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1. Introduction

A central question in modern geometry is the following: given a smooth n-dimensional manifold M and a preferred
curvature condition C, can we specify a Riemannian metric g on M so that g satisfies C? The scalar curvature is the
weakest invariant of the curvature tensor and so, unsurprisingly, the greatest success has been achieved in classifying which
manifolds admit metrics of positive scalar curvature (psc-metrics). By contrast, the problem of classifying which manifolds
admit metrics whose sectional curvature is strictly positive, or finding new examples of manifolds admitting such metrics,
is formidably hard.

Such classification problems require obstructive tools for ruling out certain manifolds from consideration and con-
structive tools for building metrics in the case where no obstructions exist. Despite its relative weakness as a curvature
constraint, there exist many smooth manifolds which do not admit metrics of positive scalar curvature. For example, work
of Schrédinger and Lichnerowicz [23] and Hitchin [18], shows that if M is a closed, spin manifold of dimension n admit-
ting a psc-metric, a certain invariant, (M) € KO™"(pt), representing the index of the Dirac operator and generalizing the
A-genus, must vanish. This obstructive tool is complemented by a powerful constructive result due to Gromov and Lawson
[16] and Schoen and Yau [27]: suppose M and M’ are smooth manifolds and M’ is obtained from M via surgery in codimen-
sion at least three, then any psc-metric g on M can be used to construct a psc-metric g’ on M’. Combining these respective
obstructive and constructive tools led to considerable progress in classifying which manifolds admitted psc-metrics. In par-
ticular, Stolz [28] showed that a closed, smooth, simply connected manifold M admits a psc-metric if and only if M is either
non-spin, or M is spin and o(M) = 0.
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The surgery technique breaks down when one attempts to apply it to stronger notions like positive Ricci or sectional
curvatures. Indeed, not only does the construction not work for positive Ricci or positive sectional curvature, there are
topological obstructions to the existence of metrics of positive Ricci curvature, and hence positive sectional curvature, on
manifolds arising from surgeries which are admissible in the positive scalar curvature setting.

It is thus natural to consider intermediate curvatures interpolating between scalar and Ricci, and scalar and sectional
curvatures. These intermediate curvatures are the k-positive Ricci curvature, where k € {1, 2, --- ,n}, defined by Wolfson in
[34], and the (p, n)-intermediate scalar curvatures (originally, the p-curvature), where p € {0, 1, --- ,n — 2} defined by Labbi
in [21]; see Definition 2.1. Analogs of the Surgery Theorem for these respective curvatures have been proven in [34] and
[21]. In particular, it is shown in [21] that if M and M’ are smooth n-dimensional manifolds and M’ is obtained from M
via surgery in codimension at least p + 3, then any metric, g, on M admitting positive (p, n)-intermediate scalar curvature
can be used to construct a metric, g’, on M’ which also admits positive (p,n)-intermediate scalar curvature. This is a
generalization of the Surgery Theorem of [16] and [27] stated above, where the scalar curvature corresponds to the case
when p =0.

In this paper, we focus our attention on the (p, n)-intermediate scalar curvature. Our main result, Theorem A, concerns
an analogous strengthening of a more general positive scalar curvature construction. The surgery technique of [16] and [27]
can be enhanced to give rise to a psc-metric on the trace of a surgery in codimension > 3 by work of Gajer [14] and Walsh
[30]. In particular, the resulting metric satisfies a Riemannian product structure on a collar neighborhood of the boundary.
In Theorem A, we extend the result of [14] and [30] from the case when p =0 to more general p as follows.

Theorem A. Let M be a smooth n-manifold, ¢ : S¥ x D"k — M, a smooth embedding, and {M¢; M, Mg}, the trace of the surgery
on ¢. Suppose furthermore thatn —k >3 and p € {0, 1, - - - ,n —k — 3}. Then for any metric g on M with positive (p, n)-intermediate
scalar curvature, there are metrics g4 on My and g4 on M satisfying:

1. The metrics g4 and g4 have respectively positive (p,n) and (p, n + 1)-intermediate scalar curvatures on My and 1\7I¢; and
2. Near the boundary components M and My, g4 takes the form of the respective product metrics g4 = g +dt~ and g4 = g4 + de.

An important application of this theorem is in exhibiting non-triviality in the topology of the space of Riemannian met-
rics of positive (p, n)-intermediate scalar curvature on a smooth manifold. We denote by R(M), the space of all Riemannian
metrics on the smooth manifold M. This space has a standard C* topology; see Chapter 1 of Tuschmann and Wraith [29] for
the specific construction. For each p € {0, 1, ---n — 2}, we consider the subspace R%»"»>%(M) of Riemannian metrics of posi-
tive (p, n)-intermediate scalar curvature on M. In the case when p = 0, this is precisely R5>%(M), the space of psc-metrics
on M.

More generally, one may consider, for any curvature condition C, the subspace R¢(M) c R(M) of Riemannian metrics
which satisfy C. In recent years, there has been substantial interest in understanding the topology of the space, R€(M) C
R (M), for a variety of manifolds M and curvature conditions C. Much of this has also involved the corresponding moduli
spaces obtained as a quotient of RE(M) by the action of appropriate subgroups of the group of self-diffeomorphisms of
M, Diff(M). Recall that Diff(M) acts on RE(M) by means of pulling back metrics. The most progress has occurred in the
case when C denotes positive scalar curvature; see for example results due to Botvinnik, Ebert, and Randall-Williams [2],
Botvinnik, Hanke, Schick, and Walsh [3], Coda-Marquez [6], Crowley and Schick [7], Ebert and Randall-Williams [9] and [10],
Ebert and Wiemeler [11], Frenck [12], Hanke, Schick, and Steimle [17], and Walsh [33]. There are numerous results for other
curvature conditions such as negative sectional curvature or positive Ricci curvature, see, for example, [29].

Theorem A can be used to exhibit non-triviality in the topology of this space for many manifolds and many p > 0 by
extending existing results for positive scalar curvature, that is, when p = 0. We will not provide a comprehensive account
of this here but rather, in Theorem B, an example which illustrates this point.

Theorem B. Let M be a smooth closed spin manifold of dimension 4n — 1,n > 2, which admits an sp 4n_1 > 0 curvature metric for
some p €{0,1,---,2n — 3). Then the space R,-4n-1>0(M) has infinitely many path components.

Theorem B generalizes Theorem 4 of Carr [5], for positive scalar curvature. In particular, Theorem 4 of [5] is the p =0
case of Theorem B when M = $*~1 for n > 2. Note that extending the theorem from the case when M = $*™~! to an
arbitrary closed, simply-connected, spin manifold admitting psc-metrics is not difficult. Indeed, it follows as an immediate
corollary of the main theorem of [11]. The main work of the proof is in dealing with the spherical case.

Note that Theorem 4 of [5] was generalized to positive Ricci curvature by Wraith in [35] for M, a homotopy (4n — 1)-
sphere bounding a parallelizable manifold, showing that the moduli space of RR>0(M) contains infinitely many path-
components. However, there is no clear implication relating positive (p, n)-intermediate scalar curvature to positive Ricci
curvature. In fact, the methods used to prove Theorem B are quite different from those used in [35], where the Kreck-Stolz
s-invariant is used to distinguish between the path components of the moduli space of RR<=0(M).

Finally, using our Theorem A, we obtain the following generalization of results in [5] and in Mantione and Torres [24].
The p =0 case of this result is Corollary 2 of [5] in the case of orientable manifolds, and forms Theorems 6 and 7 of [24]
for non-orientable manifolds with an added assumption on the group G. The principal constructive technique behind these
results is Theorem 3 of [5], which our Theorem A generalizes from the p = 0 case.
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Corollary C. For any finitely presented group G, there is a closed, smooth, orientable Riemannian n-manifold (M"(G), g) such that
m1(M™"(G)) = G, and g has positive (p, n)-intermediate scalar curvature provided 0 < p < n — 4. The same result holds for non-
orientable (M", g), provided G contains a subgroup of order two.

During the writing of this paper we discovered that Theorem B also follows as a case of a recent theorem of Frenck
and Kordass [13]. Theorems A and B of [13] extend some powerful techniques of [2] for positive scalar curvature to the
cases of positive (p,n)-intermediate scalar curvature and positive k-Ricci curvature. Our work has independent value, as
Theorem A above provides a geometrically explicit construction of an (sp, > 0)-metric over the trace of an appropriate
surgery, something which is not done in [13]. In doing so, we also provide detailed curvature calculations for sectional and
intermediate scalar curvature of various warped product metrics that are of value in their own right. Likewise, our proof
of Theorem B differs from theirs in that ours gives an explicit construction for representative elements of distinct path
components of Rp4n-1>0 (M),

1.1. Organization

The paper is organized as follows. In Section 2 we establish preliminaries. In Section 3 we establish an isotopy-
concordance result for positive (p,n)-intermediate scalar curvature. In Section 4, we determine the intermediate scalar
curvature of a warped product metric. In Section 5, we apply these calculations to the standard metrics on the sphere and
the disk. In Section 6, we prove Theorem A and in Section 7, we prove Theorem B.
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where a portion of this work was completed.

2. Preliminaries
2.1. (p, n)-Intermediate Scalar Curvature

We consider a generalization in [21] of the sectional and scalar curvatures which we call the (p, n)-intermediate scalar
curvature and denote s, . This was originally referred to as the p-curvature, s,. However, we will often deal with cylinders
and more general manifolds with boundary, where dimensions n and n — 1 arise in tandem. Thus, we adopt this term to
aid the reader in distinguishing between the p-curvature on the ambient n-manifold and the p-curvature on an embedded
submanifold or boundary component of dimension n — 1.

Let M be a smooth n-dimensional manifold, possibly with non-empty boundary. For any x € M, k € {0, 1,---,n}, we
denote by Gry(TxM), the Grassmann manifold of k-dimensional subspaces of the tangent space TyM and by Gry(M), the
corresponding Grassmann bundle of k-dimensional subspaces obtained as the union of Gri(TyM) over x € M. We now define
the (p, n)-intermediate scalar curvature of a Riemannian metric on M as follows.

Definition 2.1. Let (M, g) be an n-dimensional Riemannian manifold, with possibly non-empty boundary, and let p €
{0,1,---,n — 2}. The (p,n)-intermediate scalar curvature of M is the function s, : Grp(M) — R defined for x e M, P a
p-plane in TyM and {eq, --- , en—p}, an orthonormal basis of the orthogonal complement P+ of P in TxM, by

spn(X, P) =Y Ku(ei, €)),
ij

where Kx(ej, ej) is the sectional curvature at x of the subspace of TyM spanned by the vectors e; and e;.

It follows that sp »(x, P) is the scalar curvature at x of the locally specified (n — p)-dimensional submanifold of M given
by restricting the exponential map of g at x to the subspace P C T,M. In particular, it is well defined for any choice of
orthonormal basis {eq, --- ,es—p} for P+. When p =0, P+ = TyM and so So.n(X) :=so.n(x, 0) is precisely the scalar curvature
of the Riemannian manifold (M, g) at the point x. When dimP = p =n — 2, sp_2.n(x, P) is twice the sectional curvature at
x of the plane P c TyM with respect to (M, g). The (p, n)-intermediate scalar curvatures for 0 < p <n — 2 are therefore
a collection of curvatures interpolating between the scalar curvature, when p =0, and twice the sectional curvature when
p =n— 2. For any given value of p <n — 2, the (p, n)-intermediate scalar curvature is a trace of the (p + 1, n)-intermediate
scalar curvature.
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Of particular interest is the case when the (p, n)-intermediate scalar curvature is positive on a manifold. We say that a
Riemannian metric g on M is a metric of positive (p, n)-intermediate scalar curvature, that is, an (sp , > 0)-metric, if for any
xe M and any P C TxM, spn(x, P) > 0. It is obvious that if the (p, n)-intermediate scalar curvature of (M, g) is positive for
p > 0, then the (p — 1, n)-intermediate scalar curvature is positive as well. By continuing to take traces, it is clear that this
holds for any integer 0 < g < p. We summarize this hierarchy in the following proposition.

Proposition 2.2. If a Riemannian manifold (M, g) has positive (p, n)-intermediate scalar curvature, then it has positive (q,n)-
intermediate scalar curvature for 0 < q < p.

Note that the converse is not true. For any dimension n and any 0 < p <n — 2, we can construct a Riemannian manifold
that has positive (p, n)-intermediate scalar curvature, but not positive (p + 1, n)-intermediate scalar curvature. In fact we
only need to look at products of spheres.

Example 2.3. Let M be the n-dimensional Riemannian product manifold of m standard round spheres of radius one and of
dimension at least one. Then M has positive (p, n)-intermediate scalar curvature if and only if p <n —m.

This example can be extended to include other factors with positive sectional curvature.
2.2. Isotopy and Concordance

Various notions of isotopy and concordance arise throughout Mathematics. Here, we are only concerned with metrics of
positive (p, n)-intermediate scalar curvature and we define these notions in this case.

Definition 2.4. Two metrics gg, g1 on an n-dimensional manifold M with positive (p,n)-intermediate scalar curvature are
said to be (sp, > 0)-isotopic if they are connected by a path t +— g in the space of positive (p,n)-intermediate scalar
curvature metrics on M, t € [0, 1]. The connecting path is called an (sp, > 0)-isotopy.

Definition 2.5. The metrics go and g; on M are said to be (s, > 0)-concordant if, for some L > 0, there is a metric g on
the cylinder M x [0, L + 2], of positive (p,n + 1)-curvature, and satisfying

glmMx(0,1]=go+dt? and Zlmx(i+1,142) = &1 +dt>.

The metric g is known as an (s, , > 0)-concordance.

We will frequently shorten (s, > 0)-isotopy and (sp,» > 0)-concordance to just isotopy and concordance. It is straight-
forward to show that both isotopy and concordance determine equivalence relations on the space of positive (p,n)-
intermediate scalar curvature metrics on the manifold.

The problem of whether or not a given pair of concordant metrics are in turn isotopic is notoriously difficult and we do
not consider it here. The converse problem however is much more tractable. It has long been known in the case of metrics
of positive scalar curvature that isotopic metrics are concordant. This indeed holds more generally, as we demonstrate in
Proposition 3.3 below.

3. Isotopy Implies Concordance

We start with an isotopy g, on M. To create a concordance from this isotopy, it seems natural to turn this into the metric
g-+dr? on M x [0, 1]. However, this metric does not necessarily have positive (p, n+ 1)-intermediate scalar curvature since,
even though the metric g, on the slice M x {r} has positive curvature, there may be negative curvature coming from the
r direction. Therefore we will introduce a function f:R — [0, 1] and consider a new metric gs) + dt? on M x R. This
function will allow us to control the changes in the t-direction so we can minimize the contributions of negative curvature
while keeping the positive contributions from the metric g¢() on the slice M x { f(t)}.

We begin with a lemma about the Riemann curvature of such a metric.

Lemma 3.1. Let M be an n-dimensional manifold, g, with r € [0, 1] a smooth path of metrics on M, and f : R — [0, 1] a smooth
function. Define the metric g = g () + dt? on M x R. If (xo, to) € M x R has local coordinates (x1, . .., Xn, t) Where (X1, ..., Xy) are
normal coordinates for xo with respect to the metric g¢,) on M, then the Riemannian curvatures R of g at (xo, to) satisfy

Rij = Ri+ O(f'1)), Rl = 01 f'D), and Riy, = 0 (1 f'1*) + O f"]).

In particular, the sectional curvatures K of g are then given by

Kij=Kij+ 0(If'1?) and Kir = O(If"]) + O(If'I*).
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Proof. Denote the coordinate vector fields by 31, ...,d,, 8. Let V and V be the Levi-Civita connections of g fto) and g
respectively and let f‘i‘] and I‘i‘] be the Christoffel symbols of V and V, respectively, at (xg, tg). We denote the Riemannian
and sectional curvatures, respectively, by Rfjk and I_<,~j for g and Rfjk and Kijj for g ).

Since Kjj = ;gw R{jj» and Kit = —8uRi; — >4 B8R = =R}, the results for the sectional curvatures follow immedi-
ately.

Since gij = (gf(ty))ij» We have l_“i?j = Fi.‘j for i, j,k € {1,...,n}. Moreover, we have the constant values g;; = 0 for all

ie{l,...,n} and g = g'* = 1. Therefore
_ -
F?t:F;t:thZO’
_ 1 _ - 1 _ _
F,gj = —53tgij, and % = 5 ngzatgiﬁ-
¢

Setting r = f(t), we obtain

0(&rij .,
o7 i,

and using normal coordinates at the point (xg, to) this gives us that

I—,t 1 |:a(gr)u

0 8ij =

i =73 f'(to) =0 f'D.

ar ](Xo,f(fo))

= 11008k
Fe=5 [a— f'to) = 0(fD.
" Jxo.f(to))
We now calculate the Riemannian curvatures. For i, j, k, £ € {1,...,n}, since l_“i.‘j = Ffj and m varies over 1,...,n and t,
we have
Y4 1 14 Y 0 et e Tt
Rije = 0il", — 97 + Z(Fimrﬂ = T M) + T3 D — T Ty
m#t
1[0(gie 9(8jk  9(8r)je 3(&r)ik
¢ rli j J 2
=Rin—3 [ e (f'(t0))
(%0, f(t0))
=R+ 0(f' ).
For the Riemannian curvatures involving t, we only need to compute Rfjk and thk for i, j,ke{1,...,n}. First,

pt ~t t ~t T ot T ~t ot ~t ot
Rijie = 0Ty — 9T + Z(Fimrrﬁc — T i) + T3 Ty — Ty Ty
m#t

1]0%(g)j (g /
=—= - f'(to)

2| ox;or ox;jor

(0. f(to))

=0(f').

To calculate Rgrk at the point (xo, tp), a straightforward calculation gives us

2 . .
. _1 |:3 (&r)ik (f/(fo))z _ l |:3(gr)1k]
2 ar (%0, f(to0))

" (to).
or? ]o«).f(to)) 2

Therefore, we have

itk_2

82(gr)ik 1 Z 9(gr)im 9(&r)km

4 ar ar

1 ’ 2
AT DD (f(t0))

(%0, f (t0))

Rt 1 |:8(gr)ik f//(to) +

- ar :|(Xo,f(fo))
=0(f"n+0(fP. o
We are now ready to estimate the (p,n + 1)-intermediate scalar curvature on (M x R, g).
Lemma 3.2. Let M be a compact n-dimensional manifold and g, withr € [0, 1] a smooth path of (sp » > 0)-metrics on M. Then there
exists a positive constant C < 1 so that for every smooth function f : R — [0, 1] with | f'|, | f"| < C the metric g = gs) + dt? on

M x R has positive (p, n + 1)-intermediate scalar curvature, 0 < p <n —2.
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Proof. Choose a point zg = (xg,tg) € M x R. We use R, K, Sp,n to denote Riemann, sectional, and intermediate scalar
curvatures for the metric g and R, K, sp » for those curvatures in the metric gg,). Fix a value 0 < p <n —2.

Since M is compact, the Grassmannian Gr, (M) is also compact. By the continuity of the curvature, this means for each r
there is a positive lower bound for the (p, n)-intermediate scalar curvature of the metric g,. As the r vary over the compact
interval [0, 1], we can choose a positive lower bound B, for the (p, n)-intermediate scalar curvatures of all the metrics and
thus a positive lower bound B,_1 for the (p — 1, n)-intermediate scalar curvatures of the metrics g, as well.

Let P be a p-plane in T,,(M x R) so that Pt is (n — p + 1)-dimensional. We denote the hyperplane Tz (M x {to}) by T.
Consider the intersection Q = PL N T. If P+ is properly contained in T then Q = P-. If P is not properly contained in T,
then the span of both must be the entire (n + 1)-dimensional T,,(M x R), and so by Grassmann’s identity we have

dim(Q) = dim(P* N T) = dim(PY) + dim(T) — dim(P* + T)
=m-p+D+n—-@m+1)=n—p.

This leads to three cases: Case 1, where P1 is contained in T, Case 2, where P is contained in T, and Case 3, where neither
P nor P+ is contained in T.

Case 1: P+ is contained in T.

In this case, we can take an orthonormal basis {ej,...,ey_py1} for P+ and extend it to orthonormal bases {eq, ..., en}
for T and {ey,...,en, e} for T, (M x R). Using the exponential map for £f(ty)» We get local coordinates (xq,...,Xp,X) at
zo where (x1,...,X,) are normal coordinates at xg. Then, using Lemma 3.1, we compute

n—p+1
S (P)= Y Kij
i,j=1
n—p+1
= > [Ki+0df'P)]
i,j=1

=sp-1a(PNT)+ 0(f').

As sp_1.1(PNT) > Bp_1 >0, then for a small enough value of C, we can force the contributions of f to not be too negative
and allow 5p ,11(P) to remain positive.

Case 2: P is contained in T.
If PC T then TL C PL, and since T+ is 1-dimensional, let e; be a unit vector spanning T-. Then taking an orthonor-

mal basis {eq,...,en_p} for Q = PL N T, we have an orthonormal basis {e1,....,en—p, e} for PL. We can extend this to
orthonormal bases {ei,...,e,} for T and {ei,..., ey, e} for T,o(M x R) and again we get local coordinates (x1, ..., Xn, X¢)
at zo where (xq, ..., ;) are normal coordinates at xg. Then we compute using Lemma 3.1

n—p n—p

Spap1(P)= Y Kij+2) Kit
i,j=1 i=1
n—p n—p
=Y [Ki+ 00 ]+2) [0 P +0(f")]
i,j=1 i=1

=spn(P)+O(f' )+ 0(f"D.

As spn(P) > Bp > 0, then for a small enough value of C, we can again force the contributions of f to allow §p n41(P) to
remain positive.

Case 3: Neither P nor P+ is contained in T.

In this case Q = PL N T is (n — p)-dimensional. We depict this situation in Fig. 3.1. Take {e1,...,en—p} to be an or-
thonormal basis for Q, and choose v € P\ Q so that {1, ..., en—_p, v} is an orthonormal basis for P+. Then obviously v is
not in T, but it also is not perpendicular to T, or we would have P C T. Therefore v has a nonzero projection onto T, which
we denote by ae,_p41, where e,_p41 is a unit vector. Putting this together with the previously defined e;, we extend to
orthonormal bases {e1, ..., ey} for T and {e1, ..., ey, e} for T, (M x R) and again we get local coordinates (x1, ..., xn, X¢) at
zo where (x1, ..., Xp) are normal coordinates at xo. Note that by construction, we have v = aey_p11 + fe;, as the projection
of v onto T is a multiple of e;_p41.

We compute the curvatures for 1 <i <n— p using Lemma 3.1

K(e;, v) =g(R(v,eje;, v)

= g(R(aen—_p+1 + Ber, eiei, aen_pi1 + fer)
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T, ({zo} x R)

Pt @t

PL

Fig. 3.1. The arrangement of the subspace P C T, (M x R) in Case 3.

— azknfpﬂ

_ -
(n—p+1yii T 2¢BRG_pi1yii +B°R

=a?[R P+ 00 D] +2aB0f') + B[O + 00 f"D]
=& Kign—p+1) + OUF D+ OUf P + 0 f"D.

Therefore we have

n—p n—p
Spat1(P)= Y Kij+2) K(ei,v)

ij=1 i=1

=

i,j=

—_

i=1

n—p n—p

p n—p
DK+ 00 P]+2) [@*Kin—pr1y + O D+ 0f' P+ 0(f"D]

=" Kij+202 Y Kinpsty + OUS D + O 2 + O ).

i, j=1 i=1

n—p n—p
Set A= Y Kjjand B=2 )" Kjm—p+1). Then A =sp,n(QL) > B, >0 and
i=1

i,j=1

n—p+1

A+B= Z Kij=5sp—12(PNT)>Bp_1>0.

i,j=1

Since o? > 0, for B >0, we have A+«a?B > A > B,. For B <0 since «? < 1, we have A+«?B > A+ B > B,_1. In either
case, A+ «?B > min{B,, Bp_1}, and hence for a small enough choice of C, we can force the contributions of f’ and f” to

allow S n41(P) to remain positive as well. O

Rephrasing this result in the language of isotopy and concordance, we obtain the following result.

Proposition 3.3. Let M be a smooth compact manifold of dimension n. Then, for any p € {0,1,---,n — 2}, metrics which are

(Sp,n > 0)-isotopic on M are also (sp » > 0)-concordant.

Proof. Let go and g; be two (sp, > 0)-isotopic metrics on M with the isotopy g for r € [0, 1]. By Lemma 3.2, there is
a C <1 such that for every smooth function f:R — [0, 1] with |f'[,|f”] < C, the metric g = g +dt? on M x R has

positive (p,n + 1)-intermediate scalar curvature.
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Let i : (—o0, 00) — [0, 1] be the function

0 t<o0
_ ) et te(0,1)
Ho = e*l/f—o—e_ﬁ ’
1 t>1

that smoothly transitions from O to 1 over the interval [0, 1]. For any L > 0, a translation and rescaling gives us the function
mr) =pu (%) that smoothly transitions from 0 to 1 over the interval [1, L + 1]. The derivatives ' and p” are bounded

and we have w (t) = 11/ (1) and ] (t) = 5" (“71). Therefore we can choose L sufficiently large to force |} ], |14]| < C.
Taking f to be the restriction of w; to the interval [0, L 4 2], the manifold M x [0, L 4 2] with metric g = gf«) x dt?

has positive (p, n + 1)-intermediate scalar curvature. Since § =go x dt? for 0<t<1and g=gy xdt? for L+ 1<t <L+2,
then by definition, this is a (sp, ; > 0)-concordance between go and g;. O

4. Curvature of Warped Product Metrics

We first fix notation. Let (B”, gp) and (F", gr) be, respectively, b- and n-dimensional Riemannian manifolds and consider
their product, M = B x F with the warped product metric g = gz + 8%gF, where 8 : B — (0, 00) is a smooth function. We
assume that b,n > 1. We denote by 7rp and 7rf, the corresponding projections from M to B and to F, and for a point x € M,
set

X:=mp(x) and X=mF(x).
At each point x € M, the maps, 7 and 7rf, induce derivative maps
(p)s : TxM — T3yB and (7F)s: TxM — T4F.

The warped product structure of the metric gives us the following horizontal and vertical spaces at x e M

J :=Tx(B x {mr(¥)}) and ¥ :=Tx({mrp(x)} x F).

In particular, the restriction of the derivative map (7). to the horizontal space .7 is the isometry

(7B« s : (I, 8xloe) — (TxB, (€B)3)-

We denote the vertical and horizontal distributions of the submersion by ¥ or .. The notation, ¥, .7, serves a dual
purpose as we also use it to mean the projection onto the vertical or horizontal subspace. Let u € TyM be some tangent
vector. Then,

up:=%W)e¥% and up:=() € i,
denote the corresponding orthogonal projections. Note that the vectors ug and uy in % and %% are distinct from their
corresponding isometric images under (;rf), and (7p)4. In the case of the derivative maps, we write:

U:=(wp)«(u) and i = (7p)«(u).

4.1. The Riemann Curvature Tensor

In computing the curvature tensor, we will make use of well-known formulas of Gray [15] and O'Neill [25], (see also
Theorem 9.28 in [1]). These formulas involve the tensors, A, T: I'(TM) ® I'(TM) — I'(TM), defined for vectors fields Eq, E;
on M as follows:

Ag Ey =0V 61V (E2)) + V (Vo) H (E2)),
Te, Ex =50 (Vy )V (E2)) + V' (Vy () FC (E2)).

Note that here with the warped product metric the horizontal distribution for each x € M is naturally identified with
T4B and in particular, this horizontal distribution is integrable (see Chapter 19 in Lee [22]) so the A tensor above vanishes
in our case (see Proposition 9.24 in [1]).

We recall the formulas from [1] involving the T tensor.

Theorem 4.1. [1] Let manifold M = B x F be equipped with the warped product metric g = gg + f2gr. Let X, Y be a pair of horizontal
vector fields and U, V, a pair of vertical vector fields tangent to M. Then

8
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TxU =TxY =0, TyV =s¢(VyV)=TyU, TuX =7 (VuX),

and
gMyV,X)=—-gTyX,V).
We adapt Theorem 9.28 in [1], using the fact that A is everywhere zero.

Theorem 4.2.[1] Let the manifold M = B x F be equipped with the warped product metric g = gg + B2gr. Let wp : (M, g) —
(B, gg) denote a Riemannian warped product submersion for some warping function 8 : B — (0, 00). Let X, Y, Z, Z' be horizontal
and U,V, W, W’ vertical vector fields tangent to M. Finally, let Rg and R denote the respective Riemann curvature tensors for
(B, gp) and (F, gr). Then the Riemann curvature tensor, R, of g satisfies the following properties:

RWU,V,W, W' =gRe, W, W) +gTuyW, Ty W) — g(Ty W, Ty W’);
RU,V,W,X)=g((VuDvW, X) — g(VwTDyW, X);
R(X,U,Y,V)=g(MyX,TyY) —g((VxTyV,Y);
RWU,V,X,Y)=gTyX,TyY) — gTy X, Ty Y);

R(X,Y,Z,U)=0;and

R(X,Y,Z,Z)=gRsX,Y)Z, 2.

Ok WN -

We now introduce some conventions we will use to make our computations easier to follow. On the manifold B x F,
we assume coordinate vector fields 91, -, dp4pn, Such that dq,...,9, are horizontal and 9p41, ..., dp4n are vertical and
8x(9;,0;) =0 for i # j, and gx(9;, 9j) = ﬂ(i)z&j fori,je{b+1,---,b+n}. We adopt the convention that the indices A, i, v
will be used for the base directions {1, ..., b} and the indices i, j, k, £ will be used for the fiber directions {b+1,...,b+n}.
For an index that varies over all of {1,...,b +n}, we use s.

The following lemma gives us the Christoffel symbols for a warped product metric. We note that there are six cases to
consider depending on whether the coordinates are in the base or the fiber. The proof is a straightforward computation that
we leave to the reader (see Burkemper [4] for more details).

Lemma4.3. Let (B x F, g + 2 gr) be as described above. Then at a point x € B x F, the Christoffel symbols are given by the following
equations

- k k

FK[L = FK/L’ Fi<]' = l_‘iJ"

r’;u =0, ry;=0, (41)
B

Fl)ij = F(Sjk, and Fl!)j = —,B,BUgEVSU.

From now on, we let vg and vg denote the horizontal and vertical parts of v. Using Properties 1, 5, and 6 of Theorem 4.2
and the symmetries of the curvature tensor, we obtain the following lemma, giving us an expression for the Riemann
curvature tensor of a 2-plane, P C TyM generated by v and w in terms of the horizontal and vertical parts of each vector.

Lemma 4.4. Let (B x F, gg + B2gF) be as described above. Given x € B x F, consider an arbitrary 2-dimensional subspace P C TxM.
We let v, w € P C TxM be an arbitrary pair of linearly independent vectors. Then

R(V, w, w, V) = RB(‘\}Bv WB? WB? ‘73) + ﬂzRF(OFv WFs MA/Fa OF) + g(TVFWFsTV[WF) - g(TVFVFvTWFWF)

+ g((VVBT)WF WE, VB) - g(TWFVBv TWFVB) + g((VWBT)VFVF7 WB) - g(TVF wBg, TV]: WB)
(4.2)
—28((Vwe Dve WE, vB) + 28((Vye Dw WF, VB) + 28(Vw D)y VE, W) — 28((Vve D wi VE, WB)

+2g(Tyweve, Tyywp) — 28Ty Ve, Twy Wp) + 28(Tw Ve, Ty WB) — 28((VygT)w VE, Wa).

Using Theorem 4.1 and Display (4.1), we obtain the following expressions for the components of the T tensor at the
point x:

Ty 0j=— Zﬁﬁ,\gﬁ'\&j&\, and Tp, 9;, = %31'.

A
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With these expressions, we can compute the inner products involving the T tensor in Display (4.2). We obtain

g(Ty05, Ty, 00) = B8k Y_ (B &
A

8(T5,05, To;0u) = BrBusijs
g(Tafa)nnga[L) = lgkﬂ;ﬂsij’ (4.3)
2((Va, 15,0, ) = —3ij [(ﬁﬁm — BuBu)+ D BBu(0n(gs ) + gg”fi‘u)gﬁu} , and

&((Vg;T)p;0k, 02) = 0.

b+n b+n
Setting v= ) vsds and w =) wsds, then vg =) v;03,, wg=>_ W,d,, Vg =>_V;0d;, and wg =) _ w;9;. With these
s=1 s=1 A A i i

conventions, from Display (4.3), we obtain

g(Ty,wg, Ty wg) = Z ViwiVjw;j ﬂzﬂ)%gf)“

ij
g(MyeVE, Ty WE) = Zv%w?ﬁzﬂfgfx,
07
g(Tweve, Twevp) = Zwlzvkvuﬁkﬁu”
A0
gy we. Ty,wp) = Y viwawy BBy,
A0
gy ve. Tw, W) = > Viwivawy BBy,
A0
g(TMyeve, Tyywp) = ZViWiV/\Wuﬂxﬁu,
bt (4.4)

g((VwgT)yeWE, vB) =0,
g((VyeDweWr, vg) =0,
g((Vwg Ty vE, wp) =0,
g((VvgT)wg VE, wp) =0,

(Vo Dw WE. VB) = — Y Wiv,v, [ﬂﬂm —BuBu+ Y BBu(0n(gs") + g;”fi‘v)gﬁu} :

i,

(Vg Dy Ve, WB) = — Y viw,wy, [ﬁm —BiBu+ Y BBu(dn(gs") + g;”f’;‘v)g,’iu} , and
[N v

(VoD VE. WB) = — ) Viw;vawy, [ﬂﬂm —BuBu+ Y BBu(0n(gs) + gl”;”fi‘v)gﬁu} :
i, v

Substituting these equalities from Display (4.4) into Display (4.2), we obtain the following result.

Proposition 4.5. Let (B x F, gg + B2gF) be as described above. Given x € B x F, consider an arbitrary 2-dimensional subspace P C
b+4n

TxM. Welet v, w € P C TxM be an arbitrary pair of linearly independent vectors, written in componentsasv =y vsds and w =
s=1

b+4n

> wsds. Then

s=1

10
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R(v,w,w, V) = Rg(Vg, Wg, Wg, VB) + B2RF(VF, Wg, WE, VF)
= Y iwj—vw)’B2 il
i<jh (4.5)

= Y WAV + VWA Wy — 2Viwiva wy) |:/3/3m +Y BB (0a(gs ") + gzvgvf‘ibv)gﬁﬂ} :
A v

Note that in the case of a product metric, 8 = 1. Since this makes each of the derivatives of 8 zero, Equation (4.5)
reduces to the well-known formula

R(v,w,w,v) =Rp(Vp, W, Wg, VB) + Rr(V§, Wg, WE, VF). (4.6)
4.2. The Sectional Curvature of the Specific Warped Product
We now restrict our attention to a metric of the form

g=dr’ + w(r, t)?dt* + B(r)*ds>

defined on the product manifold M = B x F where B = (0,bq) x (0,by) and F = S" for n > 2 with the standard round
metric, where 8 :(0,b1) — (0,00) and w : (0,bq) x (0,b2) — (0, 00) are smooth warping functions. We are interested in
computing the (p, n+ 2)-intermediate scalar curvatures of (M, g). We begin by computing some of the sectional curvatures
using our earlier work.

Lemma 4.6. The sectional curvatures of M = B x F as above, are given by

w, — w, 1— B2
K= -2 K= DT Kg= B = 12
w wp B

4.7
5 (4.7)

Proof. The metric on the base is given by gg = dr? + w(r, t)2dt2. We compute the Christoffel symbols and obtain

I, =0,
rt, =0,
F;t =0,
I, = —wor, (4.8)

Wt

rt, = —, and
tt w

rt = r
rt— ¢
w

Note that since we are dealing with coordinate vector fields, we have V; 0y = V;, 9. Thus,
Va, o =0,
Wy
Vi, 0 = —ww;dr + — 3¢, and
w
wr
Vi, 0r = — 0.
w
Since V;,9; =0, we have V;, V; .0, =0, and a calculation gives Vj Vj, 0; = %Zh. Therefore

Wrr 9

(R(3, 8r)0r, 3¢) = @ (4.9)

We now expand out the sums over the base directions r and ¢ in our Riemann curvature equation (4.5). Since we know
the form of the base metric and its inverse matrix, and that the function 8 only depends on r, so that §; = 0. Equation (4.5)
then simplifies to

11
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R(v,w,w, V)= Rg(Vp, Ws, Wg, VB) + B*RF (V, Wg, Wg, VF)
= Y (iwj—vwi)’B*B?
i<j,A
- Z(Wl‘zvrvr + V,'ZWrWr —2Viwiv;wy) [,BIBrr + ,3,3,11';]

1

2 2 ~t 2
- Z(Wi ViVe + ViWewe — 2viwivewe) BB T 0
i

2 2 -
= > Whveve + viwew, — 2viwivew) BB T,
i

2 2 =t 2
— Z(wi VeVe + ViWeWe — 2Viwivewe) BB 0.

1
Using the Christoffel symbols we computed in Display (4.8), we then obtain
R(v. W, w,v)=Rp(Vp, Wp. Wg. VB) + B*RF (VF. Wg. Wr. Up) — Y _(viw; — vjw;)?*B7
i<j

=D iwr = wiv) BB — Y (Vi — wive)* BBy

The fibers F are unit spheres of dimension at least 2 with Kg =1, so we have

A A A A ~ ) A A
Rf(VE, WE, WE, VE) = |[VF A WE|FKF(VE, WE)

2
= Z(Vin —vjwj)“ .

i<j

Similarly, the base B is two-dimensional and from Lemma 4.6 its sectional curvature is given by K, = —%. So using
the metric gg = dr? + w?dt?, we have

vy vy v ) vy
Rp(ve, wp, Wp, V) = |Vg A Wg|3Kp(VB, W)
2
= —wWrr (ViWr — VrWe)“.
Therefore, we get

RV, W, W, V) = 0w (vewr — viw)® + Y (viwj — viw)?B2(1 - B7)

< (4.10)
=Y iwr = wiv) BB — Y _(viwe — wive): By

We now compute the specific sectional curvatures when the vectors v and w are in the coordinate directions. First we
start with v =9; and w = 9;, so that v/ =1, v, = v =0 for all j directions in the fiber, w;, = w; =0, w; =1, and w; =0
for all j #i. Substituting this information into Equation (4.10), we get

Riiit = —(vew)* Brwwy = —row;. (411)

Next, let v =9, and w = 9;, so that v, =1, v, =v; =0 for all j directions in the fiber, w, =w; =0, w; =1, and w; =0
for all j #i. Substituting this information into Equation (4.10), we get

Rriir = —(vew)? BBrr = —BBrr- (412)

Finally, let v =0; and w = 9; for i # j so that v, = v¢ = w; = w; =0 and vy = wy =0, except for vi=1 and w; =1.
Since Kr =1, we have

Rijji = (viw )2 B2 (1 — B2 = B2(1 - B). (413)
The result now follows from Equations (4.9), (4.11), (4.12), and (4.13). O

12
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4.3. Intermediate Scalar Curvature

We will now use the sectional curvatures we have computed in the previous section to derive a formula for the (p,n+2)-
intermediate scalar curvatures of our metric. Throughout this section, the vectors v and w always represent a pair of unit
length orthogonal vectors. Let 0 < p <n and let P be a p-plane in TyM. Then P+ is a (n— p+2)-plane. Since the dimension
of P + T,S" can be at most the dimension of TyM,

dim(P* N T,S™) = dim(PL) + dim(TxS™) — dim(P* + T,S™)

>m—p+2)+n—n+2)

=n-p.
Therefore, we know that there are at least n — p linearly independent vectors in P+ tangent to the sphere.

Without loss of generality, we will assume that the coordinate vector fields on the sphere are 9i,...,3; where
01,...,0p—p are in P-+. Completing an orthogonal basis for P, we have at most two unit length orthogonal vectors v, w

that are not in T,S™. We consider three cases.

Case 1. The projections of v and w into T,S" span a O-dimensional subspace. This means that v and w do not have any
fiber component and must be spanned by 9, and d;. However, this means that 9, and 9: must be in PL and we can just
assume that these satisfy v =0, and w = %Bt. In particular, P has the orthogonal basis {9;, o, 91, ..., 91—p}. We compute
the (p,n + 2)-intermediate scalar curvature,

n—p n—p
spnt2(P) =27 Kij+2) Kri+2) Kei + 2Kt
i<j i=1 i=1
1- /‘32 Brr wrBr 2wy
=m-pn—p—1 L _2(n—p)— —2(n— - )
n—pn—-—p-1) 52 ( p)ﬂ ( p)wﬁ o
Case 2. The projections of v and w into TxS" span a 1-dimensional subspace. This subspace is orthogonal to the directions
91, ..., 0p—p, and so without loss of generality, we can assume that it is spanned by 0,_p,1. Setting k =n— p +1 for brevity,
this means that the vectors v and w have the form
Vi Vi Wi Wi
V=V + —0 + — W = Wy 0r + — 0 + — 0.
) B ) B

Using Equation (4.10), for 1 <i<n— p, we obtain

Brr 2 Browr
t

K(v,d) =R, 3, d,v) =vi(l—pB?) — va —v 5o and
B Bro
K(w,d)=R(w,d,d,w)=wi(l- g - wf% —w? ﬁ;wr.
Similarly,
2 Wrr 2,3rr 2,3ra)r
K(v,w)=R(v,w,w,Vv) =—(VeW; — V; W) ? — (Vigwr — Wy vy) F — (VW — Wi ve) Bw .

The (p,n + 2)-intermediate scalar curvature is then given by

n—p n—p
spn2(P) =2 Kij+2) K(v.3)+2)  K(w.d) +2K(v, w)

i<j i=1 i—1
1— 2
=n—pn-—-p-1) ﬂzﬂr
_ 204 a2y 2P o Bror
+2(n—p) (Vk(] ﬂr) Vi B Vi Bw )
_ 201 _ B2\ _ 2@ o 2 Brox
+2(n—p) (Wk(l g - witl - wil? )
2 ((VtWr —vew? 2T 4 (vewy — Wer)zﬁ + (Viewe — wive)® ﬂrwr)
@ B Bw
1-p7

=m—-p)n—-p-1 52

13
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T rr
+2(n—p) ((v,% +whH(1 - pH) — (vi+ w?)% —(vi+ w?)ﬁﬁw )

w w
-2 ((VtWr — Vw2 — + (vgwy — Wer)Z& + (vigwe — WkVt)zh) .
w B Bw
Case 3. The projections of v and w onto T,S" span a 2-dimensional subspace. This subspace is orthogonal to the directions

91, ..., 0p—p, and so without loss of generality, we can assume that it is spanned by dy_p41 and 9,_p42. Setting k=n—p+1
so that k+1=n — p + 2, this means that the vectors v and w have the form

v 1% 1% w w w
V= Vedb b b e, W= Wil ik e

B B B B

Using Equation (4.10), for 1 <i<n— p, we get

Oey1-

K(v,8) =R(v,8.8,v) = (v}+vi)(1-pH— y2br 2B
B Bw
w;

K(w, 3)=R(w,d;, 8, w) = (Wg +wi,)(1— B2 - wf% —w? ﬂéwr.

Furthermore, we have

[6)]
K(v,w) =RV, w, w, V) = —(vew; — vrwt)zg + (VWi 1 — Vi wi)* (1 — B2)

2 2 ﬂrr
— [(Viewr — wivie)® + (Vi Wr — Wi V)] —

B

2 2 Brox
— [(Viwe — Wive)® + (Vg1 We — Wi qVe)?] .

Bw

The (p,n + 2)-intermediate scalar curvature is then given by

n—p n—p
spnt2(P) =2 Kij+2> K(v,0) +2 ) K(w,d) +2K(v, w)

i<j i=1 i=1

1-47

ﬂZ
T r(Wr
+2(n—p) <(v,§ +Vi (=B - vg% _ V?ﬂﬂw >
Prr Bror
+2(n—p) ((wﬁ +wi -8 - ny —w? = )

2 Wrr 2 2
+ 2|:_(VtWr — VW) ”y + (VeWig1 — Vi wi)“ (1 — B7)

=m-p)n—p-1)

B
— [(viewr — wive)? + (Vg 1wy — Wk+lVr)2]%

Brw,
— [(viewe — wgve)? 4+ (Vi We — Wi ve) 21— |

Bw

Since we know the warping functions 8 and w are strictly positive by definition, and most coefficients in our final
formulas for the intermediate scalar curvatures involve nonnegative squared terms, we summarize these three cases in the
following proposition.

Proposition 4.7. Let M = B x F with B = (0, by) x (0, by) and F = S", having a metric of the form
g =dr* + o(r, t)2dt*> + B(r)%ds?

where B : (0, B1) — (0,00) and w : (0, b1) x (0, by) — (0, c0) are smooth warping functions. If x € M and P is a p-plane in TyM for

p €10, ---,n}, then the (p, n + 2)-intermediate scalar curvature of P has the form
1-p2 1) ®
spnt2(P)=@m—p)(n—p—1) ff + A= P 2O 2P pafren
B w B Bw

for some bounded real-valued functions A, B, C and D depending only on the plane P.

14
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5. Standard Metrics on the Sphere and the Disk

In this section we recall some well known metrics on the disk and sphere. In particular, we recall the so-called torpedo
and boot metrics. Such metrics are described in detail in section 3 of [32] although in the context of positive scalar curvature.
Here we will establish conditions whereby these metrics have positive (p, n)-intermediate scalar curvature for appropriate
pef{0,1,---n—2}.

5.1. Introducing the Metrics

Before we get into a formal construction of the metrics, we give a very brief description with the aid of Figs. 5.1 and
5.2. An important point to note is that each space will be topologically the disk D"*2, but each will be distinguished by its
metric.

A (8, 1)-torpedo metric on a disk, D"*2, (where n > 0) is metriccally a cylinder, of length A, of a round (n + 1)-sphere
of radius § near the boundary of the disk, before closing up as a round (n + 2)-dimensional hemisphere at the center. We
denote such a metric, g?ots (8), and it is depicted in the first picture in Fig. 5.1.

Restricting such a metric to an upper half-disk D’fz results in a half-(§, 1)-torpedo metric, denoted g?o“;g 4 (8),. This is the

second picture in Fig. 5.1.

By carefully gluing to a cylinder of torpedo metrics, gﬁfr; (8)5 +dt?, on D" x [0, 1] a half-torpedo metric, g{‘jrng(S)A,
n+2

on D"*? along a D"*! contained in the boundary of D", we obtain a metric denoted g[--2(8);,.1, on the manifold with

corners, Dg':rreztch, obtained by attaching and smoothing the underlying manifolds D’}fz and D"t x [0, 1]. We refer to the

metric ght2(8);,., as the toe metric for its shape and its role in the next construction. This is the third picture in Fig. 5.1.

A

(D:t?e%cm 9&22 (6)/\1 A2 )

Fig. 5.1. Various metrics on the disk D"*2,

(D2, g2(5)5) (D72, gmt2, (6))

Finally, we introduce an (n + 2)-dimensional §-boot metric. Briefly, this metric is constructed in 4 steps as follows.

Step 1. Beginning with some torpedo metric, gﬁfrg (8),, trace out a cylinder of torpedo metrics before bending the cylinder

around an angle of % to finish as a Riemannian cylinder perpendicular to the first part of the cylinder in the direction
suggested by the third image of Fig. 5.1. The resulting object has two cylindrical ends with different metrics. One is of the

form dr? + g?(;;; (8); and the other dt? + g{’otg (8);, where r and t are orthogonal coordinates depicted in Fig. 5.2.

Step 2. In order to control any negative sectional curvatures arising from the bending itself, we control the bending with a
parameter A > 0. Essentially, the bending takes place along a quarter-circle of radius A > 0. A large choice of A ensures
that negative curvatures arising from the bending are small.

Step 3. Away from the “caps” of the torpedos, this metric takes the form dr? + dt? +82dsﬁ. This part can easily be extended
to incorporate the corner depicted in the third image of Fig. 5.1 and so that the necks of the torpedo “ends” have any
desired lengths, I; and l4. These distances along with A determine the distances [, and I3, which are pictured in Fig. 5.2.

Step 4. Finally, we smoothly “cap-off” the cylindrical end which takes the form dt% + g?o;g (8)1,, by attaching a half-torpedo

n+2

Metric, ggrp4 (8- This is the so-called “toe” of the boot metric.

g(j:ozt(S)Aj where A > 0 is the bending constant discussed above and 1= (lh,Ib,13,1y) €

R‘}r determines the various neck-lengths. While the choices of l; and I4 are arbitrary, the constants I and [3, as mentioned
above, are determined by A,l; and la.

In the remainder of this section we will establish some results about the (p, n+ 2)-intermediate scalar curvature of these
metrics.

The resulting metric is denoted g
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Fig. 5.2. The boot metric g2 () AR

5.2. The Torpedo Metric

We consider a pair of smooth functions «, 8 : [0, b] — [0, c0), where b > 0, which satisfy the following conditions.

b
r 2
a(r) =ag —/,/l — Br(u)?du, where oag=1 +/,/l — Br(u)2du, and (5.1)
0 0

(i B@) >0, forallr € (0,b);
(i) BO)=0, B(0)=1, B€*M(0)=0, and; (5.2)
(i) Bb)=0, Brb)y=—1, BEvV(b)=0.

The important point to note here is that & and B satisfy (c;;)? + (8-)2 = 1. In particular, if 8(r) =sinr on (0, b) = (0, 7),
then a(r) =1+ cosr. We now consider the map, Fg, defined by:

Fg:(0,b) x S"™1 — R™2 x R,
r.0) — (B0, a(r)),

and recall Proposition 3.1 of [32].

Proposition 5.1. [32] For any smooth functions «, 8 : [0, b] — [0, co) satisfying the conditions laid out in Displays (5.2) and (5.1), the
map Fg above is an embedding.

Pulling back the Euclidean metric on R"*? x R via Fg induces a metric, gg, which we compute to be
gp =Fdx} +dx5+ - +dx2, +dx )
=dr’* + B(r)’ds; 4.
where ds%Jrl is the standard round metric of radius 1 on $™*1, The following proposition is proved in Chapter 1, Section 3.4

of Petersen [26].

Proposition 5.2. [26] Provided the smooth function g : [0, b] — [0, co) satisfies the conditions laid out in Display (5.2), the metric gg
extends uniquely to a rotationally symmetric metric on S"*2. Furthermore, if we drop condition (iii) of Display (5.2) and simply insist
that B(b) > 0, this metric is now a smooth rotationally symmetric metric on the disk D"+2.

In particular, by setting 8(r) =é§sin § for r € [0, 8], we obtain for gg the standard round metric of radius § on sn+2,
Let 1 : R — [0, 1] be the function

0 r<o
—1/r
pry={——= re©1)
e 1/rqe” T-1
1 r>1
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s as

0 oI 5T+ A S

Fig. 5.3. A torpedo function 7; , and the resulting torpedo metric gfotg (8), on the disk.

that smoothly transitions from 0 to 1. For any § > 0 and A > 0, let 15, : [0, 5% + A] — [0, 1] be the smooth function with
derivative

N5, 4r
or (r)_cos(s)u <2 — E)

This function satisfies conditions (i) and (ii) of (5.2) as well as the following:

(i) 15,2 (r) =8sin§ when r <8%;
(i) 15,,(r) = C8 when r > §3 for C ~0.916;

(iii) 75, (r) <8sing and "'7‘5’ (r)<cosj for 8% <r<48%
(iv) & (15.() <0; and
(v) il SSBr(3Z) =0 for all k >

The function 7, is known as a torpedo function. As it satisfies conditions (i) and (ii) of Display (5.2) and has nM(% +
A) > 0, it gives rise to a smooth metric on D"*2, The resulting metric is called a torpedo metric of radius § and neck length X

(or (8, A)-torpedo metric). It is denoted g?gg (8);. and given by the formula:

gt2(8), = dr? + s . (N2ds?, .

where r € [0, ” 8 4 A]. Such a metric is rotationally symmetric metric on the disk D"*2 and roughly, a round hemisphere of

radius § near the center of the disk and takes a radius 8 cylindrical form on the annular region where r € [”5 ”‘3 + A]; see
Fig. 5.3.

Proposition 5.3. Suppose n > 1 and p satisfies 0 < p <n — 1. For any § > 0, A > 0 the metric g{'&;ﬁ(é)x has positive (p,n + 2)-

intermediate scalar curvature. Moreover, this curvature can be bounded below with an arbitrarily large positive constant by choosing
$ sufficiently small.

Proof. Excluding the point at r =0, the metric gg;;lf (8), is the warped product metric dr? +,82dsn+1, where 8 =1s,,. Recall

the Riemann curvatures of a warped product from Equation (4.5). Here the base is the one-dimensional B = (0, Z%) and the
fibers are (n + 1)-spheres F = $"*1 with constant sectional curvature equal to 1. Therefore Equation (4.5) reduces to

R, w,w,v) =Y (viw; —v;wp?B2(1- (B)?) - Z(v wi — viw;)? BB
i<j
If P is a p-plane in TxM, then PL has dimension n — p + 2. Since the dimension of P + T,S™! can be at most the
dimension of TyM
dim(P+ N T,S"™ 1) = dim(P1) + dim(T,S™*1) — dim(PL 4 T,S"*1)
>m—p+2)+n+1)—n+2)
=n—p+1.
Therefore, we have two cases.

Case 1. The projection of P+ into TxM has dimension n — p + 1. This means there is a direction in P+ orthogonal to TxS"*1,
and so we can take {d1,...,9;—p+1,0r} as an orthonormal basis for P+ where 01,...,0p—py1 are tangent to the sphere.
Therefore the (p,n + 2)-intermediate curvature is given by

n—p+1 n—p+1

spa2(P)= ) K@.0)+2 ) K(@.d)
i,j=1 i=1 (5.3)
—@m-p+ 10— p) ’3r —2(n —p+1>%.
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Case 2. The projection of P into TxS™*! has dimension n— p+2. Then we can take an orthonormal basis {31, ..., On—p+1, v}
for P+ where 91, ..., dn—p+1 are tangent to the sphere. We can write v =vy_p420;—py2+Vvr0r where dp_p2 is a unit vector
in T,S™1 orthogonal to the other 8;. Therefore the (p,n + 2)-intermediate sectional curvature is given by
n—p+1 n—p+1
spnt2(P)=Y K@.9)+2 Y K(@.v)
i,j=1 i=1
ﬂr (5.4)

(n—p+1)(n—p)

B
w240V - ) - h ).
Since 8 > 0, ,Brz <1, and B <0, we have that — ﬁ” >0and 1— ,Br 0, so the second terms of Equations (5.3) and (5.4)

1-g2
ﬁZ

71:_8
4 ’

are nonnegative. Consider K;j = .For0<r< we have B(r)=ns,()=4§ sin% and B'(r) = cos § Therefore,

K 1— cos?(5 ) sin? (5) 1
Y7 52sin? 3) stm( ) 52

On the other hand, when r> ” , we have B(r) =ns,(r) =Cé and B-(r) = 0. Hence in this case, as C < 1, we immediately

95,2

zs s B2 (r) < cos §, then

1 . -
have K;j; = o2 > 3 . In the transmon region 7 <1 < 57, since 7, (r) < dsiny and

1 —cosz(g) 1

U7 s2sin?() 8%

This means that as long as r > 0, the second terms of Equations (5.3) and (5.4) are non-negative, while the first terms
consist of Kj;j > slz Since p <n—1, then n— p > 0, and so the first terms are both strictly positive and can be bounded
below by an arbitrarily large positive constant by choosing § sufficiently small.

This leaves just the point at r = 0. Since B(r) = 15, (1) = Ssing when r is near 0, and the sectional curvature is con-
tinuous, we can compute the curvature at this point using limits. Note that 8(0) =0, B:(0) =1, and B;+(0) = 0. Since

Brrr (1) = 52 cos s for r near 0, we also have B(0) = . Then we apply L'Hopital’s rule, and we get the sectional
curvatures
1—(B)? 2 1
lim L= Py 2P iy Py P 1
r—0  f2 r—0 288 r—0 B >0 B 82
Hence at r =0, all sectional curvatures are in fact equal to the positive value ;—2 Therefore sp n12(P) =2(n —p +2)(n —

p+ 1)5l2 is positive, so that g?otg (8),. has positive (p, n+ 2)-intermediate scalar curvature that can be bounded below by an

arbitrarily large positive constant by choosing § sufficiently small. O

We also need to consider the product of a torpedo metric with an interval in the construction of the boot metric. The
proof of the following proposition follows directly from Proposition 4.7 by setting w(r,t) =1 and B = (0, by) x (0, 1).

Proposition 5.4. Suppose n > 1 and p satisfies 0 < p < n — 2. For any § > 0, > > 0 the metric g?otl} (8),. + dt? on the product
D"t1 % (0, 1) has positive (p, n + 2)-intermediate scalar curvature.

5.3. The Toe Metric

In this section we discuss the construction of the toe metric glht2(8);, 1,. In Lemma 2.1 of Walsh [31] it is shown that
the metric smoothing, necessary in constructing g?;gz(a)M,M, can be done so as to preserve positive scalar curvature. In
the following Lemma, we show that the construction described in [31] actually preserves positive (p,n + 2)-curvature for
p<n—2.

Lemma 5.5. Suppose n > 2 and 0 < p < n — 2. For any §, A1, A2 > 0, the metric g?otz (8)1.4,, has positive (p,n + 2)-curvature.

Moreover, this curvature can be bounded below with an arbitrarily large positive constant by choosing & sufficiently small.

Proof. The strategy of proof involves describing the metric as in Lemma 2.1 of [31] and then computing its (p,n + 2)-
curvature. Thus, we regard gih-%(8);,., as obtained by, firstly, tracing out a cylinder of torpedo metrics, g?otg (6), in one
direction before, secondly, bending by an angle of % to finish with another cylinder in an orthogonal direction. It is then
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easy to extend the “rectangular” part of this metric which takes the form dr? + dt? + §%ds? to obtain any desired pair of
neck-lengths, A1, Ay > 0.
Along the region where the bending has taken place, this metric takes the form

gtoe (8))‘1 A2 _dr +w(r t) dt +ﬂ(r) dsnv

for certain smooth warping functions w : [0, b] x [—2, % +2]—[1,00) and B:[0,b] — [0, co0). The function g is a torpedo
function and so we can assume, for all r € [0, b], B(r) = ns5.,(r) as in Section 5.2, for some appropriate neck-length . Note
that, there is a corresponding real-valued function, ¢, on [0, b] which satisfies the Condition (5.1) above. The other warping
function, w, is now constructed to satisfy the following conditions:

1 te[-2,—1]
w(=t) + (1 — p(=t)a(r) te[-1,0]

o, t)={a) tel0, %]
pt=5+A—pt—SNa@ telf, 7 +1]
1 telZ+1,%+2],

where 1 :[0,1] — [0, 1] is a cut-off function satisfying (t) =0 when t is near 0, u(t) =1 when t is near 1 and ©/(t) >0
for all t € [0, 1].

Given the form of the metric, recall from Proposition 4.7, the (p, n+ 2)-curvatures, s, n42(P), of this metric for a p-plane
P in the tangent space have the form

— B? 21 a2 p2@r  oBr o Bror
52 +A“(1-Br) Ba) Cﬂ Dﬂa)’

for some numbers A, B, C, and D depending on the plane P.

Since p < n — 2, the coefficient on the first term is non-zero. Positivity of this term follows from the definition of g
as a §-torpedo function, applying L'Hopital’s rule at r = 0. Indeed, as in Proposition 5.3, this term can be made arbitrarily
large by choosing § > 0 sufficiently small. Similarly, the second term is nonnegative. The remaining terms involve either
—wyfBr, —wrr Or — By By construction, wyr and B, are both non-positive. Hence, the corresponding terms above are also
non-negative. Finally, w; is a non-negative constant multiple of «;. Moreover, when «, and B, are non-zero, they have
opposite signs, so the remaining terms above are also non-negative. This completes the proof. O

1
Spnt2(P)=m—p)n—p—1)

5.4. The Boot Metric

We now consider, gboot((S) A the boot metric introduced above. As our only concern here is establishing conditions for
positivity of the (p, n+2)-curvature of such a metric, the values of the particular components of the vector I are unimportant
and so we will suppress them from the notation, writing the metric simply as ggjozt(S) A. This metric can be regarded as
consisting of four pieces:

2 2
g?oie2 0)) on Ry = DZ:r_etch
Shaia(®a on Ry = D" x [0,1]
Shaa®)a = Bi“fi (5.5)

wrp (8) + dt? on R3 = D" x [0,1]
dr? 4 dt?> + 82ds2  on R4 = D? x S",

as depicted in Fig. 5.4 below.

While the first, second and fourth components of this metric above are clearly defined, the third component ggznzd(é) A
requires some description. A detailed account of this construction is given in Section 5 of [32] and so we will be brief.
As mentioned above, the metric component, gg:nzd (8)a, is obtained by bending a cylinder of torpedo metrics g?;;g (8) +dt?
around a quarter circle. Importantly, the bend is in the opposite direction to that employed in Lemma 5.5, and, unlike in
that case creates negative curvature. Provided we perform the bending slowly enough, that is provided the quarter circle
has sufficiently large radius, we can minimize such negative curvature. The parameter A is the radius of this quarter circle.
In section 5, page 892, of [32], the metric gg:nzd (8)a is defined as follows:
gL (8)p 1= dr? + wa(r, 0)2dE* + B(r)*ds?,

where r € [0, b], t € [-3, % + 3]. Here B8 :[0,b] — [0, 00) is defined as:

Br)=ns(b —r),
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dt* + gist (6)

Ry = D"l x|

42 (¢
gl’;:;]d (() ) A

Ry = DI't2 Ry~ Dtl x T

stretch

~m+2 (£

Ry =~ D? x S» ,/rmp(())

Fig. 5.4. The various components of the boot metric, to the left are the “assembly instructions” for the boot and to the right is the assembled boot.

with respect to a torpedo function 7; as defined in Equation 5.2, where we suppress the neck length A as it is unimportant.
The corresponding smooth function «, is constructed from g to satisfy a? + 82 =1, as defined in Equation (5.1). The function

wa : [0, b] x [—3,%+3] — > [1,00)

is now defined to satisfy the following properties:

()
1 if-3<t< -2
3 1
A if—5 <t <—3
wp(r, )= 1A+a@) iftel0, ]
A ifZ+1<e<Z+3
1 ifZ+2<t<% +3;

(il) wa(r,t) = A —max{la(r)| :r €[0,b]} when t € [-3, T + 3];

.., 0w

(i) =2 (r,t)=0 whente[-3,-31U[Z + 1. Z +3];

) a(k)WA o® o

(iv) W(r,t) < W(r) forall ke {0,1,2,---}; and
32WA

V) =5 <0

In Fig. 5.5 we provide a schematic description of this function on its rectangular domain [0, b] x [-3, £ + 3], to aid the
reader. The white regions in this picture indicate the smooth transition by way of a cut-off function in exactly the spirit of
the cut-off function u used when defining the warping function w in the proof of Lemma 5.5.

b

r 1 A A+ or) A 1

Fig. 5.5. The function w,.

Lemma 5.6. Forn > 2 and any § > 0 there is a positive constant A for which the metric gg;fd((S)A has positive (p, n+ 2)-intermediate
scalar curvature forall p € {0, --- ,n — 2}.
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Proof. Making use of Proposition 4.7, with w replaced by w,, we obtain the following formula for the intermediate scalar
curvatures Sp n12(P) for some P, a p-dimensional subspace of the tangent space.

1- B

spasa(P) = (1= p)n—p = D + 431 = f)? - p2 @ _ 2l pa PrlOn)r

WA B Bwa
where A, B, C, and D are real valued functions dependent on the plane P, as defined in Proposition 4.7.

As with the proof of Lemma 5.5, the condition on p and the fact that 8 is a torpedo function, albeit pointing in the
opposite direction, means that the first term is positive and the second term is nonnegative. As B,y <0 and (wx )y <0, the
third and fourth terms are also nonnegative.

Unlike the case of Lemma 5.5 however, we do not get such a nice relationship between the signs of the first derivatives
of B and «. This is because B, > 0 in this case. Thus, there may be some negativity arising from the % term. This

BLOA

negativity arises only in the region where t € [—%, % + %], since <

this negativity can be minimized.
The first potential problem is that 8 tends to zero as r tends to zero. However, on this region (t € [—%, % + %]), we have
wp = A+ o. When r is near zero, o and g satisfy

=0 off this region. By choosing A sufficiently large,

r . T
o) =34 cos(g) and B(r) =6 sm(g).
Thus when r is near zero, the quotient

(WA)r _ 1

B8
The functions «, 8, and their derivatives, all of which are bounded, are fixed and independent of A. Since the factor of
D? in this term depends continuously on the choice of plane P which varies over the compact Grassmannian, Grp(TR>),
there is some choice of A sufficiently large to minimize the negative impact of these terms and ensure overall positivity of
Spnt2(P). O

n+2

Corollary 5.7. For n > 2 and any & > 0 there is a positive constant, A, for which the boot metric g+

intermediate scalar curvature forall p € {0, --- ,n — 2}.

(8) o has positive (p,n + 2)-

Proof. Here we simply utilize the description in Equation (5.5), of gggft

metric g?o*gz(S) has positive (p, n+ 2)-intermediate scalar curvature by Lemma 5.5. On R, the metric g

(p, n + 2)-intermediate scalar curvature by Lemma 5.6. On Rs3, the metric dt® + gﬁ;{;
scalar curvature by Proposition 5.4.
Finally, on R4, we have the metric dr? +dt? + 82ds2. By Proposition 4.7, using @ =1 and 8 = 8, we have for any p-plane,

(8)a and its four component metrics. On Rq, the
g;zd(S)A has positive
(8) has positive (p,n + 2)-intermediate

Spnt2(P) = —p)(n—p—1)+A?

for some function A of the plane P. Since n — p > 2, this is positive for all planes P so we have positive (p,n + 2)-
intermediate scalar curvature on R3. O

5.5. The Product of the Boot with a Sphere

The next proposition generalizes the result of Corollary 5.7 to the product of a boot metric and a round sphere.

Proposition 5.8. For n > 2, m > 0 and any § > 0, there is a positive constant A for which the product metric ggjozt(a) A+ dsﬁ1 has
positive (p, n + m + 2)-intermediate scalar curvature forall p € {0, ..., n —2}.

n+2

Proof. Let M be the product B x S™ where B is a disk with a boot metric g+

some m > 0 with the standard product metric

(8)a and S™ is the unit round sphere for

gl2(8)a +ds?

Let p € {0, ...,n—2} so that the boot (B, ggg“ozt(S)A) has positive (p, n—+2)-intermediate scalar curvature for large enough

A.If xe M and P is a p-plane in T,M, then the orthogonal complement P+ has dimension n 4 m + 2 — p. Since the sum
P+ + TyB is at most the entire tangent space TxM, we have

dim(P* N TyB) = dim(P1) 4 dim(TxB) — dim(P* + TyB)
>m+m+2-p)+n+2)—n+m+2)
=n+2-p.

21



M. Burkemper, C. Searle and M. Walsh Journal of Geometry and Physics 181 (2022) 104625

Therefore, we can take an orthonormal basis for PL consisting of vectors {e1,...,enp2—p} from TyB and {vq,...,vm}
the other m vectors. Therefore the (p,n + m + 2)-intermediate scalar curvature of P is
spimi2(P) =Y Keiep) +2) K(ei,vj) + Y K(vi, v)). (5.6)
i,j i,j ij

If we denote the sectional curvatures of the boot and sphere by Kz and Ks respectively, and we have orthonormal
vectors v =vEB +v5 and w = w8 + w5 in TyM where vB, w¥ are tangent to the boot and v, w® are tangent to the sphere,
then recall the formula,

2 2
K(v, w) = ‘vB A wB‘ Kg(vE, wh) + ‘vs A ws‘ Ks(vS, wb).
For the first summand of Equation (5.6), since all of the 9; are entirely in TyB and are still orthonormal there,

Y Keiep) =) Kp(ei,ej)) =sns2,p(Q),
ij ij

where Q is the p-plane in TB that is the orthogonal complement of span({e1, ..., en42-p}). As a (p,n + 2)-curvature of
the boot, so long as we choose a large enough A, this summand is strictly positive.
Moving on to the second summand of Equation (5.6), since v; is orthogonal to e;, which is already contained in TxB, the

projection vB remains orthogonal to e;. Therefore,

J
32 B B2 B
K(ei,vj)=’emvj‘ Kg(ei, vi) = llv;II“Kp(ei, vy).

For the third summand, the only immediate simplification we can make is to use the fact that the sphere has constant
curvature equal to 1,

2 2
K(vi,vj) = vB/\vB‘ I(B(vf,v VS/\VS-‘ Ks(VlS,VJS-)

i j

B B
=v; /\vj‘ I(B(vl,

S
Vi /\V]’

The second term of this only adds positivity, so we focus on the first term. That is, we need to deal with the sectional

curvatures of the boot Kp(v, w). There are four cases depending on where the projection of the point x is in Fig. 5.4.

However by construction, Ry, R3, and R4 have nonnegative sectional curvature, so when the projection of x is in any of

these regions, we have that the first summand of Equation (5.6) is strictly positive, while the other two are nonnegative.

Therefore sp nym+2(P) > 0 in these cases. All that remains is to consider the case when x projects into the R, region.
Since the metric on Ry is given by

gg:nzd((S)A =dr? + wa(r,H)%dt? + (r)%ds2,
we have from Equation (4.10), with @ = wy,

ZKB(e;,V) Z” 3”2[ (etvr—ervt)z(ci;xl—i—Z(ekvz—egvk)z(l—ﬂrz)

A k<t

- Z(ekvr erVk)2 B Z(Ekvt — €th)2 ﬂr(wj\\)r]’

k p
and
B B 1 2 (@A) 2 2
DKl Wi =D o | —(viwj — Vw2 4y (vewe — vewi)* (1 - 67)
ij iy i Awjl k=t
=Y (kwr — v’ = il — > (vkwe — Ver)ZM}
P B = Bwa

Incorporating these two expressions into Equation (5.6), we have
spaim2(P) =Y Kg(ei e)) +22 IV Kp(ei v¥) + Z v AwWEPKp(vE wE) +3 " v A wsP?
y i Y i

+B(1- ) - Zﬁg—Dz—ﬂrézA)WEZ,
A

=Spn+2(Q) — A? (QZ;\A)”
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for real-valued functions A, B, C, D, E ranging over the choice of plane P. As in the proof of Lemma 5.6, the second, third,
and fourth terms are all nonnegative, as is the sixth term. The first term is the (p,n + 2)-intermediate scalar curvature of
the boot metric, and by Corollary 5.7 this is positive provided we choose A large enough.

However, as in the proof of Lemma 5.6 we can make sure that the negativity contributed by the fifth term is bounded,
and so ensure overall positivity of sp y4m2(P). O

6. Proof of Theorem A
6.1. The Surgery Theorem of [16] and [27] for Positive (p, n)-Intermediate Scalar Curvature

We begin with a smooth manifold M of dimension n. Suppose ¢ : S x Dt — M is an embedding, where n=k+ ¢ + 1.
Recall that a surgery on M, with respect to the embedding ¢, is the construction of a manifold, My obtained by removing
the image of ¢ from M and using the restricted map ¢|g,s¢ to attach D¥*1 % St along the common boundary.

The trace of the surgery on ¢ is the cobordism between M and My, obtained by gluing the cylinder M x [0, 1] to the
disk product D¥*1 x D¢+1 via the embedding ¢. This is done by attaching M x {1} to the boundary component Sk x D¢*1
through the composition io ¢ : S¥ x Dt1 — M x {1} where i : M — M x {1} is the inclusion i(x) = (x, 1). After appropriate
smoothing, we obtain the elementary cobordism M.

Returning to the embedding, ¢, we consider the family of rescaling maps

Op: sk x pttl . sk ptl
(*,y) — (x, pY),
where p € (0, 1]. We then set ¢, := ¢ 00, and N, :=¢,(S¥ x D*+1) and N := Nj. Thus, for any metric g on M and any

p e (0,1], d>j;g is the metric obtained by taking the restriction metric g|n,, pulling it back via ¢ to obtain the metric ¢*g|n,

on Sk x D*1(p) and finally, via the obvious rescaling map o, pulling it back to obtain a metric on Sk x D¢+,
The positive scalar curvature Surgery Theorem of [16] and [27] was generalized for positive (p,n)-intermediate scalar
curvature in [21]. At its heart is the following theorem from [21].

Theorem 6.1. [21] Let M be a smooth n-dimensional manifold and ¢ : S¥ x D! — M an embedding with k + £ + 1 = n. We further
assumethat £ >2and p € {0, 1, -- - , £ — 2}. Then for any metric g on M with positive (p, n)-intermediate scalar curvature, there is a
metric ggq With positive (p, n)-intermediate scalar curvature such that:

1. In the neighborhood N1/, = ¢1/2(Sk x DY), gq pulls back to the metric

O} 285ta = ds, + Ziorp: and

2. Outside N = ¢(Sk x D), ggd = g.

The metric gsq is thus prepared for surgery or standardized on N1,;. By removing part of the standard piece taking the form

torp

and replacing it with
(DM xS, girp +ds?),

we obtain a metric g’ on M’ with positive (p, n)-intermediate scalar curvature.

In order to prove our main theorem, we require one more fact: that the metrics g and gsq above are (sp 5 > 0)-isotopic.
Proofs of this fact for the case of positive scalar curvature, that is when p = 0, can be found in Theorem 2.3 of [30] and
in Ebert and Frenck [8]. More recently, Kordass [19], proved this fact for a variety of general curvature conditions including
positive (p, n)-intermediate scalar curvature. In particular, Theorem 3.1 from [19], which we state below, is a special case of
his results.

Lemma 6.2. [19] Let M be a smooth n-dimensional manifold and let ¢ : S¥ x D1 — M be an embedding withk + ¢ +1=n, £>2
and p € {0, 1, --- , £ — 2}. Then for any metric g on M with positive (p, n)-intermediate scalar curvature, there is an isotopy through
(sp,n > 0)-metrics, g, t € [0, 1] which satisfies the following conditions:

1. glwmn = glmn forall t €[0, 1), and
2. go = g and g1 = gsd, Where ggq is the metric obtained from g by Theorem 6.1 above and satisfies

¢T/2gstd = ds% + gfotpl)'
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We will now make use of this lemma to prove Theorem A, which we restate for the sake of the reader.

Theorem 6.3. Let M be a smooth n-dimensional manifold, ¢ : S¥ x Dt*1 — M, a smooth embedding, and {I\7l¢; M, My}, the trace of
the surgery on ¢. Suppose that £ > 2 and p € {0, 1, - -- £ — 2}. Then for any metric g on M with positive (p, n)-intermediate scalar
curvature, there are metrics g4 on My and g¢ on My satisfying:

1. The metrics g and g, have respectively positive (p, n) and (p, n + 1)-intermediate scalar curvature on My and 1\7l¢, and
2. Near the boundary components M and My of My, g4 takes the form of the respective product metrics gy = g + dt? and 8 =
8y +dt2.

Proof. We begin by employing Lemma 6.2 to obtain an isotopy, g; for t € [0, 1], between go = g and g = g4, as defined
above. Corollary 3.3 gives us a concordance, g, on a cylinder M x [0, L + 2] for some L > 0 which satisfies the following
conditions:

Zlmxo)=g+dt* and  Zlmx(i1.1+2) = Gsia + L.

This concordance is schematically depicted in Fig. 6.1.

£+1
+ gtorp

Fig. 6.1. The concordance g.

+2
oot

positive (p,n + 1)-curvature for p € {0, --- , £ — 2}. Recall here that [ is a quadruple (I1,l,13,1s) determining the lengths
of various sides of the boot metric, see Fig. 5.2. We set Iy =14 = 1. Recall that I, and I3 depend on A and may be large,
so without loss of generality, we may assume that both are greater than 1. To simplify notation, we refer to this metric
henceforth as gf 2.

We next extend the collar M x [L+1,L+2] to M x [L+1,L+1+13] and extend the metric g as gsq -+dt? on this larger
cylinder. Consider the restriction of the metric, g, to the region, N1/, x [L 41, L +13]. Here, g takes the form

Consider a boot metric, gﬁ (1), j» as depicted in Fig. 5.2, now with § = 1. By Corollary 5.7, we may choose A to ensure

- 041
g|N1/2X[L+1,L+1+l3] = dsﬁ + gt(ﬁp + dt?.
We replace g|N1/2XlL+1,L+1+l3J on Nys2 x [L+1, L+ 1+I3] with the metric

2 042
dsk + gboot’

as depicted in Fig. 6.2, to obtain the metric

&lMx[0,L4+1] onM x [0, L+ 1],
8boot = | &l(M\N ) x[L+1.L+1+15] O (M\ N1j2) x [L+1,L+1+1I3],and
ds? + gpio onNyjz x [L+1,L+1+I5].

2 042
dsk + Iboot

Fig. 6.2. The metric resulting from “attaching boots”, gpgot-

This metric has positive (p,n + 1)-curvature for all p € {0,1,---£ — 2}. In particular, on N1, x [L 413, L 4+ 1+ 3], this
metric takes the form of a product gsq,, + dt2, where
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Zsta = ds + Ziorp (D,

In other words, this metric is a cylinder of standard metrics with torpedo necks stretched from length 1 to length [,. The
metric ghoot 1S readymade for surgery.
e+1

Returning to the region, Ny, x [L +1,L+1+I3], where the metric gpoo takes the form ds,% + 8poor We recall that
the boot factor gf;;;}t takes the form of a toe, gf,;la), see Fig. 5.4, on a subregion. As depicted in Fig. 6.3, we replace

ds? + (k% (1) with gfot; + g{orp by “cutting off the toes” and introducing a “handle”.

k+1 £+1
gtorp + gtorp

Fig. 6.3. Replacing the toes with a handle.

After gluing on this handle, we obtain the desired metric g4 on the trace I\7l¢ of the surgery as shown in Fig. 6.4.

Fig. 6.4. The space (I\?Lp, g4) obtained as the trace of the surgery.

This completes the proof of Theorem A. O

7. The Proof of Theorem B

The proof of Theorem B follows closely that of [5] for the case of positive scalar curvature. There is also a very readable
summary of the method of [5] in section 4.2 of [29]. We will therefore provide only the relevant information and refer the
reader to these sources for further detail. As before, we restate the theorem to aid the reader.

Theorem 7.1. Let M be a smooth, closed, spin manifold of dimension 4n — 1,n > 2, which admits an (sp 4,1 > 0)-curvature metric
for some p € {0,1,---,2n — 3}. Then R5»-4-1>0(M) has infinitely many path components.

Proof. We begin by considering the case where M is the sphere, $**~1 for some n > 2. In section 4 of [5], the author
constructs an infinite collection, Xq, q € {1, 2, ---}, with the following properties:

(i) Xq is a smooth 4n-dimensional manifold with boundary 98X, diffeomorphic to §4=1 the standard sphere;
(ii) X4 is homotopy equivalent to a finite wedge of 2n-spheres; and
(iii) For qo # g1, the closed manifold Xgq ¢, := Xg, U (s4=1x 1) UXg,, where I =0, 1] and obtained by gluing along common
boundaries, has o(Xg,,q,) # 0. Thus Xg, ¢, admits no metrics of positive scalar curvature.

These manifolds are constructed using the technique of plumbing disk bundles of the tangent bundle T S*" with respect to
certain graphs, see, for example, section 4.2.1 of [29]. It is well known that performing this construction with respect to
the graph which is the Dynkin diagram of the exceptional Lie group Eg results in a smooth manifold, Xg,, whose boundary
is homeomorphic to the sphere S*~1: see, for example, Ch. VI, Sec. 12 in Kozinski [20]. In the case of Xg, the plumbing
construction is in accordance with graphs based on gqf4;,—1 copies of the Dynkin diagram for Eg, where 64,1 is the order
of the boundary, dXg,, in the group, ®4,_1, of homeomorphic smooth (4n — 1)-spheres.

Let Wq :=Xg \ D*" denote the result of removing a disk, D*", from the interior of Xg. Thus, we obtain a cobordism,
{Wg; D4, 9Xg}, where each boundary component is diffeomorphic to $4=1 Making use of an appropriate Morse function,
we may decompose this into a finite union of elementary cobordisms:
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Gqo + dt?

Gg, + dt?

f = 1 f = i

(quhqn) (th?hih)

Fig. 7.1. The implied Riemannian manifold Xgq g, 8qo.¢; -

{Wg; Sg 1 = 0D, ST = 9Xg) = {Y1; Sg" L, ST U LYo ST So 1 U U (Y SET sn=Ty
where 53"’1 is the boundary of the 4n-dimensional disk we removed from the interior of X; and Sin—1 — 9Xy. Property (ii)
above means that each elementary cobordism is the trace of a surgery on a (2n — 1)-dimensional embedded sphere. Thus,
each surgery takes place in codimension (4n —1) — (2n—1) =2n.

Equipping Sg"_l with the round metric, dsfm_l, and fixing collars near the boundaries of the individual elementary
cobordisms, we repeatedly apply the geometric trace construction of Theorem A to obtain a Riemannian metric, g4 on Wy.
Given that all surgeries are in codimension 2n, we can ensure that W; with the resulting metric, g, has sp 4y, > 0 for
p=2n—3 and hence all p € {0, 1, ---2n — 3}. Moreover, g, takes a product structure near the boundary and the restriction
2q = &lax, is a metric on $*"~1, with s, 471 > 0.

Suppose now that we apply this procedure for a pair qo # q;. For each i =0, 1, we can now form sj 4, > 0 metrics, f_lqi
on Xg,, from g; on Wy, by simply replacing the previously removed interior 4n-disks and equipping the replacement disks
with torpedo metrics g{‘grp. Thus,

(Xg; qu') =Wy, ;) U (D4n’ g?grp)’

The product structure near the round boundary (4n — 1)-spheres mean these attachments are smooth.

If gq, and g, lie in the same path component of RSr4n-1>0(S4"=1) " there is an (span—1 > 0)-isotopy and so, by
Lemma 3.2, an (Sp,4n—1 > 0)-concordance between them. We denote this concordance, thoﬂq]. This allows us to construct
the closed Riemannian manifold

(X%Jh » 840,q1) = (Xqp, BQO) U, quh) U (Xq;, Eth)’

depicted in Fig. 7.1.

The metric gq,,g, is @ union of (sp 4, > 0)-metrics and so is itself an (sp 45 > 0)-metric for p € {0, 1, --- , 2n — 3}. However
this is impossible since, by Property 3 above, )_(qﬂ,q1 does not admit positive scalar curvature metrics when qo # q1, and
hence admits no sp , > 0 metric for any p > 0. Thus, there is no isotopy between gq, and gq, and, by implication, the space
RSpan-1(§4=1y has infinitely many path components. This proves Theorem B for the case M = §4—1,

We now consider the more general case of a closed smooth spin manifold, M, of dimension 4n — 1, which admits an
(Sp,an—1 > 0)-metric, gy, for p € {0,1,---,2n — 3}. For any (sp 4n—1 > 0)-metric, g, on the sphere $4=1 the connected sum
metric, gy#g, obtained by applying the surgery construction in Theorem A, is an (sp 4p—1 > 0)-metric also. We will show
that for any pair qo # g1, the metrics gy#gq, and gu#gq,, where gq, and gg, are the metrics constructed above, lie in
different path components of RSp4n-1>0()).

For each i = 0,1, let Wy, denote the manifold obtained above by removing a 4n-dimensional disk, D', from the
interior of Xg,. Thus, dWg, = S~ U ST, where Si~! = dD* and S7'~' = 8X,. For i,j=0,1, we let the maps:
Tij 1 ST % [0, €) —> W, where 1;;(S%~1 x {0}) = 53"’1, denote the disjoint collar neighborhood embeddings, employed
in the metric construction of Theorem A. Choose path embeddings, y; : [0, 1] — W, i =0, 1, satisfying the following com-
patibility conditions:

e the endpoints of y; satisfy y;(0) € Sf(';_l and y;(1) € Sf]”_l,
e when t is near O, rigl o yi(t) =t while, when t is near 1, tl.;l oyi(t)=1-t.

Finally, we specify a path y : I — M x I, defined by y (t) = (xo,t) for some fixed point xo € M. By removing small tubular
neighborhoods around y; and y, we perform a slicewise-connected sum along these embedded paths to obtain Zg :=

Wy, #(M x I), as depicted in Fig. 7.2. We will assume that in Zg;, our slicewise connected sum construction associates S%”’l
with M x {j}. Thus, Zg; is a manifold whose boundary is a disjoint union of two diffeomorphic copies of M.
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vdn—1
bil D

W, Mx1 Zg, = Wy #(M x I)

Fig. 7.2. Constructing the manifold Zg, as a slicewise connected sum (with respect paths y; and y) of X;, and M x I.

By Theorem A, with respect to the collars 7;;, we have (sp, > 0)-metrics, g5 on Wy, for each i =0, 1. Each metric,

8q;, has a product structure near the boundary and, we assume, restricts as ds3, ; near S;‘(’f’] and gg, + dt? near Sﬁ”’l.
Employing the technique of Theorem A over the slicewise connected sum leads to a metric, gzqi, on Zg which has the
following properties:

e The manifold Zg; with the metric gz, has sp 4, > 0 and has a product structure near the boundary.
e The metric gzqi takes the form, dsﬁn_l#gM, on the ng‘l#(M x {0}) = M boundary component.

The first of these properties is ensured by the earlier compatibility conditions on the paths, y;, which ensure the connected
sum construction is constant near the boundary.

Thus, we can form the Riemannian manifold with boundary

(ZQQ,(h ) gzqom ) = (Zqu ngo) ) (ZCh ) ngl )7
by gluing together the 533_1 and 54113—1 boundary components where both metrics agree. By construction Zg, 4, with this
metric has sp 4, > 0, has a product structure near its boundary and restricts respectively on its two spherical boundary

components, Sg; ' and S717", as gq, and g, .

As before, if g4, and gq, are (sp 4n—1 > 0)-isotopic, there is an (sp 4n—1 > 0)-concordance on the cylinder, (M x I, qu,ql)-
Attaching this cylinder to Zg, q,, so that each boundary of the cylinder is attached to one of the boundary components of
Zgo.q1» Sives rise to a closed, (sp 4n > 0)-Riemannian manifold:

5411—]

(qu,Lh s ngOJH )= (qu,q1 > ngo’ql YU ( x I, hqo,(h)-

Now Y, 4, is easily seen to be diffeomorphic to the connected sum Xg; g, #(M x S1). The additive property of the -
invariant over connected sums implies that:

a(Ygo.q1) = A(Xgo.q.#(M x S1) = a(Xgy.q) + (M x S1) = at(Xgq.4,) + 0 #0.

The summand, &(M x S1), vanishes since M admits a psc-metric and hence, so does M x S'. Thus, Y4, q, admits no metric
of positive scalar curvature and so we have a contradiction. Therefore, the metrics gn#gq, and gu#gq, lie in different path
components of RS4n-1>0(M). O
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