
Profiling Hyperscale Big Data Processing

Abraham Gonzalez
abe.gonzalez@berkeley.edu

Google, UC Berkeley
Berkeley, CA, USA

Aasheesh Kolli
aasheesh@google.com

Google
Mountain View, CA, USA

Samira Khan
samirakhan@google.com

Google
Mountain View, CA, USA

Sihang Liu∗

sihangliu@uwaterloo.ca
University of Waterloo
Waterloo, ON, CAN

Vidushi Dadu
vidushid@google.com

Google
Mountain View, CA, USA

Sagar Karandikar
sagark@eecs.berkeley.edu

UC Berkeley, Google
Berkeley, CA, USA

Jichuan Chang
jichuan@google.com

Google
Mountain View, CA, USA

Krste Asanović
krste@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Parthasarathy Ranganathan
partha.ranganathan@google.com

Google
Mountain View, CA, USA

ABSTRACT

Computing demand continues to grow exponentially, largely driven

by łbig dataž processing on hyperscale data stores. At the same

time, the slowdown in Moore’s law is leading the industry to em-

brace custom computing in large-scale systems. Taken together,

these trends motivate the need to characterize live production traf-

fic on these large data processing platforms and understand the

opportunity of acceleration at scale.

This paper addresses this key need. We characterize three impor-

tant production distributed database and data analytics platforms

at Google to identify key hardware acceleration opportunities and

perform a comprehensive limits study to understand the trade-offs

among various hardware acceleration strategies.

We observe that hyperscale data processing platforms spend sig-

nificant time on distributed storage and other remote work across

distributedworkers. Therefore, optimizing storage and remote work

in addition to compute acceleration is critical for these platforms.

We present a detailed breakdown of the compute-intensive func-

tions in these platforms and identify dominant key data operations

related to datacenter and systems taxes. We observe that no sin-

gle accelerator can provide a significant benefit but collectively, a

sea of accelerators, can accelerate many of these smaller platform-

specific functions. We demonstrate the potential gains of the sea

of accelerators proposal in a limits study and analytical model. We

perform a comprehensive study to understand the trade-offs be-

tween accelerator location (on-chip/off-chip) and invocation model

(synchronous/asynchronous). We propose and evaluate a chained

accelerator execution model where identified compute-intensive

functions are accelerated and pipelined to avoid invocation from

∗Work done while at Google.

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589082

the core, achieving a 3x improvement over the baseline system

while nearly matching identical performance to an ideal fully asyn-

chronous execution model.

CCS CONCEPTS

· Information systems→Database query processing; ·Com-

puter systems organization → Cloud computing.

KEYWORDS

data analytics, databases, hyperscale computing, cloud computing,

warehouse-scale computing, profiling, accelerators, accelerator-

chaining

ACM Reference Format:

Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu,

Sagar Karandikar, Jichuan Chang, Krste Asanović, and Parthasarathy Ran-

ganathan. 2023. Profiling Hyperscale Big Data Processing. In Proceedings of

the 50th Annual International Symposium on Computer Architecture (ISCA

’23), June 17ś21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3579371.3589082

1 INTRODUCTION

Growing volumes of data are causing demand for computing to

increase at phenomenal rates. More than 2.5 quintillion bytes of data

are expected to be generated per day throughout the world [35]. The

global łdata spherež is forecast to be greater than 175 zettabytes

and commercial big data solutions are growing in capacity and

features to satisfy this demand [3]. This growth of data-centric

computing is exemplified by the growing computing needed for

large databases, data warehouses, and data lakes in hyperscaler and

cloud companies (e.g., Google, Amazon, Microsoft, and Meta).

At the same time, Moore’s law is slowing down, stressing tradi-

tional assumptions around cheaper and faster systems every year.

This trend has led to new solutions that consider the entire data

center as a computer (warehouse-scale computing [28, 56]) as well

as innovative new custom silicon [5, 7, 27, 30, 45]. Underpinning

both approaches is a deep understanding of key workload behavior

at scale, allowing for more vertically integrated system designs.

This work is licensed under a Creative Commons Attribution International 4.0 License.

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

Frontend Client

WorkersWorkersWorkers

Dist.
FS

Dist.
Cache

Access Data

Read/Write/Commit

Region 1

WorkersWorkersWorkers

Dist.
FS

Dist.
Cache

Region N

… Access Data

(a) Spanner

Frontend Client

Read/Write

WorkersWorkersWorkers
WorkersWorkersWorkers

WorkersWorkersWorkers

Get Metadata
Write log /
Read Data Compaction

Dist.
FS

(b) BigTable

Frontend Client

Request

Workers

Query
Master

Metadata
Server

Stage 1

Dist.
TX DB

Dist.
Shuffle

Dist.
Shuffle

Access
Metadata

WorkersWorkers

Stage 2 Stage N

Access Data

Dist.
FS

Response

(c) BigQuery

Figure 1: Google Big Data Processing Architectures

However, despite several prior studies on data processing plat-

forms [19, 28, 40, 44, 54ś56, 66], there is a lack of research and

deep quantitative information on hyperscale big data processing

platforms, including their behavior on real-world production traffic

and corresponding opportunities for hardware acceleration.

Addressing this, we present, to the best of our knowledge, the

first large-scale profiling study of hyperscale big data processing

platforms at Google. We contribute the following:

• We characterize three key types of production big data pro-

cessing platforms serving live traffic: a distributed SQL and

NoSQL database (Spanner and BigTable), and a distributed

data analytics query engine (BigQuery). We present an end-

to-end execution breakdown of time spent on compute, dis-

tributed storage, and other remote work, such as shuffle

and compaction. Our characterization identifies the need for

software-hardware co-design, as 52% of end-to-end time is

spent on remote work and distributed storage operations.

• We provide detailed per-platform workload-level breakdowns

and identify key compute-intensive hardware acceleration

targets. We highlight that over 72% of time is spent on dat-

acenter and system tax components, an important unique

feature of distributed big data processing. With no individ-

ual function bottleneck, we argue that collectively, a sea of

accelerators, can accelerate many of these smaller functions

along with datacenter and system tax operations.

• We perform an accelerator limit study and trade-off analysis

with an analytical model for various sea of accelerators de-

sign points, varying placement (on-chip/off-chip), and the

amount of overlap in execution (synchronous/asynchronous

acceleration). Our results show that co-designs eliminating

storage and remote work overheads provide more significant

benefit. Additionally, with large working sets, analytics plat-

forms can slow down due to high off-chip accelerator data

transfer costs. The most benefit is achieved with asynchro-

nous accelerator execution where all accelerator invocations

are parallelized.

• Based on our characterization and analysis, we propose a

chained accelerator execution model, where consecutive oper-

ations are sent to the next accelerator without core coordina-

tion, that achieves less than a 1% difference compared to an

ideal fully asynchronous execution model. Through valida-

tion with a synthetic benchmark that computes a SHA3 hash

of fleet-wide representative protobuf messages, our chained

model obtains a 6.1% difference compared to an open-source

accelerated RISC-V system-on-chip baseline.

2 GOOGLE BIG DATA PROCESSING

This section first compares smaller-scale research systems with pro-

duction hyperscale big data processing systems. We then describe

the main big data processing systems at Google and outline the

goals of the paper.

2.1 Characteristics of Production Systems

Traditionally, databases started as a single node system where re-

quests and responses are served from a local storage. With the

growth of datasets, horizontal scaling techniques, such as sharding

or data partitioning, were often used to distribute data between

small node clusters. Such systems include [2, 12, 25, 37, 39, 61].

Concurrently, the growing volumes of data in hyperscale deploy-

ments pushed the industry towards an extreme horizontal scaling

approach.

In the case of Google, data processing systems are highly dis-

tributed and serverless similar to other hyperscale platforms [4,

11, 13, 20, 41, 58]. Incoming requests can be handled by many ho-

mogeneous modern Intel Xeon and AMD EPYC servers controlled

by a cluster manager for resource provisioning and separated by a

proprietary high-speed custom network [53, 59]. Working sets are

often hundreds of petabytes or more and are managed through a dis-

tributed file system and caching layer, which partitions, replicates,

and stores the data [15]. Finally, with data stored in different formats

and locations, platforms are split into databases and query engines,

helping to decouple data management from query execution. Exam-

ples of this trend are now emerging in academia, for example, with

the use of Spark and Hadoop for SQL execution while matching

some of the scale-out properties of industrial systems [9, 60].

2.2 Big Data Processing Overview

Figure 1 presents architecture overviews of three big data process-

ing platforms at Google: two distributed databases ś Spanner and

BigTable ś and one data analytics query engine, BigQuery.We chose

these three processing platforms because they take a significant

amount of fleet-wide CPU cycles (more than 10%), with over 90%

of these cycles being high-priority production tier cycles. Addition-

ally, they were chosen because they are highly optimized and tuned

Profiling Hyperscale Big Data Processing ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

Table 1: Storage-to-Storage Ratios. Petabytes of RAM to SSD

to HDD owned per platform.

Storage-to-Storage Ratios

RAM PiB : SSD PiB : HDD PiB

Spanner BigTable BigQuery

1 : 8 : 90 1 : 16 : 164 1 : 7 : 777

over many engineer years for serving live production traffic from

multiple internal and external consumers. These platforms ingest

various data sources, from user-owned structured data to logging

data obtained from monitoring. The distributed databases, Spanner

and BigTable, offer users a traditional SQL and a NoSQL key-value

store interface, respectively. BigQuery is used in combination with

the databases to provide insights to downstream users and systems

through SQL queries. We next describe these platforms in more

detail.

2.2.1 Spanner. Spanner is a scalable, globally distributed, syn-

chronously replicated database [15]. Figure 1a shows the high-level

architecture of Spanner where workers are distributed globally

between different regions and access data and metadata through

the distributed caching and file system layers. Spanner supports

both general-purpose transactions and SQL queries. Additionally, it

supports sequentially consistent reads and writes while providing

globally-consistent reads across the database. Databases built on

Spanner can scale to petabytes in size. Users of Spanner include Ad-

vertising, Docs, Play, Photos, and a long tail of smaller applications.

2.2.2 BigTable. BigTable is a scalable, cluster-level key-value stor-

age system [13]. Unlike Spanner, BigTable supports a loose set of

consistency requirements for simple transactional queries. Similar

to Spanner, it is also designed to scale to petabyte-sized databases

and handles millions of requests per second. Figure 1b shows Big-

Table’s architecture, where a single BigTable cluster stores a data-

base table in multiple servers. Users of BigTable include Finance,

Earth, Search, and many smaller applications.

2.2.3 BigQuery. BigQuery is a large-scale distributed multi-tenant

query engine and data warehouse used for interactive data analysis

in Google’s production and cloud environments [14]. Unlike a pure

MapReduce-like system, BigQuery provides the ability to have

performant real-time interactive results (scan throughput of over a

billion records per second) with structured SQL queries. Figure 1c

shows the workflow of a query, where a series of intermediate

servers process data and a distributed shuffle engine sends data to

the next stage servers [36]. This platform has thousands of users

running workloads such as analysis of crawled web documents,

resolving issues from crash reports, and spam analysis.

2.3 Goals

Given the tremendous scale and complexity of the data processing

platforms, this work aims to understand and characterize them

from a systems and hardware perspective. We ask and answer the

following questions in the rest of the paper.

• Section 3: How are these hyperscaler systems balanced when

targeting extreme horizontal scaling? Is the storage to stor-

age ratio keeping up with the growing demand?

• Section 4: These hyperscaler platforms run on thousands to

millions of servers heavily, relying on distributed storage

and inter-node communication. What is the main bottleneck

in their end-to-end execution time and what kind of systems

optimizations can help these platforms?

• Section 5: Where is the main bottleneck at each local node in

these distributed platforms? Are there potential acceleration

targets on those nodes?

• Section 6: What is the upper bound of software-hardware

co-design for these platforms? What is an optimal model for

the complexities of distributed and local node components

in these platforms?

3 SYSTEM BALANCE

As data processed by big data platforms grows exponentially, we

are interested in understanding the systems balance in these hy-

perscaler platforms. Table 1 presents storage-to-storage system

balance ratios ś a ratio of HDD, SSD, and RAM petabytes owned

per platform ś given by internal logging resources over a full week

in 2022.

These platforms use large amounts of RAM for read caches and

write buffers to minimize expensive accesses to disaggregated storage.

For every 90, 164, or 777 bytes in HDD, a byte is allocated in RAM

across Spanner, BigTable, and BigQuery, respectively. This high

RAM usage makes these platforms expensive to operate. Disag-

gregated memory systems can potentially reduce these costs by

allowing a peak-of-sum allocation versus a sum-of-peaks provision-

ing model [34] for large memory caches.

These data processing platforms also have large working sets that

are too expensive to maintain entirely in memory. As a result, they

typically employ SSD caches to minimize accesses to HDDs, as

seen by the high RAM:SSD ratios. We observe that these platforms

read from SSDs more frequently than from HDDs, suggesting that

caching is an effective performance optimization. One promising

approach is using machine learning to place data between the

storage tiers [23, 38]. The SSD to HDD ratio is quite high (approx.

10x to 110x) for the platforms, suggesting that we have a unique

opportunity to rethink the storage hierarchy and add more caching

layers. Looking ahead, if storage were to grow at twice the rate of

compute (e.g., domains like video), system balance across compute

and storage will be further stressed, motivating rethinking memory

and distributed storage hierarchies [45].

4 END-TO-END EXECUTION TIME
BREAKDOWN

To accelerate a large distributed system, we first need to understand

how time is spent within the system. This section presents an

end-to-end execution breakdown of the three big data processing

platforms and characterizes the time spent locally versus remotely

in the distributed workflow.

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

0.0 0.2 0.4 0.6 0.8 1.0

Query Groups

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(%
)

Ov
er

al
l A

ve
ra

ge
CP

U
He

av
y

Re
m

ot
e

W
or

k
He

av
y

IO
 H

ea
vy

Ot
he

rs

0

20

40

60

80

100
Spanner

Ov
er

al
l A

ve
ra

ge
CP

U
He

av
y

Re
m

ot
e

W
or

k
He

av
y

IO
 H

ea
vy

Ot
he

rs

BigTable

Ov
er

al
l A

ve
ra

ge
CP

U
He

av
y

Re
m

ot
e

W
or

k
He

av
y

IO
 H

ea
vy

Ot
he

rs

BigQuery

CPU Remote Work IO

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

al
l P

er
ce

nt
ag

e
Of

 Q
ue

rie
s (

%
)

0

20

40

60

80

100

Figure 2: End-to-EndExecutionTimeBreakdown. Execution

time corresponds to the stacked bar portion of the graph,

while percentage of queries corresponds to the line drawn.

4.1 Methodology

We profile Spanner and BigTable using Dapper, an internal RPC

trace logging system that measures and traces RPCs between pro-

duction services [52]. For BigQuery, we collect end-to-end time

breakdowns from its internal timing logs. Given the large number

of queries run in a day and the massive time spent on trace process-

ing, we sample one-thousandth of all queries in a day for Spanner

and BigTable. We categorized end-to-end execution time obtained

into remote work, storage/IO, and CPU time. The remote work

represents when a local server node is waiting for remote workers

to complete operations such as consensus protocols for Spanner,

compaction in remote storage for BigTable, and distributed shuffles

for BigQuery. To match the RPC trace logs to BigQuery’s timing

logs, we categorized overlapped time first into remote work, then

IO, then CPU time, assuming that CPU time was blocked on remote

work and IO.

4.2 Time Breakdown

Figure 2 shows the end-to-end breakdown of the platforms. We

separate the queries into five groups: łCPU Heavyž, łIO Heavyž,

łRemote Work Heavyž, łOthersł, and the łOverall Averagež break-

down of all queries. We categorize CPU heavy queries as queries

that spent more than 60% of time on CPU computation, and IO and

Remote heavy queries as queries that spent more than 30% of the

time on distributed storage and remote work. A few observations

stand out.

Spanner and BigTable are primarily CPU heavy, while BigQuery

has more IO and remote work:More than 60% of the queries are CPU

heavy in Spanner and BigTable, where only 10% of the BigQuery

queries are CPU heavy. Spanner and BigTable deploy better caching

mechanisms for both data and metadata and therefore, most cycles

are spent on performing computation. These two platforms are

Table 2: Datacenter Tax Category Descriptions

Datacenter Tax Description

Compression (De)compression ops.

Cryptography Hashing, security tools/infra., etc.

Data Movement mem{cpy,move}, copy_user ops.

Mem. Allocation Mem. reservation ops. (malloc, etc.)

Protobuf (De)serialization setup and ops.

RPC Remote procedure calls

prime candidates for hardware acceleration. On the other hand,

BigQuery, which mainly focuses on data analytics workloads, can

benefit from better management of storage and remote work. Big-

Query workloads are often larger and less cachable than the pure

database workloads, for example, doing large scans over terabyte-

sized tables. This breakdown matches our observation in Section 3

that data analytics engines can be more IO heavy than databases.

IO and remote work optimizations are important for overall sys-

tem acceleration: Across all platforms, all queries spent 48%, 22%,

and 30% of time on compute, remote work, and IO. As a result,

52% of end-to-end time is collectively spent on remote work and

distributed storage operations. This indicates the importance of

software-hardware optimizations, such as optimizing distributed

shuffle mechanisms and consensus protocols over the network. Ad-

ditionally, intelligently placing data closer to compute through new

caching mechanisms or new memory tiers will also reduce data

transfer over the network.

5 CPU EXECUTION TIME BREAKDOWN

This section presents a breakdown of the CPU cycles spent on the

three platforms isolated from non-CPU dependencies.We also study

microarchitecture differences and identify optimizations based on

these breakdowns.

5.1 Methodology

We use Google-Wide Profiling (GWP), a fleet-wide profiling tool,

for sampling and collecting CPU profiles across machines from

Google’s production fleet over a single representative day in 2022 [28].

We manually categorize, prioritize, and aggregate returned samples

by their leaf functions in the call stack. This allows us to introspect

on CPU compute cycles and performance counters (e.g., branch

misses per kilo-instruction) spent on specific functions to under-

stand system bottlenecks.

5.2 Node-level Breakdown

To get a better intuition on common computing patterns and bottle-

necks, we breakdown compute cycles into three broad categories:

core compute, datacenter taxes, and system taxes.

• Core compute is the essential business logic and core primitives

of the specific data processing platform. This category helps

identify data processing patterns that are common across

multiple platforms (e.g., joins and sorts).

• Datacenter taxes, shown in Table 2, are the key functions

necessary to run hyperscale workloads [28, 56].

Profiling Hyperscale Big Data Processing ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

Table 3: System Tax Category Descriptions

System Tax Description

EDAC Error handing (checksums, etc.)

File Systems IO backend client compute

Other Memory Ops. Non-data-movement mem. ops.

Multithreading Thread management overheads

Networking Packet, web, server processing

Operating Systems Kernel, syscalls, time ops.

STL Standard fleet-wide libraries

Misc. System Taxes Uncategorized ops.

0 20 40 60 80 100
Execution Time (%)

BigQuery

BigTable

Spanner

Pl
at

fo
rm

Core Compute Datacenter Taxes System Taxes

Figure 3: High-Level Application-Level Cycle Breakdown

Table 4: Spanner and BigTable Core Compute Descriptions

Operation Description

Read Read operations

Write Write/commit operations

Compaction Revision control/cleanup

Consensus Replication and consensus protocols

Query SQL-like compute

Misc. Long-tail of labeled misc. compute

Uncategorized Unlabeled compute

• System taxes are overheads that are not considered traditional

datacenter taxes but are shared amongst many production

binaries. Table 3 describes the overheads1.

Figure 3 shows the compute cycles of each platform broken down

into the three broad categories. The figure shows that neither core

compute, nor datacenter taxes, nor system taxes dominate overall

compute cycles. The time spent on core compute operations specific to

data processing is relatively small, 18% to 36% of total cycles. 32% to

40% of CPU cycles are spent on datacenter taxes, while 32% to 42%

of CPU cycles are attributed to system taxes. The relative fractions

of core compute, datacenter tax, and system tax is a reflection of the

local versus distributed design trade-offs in these systems. While

traditional approaches to accelerating core compute database op-

erators, such as aggregation and joining, can have some benefits,

all datacenter taxes, system taxes, and core compute need to be ac-

celerated holistically to avoid diminishing end-to-end performance

improvements, as shown by Amdahl’s Law.

1The łOther Memory Ops.ž category could be associated with datacenter taxes, but to
stay consistent with the original definitions in [28] we assigned it to system taxes.

Co
m

pa
ct

io
n

Co
ns

en
su

s
M

isc
.

Qu
er

y
Re

ad
Un

ca
te

go
riz

ed
W

rit
e

0

5

10

15

20

25

Spanner

Co
m

pa
ct

io
n

Co
ns

en
su

s
M

isc
.

Re
ad

Un
ca

te
go

riz
ed

W
rit

e

0

5

10

15

20

25

30

35
BigTable

Ag
gr

eg
at

e
Co

m
pu

te
De

st
ru

ct
ur

e
Fil

te
r

Jo
in

M
at

er
ia

liz
e

M
isc

. C
or

e
Op

s.
Pr

oj
ec

t
So

rt

0

5

10

15

20

BigQuery

Core Compute Category

Ex
ec

ut
io

n
Ti

m
e

in
 S

ho
wn

 C
at

eg
or

ie
s (

%
)

Figure 4: Core Compute Execution Breakdown

Table 5: BigQuery Core Compute Descriptions

Operation Description

Aggregate Compute/data-mov. for hash/sort aggs.

Compute Col.-wise ops on pre-grouped aggs.

Destructure Structured element field access

Filter Scan/selection of rows

Join Compute/data-mov. of hash/sort joins

Materialize Construction of in-memory tables

Project Retrieval of individual table columns

Sort Non agg./join sort operations

5.3 Core Compute

Figure 4 shows the normalized breakdown of CPU cycles per fine-

grained category within the platform core compute cycles. Tables 4

and 5 describe the individual categories.

We first observe that across all of the platforms, no single fine-

grained category dominates, indicating that there is no single-function

accelerator that can dramatically improve performance. However,

there are fine-grained clusters of related functionality that can be

combined to form groupings of hardware accelerators that can pro-

vide coverage of a large portion of cycles. For example, BigQuery

spends the majority of its core compute cycles on functions such

as filtering, aggregation, and compute (14% to 23%) once the data is

retrieved from the underlying storage service or database. These

functions can form the basis of a common set of hardware accelera-

tors optimized for these operations instead of a single accelerator.

Similarly, the databases (Spanner and BigTable) spend the majority

of their cycles on read, write, and consensus protocols that could

be accelerated together.

We also see the different acceleration candidates across these two

classes of platforms based on the design choices made. BigQuery

has fewer core compute read/write-like operations (low materialize

and project categories). This is because it executes these operations

as part of the datacenter/system tax categories when retrieving

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

data from other backend services, without needing to enforce addi-

tional read/write semantics. In contrast, the databases devote large

amounts of additional compute to ensure transaction semantics.

Finally, our study suggests that clustering smaller cross-category

accelerators together into a data processing shared accelerator complex

can provide significant acceleration for hyperscale data processing.

This differs from prior works that broadly accelerated applications

or individual algorithms to a new paradigm of smaller accelerator

complexes [24, 51].

5.4 Datacenter Taxes

Figure 5 shows the percentage of CPU cycles per fine-grained cat-

egory within the datacenter taxes. Within these taxes, protobuf,

compression, and RPCs have widespread impact showing that ac-

celerating protobuf, compression, and RPC will achieve pareto benefits

for the broader big data processing domain. Next, we provide more

details on each of these components.

Protobuf takes 20% to 25% of the datacenter tax suggesting that

recently proposed protobuf accelerators such as [30, 42] could be

beneficial in combination with software optimization approaches to

reduce overhead. Spanner and BigTable have lower protobuf usage

compared to BigQuery. This is due to the use of optimized file and

data types that are flattened (versus typical protobuf structures)

and compute reduction techniques like filter pushdowns.

We see large compression costs, ranging from 14% to 31%. In

particular, compression takes more than 30% of datacenter tax in

BigQuery and BigTable because both platforms operate on large

chunks of compressed data, wherein compression and decompres-

sion are on the critical path. Thus compression accelerators will

show strong benefits for these platforms that operate closely with

the underlying data [6].

RPC costs are also high in database platforms, taking 23% and

37% in Spanner and BigTable, respectively. Since these platforms are

often serving data to other platforms, RPCs are needed to feed the

data obtained to other frontend services. In contrast, RPC overhead

is relatively low at 11% in BigQuery because its queries are generally

larger as compared to the database platforms. This result suggests

that RPC acceleration is another candidate for acceleration gains.

5.5 System Taxes and Combined Acceleration

Figure 6 shows the percentage of compute cycles used for system

taxes. Two fine-grained categories stand out: operating systems and

file systems.

Across all platforms, we observe a high use of operating systems

consuming 18% to 28% of system tax cycles. Standard libraries are

also large for many platforms taking up to 53% of system tax. These

overheads break down into many mixed functions that all Google

platforms use extensively.

Given the high percentages of datacenter and system taxes, we

conclude that accelerating data processing platforms depends on

optimizing these components, along with the integration of core

compute accelerators. One promising direction is to build a set

of łglue acceleratorsž that provides hardware acceleration for key

datacenter taxes, such as protobuf and compression, in combination

with common system taxes. For example, these accelerators can

fetch and prefetch data from distributed storage systems, apply

Co
m

pr
es

sio
n

Cr
yp

to
gr

ap
hy

Da
ta

 M
ov

em
en

t
M

em
or

y
Al

lo
ca

tio
n

Pr
ot

ob
uf

RP
C

0
5

10
15
20
25
30
35

Spanner

Co
m

pr
es

sio
n

Cr
yp

to
gr

ap
hy

Da
ta

 M
ov

em
en

t
M

em
or

y
Al

lo
ca

tio
n

Pr
ot

ob
uf

RP
C

0

5

10

15

20

25

30

BigTable

Co
m

pr
es

sio
n

Cr
yp

to
gr

ap
hy

Da
ta

 M
ov

em
en

t
M

em
or

y
Al

lo
ca

tio
n

Pr
ot

ob
uf

RP
C

0

5

10

15

20

25

30
BigQuery

Datacenter Tax Category

Ex
ec

ut
io

n
Ti

m
e

in
 S

ho
wn

 C
at

eg
or

ie
s (

%
)

Figure 5: Datacenter Tax Execution Breakdown

ED
AC

Fil
e

Sy
st

em
s

Ot
he

r M
em

or
y

Op
s.

M
ul

tit
hr

ea
di

ng
Ne

tw
or

ki
ng

Op
er

at
in

g
Sy

st
em

s
St

an
da

rd
 L

ib
ra

rie
s

M
isc

. S
ys

te
m

 Ta
xe

s

0

10

20

30

40

50
Spanner

ED
AC

Fil
e

Sy
st

em
s

Ot
he

r M
em

or
y

Op
s.

M
ul

tit
hr

ea
di

ng
Ne

tw
or

ki
ng

Op
er

at
in

g
Sy

st
em

s
St

an
da

rd
 L

ib
ra

rie
s

M
isc

. S
ys

te
m

 Ta
xe

s

0

10

20

30

40

50

BigTable

ED
AC

Fil
e

Sy
st

em
s

Ot
he

r M
em

or
y

Op
s.

M
ul

tit
hr

ea
di

ng
Ne

tw
or

ki
ng

Op
er

at
in

g
Sy

st
em

s
St

an
da

rd
 L

ib
ra

rie
s

M
isc

. S
ys

te
m

 Ta
xe

s

0

10

20

30

40

50

BigQuery

System Tax Category

Ex
ec

ut
io

n
Ti

m
e

in
 S

ho
wn

 C
at

eg
or

ie
s (

%
)

Figure 6: System Tax Execution Breakdown

datacenter tax acceleration, and store the resulting in-memory

representation of data in a disaggregated cache tier. Furthermore,

integration with the core compute accelerators targeting scan, filter,

and aggregation can provide even larger benefits, such as operating

on cached in-memory data. In a centralized accelerator-as-a-service

model, this allows offloading core compute operators and łglue

logicž to this complex for data processing platforms while allowing

other non-data-processing services to re-use shared accelerators

for better utilization. We model the benefit of the sea of accelerators

complex in Section 6 under different acceleration execution models.

However, next, we further breakdown node-level execution into

the microarchitectural characteristics of these components.

Profiling Hyperscale Big Data Processing ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

Table 6: Platform IPC and MPKI Statistics

Statistic Spanner BigTable BigQuery

IPC 0.7 0.7 1.2

Misses Per Kilo Instructions (MPKIs)

BR 5.5 6.2 3.5

L1I 19.0 18.2 11.3

L2I 9.7 11.5 4.6

LLC 1.2 1.3 1.0

ITLB 0.5 0.5 0.4

DTLB LD 2.3 2.9 1.8

5.6 Microarchitectural Characterization

Tables 6 and 7 present microarchitecture performance data for the

big data processing platforms. We present the following takeaways

from these numbers.

First, the average instructions per cycle (IPC) of all big data

processing platforms is 0.8. Spanner and BigTable exhibit IPCs lower

than the average IPC, while BigQuery is higher. This indicates that

data analytics platforms are more conducive to run on accelerated

machines with smaller, more energy-efficient architectures.

Second, the two database platforms suffer from almost 2x higher

branch, L1I, and L2Imisses per kilo instructions (MPKI) as compared

to the query engine. This suggests that these database platforms have

more complex control flows and larger instruction footprints than data

analytics platforms. This behavior is to be expected since databases

typically have stricter performance and fault-tolerance SLOs, re-

quiring the use of complex consensus and replication strategies

resulting in long code paths and hard-to-predict control flows.

Third, the database platforms incur more DTLB Load MPKI than

the query engine showing more back-end stalls while accessing data.

This behavior is expected as data analytics jobs typically run large

operations like scans and aggregations that have more uniform and

predictable data access patterns while databases typically execute

point queries and transactions, often with very little inter-query

locality. These trends indicate that heterogeneity can be beneficial

for these workloads. More complex cores with better branch pre-

dictors, larger instruction caches, better prefetchers, and larger

TLB hierarchies are more suited to database workloads, while rel-

atively simpler cores are more suited to running data analytics

workloads [57].

Table 7 further breaks down the microarchitectural statistics into

core compute (CC), datacenter taxes (DCT), and system taxes (ST).

For BigQuery, core compute operations experience higher IPCs

when compared to datacenter tax or system tax operations. The

higher IPC results from both lower front-end stalls, as evidenced by

fewer branch mispredictions, and instruction cache misses, and also

from fewer back-end stalls, as evidenced by fewer DTLB misses.

These trends suggest that code paths in core compute operations

are shorter and less complex than the ones seen in tax operations and

are more amenable to simpler cores. Since tax operations handle

complex tasks like network communication, compression, and en-

cryption, it is expected that these code paths are more complex

than core compute. This is positive news for future system designs:

Table 7: High-Level Platform IPC and MPKI Statistics. CC,

DCT, and ST, stand for Core Compute, Datacenter Tax, and

System Tax, respectively.

Spanner BigTable BigQuery

CC DCT ST CC DCT ST CC DCT ST

IPC 0.9 0.6 0.7 0.6 0.6 0.7 1.4 1.0 1.0

Misses Per Kilo Instructions (MPKIs)

BR 5.4 5.5 5.5 5.2 5.3 6.9 2.0 3.8 3.5

L1I 12.4 16.7 21.6 9.6 14.7 21.9 1.1 13.6 10.8

L2I 4.2 8.0 11.8 4.2 8.4 14.7 0.4 3.4 6.0

LLC 0.6 1.0 1.4 1.0 1.2 1.4 0.3 1.1 1.1

ITLB 0.2 0.6 0.4 0.2 0.5 0.5 0.1 0.6 0.2

DTLB LD 0.8 2.0 2.7 1.3 2.1 3.6 0.6 2.2 1.7

when tax operations are offloaded to accelerators, the remaining core

compute is amenable to traditional hardware optimizations.

6 SEA OF ACCELERATORS: LIMITS STUDY

This section presents analytical models for the sea of accelerators

complex and a set of limit studies to estimate how accelerator

system variations can improve end-to-end platform performance.

6.1 Base Model

With large hyperscale systems, it is useful to estimate performance

gain attributed to new innovations in accelerator design, storage

technologies, and networking capabilities before spending signifi-

cant amount of engineering resources. We propose an analytical

model that estimates the upper-bound performance benefit of accel-

eration for these platforms. It answers two system and architectural-

level questions. First, how much can software-hardware co-design

reduce distributed overheads? Second, how much benefit is achiev-

able using a sea of accelerators complex for CPU execution?

Figure 7 shows the parameters for modeling execution time

including overlaps and dependencies between accelerated and non-

accelerated components. First, the model captures CPU time over-

lap with non-CPU dependencies such as IO and remote work as

described in Section 4.1. Next, since accelerators can be invoked

synchronously or asynchronously (sequential or parallel execution),

the model includes overlap between each accelerated component.

Asynchronous execution assumes that there is no dependency be-

tween dominant CPU components being accelerated and represents

the ideal case where all accelerators are being executed in parallel,

whereas synchronous execution represents a strict serial depen-

dency between the core and other accelerators. Finally, the model

incorporates on-chip and off-chip accelerator locations.

Equation 1 shows the definition of end-to-end time, 𝑡𝑒2𝑒 , as a

function of CPU time, 𝑡𝑐𝑝𝑢 , and its non-CPU dependencies (i.e., re-

motework or IO costs), 𝑡𝑑𝑒𝑝 . In this equation, (1−𝑓)∗𝑚𝑖𝑛(𝑡𝑐𝑝𝑢 , 𝑡𝑑𝑒𝑝)

accounts for the overlapped time between CPU and non-CPU depen-

dencies and is subtracted to achieve the end-to-end time. Equation 2

is an extension of Equation 1 used to calculate a new accelerated end-

to-end time, 𝑡 ′𝑒2𝑒 , as a function of accelerated CPU time, 𝑡 ′𝑐𝑝𝑢 . This

accelerated CPU time is split into accelerated and non-accelerated

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

Time Parameters

𝑡𝑒2𝑒 , 𝑡
′
𝑒2𝑒 Original and accelerated end-to-end time (s)

𝑡𝑐𝑝𝑢 , 𝑡
′
𝑐𝑝𝑢 Original and accelerated CPU time (s)

𝑡𝑑𝑒𝑝 Non-CPU time (s) that 𝑡𝑐𝑝𝑢 depends on

𝑡𝑎𝑐𝑐 Accel. CPU time (s) for all subcomponents

𝑡𝑛𝑎𝑐𝑐 Unaccel. CPU time (s) for all subcomponents

𝑡𝑠𝑢𝑏𝑖 , 𝑡
′
𝑠𝑢𝑏𝑖

Original and accel. CPU subcomp. time (s)

𝑡𝑙𝑠𝑢𝑏 Largest accelerated CPU subcomp. time (s)

𝑡𝑝𝑒𝑛𝑖 Accelerator penalty time (s)

𝑡𝑠𝑒𝑡𝑢𝑝𝑖 Setup time (s) for the accel. (e.g., initialization)

Overlap Parameters

𝑓 Sync. factor between 𝑡𝑑𝑒𝑝 and 𝑡𝑐𝑝𝑢 from [0, 1]

𝑔𝑠𝑢𝑏𝑖 Sync. factor between 𝑡 ′
𝑠𝑢𝑏𝑖

’s from [0, 1]

Miscellaneous Parameters

𝑁 ,𝑈 Number of non-accel. and accel. components

𝑠𝑠𝑢𝑏𝑖 Acceleration factor for a CPU subcomponent

𝐵𝑖 Bytes to offload to accelerator (0 when on-chip)

𝐵𝑊𝑖 Bandwidth between CPU and accelerator

𝑡𝑒2𝑒 = 𝑡𝑐𝑝𝑢 + 𝑡𝑑𝑒𝑝 − (1 − 𝑓) ∗𝑚𝑖𝑛(𝑡𝑐𝑝𝑢 , 𝑡𝑑𝑒𝑝) (1)

𝑡 ′𝑒2𝑒 = 𝑡 ′𝑐𝑝𝑢 + 𝑡𝑑𝑒𝑝 − (1 − 𝑓) ∗𝑚𝑖𝑛(𝑡 ′𝑐𝑝𝑢 , 𝑡𝑑𝑒𝑝) (2)

𝑡 ′𝑐𝑝𝑢 = 𝑡𝑎𝑐𝑐 + 𝑡𝑛𝑎𝑐𝑐 (3)

𝑡𝑛𝑎𝑐𝑐 =

𝑁∑

𝑖=0

𝑡𝑠𝑢𝑏𝑖 (4)

𝑡𝑎𝑐𝑐 =𝑚𝑎𝑥 ((

𝑈∑

𝑖=0

𝑔𝑠𝑢𝑏𝑖 ∗ 𝑡
′
𝑠𝑢𝑏𝑖

), 𝑡𝑙𝑠𝑢𝑏) (5)

𝑡𝑙𝑠𝑢𝑏 =𝑚𝑎𝑥 ({𝑡 ′
𝑠𝑢𝑏𝑖

: 𝑖 = 0, ...,𝑈 }) (6)

𝑡 ′
𝑠𝑢𝑏𝑖

=

𝑡𝑠𝑢𝑏𝑖
𝑠𝑠𝑢𝑏𝑖

+ 𝑡𝑝𝑒𝑛𝑖 (7)

𝑡𝑝𝑒𝑛𝑖 = 𝑡𝑠𝑒𝑡𝑢𝑝𝑖 + 2 ∗
𝐵𝑖

𝐵𝑊𝑖
(8)

Figure 7: Base Model Parameters and Equations

time, 𝑡𝑎𝑐𝑐 and 𝑡𝑛𝑎𝑐𝑐 , respectively, as shown in Equation 3. Here the

non-accelerated time, 𝑡𝑛𝑎𝑐𝑐 , is a sum of all 𝑁 original unaccelerated

component times, 𝑡𝑠𝑢𝑏𝑖 (i.e., unaccelerated time to complete com-

pression or aggregation compute). Equation 5 shows the accelerated

CPU time, 𝑡𝑎𝑐𝑐 , as function of accelerated subcomponent time, 𝑡 ′
𝑠𝑢𝑏𝑖

,

and a corresponding overlap factor, 𝑔𝑠𝑢𝑏𝑖 , for all accelerated com-

ponents 𝑈 . Here the 𝑔𝑠𝑢𝑏𝑖 overlap factor indicates the overlap of

an accelerated component with all other execution components.

When all accelerated components overlap, then the largest acceler-

ated subcomponent, 𝑡𝑙𝑠𝑢𝑏 , dominates, as seen in Equation 6. The

accelerated subcomponent time, in this case, is the original CPU

component time, 𝑡𝑠𝑢𝑏𝑖 , sped up by 𝑠𝑠𝑢𝑏𝑖 and delayed by a penalty

time of 𝑡𝑝𝑒𝑛𝑖 shown in Equation 7. The penalty time represents

accelerator setup time 𝑡𝑠𝑒𝑡𝑢𝑝 (e.g., initializing accelerator-specific

Component
Speedup Time:

tsubi
/ssubi

Offload Time:
Bi/BWi

Offload Time:
Bi/BWi

ith Component Accelerated Time: t’subi

Overlap Time:
gsubi

× t’subi

Accelerated Time: tacc

Setup Time:
tsetupi

 jth Component Accelerated Time: t’subj

Figure 8: 𝑡𝑎𝑐𝑐 Diagram. Example of Eq. 5-8 with two compo-

nents (𝑡𝑠𝑢𝑏𝑖 and 𝑡𝑠𝑢𝑏 𝑗
) accelerated.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Ov
er

al
l E

nd
-to

-E
nd

 S
pe

ed
up

0 20 40 60

101

102

103

Without Remote Work & IO

Spanner
BigTable
BigQuery

0 20 40 60
1.0

1.2

1.4

1.6

1.8

2.0

2.2
With Remote Work & IO

Per Accelerator Speedup

Figure 9: Synchronous On-Chip Upper Bound. 0% or 100% of

remote work and IO (i.e., non-CPU) time is removed.

registers) combined with the data transfer time of communicating

from the host memory space to the accelerator. In the case of an on-

chip shared-memory-coherent accelerator, all of its data is already

present in the cache and/or DRAM, so the penalty time would only

be 𝑡𝑠𝑒𝑡𝑢𝑝 (i.e., 𝐵𝑖 is 0). Off-chip uncached accelerators on the other

hand would need to transfer 𝐵𝑖 bytes of data over an off-chip link

that has a 𝐵𝑊𝑖 bandwidth. Figure 8 pictorially shows the acceler-

ated CPU time, 𝑡𝑎𝑐𝑐 , as a function of any penalties, overlaps, and

speedups in Equations 5-8 with two components accelerated.

6.2 On-Chip Acceleration Limit Studies

In this set of studies, we measure the upper-bound performance

speedup when accelerating the dominant CPU components iden-

tified in Section 5, through on-chip acceleration. To consider the

impact of potential non-CPU optimizations (i.e., retrieving data over

the network or remote shuffle costs), we keep or remove non-CPU

time (𝑡𝑑𝑒𝑝) from the system. For the components to accelerate, we

chose the top datacenter taxes (compression, RPC, protobuf), sys-

tem taxes (STL, OS), and core compute for each platform (read, filter,

compute, compaction, write, aggregation, misc. core operations).

For experiment simplicity, we assume that all CPU components are

accelerated from 1x to 64x (𝑠𝑠𝑢𝑏𝑖) in lockstep, everything is on-chip

(off-chip bytes transferred 𝐵𝑖 is 0), and the accelerator setup penalty

Profiling Hyperscale Big Data Processing ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Ov
er

al
l E

nd
-to

-E
nd

 S
pe

ed
up

0 25 50

2

4

6

8

10

12

14
Spanner

0 25 50
100

101

102

103

104

BigTable

0 25 50

2

4

6

8

10

12

BigQuery

CPU Heavy
Remote Work Heavy

IO Heavy
Others

Individual Accelerator Speedup

Figure 10: Grouped Synchronous On-Chip Upper Bounds.

Remote work and IO time are all removed.

New Time Parameters

𝑡𝑐ℎ𝑛𝑑 Accelerated chained component time (s)

𝑡𝑙𝑝𝑒𝑛 Largest accelerator penalty time (s)

𝑡𝑙𝑠𝑢𝑏𝑛𝑝 Largest accelerator component time without

penalty time (s)

New Miscellaneous Parameters

𝐶 Number of chained compute components

𝑡 ′𝑐𝑝𝑢 = 𝑡𝑐ℎ𝑛𝑑 + 𝑡𝑎𝑐𝑐 + 𝑡𝑛𝑎𝑐𝑐 (9)

𝑡𝑐ℎ𝑛𝑑 = 𝑡𝑙𝑝𝑒𝑛 + 𝑡𝑙𝑠𝑢𝑏𝑛𝑝 (10)

𝑡𝑙𝑝𝑒𝑛 =𝑚𝑎𝑥 ({𝑡𝑝𝑒𝑛𝑖 : 𝑖 = 0, ...,𝐶}) (11)

𝑡𝑙𝑠𝑢𝑏𝑛𝑝 =𝑚𝑎𝑥 ({
𝑡𝑠𝑢𝑏𝑖
𝑠𝑠𝑢𝑏𝑖

: 𝑖 = 0, ...,𝐶}) (12)

Figure 11: Model Extension For Accelerator Chaining

(𝑡𝑠𝑒𝑡𝑢𝑝) is 0. We also assume that all components are synchronous

with respect to one another (𝑔𝑠𝑢𝑏𝑖 is 1) representing that accelerator

execution cannot be parallelized with other execution since shared

memory synchronization is traditionally costly. Finally, the values

of 𝑓 , 𝑡𝑒2𝑒 , 𝑡𝑠𝑢𝑏𝑖 , and 𝑡𝑑𝑒𝑝 are derived from Sections 4 and 5.

Figure 9 shows the upper bound speedup of end-to-end execu-

tion time for each platform’s queries with and without non-CPU

dependencies. With the removal of non-CPU dependencies, the

ideal upper bound speedup for all queries can reach peaks of 9.1x,

3,223.6x, and 8.5x for Spanner, BigTable, and BigQuery, respectively.

However, if the dependencies still exist, we see multiple orders-of-

magnitude lower theoretical upper bounds of 2.0x, 2.2x, and 1.4x, for

Spanner, BigTable, and BigQuery, respectively. This result clearly

demonstrates that hardware-only acceleration can only achieve

a fraction of the upper-bound performance in these distributed

platforms. A software-hardware co-design shifts the IO/remote bot-

tleneck to the CPU and, therefore, drastically improves the speedup

obtained.

ith Chained Component Speedup Time: tsubi
/ssubi

max(tsubi
/ssubi ,

tsubj
/ssubj

)

Chained Accelerated Time: tchnd

Setup Time:

tsetupi

Offload

Time:

Bi/BWi

jth Chained Comp. Speedup Time: tsubj
/ssubj

Figure 12: 𝑡𝑐ℎ𝑛𝑑 Diagram. Example of Eq. 10 with two com-

ponents (𝑡𝑠𝑢𝑏𝑖 and 𝑡𝑠𝑢𝑏 𝑗
) chained and 𝑡𝑝𝑒𝑛𝑖 > 𝑡𝑝𝑒𝑛 𝑗

.

Figure 10 further breaks down the speedup without non-CPU

dependencies into the four query groups given in Section 4: łCPU

Heavyž, łRemote Work Heavyž, łIO Heavyž, and łOtherž queries.

Due to IO and remote work removal, we see that query groups that

are IO or remote heavy dominant have the largest speedups across

all platforms. Removing these dependencies increases the initial

speedup when acceleration is close to 1x, while the remaining CPU

time that is accelerated affects the overall slope of acceleration. For

Spanner and BigTable, removing IO and remote work is important

for large speedups across all queries. However, unlike the databases,

BigQuery’s execution time is more varied, thus removal of IO and

remote work, as well as CPU acceleration, are all equally necessary

for substantial performance gains.

6.3 Accelerator System Features Limit Study

We next study the sea of accelerators with different execution mod-

els. For this set of analyses, we vary accelerator placement ś on-chip

or off-chip ś and accelerator invocation by the core ś synchronous

or asynchronous. Additionally, we evaluate a łchainedž execution

model where the accelerators can directly communicate with each

other. This model provides an unique opportunity to pipeline ac-

celerators: while the current accelerator is still processing, the

computed results are sent to the next accelerator, allowing it to

overlap execution with prior accelerators while still maintaining

the strict dependency between components. We first extend our

analytical model to represent accelerator chaining and then analyze

the benefits of chaining when compared to more traditional accel-

erator models. We then conclude with a setup time limit study and

prior accelerator comparison under the different system features.

6.3.1 Extending to Chained Acceleration. For operations that are

known to be linked together, accelerator chaining can improve the

performance benefits by avoiding communication latency to the

CPU when sending data between accelerators. Figures 11 and 12

show the model extension to account for a subset of accelerated

components being chained. Equation 9 shows the modification of

overall new CPU time, 𝑡 ′𝑐𝑝𝑢 , to include the time spent in unchained

accelerated components (the original accelerated time 𝑡𝑎𝑐𝑐), unac-

celerated components (𝑡𝑛𝑎𝑐𝑐), and 𝑡𝑐ℎ𝑛𝑑 , a new variable to model

chained accelerated component time. For the chained acceleration

time, all 𝐶 chained accelerators will be pipelined, with the longest

accelerated component without accelerator setup penalty, 𝑡𝑙𝑠𝑢𝑏𝑛𝑝 ,

determining the overall time of the chain as seen in Equation 12.

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

Figure 13: Accelerator Feature Upper Bounds. Subsequent X-axis elements are incrementally accelerated. Remote work and

IO are not removed.

Finally, we bound the initial penalty time for setting up the acceler-

ator chain by the largest accelerator penalty time, 𝑡𝑙𝑝𝑒𝑛 , and add

it to longest accelerated component (𝑡𝑙𝑠𝑢𝑏𝑛𝑝) to obtain the overall

chained execution time (𝑡𝑐ℎ𝑛𝑑).

6.3.2 Accelerator Feature Upper Bounds. Figure 13 evaluates four

accelerator configurations, starting with the traditional synchro-

nous off-chip accelerators and then incrementally adding optimiza-

tions. First, we remove off-chip data movement by moving the accel-

erator on-chip (Sync + On-Chip). Then, we assume that the acceler-

ator is asynchronous to other accelerators improving concurrency

(Async + On-Chip). Finally, we evaluate the impact of accelerators

chained together (Chained + On-Chip): this removes communi-

cating back to CPU after every execution and avoids the need for

fine-grained synchronization via shared memory. For changing syn-

chronicity, we vary 𝑔𝑠𝑢𝑏𝑖 , which is 0 for synchronous case and 1 for

asynchronous case. For accelerators located off-chip, we calculate

off-chip data transfer overheads by setting each CPU component’s

𝐵𝑖 to the average number of bytes in a query, then divide by a

PCIe Gen5 link bandwidth 𝐵𝑊𝑖 of 4𝐺𝐵/𝑠 . For this experiment, we

progressively add the set of accelerators mentioned in Section 6.2,

beginning with datacenter tax operations, then system tax, and

core compute operations shown in subsequent X-axis labels.

Starting with Spanner and BigTable, we see that synchronous on-

chip acceleration provides a 1.04x performance uplift over off-chip

acceleration. Moving on-chip has low benefit since the majority

of queries transfer a small amount of data. However, in scenarios

where an off-chip accelerator provides a larger speedup factor, this

benefit would be larger as on-chip acceleration would amortize

more of the off-chip data transfer. With asynchronicity among ac-

celerators (Async + On-Chip), the end-to-end speedup improves

up to 1.3x compared to synchronous execution indicating that asyn-

chronicity is critical in multi-accelerator systems.

When full asynchronicity is bounded by the inherent serializa-

tion between components, chaining provides an alternative if ac-

celerators can send data to one another. For Spanner and BigTable,

chaining provides less than 1% difference to fully asynchronous accel-

erators. Chaining amortizes pipeline penalty time (𝑡𝑝𝑒𝑛𝑖) and allows

for fast data transfer between accelerators through constructs like

pipeline FIFOs instead of enforcing complex fine-grained synchro-

nization through shared memory.

BigQuery shows different trade-offs due to its larger data pay-

loads. BigQuery, as a data analytics platform, often operates on

orders of magnitude larger batches of data per query compared to

transactional platforms like Spanner and BigTable. Thus, the data

transfer off-chip dominates, leading to a 0.02x slowdown for off-chip

acceleration. Moving acceleration on-chip is beneficial since the

penalty is removed. Once on-chip, BigQuery shows similar trade-

offs with asynchronous and chained accelerators, with speedups

reaching 1.8x over a non-accelerated baseline.

Overall, we find that off-chip acceleration is beneficial when it sig-

nificantly accelerates a large portion of program execution to amortize

any offload penalties. Furthermore, while full asynchronicity among

accelerators is untenable, accelerator chaining is a practical way to

realize much of the asynchronous performance benefits.

6.3.3 Setup Time Analysis. In this study, we measure the impact

of accelerator setup time on end-to-end speedup. Figure 14 shows

the effect of setup time across the platforms under the accelerator

configurations mentioned in Section 6.3.2.We vary the setup time of

the accelerators mentioned in Section 6.2, with an 8x speedup (𝑠𝑠𝑢𝑏𝑖)

per accelerator. For Spanner and BigTable, increasing setup time

in the synchronous setups can lead to large slowdowns due to the

setup penalties applied to each accelerator invocation. Once moving

to an ideal asynchronous execution upper bound we see a large

improvement since the setup time is parallelized with accelerator

invocation. For BigQuery, we see that off-chip penalties to copy the

data dominate due to its larger working sets. Once acceleration is

on-chip, we see similar performance degradation when the setup

time is large enough.

6.3.4 Prior Accelerator Comparison. In this study, we show the

speedup gained with a subset of published on-chip accelerators

Profiling Hyperscale Big Data Processing ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

0.
0

0.
05 0.

1
0.

2
0.

4
0.

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Spanner

Sync + Off-Chip
Sync + On-Chip

Async + On-Chip
Chained + On-Chip

0.
0

0.
05 0.

1
0.

2
0.

4
0.

8
0

1

2

3

4
BigTable

0.
0

0.
05 0.

1
0.

2
0.

4
0.

8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
BigQuery

En
d-

to
-E

nd
 S

pe
ed

up

Setup Time (s)

Figure 14: Setup Time Sweep

M
em

. A
llo

c.
 [2

9]
Pr

ot
ob

uf
 [3

0]
(D

e)
Co

m
pr

es
s.

[6
]

RP
C

[4
3]

Co
re

 C
om

pu
te

 [6
4]

Co
m

bo
 [6

,2
9-

30
,4

3]
Co

m
bo

 [6
,2

9-
30

,4
3,

64
]

1.0

1.1

1.2

1.3

1.4

1.5

Spanner

Sync + On-Chip Chained + On-Chip

M
em

. A
llo

c.
 [2

9]
Pr

ot
ob

uf
 [3

0]
(D

e)
Co

m
pr

es
s.

[6
]

RP
C

[4
3]

Co
re

 C
om

pu
te

 [6
4]

Co
m

bo
 [6

,2
9-

30
,4

3]
Co

m
bo

 [6
,2

9-
30

,4
3,

64
]

1.0

1.1

1.2

1.3

1.4

1.5

1.6
BigTable

M
em

. A
llo

c.
 [2

9]
Pr

ot
ob

uf
 [3

0]
(D

e)
Co

m
pr

es
s.

[6
]

RP
C

[4
3]

Co
re

 C
om

pu
te

 [6
4]

Co
m

bo
 [6

,2
9-

30
,4

3]
Co

m
bo

 [6
,2

9-
30

,4
3,

64
]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
BigQuery

Individual and Combined Accelerators

En
d-

to
-E

nd
 S

pe
ed

up

Figure 15: Prior Accelerator Comparison

using the proposed model in a synchronous and chained setup

(Sync/Chained + On-Chip). We used the accelerators with the

largest published speedup for their respective operations for all

core compute operations [64] and the following datacenter taxes:

memory allocation [29], protobuf serialization/deserialization [30],

RPC [43], and compression/decompression [6]. For all accelerators,

we obtain the speedup (𝑡𝑠𝑢𝑏𝑖) published and maintain uniformity

by zeroing the setup time (𝑡𝑠𝑒𝑡𝑢𝑝𝑖 is 0) since the metric was not

universally reported. We see in Figure 15 that holistic synchronous

acceleration can yield a 1.5x-1.7x speedup across the data processing

platforms. When expanding to chained acceleration, we see limited

benefit since the sped up memory allocation component serves

as the critical bottleneck of the pipeline. However, as shown in

Section 6.3.2, there is a high potential for speedup if we can achieve

fully pipelined and balanced execution across the accelerator chain.

Table 8: Model Validation Results

Measured RISC-V RTL Results

Proto. Ser. 𝑡𝑠𝑢𝑏𝑖 , 𝑠𝑠𝑢𝑏𝑖 , 𝑡𝑠𝑒𝑡𝑢𝑝𝑖 518.3𝜇𝑠 , 31x, 1,488.9𝜇𝑠

SHA3 𝑡𝑠𝑢𝑏𝑖 , 𝑠𝑠𝑢𝑏𝑖 , 𝑡𝑠𝑒𝑡𝑢𝑝𝑖 1,112.5𝜇𝑠 , 51.3x, 4.1𝜇𝑠

Non-Accel. CPU 𝑡𝑠𝑢𝑏𝑖 4,948.7𝜇𝑠

Proto. Ser. 𝐵𝑖 0

Proto. Ser. 𝑡𝑑𝑒𝑝 0

SHA3 𝐵𝑖 0

SHA3 𝑡𝑑𝑒𝑝 0

Measured chained execution 𝑡 ′𝑒2𝑒 6,075.7𝜇𝑠

Model Estimated Results

Modeled chained execution 𝑡 ′𝑒2𝑒 6,459.3𝜇𝑠

6.4 Model Validation and Limitations

We evaluate the effectiveness of the chained model using a hetero-

geneous accelerator RISC-V system-on-chip built with the Chip-

yard RTL framework [8] and simulated using the FireSim FPGA-

accelerated RTL simulator [31]. Our evaluation contains an open-

source protobuf serialization [30] and SHA3 accelerator [50] con-

nected to separate in-order Rocket cores and a third Rocket core

without accelerators. To calculate model parameters, we built a

synthetic experiment using three Linux benchmarks built off of Hy-

perProtoBench [30], where we first serialized identical fleet-wide

representative protobuf messages then computed their SHA3 hash.

In all cases, the protobuf messages and intermediate results fit on-

chip and require no IO (𝑡𝑑𝑒𝑝 and 𝐵𝑖 are 0). We measure the 𝑡𝑠𝑢𝑏𝑖
subcomponent times of serialization, hashing, and non-accelerated

time, using a non-accelerated synchronous benchmark where all

protobufs are serialized before hashing. In the next benchmark,

we accelerate serialization and hashing and measure the speedup

(𝑠𝑠𝑢𝑏𝑖) and setup penalties (𝑡𝑠𝑒𝑡𝑢𝑝𝑖) of each accelerator. The final

benchmark then emulates chained acceleration with each acceler-

ator operating on a single element on parallel Linux threads and

is used to give an experimental end-to-end time (𝑡 ′𝑒2𝑒) number to

compare against the model.

Table 8 shows the model parameters estimated and measured.

We see that SHA3 compute takes longer than the serialization com-

pute when both run on CPU at 1,112.5𝜇𝑠 and 518.3𝜇𝑠 , respectively.

Additionally, the overall CPU subcomponent time, 𝑡𝑠𝑢𝑏𝑖 , is over 4x

larger than either component due to initializing protobuf messages,

Linux threading and multiprocessing overheads, and measurement

overheads. Once accelerated, we see a speedup of 31x and 51.3x for

protobuf serialization and SHA3 hashing, respectively, with a lower

setup time for SHA3 hashing. This is due to protobuf serialization

needing to allocate a memory area for serialized messages. Using

these numbers we can then use Equations 9 and 10 to estimate a

chained execution time of 6,459.3𝜇𝑠 . When compared to the mea-

sured 6,075.7𝜇𝑠 , we see that the model is within a 6.1% difference,

validating the model in this one case.

While the synthetic validation setup serves as an initial scoped

implementation of software-centric accelerator chaining, future

work is needed to validate the model with additional synthetic

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

data, different accelerator placements, and an implementation of

hardware-centric accelerator chaining. Furthermore, while our val-

idation assumes serialization and hashing are candidates for chain-

ing, not all production code will have sequential code patterns, thus

careful identification of common sequential patterns and/or code

modifications is required for chaining viability. For simplicity, our

limit studies also only focus on fully synchronous or asynchronous

accelerators and non-CPU dependencies but can be later expanded

to cover various amounts of synchronization between CPU compo-

nents and non-CPU dependencies. Finally, while some of our limit

studies assume equivalent acceleration speedups per accelerator,

different components can have varied speedups leading to more

nuanced improvements for the platforms. Even with these limita-

tions, we believe that our validated model allows us to do complete

design space explorations of different acceleration strategies using

detailed production traces.

7 RELATEDWORK

To the best of our knowledge, our work presents the first holistic

study of big data processing platforms at a large datacenter, includ-

ing system balance, execution breakdown, and limit analysis with

a proposed chained acceleration model.

Prior Profiling Studies: Previous works [40, 54, 55] breakdown

analytical and transactional databases, identifying high instruc-

tion footprints and frontend stalls, but were limited to standard

benchmark suites. Our work differs by focusing on live produc-

tion traffic on large-scale distributed data processing, including

the relevance of datacenter taxes and high scan-aggregation ver-

sus join costs on these workloads [17]. CloudSuite and subsequent

studies [19, 66] focus on scale-out cloud service workloads, with a

focus on an open-source NoSQL database. Our work instead looks

at production SQL, NoSQL, and query engine platforms, showing

how CPU cycle utilization and microarchitectural characteristics

differ between them within both the core compute and overheads.

Additionally, we profile production workloads running live traffic

instead of open-source benchmarks due to differences in workload

structure and size. Prior work done in [44] focuses on processor

performance improvement of older commercial workloads running

on the Oracle commercial database unlike hyperscale distributed

databases in this work. Hyperscale data center providers have done

fleet-wide analysis of workloads [28, 56], but our work takes an

alternative vertical profiling approach of data processing platforms

to show the impact of core data compute and increases in datacenter

taxes within these platforms as compared to the entire fleet.

Hyperscale Hardware Accelerators: Research studies on accelera-

tor design for data center applications are prominent. Prior studies

[27, 45] focus on domains like machine learning and video process-

ing, unlike data processing in this work. Acceleration hardware

such as [1, 6, 26, 29, 30, 42, 43] target datacenter taxes within hy-

perscalers that complement our work. However, we holistically

emphasize the combination of these hardware targets with further

core compute acceleration. Studies [5, 7, 18, 21, 32, 62ś64] accel-

erate database-specific kernels such as scan, aggregation, joining,

and filtering. These are relevant, but as our study points out, they

need to be taken into account in the context of larger holistic dis-

tributed systems and system balance trends. There has been very

little emphasis on optimizing query engines in a storage disag-

gregated system, with some recent work looking at system issues

primarily [65].

Sea Of Accelerator Chaining: Dataflow architectures [22, 64],

CGRAs [16, 49], VLIW architectures [46, 47], systolic array archi-

tectures [33], and vector machines [10, 48] also share similarities

to accelerator chaining. We differ in that our compute units are

larger heterogeneous accelerators chained together, and all acceler-

ation is completed and managed by hardware instead of a compiler.

This implies that the programmers would need to pass both the

operation type and their dependence information to invoke the

accelerator chain.

8 CONCLUSION

In this paper, we identify systems and hardware acceleration op-

portunities in Google’s distributed databases and analytics engines

by characterizing the major bottlenecks in their execution time. We

find that remote work and IO dominate over 52% of the end-to-end

execution time, as horizontal scaling to millions of servers depends

on distributed storage and inter-node communication. Therefore,

hardware-software co-design, which optimizes IO and remote work

in addition to compute acceleration, is critical for these platforms.

While our profiling shows that no single core compute function

accounts for most of the execution time, a łsea of acceleratorsž

collectively can accelerate groups of key data processing and tax

functions. Our analytical modeling demonstrates the potential gain

of a data processing sea of accelerators and analyzes the trade-offs

between various accelerator execution models. Modeling results

show that removing the CPU invocation overhead by chaining ac-

celerators can lead to over a 3x speedup in these data processing

platforms over the baseline.

We make a case for a sea of accelerators complex for hyper-

scale data processing and hope the community will explore the

architectural and software-hardware co-design space for such an

accelerator complex for future at scale systems.

ACKNOWLEDGMENTS

This work builds on prior profiling work done by several engineer-

ing teams and interns at Google (e.g., GWP, Spanner, BigTable,

BigQuery), and we would like to thank people within those teams,

including Arif Arman, Tae Jun Ham, and Yixin Luo. We would

also like to thank Andy Caldwell, Liqun Cheng, Urs Holzle, Sam

McVeety, Tipp Moseley, Fatma Ozcan, Jeff Shute, Daniel Stodolsky,

Chris Taylor, Amin Vahdat and the anonymous reviewers and ar-

tifact evaluators for their paper feedback. We would also like to

thank Tianrui Wei for validation feedback.

This research was supported by the SLICE Lab industrial spon-

sors and affiliates and by the NSF CCRI ENS Chipyard Award

#201662. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government

or any agency thereof.

Profiling Hyperscale Big Data Processing ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

A ARTIFACT APPENDIX

A.1 Abstract

This artifact appendix describes how to reproduce the model val-

idation results in Section 6.4. First, we will use a FireSim FPGA-

accelerated simulation of a Chipyard-based RISC-V system-on-chip

(SoC) to cycle-exactly simulate software chaining of protobuf seri-

alization with SHA3 hashing. This involves first booting Linux on

this system, then running protobuf serialization on a selected batch

of protobuf messages, followed by chaining the serialization output

with SHA3 hashing to collect performance metrics. Afterward, we

pass the obtained metrics into the provided Python implementation

of the analytical performance model given in Figures 7 and 11 to

obtain the estimated end-to-end execution time.

A.2 Artifact Checklist

• OS Environment: AWS FPGA Developer AMI 1.6.1.

• Hardware: AWS EC2 instances: 1x c5.9xlarge and 3x

f1.2xlarge instances.

• Disk Space Needed: 300GB (on EC2 instances).

• Experiments: Replicate Table 8.

• Setup time: 1.5 hours (scripted installation).

• Experiment time: 1 hour (scripted run).

• Publicly available: Yes.

• Licenses: Multiple, see downloads in Appendix Section A.3.

• Archived: See downloads in Appendix Section A.3.

A.3 Descriptions

The artifact consists of nine Git repositories stored in Zenodo

archives:

(1) firesim-protoacc-sha3-ae: Top-level FireSim simulation

environment.

(https://doi.org/10.5281/zenodo.7814284)

(2) chipyard-protoacc-sha3-ae: Chipyard RISC-V SoC gener-

ation environment.

(https://doi.org/10.5281/zenodo.7814222)

(3) rocket-chip-protoacc-sha3-ae: Rocket Chip RISC-V gen-

eration library.

(https://doi.org/10.5281/zenodo.7814238)

(4) riscv-torture-protoacc-sha3-ae: Patched RISC-V torture

tests.

(https://doi.org/10.5281/zenodo.7814265)

(5) protoacc-protoacc-sha3-ae: Protobuf accelerator design,

scripts, and software.

(https://doi.org/10.5281/zenodo.7814245)

(6) protoacc-sha3-sw: Protobuf and SHA3 accelerator chained

and unchained software used for measurements.

(https://doi.org/10.5281/zenodo.7814225)

(7) firemarshal-protoacc-sha3-ae: Linux build scripts.

(https://doi.org/10.5281/zenodo.7814260)

(8) riscv-linux-protoacc-sha3-ae: Patched Linux.

(https://doi.org/10.5281/zenodo.7814266)

(9) profiling-data-processing-model-isca23-ae: Python im-

plementation of analytical model.

(https://doi.org/10.5281/zenodo.7814235)

Users need not download the bottom eight repositories manually

since they will be obtained automatically in the download setup

scripts.

A.4 Hardware and Software Dependencies

One AWS EC2 c5.9xlarge instance (also referred to as the łman-

agerž instance), and three f1.2xlarge instances are required. The

f1.2xlarge instanceswill be launched automatically by the FireSim

manager instance. All machines will be configured to use 300GB

of disk space. To optionally run FPGA builds (see Appendix Sec-

tion A.8), you will need one z1d.6xlarge instance. However, we

provide a pre-built FPGA image to avoid the long latency (10 hours)

of building a fresh FPGA image. No software dependencies are re-

quired other than an ssh client. All other requirements are installed

by the setup scripts.

A.5 Installation

First, follow along with the instructions on the FireSim website2 to

create a manager instance on AWS EC2. You must complete up to

and including łSection 2.3.1.2: Key Setup, Part 2ž, with the following

changes in łSection 2.3.1ž:

(1) When instructed to launch a c5.4xlarge instance, choose a

c5.9xlarge instead.

(2) When entering the root EBS volume size, use 300GB.

(3) Do not paste any information into the łAdvanced Detailsž

text box.

Once you have completed up to and including łSection 2.3.1.2ž

in the FireSim documentation, you should have a manager instance

set up, with an IP address and key. Use ssh (or optionally mosh) to

login to the instance.

From this point forward, all commands should be run on the

manager instance that you ssh’ed into. Next, download the top-

level FireSim simulation repository, like so:

$ cd ~

Enter as a single line

$ wget -O firesim-protoacc-sha3-ae.zip https://zenodo.org/

↩→ record/7814284/files/firesim-protoacc-sha3-ae.zip

$ unzip firesim-protoacc-sha3-ae.zip

$ cd firesim-protoacc-sha3-ae

Next, run the following, which will initialize the machine and

all software requirements (i.e., downloading software packages or

installing FPGA runtime requirements). It is recommended that you

run the commandwithin screen or tmux so that any disconnections

to the manager instance do not cancel the setup:

$ cd scripts

$ sudo ./machine-launch-script.sh

To ensure that this step completed successfully, you can verify

that the machine launch script completed output is present in

the /home/centos/machine-launchstatus file. Next, make sure

to completely close all ssh/screen/tmux sessions, terminals, etc.

to the machine and re-enter the machine. Next, run the following,

which will initialize more dependencies and run basic FireSim and

Chipyard setup steps (i.e., RISC-V and host toolchain installation).

2FireSim 1.12.0 documentation: https://docs.fires.im/en/1.12.0/

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

Similar to before, it is also recommended to run this step within a

ssh or tmux session:

$ cd firesim-protoacc-sha3-ae

$./scripts/first-clone-setup-fast.sh

This step should take around 1.5 hours. Upon successful comple-

tion, it will print:

first-clone-setup-fast.sh complete

Once this is complete, run:

$ source sourceme-f1-manager.sh

Sourcing this file will have set up your environment to run Linux

and other SoC simulations. Finally, finish setting up your manager

by running:

$ firesim managerinit

Once completed, your manager instance is fully set up to run

protobuf and SHA3 accelerator simulations.

A.6 Experiment Workflow

Now that the environment is setup, we will run the full artifact

evaluation script, which does the following:

(1) On the manager instance, build the modified protobuf li-

brary and generate protobuf collateral needed for chained

simulation.

(2) Build three Buildroot-based Linux distributions containing

the protobuf collateral and SHA3 code needed to obtain

results. This will be booted on the accelerated system.

(3) Run the three FireSim simulations, which do the following

(each per simulation):

(a) Launch an f1.2xlarge instance.

(b) Copy simulation infrastructure to the F1 instance.

(c) Run the benchmark provided (Linux distribution created).

(d) Copy back the results to the manager instance.

(e) Terminate the f1.2xlarge instance.

(4) Parse the output results and regenerate Table 8.

Now let’s run the aforementioned full artifact evaluation script

(again, it is recommended to run this command within a screen or

tmux session):

$./full-ae.sh

This should take around 1 hour. When it completes, it prints:

Success

The FireSim manager will have automatically terminated any

instances it launched during the process, but please confirm in your

AWS EC2 management console that no instances remain beside the

manager.

A.7 Evaluation and Expected Results

Next, let’s view the output results generated from full-ae.sh in

the previous section. Once you are finished running full-ae.sh

you should be able to see the results printed to the terminal as well

as in the file final-ae-results.txt. You can print the full results

by running the following (or opening the file in a text editor):

$ cat final-ae-results.txt

You should see each of the measured values in Table 8 except

for 𝐵𝑖 and 𝑡𝑑𝑒𝑝 , which are assumed to be 0. Note that the times

measured are in nanoseconds instead of microseconds and that

the numbers are slightly different than paper numbers (within a

1% difference). This is due to a small amount of non-determinism

introduced by Linux’s measurement of time in the simulation.

Once your evaluation is complete, manually terminate your man-

ager instance in the EC2 management console and confirm that no

other instances from the evaluation process are left running.

A.8 Customization

Since the SoC is fully open-sourced and available online, users can

change the configuration of the accelerators, run further experi-

ments, or more. Please refer to the FireSim3 and Chipyard4 for more

information on how to customize the design. Tutorial slides are also

present through the FireSim website5 for more modern versions of

the tools. The core software chaining tests that are run are present

in $SW_DIR and can be customized/improved as necessary. Both the

protobuf and SHA3 accelerators are found in $GEN_DIR/protoacc

and $GEN_DIR/sha3, respectively.

If modifications are made to the RTL, users need to re-build

FPGA images. We provide a pre-built FPGA image for the de-

sign in this paper (generated from the included RTL), encoded

in the configuration files in the artifact. Re-generating the supplied

FPGA images can also be done by modifying the S3 bucket name

in $CFG_DIR/config_build.ini to an unused bucket name (that

the manager will create), then running ./buildafi.sh. This will

take around 10 hours, require one z1d.6xlarge instance, gener-

ate one new AGFI (i.e., a FPGA bitstream on EC2 F1), and place

its config_hwdb.ini entry in $BLT_DIR/<config-name>. To use

the new AGFI that was generated, replace the existing entry in

the $CFG_DIR/config_hwdb.ini file (or, for a new config, add it).

When an FPGA build completes, the FireSim manager will automat-

ically terminate the instances it launched during the build process,

but please confirm in your AWS EC2 management console that

no instances remain beside the manager. More details about the

FireSim FPGA build process can be found in the FireSim documen-

tation. Note that many of the FireSim manager build configuration

files are in a non-standard location to simplify scripting for artifact

evaluation. Open ./buildafi.sh to see their locations.

A.9 Methodology

Submission, reviewing, and badging methdology:

• https://www.acm.org/publications/policies/artifact-review-and-

badging-current

• https://github.com/mlcommons/ck/blob/master/docs/artifact-

evaluation/submission.md

• https://github.com/mlcommons/ck/blob/master/docs/artifact-

evaluation/reviewing.md

3FireSim 1.12.0 Documentation: https://docs.fires.im/en/1.12.0/
4Chipyard 1.5.0 Documentation: https://chipyard.readthedocs.io/en/1.5.0/
5FireSim HPCA 2023 Tutorial: https://fires.im/hpca-2023-tutorial/

Profiling Hyperscale Big Data Processing ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

REFERENCES
[1] [n. d.]. Intel® QuickAssist Technology - NGINX* Performance White Pa-

per. https://www.intel.com/content/www/us/en/content-details/767645/intel-
quickassist-technology-nginx-performance-white-paper.html

[2] 2019. MariaDB foundation. https://mariadb.org/
[3] 2020. Rethink Data Report. https://www.seagate.com/files/www-content/our-

story/rethink-data/files/Rethink_Data_Report_2020.pdf
[4] 2022. Data Lake Analytics. https://azure.microsoft.com/en-us/services/data-

lake-analytics/#overview
[5] 2022. Working with AQUA (Advanced Query Accelerator). https://docs.aws.

amazon.com/redshift/latest/mgmt/managing-cluster-aqua.html
[6] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein, Ashutosh Mishra, Craig B.

Agricola, Bedri Sendir, Alper Buyuktosunoglu, Christian Jacobi, William J. Starke,
Haren Myneni, and Charlie Wang. 2020. Data Compression Accelerator on IBM
POWER9 and z15 Processors : Industrial Product. In ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 1ś14. https://doi.org/
10.1109/ISCA45697.2020.00012

[7] Sandeep R Agrawal, Sam Idicula, Arun Raghavan, Evangelos Vlachos, Venka-
traman Govindaraju, Venkatanathan Varadarajan, Cagri Balkesen, Georgios Gi-
annikis, Charlie Roth, Nipun Agarwal, et al. 2017. A many-core architecture
for in-memory data processing. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. 245ś258.

[8] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10ś21.
https://doi.org/10.1109/MM.2020.2996616

[9] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-
bourne, Victoria, Australia) (SIGMOD ’15). Association for Computing Machinery,
New York, NY, USA, 1383ś1394. https://doi.org/10.1145/2723372.2742797

[10] Melvin C. August, Gerald M. Brost, Christopher C. Hsiung, and Alan J. Schiffleger.
1989. Cray X-MP: The birth of a supercomputer. Computer 22, 1 (1989), 45ś52.

[11] David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dickinson,
Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,
Alexander Lloyd, Sergey Melnik, Rajesh Rao, David Shue, Christopher Taylor,
Marcel van der Holst, and DaleWoodford. 2017. Spanner: Becoming a SQL System.
In Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,
New York, NY, USA, 331ś343. https://doi.org/10.1145/3035918.3056103

[12] Josiah Carlson. 2013. Redis in action. Simon and Schuster.
[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1ś26.

[14] Google Cloud. 2012. An inside look at Google BigQuery. https://cloud.google.
com/files/BigQueryTechnicalWP.pdf

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1ś22.

[16] Vidushi Dadu and Tony Nowatzki. 2022. TaskStream: accelerating task-parallel
workloads by recovering program structure. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 1ś13.

[17] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proceedings of the
VLDB Endowment 13, 8 (2020), 1206ś1220.

[18] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier
Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnevmatikatos. 2017. The Mon-
drian Data Engine. ACM SIGARCH Computer Architecture News 45, 2 (2017),
639ś651.

[19] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (London, England, UK) (ASPLOS XVII). Association for
Computing Machinery, New York, NY, USA, 37ś48. https://doi.org/10.1145/
2150976.2150982

[20] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD

’15). Association for Computing Machinery, New York, NY, USA, 1917ś1923.
https://doi.org/10.1145/2723372.2742795

[21] Sebastian Haas, Oliver Arnold, Stefan Scholze, Sebastian Höppner, Georg Ellguth,
Andreas Dixius, Annett Ungethüm, Eric Mier, Benedikt Nöthen, Emil Matúš,
et al. 2016. A database accelerator for energy-efficient query processing and
optimization. In 2016 IEEE Nordic Circuits and Systems Conference (NORCAS).
IEEE, 1ś5.

[22] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, U Gyeong Song, Jae W Lee, David
Bruns-Smith, Brendan Sweeney, Krste Asanovic, Young H Oh, and Lisa Wu
Wills. 2021. Accelerating Genomic Data Analytics With Composable Hardware
Acceleration Framework. IEEE Micro 41, 3 (2021), 42ś49.

[23] Herodotos Herodotou and Elena Kakoulli. 2019. Automating Distributed Tiered
Storage Management in Cluster Computing. Proc. VLDB Endow. 13, 1 (sep 2019),
43ś56. https://doi.org/10.14778/3357377.3357381

[24] Mark DHill and Vijay Janapa Reddi. 2021. Accelerator-level parallelism. Commun.
ACM 64, 12 (2021), 36ś38.

[25] S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and M Kersten. 2012. Mon-
etdb: Two decades of research in column-oriented database. IEEEData Engineering
Bulletin 35, 1 (2012), 40ś45.

[26] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin, Tae Jun Ham,
and Jae W Lee. 2020. A Specialized Architecture for Object Serialization with
Applications to Big Data Analytics. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 322ś334.

[27] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas
Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, and Jonathan
Ross. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit.
https://arxiv.org/pdf/1704.04760.pdf

[28] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158ś169.

[29] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. 2017. Mallacc:
Accelerating Memory Allocation. ACM SIGPLAN Notices 52, 4 (2017), 33ś45.

[30] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi,
Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ranganathan. 2021. A
Hardware Accelerator for Protocol Buffers. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 462ś478.

[31] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. 2018. FireSim: FPGA-accelerated Cycle-Exact Scale-Out System Simulation
in the Public Cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 29ś42.

[32] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the Walkers: Accelerating Index Tra-
versals for In-Memory Databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. 468ś479.

[33] Hsiang-Tsung Kung. 1982. Why systolic architectures? Computer 15, 01 (1982),
37ś46.

[34] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (Austin, TX, USA) (ISCA ’09). Association
for Computing Machinery, New York, NY, USA, 267ś278. https://doi.org/10.
1145/1555754.1555789

[35] Bernard Marr. 2019. How much data do we create every day? the mind-blowing
stats everyone should read. https://www.forbes.com/sites/bernardmarr/2018/
05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-
everyone-should-read/?sh=7461a6c060ba

[36] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of
web-scale datasets. Proceedings of the VLDB Endowment 3, 1-2 (2010), 330ś339.

[37] Bruce Momjian. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-
Wesley New York.

[38] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-
Li Zhang. 2018. DeepCache: A Deep Learning Based Framework For Content
Caching. In Proceedings of the 2018Workshop on NetworkMeets AI &ML (Budapest,
Hungary) (NetAI’18). Association for Computing Machinery, New York, NY, USA,
48ś53. https://doi.org/10.1145/3229543.3229555

[39] Mike Owens. 2006. The definitive guide to SQLite. Apress.

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA Gonzalez, et al.

[40] Reena Panda, Christopher Erb, Michael Lebeane, Jee Ho Ryoo, and Lizy Kurian
John. 2015. Performance characterization of modern databases on out-of-order
cpus. In 2015 27th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 114ś121.

[41] Pedro Pedreira, Chris Croswhite, and Luis Bona. 2016. Cubrick: Indexing Mil-
lions of Records per Second for Interactive Analytics. Proceedings of the VLDB
Endowment 9, 13 (2016), 1305ś1316.

[42] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus prime:
Accelerating data transformation in servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 1203ś1216.

[43] Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi. 2021.
Cerebros: Evading the RPC Tax in Datacenters. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 407ś420.

[44] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve, and Luiz An-
dré Barroso. 1998. Performance of Database Workloads on Shared-Memory
Systems with out-of-Order Processors. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Operating
Systems (San Jose, California, USA) (ASPLOS VIII). Association for Computing
Machinery, New York, NY, USA, 307ś318. https://doi.org/10.1145/291069.291067

[45] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,
Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubrama-
nian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani
Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki
Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indupalli, Indira Ja-
yaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou,
Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony, David Alexander
Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin
Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley, Amir Salek, Sathish
Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wach-
sler, Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan Wu.
2021. Warehouse-Scale Video Acceleration: Co-Design and Deployment in the
Wild. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS 2021). Association for Computing Machinery, New York, NY, USA, 600ś615.
https://doi.org/10.1145/3445814.3446723

[46] B.R. Rau. 1988. Cydra 5 directed dataflow architecture. In Digest of Papers.
COMPCON Spring 88 Thirty-Third IEEE Computer Society International Conference.
106ś113. https://doi.org/10.1109/CMPCON.1988.4840

[47] B. Ramakrishna Rau, David W. L. Yen, Wei Yen, and Ross A. Towle. 1989. The
Cydra 5 departmental supercomputer: Design philosophies, decisions, and trade-
offs. Computer 22, 1 (1989), 12ś35.

[48] Richard M Russell. 1978. The CRAY-1 computer system. Commun. ACM 21, 1
(1978), 63ś72.

[49] Karthikeyan Sankaralingam, Tony Nowatzki, Vinay Gangadhar, Preyas Shah,
Michael Davies, William Galliher, Ziliang Guo, Jitu Khare, Deepak Vijay, Poly
Palamuttam, et al. 2022. The Mozart Reuse Exposed Dataflow Processor for AI
and Beyond. (2022).

[50] Colin Schmidt and Adam Izraelevitz. 2015. A fast parameterized sha3 accelerator.
In tech. rep. EECS Department, University of California.

[51] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling large

design space exploration of customized architectures. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE, 97ś108.

[52] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
large-scale distributed systems tracing infrastructure. (2010).

[53] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2016. Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter Network.
Commun. ACM 59, 9 (aug 2016), 88ś97. https://doi.org/10.1145/2975159

[54] Utku Sirin and Anastasia Ailamaki. 2019. Micro-architectural analysis of OLAP:
limitations and opportunities. arXiv preprint arXiv:1908.04718 (2019).

[55] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. 2016. Micro-
architectural Analysis of In-memory OLTP. In Proceedings of the 2016 International
Conference on Management of Data. 387ś402.

[56] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
Acceleration Opportunities for Data Center Overheads at Hyperscale. Association
for Computing Machinery, New York, NY, USA, 733ś750. https://doi.org/10.
1145/3373376.3378450

[57] Tiffany Trader. 2022. AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12
Chiplets. https://www.hpcwire.com/2022/11/10/amds-4th-gen-epyc-genoa-96-
5nm-cores-across-12-compute-chiplets/

[58] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1041ś1052. https://doi.org/10.1145/3035918.3056101

[59] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems. 1ś17.

[60] Deepak Vohra. 2016. Apache parquet. In Practical Hadoop Ecosystem. Springer,
325ś335.

[61] Michael Widenius and David Axmark. 2002. MySQL reference manual: documen-
tation from the source. " O’Reilly Media, Inc.".

[62] Louis Woods, Zsolt István, and Gustavo Alonso. 2014. Ibex: An intelligent stor-
age engine with support for advanced sql offloading. Proceedings of the VLDB
Endowment 7, 11 (2014), 963ś974.

[63] Lisa Wu, Raymond J Barker, Martha A Kim, and Kenneth A Ross. 2013. Navi-
gating Big Data with High-Throughput, Energy-Efficient Data Partitioning. In
Proceedings of the 40th Annual International Symposium on Computer Architecture.
249ś260.

[64] Lisa Wu, Andrea Lottarini, Timothy K Paine, Martha A Kim, and Kenneth A Ross.
2014. Q100: The architecture and design of a database processing unit. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 255ś268.

[65] Yifei Yang, Matt Youill, MatthewWoicik, Yizhou Liu, Xiangyao Yu, Marco Serafini,
Ashraf Aboulnaga, and Michael Stonebraker. 2021. Flexpushdowndb: Hybrid
pushdown and caching in a cloud DBMS. Proceedings of the VLDB Endowment
14, 11 (2021), 2101ś2113.

[66] Ahmad Yasin, Yosi Ben-Asher, and Avi Mendelson. 2014. Deep-dive analysis of
the data analytics workload in cloudsuite. In 2014 IEEE International Symposium
on Workload Characterization (IISWC). IEEE, 202ś211.

	Abstract
	1 Introduction
	2 Google Big Data Processing
	2.1 Characteristics of Production Systems
	2.2 Big Data Processing Overview
	2.3 Goals

	3 System Balance
	4 End-to-End Execution Time Breakdown
	4.1 Methodology
	4.2 Time Breakdown

	5 CPU Execution Time Breakdown
	5.1 Methodology
	5.2 Node-level Breakdown
	5.3 Core Compute
	5.4 Datacenter Taxes
	5.5 System Taxes and Combined Acceleration
	5.6 Microarchitectural Characterization

	6 Sea of Accelerators: Limits Study
	6.1 Base Model
	6.2 On-Chip Acceleration Limit Studies
	6.3 Accelerator System Features Limit Study
	6.4 Model Validation and Limitations

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Descriptions
	A.4 Hardware and Software Dependencies
	A.5 Installation
	A.6 Experiment Workflow
	A.7 Evaluation and Expected Results
	A.8 Customization
	A.9 Methodology

	References

