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ABSTRACT

Multi-modalcontrastivelearningtechniquesintheaudio-textdo-
mainhavequicklybecomeahighlyactiveareaofresearch. Most
worksareevaluatedwithstandardaudioretrievalandclassiication
benchmarksassumingthat(i)thesemodelsarecapableofleveraging
therichinformationcontainedinnaturallanguage,and(ii)current
benchmarksareabletocapturethenuancesofsuchinformation.In
thiswork,weshowthatstate-of-the-artaudio-textmodelsdonotyet
reallyunderstandnaturallanguage,especiallycontextualconcepts
suchassequentialorconcurrentorderingofsoundevents.Ourre-
sultssuggestthatexistingbenchmarksarenotsuficienttoassess
thesemodels’capabilitiestomatchcomplexcontextsfromtheau-
dioandtextmodalities. WeproposeaTransformer-basedarchitec-
tureandshowthat,unlikepriorwork,itiscapableofmodelingthe
sequentialrelationshipbetweensoundeventsinthetextandaudio,
givenappropriatebenchmarkdata. Weadvocateforthecollection
orgenerationofadditional,diverse,datatoallowfutureresearchto
fullyleveragenaturallanguageforaudio-textmodeling.

IndexTerms— Multi-modallearning,Language-basedaudio
retrieval,Audiosearch,Audiounderstanding,Contrastivelearning

1.INTRODUCTION

Multi-modalcontrastivelearningsuchasContrastiveLanguage-
ImagePre-Training(CLIP)[1]hasshowngreatsuccessinvarious
applications.Inparticular,itunlockssolutionstocross-modaltasks
suchaszero-shotimagerecognition[2]orvisualquestionanswer-
ing[3,4]invision-language.Audio-visualcontrastivemodelshave
beenusedforlocalizingvisualsound[5,6],cross-modalretrieval
[7],andzero-shotclassiication[8,9]. Recently,audio-textmod-
elshavereceivedgrowingattention,asevidencedbytheDCASE
challengeonLanguage-BasedAudioRetrieval[10],andhavebeen
appliedtomusicaudioforgenreclassiicationandtagging[11],
aswellasenvironmentalsoundsforlanguage-basedaudioretrieval
[12,13,14,15],andzero-shotclassiicationtasks[12,16].
Currentstate-of-the-art(SOTA)audio-textmodelsutilizedual

encoderarchitecturesadoptingpopularpre-trainedlanguage(e.g.,
BERT[17])andaudio(e.g.,PANNs[18])modelstoirstencode
eachmodalityseparately.Bothencodersareconcatenatedwithag-
gregation/projection(Agg/Proj)layers,andfurthertrainedwithcon-
trastivepretexttasksusingaudio-textpairstolearntomatchbe-
tweenaudioandnaturallanguage,asdepictedinFigure1onthe
left.Mostpriorworksfocusonexploringarchitecturalchoicessuch
asencodersandAgg/Projlayers[13]orlossfunctions[14],andare
evaluatedwithcommonbenchmarksforretrieval[13,14,15]orclas-
siication[12,16].Itistypicallyassumedthattheseapproachesare
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Fig.1.Blockdiagramsforpre-traininganddownstreamtasks.

capableofleveragingnaturallanguagetoguidelearning,sincetrain-
ingdatamayincludecontextualdescriptionsofsoundeventsusing
wordssuchas“then”,“before”,or“after”forsequentialrelations
and“with”or“as”forsimultaneity.

However,thereisalackofexplorationofwhattheseaudio-text
modelsreallylearn.Morespeciically,arecomplexcontextualideas
describedinthetext,suchassequentialandconcurrentordering,
successfullycapturedbyexistingsystems?Inthe2022DCASE
ChallengeonLanguage-BasedAudioRetrieval(Task6B)[10],most
state-of-the-art(SOTA)systemsemploypre-trainedPANNsaudio
encoderswithmeanormaxpoolingovertime,followedbymulti-
layerperceptron(MLP)projectionlayers[19,20]. Wehypothesize
thattheseAgg/Projmechanismsarenotsuficienttocapturethecon-
textualcomplexitiesthatoftenappearinnaturallanguage.Thisidea
isrelatedtostudiesthathaveshownthatlanguagemodelsdonot
alwaysleveragewordordering[21].

Inthiswork,wepresentexperimentsdesignedtoinvestigatecur-
rentSOTAaudio-textmodels’capabilities: Whatinformationare
theyleveragingtomatchaudiotonaturallanguagequeries?Canthey
actuallymodelcomplexrelationshipssuchassequentialandconcur-
rentordering?Howdomodeldesignchoicessuchasthelanguage
modelusedimpacttheperformanceofthemodel?Ourmainindings
andcontributionsareasfollows:(i)Weshowthatcurrentmodelsfo-
cusonnounsandverbsforretrieval,anddonotfullyutilizetheentire
sentence;(ii)WeshowthatSOTAsystemsthatusetemporalpooling
andMLPasAgg/Projmechanismscannotcaptureconcurrentorse-
quentialsoundeventrelations;(iii)WeproposeaTransformer-based
architectureandshowthat,unlikepriorwork,itiscapableofcap-
turingsequentialrelationshipsbetweensoundeventsinthetextand
audio,givensuficienttrainingdataandanappropriatebenchmark;
(iv)Weindthatexistingbenchmarksareinsuficientforevaluating
thesequentialmodelingabilitiesofaudio-textmodels.I
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2. METHODOLOGY

2.1.BaselinemodelandTransformer-basedmodel

Weuseasimilarsetuptothetopperformingsystemsinthe2022
DCASEChallengeonLanguage-BasedAudioRetrieval[10]asour
baseline.Fortheaudioencoder,weuseaResNet38withpre-trained
weightsfromPANNs[18](2048outputdimensions),followedbyan
MLPprojectionlayertoproduce1024dimensions.Forthetexten-
coderweuseRoBERTa-Large,asamorepowerfulreplacementfor
theBERTmodelusedinatop-performingsystemfromtheDCASE
challenge[20]. Wevalidatethischoiceinthepreliminaryexperi-
mentpresentedinSection2.4.Themodelispre-trainedwithIn-
foNCEloss[22]usinga10−5learningrate,batchsizeof64,with
standardStepLRscheduler(stepsize=20,gamma=0.1)and
earlystoppingcriteria,ontwoV100GPUs.
OneofourhypothesesisthatSOTAmodelsrepresentedbythis

baseline,withtemporalpoolingaggregationfollowedbyMLPpro-
jection,willstruggletocapturethesequencingofsoundeventsover
time.Toinvestigatethis,weproposeanewarchitecturethatreplaces
theseAgg/Projlayerswitha2-layer2-headTransformerwithposi-
tionalencoding,oneforthetextbranchandonefortheaudiobranch.
EachTransformertakestheencoderembeddingsofalltimestamps
andoutputs1024dimensionalvectors. Weusetheoutputfromthe
irstposition(i.e.,the[CLS]token)astheinalrepresentation.On
thetextbranchtheTransformertakestheword(token)embeddings
fromthelanguageencoderasinput,andontheaudiobranchwe
applytheaudioencodertoconsecutive1schunkstoproducease-
quenceofaudioembeddings,andpassthesetotheTransformer.

2.2. Audio-textmodelpre-training

Themodelistrainedonastandardcontrastivepretexttaskusing
pairsofaudioandnaturallanguagetext.SimilartoCLAP[16],we
combinethetrainingsetsfrommultipleaudiocaptioningdatasetsto
createasingle,larger,trainingset.Thesedatasetsinclude(i)Au-
dioCaps[23]:wewereabletoobtain49kpairs(outof50k);(ii)
Clotho[24]:3839audioclipswith5captionseachfromthetraining
subsetprovided;(iii)MACS[25]:3930audioclipswith5captions
each;and(iv)FSD50K[26]:36kpairsresultingfromconcatenat-
inglabelsanddescriptionsofcorrespondingaudiometadatatoform
naturallanguagesentences.Intotal,weobtain123kaudio-textpairs
whichconstituteourpre-trainingset.

2.3.Language-basedaudioretrieval

Toprobethemodel,weconsiderthedownstreamtaskoflanguage-
basedaudioretrieval.Thistaskmodelstheapplicationinwhichthe
userqueriesthesystemusingnaturallanguagetosearchforaudio
assets(clips)inacollection,andtheaudioassetsarerankedbythe
systembasedontheirsimilaritytothequerytext.
Giventhequerytext,themodelmustretrieveitscorrespond-

ingaudioclip.Thetaskisevaluatedusingadatasetoftext-audio
pairs.Thepre-trainedaudio-textmodelisusedtoextractaudioem-
beddingsfortheentireaudiocorpus,andtextembeddingsforall
correspondingtextdescriptions.Then,eachtextdescriptionisused
asaquery,anditsembeddingsarecomparedagainstallaudioem-
beddings.Thetopksimilaraudioclipsintheembeddingspaceare
retrieved,asshownonthetoprightofFigure1.WereportRecallat
10(R@10)astheevaluationmetric. Weusethefollowingtestsets,
whichcontainaudio-textpairswherethetextisanaturallanguage
descriptionoftheaudio,forevaluationinourexperiments:

Language AudioCapsClothoClotho2022ESC-50US8KDESED

Model R@10 F1

BERT-Base 0.786 0.486 0.437 0.8220.7690.622
BERT-Large 0.794 0.498 0.474 0.7940.7460.612
RoBERTa-Base 0.779 0.479 0.444 0.7570.7420.596
RoBERTa-Large 0.798 0.505 0.477 0.780.7530.611

Table1.TaskperformanceversusLMtextencoderforthebaseline.

AudioCaps[23]:AsubsetofAudioSetwithannotatednaturallan-
guagecaptions.Thetestsetincludes814audioclips,each10slong
with5captions.Forevaluation,weuseeachcaptionindependently.
Clotho[24]:Thetestsetincludes1045audio-textpairs,wherethe
audiois15-30slong.Forthe2022DCASEChallengeanewtestset
wasreleasedwithanother1kpairs,werefertoitasClotho2022.
InSection3wewillpresentaseriesofcarefullydesignedexper-

imentsinwhichwemanipulatethetextandaudiodataeitherinthe
pre-trainingsetusedtotraintheaudio-textmodelorintheaforemen-
tionedtestsets,inwaysthatshedlightonthemodel’scapabilities
andwhatitisleveragingtoperformlanguage-basedaudioretrieval.

2.4. Choiceoflanguagemodel

Toguideourchoiceofpre-trainedlanguagemodel(LM)forthe
textencoder,werunpreliminaryexperimentstoevaluateitsimpact
onthedownstreamperformanceofthebaselinemodel. Wecon-
sidertwoLMarchitecturesthatarecommonlyusedbytopaudio-
textmodelsfromtheDCASEchallenge:BERT[17]andRoBERTa
[27].Thelatterisconsideredanimprovedversionoftheformerasit
usesdynamicmasking,istrainedwithmoredataandlargerbatch
size. Weevaluatetwovariantsforeachmodel,BaseandLarge,
withapproximately100Mand350Mparametersrespectively,and
outputembeddingdimensionsof768and1024,respectively. We
usepre-trainedweightsfromhuggingface1,taketheembeddingof
the[CLS]tokenastheinputtotheMLPprojectionlayer,andpro-
duceembeddingswith1024dimensions. WedonotfreezetheLM
weights,rather,weine-tuneboththeaudioandtextencoderswhen
pre-trainingtheaudio-textmodel.
Inadditiontoourmaindownstreamtask,weincludetwoad-

ditionaltasks:zero-shotclassiicationandsoundeventdetection
(SED).Fortheformer,weextracttextembeddingsfromground-
truthlabelsandassigneachaudiotestsampletoitsclosestlabelin
audio-textembeddingspace. WeevaluatethetaskonESC-50[28]
andUrbanSound8K[29]usingthedatasets’originalsplits,andre-
porttheF1metricaveragedacrossfolds.ForSED,weslidethe
model’saudioencoderoverthesignaltoobtainembeddingsevery
50msandcomparethemtothetextembeddingofeachclasslabel.
Weapplyathresholdtodecideiftheclassisactiveineachframe.
Weusearandom20/80splitoftheevaluationsettogetvalidation
andtestsets,andusetheformertoindtheoptimalthresholdvalue
in[0,1]andthelattertocomputetheevaluationmetrics. Weuse
thepublicevaluationsetofDESED[30],andreportthestandard
segment-basedSEDmetricsfor1ssegments.
TheresultsareshowninTable1. Weseethatthelargermore

powerfulRoBERTaLargeperformsbestacrossthethreelanguage-
basedaudioretrievalbenchmarks.Interestingly,BERT-Baseworks
bestforzero-shotclassiicationandSED,suggestingthechoice
ofLMshouldbeinformedbythetargetdownstreamtask.Since
ourfocusinthisworkisonlanguage-basedaudioretrieval,weuse
RoBERTa-Largeasthetextencoderinallsubsequentexperiments.

1https://huggingface.co/
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3. LIMITATIONS OF CURRENT AUDIO-TEXT MODELS

3.1. Does the model leverage natural language or keywords?

The goal of audio-text models is to leverage the full information in
the natural language text query, i.e., to go beyond keywords (tags).
Do current models achieve this? Or do they still mostly rely on key-
words, which are typically nouns and verbs (e.g., “dog”, “barking”).
To answer this, we pre-process the sentences in the pre-training data
to strip the text of everything that is not a noun or verb. We use
spaCy2 with its provided POS tagger for filtering. For example, the
original sentence “A vehicle is passing through a forest road as birds
chirp in the background” becomes “Vehicle passing forest road birds
chirp background.” Note that we only pre-process the pre-training
data, while the downstream evaluation texts are not manipulated.

In Table 2 we present the results for the baseline model trained
either on the original data (Original) or the pre-processed sentences
containing only noun and verb tokens (NV). For all three benchmark
datasets, the model trained on nouns and verbs performs similarly or
better than the model trained with full sentences. This result is sur-
prising, and suggests the model pre-trained on natural language may
not be fully capturing the nuances and concepts in the sentences, and
is mostly relying on nouns and verbs to match for retrieval. Another
possibility is that since the evaluation datasets are limited to mostly
simple descriptions of sound events, they do not fully put the model’s
language understanding to the test, yielding the illusion that current
SOTA models that use temporal averaging for aggregation and MLP
projection layers successfully leverage natural language.

3.2. Does the model capture event ordering?

Another potential benefit of audio-text models is that they can un-
derstand complex queries in which one sound happens after another
sound, or some sounds happen at the same time. But do current mod-
els really capture these notions of event ordering and simultaneity?
To investigate this, we design experiments with manipulated sen-
tences [31] to see whether event ordering and simultaneity, expressed
in the text using prepositions such as “before”, “after’, “then”, and
“as”, are captured by the audio-text model [32].

To see if the model can capture simultaneity, we take the 1640
sentences from our test sets that contain “as” and replace the preposi-
tion with “then”, in this way changing their meaning from describing
concurrent sounds to describing consecutive sounds. We do the op-
posite for the 1205 test sentences that contain “then”, replacing it
with “as”. We then use the manipulated text to query for the original
audio, and report R@10 where the retrieval set is all other sentences
with the same preposition. If the model can differentiate between
concurrent and consecutive events, we should see a notable drop in
performance for the manipulated sentences compared to using the
original ones. The results are reported in Table 3, where were ob-
serve only a marginal performance change. This suggests the model
cannot capture the concept of simultaneous sounds.

Next, we dig deeper into whether the model can capture event
ordering. We create a “preposition test set”, PTe, by taking the sen-
tences in the test subsets of AudioCaps, Clotho, and Clotho 2022,
and keeping only sentences that contain one of the following prepo-
sitions: “before”, “after”, “then”, and “followed by”. The distri-
bution of sentences with prepositions in PTe is provided in the top
row of Table 4. In the bottom row we provide the distribution of
sentences with prepositions in the pre-training set. We then run the
following experiment: we take PTe and swap the order of the clauses

2https://spacy.io/

AudioCaps Clotho Clotho 2022

Original 0.798 0.505 0.477
NV 0.796 0.524 0.506

Table 2. R@10 for the baseline audio-text model pre-trained using
the original text data (Original) and the filtered text data that only
contains nouns and verbs (NV).

Then r/Then/As As r/As/Then

0.863 0.844 0.822 0.819

Table 3. R@10 for the baseline model on sentences containing
“then” or “as”, evaluated against the original sentences and on the
same sentence after swapping the two prepositions.

before and after the preposition to form new sentences. For exam-
ple, “Two cars drive past before a distant semi truck honks” becomes
“A distant semi truck honks before two cars drive past”. We use ei-
ther the original sentences or the swapped sentences as queries to
retrieve the original audio, and report Recall at 1 (R@1) to examine
the model under stringent conditions. As with the previous experi-
ment, if the model can capture sequential ordering, then its perfor-
mance should drop notably for the swapped sentences compared to
the original ones, since the manipulated texts list the sound events in
reverse order to their true sequencing in the audio. We compare the
performance of the baseline model on the two query sets against our
proposed Transformer-based model which, we hypothesize, should
benefit from its ability to model temporal sequencing. The results are
shown in Figure 2, with the baseline and our proposed architecture
indicated by their projection layer: MLP and Transformer, respec-
tively. The baseline performs equally (even marignally better) when
we swap the order of events in the query text, indicating it is not
capturing the ordering indicated by the prepositions. Conversely, the
Transformer, which performs better on the original sentences, drops
27 points for the swapped sentences, indicating it is capable of mod-
eling the sequencing of sound events.

To further study the effect of prepositions, we run an additional
experiment where we take a balanced set of 176 sentences from PTe,
half containing “before” and half “after”, referred to as Before After
Test (BAT). We compute the embedding distance between the audio
and these test sentences, with and without swapping the event order
by replacing “before” with “after” and vice versa, and count the %
of times the original sentence is closer to the audio than the swapped
one. For example, the sentence from the earlier example becomes
“Two cars drive past after a distant semi truck honks.” If the models
fail to capture event ordering, the result should be roughly 50% (i.e.,
random guessing). The results are reported in Figure 3 by the bars
marked “Original”. The baseline (MLP) yields roughly 50%, indi-
cating it cannot capture the difference between “before” and “after”.
The transformer does better than random (55%), albeit moderately.

3.3. Are the training data sufficient to learn about ordering?

Could the limited gains on BAT when using a Transformer be due
to a lack of data? Sentences with prepositions (PTe) represent less
than 10% of the pre-training data (Tr), and less than 1% of the sen-
tences in Tr contain “before” or “after”. To answer this, we cre-
ate synthetic audio-text pairs to augment the data for these prepo-
sitions. We take the 19k sentences in the AudioCaps training set
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“Before” “After” “Then” “Followed by”

PTe 185 (1.8%) 105 (1.0%) 1205 (11.7%) 1279 (12.4%)
Tr 1036 (0.8%) 1071 (0.9%) 8177 (6.6%) 8321 (6.8%)

Table 4. Top: Number of sentences in the preposition test set (PTe)
containing each preposition, with the % it represents of the full test-
set in parenthesis. Bottom: the same distribution for the pre-training
set (Tr), with the % it represents of the pre-training set in parenthesis.

MLP Transformer

0.3

0.4

0.5

R@
1 0.405

0.486

0.419

0.351

Original vs Swap

Original
Swap

Fig. 2. R@1 on the preposition test set (PTe) for the baseline (MLP)
and our proposed model (Transformer). Lined bars show results us-
ing the original sentences in PTe as queries, and solid orange bars
show results after swapping the clauses before/after the preposition.

that do not already contain the prepositions in PTe and use them to
create new sentences: we randomly select two sentences, treat them
as sub-clauses, and concatenate them with a preposition in between
(e.g., “〈sentence A〉 before 〈sentence B〉”). We concatenate the au-
dio clips associated with each sentence in the order indicated by the
chosen preposition with a 1 s cross-fade. We generate 50k such
pairs3, referred to as AudioCaps-BeforeAfter (ACBA), and create
a new pre-training set (+ACBA) by adding them to the 123k existing
pre-training pairs.

The results of pre-training the baseline (MLP) and our proposed
model (Transformer) on +ACBA and evaluating them on BAT are
plotted as solid green bars in Figure 3. The performance of our
Transformer model is notably boosted by 13 points, strengthening
the evidence that it can model temporal ordering in the text and au-
dio. It is also a clear indication that the existing pre-training data are
insufficient for teaching audio-text models about sound event order-
ing. Even with the additional ACBA sentences, the baseline (MLP)
is still equivalent to a random guess (51%), supporting our conjec-
ture of an inherent limitation in the architecture.

Finally, we compare our Transformer-based architecture to
the baseline (MLP) on the original language-based audio retrieval
benchmarks, trained on either our original pre-training set or the aug-
mented set +ACBA, presented in Table 5. Surprisingly, in contrast
to our prior experiments, the baseline outperforms the Transformer,
even when we add the ACBA training data. One hypothesis is that
the Transformer is still under trained: its performance improves
with the addition of ACBA, so it is plausible it will improve further
with more data. A second is that since sentences with prepositions
represent a only small percentage of the test data in existing bench-
marks, the benefits of the Transformer for sequence modeling do not
come to light here. This highlights the limitations of existing open
datasets for training and evaluating audio-text models. With larger
and more complex training sets, and test sets that require the model

3github.com/hohsiangwu/preposition-synthesis

MLP Transformer

40

60

(%
) 49.6

55.4
50.9

68.5
Before and After Test (BAT)

Original
+ACBA

Fig. 3. Performance on the Before and After Test (BAT) set for
the baseline (MLP) and our proposed model (Transformer). Models
trained either on the original pre-training set (dotted bars) or the aug-
mented +ACBA set (solid green bars). Performance measured as %
of test samples for which the original text query is closer to the cor-
responding audio than the manipulated text (50% = random guess).

Agg/Proj Data AudioCaps Clotho Clotho 2022

MLP Original 0.798 0.505 0.477
Transformer Original 0.685 0.414 0.393

MLP +ACBA 0.790 0.500 0.473
Transformer +ACBA 0.730 0.425 0.405

Table 5. R@10 for the baseline model (MLP) and the proposed
Transformer-based model (Transformer). Top: results when training
with the original pre-training set (Original). Bottom: results when
training on the augmented pre-training set which includes the addi-
tional 50k ACBA sentences.

to leverage natural language to a greater extent, we think it is likely
the Transformer will surpass the baseline, in accordance with our
other experiments.

4. CONCLUSION

Contrastive learning for the audio and text modalities holds the
promise of unlocking powerful applications such as language-based
audio retrieval, zero-shot audio classification and open-vocabulary
sound event detection. In this work we presented several ex-
periments aimed at understanding the capabilities of current top-
performing audio-text models. We showed that despite being trained
on audio-text pairs where the text is natural language sentences,
these architectures fail to fully leverage the information in the natu-
ral language signal: they cannot capture concepts such as simultane-
ity and event ordering, and models trained on text limited to nouns
and verbs perform equally well as those trained on full sentences.
To alleviate these limitations we proposed a Transformer-based
architecture and showed that, given sufficient training data and a
benchmark designed to probe the model’s ability to capture event
ordering, it outperforms the baseline considerably. Conversely, it
does not outperform the baseline on the existing benchmarks, sug-
gesting they are not well suited for understanding the audio-text
model’s abilities to capture more complex relationships between
natural language and the audio signal. To reach the multi-modal un-
derstanding capabilities shown for other modalities [1], we advocate
for the creation of significantly larger datasets with ample represen-
tation of audio-text pairs that describe complex relationships such as
sound event simultaneity and sound event ordering.
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