectors evaluated on discrete angles
of arrival/departure. In addition, these dictionaries are
assumed to be the same for all subcarriers, without con-
sidering the impacts of hardware impairments and beam
squint. In this manuscript, we derive a general channel
and signal model that explicitly incorporates the impacts of
hardware impairments, practical pulse shaping functions,
and beam squint, overcoming the limitations of mmWave
MIMO channel and signal models commonly used in
previous work. Then, we propose a dictionary learning (DL)
algorithm to obtain the sparsifying dictionaries embedding
hardware impairments, by considering the effect of beam
squint without introducing it into the learning process.
We also design a novel CS channel estimation algorithm
under beam squint and hardware impairments, where the
channel structures at different subcarriers are exploited to
enable channel parameter estimation with low complexity
and high accuracy. Numerical results demonstrate the
effectiveness of the proposed DL and channel estimation
strategy when applied to realistic mmWave channels.

Index Terms—Dictionary learning, millimeter wave
(mmWave), massive MIMO, beam squint, spatial wideband
effect, hardware impairments, mutual coupling, antenna
spacing error, channel estimation, sparse coding, dictionary
update.

I. INTRODUCTION

The acquisition of channel state information (CSI) is
crucial for mmWave link configuration, and challenging
when operating with hybrid beamforming architectures.
To reduce the training overhead associated with CSI
acquisition, prior work has made full use of the sparse
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nature of mmWave channels in the angular or delay
domains [1]–[5]. Nevertheless, some relevant practical
aspects have not been fully considered in previous
compressive channel models and estimation algorithms:
the beam squint effect, calibration errors, and hard-
ware impairments. Specifically, the channel sparsifying
dictionaries used in prior work are typically assumed
to be (overcomplete) discrete Fourier transform (DFT)
matrices, or constructed from the ideal array response
matrices (IARM) evaluated on discrete grids of quantized
angles of arrivals and departures (AoAs/AoDs) [2], [4].
These assumptions are valid, however, only when the
beam squint effect is negligible and no hardware im-
pairments or calibration errors exist. In this paper, we
show that under hardware impairments such as mutual
coupling or antenna separation disturbances, the array
response vectors will no longer be the Vandermonde
vectors, and that different array response vectors should
be considered at every frequency for channel modeling
under beam squint. In other words, the assumptions
and modeling of wideband mmWave MIMO channels
in prior work are not valid, and therefore, the prior CSI
acquisition strategies are not effective when beam squint
and hardware impairments are considered.

The impact of beamsquint has been analyzed in prior
work. As shown in [6]–[8], the time delay of the same
data symbol across the antenna array aperture is non-
negligible in the large-scale MIMO configurations and/or
the wideband systems. Due to the spatial delay difference
of each data symbol at different antennas, the array
steering vectors will have different responses at each
frequency, what leads to the beam squint effect. The
work presented in [6] includes the derivation of a channel
model for the large-scale MIMO system under beam
squint, showing that the array response vectors for chan-
nel modeling have to be frequency-dependent. Aware of
this beam squint impact, [9] and [10] also considered
the frequency domain channel models by using explicit
frequency-dependent array response vectors for different
subcarriers. Meanwhile, to avoid the impacts of beam
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squint on channel estimation at different subcarriers,
[11]–[13] proposed to estimate the channel parameters
from the perspective of angle and delay domains, to-
gether with user scheduling to alleviate inter-user inter-
ference. The works in [14] and [15] consider a massive
MIMO setting at mmWave or THz bands with single
antenna users, and propose solutions for beam tracking
and channel estimation, respectively, considering beam
squint, but they do not introduce the filtering effect or
hardware impairments in the channel model. Generally,
these prior works on channel estimation/tracking under
beam squint do not consider beam squint combined with
filtering effects or other hardware imperfections. In this
manuscript, we will show that beam squint not only leads
to the frequency-dependence on array steering vectors,
but also yields additional distortions at different antennas
across all subcarriers, especially on those at the band
edge, when combined with the filtering operations at the
transceivers. The new channel model that results from
these considerations has not been derived in previous
work. The pioneering work in [16] showed the need and
impact of considering the pulse shaping function in the
MIMO channel model, but beam squint was neglected.
In summary, prior work did not consider the combined
effect of beam squint and the filtering effects, and also
neglected the impact of other hardware impairments such
as calibration error, mutual coupling or antenna separa-
tion disturbances when developing the signal model and
algorithms for a mmWave system operating with a hybrid
MIMO architecture.

The inclusion of hardware impairments on MIMO
channel models has been investigated in [17]–[20]. There
are many different hardware impairments in the practical
radio frequency (RF) chains, although three of them
dominate the effects in the resulting channel. First, due to
the manufacture and calibration errors, the antenna array
will generate unexpected radiation patterns, including
both gain and phase errors on each antenna element.
Second, any perturbation on antenna locations or inter-
element spacing between antenna elements will result in
irregular linear arrays rather than perfect half-wavelength
uniform linear arrays (ULAs). Finally, the antenna spac-
ing disturbance also creates the mutual coupling effect
between antenna elements. Taking into account all these
hardware impairments, it is apparent that the aforemen-
tioned sparsifying dictionaries constructed from IARM
evaluated at quantized angles are no longer the best
choice for exploiting channel sparsity. Previous work
has shown that dictionary learning (DL) is an effective
technique to capture the underlying structure of mmWave
MIMO channels associated to specific types of sites
[21] or with various hardware impairments [18]–[20].
Specifically, [21] exploited the K-SVD algorithm to
find a dictionary to represent a collection of observed

channel realizations. Following this idea, [18] proposed
a joint uplink/downlink sparsifying DL algorithm for
narrow band massive MIMO systems operating at lower
frequencies. Our previous work [19], [20] further in-
vestigated the DL and channel estimation strategy for
hybrid wideband mmWave MIMO systems under low
SNR conditions. Nevertheless, the beam squint effect
was not incorporated in previous work, and it cannot be
ignored under certain relationships between the carrier
frequency and the bandwidth [7].

Motivated by these limitations, we propose a DL-
based channel estimation strategy for hybrid mmWave
MIMO systems under the impacts of both hardware
impairments and beam squint. The main contributions
of this manuscript are summarized as follows:
• We derive a general wideband mmWave MIMO

channel model under both hardware impairments
and beam squint. The new model not only in-
corporates the hardware impairments of antenna
spacing disturbances, gain/phase errors, and array
mutual coupling, but also explicitly considers the
impacts of combined pulse shaping, filtering and
beam squint, showing the limitations of existing
MIMO channel models with beam squint and the
associated channel estimation schemes. The deriva-
tion of the combined effect of beam squint and pulse
shaping/filtering is of particular interest. Previous
literature does not provide an alternative channel
model including all these effects.

• We propose a DL algorithm for finding sparsify-
ing dictionaries that embed hardware impairments,
which fully exploits the channel properties at differ-
ent subcarriers under beam squint. This algorithm
does not learn the impact of beam squint but rather
considers its model. Comparing to existing DL
strategies which has to learn a general dictionary
for both hardware impairments and beam squint,
the newly proposed DL scheme enables better
adaptation to the impacts of hardware impairments
and facilitates the management of the beam squint
impact at different subcarriers.

• We design a novel orthogonal matching pursuit
(OMP)-based algorithm for compressive channel
estimation under beam squint, which exploits the
simple structures of the new channel model at
central subcarriers to obtain initial parameter esti-
mates with low complexity. Then it compensates the
additional distortions at side subcarriers induced by
beam squint. In this way, the measurements at all
subcarriers can be used to achieve higher parameter
estimation accuracy with lower complexity.

• We evaluate the proposed DL and channel estima-
tion algorithms via numerical simulations. Results
show that the training overhead of channel estima-
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tion with learned dictionaries can be significantly
reduced compared to traditional dictionaries without
considering hardware impairment or beam squint.
This validates the developed channel models and
corroborates the effectiveness of the proposed DL
algorithms for hybrid wideband mmWave MIMO
systems under both hardware impairments and
beam squint effects.

Notations: Vectors and matrices are denoted by bold-
face small and capital letters; the transpose, conjugate,
Hermitian (conjugate transpose), inverse, and pseudo-
inverse of the matrix A are denoted by AT , A, A∗, A−1

and A†; IM is an M ×M identity matrix; [a]n denotes
the n-th element of a and [A]:,j denotes the j-th column
vector of A; [A]m,n denotes the (m,n)-th element of A;
, represents new definitions; I(N) , {0, 1, . . . , N−1}
denotes the index set of cardinality N ; C and R denote
the sets of complex and real numbers; tr{A} is the
trace of A; diag{a} denotes a diagonal matrix with its
diagonal elements given in a and diag{A} formulates
a vector by extracting the diagonal elements of A; ⊗,
� and ? denote the Kronecker, Hadamard and Khatri-
Rao product between vectors/matrices; j =

√
−1 denotes

the imaginary unit; |K| denotes the cardinality of a set;
bxc denotes the largest integer less than or equal to x
and dxe denotes the smallest integer great than or equal
to x; F(·)[f ] denotes the Fourier transform evaluated at
frequency f ; and ‖a‖0 denotes the `0 norm of vector,
i.e., the number of nonzero elements of a.

II. NEW SIGNAL AND CHANNEL MODELS
INCORPORATING HARDWARE IMPAIRMENTS AND

BEAM SQUINT

In this section, we derive the new general time domain
signal model and frequency domain channel model for
the hybrid mmWave MIMO systems under the impact
of both hardware impairments and beam squint. We will
prove that the channel models with beam squint assumed
in previous works [6], [9]–[13] are not complete or valid
in some cases.

We consider a fully connected hybrid mmWave
MIMO system.The transmitter (TX) is equipped with NT
antennas and LT RF chains, and the receiver (RX) has
NR antennas and LR RF chains. The channel between the
TX and the RX is frequency-selective. Pulse shaped or-
thogonal frequency division multiplexing (OFDM) with
K subcarriers is considered to simultaneously transmit
Ns (≤ min(LT, LR)) data streams. The system sampling
period is denoted by Ts. We also consider a pulse shaping
function with a roll-off factor β and an overall system
bandwidth of (1 + β)/Ts. The center carrier frequency
and wavelength are denoted by fc and λc = c/fc (with

c the speed of light). We use the index k to denote the
frequency domain subcarriers, with

fk = fc + ∆fk = fc −
1

2Ts
+

k

KTs
, k = 0, . . . ,K − 1.

(1)

the corresponding subcarrier frequency value [22].
Let us start by defining a model for practical an-

tenna arrays. As shown in [17]–[19], [23], [24], vari-
ous impairments exist in practical implementations of
antenna arrays, such as the gain/phase errors on each
antenna element, the errors at each antenna element
location, and the coupling effects between antenna el-
ements. Specifically, we denote CR ∈ CNR×NR as the
symmetric mutual coupling matrix for the RX antenna
array, representing the unwanted interchange of energy
between elements in the arrays, and denote γR ∈ CNR×1

with [γR]nR = gR,nRe
jνR,nR as the antenna gain and

phase errors, in which gR,nR and νR,nR are the receive
gain error normalized to a reference amplitude, and
the additional receive phase error for the nR-th antenna
element. Moreover, let εR ∈ RNR×1 with [εR]nR = εR,nR

be the vector of antenna location errors at all RX antenna
elements, where the location error of the first antenna
element is normalized to εR,0 = 0. The variables defining
the hardware impairments for the TX antenna array are
defined in an analogous way.

We define now the signal model for the transmitted
signal during training. To sound the channel, the TX
sends Q symbols over a LT×1 signal vector s(t) at time
instant t, where the lT-th (lT = 1, . . . , LT) element of the
complex exponential representation of the transmitted
signal s(t) is defined as

slT(t), [s(t)]lT =

Q∑
q=1

[FBBS]lT,qpT(t− (q−1)Ts)e
j2πfct,

(2)

where pT(.) is the transmit pulse, ej2πfct models the
RF upconversion stage, S ∈ CLT×Q collects all the time
domain signal symbols to be transmitted and FBB ∈
CLT×LT is the digital precoder. Moreover, s(t) satisfies
E{s(t)s(t)∗} = PT

LT
ILT , with PT the transmit power

constraint. Using an analog precoder FRF ∈ CNT×LT ,
the ideal transmitted signal at the nT-th antenna element,
nT = 1, . . . , NT, can be computed as

inT(t) =

LT∑
lT=1

[FRF]nT,lT [s(t)]lT . (3)

Due to hardware imperfections, the signal at the nT-th
transmit antenna is multiplied by a phase and amplitude
perturbation [γT]∗nT

, and then leaks into the signal at
the n′T-th transmit antenna due to mutual coupling by a
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[
y[d]

]
lR

=
∑

`,nR,nT,lT

αP
l [W̆]∗nR,lR [F̆]nT,lT

Q∑
q=1

p((d− q)Ts − τ`,nR,nT
)e−j2πfcτ`,nR,nT [s[q]]lT + [W̆]∗nR,lRznR

(dTs),

(10)

[y[k]]lR =
∑

`,nR,nT,lT

αP
l [W̆]∗nR,lR [F̆]nT,lTg(k, τ`,nR,nT)e−j2π(fc+∆fk)τ`,nR,nT [s[k]]lT + [W̆]∗nR,lR [z[k]]nR , (11)

factor [CT]∗nT,n′T
, leading to the expression of the actual

transmitted signal

xnT
(t) =

NT∑
n′T=1

[CT]∗n′T,nT
[γT]∗n′Tin

′
T

(t)

=

NT∑
n′T=1

[(diag(γT)CT)
∗
]nT,n′T

in′T(t). (4)

Assuming a passband geometric channel model with L
paths, the ideal received signal at the nR-th antenna
element, nR = 1, . . . , NR, can be written as

inR
(t) =

L∑
`=1

NT∑
nT=1

αP
l · xnT

(t− τ`,nR,nT) + znR
(t), (5)

where znR(t) is the noise term, αP
l ∈ C is the path

gain of the passband channel including phase changes,
and τ`,nR,nT is the delay of `-th path between the nR-th
receive antenna and the nT-th transmit antenna. Similarly
to what happens at the transmit array, owing to hardware
imperfections, the signal at each receive antenna nR
leaks into the signal at each antenna n′R through mutual
coupling by a factor [CR]n′R,nR , and then receives a
gain/phase weight [γR]n′R to generate the actual receive
signal

ynR
(t) =

NR∑
n′R=1

[γR]nT [CR]nR,n′R
in′R(t)

=

NR∑
n′R=1

[diag(γR)CR]nR,n′R
in′R(t). (6)

After an analog combining stage modeled by the matrix
WRF ∈ CNR×LR , we obtain the received signal vector
y′(t) ∈ CLR×1, with the lR-th element given as

[y′(t)]lR =

NR∑
nR=1

[WRF]∗nR,lRynR
(t). (7)

To obtain the downconverted signal we get rid of
the complex representation of the signal and multi-
ply by 2e−j2πfct to get [y′′]l′R(t) = ([y′]l′R(t) +

[y′]∗l′R
(t))e−j2πfct. After matched filtering and sampling

with sampling period Ts, we have[
yBB[d]

]
lR

= (pR ∗ [y′′]l′R)((d− 1)Ts), d ∈ N, (8)

where pR is the matched filter. Since the bandwidths of
pT and pR, namely BT and BR, satisfy BT +BR ≤ 2fc

and [y′]∗l′R
(t)e−j2πfct is centered at −2fc, the convo-

lution between the matched filter and the conjugate
signal is zero, i.e. pR(t) ∗ ([y′]∗l′R

(t)e−j2πfct) = 0. After
the digital combining stage represented by WBB, the
discrete time received signal can be written as[
y[d]

]
lR

=
∑
l′R

[WBB]∗l′R,lR
[
yBB[d]

]
lR
, d ∈ N. (9)

By developing the previous steps, we reach an equivalent
expression for the received signal as shown in 10, at
the top of this page, where W̆ , (diag(γR)CR)

∗
W

and F̆ , (diag(γT)CT)
∗
F, being W = WRFWBB

and F = FRFFBB the hybrid combiner and precoder,
respectively, while p = pR ∗ pT combines the effects of
transmit and receive filters. Next, following the deriva-
tion in the Appendix I, the DFT of (10) is computed as
shown in (11), where g(k, τ`,nR,nT) is defined in (49)
in the Appendix I, representing the frequency response
at the k-th subcarrier of the combined filter p for the
`-th path between the nR-th RX antenna and the nT-th
TX antenna. Moreover, [s[k]]lT is the frequency domain
version of the transmitted signal defined in (2), while
[z[k]]nR ,

∑K−1
d=0 znR(dTs)e

−j 2πdk
K is the noise term in

the frequency domain. Regarding the delay τ`,nR,nT , as
shown in Fig. 1, it can be expressed as

τ`,nR,nT
=τ` + (nRdR + εR,nR

) sin(φ`)/c

− (nTdT + εT,nT
) sin(θ`)/c. (12)

Now, by defining the frequency-dependent array steering
vectors

ăR,k(φ) = diag(γR)CRǎR,k(φ), (13)
ăT,k(θ) = diag(γT)CTǎT,k(θ), (14)
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y[k] = W∗
L∑
`=1

(
α`e
−j2π∆fkτ`Gk(τ`, φ`, θ`)� (ăR,k(φ`)ă

∗
T,k(θ`))

)
Fŝ[k] + W̆∗z[k]. (18)



    



   

 















φℓ θℓ

((N
R−1)d

R+
ǫR,N

R
) si

n(φ
ℓ)

c

((N
T−1)dT+ǫT,N

T ) sin(θℓ)
c

(a) Propagation of the `-th path between RX and TX with AoA φ`
and AoD θ`.
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     

  





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


    ℓ

  

  

  

  

NR − 1 


(b) Received signals at RX antennas, where the delay of each path
varies across array geometry.

Fig. 1: Illustration of the spatial wideband effect (from
the perspective of time domain) or the beam squint effect
(from the perspective of frequency domain) under large-
scale antenna array regimes.

with

[ǎR,k(φ)]n =
1√
NR

e−j2πfk(ndR+εR,n) sin(φ)/c (15)

[ǎT,k(θ)]n =
1√
NT

e−j2πfk(ndT+εT,n) sin(θ)/c, (16)

denoting the distortion matrix by

[Gk(τ`, φ`, θ`)]nR,nT
= g(k, τ`,nR,nT

), (17)

and defining the quivalent complex gain αl =
αP
l e
−j2πfcτl , we can rewrite (11) as shown in 18, at the

top of this page. Based on this expression, we can define
the general frequency domain channel matrix as

H[k] =
L∑
`=1

α`e
−j2π∆fkτ`

Gk(τ`, φ`, θ`)� (ăR,k(φ`)ă
∗
T,k(θ`)), (18)

and then, the final expression of the received signal under
these definitions becomes

y[k] = W∗H[k]Fs[k] + W̆∗z[k]. (19)

Note that the equivalent combiner that impacts the
noise term includes the hardware impairments as well,
and thereby the noise covariance matrix is Cz[k] =

σ2W̆∗W̆.
We define g(k, τ) as shown in (20), where F(p)[∆fk]

is the Fourier transform of the combined filter p(t) evalu-
ated for the frequency difference ∆fk. Then, the general
channel matrix in (18) can be rewritten as in (21), where
the second case is due to the fact that when |∆fk| ≤
(1 − β)/2Ts, the factor g(k, τ`,nR,nT

) = F(p)[∆fk]
Ts

is
independent of the delay τ`,nR,nT

at different antenna
indices, and thus enables the simplification. Note that
(21) is valid for any pulse shaping function (as shown
in the derivation in Appendix I), and therefore, this does
not introduce any new assumption on the channel model.

Remark 1. We have derived the new general model for
MIMO channels under both hardware impairments and
beam squint. This new model shows that the beam squint
not only induces the frequency-dependence on array
steering vectors, but also yields additional distortions
at different antennas across all subcarriers, especially
on side subcarriers. Comparing (21) to the existing
MIMO channel models with beam squint in [6], [9]–
[13], it is obvious that those models only considered the
second case in (21), and assumed the same expression
for all subcarriers. In other words, the prior work only
considered the frequency-dependence impact of beam
squint, but ignored the additional distortions. This is due
to the fact that the model was derived in the continuous
time domain, and did not take into account the impact
of the extra bandwidth of the combined filter (as shown
in Appendix I). For ease of subsequent exposition, we
will denote the set of central subcarriers by Kcen =
{k
∣∣|∆fk| ≤ (1−β)/2Ts} and the set of side subcarriers

by Kside = {k
∣∣|∆fk| > (1 − β)/2Ts}. As shown in

Fig. 2, there are approximately |Kcen| ≈ b(1 − β)Kc
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g(k, τ) =


F(p)[∆fk]

Ts
+ F(p)[∆fk−1/Ts]

Ts
ej2πτ/Ts if 2∆fk > (1− β)/Ts,

F(p)[∆fk]
Ts

if 2|∆fk| ≤ (1− β)/Ts,
F(p)[∆fk]

Ts
+ F(p)[∆fk+1/Ts]

Ts
e−j2πτ/Ts if 2∆fk < −(1− β)/Ts,

(20)

H[k] =

{∑L
`=1 α`e

−j2π∆fkτ`Gk(τ`, φ`, θ`)� (ăR,k(φ`)ă
∗
T,k(θ`)), ∀|∆fk| > (1− β)/2Ts∑L

`=1 α`
F(p)[∆fk]

Ts
e−j2π∆fkτ` ăR,k(φ`)ă

∗
T,k(θ`), ∀|∆fk| ≤ (1− β)/2Ts

(21)

… …











   



   



   




   



  



Fig. 2: Frequency response of the pulse shaping function
with roll-off factor β, center frequency fc and fs = 1/Ts.
For OFDM systems with K subcarriers, there are ap-
proximately b(1− β)Kc central subcarriers inside Kcen,
and dβKe side subcarriers inside Kside.

central subcarriers inside Kcen and |Kside| ≈ dβKe side
subcarriers inside Kside.

A. Frequency domain signal model for training

With the aforementioned system and channel model,
the received signal model for training is described as
follows. During the training phase, the TX will send
pilot signals over several OFDM frames, so the RX
can collect measurements for initial channel estimation
and DL. Specifically, during the m-th (m = 1, 2, . . .)
training OFDM symbol, the TX will send an LT×1 pilot
signal sm[k] at the k-th subcarrier using a frequency-
flat precoder Fm ∈ CNT×LT , while the RX employs a
frequency-flat combiner Wm ∈ CNR×LR . The received
signal is then given as

ym[k] = W∗
mH[k]Fmsm[k] + nm[k], (22)

where nm[k] ∈ CLR×1 is the additive Gaussian noise
vector, distributed as CN (0, σ2W̆∗

mW̆m). Generally,
we can decompose the transmitted signal as sm[k] ,
qms[k], with qm ∈ CLT×1 a frequency-flat training
vector and s[k] a frequency-dependent training symbol.
In doing so, we can multiply the received signal ym[k]

by (s[k])−1 and get a frequency-flat observation matrix
at the RX as follows

ỹm[k] , vec
(
ym[k](s[k])−1

)
= (qTmFTm ⊗W∗

m)vec(H[k]) + ñm[k]

= Φmvec(H[k]) + ñm[k], (23)

where ñm[k] , vec
(
nm[k](s[k])−1

)
and Φm is defined

accordingly, representing the sensing matrix for the m-
th OFDM symbol. To get a higher effective SNR for the
received measurements, we will use training spreading to
average out the noise [19]. Moreover, to enable the initial
channel estimate, the measurements over M OFDM
symbols are stacked together such that[

ỹ1[k]T , . . . , ỹM [k]T
]T︸ ︷︷ ︸

ỹ[k]

=
[
ΦT

1 , . . . ,Φ
T
M

]T︸ ︷︷ ︸
Φ

h[k] (24)

+
[
ñ1[k]T , . . . , ñM [k]T

]T︸ ︷︷ ︸
ñ[k]

, (25)

where ỹ[k] ∈ CMLR×1, Φ ∈ CMLR×NRNT and ñ[k] ∈
CMLR×1 are defined accordingly. Therefore, we can
obtain the initial least squares (LS) channel estimate as
ĥ[k] = Φ†ỹ[k], while the corresponding channel matrix
Ĥ[k] = unvec(ĥ[k]).

During the training phase, it becomes necessary to col-
lect initial channel measurements at different locations
across the coverage area as the RX moves around. This
not only creates a large training data set for learning the
hardware imperfections, but also ensures the data set is
diverse for the environment. In doing so, the learned
sparsifying dictionary is not dedicated for a specific
location, but adapted to the fixed hardware impairments.
As in [19], this procedure of collecting measurements at
multiple locations can be done at the stage of network
setup, like in the case of an indoor WiFi scenario.
Therefore, we assume the measurements are collected at
Nsa locations and the initial channel estimate at the u-th
location is then represented as ĥ(u)[k] for u ∈ I(Nsa). In
the following, these initial channel estimates obtained at
the training phases will be used for learning the hardware
impairments related dictionaries.
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III. DICTIONARY LEARNING FOR HARDWARE
IMPAIRMENTS UNDER BEAM SQUINT (DLHWBS)

In this section, we present the problem formulation
and optimization for learning the TX and RX dictionaries
adapted to hardware impairments. Generally, the over-
all dictionaries are partitioned into two parts, i.e., one
frequency-flat part adapting to the hardware impairments
and one frequency-dependent part accounting for the
beam squint effect. The learning of hardware impairment
related dictionaries will take into consideration of the
channel properties under beam squint at different sub-
carriers.

A. Formulation of the dictionary learning problem

As shown in (21), the frequency domain channel
model can be partitioned into two sets. We treat each
one separately here. For central subcarriers inside Kcen,
the channel model can be simplified so that it is more
convenient and straightforward to separate the hardware
impairments and beam squint impact on the channel ma-
trix. Let us first rewrite the channel matrix for k ∈ Kcen
as follows

H[k] =

L∑
`=1

α`
F(p)[∆fk]

Ts
e−j2π∆fkτ` ăR,k(φ`)ă

∗
T,k(θ`)

= ĂR,k(φ)Λ[k]Ă∗T,k(θ)

≈ Ăv
R,kΩ[k]Ăv∗

T,k, (26)

where Λ[k] , diag
{

[α1
F(p)[∆fk]

Ts
e−j2π∆fkτ1 , . . . ,

αL
F(p)[∆fk]

Ts
e−j2π∆fkτL ]T

}
is a diagonal matrix contain-

ing the frequency domain path gains, and ĂR,k(φ) ,
[ăR,k(φ1), . . . , ăR,k(φL)] ∈ CNR×L collects the receive
array response vectors at all paths. Moreover, the ap-
proximation is obtained by discretizing the AoA/AoD
spaces with on-grid angles, i.e., Ăv

R,k , [ăR,k(φv
1), . . . ,

ăR,k(φv
KR

)] ∈ CNR×KR and Ăv
T,k , [ăT,k(θv

1), . . . ,

ăT,k(θv
KT

)] ∈ CNT×KT collect the virtual receive and
transmit array response vectors evaluated on KR quan-
tized angles φv = {φv

i }KR
i=1 for AoAs and KT quantized

angles θv = {θv
i }KT
i=1 for AoDs, and Ω[k] ∈ CKR×KT

is a sparse matrix, containing the path gains of these
discrete quantized AoAs/AoDs at its non-zero elements.
To separate the impact of hardware impairments and
beam squint on channel matrix, we can rewrite the nR-th
element of the array steering vector in (15) as

[ǎR,k(φ)]nR =
1√
NR

e−j2πfk(nRdR+εR,nR ) sin(φ)/c

≈ e−j2π(fcεR,nR ) sin(φ)/c

· 1√
NR

e−j2π(fknRdR) sin(φ)/c, (27)

so that

ǎR,k(φ) ≈ eR(φ)� aR,k(φ), (28)

where [eR(φ)]nR = e−j2π(fcεR,nR ) sin(φ)/c comprises the
hardware antenna element location imperfection effects.
Therefore, the expression of Ăv

R,k in (26) can be rewrit-
ten as

Ăv
R,k , [ăR,k(φv

1), . . . , ăR,k(φv
KR

)]

= diag(γR)CR︸ ︷︷ ︸
DR,1

([
eR(φv

1), . . . , eR(φv
KR

)
]︸ ︷︷ ︸

DR,2

�

[
aR,k(φv

1), . . . , aR,k(φv
KR

)
]︸ ︷︷ ︸

Av
R,k

)

= DR,1
(
DR,2 �Av

R,k

)
, (29)

where the general RX dictionary Ăv
R,k is partitioned into

three parts, i.e., DR,1 includes the impacts of antenna
coupling and gain/phase errors, DR,2 accounts for the
antenna location perturbations, and Av

R,k ∈ CNR×KR

handles the beam squint effect at each subcarriers.
Note that DR,1 and DR,2 are hardware impairments
related dictionary components to be learned while Av

R,k
is known for all subcarriers. Moreover, recalling the
notation of antenna location error vector εR and the
definition of eR(φ) in (27), we can further express DR,2
as a function of the antenna location error vector εR,
i.e., DR,2 = f(εR) = e−j2πfcεR·sin(φv)T /c. Similarly,
the general TX dictionary Ăv

T,k can be expressed as

Ăv
T,k = DT,1

(
DT,2 �Av

T,k

)
and DT,2 is a function

of the antenna location error vector εT, i.e., DT,2 =

f(εT) = e−j2πfcεT·sin(θv)T /c. Then the vectorization of
H[k], k ∈ Kcen in (26) can be expressed as

h[k] = vec(H[k]) ≈
(
Ăv

T,k ⊗ Ăv
R,k

)
vec(Ω[k])

=
(
DT,1 ⊗DR,1

)[(
DT,2 ⊗DR,2

)
�
(
Av

T,k ⊗Av
R,k

)]
vec(Ω[k]). (30)

The channel model for side subcarriers k ∈ Kside in
(21) can be represented and approximated as follows

H[k] =
L∑
`=1

α`e
−j2π∆fkτ`Gk(τ`, φ`, θ`)

� (ăR,k(φ`)ă
∗
T,k(θ`))

≈
Lv∑
l=1

KR∑
i=1

KT∑
j=1

bl,i,je
−j2π∆fkτ

v
l Gk(τv

l , φ
v
i , θ

v
j )

� (ăR,k(φv
i )ă∗T,k(θv

j )),
(35)

where the approximation is obtained by first discretizing
the AoA/AoD spaces as did in (26) and then discretizing
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min
DT,1,DT,2,DR,1,DR,2,

Ω(u)[k],b
(u)
l

∑
u∈I(Nsa)

∑
k∈Kcen

∥∥∥ĥ(u)[k]−
(
Ăv

T,k ⊗ Ăv
R,k

)
vec(Ω(u)[k])

∥∥∥2

F

+
∑

u∈I(Nsa)

∑
k∈Kside

∥∥∥ĥ(u)[k]−
Lv∑
l=1

[
Ψk(τv

l ,φ
v,θv)�

(
Ăv

T,k ⊗ Ăv
R,k

) ]
b

(u)
l

∥∥∥2

F
,

subject to
∥∥vec(Ω(u)[k])

∥∥
0
≤ L(u);

∥∥b(u)
l

∥∥
0
≤ 1,

Lv∑
l=1

∥∥b(u)
l

∥∥
0
≤ L(u). (33)

min
Ω[k],bl

∑
k∈Kcen

∥∥∥ĥ[k]−
(
Ăv

T,k ⊗ Ăv
R,k

)
vec(Ω[k])

∥∥∥2

F

∑
k∈Kside

∥∥∥ĥ[k]−
Lv∑
l=1

[
Ψk(τv

l ,φ
v,θv)�

(
Ăv

T,k ⊗ Ăv
R,k

) ]
bl

∥∥∥2

F
,

subject to
∥∥vec(Ω[k])

∥∥
0
≤ L;

∥∥bl∥∥0
≤ 1,

Lv∑
l=1

∥∥bl∥∥0
≤ L. (34)

the delay space with Lv on-grid delays {τv
l }Lv

l=1. More-
over, bl,i,j is the corresponding path gain on each pair
of discretized AoA/AoD/delay grids, which theoretically
is nonzero only at the discrete AoA/AoD/delay bin
(φv
i , θ

v
j , τ

v
l ) corresponding to the true AoA/AoD/delay

(φ`, θ`, τ`). Then the vectorization of H[k], k ∈ Kside
can be given as

h[k]=vec(H[k]) =
L∑
`=1

α`e
−j2π∆fkτ`vec(Gk(τ`, φ`, θ`))

� (ăT,k(θ`)⊗ ăR,k(φ`))

≈
Lv∑
l=1

[
Ψk(τv

l ,φ
v,θv)�

(
Ăv

T,k ⊗ Ăv
R,k

) ]
bl,

(32)

where Ψk(τv
l ,φ

v,θv) ∈ CNRNT×KRKT and its
columns are defined as

[
Ψk(τv

l ,φ
v,θv)

]
:,(j−1)KT+i

=

e−j2π∆fkτ
v
l vec(Gk(τv

l , φ
v
i , θ

v
j)), ∀i = 1, . . . ,KR, j =

1, . . . ,KT, and bl ∈ CKRKT×1 collects bl,i,j , satisfying
‖bl‖0 ≤ 1 and

∑Lv

l=1 ‖bl‖0 ≤ L.

Remark 2. Comparing the channel approximation ex-
pressions for central subcarriers in (26) and for side
subcarriers in (35), it is clear that the additional distor-
tion matrix Gk(τ`, φ`, θ`) for side subcarriers entangles
the three parameters of delay, AoA and AoD, such that
a combination of discretized delay, AoA and AoD grids
is needed. This will increase the sparsifying dictionary
dimension significantly and induce overwhelming com-
putational complexity during the CS recovery of these
parameters. Instead, for the central subcarriers, the
discretization of delay, AoA and AoD is decoupled with-
out the additional distortion matrix and thus even one-
dimensional search can be done sequentially for each

parameter, which will help reduce the computational
complexity to a large extent.

Next, as per the approximate channel models in (26)-
(30) as well as (35)-(32), we can formulate the final
DL problem for hardware impairments. Specifically,
stacking the initial channel estimates at all subcarriers
from all locations u ∈ I(Nsa), the problem formulation
of DLHW can be expressed as shown in (33). Note
that the two sum terms in (33) are format-consistent as[
Ψk(τv

l ,φ
v,θv)

]
:,(j−1)KT+i

= F(p)[fk]
Ts

e−j2πfkτv
l 1NRNT

for central subcarriers k ∈ Kcen. We will see that the
simplified expression for central subcarriers can help
facilitate the derivations of DL algorithms.

B. Speeding up the dictionary learning with a new
sparse coding algorithm

The optimization problem in (33) is not jointly convex
with respect to the variables DT,1, DT,2, DR,1, DR,2,
Ω(u)[k], and b

(u)
l , but it can still be solved by the

alternating optimization techniques. As in the typical DL
problems [25], the optimization of (33) is split into two
stages: sparse coding and dictionary update.

1) Sparse coding stage: In this stage, we fix all
dictionary parts and update the channel coefficients
Ω(u)[k], ∀k ∈ Kcen, u ∈ I(Nsa) and b

(u)
l , ∀k ∈

Kside, u ∈ I(Nsa). Specifically, for each u ∈ I(Nsa), the
optimization problem of (33) is reduced to the expression
in (34) (omitting the superscript (u) for simplicity).
Generally, this problem can be optimized by various CS
techniques, such as orthogonal matching pursuit (OMP)
[26], simultaneous OMP (SOMP) [27], or simultaneous
weighted OMP (SWOMP) [2], to name a few. In this
paper, we propose a new sparse coding algorithm to
solve (34), named Dictionary Adaptive OMP under beam
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min
DR,1

∑
u∈I(Nsa)

∑
k∈Kcen

∥∥∥∥Ĥ(u)[k]−DR,1
(
DR,2 �Av

R,k

)
Ω(u)[k]

(
DT,2 �Av

T,k

)∗
D∗T,1︸ ︷︷ ︸

X
(u)
R,1 [k]

∥∥∥∥2

F

+
∑

u∈I(Nsa)

∑
k∈Kside

∥∥∥∥Ĥ(u)[k]−
L̂(u)∑
l̂=1

α̂
(u)

l̂
e−j2π∆fk τ̂

(u)

l̂ Gk(τ̂
(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
)�

(
ăR,k(φ̂

(u)

l̂
)ă∗T,k(θ̂

(u)

l̂
)
)∥∥∥∥2

F

. (35)

min
DR,1

∑
u∈I(Nsa)

∑
k∈Kcen

∥∥∥∥Ĥ(u)[k]−DR,1
(
DR,2 �Av

R,k

)
Ω(u)[k]

(
DT,2 �Av

T,k

)∗
D∗T,1︸ ︷︷ ︸

X
(u)
R,1 [k]

∥∥∥∥2

F

+
∑

u∈I(Nsa)

∑
k∈Kside

∥∥∥∥Ĥ(u)[k]−
L̂(u)∑
l̂=1

α̂
(u)

l̂
e−j2π∆fk τ̂

(u)

l̂ Gk(τ̂
(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
)

�
(
DR,1

(
eR(φ̂

(u)

l̂
)� aR,k(φ̂

(u)

l̂
)
)(

eT(θ̂
(u)

l̂
)� aT,k(θ̂

(u)

l̂
)
)∗

D∗T,1︸ ︷︷ ︸
X

(u)

R,1,l̂
[k]

)∥∥∥∥2

F

, (36)

squint (DA-OMP-BS) as shown in Algorithm 1. This
algorithm exploits the following two important properties
of the channel models under beam squint, which will
enable low-complexity and high-accuracy recovery of
the channel coefficients and parameters:

• First, the common sparsity support property of
channel vectors across subcarriers will still be con-
sidered but with frequency-dependent dictionaries
accounting for beam squint impacts. For SOMP
and OMP in previous work, the common sparsity
support of channel coefficients between subcarri-
ers is assumed under the same dictionary for all
subcarriers. This is an approximate result for the
case without considering beam squint effect. When
the steering vector at the center frequency is used
for all subcarriers, there exist approximation errors
no matter how significant the beam squint effect
is. Under beam squint circumstances, we can ex-
ploit the true property of common sparsity support
between subcarriers but with different frequency-
dependent dictionaries accounting for the beam
squint impacts. The principle behind this argument
is that the physical AoAs and AoDs associated with
propagation paths are constant and independent of
subcarriers, and thereby when the channel vector
at each subcarrier is projected to the corresponding
sparsifying dictionary, only a few bins out of the
KR or KT virtual angular bins corresponding to the
physical AoAs and AoDs are nonzero.

• Second, as mentioned above, the additional dis-
tortion matrix at side subcarriers tangles the three
parameters of delay, AoA and AoD. Then if tradi-

tional SOMP or OMP is directly applied for (34),
the overall sparsifying dictionary will be a three-
dimensional (3D) dictionary [4] and the dimension
of this 3D dictionary [Ψk(τv

1 ,φ
v,θv) �

(
Ăv

T,k ⊗
Ăv

R,k

)
, . . . ,

Ψk(τv
Lv
,φv,θv)�

(
Ăv

T,k⊗Ăv
R,k

)
] will be NRNT×

LvKRKT, proportional to the product of the num-
bers of delay/AoA/AoD grids. This will induce
overwhelming complexity. As for the newly pro-
posed DA-OMP-BS, it will first exploit the chan-
nel models at central subcarriers to obtain ini-
tial estimates of the delay/AoA/AoD parameters.
Without the impact of additional distortion matrix
at central subcarriers, this can be done even by
one-dimensional search over each parameter space
iteratively. These initial estimates of parameters
are then used to reduce the effective dictionary
dimension at side subcarriers and compensate the
distortions induced by beam squint, so that all
the subcarriers can be collected to improve the
estimates of delays/AoAs/AoDs again. In doing so,
the sparse coding of (34) can be solved with much
lower complexity and higher accuracy.

In line of these ideas, the DA-OMP-BS is expected
to outperform SOMP and OMP without considering
beam squint. We summarize the procedure of DA-OMP-
BS in Algorithm 1. Once the sparse coding stage of
(34) is done, the coefficients Ω(u)[k], k ∈ Kcen and
b

(u)
l , k ∈ Kside as well as the estimates of path gains,

delays, AoAs, and AoDs ϕ̂(u)

l̂
, {α̂(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
, τ̂

(u)

l̂
}

for l̂ = 1, . . . , L̂(u), ∀u ∈ I(Nsa) can be obtained, which
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will be used to update the hardware impairments related
dictionaries in the next subsections.

Algorithm 1 : DA-OMP-BS algorithm for sparse coding

1: procedure DA-OMP-BS (y(u)[k], Φ, DT,1, DT,2,
DR,1, DR,2,KR,KT, Lv)

2: Construct Ăv
R,k and Ăv

T,k at each subcarrier
with input dictionaries

3: Compute the whitened equivalent sensing ma-
trix and received signals

4: Lw=blkdiag
{

(W̆∗
1W̆1)−1/2, . . . , (W̆∗

MW̆M )−1/2
}

and Φw = LwΦ
5: y

(u)
w [k] = Lwy(u)[k], for k = 0, . . . ,K −

1, u ∈ I(Nsa)
6: for u = 0, . . . , Nsa − 1 do
7: Initialize the residual vectors and set of

estimated parameters
8: r[k] = Φ∗wy

(u)
w [k], ∀k = 0, . . . ,K − 1 and

L̂(u) = 0, ϕ̂
(u)
l = ∅

9: while MSE > ε do:
10: Define: O(τ, φ, θ,Kset) =∥∥∑

k∈Kset
(ăv

T,k(θ)⊗ăv
R,k(φ))∗(r[k]ej2π∆fkτ )

∥∥2

F∥∥∑
k∈Kset

(ăv
T,k(θ)⊗ăv

R,k(φ))∗(Φ∗we
j2π∆fkτ )

∥∥2

F

11: Initial parameter estimation using central
subcarriers

12: delay: τ̂ =

argmaxτv
l

∥∥∑
k∈Kcen

r[k]ej2π∆fkτ
v
l

∥∥2

F

13: AoA: φ̂ =

argmaxφv
i

∥∥∑
k∈Kcen

(INT⊗ăv
R,k(φv

i ))∗(r[k]ej2π∆fkτ̂ )
∥∥2

F∥∥∑
k∈Kcen

(INT⊗ăv
R,k(φv

i ))∗(Φ∗we
j2π∆fkτ̂ )

∥∥2

F

14: AoD: θ̂ = argmaxθv
j
O(τ̂ , φ̂, θv

j ,Kcen)

15: Refine the initial parameter estimates
16: delay: τ̂ = argmaxτv

l
O(τv

l , φ̂, θ̂,Kcen)

17: AoA: φ̂ = argmaxφv
i
O(τ̂ , φv

i , θ̂,Kcen)

18: AoD: θ̂ = argmaxθv
j
O(τ̂ , φ̂, θv

j ,Kcen)

19: Distortion compensation at side subcarri-
ers

20: r[k] = diag
{

vec(Gk(τ̂ , φ̂, θ̂))
}−1

r[k], ∀k ∈
Kside

21: Update parameter estimates using all sub-
carriers

22: delay: τ̂ = argmaxτv
l
O(τv

l , φ̂, θ̂,Kcen ∪
Kside)

23: AoA: φ̂ = argmaxφv
i
O(τ̂ , φv

i , θ̂,Kcen ∪
Kside)

24: AoD: θ̂ = argmaxθv
j
O(τ̂ , φ̂, θv

j ,Kcen ∪
Kside)

25: Update the set of estimated parameters:
L̂(u) = L̂(u) + 1, ϕ̂

(u)
l = {τ̂ , φ̂, θ̂}

2) Dictionary update stage: Next, we fix the channel
coefficients and path parameters in (33) in preparation of

Algorithm 1 : DA-OMP-BS algorithm for sparse coding
(continued)

26: Update the path gains α̂l and coefficient
vectors by minimizing

27: K−1∑
k=0

∥∥y(u)
w [k]−Φw

L̂(u)∑
l=1

αle
−j2π∆fk τ̂l

vec(Gk(τ̂l, φ̂l, θ̂l))� (ăT,k(θ̂l)⊗ ăR,k(φ̂l))
∥∥2

2

28: Update the residual for each subcarrier
29:

r[k]=Φ∗w
(
y(u)

w [k]−Φw

L̂(u)∑
l=1

α̂le
−j2π∆fk τ̂l

vec(Gk(τ̂l, φ̂l, θ̂l))� (ăT,k(θ̂l)⊗ ăR,k(φ̂l))
)

30: Update the current MSE:
31: MSE= 1

MLRK

∑K−1
k=0 ‖(Φ∗w)†r[k]‖22

32: end while
33: end for
34: Output: ϕ̂(u)

l ={α̂l, τ̂l, φ̂l, θ̂l}, vec(Ω̂(u)[k]) and
b

(u)
l , for u ∈ I(Nsa)

updating the hardware impairments related dictionaries
DT,1,DT,2,DR,1,DR,2. Note that due to the special
structure in this problem that the TX and RX dictionaries
are entangled with the beam squint effect at different
subcarriers, the typical dictionary update algorithms, like
the method of optimal directions (MOD) [28] or K-
SVD [25], cannot be directly used. Therefore, we apply
alternating optimization in this sub-stage as well to
subsequently update the four dictionaries.

For the update of DR,1, the problem of (33) can be
reduced to the expression in (35), which is equivalent
to (36), where X

(u)
R,1[k] and X

(u)

R,1,l̂
[k] are defined accord-

ingly for ease of expression. To update DR,1, we need
to calculate the derivative of the objective function with

respect to DR,1, i.e.,
∂J

∂DR,1
, which is expressed as in

(37) (a proof is provided in Appendix II). Therefore, the
update of DR,1 can be obtained by (stochastic) gradient
decent as

[DR,1]
new

= [DR,1]
old − η ∂J

∂DR,1
, (38)

where η is the step-size of gradient descent and can be
determined by backtracking line search. Similarly, the
update of DT,1 can be obtained.

For the update of DR,2 = f(εR) ,
e−j2πfcεR·sin(φv)T /c, it is equivalent to updating
εR. By stacking all subcarriers, we have the objective of
updating εR as in (39), where X

(u)
R,2[k] and X

(u)

R,2,l̂
[k] are

defined accordingly for ease of expression. To update
εR, we need to calculate the derivative of the objective
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∂J

∂DR,1
= −

∑
u∈I(Nsa)

∑
k∈Kcen

(Ĥ(u)[k]−DR,1X
(u)
R,1[k])(X

(u)
R,1[k])T −

∑
u∈I(Nsa)

∑
k∈Kside

L̂(u)∑
l̂=1

α̂
(u)

l̂
e−j2π∆fk τ̂

(u)

l̂

·
[(

Ĥ(u)[k]−
L̂(u)∑
l̂=1

α̂
(u)

l̂
e−j2π∆fk τ̂

(u)

l̂ Gk(τ̂
(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
)�DR,1X

(u)

R,1,l̂
[k]
)

�Gk(τ̂
(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
)

]
·
(
X

(u)

R,1,l̂
[k]
)T
. (37)

min
εR

∑
u∈I(Nsa)

∑
k∈Kcen

∥∥∥∥D†R,1Ĥ
(u)[k]D∗†T,1︸ ︷︷ ︸

Y
(u)
R,2 [k]

−
(
DR,2 �Av

R,k

)
Ω(u)[k]

(
DT,2 �Av

T,k

)∗︸ ︷︷ ︸
X

(u)
R,2 [k]

∥∥∥∥2

F

+
∑

u∈I(Nsa)

∑
k∈Kside

∥∥∥∥Ĥ(u)[k]−
L̂(u)∑
l̂=1

α̂
(u)

l̂
e−j2π∆fk τ̂

(u)

l̂ Gk(τ̂
(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
)

�
(
DR,1

(
eR(φ̂

(u)

l̂
)� aR,k(φ̂

(u)

l̂
)
) (

eT(θ̂
(u)

l̂
)� aT,k(θ̂

(u)

l̂
)
)∗

D∗T,1︸ ︷︷ ︸
X

(u)

R,2,l̂
[k]

)∥∥∥∥2

F

, (39)

function with respect to εR, which can be expressed as
in (40) (A proof is given in Appendix III). Therefore,
the update of DR,2 is given as

[DR,2]
new

= f([εR]new) = f

(
[εR]old − η ∂J

∂εR

)
. (41)

Similarly, the update of DT,2 can be obtained.
The overall procedure of the proposed DL scheme is

summarized in Algorithm 2, and the flow diagram is
represented in Fig. 3.

Once the hardware impairments related dictionaries
DR,1,DR,2,DT,1,DT,2 are obtained, the overall RX and
TX sparsifying dictionaries Ăv

R,k and Ăv
T,k can be con-

structed at each subcarrier to incorporate the beam squint
impact as in (29), and then used for subsequent online
compressive channel estimation, which is expected to
help reduce the training overhead significantly.

C. Convergence and complexity analysis

The iterative refinement between the sparse coding
and the dictionary update stages is a decreasing process
of the objective function in (33), which takes positive
values. In other words, we are minimizing a function
bounded by zero and its domain is closed. Therefore,
the convergence is guaranteed, and the system will be
able to learn the hardware impairments.

As for the complexity, since the DL phase can be
implemented offline, the complexity involved in the
dictionary update stage does not increase the overall

Algorithm 2 : Dictionary learning for hardware impair-
ments under beam squint (DLHWBS)

• Input: Initial channel estimates ĥ(u)[k], ∀k =
0, . . . ,K − 1, u ∈ I(Nsa).

• Initialization: Set the dictionary matrices DR,1 ∈
CNR×NR and DT,1 ∈ CNT×NT using measurement
data based on DIA algorithm [29], and set the dic-
tionary matrices DT,2 and DR,2 as all-one matrices.

• While not converge do
1. Sparse coding stage: Fixing all dictionaries,

solve (34) using Algorithm 1 to update channel
coefficients Ω(u)[k] and b(u)

l , as well as the path
parameters ϕ̂(u)

l̂
.

2. Dictionary update stage: Fixing coefficients,
update dictionaries as follows

While not converge do
Update DR,1 using (38) and update DT,1

similarly,
Update DR,2 using (41) and update DT,2

similarly.
end while

end while
• Output: The optimal dictionaries

DT,1,DT,2,DR,1,DR,2.

complexity of the online sparse coding stage. There-
fore, we compare the computational overhead of the
proposed DA-OMP-BS with those of TD-OMP [4], in
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∂J

∂εR
=

∑
u∈I(Nsa)

∑
k∈Kcen

2R
{{

∂J
(u)
k

∂DR,2
�DR,2

}
· −j2πfc sin(φv)

c

}

−
∑

u∈I(Nsa)

∑
k∈Kside

2R
{
L̂(u)∑
l̂=1

α̂
(u)

l̂
e−j2π∆fk τ̂

(u)

l̂ ·
−j2πfc sin(φ̂

(u)

l̂
)

c
·
[
DT

R,1

·
((

Ĥ(u)[k]−
L̂(u)∑
l̂=1

α̂
(u)

l̂
e−j2π∆fk τ̂

(u)

l̂ Gk(τ̂
(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
)�

(
DR,1

(
eR(φ̂

(u)

l̂
)� aR,k(φ̂

(u)

l̂
)
)
X

(u)

R,2,l̂
[k]
))

�Gk(τ̂
(u)

l̂
, φ̂

(u)

l̂
, θ̂

(u)

l̂
)

)
(X

(u)

R,2,l̂
[k])T

]
�
(
eR(φ̂

(u)

l̂
)� aR,k(φ̂

(u)

l̂
)
)}
. (40)
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Fig. 3: Flow diagram of the dictionary learning stage.

terms of complex multiplication operations for each
iteration. For ease of comparison, we set the numbers of
AoA/AoD/delay grids to be the same KR = KT = Lv =
S. For sparse coding with DA-OMP-BS, the parameters
can be estimated by iterative one-dimensional search
over each parameter space, and thus the complexity order
per iteration is O((NR +NT +Nc)SNsa). For TD-OMP,
the joint search over the 3D parameter space induces a
much higher complexity order of O

(
NRNT +S3NcNsa

)
.

IV. NUMERICAL RESULTS

In this section, we present numerical results to demon-
strate the effectiveness of the proposed dictionary learn-
ing and channel estimation algorithms for a realistic
hybrid wideband mmWave MIMO system under both
hardware impairments and beam squint.

The TX and RX are equipped with ULAs with half-
wavelength spacing, i.e., dR = dT = λc/2, and NT = 32,
NR = 8. Regarding the RF chains, LT = LR = Ns = 2.
The number of OFDM subcarriers is Nc = 64 and Ts =
1 ns.

The channels are generated based on (21) with L = 6
multipath components, as in typical indoor scenarios.

The pulse shaping function p(t) is assumed to be a
raised-cosine filter with roll-off factor of β = 0.25.
The angle of arrival φl and angle of departure θl are
uniformly distributed in [−π, π], while the delays are
uniformly distributed in [0, 16Ts]. The gains are gen-
erated following a complex Gaussian distribution with
the variance adjusted to achieve a specific SNR for
the evaluation of the channel estimation strategies. For
the parameters of hardware impairments, as in [17]–
[19], the maximum gain and phase error variances for
each antenna element are set as 5% and 20◦π/180◦

respectively. Finally, the mutual coupling coefficients
among antennas are within [0.01, 0.4] and the antenna
location errors are assumed to be uniformly distributed
between [−0.1λc, 0.1λc].

We evaluate the performance of our proposed wide-
band channel estimation algorithm, DA-OMP-BS, in
addition to two baseline algorithms described in prior
work, denoted as TD-OMP [4] and WB-ADMM [1].
The sizes for the discrete angle and delay grids are set
as KT = 2NT, KR = 2NR and Lv = 2Nc for all the
different algorithms evaluated in the simulations. Note,
however, that the proposed Algorithm 1 is of much lower
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complexity, so that finer angle and delay grids could have
been used to improve parameter estimation accuracy.
The performance of the different channel estimation
strategies is evaluated in conjunction with different
strategies for building the sparsifying dictionaries. In
particular, we will consider: 1) the dictionaries obtained
with our proposed approach DLHWBS; 2) a dictionary
constructed from overcomplete ideal array response ma-
trices (IARM) Av

R,k and Av
T,k considering beam squint,

but without hardware impairments; 3) the general SeDL
algorithm proposed in [19], which learns a frequency-flat
combined dictionary for hardware impairments; and 4)
the ideal dictionary built from the known impairments
and the corresponding array response vectors.

During the DL phase, the number of OFDM symbols
for training is set as 500, and a spreading factor 10 is
used to increase the effective SNR by 10 dBs. For the
optimization of DLHWBS, a revised version of the dic-
tionary initialization algorithm (DIA) in [29] is used for
initialization of the hardware impairments. Specifically,
the original DIA algorithm [29] is first applied to initial-
ize the combined dictionary Dinit

R , DR,1(DR,2�Av
R,k).

Then we set the initial values of the antenna spacing
errors as zeros, i.e., εR = 0 and DR,2 = 1NR×KR , and
thus the initialization of gain, phase and coupling matrix
is obtained by DR,1 = Dinit

R (Av
R,k)†.

First we evaluate the average computational complex-
ity time for each channel estimation algorithm consid-
ering 100 channel realizations. The results are shown in
Fig. 4, where it can be seen that with the selected grid
sizes, fixed for all the algorithms, our method is around
500 times faster then TD-OMP, and around 100 times
faster than WD-ADMM. In the next simulations we will
show that despite this significant reduction in complexity,
our method always outperforms WD-ADMM for any
selection of the dictionary, and, depending on the system
parameters, it slightly outperforms or performs similarly
to TD-OMP.

Next we evaluate the normalized mean squared er-
ror (NMSE) for the different combinations of channel
estimation algorithms and sparsifying dictionaries, as
a function of the number of training symbols M and
the SNR considering 100 channel realizations. Fig. 5(a)
shows the NMSE when the SNR=0dB and the number
of training symbols varies from 20 to 120. It can be
observed that the NMSE reduction provided by DA-
OMP-BS when exploiting the ideal dictionary based on
known impairments varies from 1 to 1.5 dB. DA-OMP-
BS outperforms any other channel estimation algorithm
independently of the considered dictionary. Fig. 5(b)
shows the NMSE results as function of the SNR when
the number of training symbols M is set to 60. For
SNR=0dB, both DA-OMP-BS leads to an NMSE value
of -10 dB as TD-OMP but with a cost in complexity
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Fig. 4: Average computation complexity time of each
evaluated channel estimation method.

500 times lower. Leaving aside the ideal dictionary built
from known impairments, the best performing dictionary
is DLHWBS, as it can be seen in both Fig. 5(a) and
Fig. 5(b). DLHWBS outperforms SeDL because the
latter attempts to learn a frequency-flat dictionary for all
subcarriers under both hardware impairments and beam
squint effect, and assumes all the channels follow the
second case of (21). In other words, the distortions on the
channel models at side subcarriers are ignored, and thus
there already exist some modeling errors when SeDL is
applied. These results confirm the effectivenes of our
proposed approaches both for channel estimation and
dictionary learning.

In Fig. 6, we also compare the spectral efficiency (SE)
performances corresponding to the various sparsifying
dictionaries and sparse coding algorithms. As in previous
work [2], [19], the SE is computed by assuming fully-
digital precoding and combining using estimates for
the Ns dominant left and right singular vectors of the
channel estimates. To be clear, SE is defined as

SE =
1

K

K−1∑
k=0

Ns∑
n=1

log

(
1 +

SNR
Ns

λn(Heff[k])2

)
,

where Heff[k] is the effective channel after precod-
ing/combining and λn(Heff[k]) takes the singular values
of Heff[k]. For both DA-OMP-BS and conventional TD-
OMP, the SE can be significantly increased when ex-
ploiting the dictionaries learned with DLHWBS instead
of IARM dictionaries. Moreover, the performance gap
between the proposed DLHWBS algorithm and the case
of ideal hardware impairment knowledge is small.

Finally, we compute the BER when considering the
quadrature phase shift keying (QPSK) modulation and
minimum mean squared error (MMSE) detection. Fig. 7.
shows how better channel estimates translate into lower
BER for DA-OMP-BS combined with DLHWBS. The
average BER performance gap between the proposed
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Fig. 5: Comparisons of NMSE performance: (a) as a function of the number of training OFDM symbols and SNR
set to 0dB; (b) as a function of the SNR for 60 training OFDM symbols.
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Fig. 6: Comparison of SE performance: (a) as a function of the number of training OFDM symbols and SNR set
to 0dB; (b) as a function of the SNR for 60 training OFDM symbols.
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Fig. 7: Comparisons of BER performance: (a) as a function of the number of training OFDM symbols and SNR
set to 0dB; (b) as a function of the SNR for 60 training OFDM symbols.

DLHWBS and the ideal case of known impairments is
less than 0.5 dB. This reaffirms the effectiveness of our
proposed algorithm for hybrid wideband channel under

hardware impairments and beam squint.
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V. CONCLUSIONS

In this manuscript, we derived a general channel
model for MIMO systems by explicitly considering
the combined impact of hardware impairments, pulse
shaping/filtering effects and beam squint. The resulting
model is an extension of existing MIMO channel models
with beam squint. Based on this general channel model,
we formulated a DL problem to obtain the sparsifying
dictionaries for channel representation that account for
hardware impairments. The effect of beam squint is
considered, but it is not part of the learning process, since
it can be mathematically modeled. We also proposed a
novel compressive channel estimation algorithm under
beam squint, which exploits the structure of the beam
squint at different subcarriers to facilitate the estimation
of the channel parameters at a much lower complexity.
Numerical results have demonstrated the effectiveness
of the proposed DL and channel estimation strategies
and the significant gains with respect to the strategies
proposed in prior work.

APPENDIX I
PROOF OF EQUATION (11)

Let the delayed filter be r(t) = p(t − τ). If we have
a set of measurements r = [r(0), r(Ts), . . . , r((K −
1)Ts)]

T , the k-th entry after DFT can be computed as

r̂[k] =
K−1∑
d=0

[r]d · e−j 2πkd
K . (42)

Equivalently, we can use the continuous interpretation of
the DFT to represent this as

r̂[k] = F
(∑

d

δdTs(p ∗ δτ )
)

[∆fk], (43)

where
∑
d δdTs

=
∑∞
d=−∞ δ(t − dTs) is the sampling

function with period Ts and δτ , δ(t − τ). Moreover,
∗ denotes convolution operation and F(·)[∆fk] is the
Fourier transform evaluated for the frequency difference
∆fk. Next we can make use of Fourier product and
convolution identities to get to

r̂[k] =
(
F
(∑

d

δdTs

)
∗
(
F(p)F(δτ )

))
[∆fk]. (44)

Using the Dirac comb Fourier identity formula we reach

r̂[k] =
(( 1

Ts

∑
i

δi/Ts

)
∗
(
F(p)F(δτ )

))
[∆fk]. (45)

Now we can express the convolution in terms of an
integral

r̂[k] =
1

Ts

∫
F(p)[f ]e−j2πfτ

∑
i

δi/Ts
(∆fk − f)df,

(46)

and this can be solved by evaluating the Dirac comb as
follows

r̂[k] =
∑
i

F(p)[∆fk + i/Ts]

Ts
e−j2π(∆fk+i/Ts)τ (47)

=
(∑

i

F(p)[∆fk + i/Ts]

Ts
e−j2πiτ/Ts

)
e−j2π∆fkτ .

(48)

Note that since F(p) is bounded, this sum only includes
a few terms. Let us define the delay-frequency distortion
as

g(k, τ) =
∑
k′

F(p)[∆fk + k′/Ts]

Ts
e−j2πiτ/Ts , (49)

and then (47) can be simplified to

r̂[k] = g(k, τ)e−j2π∆fkτ . (50)

If we assume the domain of F(p) to be in [− 1+β
2Ts

,+ 1+β
2Ts

]
with β ∈ [0, 1], then we have the expression for g(k, τ)
as in (51) In the case of a raised cosine filter with
parameters T = Ts and β ∈ [0, 1], it is straightforward
to prove the result in (52).

APPENDIX II
DERIVATIVE OF THE OBJECTIVE FUNCTION IN (36)

WITH RESPECT TO DR,1

First, we calculate the derivative of the first sum term
in (36) with respect to DR,1. For u ∈ I(Nsa), k ∈ Kcen,
we have

∂J
(u)
k

∂DR,1
= −(Ĥ(u)[k]−DR,1X

(u)
R,1[k])(X

(u)
R,1[k])T . (53)

Next, we calculate the derivative of the second sum
term in (36) with respect to DR,1. Recalling the chain
rule, we can express the Jacobian matrix of the second
sum term with respect to DR,1 as in (54), ∀u ∈
I(Nsa), k ∈ Kside. From (54), we can easily obtain Then,
combining the derivatives in (53) for k ∈ Kcen and the
derivatives in (55) for k ∈ Kside, we can obtain the final
derivative of the objective function in (36) with respect
to DR,1 as (56).

APPENDIX III
DERIVATIVE OF THE OBJECTIVE FUNCTION IN (39)

WITH RESPECT TO εR

First, we calculate the derivative of the first sum term
in (39) with respect to εR. Note that the gradient of any
element of DR,2 with respect to the antenna location
error εR,m can be expressed as

∂[DR,2]m,n
∂εR,m

=
∂e−j2πfcεR,m·sin(φv

n)/c

∂εR,m

= [DR,2]m,n ·
−j2πfc sin(φv

n)

c
. (57)
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g(k, τ) =


F(p)[∆fk]

Ts
+ F(p)[∆fk−1/Ts]

Ts
ej2πτ/Ts if 2∆fk > (1− β)/Ts

F(p)[∆fk]
Ts

if 2|∆fk| ≤ (1− β)/Ts
F(p)[∆fk]

Ts
+ F(p)[∆fk+1/Ts]

Ts
e−j2πτ/Ts if 2∆fk < −(1− β)/Ts

(51)

g(k, τ) =


1
2 (1 + ej 2πτ

Ts + (1− ej 2πτ
Ts ) cos(πTs

β (|∆fk| − 1−β
2Ts

))) if 2∆fk > (1− β)/Ts

1 if 2|∆fk| ≤ (1− β)/Ts
1
2 (1 + e−j 2πτ

Ts + (1− e−j 2πτ
Ts ) cos(πTs

β (|∆fk| − 1−β
2Ts

))) if 2∆fk < −(1− β)/Ts

(52)

∂J
(u)
k

∂vec(DR,1)T
=

∂J
(u)
k

∂vec(
∑L̂
l̂=1 α̂l̂e

−j2π∆fk τ̂l̂Gk(τ̂l̂, φ̂l̂, θ̂l̂)�DR,1X
(u)

R,1,l̂
[k])T

·
∂vec(

∑L̂
l̂=1 α̂l̂e

−j2π∆fk τ̂l̂Gk(τ̂l̂, φ̂l̂, θ̂l̂)�DR,1X
(u)

R,1,l̂
[k])

∂vec(DR,1X
(u)

R,1,l̂
[k])T

·
∂vec

(
DR,1X

(u)

R,1,l̂
[k]
)

∂vec(DR,1)T
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∂J
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(u)
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. (56)

Therefore, we have the gradient of J (u)
k with respect to

εR as

∂J
(u)
k

∂εR
= 2R

{{
∂J

(u)
k

∂DR,2
�DR,2

}
· −j2πfc sin(φv)

c

}
,

(58)

We next calculate the derivative of the second sum
term in (39) with respect to εR. Similar to Appendix
II, using the chain rule of Jacobian matrix, ∀u ∈
I(Nsa), k ∈ Kside, we have the expression (59), which
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leads to (60). Then, combining the derivatives in (58) for
k ∈ Kcen and the derivatives in (60) for k ∈ Kside, we
can obtain the final derivative of the objective function
in (39) with respect to εR, shown in (61).

REFERENCES

[1] E. Vlachos, G. C. Alexandropoulos, and J. Thompson, “Wide-
band MIMO Channel Estimation for Hybrid Beamforming Mil-
limeter Wave Systems via Random Spatial Sampling,” IEEE
Journal of Selected Topics in Signal Processing, vol. 13, no. 5,
pp. 1136–1150, 2019.

[2] J. Rodrı́guez-Fernández, N. González-Prelcic, K. Venugopal, and
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