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Abstract. Material response of real, passive, linear, time-invariant media to external influences
is described by complex analytic functions of frequency that can always be written in terms of Stielt-
jes functions—a special class of analytic functions mapping a complex upper half-plane into itself.
Reconstructing such functions from their experimentally measured values at specific frequencies is
one of the central problems that we address in this paper. A definitive reconstruction algorithm
that produces a certificate of optimality as well as a graphical representation of the uncertainty of
reconstruction is proposed. Its effectiveness is demonstrated in the context of the electrochemical
impedance spectroscopy.
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1. Introduction. The three fundamental physical principles—linearity, time-
invariance, and passivity—are responsible for the ubiquity of Stieltjes functions in
physics and engineering. Stieltjes class refers to a special class of complex analytic
functions that describe the response of linear media or devices to external influences.
If E(t) denotes such an influence and J(t) the response, then the linear, time-invariant
dependence of J(t) on E(t) could be formally written (without regard to the function
spaces to which E(t) and J(f) may belong) as

(1.1) J(t) = vE(t) + / a(t — 7)E(T)dr,

— 00

where the causality principle, limiting the dependence of J(t) only on the present and
past values of E(7), has been applied. For a mathematically rigorous discussion of
convolution-type formulas like (1.1) we refer the reader to many treatises on linear
systems theory; see, e.g., [66, 67].

Due to the resemblance of the integral in (1.1) to a convolution, it is convenient
to extend the memory kernel a(s) to negative values of s by zero,

a(s), s>0,

(&) =10 " s<0
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and rewrite (1.1) as a convolution

oo

(1.2) J(t) =y E(t) + / ap(t — 7)E(7)dT.

—o0
Assuming now that ag € L'(R) and {E,J} C L*(R), we can take the Fourier trans-
form of (1.2):

~ ~

(1.3) J(w) = (70 + Go(w)) E(w).

Two different definitions of the Fourier transform are common in physics, depending
on the representation of the input E(t) as a superposition of “elementary harmon-
ics.” In signal processing and electrical circuit theory the elementary harmonics are
functions e**, leading to the representation

E(t) ! / h Ew)e“tdw,  E(w) = / h E(t)e ™dt.

2T — 00 —o0

In electromagnetics the elementary harmonics are the plane waves e*(*®=%Y) In this
case one uses

E(t) = % / Ew)e ™'dw,  B(w)= / E(t)e™!dt.
In the former case (e.g., impedance of electrical circuits), causality, ag(s) = 0, when
s < 0, implies that b(w) = vo+ap(w) is analytic in the lower half-plane of the complex
w-plane. In the latter (e.g., complex dielectric permittivity), b(w) is analytic in the
upper half-plane. In each case the fact that the memory kernel a(s) is a real-valued
function implies that b(w) has the symmetry

(1.4) b(w) = b(~).

The passivity principle, which says that the medium can only absorb or dissipate
energy, is a much more delicate condition, leading to the nonnegativity of the real or
imaginary parts of functions related to b(w). In one way or another in each and every
application the description of the linear, time-invariant, passive media response can
be formulated in terms of functions from the Stieltjes class! &.

DEFINITION 1.1. We say that a complex function [ analytic in C\ Ry belongs
to the Stieltjes class G if it is either a nonnegative real constant or has the following
three properties:

(i) Jm(f(2)) > 0 for all z € C with Jm(z) > 0;

(ii) f(x) >0 for all z <0;

(iii) f(z) = f(2).

For example, the complex electromagnetic permittivity e(w) of dielectrics can be
written as e(w) = f(w?), where f € & and Jm(w) > 0 [44, 28]. Both the complex im-
pedance and admittance functions Z(w) and Y (w), respectively, of electrical circuits
made of resistors, capacitors, and inductive coils can be written as Z(w) = iwf(w?),
where f € & and Jm(w) < 0 [15]. In high energy physics it is the energy (or mo-
mentum) that plays the role of the complex variable and the scattering amplitude is

IThere is no universal agreement on the names attached to various related classes of analytic
functions. That is why we give a full formal definition here.
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the Stieltjes function [41, 48, 37, 57, 16]. In the theory of binary conducting com-
posites the dependence of the effective conductivity o* of the composite on the ratio
h = o01/02 of the conductivities of two constituents is also expressible in terms of
Stieltjes functions [9, 52, 32, 46] 0* /o1 = 1+ (1 — h)f(—h), where f € &. There are
many other applications (see, e.g., [54]), where the models are linear and causality,
time-invariance, and passivity (together with real values of the memory kernel) lead
to system descriptions in terms of functions from the Stieltjes class &.

In this paper we consider the central discrete problem of the theory of Stieltjes
functions that arises in all applications: the identification of f € & from n measure-
ments at the n distinct points {z1,...,2,} C Hy, where H; denotes the complex
upper half-plane. The analyticity of f € & places constraints on the values f(z;). It
turns out that the constraints are so delicate that even if one truncates the infinite
decimal representations of the values w; = f(z;) in order to store them as floating
point numbers in a computer, one violates these constraints when n > 15. In most
applications the values w; = f(z;) are obtained through experimental measurements
where the noise level is much larger than the round-off errors in floating point arith-
metic. In view of these considerations the central problem is not the recovery of f € &
from its exact values w; = f(z;) but rather the minimization of the sum of squares

(1.5) S(w, z) = £ (z5) = wjl?

inf
fe6 4 7

n
=
for a given set of noisy measurements w € C™. The problem of solving (1.5) bears
only superficial resemblance to the classical linear least squares problem. The main
difficulty is that the Stieltjes class G is not a vector space but a convex cone.

In various guises this problem has been studied continuously for almost a century;
see, e.g., [37, 24, 1, 56, 26, 59, 68, 58, 60, 13, 63]. Yet, so far, no definitive algorithm for
solving (1.5) has emerged, and new algorithms and new papers on the subject continue
to appear with unerring regularity (e.g., [11, 47, 51, 69], to give a taste). In this paper
we propose such a definitive algorithm, described in section 4, that is aimed to settle
the question once and for all. The algorithm comes with a “certificate of optimality”
based on the work of Caprini [16, 17, 18, 19]. The FORTRAN implementation of the
algorithm is available from Github [34]. The method is easily extendable to weighted
sums of squares as in Caprini’s papers.

The main issue lies in intricacies of the geometry of the interpolation body

(1.6) Viz)={(f(z1),.--, f(zn)) €C": f €S}, z=(z1,...,2n),

which is known to be a closed convex cone in C™ with nonempty interior. In practice,
however, V(z) is massively dimensionally degenerate, shaped very much like a needle
or a sword. Even for modest values of n the smallest thickness of V(z) is well below
double precision floating point arithmetic. The proposed algorithm harnesses this
dimensional degeneracy and turns it from a curse into a blessing. The algorithm
produces not only the solution f € & of (1.5) but also shows the uncertainty associated
with the given data (see Figure 6.1). Typical for analytic continuation problems
the uncertainty balloons and explodes once one goes outside of the frequency range
containing the measurements [25, 64, 7, 35, 36] (see Figure 6.2).

The algorithm described in section 4 is an outcome of the understanding of the
geometry of the interpolation body V(z) discussed in sections 2 and 3 as well as the
optimality conditions described in Theorem 2.6. The key ingredient in the algorithm
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is the use of the local minima of the Caprini function to augment the ad-hoc basis
of the space of Stieltjes functions. The final step is based on the realization that the
near-optimal solution for a given noisy data is an optimal solution for “nearby data”
representing a slightly different realization of the noise. The FORTRAN implemen-
tation of the algorithm is publicly available [34].

The fact that points z; lie in the upper half-plane, and not on the real line, is
essential for our analysis. When some or all of the points z; lie on the negative
semi-axis a modification of our analysis given in [43, Chap. V.3] and [42] is necessary.
Complementary to the setting of this paper is the situation where the imaginary part
of f(z) is known on a finite subinterval of the positive real axis, while the real part
is known only at finitely many points in that same interval. Another complementary
situation is when measurements are done in the time domain. The former is studied
in [56], and the latter is addressed in [54, Chapter 6] and [50], where the collapse onto
a needle is reflected in the fact that the time dependent bounds for an appropriate
input and at a particular time almost coincide: one is viewing from a direction along
the line of the needle [55].

This paper is structured as follows. We begin our discussion with the recollection
of known results about Stieltjes functions in section 2. In section 3 we show that the
interpolation body V(z) is shaped like a needle or maybe like a sword. (Our lan-
guage has an inadequate vocabulary limited to two- and three-dimensional shapes.)
In sections 4 and 5 we describe the algorithm. The performance of the algorithm
is demonstrated in section 6 in the context of electrochemistry, where the processes
of corrosion and electrolysis that occur in batteries and in many other natural and
man-made systems can be modeled by Voigt circuits—electrical circuits made only
of resistors and capacitors [61, 5, 6]. The electrochemical impedance spectrum (EIS)
function Z(w) can then be written as f(—iw) for some f € &. Thus, the values
Z; = f(—iw,;), j =1,...,n, can be measured experimentally at particular frequencies
w1, ... ,wy. Our algorithm takes noisy measurements of 7, ..., 7, as the input and
generates physically admissible EIS functions Z(w), representing them both numer-
ically and as explicit complex impedance functions of small Voigt circuits. It also
displays the certificate of optimality as well as the uncertainty of reconstruction of
the EIS function for the specific data. Figure 6.1 shows the typical graphical output
of the algorithm.

2. Preliminaries and background.

2.1. The Nevanlinna—Pick theorem for Stieltjes functions. We recall two
equivalent characterizations of the Stieltjes class &. Omne exhibits the centrality of
property (i) in Definition 1.1, which is an expression of passivity in frequency domain.
The other gives an explicit representation of all Stieltjes functions. Let Hy = {z €
C : Jm(z) > 0} denote the complex upper half-plane.

DEFINITION 2.1. We say that f(z) analytic in Hy is a Nevanlinna function if it
is either a real constant function or Jm(f(z)) > 0 for all z € H.

Other names for this class, such as Herglotz functions, Pick functions, and R-
functions, are also used by various communities.

THEOREM 2.2. f € & if and only if both f and z — zf(z) are Nevanlinna func-
tions.

As a corollary we see that the Stieltjes class has an involutive symmetry

(2.1) f(z)— —
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The second characterization of & is more explicit.

THEOREM 2.3 (Stieltjes). f € & if and only if there exist v > 0 and a positive
Radon measure o on [0,+00), such that

(2.2) F(2) = + /000 do(t) /OOC do®) _

t—=z 141

The proof of both theorems can be found in [2, Chapter III, Addendum] or in
[43, Addendum, section 2]. We remark that given f € & we have

(2.3) v = lim f(z2), o(z) = 1 lim Jmf(z + iy),
z—00 T y—0t
where the second limit above is understood in the sense of distributions.

Our goal is the recovery of a Stieltjes function f from its approximately known
values f(z1),..., f(zn) at distinct points {z1,...,2,} C Hy. In this regard we recall
a well-known Nevanlinna—Pick theorem that, combined with Theorem 2.2, gives a
criterion for w € C™ to lie in the interpolation body V(z), given by (1.6).

THEOREM 2.4 (Nevanlinna—Pick). Let {z1,...,2,} C Hy be all distinct, and let

w € C". Then w € V(2) if and only if the Nevanlinna—Pick matrices N(z,w) and

P(z,w) are nonnegative definite, where
w; — Wy

2.4 N; =4 5 P. —
(2.4) k(2 w) 2 — 75 ik (2, w) P

ZjW; — ZgWg

Moreover, if w € 0V (z), so that either rank(N(z,w)) < n or rank(P(z,w)) < n,
then there is a unique rational function f € &, such that w; = f(z;), j=1,...,n.

For the proof see, e.g., [62, Chaps. 16-18] (see also [42]).

2.2. Bounds on Stieltjes function values. The question we want to address
now is about the freedom one has for the value w = f(2), provided f € & and satisfies
f(z;) =wj, 5 =1,...,n. This freedom is represented by the admissible set of values

(2.5) Alzyz,w)={f(z): f €6, f(z;)=w;, =1,...,n}.

Such admissible sets are well understood and widely used in the context of effective
properties of composite materials [32, 33, 31, 49, 23]. Our analysis is inspired by
the one in [53] and reaches somewhat similar conclusions. However, it is based on
Theorem 2.4 rather than the explicit representation of Stieltjes functions from Theo-
rem 2.3, used in prior work. The question of bounds on values of Stieltjes functions
in the case when the spectral measure ¢ is known in an interval of frequencies is
addressed in [56]. The bounds in the case when the phase of the analytic function
is known on a part of the boundary and on the modulus on the remaining part have
been derived in [3] by means of a modified Nevanlinna—Pick problem.

Let us assume that the data w lies in the interior of V(z). By Theorem 2.4 the ma-
trices N (z,w) and P(z,w), given by (2.4), are positive definite. Then, by Sylvester’s
criterion (see, e.g., [38]) we obtain that the N([z, z], [w, w]) and P([z, 2], [w, w]) ma-
trices corresponding to the extended data ([z, z], [w,w]) are positive definite if and
only if

(2.6) det N([z, 2], [w,w]) > 0, det P([z, 2, [w, w]) > 0.
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We can make inequalities (2.6) explicit, since the determinants above are quadratic
functions of w. Expanding the determinants with respect to the last column and the
last row, so that w enters explicitly, we obtain

Jm(w)

det N[z, 2], [w, w)) = 50

det N (z,w) — a|w|* 4+ 2Re(aw) — f,

where

a = (cof(N)€(2),€(2)),  a=(cof(N)&(2),n(2)), B = (cof(N)n(z),n(z)),
and N stands for N(z,w), and
1 W,

51@('2): —> 771c(2’)= —, kzl,...7n.
Z = Zk Z — 2L

We conclude that det N ([z, z], [w, w]) > 0 if and only if |w —w™)(2)| < rx(2), where

en W =SS TE G = e -

A similar analysis for the P-matrix gives |w — w")(2)| < 7p(z), where

P a ,EdetP(z,’w) 2 P 2 ﬁ/
(2.8) w! )(z) = +ZW, rp(2)” = \w( )(Z)| o
and

of = (cof(P)E'(2),€'(2)), a = (cof(P)E(2),1'(2)), B = (cof(P)n'(2),m'(2)),
§'(z)=2£(2), n'(z)=wm(z)-w, P=P(zw).

Let us now estimate ry(z). (The estimate for rp(z) would be fully analogous.)
The key observation is the inequality between «, 3, and a: |a|?> < af. Then

2 25 ~
(e = 200 o 2@y, (p _ J“‘a“) — 2pam(w™(2)),

_det N(z,w)
 2a0m(2)

Thus, we have obtained the estimate

2 _ Im(w™(2))
= Jm(z)

(2.9) () (N (z,w)"€(2), &)

A similar calculation for the P-matrix gives the estimate

Jm(zw®)(2))

(2.10) rp(z)? < m(e)

(P(z,w)" "¢ (2),€'(2)) "

The main feature of matrices N (z,w) and P(z,w) is the exponential decay of their
eigenvalues due to their rank-two displacement structure [8]:

(2.11) D(z)N(z,w)— N(z,w)D(z)" =w®1-1Qw,
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Fi1G. 2.1. Dependence of the admissible set A(z;z,w) on the location of z relative to the data
zj (left) and on the location of w relative to OV (z) (right).

(2.12) D(2)P(z,w) — P(z,w)D(z2)* =D(2)w®1 -1 D(Z)w,

where D(z) is a diagonal matrix with numbers z; on the main diagonal and 1 is a
vector of ones.

If the vector &€(z) has a substantial projection onto the space spanned by the
eigenvectors of N(z,w) and P(z,w) with exponentially small eigenvalues, then
(N(z,w)"T€(2),£(2)) and (P(z,w)"T¢(2),¢(2)) will be exponentially large (as
functions of n). This shows that ry(z) and rp(2) can easily become exponentially
small even for relatively small values of n. In fact, rx(z) = 0 or rp(z) = 0 (or both)
whenever w € 9V (z). This may lead one to think that fixing more than 15-20 values
of a Stieltjes function determines it for all practical intents and purposes. The truth is
more nuanced. It depends very strongly on the relative location of z and z; and on the
exact location of w € V(z) relative to 9V (z). Formally, V(z) is a closed convex cone
in C™ with nonempty interior. In practice, its geometry resembles that of a thin knife
blade, rather than a party hat, so that very small random perturbations of points
in the interior of V(z) will throw them outside. In other words, no matter where
the point w is in V(z), it is never far from 0V (z), where, as we have just observed,
the region of admissible values A(z; z,w) degenerates to a point. What is somewhat
counterintuitive is that for points w in the interior of V(z) the set A(z; z, w) can be
rather large, depending on the location of z relative to points z;. The left panel of
Figure 2.1 illustrates this effect in the simple example

- 1
2.13 zj =" wi = f(z), j=0,1,...,19 z) = .
( ) J I J f( J): .] - ) ) f( ) \/j
We see how the shaded lens-shaped regions grow in size as the point z, taking values
i/2,1/2.4,1/3, and i/4, moves “away” from the data z;, given in (2.13). Our discussion
also shows that if we move w from the interior of V(z) to its boundary, the admissible
set will shrink to a point. The right panel of Figure 2.1 illustrates this effect when we
move from w, given in (2.13), which lies in the interior of V(z), to OV (z) along any
random direction w, which we have chosen (arbitrarily) to have all components equal
to —1. The corresponding point w € OV (z) satisfies |w — w|/|w| < 1074, as we have
verified numerically. In the right panel of Figure 2.1 we plotted the original points
w; in red and the perturbed points w; in blue, except one cannot see a difference
between them in the figure. The set A(z; 2z, w) degenerates to a point shown in black,
while the sets A; = A(z; z,tw + (1 — t)w) for three intermediate values of ¢ are shown
by progressively darker shading. The values we have chosen are t; = 1 — 2-107°,
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ty=1—7-107% and t3 = 1 —3-107%. This indicates that if we move uniformly from
w € V(z) to w € 9V (z), the admissible sets A; remain virtually unchanged until
we get very close to OV (z). The admissible set then collapses rather abruptly to a
point corresponding to w € AV (z). This complicated, almost discontinuous behavior
occurs as we move from w to w, which can barely be distinguished in the right panel
of Figure 2.1.

The computations needed to make Figure 2.1 have been done with the Advan-
pix Multiprecision Computing Toolbox for MATLAB (https://www.advanpix.com/)
using 100 digits of precision.

2.3. Interpolation. Let us assume now that the data (z,w) € C?" satisfies the
conditions of Theorem 2.4, i.e., w € V(z). Our goal is to construct an interpolant
f € &, such that f(z;) = w; for all j = 1,...,n. We begin with the case n = 1.
According to Theorem 2.4, the necessary and sufficient condition for the existence of
such a function is Jm(w;) > 0 and Jm(zywy) > 0. Of course, if Jm(w;) = 0, then
wy > 0, according to the second inequality, and f(z) = wy for all z. If Jm(z;w;y) = 0,
then zf(z) must be a real constant, and hence, according to the first inequality,
f=—0/z, where 0 = —z3w; > 0. Let us now assume that

(2.14) Jm(wy) > 0, Jm(zwy) >0
and characterize the set
Sz, wi) ={f €& : f(z1) = w1}

We look for the answer in the same form as in the case of polynomials P, where the
set P(z1,w;) of all polynomials p € P satisfying p(z1) = wy can be described as

P(z1,w1) = {p(z) = (z — 2z1)q(z) + wy : ¢ € P}.

Moreover, distinct polynomials ¢ € P correspond to distinct polynomials p € P(z1, wq).
By analogy with polynomials, we want to parametrize the set G(z1,w;) by elements
of & in the same fashion as P(z1,w;) is parametrized by elements of P. Of course, we
expect that the parametrization will be more complicated than in the case of polyno-
mials. The desired parametrization has already been found in [42], but the derivation
here is not a routine calculation, differing from the one in [42].

According to Theorem 2.4 the set of all admissible values f(z) for f € &(z1,w;)
is described by the inequalities

Imun) Imf() | ()~
Jm(z1) Jm(z) z—7Z1

(2.15) det N([z1, 2], [w1, f(2)]) = >0

i

N 2
(2.16)  det P([z1, 2], [wn, f(2)]) = J?tfaz(l,;f)l) 3";(51{2()2)) B

zf(z) — Zrwy
z—7z1

Inequalities (2.15), (2.16) place f(z) inside closed disks Dy (21, w1, 2) and Dp(z1, w1, 2),
respectively. At the same time, Theorem 2.2 says that f € & if and only if f(z)
lies in the intersection of two closed half-planes Hy = {w € C : Jm(w) > 0} and
H, = {w € C: Jm(zw) > 0} for every z € H,. This gives the idea of the desired
parametrization of G(z1,w) by elements of &. This idea is at the core of the so-called
Potapov method of “fundamental matrix inequalities” [10]. It has been implemented
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for interpolation of matrix-valued Stieltjes functions in [27]. We present the argument
and calculation both for the sake of completeness and because the formulas here are
used in our algorithm.

For every z € H, there exists? a fractional-linear transformation

_ Ln(Rw+ Lip(2)
LQl(Z)U) —+ LQQ(Z)

TZl,wl,Z (w)

that maps A(z; 21, w1) = Dy (21, w1, 2)NDp(z1, w1, 2) bijectively onto H, NH,. In or-
der to derive the formula for T}, ., .(w) we exploit the simplicity of Stieltjes functions
corresponding to the points on the boundary of the admissible regions A(z; 21, w1)
and H; NH,. The idea is that while the set of functions in &(z1,w;) is very large, if
(2.14) is satisfied, it degenerates to a single point if any of the inequalities in (2.14)
become equalities, as we have already discussed. The same holds for inequalities
in (2.15), (2.16). If we have an equality in (2.15), then there exists a nonzero vec-
tor € = (&1,&2) € ker N ([z1, 22, [f(#1), f(22)]), where for convenience of notation we
replaced z with zo. Using representation (2.2), we compute

f(z) = fa) _ [ do(t) o
T A T
Thus,
e e [
0= (N(ar,zal L) e e = [ [+ 2] oo

This means that there is a nonzero vector (&1,&) € C2, such that the function

§1+52

:t—zl t—ZQ

(1)

is identically zero on the support of 0. Since z; # z2 we conclude that the support of
o must be a single point, and the corresponding Stieltjes function must have the form

o
2.17 = e
(2.17) fle) =+ 7—
Conversely, if the spectral measure of f € &(wq, 21) is supported on a single point,
then we have an equality in (2.15) for any z € H,..

A similar analysis can be done for the case of an equality in (2.16):

i tdo(t).

OZU%M&%U@mﬂ@m&8@:ﬂ&+@P+/

0

Oo‘ &1 n &2

t— 21 t— 2k

This equality implies that f(z) must have either of two forms

(2.18) fe)=y=2 or () =—2 4

z z ti—2z

We can regard the first form of f(z) as a limit of the second one when o1 = ¢, as
t1 — +o0.

2Unique modulo w — aw, a > 0, and w — —1/(zw).
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Now, since the fractional-linear transformation 7%, ,, .(w) maps the boundary of
A(z; z1,w1) onto the boundary of Hy NH,, the set

Sn(z1,w1) = {f € &(21,w1) : det N([z1, 22], [f(21), f(22)]) = O},

consisting of functions (2.17), must be mapped by T, ., . onto the set {g € & :
Jm(g(z)) = 0}, while the set

Sp(z1,w1) = {f € &(z1,w1) : det P([21, 22], [ (21), f(22)]) = 0},

consisting of functions (2.18), must be mapped by T, ., » onto the set {g € & :
Jm(zg(z)) = 0}. This gives us the desired equations. If we write g(z) = T%, v, 2 (f(2)),
then

Laz(2)g(2) — L12(2)
L11(2) — g(2)La1(2)

(2.19) f(z) =

Hence, the coefficients L;;(z) must satisfy the following properties: for any p > 0 the
function g(z) = p must be mapped into an element of Sy (z1,w;), i.e., function of
the form (2.17), while for any v > 0 the function ¢g(z) = —v/z must be mapped to
an element of Sp(z1,w1), i.e., a function of the form (2.18). We therefore obtain the
following system of equations for the unknown coefficients L;;(z):

Loy (2)pu — Ly ()
Lll(Z

= = () + 76
LQQ(Z)I/ + Zng(Z) . 0'0(1/) 0'1(1/)

t(pn)—z’

2L (2) + vl (z) 2 +t1(1/)—z’

(
Los(z1)p — L12(21) _
Li1(z1) — ploi(21)

B Lao(z1)v + z1L12(21)
z1L11(#1) + vLa1(#1)

(2.20)

1

= wWq.

The last two equations are easy to solve, since the coefficients L;;(z) depend neither
on p nor on v. Thus, we must require that

(2.21) {Lll(zl)wl + Li2(z1) =0,

L21(21)w1 + L22(21) =0.

In order to solve the other two equations we first observe that equations

¢N(21):7+t = wy,

—Z
(2.22) - 101

op(21) = ——

:wl
th — 21

determine two l-parameter families of solutions ¢n(z;t) and ¢p(z;t1), tracing the
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boundaries of Dy and Dp, respectively. Explicitly, we find

o jm(wl) _ 2
©= Ty Al
jm(zlwl) ﬁm(wl)

(2.23)

|t1 — Z1|2 3m(z1w1)
g1 =
t1 jm(zl)

This shows that for functions ¢ (2) and ¢p(2) to be in & it is necessary and sufficient
that ¢ € [0, ] and t1 € [t., o0], where

3m(z1w1)
t* - Q= 7~ -
Jm(wl)

We then see that when ¢ = t; = t,. we have

O Jm(wy) o |wi*Im(z1)
2.24 = = .« = t* — _ - ,
(2:24) on(2) = 9r(2) t—2 7 Jm(z1) | 2l Jm(w)
while when t = 0 and ¢; = oo we have
o* Jm(z1w1) . |z1?Im(wy)
2.2 - i G Lt Y — Al )
(2.25) on(2) = dp(2) =~ I Fm(z) o ()

The correspondence between the two points of intersection of 9Dy and 0Dp and
the two points of intersection of JH. and OH,, characterized by p = v = 0 and
1 = v = 00, respectively, is determined unambiguously by the orientation-preserving
property of fractional-linear transformations. We conclude that the point t = t; = t,
corresponds to p = v = 0, while the point © = v = oo corresponds to t = 0, t; = 0.
Hence, we have the equations

_ng(z) _ (™ _LQQ(Z
Ln(z) t* — Z7 Lgl(z

*

g
=% — />
z

~—

~—

which permit us to eliminate L1; and Lay. Denoting ¥(z) = La;(2)/L12(2), we obtain
from the first equation in (2.20)

(g _ %) p(z) =1 o(t(p))
e YD)+ oy =

T %

W) = (=1, olt) = |t =l

Solving this equation for ¥ (on Maple) we obtain that ¥(z)/z is a ratio of two qua-
dratic polynomials in z with

U — s
i () _ ) — b
2500z o ut()
Since ¥(z) does not depend on p we conclude that there exists « € R, such that
12

(2.26) ) = T
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Then, substituting (2.26) together with the parameter values
o jm(zlwl) - \w1|23m(21) - Jm(zlwl) . \zl|23m(w1)

2.97) t, = . o= .= , = 2l
(2.27) Jm(wr) Im(w:) Jm(z) O Im(z1)
into the formula for ¥(z) in Maple, we obtain that ¥(z) = az. We can now go back
and recover the formulas for all of the coefficients L;;(z):
Lll(Z) _ z — t* LQQ(Z)
ng(z) (o™ ’ L12(Z)

In this case it is easy to see that equations (2.21) will be satisfied. Thus, the desired
fractional-linear transformation is given by

= a(o" — v.2).

(2.28) Lyun 2(f(2)) = 9(2) = é ' (zjf(_z)tlff )—+vj;’

where the sign of a needs to be determined. It is easy to do when we examine the
behavior of functions f(z) and ¢(z) at infinity. If we define
vy = lim g(2), V= zlggo f(2),

Z—00
then, according to (2.28),

27 AV« g

U9 = Fyf:cwg—l'

alyr —7)
Since for any g € & we must get f € &(z1,w;) we conclude that we must have
a < 0. Since multiplication by —« > 0 maps the intersection of the two half-planes
H, and H, onto itself, any choice of & < 0 will produce a valid parametrization
of f € &(z1,w1) by g € &. For simplicity we set « = —1 and obtain the desired
parametrization of &(z1,w;):

9(2) (a2 — ) — o,
2.29 S(z1, = = tgE€B ),
(2.29) (21, w1) {f(z) P S
where the parameters 7., o*, 0., and ¢, are given in (2.27), provided inequalities
(2.14) hold. The exact same formula (but with different normalization « for g(z)) has
been obtained? in [42].
The parametrization (2.29) has several useful properties. At infinity we obtain

Y+ Yg
2.30 = .
(2.30) V=S

This can be important in applications in the context of complex electromagnetic
susceptibility functions, where the physically mandated assumption on the interpolant
f € &1isys =0. Formula (2.30) shows that v; = 0 if and only if 7, = 0. This means
that starting with g(z) = 0 and iterating formula (2.29) will always result in a decaying
Stieltjes function f(z).

Another nice feature of (2.29) is the degree-reduction property. To exhibit it let
us solve (2.29) for g(z):

f(2)(ts = 2) — 0n
2f(2) + 0% — ez’

(2.31) g(z) =

3There is a typo in [42]: a%) should be |c1|?/w1.
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THEOREM 2.5. Suppose f € &(z1,w1) is a rational function of degree n > 1 in
the sense that f(z) = P,(2)/Qn(z), where the degree of Q. is n, while the degree of
P, is either n or n — 1, while P,, and Q, have no common roots. Then g(z), given
by (2.31), is a rational function in & of degree n — 1 in the same sense as above.

Proof. The essential feature of (2.31) is that all of its coeflicients L;;(z) are linear
in z. If f(2) = Pu(2)/Qn(z), then
L11(2)Pa(2) + L12(2)@n(2)

Formulas (2.21) imply that the polynomial Li1(z)P,(2) + L12(2)Qn(z) will have a
pair of complex conjugate roots z; and z;. We can therefore write

Lui(2)f(2) + La2(z) =

L11(2)Pu(2) + L12(2)Qn(2) = (2 — 21)(z — 21)T T (2), Lii=t,—2, Lis=—o0,.

It follows that deg(T") = n—1if deg(P,) = n and deg(T") < n—2 if deg(P,) = n—1.
Similarly,

L21(2)Pu(2) + L22(2)Qn(2) = (2 — 21)(z — 21)T" (2), Loy =2, Loy=0" =2,

and deg(T~) <n — 1 if deg(P,) = n and deg(T~) =n — 1 if deg(P,,) =n — 1. Since
g(z) =TT (2)/T~(2) is in & the degree of T~ (z) can be at most one above the degree
of TF(2). This shows that we can only have equalities in the degree inequalities above.
Finally, if 7+ and 7~ have common roots, then formula (2.29) would imply that f(z)
is a rational function of degree strictly less than n, contradicting our assumption. 0O

The parametrization (2.29) of &(z1,w1) by elements of & leads to the recursive
interpolation algorithm. Given the data w € V(z), z = (21,...,2,), for n distinct
points {z1,...,2,} C H, we define the interpolant f(z) by (2.29), where g(z) € &
satisfies n — 1 constraints

_ Lu(z)w) + Lia(z))

2.32 zj) = , j=2,...,n,
(2.52) 9(z)) w;Lo1(2) + Laa(z) 7

provided
ij21(Zj)+L22(Zj)7éO7 j=2,...,n.

In that case f(z;) =wj, j =2,...,n, and

_ Laa(z1)9(21) = Lia(21)
Li1(21) *g(zl)Lzl(Zl).

Using equations (2.21) we obtain

f(z1)

— Loy (21)wig(z1) + L1 (21)wy
Ly1(z1) — g(21)La1(21)

provided Li1(z1) — g(21)L21(21) # 0. This condition is always satisfied, since lin-
ear functions L;;(z) are such that f € & for any g € &. This requires that the
denominator in (2.19) never vanishes when z € H.

In order to finish the analysis we need to consider the special case when there
exists k € {2,...,n}, such that

f(z1) =

= wy,

(2.33) LQQ(Zk) + ka21(Zk) =0.
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In this case the corresponding relation (2.32) will be undefined. But in this case the
four real equations

Loo(z) + wi Lo (z) =0,
Laa(z1) + wiLoi(z1) =0

form a linear homogeneous system of equations with four real unknowns as, as2, ba1,
and bos, where

Lo1(2) = ag12 + by, Loo(2) = agez + baa.

Thus, the determinant of this system must vanish. Maple calculations show that this
implies that det N = 0, where

w; —wWp  wWp — Wk

z1— 21 21 — Zk
W —W; Wi — Wk

ZK — 21 2Kk — 2k

We have already proved that in this case the support of ¢ must be a single point.
Thus, when (2.33) is satisfied we just return the rational function ¢x(z), given by
(2.25). Indeed, (2.33) implies

O_*

W = Ve — o on(2k).

At the same time ¢ (z) also satisfies ¢y (z1) = wy. It follows that f(z) = on(2).

2.4. The least squares problem. For w € C" there are two mutually exclusive
logical possibilities. Either w € V(z) or w ¢ V(z). The former case, called the
interpolation problem, has been considered in the previous section. In the latter case,
when there is no Stieltjes function f satisfying w = f(z), we want to solve the least
squares problem (1.5), which can be also reformulated as

2.34 Y(w,z) = min —w|.
(2:34) (w.2)= min |p—ul

The minimizer p* of (2.34) exists because V(z) is a closed subset of C". It is unique
because V(z) is convex. Moreover, since w ¢ V(z), the minimizer p* must lie on
the boundary of V' (z). In this case, the Nevanlinna—Pick theorem (Theorem 2.4) for
the Stieltjes class says that there exists a unique Stieltjes function f, € & satisfying
f«(z) =p".

Let us analyze the properties of this unique minimizer. Here we follow the analysis
of Caprini [18], who derived the necessary and sufficient conditions for a minimizer in
(2.34). Caprini’s method is based on our ability to compute the effect of variations
of v and spectral measure o in representation (2.2) on the functional we want to
minimize. Suppose that

SRTY of 10

0o t—=z

is the minimizer in (1.5). Then p} = f.(z;) minimizes (2.34). Let

(2.35) for=q+ [ £

t—z
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be a competitor in (1.5), and let p; = f(zj) The variation ¢ = f — f, can then be
written as

¢(Z)=Av+/ W) 5 5 Av=F-7.

0o t—=z
We then compute

*

p—w]—|p*—w]*=|p—p*>+ 2Re(p* — w,p — p*).

Observing that
> dv(t)
;i —pi=A
pj—p; =Ay+ /O =

we see that

n n *

Re(p* —w,p—p*) = (Aw)%eZ(pj —wj)—i—/ %ezij_ijdu(t).
=1 0 =1 /

The real rational function

=, 120,
Zj

p;_w]
t —

(2.36) C(t) = Re i

which we will call the Caprini function, will play an essential role in our algorithm
for solving the least squares problem (1.5).
In terms of the Caprini function we obtain

(237)  [p—w] ~ |p" — wf = 2(Ay) Jim 1C(1) + 2/ C)du(t) + B -
> 0

This formula permits us to formulate and prove Caprini’s necessary and sufficient
conditions for the minimizer in (2.34). This is a particular version of Caprini’s result
[18], where the real and imaginary parts of each individual measurement could have
a different weight in the least squares functional.

THEOREM 2.6. Suppose that the minimum in (1.5) is nonzero; then the unique

manimizer f. € & is given by

N

(2.38) fo@) =7+ >

i=1 tj —Z

for some o; >0, t; >0, and v > 0. Moreover, f., given by (2.38), is the minimizer
in (1.5) if and only if its Caprini function C(t) is nonnegative and vanishes att =t;,
i=1,...,N, and “at infinity” in the sense that

(2.39) Re ) (pf — wy) = Jlim ¢C(t) =0,
j=1
provided v > 0.

Proof. If v > 0, then we can consider the competitor (2.35) with & = o. Formula
(2.37) then implies that

2(Ay) lim tC(t) + (Ay)* > 0,
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where A~ can be either positive or negative and can be chosen as small in absolute
value as we want. This implies (2.39).

Next, suppose ty € [0,+00) is in the support of o. For every € > 0 we define
I(to) = {t > 0 : |t — to] < €}. Saying that ¢ is in the support of o is equivalent to
m(to,€) = o(I(to)) > 0 for all € > 0. Then there are two possibilities. Either

(i) lime_om(to,€) =0, or

(ii) lime_,o m(to,€) = o9 > 0.

In case (i) we construct a competitor measure

T =0 — 0|1,(15) + Om(to, €)dy,,

where 6 > 0 is an arbitrary constant. We then define

 do.(t .
(2.40) fe(z) = ’Y+/ ti()’ p; = fe(z5).
0 - Z
Formula (2.37) then implies
. ‘pe_w|2_|p* _w|2
1 =2(0-1
egr(l) m(to, 6) (9 )C(tO)’

since |p — p*| < Cm(to, €), where C is independent of €. If f, is the minimizer, then
we must have (§ — 1)C(tp) > 0 for all 6 > 0, which implies that C(¢p) = 0.

In case (ii) we have o({tg}) = g9 > 0. Then, for every |¢|] < o9, we construct a
competitor measure

(2.41) Oc =0 + by,

as well as the corresponding f. and p¢, given by (2.40). We then compute

2

€ __ 2 _ *
(2.42) i P P w

e—0 €

= 20(to).

Since in this case € can be both positive and negative we conclude that C(¢y) = 0.
Hence, we have shown that C(tg) = 0 whenever ¢y € [0, +00) is in the support of
the spectral measure o of the minimizer f,. It remains to observe that for any ¢ € R

Thus, C(¢) is a restriction to the real line of a rational function on the neighborhood
of the real line in the complex ¢-plane. By assumption, w ¢ V(z), and therefore C(t)
is not identically zero. In particular, C(t) cannot have more than 2n — 1 zeros. We
conclude that the support of the spectral measure of the minimizer f, must be finite,
and the minimizer must be a rational function.

Now let us consider the competitor (2.40) defined by (2.41), where € > 0 and ¢g
is not in the support of o. Formula (2.42) then implies that

p* —wp — |p* — w|?

lim —Ip

e—0t €

= 20(ty) > 0.

This proves that C(t) > 0 for all ¢ > 0. The necessity of the stated properties of the
Caprini function C(t) is now established.
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Sufficiency is a direct consequence of formula (2.37). For any competitor measure
0 we can write

N
v=5-0=> (Ac;)d, +7,
j=1

where 7 is a positive Radon measure without any point masses att =t¢;, j=1,...,N.
It is obtained by eliminating point masses of & at t;, j = 1,..., N, if it has any:

N
a:a_§:aﬁﬁw%

We then compute, via formula (2.37), taking into account that C(t;) = 0,
(oo}
P wl -~ Ip — wl’ = 2(Ay) Jim ¢C)+2 [ C) + 5 p 2 0.
> 0

since C'(t) > 0. If Ay < 0, then v =75 — Ay > 0, and therefore the first term on the
right-hand side vanishes due to (2.39). |

We observe that that if £; > 0, then we must also have C’(t;) = 0, since t = t; is
a point of local minimum of C'(¢). If we write formula (2.38) in the form

N
f*(z):’}/_@+zta_jz7 ’7207 00207 tj>07 Uj>0a j:17"'7N7
j=1"

then we have exactly 2(N + 1) equations for 2(N + 1) unknowns v, oy, t;, 0j, j =
1 N:

yeeey

(2.43) vtlirgcto(t) =0, 00C(0)=0, C(t;)=0, C'(t;)=0, j=1,...,N.

Obviously, these equations do not enforce the nonnegativity of C(¢) and may very well
be satisfied when some ¢; are points of local maxima and C(t) is not nonnegative.
Hence, the equations should not really be regarded as equations for the minimizer.
Instead the intended use of Theorem 2.6 is to provide the certificate of optimality of
a purported solution of (2.34) by exhibiting the graph of C(t) that shows that the
necessary and sufficient conditions of optimality are satisfied. In fact, equations (2.43)
are used in our algorithm to make the final adjustments when a near-optimal solution
is obtained.

2.5. Analytic structure of the boundary of V(z). The analytic structure
of the interpolation body V(z) defined in (1.6) is well understood. The set V(z)
is a closed convex cone in C" with nonempty interior V°(z), characterized by the
inequalities N (z,w) > 0, P(z,w) > 0 in the sense of quadratic forms. The set

6(z,w) ={f €6: f(z) = w}

is parametrized by elements of & via the recursive interpolation procedure described
in section 2.3. The function f € &(z,w) corresponding to 0 € & in such a parame-
trization has the form

n
o
f(z):E t»—]z’ 0; >0, 0<t < <tp,
j=1"
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with the list of parameters o; and t; above in one-to-one correspondence with points
w = f(z)in V°(z) [53, 52].

By contrast with V°(z), each point on 0V (z) can be realized as a list of values of a
unique Stieltjes function, which must necessarily be rational. In view of Theorem 2.4
the boundary of V(z) can be naturally written as a union of two overlapping sets

VN (2) ={w € V(2) : det N(z,w) = 0}, 9V (2) = {w € V(2) : det P(z,w) = 0}.
We can think of them as two sides of a clam shell that meet along the “rim”
OVNP(2) = {w € V(2z) : det N(z,w) = 0, det P(z,w) = 0}.

Each point w € OV (z) is attained by a unique rational function f € &1V, where

n—1
(2.44) 6ﬁ={v+zt:_’“z:v>0, tr >0, ak>0}.
k=1

Similarly, each point w € OVF(z) is attained by a unique rational function f € GZ.
Unfortunately, a simple representation, like (2.44), of functions in & is not possible.
This is because the parameter space (vy,0,t) in (2.44) is noncompact, and it is an
accident that the set &Y happens to be closed (in the space of holomorphic functions
on C\ R;). The most concise, but somewhat indirect, description of G can be
formulated using the “reflection” symmetry R : f + —1/(zf) of class &: &F =
R(SY). Another description of &% is the closure of the set

n—1
(2.45) Sr={-24 S % 020, 20, 0p 20
z P ty — 2

with respect to the uniform convergence on compact subsets of C\ Ry. Explicitly,

the set G2 can be described as &F = éf UGl ;.
Similarly, each point w € VN (2) is attained by a unique rational function
f € NP where GNP can be described implicitly as the closure of

n—1
(2.46) éﬁjp{zta’“ S te >0, akzo}

k=1 %

or explicitly as GNF = ééVP UGk .
If we define the evaluation operator E, : & — C™ by E, f = f(z), then we have
both
V(z)=E.(&) and V(z)=FE,(6)F).
Moreover, E, : &Y — V(z) is a bijection. The statements above are all conse-
quences of the following classical theorem [39, 40].

THEOREM 2.7. Suppose that f € & is a rational function. Then it can be written
uniquely in the form

g

R ’720,0’j>0,0§t1<t2<"'<tn,

@) S =+

J
tj—z

where n > 0 is an integer. If v > 0, then f(z) has exactly n distinct real zeros z = x;,
j=1,...,n, satisfying the interlacing property

0<thi <1 <ta<aa < <tp <z <400,
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so that f(z) can also be written as a product

(2.48) F2) =~ ==L

If v =0 and n > 1, then there are exactly n — 1 distinct real zeros z = x; and

(2.49)

A "o
f(z) = ”z—tjﬂ’ A>0,0<t <z <ty <+ <y <ty < +00.
J

3. A needle in a haystack. In section 2 we have summarized a substantial
body of existing knowledge about the Stieltjes class & and the closed convex cone
V(z). Can one harness this knowledge to devise an algorithm solving the least squares
problem (2.34)? Surprisingly the answer is not apparent. What has been described so
far is an interpolation algorithm for constructing functions f(z), satisfying f(z;) = pJ,
once the solution p* of (2.34) has been found. In this section we take a closer look
at the geometry of V(z). Here will show that in effect, the set V(z) C C™ has a very
small (real) dimension compared to 2n. The proverbial needle analogy is apt here.
Even though the needle is a three-dimensional body, we can approximate it well by
an interval of a straight line. To illustrate our point we return to our simple example
(2.13). Figure 3.1 shows a two-dimensional cross-section of V(z), where the OV (2)
and OV ¥ (z) parts of the boundary of V(z) are shown in magenta and cyan and are
on the left and the right sides of V(z), respectively. The origin in the figure is placed
at w in the interior of V(z). When we added a 2% noise to w, the noisy data w
would lie about 25,000 thicknesses of the cross-section away. If an ordinary sawing
needle is the analogy for V(z), the point w would be about 25 meters away!

To see the dimensional degeneracy of V' (z) mathematically we recall that the rank-
two displacement structure (2.11) and (2.12) of N(z,w) and P(z,w), respectively,
implies that their eigenvalues decay exponentially fast [8]. Hence, numerically, these
matrices will always have eigenvalues which are indistinguishable from 0 up to the
floating point precision, when n > 15. Thus, numerically, all points in V(z) will
appear to lie on its boundary.

The crucial point here is that the dimensional degeneracy of the geometry of
V(z) handily defeats typical minimization algorithms that start with some initial
guess pg € OV (z) and choose the direction in which we want to travel “along” 9V (z)
in order to make the distance to w ¢ V(z) smaller. Indeed, even if we are travelling
along one of the “long dimensions” of the needle, a tiny generic perturbation of the
direction of travel will cause us to exit V(z) after an extremely short distance. For
example, when n = 20 our numerical experiments showed that we needed to perform
100 steps to make even a barely noticeable change in the distance of |p — w].

Milton [55] suggested that since V(z) is a convex cone which is dimensionally
degenerate it must effectively lie in a low-dimensional subspace of C”, in the same
way as the needle whose point is at the origin effectively lies in a one-dimensional
subspace of R®. In order to capture this low-dimensional subspace (or rather its
orthogonal complement) we look for vectors & = (&1,...,&,) € C", such that |£] =1
and Re(w, €) is negligibly small for all w € V(z) with |w| = 1. Let us explore this
idea.

Suppose v > 0 and o is the Stieltjes spectral measure. For given nodes z; € Hy
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Fic. 3.1. A random two-dimensional cross-section of V(z). The origin corresponds to w €
V(z), and the cross-section is spanned by a random unit vector d € C" and a normal n to OV (2)
at the point where w + td intersects OV (z).

we define

We estimate

t+1
. i < < :
(31) sl <3+ Dol mase || < M)+ o)
where  do () )
o(t t+
ol = [ 25 M) = max| .
0 > Z;

It is not hard to compute the constant M(z) explicitly, when Jm(z) > 0, using the
theory of fractional-linear maps. We can also derive the reverse estimate from the
formulas

* do(t)
Jm(w;) =Jm z/ —_—
( J) (]) 0 ‘t—ZjP
and
¢ — Re(z;) ©Nt+1Pdo(t) 1+ Re(z;)
)=+ [ o) = [T 4 - L )
Denoting
Ll t+1 . 1
m(z;) = min | —— mm{,l},
t>0 |t — z; | 2]
we obtain
Jm(w,z;) + Im(w;)  |z; + 1|
3.2 . < J=9 J < J e
(32) mie)or+ ol < TSI < S|

Inequalities (3.1) and (3.2) imply that there exist constants ¢(z) and C(z), such that

(3.3) c(z)|wlo,Ylleo <7+ llofl < C(2)[w(o, Y] llso,
where
(3.4)
B _ . 1 . . |Zj + 1|
Hw”OO o 1Iélj'a§xn |wj |7 C(Z) o 1I§nj1£n M(Zj)7 C(Z) o 1I§njl£n { m(zj)’Jm(zJ) } ’
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This means that v + ||o|| and |w]||« are equivalent norms of f € &, given by (2.2),
provided w = f(z).

We recall that our goal is to understand how the convex set Vi (z) = V(z)NB(0,1)
would look geometrically as a subset of the 2n-dimensional Euclidean space C". We
claim that this set, which is technically of full real dimension 2n, is “very flat.” To
quantify just how flat it is we look for unit vectors € € C", such that Re(w, £) is very
small for all w € V;(2z). We compute

Re(w, &) = Re (75 +/0 Z tfé}gdo(t)) , S= ka.
k=1 k=1

Since it is the measure do(t)/(1 4 t) that is finite it will be convenient to rewrite the
above formula as follows:

Re(w, £) = Re <~ys + [T wiegn +s) d"“’) |

t+1

where

Thus,
[Re(w, )] < (v + [l )Re(S)] + llo|| max [Re([€1(2))]

Since 0[€](t) = Re(1[€](t)) is a complicated function of ¢ whose maximum is impossible
to compute directly we observe that both 6[¢] and ¢’[€] are in L?(0, +00) and use the
inequality

I{l§5<|9(t)|2 <1613 2 = 101720, 100) T 1020, 100

valid for all # € W12(0, +00). The inequality is sharp. It becomes an equality when
6(t) = e~*. Hence,

(35)  [Re(w, O <2y + llol)* (Re(S)* + [0€]]17 5) < 2C(2)*|wlZ. Q(2)[E].

where
Q(2)[€] = Re(S)” + 10[€]7

is a positive definite real quadratic form in £ and C(z) is given in (3.4), in accordance
with (3.2). Let Ay > Ay > -+ > Ag,, > 0 be the eigenvalues of Q(z). For each
Om = C(2)y/2Am+1 taken as the “negligibility threshold,” we can regard m as the
effective dimension of V' (z), since the 2n —m-dimensional span W,, of all eigenvectors
of Q(z) corresponding to eigenvalues Ag, k > m, is effectively orthogonal to V(z).
Indeed, for any € € W,,, and any w € Vi(z) we have the inequality* |Re(w, &)| < dyp,.
For the example (2.13) the quadratic form is of full rank, its 40 eigenvalues decreasing
from A\; ~ 3.37 - 108 to Ay = 4.73 - 1075, If the number of data points increases
to 40, z; = V014057 5 —0,1,...,39, then numerical rank of the 80 x 80 matrix
Q(z) is 56. It also remains 56 for the 100 x 100 matrix Q(z), corresponding to
z; = €0 0104 5 =0,1,...,49. These results show that the theoretical bound (3.5)
is fairly conservative and overestimates the perceived dimension of V'(z) quite a bit.

4Obviously, the estimate holds in a larger convex subset V(z) N Boo(0,1) of V(z), where Boo

denotes a ball in || - ||oc norm of C™.
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The quadratic form Q(z) is not hard to compute explicitly using the residue
formula

0 N
(3.6) /0 R(z)dx = — ZReS[R(z) In(—2), z = p.,

where R(z) is a rational function with at least 1/|z|? decay at infinity and poles p,,
none of which lie on [0, +00). Even with the exact formula for Q(z), the accurate com-
putation of its eigenvalues requires many more digits of precision than the floating
point allows even for n = 20. In our examples we have used the Advanpix Multi-
precision Computing Toolbox for MATLAB (https://www.advanpix.com/) using 200
digits of precision.

4. The least squares algorithm. In this section we describe the algorithm that
solves the least squares problem (2.34), displays the graph of the Caprini function C(t)
certifying that the minimum in (2.34) has indeed been reached (see Theorem 2.6), and
exhibits the “uncertainty band” where the least squares minimizer might belong for
different realizations of the random noise in the data.

The first step in the algorithm is to replace V(z) by a much simpler object: the
positive span of an ad-hoc basis of V(z).

DEFINITION 4.1. An ad-hoc basis of V(z) is a finite set of positive spectral mea-
sures B = {o1,...,0n}, whereby V(z) is replaced by
(4.1)

N
VsB(z):{we@":wj:xo—i—z:xafba(zj), j=1,...,n, x4 >0, a:O,...,N},
a=1

where

t—=z

%(z):/ooo doolt) 1 N

The adjective “ad-hoc” indicates that our choice of the basis B is nothing more
than an educated guess, and other choices could be at least as effective as our choice.
The choice that appears to work well consists of

e measures 0, (t)—unit point mass at ¢ = 7—where 7 is either the real or the
imaginary part of one of z; for some j,
e measures X[s, s,](t)dt, where both s; and sy are either one of the 7’s or a
midpoint between adjacent 7’s.
We will denote this construction of an ad-hoc basis by B(7), where 7 stands for a
list of 7’s used in the above construction.

Imagining V(z) as a needle explains why the choice of an ad-hoc basis can be
fairly arbitrary. Indeed, selecting a point wgy at random inside a needle and replacing
the needle with the ray {swg : s > 0} gives a fairly accurate representation of the
needle. The more accurately we want to approximate V' (z) the more important the
choice of an ad-hoc basis becomes. Our choice above is just an attempt to tie the ad-
hoc basis to the data in a somewhat natural and algorithmic fashion. Many existing
algorithms (e.g., [12, 65]) make an effort to choose a better basis, but in the absence
of any rigorous approximation error analysis they also remain largely ad-hoc. In the
new algorithm the ad-hoc basis is only needed as a stepping stone for the construction
of a much better basis tailor-made for the specific experimental data.
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FiGc. 4.1. The Caprini function for the ad-hoc (left) and for the Caprini-augmented (right)
basis projections.

Once the above ad-hoc basis has been chosen, we compute

N
p(@) =20+ Y wabalz), j=1,....m,
a=1

by solving the nonnegative least squares problem

: 2
(4.2) min |p(x) —wl*.

The above least squares problem is solved by a well-established and widely imple-
mented nonnegative least squares algorithm [45].

Naturally, we would like to know how good our ad-hoc approximation is. For
illustration we once again turn to our simple example (2.13). We use the same noisy
version w of w as in the example of Figure 3.1. The optimality conditions described
in Theorem 2.6 require the Caprini function C(¢) to be nonnegative and equal to zero
on the support of the spectral measure. The graph of C(¢) shown in the left panel
of Figure 4.1 suggests that we are not too far away from the true minimum but not
there yet. Had we hit the minimum exactly, the local minima of C(t) would also
be both the global minima and the zeros of C(t) and would comprise the support
of the optimal spectral measure o(t). This observation leads to the next step in our
algorithm: we add the points of local minima of C(t) to the list of 7’s in our ad-
hoc basis B(7) and recompute p(x), solving (4.2) using the augmented ad-hoc basis
B(Taug) for V(2z). The Caprini function for the new approximation is shown in the
right panel of Figure 4.1. We see both the substantial improvement and the fact that
the new approximation p* is still not the true minimum in (2.34). We can repeat
this step by adjoining the local minima of the improved Caprini function in the right
panel of Figure 4.1 to the list of 7’s. The improvement after the second application
of the augmentation of the ad-hoc basis is significantly smaller, and more repetitions
no longer lead to discernible improvements.

To achieve certifiable optimality we cheat by “moving the goalposts.” In the
author’s experience the Caprini function is very sensitive to even the tiniest deviations
from the true optimum. The idea is to exploit this sensitivity and achieve optimality
by means of making negligible changes, but not in p*, which is required to be in
V(z). Changing w instead of p* leads to a linear problem! We therefore look for the
alternative data w near w, so that the same p* is a true minimizer in (2.34), where
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F1c. 4.2. Achieving optimality for the “alternative data.”

w is replaced by w and where w is computed by requiring that the local minima ¢;
of the original C(t) satisfy equations (2.43). In other words we are looking for the
vector dw € C™ of smallest norm, satisfying the following equations:

dw;
R G
(4.3) it g k=1,...,N.
w
Re I = C(ts),
L5 W

(4.4) Red dw; =Re Y (p; — w;).

If C'(0) < 0 for the original data, we add ¢ = 0 to the support of the spectral measure
o and require

(4.5) éﬁezn: % = —C(0).

Vector dw can then be computed using the standard least norm least squares solver.

Our simulations show that the “alternative data” w = w + dw is indeed suffi-
ciently close to the actual data to justify replacing one with the other. In other words,
if we regard w to be equal to p* plus random measurement errors, then w is also equal
to p* plus a different realization of random measurement errors. At the same time
the Caprini function for the alternative data w in Figure 4.2 shows that our formerly
imperfect solution p* of (2.34) is now optimal to within computer precision,® while
|lw — w|/|w| ~ 6.5 107, where w is given by (2.13) plus 2% noise.

On rare occasions during the algorithm testing the change from w to w caused a
point of local minimum ¢ = ¢; of the original C'(¢) to become a point of local maximum
of the modified C(t), while creating two new points of local minima to the right and
to the left of ¢;. If the new local minima are nonnegligibly negative, then we update
the list of local minima of C(t) and apply the same “alternative data” procedure to

5The right graph’s vertical scale in Figure 4.2 is 109 times the left graph’s vertical scale.
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w, solving (4.3)—(4.5) again. In our numerical tests no more than two iterations of
“data-fixing” was ever necessary to bring the graph of C(t) into the desired shape.

In order to capture all local minima of C'(¢) on [0, 4+00) we observe that C(t) will
be a monotone function on [T, +00) for sufficiently large T'. Let us estimate the value
of T. We will assume that v > 0 and therefore

Red 6;,=0, 0 =p;—w
In this case we can write C’(t) = Do (t) + O(t™*) as t — oo, where
Deo(t) = ——ﬂ?eZJ %.

Estimating |C'(t) — Do (t)], it is not hard to show that

(16)  10() = Doclt)] < [Doo(t)] ¥t > T = (M +1) max |z
sSJisn
where .
) o/ [
|§Rez 10;75]

Inequality (4.6) shows that C’(t) cannot be 0 when ¢ > T'. Hence, if we want to make
sure that we missed no local minima of C'(¢), we need to examine it only on the finite
interval [0, T].

In order to construct the function f € & satisfying f(z) = p* we run the recursive
interpolation algorithm described in section 2.3. In practice, even though matrices
N (z,p*) and P(z, p*) have no numerically significant negative eigenvalues, feasibility
gets lost after a number of iterations due to the amplification of round-off errors. This
may happen even when n is as small as 10. When this occurs, we replace the currently
infeasible data w by its “projection” p* as described above and continue the recursion
using the projected feasible data.

Finally, our algorithm tries to estimate the degree of uncertainty of the output.
If we regard the discrepancies w; — f«(z;) as a random noise, then the fact that the
measured values w; are exactly what they are is in part an outcome of a random
event. Simulating normal random noise with variance

1 n
2 L N2
P =51 §1|wj fe(%5)]
j=

we produce other “realizations” of the error of measurement, each of which leads to its
own least squares solution f,(z). Plotting these functions for 500 different realizations
of the random noise gives one an idea of the degree to which we can trust the output
of the algorithm. These potential realizations are shown in grey in Figures 6.1 and
6.2. While in [35, 36] we estimated the worst case error of extrapolation, these Monte
Carlo simulations are a simple and direct way to estimate the uncertainty for specific
data. The use of Monte Carlo simulations to exhibit the uncertainty in the analytic
continuation due to the statistical errors in the data has also been used in particle
physics [4].
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5. Direct computation of spectral measure. While the interpolation algo-
rithm computes values f({) for any specified list of points ¢ in the upper half-plane,
one would also want to have an explicit formula for f(z). The goal of this section is to
describe an algorithm for computing the spectral representation (2.47) of the function
f € & satisfying f(z) = p. The algorithm computes this representation recursively
following the algorithm described in section 2.3. It is based on the following theorem.

THEOREM 5.1. Suppose

n
g a;
g(Z):’Yg*70+E *]27 7g20,0020,0j>0,0<t1<t2<"'<tn.

Suppose f(z) is giwven by (2.29). Then

Vo n+1 v
f(z):%c_?—’—Zijz’
j=1
where
« 000 *
(5.1) 7s = WZ T
and

O<m<hi<m<ta<- - <tp < Tptr-

Proof. Formulas (5.1) are obtained by taking limits of f(z) as z — oo and
zf(z) as z — 0 using formula (2.29). We have also proved in Theorem 2.5 that
the degree of f(z) is exactly 1 higher than g(z). Thus, proving that the intervals
(0,t1), (t1,t2), ..., (tn, +00) contain at least one pole of f(z) would imply that these
intervals must contain exactly one pole. Formula (2.29) shows that the poles of f(z)
can only come either from the poles of g(z) or from the zeros of the denominator

P(z) = 29(2) + 2 — b

It is easy to compute that

lim f(z) = utj — 07 # 00.

z—rt; tj

Hence, only the zeros of ¢(z) can be the positive poles of f(z). The existence of zeros
7; in the indicated intervals follows from the following observations:

lim ¢(z) = —09 —t. <0, lim ¢(z) =Foo, lim ¢(z) = +oo. 0O

z—0t Tt z—+00

Once the intervals containing single zeros of ¢(z) are isolated, the zeros can be
computed using the standard zero finding algorithm [14, 29]. We only need to derive
the upper bound for the last pole 7,,11. We observe that all functions

are monotone increasing on (t,, +00). Thus, when z > 2¢,, we have

2t,0;
Ri(zx) > -——"2 > _25,.
() = % —1; = 0y
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Therefore,

$x) = (vg+ Dz —te —00+ Y Ri(@) > (g + Dz —t. —2) _oj.

Jj=1 Jj=0

We conclude that ¢(z) > 0 when x > Tyax, where
Tinax = max § 2ty (v +1) 7" [ . +2) 0;
j=0

The spectral representation of f(z) is then computed recursively, using (2.29), with
the explicit formula in the case when g(z) = v, — 0¢/2:

*

Y« Yg g00 41
5.2 z) = — + ,
(5:2) 1) vg+1 (oo+ti)z T —=z
where
L 00 + by o 0"y + 0+ 7500 YYg(00+t) 00"
! vg+ 1’ ' Yo+ 1 (79 +1)° o0+ te

In our numerical simulations the values of f,.(z) at specified points computed from
the spectral representation of f,(z) are indistinguishable (graphically) from the values
computed using the recursion algorithm from section 2.3.

6. Case study: Electrochemical impedance spectroscopy. Electrochem-
istry studies the electrical behavior of systems where the motion of charges occurs not
only due to the applied electric field but also due to chemical reactions that occur on
sometimes vastly different time scales. One of the key characteristics of such systems
is the electrochemical impedance spectrum (EIS) Z(w) that has the meaning of resis-
tance to an applied sinusoidal current. Combining the sine and cosine functions into
a complex exponential the steady response of such a system to the current I(t) = e®*
is the voltage U(t) = R(w)e!«!+#«)  The resistance R(w) and the phase shift ¢(w)
are combined into a single complex valued function Z(w) = R(w)e'*@)—the EIS.
The theory of electrochemical cells, including batteries, electrodes, and electrolytes
[6, Sect. 2.1.2.3], says that Z(w) has the spectral representation

1 * do(r) ° do(T)
1 Z = <
61 2=t [ [T < 0<Gi<i

where o is a positive Borel-regular measure on [0, +00), called the distribution of
relaxation times (DRT). This formula shows that if Z(w) is the EIS, then Z(w) =
f(—iw) for some f € &. It is also a continuum version of the complex impedance of
an electrical circuit made of a series of Voigt elements, each being a resistor and a
capacitor connected in parallel.

DEFINITION 6.1. A Voigt circuit is an electrical circuit made of finitely many
resistors and capacitors.

The following theorem has long been known [30, 20, 21] (see also [22, Statement 2,
p. 196, Vol. 1]).
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Fic. 6.1. The output of the algorithm for a Voigt circuit.

THEOREM 6.2. The complex impedance functions Z(w) of Voigt circuits are in
one-to-one correspondence with rational Stieltjes functions f € Ggr wia Z(w) =
f(=iw).

In electrochemistry there are several explicit EIS functions representing important
electrochemical cells, each serving as a building block of more complex devices. The
ideal capacitor’s EIS Z(w) = 1/(iCw) is often replaced by the more realistic constant
phase element (CPE) with Zcpg(w) = R/(itw)?, ¢ € [0,1]. Connecting it in parallel
with a resistor gives the ZARC or Cole-Cole element

R

= T o) ¢ €[0,1].

Zzarc(w)

A generalization of the ZARC element is the Havriliak—-Negami element

R

)= T G

¢ €10,1], ¥ €0,1].

Following examples in [65], we test our algorithm on a double Havriliak-Negami ele-
ment

Ry Ry
0+ (n))? T (A + (imaw)?)?’

where we chose Ro, = 20, Ry = 50, ¢ = 0.5, ¢ = 0.8, 71 = 20, 75 = 0.001. This
element operates on two very different times scales (20 seconds and 1 millisecond)
differing by four orders of magnitude.

The “experimental data” was produced by computing Zpun(27f) at 20 frequen-
cies f; equispaced on the logarithmic scale from fiin = 1074Hz to fiax = 10Hz and
then polluting the exact values with 1% random noise on the relative scale. Figure 6.1

(6.2) Zpun(w) = R +
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Fi1c. 6.2. Extrapolation beyond the experimentally accessible frequency band.

shows the result of the implementation of the algorithm. The real and imaginary parts
of the exact EIS function (6.2) are shown in red. The imaginary part has exactly two
local minima at 1/(277) and 1/(2772). Since the random noise is complex-valued
and Jm(Zpyn) is 10 times smaller than Re(Zpun), the relative size of the noise for
the imaginary part is actually 10%. This is why the algorithm’s performance seems
to be better for the real part than for the imaginary part. While absolute errors of
reconstruction for both the real and the imaginary parts are the same, the relative
errors differ by a factor of 10.

There is no discernible difference between the actual and the “alternative data”
for which the plots of the Caprini function at the global and local scales show certi-
fied optimality. The grey band indicates the uncertainty of the extrapolation shown
by the cyan curve. The cyan curve is a plot of a rational function whose spectral
measure is supported on 20 points. It coincides to computer precision with values
computed by the recursion algorithm of section 2.3. It is important to keep in mind
that the results in Figure 6.1 look nice because we are “filling the gaps” between mea-
surements. The situation changes if we try to extrapolate beyond the largest or the
smallest frequency at which the impedance function has been measured. Figure 6.2
illustrates what happens with exactly the same “experimental data” when we ask the
algorithm to reconstruct the EIS function on a larger frequency band. The uncer-
tainty of reconstruction “explodes,” but our two methods of extrapolation, recursive
and spectral representation, continue to agree. Both panels in Figure 6.2 show a
pronounced disagreement between the theoretical and the extrapolated curves away
from the experimentally accessible frequency band, confirming that it is in general
impossible to extrapolate to the entire frequency spectrum reliably.
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