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ABSTRACT:  Sequence-encoded biomolecules such as DNA and
peptides are powerful programmable building blocks for nanoma-
terials. This paradigm is enabled by decades of prior research into
how nucleic acid and amino acid sequences dictate biomolecular
interactions. The properties of biomolecular materials can be
significantly expanded with non-natural interactions, including
metal ion coordination of nucleic acids and amino acids. However,
these approaches present design challenges because it is often
not well-understood how biomolecular sequence dictates such
non-natural interactions. This Feature Article presents a case
study in overcoming challenges in biomolecular materials with
emerging approaches in data mining and machine learning for
chemical design. We review progress in this area for a specific
class of DNA-templated metal nanomaterials with complex
sequence-to-property relationships: DNA-stabilized silver nan-
oclusters (AgN -DNAs) with bright, sequence-tuned fluorescence
colors and promise for biophotonics applications. A brief overview of
machine learning concepts is presented, and high-throughput
experimental synthesis and characterization of AgN -DNAs are
discussed. Then, recent progress in machine learning-guided design
of DNA sequences that select for specific AgN -DNA fluorescence
properties is reviewed. We conclude with emerging opportunities in
machine learning-guided design and discovery of AgN -DNAs and
other sequence-encoded biomolecular nanomaterials.

1 Introduction
Nature’s nucleic acids are powerful molecular tools for nan-
otechnologies. Since Ned Seeman’s seminal paper in 1982 pre-
sented the concept that oligomeric DNA and RNA can be used
to build static junctions and networks, 1 researchers have become
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increasingly adept at harnessing the sequence-programmed rules
of Watson-Crick-Franklin base pairs to assemble DNA nanostruc-
tures, 2 organize colloids into nanoscale architectures, 3 and cre-
ate dynamic machines and computers.4,5 (This article refers to
canonical hydrogen-bonded base pairing of the natural nucle-
obases adenine (A), cytosine (C), guanine (G), and thymine (T )
as Watson-Crick-Franklin base pairs, 6 as is becoming commonly
adopted by the scientific community. 7,8) The diverse functionali-
ties of DNA nanotechnologies are enabled by the degree to which
scientists now understand the nature of Watson-Crick-Franklin
base pairing, an understanding that has been built by decades
of intense prior research on the structure and formation of the
DNA duplex within the biochemistry community.

More recently, nucleic acid nanotechnologies are expand-
ing beyond the confines of the Watson-Crick-Franklin A-T and C-
G base pairs. One particular area of significant develop-
ment is metal-nucleic acid interactions, including metal-mediated
DNA base pairing 9–11 and DNA-templated metallic nanostruc-
tures. 12,13 Metal-nucleic acid interactions have been well-studied
for decades. 14 While initially of interest for their biomedical rel-
evance, recent studies are demonstrating the promise of metal-
nucleic acid interactions for both expanding the self-assembly
rules of DNA and realizing new properties with DNA nanoma-
terials. 15 DNA-organized metal atom arrays and DNA-templated
metal nanostructures have been explored for their applications in
magnetic materials, 16,17 nanoelectronics, 18,19 photonics, 20 and
catalysis. 21 This field is now expanding even more rapidly due
to the last two decades of rapid advances in "traditional" DNA
nanotechnologies based on Watson-Crick-Franklin base pairs. 22

Because the scientific understanding of metal-mediated base
pairs remains far more nascent than of Watson-Crick-Franklin
base pairs, it is a major challenge to develop the same degree
of predictive power over the molecular conformations adopted by
nucleic acids due to metal-mediated interactions. This is espe-
cially challenging due to the combinatorially large DNA sequence
space (for L-base sequences of the four canonical nucleobases A,
C, G, T, there exist 4L unique DNA oligomer sequences) and
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to the computational challenges of simulating DNA-metal com-
plexes, which are very large for ab initio approaches but cannot
be fully described by classical techniques. While rapid advances
in molecular simulations are beginning to address this challenge, it
is important to also develop experimental approaches to in-
terrogate the full complexity of nucleic acid-metal interactions.
Crystallographic studies continue to advance understanding of
metal-mediated base pairing. 9,23 A recent comprehensive study
by Vecchione, et al., of crystallographic structures of 32 different
base pairs mediated by Ag+ , Hg2+, and Au+ suggests a rich di-

researchers within the field of materials chemistry with insights
into how ML and data mining can be successfully harnessed for
advancing both discovery and fundamental chemical understand-
ing of materials systems. In particular, the approaches and mod-
els discussed are highly promising for nucleic acid-based mate-
rials 33–36 and other systems whose properties are governed by
biomolecular sequence, such as peptide- and protein-based mate-
rials. 37–40

versity of possible metal-mediated nucleic acid interactions that
remain to be fully understood and harnessed. 23 It is important to

1. High-throughput experiments 2. Data analysis
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note that crystallographic studies are relatively low-throughput
and require crystallization, motivating the development of ad-
ditional experimental approaches to understand when and how
nucleic acid sequence influences metal-mediated base pairing.

DNA        AgNO3 UV
NaBH4

This Feature Article discusses how combinatorial experiments
and computational tools including data mining and machine
learning (ML) have been used to advance the state-of-the-art
for a particular class of nucleic acid-templated metal nanoma-
terials: DNA-stabilized silver nanoclusters (AgN -DNAs). These
tiny clusters of silver atoms stabilized by DNA oligomers were
first discovered in 2004 by Petty and coauthors 12 and quickly at-
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GGAAGGCAGC           1020210001200000

GATTATACCC 0102020010002001…

AATGACGACA 1201101020000100…

ATCGGCCCTC 0001021101100200…

TTATCCCACC 0101130000001101…

GCGAGAAGAA           2020001031000000…

CCCAAAATCA 3001220000000100…

GGGGGACGTT 0100001010410001…

tracted attention for their bright fluorescence colors that range
from visible to near-infrared (NIR) wavelengths 24,25 and for the
unique sequence tunability of emission wavelength with nucleic
acid sequence. 26 AgN -DNAs have shown significant promise in a
diversity of chemical and biomolecular sensing schemes 27 and
are promising emitters for NIR bioimaging 28–30 and emerging
low-background, anti-Stokes shift fluorescence imaging modal-
ities. 31,32 Since 2012, studies of chromatographically purified
AgN-DNA species have significantly advanced understanding of
the compositions and optical properties of AgN-DNA emitters. 20

However, it has remained a major challenge to determine how
DNA sequence selects AgN-DNA composition and optical prop-
erties. This challenge hinders the design of AgN-DNAs that are
engineered for specific applications.

Here, we review how the development of high-throughput ex-
perimentation platforms for AgN-DNA synthesis and characteri-
zation has enabled curation of sufficiently large, consistent data
sets to enable informatics approaches to determine the sequence-
to-color rules for AgN-DNAs (Figure 1). To make this review ac-
cessible to the broad community of materials chemistry, we begin
with an overview of what is known about AgN-DNAs and other
nucleic acid-stabilized metal nanoclusters in Section 2. We then
provide a short introduction to ML and associated terminology in
Section 3. Section 4 discusses the experimental strategies em-
ployed to generate large, well-controlled data libraries for AgN-
DNAs. Then, we review how data mining tools and ML classifiers
have been developed for predictive design of DNA oligomers that
template brightly emissive AgN-DNAs (Section 5) and AgN-DNAs
with specific emission colors (Section 6). Finally, Section 7 dis-
cusses how interpretable ML models have been used not only to
design AgN-DNAs but also to understand the sequence-to-color
rules for these nucleic acid-templated nanomaterials.

Through this case study, this Feature Article intends to provide

Fig. 1 General workflow for high throughput synthesis, characterization,
and design of AgN -DNAs.

2  Fundamentals of nucleic acid-stabilized metal
nanoclusters

It has been known that Ag+  has affinity for the nucleobases but
not the phosphate backbone of natural DNA at neutral pH. 14

This affinity allows DNA to act as a stabilizing ligand for sil-
ver nanoclusters (AgN ), as was first reported by the groups of
Petty and Dickson in 2004. 12 A crystal structure of a 16-atom
AgN-DNA 46,47 is shown in Figure     2a. AgN-DNAs are synthe-
sized by NaBH reduction of a neutral pH aqueous solution of
Ag+ and single-stranded DNA. 12 Because A, C, G, and T  have
varying affinities for Ag+ , primarily through nucleobase ring ni-
trogens,14,48,49 nucleobase sequence selects AgN size, shape, and
optical properties, with AgN -DNA emission peaks from 400 nm up
to 1,200 nm. 20,50 In some cases, altering a single nucleobase can
dramatically shift AgN-DNA color. 51 This sequence tunability of
a metal nanocluster by biomolecular sequence is one of the most
unique properties of AgN -DNAs. RNA can also be used to stabilize
AgN with bright emission. 52

Recently, the fundamental understanding of AgN-DNA struc-
ture and properties has been significantly advanced by detailed
investigations of atomically precise samples of AgN-DNA species
that are prepared by high performance liquid chromatography
(HPLC). We summarize the current understanding here; read-
ers can find more details in a recent comprehensive review.20

The compositions of AgN-DNAs can be determined using electro-
spray ionization mass spectrometry (ESI-MS) to count the total
numbers of silver atoms N and DNA strands ns per nanocluster 53

and to determine the charge of AgN-DNA species. 42 Knowledge of
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Fig. 2 a) Crystal structure of a NIR-emissive AgN -DNA with 16 Ag atoms (grey) and two chlorido ligands (green). Adapted with permission from
Gonzàlez-Rosell, et al., 41 licensed under C C  BY-NC-ND. Copyright 2023. b) Excitation and emission wavelengths of AgN -DNAs, including those
reported previously 42–45 and current work in preparation in the Copp lab. Empty triangles represent AgN -DNAs characterized by high-throughput
experiments, and filled diamonds represent AgN -DNAs whose sizes have been determined by ESI-MS. Marker color represents the emission wavelength
converted to RGB values. NIR wavelengths are shown in grey. Note that N0 =  8 AgN -DNAs have multiple emission peaks; 45 here the most intense
excitation peak beyond the DNA absorption peak is shown.

nanocluster charge then allows one to determine the effective va-
lence electron content, N0, of AgN-DNAs, 43 which is an important
property according to the superatomic model for ligand-stabilized
metal nanoclusters. 54 By these methods, researchers have identi-
fied AgN-DNA species ranging in size from N =  10 to N =  30 Ag
atoms stabilized by ns =  1 to ns =  3 copies of the templating DNA
oligomer. Recent results have also shown that some AgN-DNAs
possess additional stabilizing chlorido ligands. 47 AgN -DNAs are
partially oxidized, 43,55 with effective valence electron counts of
N0 =  4,6,8, and 10 − 12 identified by mass spectral analysis. The
peak excitation and peak emission wavelength, λp, scale strongly
with N0 (Figure 2b). 43,44 Thus, studies that show that DNA se-
quence selects for AgN-DNA excitation and emission wavelengths
provide evidence that DNA sequence is selecting for the atomic
size and shape of the AgN-DNA.

Not only does DNA sequence select the size and optical prop-
erties of individual AgN -DNAs, but DNA’s supramolecular chem-
istry also enables programmable supracluster assembly of AgN-
DNAs. Watson-Crick-Franklin base pairing can be used to orga-
nize AgN-DNA into pairs of atomically precise nanoclusters with
interesting nanophotonic behavior 56,57 and higher-order archi-
tectures on DNA nanostructures. 58–60 Stimulus-induced “color-
switching”61 and cytotoxicity 62 also vary with DNA ligand se-
quence. These properties make AgN-DNA promising and uniquely
tunable fluorophores for bioimaging and biochemical sensing.

To realize the full potential of AgN-DNA emitters for such ap-
plications, it is critical to develop a clear understanding of how
nucleobase sequence selects the optical and chemical properties
of AgN-DNAs. Because DNA oligomer templates for AgN -DNAs
are typically 10-40 nucleobases in length, the design of AgN-DNA
template sequence is inherently challenging due to the combina-
torially large space of DNA sequences. Early designs for DNA
template strands for AgN-DNAs often assumed that canonical
secondary DNA structures were conducive for forming fluores-
cent AgN-DNA, such as i-motif,63 G-quadruplex, 64 and hairpin

structures. 65 While many of these designs appeared successful, it
should be noted that more recent studies of silver-mediated
DNA base pairing call into question the stability of Watson-Crick-
Franklin and other canonical nucleic acid structures in the pres-
ence of Ag+. 11,66 Thus, the apparent success of some of these de-
signs may not have been correlated with natural DNA secondary
structure before AgN-DNA synthesis but rather with abundance
of C and/or G nucleobases, which have much higher affinities for
Ag+ than A and T, as discussed below. 66,67 One study of four
AgN-DNA emitters used UV circular dichroism (CD) spectroscopy,
which is sensitive to DNA secondary structure, to show that the
CD signatures of AgN-DNA emitters are much more similar to the
CD signatures of Ag+-DNA mixtures pre-reduction than to the sig-
natures of the bare DNA template strands. 68

Other groups have used single base mutations to understand
how sequence influences AgN-DNA fluorescence properties. 51,69

For instance, one such study identified the role of guanine in the
formation of a specific near-infrared emissive AgN-DNA. 70 While
these early studies showed the strong dependence of AgN-DNA
fluorescence spectrum on DNA sequence, the results of single base
mutation studies of AgN-DNAs are difficult to generalize as design
rules for AgN-DNAs.

Ab initio calculations have also been used to understand the
silver-nucleobase interactions involved in the stabilization of AgN-
DNAs. Density functional theory (DFT) studies have investigated
these interactions in the context of silver-mediated base pairing,
showing that Ag+ has much higher affinities for cytosines and
guanines than for adenines and thymines (Figure 3). 66,67 Be-
cause Ag+-DNA complexes are the precursors for AgN-DNA chem-
ical synthesis, such studies do provide insights into general trends
in DNA sequence-to-color relationships. 71 Computational studies
have also given important insights into the ability of silver cations
to pair together DNA duplexes in noncanonical orientations 72,73

and into the formation and optical properties of AgN -DNAs. 74,75

However, full ab initio calculations of AgN-DNA structures are less
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Fig. 3 Computational modeling of Ag+-nucleobase interactions for ho-
mobase pairs 66 Adapted from Swasey, et al., 66 licensed under C C  B Y .
Copyright 2015.

mature than for other types of ligand-protected nanoclusters. 76

Thanks to breakthrough X-ray crystal structures of the first AgN-
DNAs, 46,77 e.g. Figure 2a, realistic models of AgN-DNAs are now
emerging. 47,78 At present, such models cannot yet be used to pre-
dict how DNA sequence selects AgN-DNA properties.

Due to the complexity of DNA sequence-to-color relation-
ships, a data-driven approach is a promising alternative solu-
tion, whereby the correlations between DNA sequence and AgN -
DNA properties is learned from many experimental observations.
Screening on DNA microarrays was used by the Dickson group to
identify cytosine-rich DNA templates for AgN-DNAs. 79 This first
demonstration of AgN-DNA synthesis in "high-throughput" sug-
gested the power of combinatorial experiments on hundreds of
DNA sequences to discern the sequence-to-color rules that gov-
ern AgN-DNAs. However, this study only reported a few of the
successfully designed sequences on the microarray, prohibiting
informatics-based approaches using this dataset. Copp, et al., de-
veloped the high-throughput experimental approach described in
Section 4, 43 and the Yeh group has developed a platform for rapid
screening of "light-up" AgN -DNA probes called NanoCluster Bea-
cons (NCBs) 80 based on Illumina MiSeq chips. 81

An alternate approach is to mine the existing literature for re-
ports of AgN-DNAs and their stabilizing DNA sequences. New,
et al. compiled a detailed list of 133 different DNA template
sequences and the properties of their associated AgN-DNAs. 82

This significant task provides a view into the diversity and com-
plexity of the AgN-DNA sequence-to-color relationship. However,
different laboratories use differing synthesis methods, such as
[Ag+ ]:[DNA] ratio and solution or buffer conditions, as well as
different spectroscopic methods, such as excitation wavelength(s)
and spectral range. These discrepancies complicate attempts to
use this library for ML or other investigations into general trends
in how DNA sequence selects the properties of AgN-DNAs.

3 Fundamentals of machine learning
In this section, we provide an overview of concepts related to
machine learning (ML), which is a branch of computer science
that develops algorithms that learn from data without being ex-
plicitly programmed. Because ML is useful for identifying trends

inside complex datasets, it has attracted significant and increas-
ing attention from scientists in other fields in recent years, as both
computational and experimental studies across fields have begun
to produce and curate ever-expanding data sets. In the context of
chemistry and materials science, ML can be employed to eluci-date
structure-property relationships and to determine the phys-ical
and chemical effects that govern materials properties. 83–85 We
briefly review key ML terminology and concepts here. For an
excellent detailed review of ML in the context of soft materials,
the reader is directed to a topical review by Ferguson.86

ML for chemical and materials discovery requires several key
"ingredients." First, one must define the question one seeks to an-
swer about a chemical or materials system, e.g., how does DNA se-
quence dictate AgN-DNA fluorescence emission color? Second, a
large experimental or computational “training data” set is needed
for ML algorithms to learn to answer the question posed. Third,
one must choose a ML algorithm or class of algorithms for this
tasks. There are a wide variety of potential ML algorithms to
choose from, and it is best to choose a ML model based on the
goals and the data available for the task. Figure 4 outlines key
steps in the decision-making process for ML algorithm selection,
as explained here. The first thing to consider when choosing a
ML algorithm is whether one wishes to perform supervised or un-
supervised ML. Supervised learning involves training a ML model
with labeled data, i.e. a data set where input data is correlated
to or "labeled by" output data, where the goal is to learn a map-
ping between inputs and their corresponding output labels. (This
could, for example, be a data set that correlates DNA sequence
to AgN -DNA fluorescence emission color.) Commonly used su-
pervised ML algorithms include random forests, support vector
machines (SVMs) and neural networks. In contrast, unsupervised
learning involves training a ML model on unlabeled data, where
there are no predefined output labels, with the goal of discovering
patterns or relationships among input data. Common unsuper-
vised ML algorithms include principle component analysis (PCA)
and k-means clustering. When choosing between supervised and
unsupervised ML, one should consider both the time required to
label input data (Is it impossible or prohibitively difficult to per-
form this labeling?) and the information one seeks to learn from
the ML process.

Another issue to consider when selecting a ML algorithm is the
complexity of the model and the characteristics of the available
training data set. Simple ML models are easier to interpret, less
prone to overfitting, and require less computational resources for
training but may underperform when the underlying relationship
between input and output data is complex. Models such as ran-
dom forests and SVMs are easy to train and have a higher level
of interpretability than more complex learning algorithms, mak-
ing these algorithms better suited for for applications involving
small experimental datasets and/or when the researcher needs to
understand what the ML algorithm has learned to capture trends
within the training data. More complex models, including deep
learning architectures, can capture much more complex trends in
the data and can potentially achieve better accuracies, but these
models may also suffer from overfitting (which can cause artifi-
cially high accuracies), require much greater computational re-
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Fig. 4 Flow chart for selecting a ML algorithm for a learning task.

sources, and are more difficult or even impossible to interpret.
Large datasets like those generated by high-throughput quantum
chemical calculations are often suited for more complex models,
but small experimental datasets collected in a single lab are not
likely to benefit from using deep learning without caution.

A fourth equally important and often challenging step in de-
veloping ML models for chemical and materials research is fea-
ture engineering. Also referred to as featurization or "choice of
descriptors," feature engineering is the process of choosing how
to represent data in the form of feature vectors, which are the
inputs to the ML algorithm. The choice of feature vectors is es-
pecially important because ML models will perform best when
feature vectors represent the properties of the input data that are

ML model may perform on unseen data, but on its own is often
insufficient to assess ML model performance. Accuracy should
be provided in conjunction with other metrics, such as F1-score
(the harmonic mean of precision and recall) and analysis of the
receiver operating characteristic (ROC) curve. Both metrics bet-
ter assess over- or under-fitting. In silico assessment is critical to
ensure a ML model’s fitness for making predictions and should
always be applied when selecting ML models and tuning model
parameters. Of course, the best method to assess a ML model is by
experiment, which is far more costly and time-consuming. Thus,
in silico validation should always precede experimental testing.

A key issue for ML newcomers to note is the problem of learn-ing
from imbalanced data. Data imbalance refers to the uneven

most correlated to the trend(s) one seeks to learn. It is ideal distribution of input training data instances across the set of pos-
to choose feature vectors that provide the relevant physical and
chemical information that are necessary for the ML algorithm to
perform the learning task posed. However, one often does not
know these physical and chemical principles in their entirety or,
in some cases, at all, which is often the motivating factor for the
use of ML in the first place. Thus, feature engineering can be both a
highly challenging and scientifically enlightening step in the ML

sible outputs one seeks to learn. Consider a simple example of a
data set of 500 possible catalysts, 50 of which are effective at cat-
alyzing a desired reaction and 450 of which are poor catalysts for
the desired reaction. This data is "imbalanced" in its distribution
of effective vs. ineffective catalysts. Without correction, a simple
ML classifier trained to discriminate between effective and inef-
fective catalysts using this data set could achieve 90% accuracy

process. It is also important to ensure that the dimensions of by assigning all inputs as ineffective catalysts, since 450/500 =  0.9
the feature vectors (“feature space”) are reduced to decrease the
chance of overfitting. 87 Feature selection approaches can be used
to reduce feature space and to gain new fundamental insights into
the materials system. 88

Once a ML model and features have been selected, it is criti-
cal to assess model performance by in silico testing using training
data before employing the model for prediction and design tasks.
An intuitive metric for model performance is accuracy, which is
the fraction of predictions made correctly by the model (i.e., the
number of correctly made predictions divided by the total num-
ber of predictions). Accuracy and other performance metrics are
commonly assessed by k-fold cross-validation, whereby (1) train-
ing data is randomly divided into k folds, (2) the model is trained
using data in k − 1 folds, (3) the unseen fold of data is used to cal-
culate accuracy, and (4) the process is iterated over all k folds to
determine an average k-fold cross-validation metric. k-fold cross-
validation accuracy provides an important estimate of how the

of the training input instances are ineffective. However, the use-
fulness of a model trained on this imbalanced data set, without
any additional steps, would clearly be very low if one seeks to
search for effective catalysts. Learning from imbalanced data is
a well-studied problem with multiple strategies developed to ad-
dress this issue, such as data subsampling or supersampling to
balance data as well as algorithmic changes such as uneven mis-
classification costs during the training process.89,90 Because data
imbalance is inherent to most chemical and materials data sets,
it is critical that researchers ensure best practices are used for
effective ML in chemical design.

Most significant progress in the emerging field of materials in-
formatics has been in the areas of crystalline materials and small
molecules. 91–93 This is largely because of the dozens of mate-
rials databases that have been curated for these systems, such as
the Materials Project, 94 Open Quantum Materials Database, 95 and
Organic Materials Database. 96 These databases compile the
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results of hundreds of thousands of quantum chemical calcula-
tions, as well as crystallographic studies. Such large databases
have allowed researchers to develop and implement ML and other
data informatics approaches to expedite the study and design of
new molecules and solid-state materials. Progress in developing
ML approaches for soft and biological materials, such as poly-
mers 97–99 and peptides, 86 has been slower by comparison. Soft
and biological materials tend to be more complex and less crys-
talline than solid-state materials systems; thus, simplifications by
applying periodic boundary conditions may not be appropriate.
This complexity makes the use of computational techniques like
DFT much more difficult and time-consuming to perform. More-
over, molecular dynamics (MD) approaches often require course-
graining to feasibly model large systems, which has also been a
major challege for scalability of methods to multiple systems. To-
gether, this has limited the use of computational simulations of
soft and biological materials for generating large databases and
thus slowed the development of ML techniques for their discov-
ery.

There is a key advantage of advancing ML-based approaches
to soft and biological materials in the context of sequence-based
biomolecules - nucleic acids and peptides - as model systems.
These molecules are parameterized by a sequence of nucleic acids
or amino acids, providing an approach to feature engineering for
ML models that are trained to map biomolecule sequence onto
the physical and chemical properties of materials systems derived
from these molecules. By establishing these sequence-to-property
connections through ML, we can not only better understand the
complex sequence-to-property relationships but can also design
new biomolecules that yield desired materials properties.

to sufficiently sample DNA sequence space in order to capture a
representative set of examples of how nucleobase sequence se-
lects emission properties.

Since 2014, Copp and coauthors have curated a data library
of nearly 4,000 10-base DNA sequences and the peak emission
wavelength(s) and brightnesses (i.e. intensities) of the AgN-DNAs
that these DNA oligomers stabilize (illustrated schematically in
Figure 5). AgN-DNA synthesis is performed in 384 well plates us-
ing robotic liquid handing, with settings including pipetting speed
and the number of pipet mixing cycles that are optimized for AgN-
DNA brightness and reproducibility. 43 Well plates are centrifuged
at slow speed immediately after synthesis to remove any small
bubbles that would impact subsequent fluorimetry. NaBH4 solu-
tions for chemical reduction are prepared freshly before each ex-
periment. All experiments have been performed at constant syn-
thesis stoichiometry: 20 µM DNA, 100 µM AgNO3, 50 µM NaBH4
in 10 mM NH4OAc aqueous solution, pH 7. This stoichiometry
was chosen to maximize the yield of brightly fluorescent prod-
ucts across the visible spectral range. 43 NH4OAc solutions have
routinely been used for AgN -DNA synthesis because these solu-
tions are directly compatible with ESI-MS analysis of nanocluster
products. 20,102 Finally, universal UV excitation of all AgN-DNA
products at the 260 nm DNA absorbance band, as demonstrated
by O’Neill et al., 103 is used to screen for all emissive AgN-DNA
species with a single excitation wavelength in a commercial plate
reader equipped with a monochromator, with emission spectra
collected from 400 to 850 nm. Swasey, Nicholson, and coauthors
recently developed custom instrumentation that extends high-
throughput screening of emission in well plate format into the
NIR using low-cost InGaAs photodetectors. 104

4  High-throughput experimental synthesis and
characterization

To enable direct comparison of both AgN-DNA peak emis-
sion wavelength(s) and emission intensity, or "brightness,"
among all DNA sequences that were screened over the

ML-based approaches to AgN-DNA design require high-quality ex-
perimental data sets that connect DNA sequence to AgN-DNA
properties.     Because computational models for these complex
systems are still in development,75,100,101 experimental training
data is required for ML. In order to determine how DNA se-
quence selects AgN-DNA emission brightness and color, this data
set should ideally hold the following factors constant:

• Synthesis     stoichiometry, including     [Ag+ ]:[DNA]     and
[Ag+ ]:[NaBH4 ] ratios

• Solution conditions: ionic strength and/or buffer system,
pH, mixing, etc.

• Time between chemical reduction and AgN -DNA spectral
characterization

• Spectroscopic details: excitation wavelength(s), emission
scan window, gain, etc.

• Length of DNA oligomer template

last decade, a well-studied AgN-DNA template sequence, 5’-
TTCCCACCCACCCCGGCCCGTT-3’, has been included as a control
sample in about 10 wells per experiment. This control AgN-DNA is
well-known to produce bright red emission with 93% quantum
yield 42 and to evolve over time into a green emissive product.105

The relative abundance of the green and red products produced by
this control strand is used to screen for any discrepancies in the
efficiency of the chemical reduction process in the well plates,
and the emission intensity of this control AgN-DNA is used to nor-
malize emission brightness across all experiments since 2014. 50

AgN-DNA emission spectra are fitted to a series of Gaussian
functions using an automated fitting code, thereby extracting the
peak wavelength and brightness of each emissive product.43 Peak
brightness is correlated with the area of each Gaussian peak fit.
Sequences are reported with up to three associated spectral peaks
and peak brightnesses. (AgN -DNA emitters have emission peaks
with 50 to 100 nm full-width-at-half-maximum. 53,106 For this
reason, peak fitting uncertainty becomes significant in the rare
case where more than three peaks are present in the 400 to 850
nm window for which spectra are collected, prohibiting accurate

Data sets collected with these factors held constant enable direct assignment of peak wavelengths and areas.) The presence of
comparisons of AgN -DNA peak emission and emission brightness
among a large set of DNA sequences. Additionally, it is favorable

multiple different emission spectral peaks for a single DNA se-
quence indicates that the DNA strand can stabilize multiple dif-
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ferent species of silver nanoclusters, with different cluster sizes
and/or geometries. 50,71,107

Fig. 5 Schematic of high-throughput synthesis and fluorimetry approach.

Other groups have used other experimental approaches to
screen hundreds of AgN-DNAs in a single experiment. As stated
earlier, the Dickson group used DNA microarrays to screen for
DNA strands that hosted brightly fluorescent AgN-DNA prod-
ucts.79 Recently, Yeh and coauthors have used next-generation-
sequencing chips to screen nearly 40,000 activator strands for
NanoCluster Beacon (NCB) sensing schemes based on AgN-
DNAs. 108 NCBs are composed of a nonfluorescent or "dark" AgN-
DNA that becomes brightly emissive when bound to a target DNA
strand, typically rich in guanines. 109 These NCBs have utility
in biomedical sensing, such as single nucleotide polymorphism
(SNP) detection, 80 nucleobase methylation detection, 110 and en-
zymatic activity detection. 111,112 Systematic studies have shown
that the activator strand sequence affects the emission spectrum
of the activated NCB, 61 but given the large combinatorial space
of possible activator sequences, this problem is challenging to
solve by intuition-based design. To rapidly screen 104 activator
sequences in a single experiment, Yeh and coauthors adapted Il-
lumina MiSeq chips for NCB activation characterization. Activa-
tor oligomers were immobilized on the MiSeq chip, and the "dark"
AgN-DNA was then flowed into the chip. DNA activator sequences
that produced significant fluorescence enhancement were identi-
fied and used for ML-guided design of activator sequences for
NCBs, as discussed later.108

5  ML-guided design of DNA sequences for bright
AgN-DNA emission

The first demonstration of ML for AgN-DNA design focused on
the selection of DNA template sequences for time-stable and
brightly fluorescent AgN-DNAs, without selectivity for peak emis-
sion wavelength, λp. This simpler problem is an important start-
ing point for AgN -DNA design because studies have shown that

≤  25% of DNA sequences yield brightly fluorescent AgN-DNA
products. Moreover, while it is well-known that cytosines and
guanines are critical for formation of bright AgN-DNAs, 53,79 the
incorporation of multiple nucleobases appears important for AgN-
DNA time stability. 102 Thus, it is important to determine which
DNA sequences yield AgN-DNAs with bright fluorescence that per-
sists for multiple days.

To address this design challenge, Copp, et al. used a training
data set of 684 random 10-base DNA sequences of all four nu-
cleobases (A, C, G, T )  and the UV-excited fluorescence emission
spectra of the AgN-DNA products stabilized by these DNA strands
(Figure 6a), which were collected in a previous study.43 Training
sequences were completely random, other than the criterion that
at least three nucleobases in each sequence must be C and/or G.
(684 sequences represents 0.065% of all possible 10-base DNA
sequences.) To quantify fluorescence brightness, the integrated
fluorescence emission spectrum from 450-850 nm, Iint , was used.
Iint represents emission from all UV-excited products for a given
DNA sequence and combines chemical yield, quantum yield, and
extinction coefficient among all emitters in a given solution. Se-
quences corresponding to the top 30% of Iint values in the data
set were defined as "bright." Sequences corresponding to the bot-
tom 30% of Iint values were defined as "dark." Then, supervised
ML was performed using a SVM classifier trained to distinguish
between bright and dark sequences (Figure 6a), omitting the
middle 40% of sequences. 41

Feature engineering was critical to the success of this ML
model. It was found that simple parameterization of DNA se-
quences without feature selection resulted in low 50-60% SVM
accuracies as quantified by cross-validation (cross-validation is a
process involving training on the majority of data in the train-
ing library while reserving a smaller portion of the data library
for testing how well the trained SVM assigns the correct class to
input sequences). To more effectively select features that are pre-
dictive of AgN-DNA brightness, the bioinformatics tool MERCI 113

was used to extract short DNA base motifs (contiguous sets of nu-
cleobases, with or without a single "wildcard" nucleobase) that
were correlated to either bright or dark Iint values (Figure 6a).
By constructing feature vectors that represent the presence or ab-
sence of these motifs, a SVM accuracy of 82% was achieved. This
accuracy was slightly boosted to 86% by also including features
that quantified the positions of bright-correlated motifs within the
10-base sequence . Based on the greater importance of position-
invariant base motifs as compared to position-specific sequence
information, it was suggested that select base patterns are more
important for brightly emissive AgN-DNA formation, rather that
specific positions of base motifs in a DNA strand.

New DNA sequences for brightly emissive AgN -DNAs were
designed by sampling MERCI-identified bright DNA base mo-
tifs from an Iint -weighted distribution to construct candidate se-
quences. The trained SVM was then used to assign a "bright-
ness" probability to each of the constructed sequences, and the
374 sequences predicted with most certainty to be "bright" were
selected for experimental testing. Experimental synthesis showed
that 78% of the designed sequences produced AgN-DNAs with Iint

values above the brightness threshold established in the training
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data (Figure 6b).
This study was the first successful demonstration of ML for

AgN-DNA design. 41 Notably, the MERCI-identified DNA base mo-
tifs confirmed existing understanding that C- and G-rich DNA
base sequences are highly likely to stabilize brightly emissive AgN-

DNAs, while T -rich sequences strongly disfavor emissive AgN-DNA
formation. The method did have limitations, however. Notably,
the SVM was only predictive of overall brightness and not of peak
emission wavelength, λp. Also, the ML-designed AgN-DNA tem-
plate sequences favored AgN-DNAs with redder λp wavelengths
and disfavored shorter-wavelength green AgN-DNAs (Figure 6c).
This motivates the development of ML models that can discrimi-
nate among AgN-DNA emission colors.

6  Multi-class ML models for prediction of AgN-
DNA color

It is ideal to develop ML models to design AgN-DNAs with λp in
specific spectral windows. Because AgN-DNA atomic size and
structure correlates to fluorescence spectral properties, 106 this
design problem involves selecting a DNA strand of specific nu-
cleobase sequence that sculpts a silver nanocluster of the appro-
priate size and shape to yield a desired λp value. The relation-
ship between DNA sequence and nanocluster size/shape has been
poorly understood. Thus, data mining and ML techniques provide a
promising way to map DNA sequence onto AgN-DNA λp.

Several key challenges have been overcome to train accurate
ML models that predict AgN-DNA color given an input sequence.
First, there is the challenge of feature engineering. Because train-
ing data sets correlating AgN-DNA color to sequence remain lim-
ited compared to the space of all possible DNA sequences, it has
not generally been feasible to use more complex deep learning ap-
proaches that perform featurization (recent work is now making
advances in this area 114). Instead, a combination of data min-
ing and known chemical information has been used to success-
fully engineer features, together with feature selection to avoid
overfitting and achieve reasonably high cross-validation accura-
cies. Second, there is the challenge of data imbalance. AgN -DNA
emission color is inherently unevenly distributed as a function of
wavelength because of the enhanced stabilities of certain "magic"

atomic sizes of these nanoclusters as compared to others. 43,44

Moreover, training data for NIR-emissive AgN-DNAs is far more
limited than for the visible spectral regions. 115 This imbalanced
training data challenges simple regression approaches to map se-
quence onto λp. A series of recent studies have overcome these
challenges to achieve predictive design of DNA templates for AgN-
DNAs across the spectral range of these emitters.

Copp, et al., first presented a ML approach to design DNA se-
quences that select λp by using an ensemble of SVMs. 71 This
study harnessed a training data set of 1,432 10-base DNA se-
quences from prior studies, including both random sequences 43

and ML-designed sequences. 41The distribution of λp values for
this training dataset, determined by spectral fitting described in
Section 4, is approximately bimodal, a result of the "magic" col-
ors of AgN-DNAs (Figure 7a). 43 Specifically, past ESI-MS studies
showed that green-emissive AgN-DNAs have N0 =  4 valence elec-
trons, while red-emissive AgN-DNAs have N0 =  6 valence elec-
trons. Motivated by the distinct chemical differences between
green and red AgN-DNAs, which likely correlate to distinct base
sequence differences in their DNA templates, a supervised ML
classification problem was defined based on the following color
classes:

• Green:     λp <  580 nm, Iint above the previously defined
"bright" threshold 41

• Red: 600 nm <  λp <  660 nm, Iint above the "bright" threshold

• Very Red λp >  660 nm, Iint above the "bright" threshold

• Dark: Iint below the previously defined "dark" threshold

Red and Very Red classes were defined based on the hypothesis
that two distinct distributions that appear above 600 nm in the
AgN-DNA histogram correlate to two distinct classes of AgN -DNA
structures, leading to different DNA sequence signatures for these
λp windows (Figure 7a).

Training sequences were sorted into the four defined color
classes. Notably, sequences with multiple bright peaks in more
than one color class were excluded from the training data, as
these sequences may contain patterns correlated with multiple

Fig. 6 ML-guided design of brightly fluorescent AgN -DNAs. 41 a) Schematic of the experimental, data processing, feature engineering, and ML steps to
design DNA templates for brightly fluorescent AgN -DNAs. b,c) Normalized probability distribution functions (pdfs) of b) integrated intensities, Iint , c) and
peak emission wavelengths in training data (thin blue bars) and for ML-designed sequences. ML-guided design increased Iint on average and tended to
favor formation of red-emissive AgN -DNAs over green-emissive AgN -DNAs. Adapted from Copp, et al., 41 with permission from John Wiley and Sons.
Copyright 2014.
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Fig. 7 ML-guided design of AgN -DNAs with fluorescence emission in specific spectral windows. 71 a) Schematic of ML workflow. b) Cross-validation
scores of one-versus-one SVMs for each color class pair. c,d) Adapted from Copp, et al., 71 with permission from the American Chemical Society.
Copyright 2018.

color classes and therefore complicate ML. Sequences with Iint

values between the "bright" and "dark" thresholds were also ex-
cluded to better learn to design brightly fluorescent AgN-DNAs.

Unlike the simpler problem of discriminating between "bright"
and "dark" sequences only, learning to discriminate among se-
quences in the four color classes is a multi-class ML problem.
Thus, a one-versus-one approach was used, i.e. a set of six SVMs
was trained to discriminate between each pair of color classes,
with one SVM per class pair. Because of significant training data
imbalance - far more Dark and Red sequences than Green se-
quences - random subsampling of the more abundant class was
used to balance the training data for each SVM (see Section 3 for
training on imbalanced data).

Feature engineering was performed by first using MERCI 113 to
identify >  1,600 DNA base motifs correlated with a specific AgN-
DNA color, and then using "greedy" feature selection 116 to reduce
the large set of MERCI-identified motifs to a more succinct set of
about 200 motifs. This feature selection process is essential for
reducing ML model overfitting and was found in this case to be
essential to achieve sufficiently high cross-validation scores for
the SVM ensemble (Figure 7b).

The trained SVM ensemble was used to design 10-base DNA
sequences for Green and Very Red, the two least abundant color
classes. Sequences were constructed by sampling color-correlated
motifs, as done previously, 41 and then using all three SVMs as-
sociated with the target color class to assign the probability of
falling within the desired color class. The minimum probabil-ity
from the three SVMs was then used as a conservative met-

Red sequences were experimentally tested, showing that the SVM
ensemble increased selection of bright Very Red AgN-DNAs by
330% and of bright Green AgN-DNAs by 70% (Figure 7c,d.) The
lower relative success for Green as compared to Very Red was sus-
pected to be related to (1) lower cross-validation scores of Green-
associated SVMs, (2) the apparent similarity between Green and
Dark sequences, and (3) a higher degree of variability of Green
AgN-DNA emission spectra between experiments, which was in-
vestigated in the study.71

Fig. 8 Length-invariant design of DNA templates for AgN -DNAs. DNA
templates of multiple lengths designed for AgN -DNAs with 600 nm <
λp <  660 nm (orange brackets above graphs). Training data shown in
black. Adapted from Copp, et al., 107 with permission from the American
Chemical Society. Copyright 2020.

ric to rank sequences. The top 180 designed Green and Very The one-versus-one ML approach was later expanded to predict
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Fig. 9 ML-guided design of activator sequences for NCBs. 108 a) Schematic of ML workflow to train logistic regression classifiers to discriminate
between "bright" NCBs (top 30% of emission intensities) and "dark" NCBs (bottom 30% of emission intensities). b) Success metrics for 40 activator
sequences designed using the trained ML classifiers. Hatched bars represent unsuccessful designs. c) Plate reader images of lit-up NCBs using
successfully designed activator sequences. Adapted from Kuo, et al., 108 with permission from John Wiley and Sons. Copyright 2022.

AgN-DNA template sequences beyond 10-base oligomers without
any additional training data for sequences of other lengths. 107

Using the growing library of 2,161 10-base DNA sequences with
their associated AgN -DNA λp values and peak brightnesses, a new
set of one-versus-one SVMs was trained, using the previous fea-
ture engineering and feature selection methods. 71 Because these
feature vectors quantify the instances of select DNA base motifs
rather than explicitly encoding DNA sequence, the feature vectors
are general for sequences of any length, and the ML model could
in principle be used to predict color for sequences of any length.
To test the hypothesis that DNA base motifs selective for color are
invariant with DNA sequence length, the method for constructing
new DNA sequences by sampling color-correlated motifs 71 was
generalized for DNA sequences of any length. Then, 8-base, 10-
base, 12-base, and 16-base Red DNA template sequences were
designed. (Red was chosen to test the hypothesis because the
training data already included Green and Very Red designed se-
quences from past work, 71 which might make subsequent design
of Green and Very Red easier than Red.) For all lengths, ML-
guided design increased the prevalence of Red sequences by 100
- 150 % (Figure 8), supporting that the color-correlated base mo-
tifs in 10-base sequences also select AgN-DNA size/color at other
DNA template lengths, as well.

Kuo, et al., recently adapted the approach of Copp, et al., using
simple ML classifiers together with MERCI-based motif identifi-
cation to design the activator sequences for NanoCluster Beacon
AgN-DNAs 80 that "light up" either in the "yellow-orange" or red
spectral windows, as defined based on filter cubes designed for
the conventional fluorophores TRITC (Ex/Em: 535/50, 605/70
nm) and Cy5 (Ex/Em: 620/60, 700/75 nm) (Figure 9). 108 Us-
ing a next-generation sequencing chip platform to screen nearly
40,000 activator strands on a fluorescence microscope equipped
with TRITC and Cy5 filter cubes, 81 they identified thousands of
new activator sequences that yield bright NanoCluster Beacon flu-

than randomly generated sequences, respectively. Feature analy-
sis tools as discussed in Section 7 below could be used to inter-
pret the sequence features learned by ML classifiers that select
for suitable NanoCluster Beacon activator sequences, providing
mechanistic insights into the sequence patterns that cause "light-
up" effects in these AgN-DNA sensors.

In 2018, Swasey, et al., dramatically expanded the number
of known AgN-DNA emitters in the NIR window with their dis-
covery of 161 new NIR-emissive AgN-DNAs. 115 This study has
prompted significant interest in the design of NIR-emissive AgN-
DNAs, which have exciting potential for applications in bioimag-
ing. 29,30,117 Mastracco, et al., achieved this goal by exploiting the
limited data set of newly reported NIR-emissive AgN-DNAs to-
gether with feature engineering inspired by the first X-ray crystal
structures of AgN-DNAs. 46,77 Namely, it was noted that pairs of
both adjacent and nonadjacent nucleobases appear important for
describing how a DNA template interacts with its encapsulated
nanocluster in the crystal structure of a particular Ag16-DNA re-
ported by Cerretani, et al. 46 This crystal structure shows that ad-
jacent C’s and G’s protect the long sides of the rod-shaped Ag16,
while two A’s separated by three other nucleobases cap the nan-
ocluster’s ends (Figure 10). Such pairs of nucleobases can be
referred to as nucleobase “staple” features X_mY , representing
two distinct nucleobase ligands X and Y separated by m arbi-
trary nucleobases, m =  0, 1, ..., 8, which can coordinate the AgN at
zero, one, or two sites. To capture such nucleobase patterns,
length-144 feature vectors were constructed to enumerate the oc-
currences of all possible X_mY motifs within a 10-base sequence.
Then, a series of L1-norm SVMs were trained. L1-norm regular-
ization, which uses the sum of the magnitude of vector compo-
nents as the vector normalization, was chosen because L1-norm
SVMs encourage sparse solutions and naturally perform feature
selection. 118

In addition to chemically-informed feature engineering, the
orescence. This dataset was then used to train logistic regres- same chemically informed color classes were used as previously
sion classifiers to distinguish between DNA activator sequences
that light-up brightly fluorescent "yellow-orange" and red Nan-
oCluster Beacons and DNA activator sequences associated with
low fluorescence ("dark"). The ML model was used to design 20
new "yellow-orange" and red activator sequences, which were 8.5
and 2.9 times more likely to be bright yellow–orange and red

defined based on the "magic" N0 values of AgN-DNAs of distinct
λp color classes. 71 The inclusion of AgN-DNA training data up to
nearly λp =  1,000 nm motivated the definition of an additional
color class at high wavelengths. Very little information about N0
values is available for AgN-DNAs in the spectral window near the
far red-NIR border. Instead, using a combination of unsuper-
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vised k-means clustering and supervised ML, the previous Very
Red class (λp >  660 nm, Iint above the "bright" threshold) was di-
vided into two new color classes: Far Red (660 nm <  λp <  800
nm) and NIR (λp >  800 nm) (Figure 10a). With this data dis-
tribution, there is even more significant training data imbalance
between the largest classes, Dark and Far Red, and the smallest
class, NIR, with only 55 training instances (Figure 10b). This
data imbalance was addressed through the ML model architec-
ture design. Specifically, a one-versus-one approach was used to-
gether with a consensus approach: for each pair of color classes,
10 different SVMs were trained on 10 different training data sets
consisting of all data instances of the smaller class together with a
random data subsampling of the larger class (Figure 11a). In this
manner, variances in the subsampled data set are averaged over,
providing a more accurate representation of the prediction of
color class. 10-fold cross-validation shows that the ensemble
SVM model performs best on average for pairs of color classes
with the lowest data imbalance, as would be expected (Figure
11b).

7  Interpretable ML: feature analysis uncovers the
sequence-to-color connection.

A fundamental tenet of ML is that certain information about the
training data, contained in input features to the ML model, con-
tains the information needed to learn the specific trend or classi-
fication task that one seeks to determine. This is why ML works
best when input features contain only the information needed for a
given learning tasks. The field of interpretable ML is focused on
determining exactly what a ML model is learning and how impor-
tant that information is to the predictions made by the model. 119

Interpretable ML opens up exciting possibilities in the chemical
sciences to not only design and discover new molecules and ma-
terials but also to learn new chemistry about the structures and
properties of these systems.

Interpretable ML is a promising approach to begin to un-
derstand the complex "sequence-structure-property" relationships
that connect DNA sequence to the resulting size and color of AgN-
DNAs. For each of the models discussed in Sections 5 and 6, fea-
ture analysis has yielded new insights into how DNA sequence

a) b)

5’-CACCTAGCGA-3’

selects for AgN-DNA fluorescence brightness and emission color.
In this section, we summarize these insights.

The first ML-guided study of AgN-DNAs (Section 5) focused on
simple discrimination between 10-base DNA sequences that sta-

C_0C c)

A_3A

T_1G

bilize brightly emissive AgN-DNAs versus "dark" sequences that
do not stabilize detectably emissive AgN-DNAs.41 This first large-
scale studies of 684 random DNA sequences and their associated
AgN-DNA emission spectra enabled examination of how DNA base
motifs correlated to AgN -DNA brightness for the first time. Figure
12a shows the ratio of average 2-base motif counts, RB/D, per
strand in bright to dark templates. C- and G- motifs are both
clearly important for stabilizing brightly emissive AgN-DNAs, an
important insight at the time given that cytsoine was primarily

Fig. 10 Chemistry-informed ML for design of AgN -DNAs. a) Illustra-
tion of staple features as inspired by crystal structure. 46 b) Distribution
of bright emission peaks identified in high-throughput experiments. c)
Sizes of the five color classes are significantly imbalanced. Adapted with
permission from Mastracco, et al., 50 licensed under C C  B Y .  Copyright
2022.

The ensemble of 100 SVMs was trained on all training data and
then used to screen all 410 10-base DNA sequences for those with
the highest likelihood of falling in the Green, Far Red, and NIR
color classes. Experimental testing of these predictions showed
high success rates for all three design cases, including significant
improvement for Green prediction compared to past work71,107

(Figure 11c). The success rate of NIR AgN-DNA design (defined
as λp >  800 nm in this study) increased more than 12-fold com-
pared to the training data(Figure 11e); only about 2% of se-
quences in the training data were in the NIR class, while 34 of the
124 sequences designed for NIR emission were experimentally
found to yield NIR emission. Due to this success, this study nearly
doubled the number of AgN -DNAs with bright near-infrared emis-
sion above 800 nm. 50

associated with stabilizing AgN -DNAs.It is also clear that T  is gen-
erally selective for "dark" while A appears to play a more nuanced
role. This study also listed the top 10 most frequently occurring
discriminative motifs for both bright and dark sequences, as iden-
tified by MERCI. 113 These motifs were 3-5 bases long and corrob-
orated the observations from Figure 12a that C and G both play a
role in selection of brightly emissive AgN-DNAs,41 while T  selects
for dark DNA sequences.

A similar approach was later applied to determine how DNA
sequence selects for AgN -DNA emission color classes, which were
defined based on AgN-DNA magic number properties. 71 In this
model, feature selection was used to reduce the number of
MERCI-identified DNA sequence motifs to a succinct set of about
200. Then, the base composition of these selected motifs was
investigated, showing that certain short 2-base and 3-base mo-
tifs were highly selective for AgN -DNA color class. (Figure 12b)
shows that CC is selective against Dark but not selective for AgN -
DNA color. G-rich motifs, and in particular those containing "GG",
are selective of larger, longer wavelength AgN-DNAs, while A-rich
motifs select for smaller, Green-emissive AgN-DNAs. It is also no-
table that the sequence signatures for Green and Dark are similar,
which may explain the lower success rate for designing Green
AgN-DNAs as compared to Red and Far Red AgN-DNAs. 71
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Fig. 11 a) One-versus-one SVM ensemble used to design AgN -DNAs with targeted fluorescence in the Green, Far Red, and NIR classes. b) Heatmap of
average 10-fold cross-validation accuracies of the model in (a). c-e) Relative change of each class size for DNA sequences designed for c) Green, d) Far
Red, and e) NIR, showing significant increases in the target color classes in all cases. Adapted from Mastracco, et al., 50 licensed under C C  B Y .
Copyright 2022.

Our recent work used the feature analysis tool BorutaShap to
enable model interpretability. 50 BorutaShap combines feature se-
lection with the Boruta algorithm 120 with Shapley additive expla-
nations (SHAP), which uses methods from coalitional game the-
ory to interpret model predictions. 121 Most feature analysis meth-
ods use a leave-one-out approach whereby a ML model’s cross-
validation accuracy is determined when each feature in the input
feature vector is left out one-by-one. The feature whose removal
results in the largest drop in cross-validation accuracy is scored
as most "important" for the ML model’s performance, and fea-
tures are typically ranked by their importance scores. While this
method is often useful to interpreting the weights placed on each
feature by a ML model, it does not determine how "relevant" each
feature is for the learning task; to quantify "relevance," it is im-
portant to compare the importance scores of features to randomly
generated "shadow features" that, by nature of their randomness,
are not relevant to the ML learning task. 122 We used BorutaShap
to score the relevance of all nucleobase staple motifs and then cal-
culate a "net importance score" for each staple feature’s selectivity
per color class. Figure 12c shows the top 15-scored nucleobase
staple motifs. This analysis further confirms the critical impor-
tance of consecutive G’s for formation of larger, long-wavelength
AgN-DNAs. The complexity of these sequence-to-color relation-
ships also underscores the importance of ML-based design strate-
gies for AgN -DNAs. As X-ray crystallographic studies of AgN -DNAs
expand, these studies may confirm whether the sequence motifs

in Figure 12 are, indeed, relevant for selecting AgN-DNA size and
emission color.

8 Conclusions

This Feature Article has summarized recent progress in ML-
enabled design of AgN -DNAs. Progress has been enabled by sev-
eral key advances: (1) training data libraries developed with
well-controlled experimental synthesis and fluorescence emission
spectroscopy of 103 AgN-DNAs with uniform synthesis parame-
ters and universal UV excitation of emission, (2) simple ML classi-
fiers that are well-suited for learning on limited training data sets,
(3) chemically motivated ML classification based on known AgN-
DNA size-to-color correlations from ESI-MS studies, (4) statisti-
cal sampling to address training data imbalance, (5) chemistry-
informed feature engineering together with feature selection to
reduce overfitting and gain new chemical insights into the mech-
anisms behind the sequence-to-property relationships for AgN-
DNAs. These strategies have dramatically advanced the state-of-
the-art in the design of this class of nanomaterials, with exciting
potential to design new AgN-DNA-based emitters for bioimaging
and biosensing.

Very recent advances illustrate the potential of ML-designed
AgN-DNAs for bioimaging applications.     The fundamental un-
derstanding of AgN-DNAs has advanced significantly since 2019
thanks to one Ag16-DNA that was first identified in ML studies. 71

Cerretani, et al. solved the crystal structure of this Ag16-DNA,
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Fig. 12 Feature analysis provides fundamental insights about sequence-to-property relationships for AgN -DNAs. a) Ratio of average 2-base motif
counts, R , per strand in bright to dark templates. Adapted from Copp, et al., 41 with permission from John Wiley and Sons. Copyright 2014. b)
Prevalence of 2-base patterns in motifs identifed as color-selective by feature selection. 71 Adapted from Copp, et al., 71 with permission from the
American Chemical Society. Copyright 2018. c) Net importance score (NIS) for staple motifs as scored by Boruta Adapted from Mastracco, et al., 50

with permission from the American Chemical Society. Copyright 2022.

and Gonzàlez-Rosell, et al., later determined its electron count by
ESI-MS. 47 This combination of structural information and molec-
ular formula has now enabled key theoretical breakthroughs in
electronic structure modeling of AgN -DNAs. 47,78 Enabled by the
degree of structural understanding of this Ag16-DNA, Vosch and
coauthors recently developed and demonstrated functionalized
NIR-emissive biological labels for targeted cell labeling and in vivo
imaging, providing a framework for developing generalizable bi-
olabels based on these emitters. 123,124 New chemical synthesis
strategies to significantly increase the yields of NIR-emissive AgN -
DNAs that are discovered by ML-guided experiments may rapidly
expand this class of potential biolabels. 125 We anticipate that ML-
designed AgN-DNAs will continue to advance both theory and ap-
plications. Promising areas for progress include first-principles
simulations that exploit nucleobase features identified as impor-
tant by feature analysis (Figure 12) and an expanded palette of
NIR-emitting AgN-DNAs.

Moreover, the development of ML-based models for AgN-DNA
design provides a roadmap for the design of other DNA- and
peptide-based nanomaterials that move beyond well-understood
natural sequence-dependent interactions, such as Watson-Crick-
Franklin base pairing. Data mining and ML approaches devel-
oped in the field of computer science have significant potential

for the advancement of these and other chemical and materials
systems. Researchers seeking to develop these approaches for a
specific system may find success in adapting the approaches and
models presented here. We hope that the ML tutorial and case
studies in this Feature Article will inspire new innovations in the
field of ML and data mining for chemical discovery.
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