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In this paper we consider a well-known construction due to Gromov and Lawson, Schoen 
and Yau, Gajer, and Walsh which allows for the extension of a metric of positive scalar 
curvature over the trace of a surgery in codimension at least 3 to a metric of positive 
scalar curvature which is a product near the boundary. We extend this construction for 
(p, n)-intermediate scalar curvature for 0 � p � n − 2 for surgeries in codimension at least 
p + 3. We then use it to generalize a well known theorem of Carr. Letting Rsp,n>0(M)

denote the space of positive (p, n)-intermediate scalar curvature metrics on an n-manifold 
M , we show for 0 � p � 2n − 3 and n � 2, that for a closed, spin, (4n − 1)-manifold M
admitting a metric of positive (p, 4n − 1)-intermediate scalar curvature, Rsp,4n−1>0(M) has 
infinitely many path components.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

A central question in modern geometry is the following: given a smooth n-dimensional manifold M and a preferred 
curvature condition C , can we specify a Riemannian metric g on M so that g satisfies C? The scalar curvature is the 
weakest invariant of the curvature tensor and so, unsurprisingly, the greatest success has been achieved in classifying which 
manifolds admit metrics of positive scalar curvature (psc-metrics). By contrast, the problem of classifying which manifolds 
admit metrics whose sectional curvature is strictly positive, or finding new examples of manifolds admitting such metrics, 
is formidably hard.

Such classification problems require obstructive tools for ruling out certain manifolds from consideration and con-
structive tools for building metrics in the case where no obstructions exist. Despite its relative weakness as a curvature 
constraint, there exist many smooth manifolds which do not admit metrics of positive scalar curvature. For example, work 
of Schrödinger and Lichnerowicz [23] and Hitchin [18], shows that if M is a closed, spin manifold of dimension n admit-

ting a psc-metric, a certain invariant, α(M) ∈ KO−n(pt), representing the index of the Dirac operator and generalizing the 
Â-genus, must vanish. This obstructive tool is complemented by a powerful constructive result due to Gromov and Lawson 
[16] and Schoen and Yau [27]: suppose M and M ′ are smooth manifolds and M ′ is obtained from M via surgery in codimen-

sion at least three, then any psc-metric g on M can be used to construct a psc-metric g′ on M ′ . Combining these respective 
obstructive and constructive tools led to considerable progress in classifying which manifolds admitted psc-metrics. In par-
ticular, Stolz [28] showed that a closed, smooth, simply connected manifold M admits a psc-metric if and only if M is either 
non-spin, or M is spin and α(M) = 0.
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The surgery technique breaks down when one attempts to apply it to stronger notions like positive Ricci or sectional 
curvatures. Indeed, not only does the construction not work for positive Ricci or positive sectional curvature, there are 
topological obstructions to the existence of metrics of positive Ricci curvature, and hence positive sectional curvature, on 
manifolds arising from surgeries which are admissible in the positive scalar curvature setting.

It is thus natural to consider intermediate curvatures interpolating between scalar and Ricci, and scalar and sectional 
curvatures. These intermediate curvatures are the k-positive Ricci curvature, where k ∈ {1, 2, · · · , n}, defined by Wolfson in 
[34], and the (p, n)-intermediate scalar curvatures (originally, the p-curvature), where p ∈ {0, 1, · · · , n − 2} defined by Labbi 
in [21]; see Definition 2.1. Analogs of the Surgery Theorem for these respective curvatures have been proven in [34] and 
[21]. In particular, it is shown in [21] that if M and M ′ are smooth n-dimensional manifolds and M ′ is obtained from M
via surgery in codimension at least p + 3, then any metric, g , on M admitting positive (p, n)-intermediate scalar curvature 
can be used to construct a metric, g′ , on M ′ which also admits positive (p, n)-intermediate scalar curvature. This is a 
generalization of the Surgery Theorem of [16] and [27] stated above, where the scalar curvature corresponds to the case 
when p = 0.

In this paper, we focus our attention on the (p, n)-intermediate scalar curvature. Our main result, Theorem A, concerns 
an analogous strengthening of a more general positive scalar curvature construction. The surgery technique of [16] and [27]
can be enhanced to give rise to a psc-metric on the trace of a surgery in codimension � 3 by work of Gajer [14] and Walsh 
[30]. In particular, the resulting metric satisfies a Riemannian product structure on a collar neighborhood of the boundary. 
In Theorem A, we extend the result of [14] and [30] from the case when p = 0 to more general p as follows.

Theorem A. Let M be a smooth n-manifold, φ : Sk × Dn−k → M, a smooth embedding, and {M̄φ; M, Mφ}, the trace of the surgery 
on φ . Suppose furthermore that n −k � 3 and p ∈ {0, 1, · · · , n −k −3}. Then for any metric g on M with positive (p, n)-intermediate 
scalar curvature, there are metrics gφ on Mφ and ḡφ on M̄φ satisfying:

1. The metrics gφ and ḡφ have respectively positive (p, n) and (p, n + 1)-intermediate scalar curvatures on Mφ and M̄φ ; and
2. Near the boundary components M and Mφ , ḡφ takes the form of the respective product metrics ḡφ = g + dt2 and ḡφ = gφ + dt2 .

An important application of this theorem is in exhibiting non-triviality in the topology of the space of Riemannian met-

rics of positive (p, n)-intermediate scalar curvature on a smooth manifold. We denote by R(M), the space of all Riemannian 
metrics on the smooth manifold M . This space has a standard C∞ topology; see Chapter 1 of Tuschmann and Wraith [29] for 
the specific construction. For each p ∈ {0, 1, · · ·n − 2}, we consider the subspace Rsp,n>0(M) of Riemannian metrics of posi-
tive (p, n)-intermediate scalar curvature on M . In the case when p = 0, this is precisely Rs>0(M), the space of psc-metrics 
on M .

More generally, one may consider, for any curvature condition C , the subspace RC (M) ⊂ R(M) of Riemannian metrics 
which satisfy C . In recent years, there has been substantial interest in understanding the topology of the space, RC (M) ⊂
R(M), for a variety of manifolds M and curvature conditions C . Much of this has also involved the corresponding moduli 
spaces obtained as a quotient of RC (M) by the action of appropriate subgroups of the group of self-diffeomorphisms of 
M , Diff(M). Recall that Diff(M) acts on RC (M) by means of pulling back metrics. The most progress has occurred in the 
case when C denotes positive scalar curvature; see for example results due to Botvinnik, Ebert, and Randall-Williams [2], 
Botvinnik, Hanke, Schick, and Walsh [3], Coda-Marquez [6], Crowley and Schick [7], Ebert and Randall-Williams [9] and [10], 
Ebert and Wiemeler [11], Frenck [12], Hanke, Schick, and Steimle [17], and Walsh [33]. There are numerous results for other 
curvature conditions such as negative sectional curvature or positive Ricci curvature, see, for example, [29].

Theorem A can be used to exhibit non-triviality in the topology of this space for many manifolds and many p > 0 by 
extending existing results for positive scalar curvature, that is, when p = 0. We will not provide a comprehensive account 
of this here but rather, in Theorem B, an example which illustrates this point.

Theorem B. Let M be a smooth closed spin manifold of dimension 4n − 1, n � 2, which admits an sp,4n−1 > 0 curvature metric for 
some p ∈ {0, 1, · · · , 2n − 3}. Then the space Rsp,4n−1>0(M) has infinitely many path components.

Theorem B generalizes Theorem 4 of Carr [5], for positive scalar curvature. In particular, Theorem 4 of [5] is the p = 0

case of Theorem B when M = S4n−1 for n � 2. Note that extending the theorem from the case when M = S4n−1 to an 
arbitrary closed, simply-connected, spin manifold admitting psc-metrics is not difficult. Indeed, it follows as an immediate 
corollary of the main theorem of [11]. The main work of the proof is in dealing with the spherical case.

Note that Theorem 4 of [5] was generalized to positive Ricci curvature by Wraith in [35] for M , a homotopy (4n − 1)-

sphere bounding a parallelizable manifold, showing that the moduli space of RRic>0(M) contains infinitely many path-
components. However, there is no clear implication relating positive (p, n)-intermediate scalar curvature to positive Ricci 
curvature. In fact, the methods used to prove Theorem B are quite different from those used in [35], where the Kreck-Stolz 
s-invariant is used to distinguish between the path components of the moduli space of RRic>0(M).

Finally, using our Theorem A, we obtain the following generalization of results in [5] and in Mantione and Torres [24]. 
The p = 0 case of this result is Corollary 2 of [5] in the case of orientable manifolds, and forms Theorems 6 and 7 of [24]
for non-orientable manifolds with an added assumption on the group G . The principal constructive technique behind these 
results is Theorem 3 of [5], which our Theorem A generalizes from the p = 0 case.
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Corollary C. For any finitely presented group G, there is a closed, smooth, orientable Riemannian n-manifold (Mn(G), g) such that 
π1(M

n(G)) = G, and g has positive (p, n)-intermediate scalar curvature provided 0 � p � n − 4. The same result holds for non-
orientable (Mn, g), provided G contains a subgroup of order two.

During the writing of this paper we discovered that Theorem B also follows as a case of a recent theorem of Frenck 
and Kordass [13]. Theorems A and B of [13] extend some powerful techniques of [2] for positive scalar curvature to the 
cases of positive (p, n)-intermediate scalar curvature and positive k-Ricci curvature. Our work has independent value, as 
Theorem A above provides a geometrically explicit construction of an (sp,n > 0)-metric over the trace of an appropriate 
surgery, something which is not done in [13]. In doing so, we also provide detailed curvature calculations for sectional and 
intermediate scalar curvature of various warped product metrics that are of value in their own right. Likewise, our proof 
of Theorem B differs from theirs in that ours gives an explicit construction for representative elements of distinct path 
components of Rsp,4n−1>0(M).

1.1. Organization

The paper is organized as follows. In Section 2 we establish preliminaries. In Section 3 we establish an isotopy-
concordance result for positive (p, n)-intermediate scalar curvature. In Section 4, we determine the intermediate scalar 
curvature of a warped product metric. In Section 5, we apply these calculations to the standard metrics on the sphere and 
the disk. In Section 6, we prove Theorem A and in Section 7, we prove Theorem B.
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2. Preliminaries

2.1. (p, n)-Intermediate Scalar Curvature

We consider a generalization in [21] of the sectional and scalar curvatures which we call the (p, n)-intermediate scalar 
curvature and denote sp,n . This was originally referred to as the p-curvature, sp . However, we will often deal with cylinders 
and more general manifolds with boundary, where dimensions n and n − 1 arise in tandem. Thus, we adopt this term to 
aid the reader in distinguishing between the p-curvature on the ambient n-manifold and the p-curvature on an embedded 
submanifold or boundary component of dimension n − 1.

Let M be a smooth n-dimensional manifold, possibly with non-empty boundary. For any x ∈ M , k ∈ {0, 1, · · · , n}, we 
denote by Grk(TxM), the Grassmann manifold of k-dimensional subspaces of the tangent space TxM and by Grk(M), the 
corresponding Grassmann bundle of k-dimensional subspaces obtained as the union of Grk(TxM) over x ∈ M . We now define 
the (p, n)-intermediate scalar curvature of a Riemannian metric on M as follows.

Definition 2.1. Let (M, g) be an n-dimensional Riemannian manifold, with possibly non-empty boundary, and let p ∈
{0, 1, · · · , n − 2}. The (p, n)-intermediate scalar curvature of M is the function sp,n : Grp(M) → R defined for x ∈ M , P a 
p-plane in TxM and {e1, · · · , en−p}, an orthonormal basis of the orthogonal complement P⊥ of P in TxM , by

sp,n(x, P ) :=
∑

i, j

Kx(ei, e j),

where Kx(ei, e j) is the sectional curvature at x of the subspace of TxM spanned by the vectors ei and e j .

It follows that sp,n(x, P ) is the scalar curvature at x of the locally specified (n − p)-dimensional submanifold of M given 
by restricting the exponential map of g at x to the subspace P⊥ ⊂ TxM . In particular, it is well defined for any choice of 
orthonormal basis {e1, · · · , en−p} for P⊥ . When p = 0, P⊥ = TxM and so s0,n(x) := s0,n(x, ̄0) is precisely the scalar curvature 
of the Riemannian manifold (M, g) at the point x. When dimP = p = n − 2, sn−2,n(x, P ) is twice the sectional curvature at 
x of the plane P⊥ ⊂ TxM with respect to (M, g). The (p, n)-intermediate scalar curvatures for 0 � p � n − 2 are therefore 
a collection of curvatures interpolating between the scalar curvature, when p = 0, and twice the sectional curvature when 
p = n − 2. For any given value of p < n − 2, the (p, n)-intermediate scalar curvature is a trace of the (p + 1, n)-intermediate 
scalar curvature.
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Of particular interest is the case when the (p, n)-intermediate scalar curvature is positive on a manifold. We say that a 
Riemannian metric g on M is a metric of positive (p, n)-intermediate scalar curvature, that is, an (sp,n > 0)-metric, if for any 
x ∈ M and any P ⊂ TxM , sp,n(x, P ) > 0. It is obvious that if the (p, n)-intermediate scalar curvature of (M, g) is positive for 
p > 0, then the (p − 1, n)-intermediate scalar curvature is positive as well. By continuing to take traces, it is clear that this 
holds for any integer 0 � q � p. We summarize this hierarchy in the following proposition.

Proposition 2.2. If a Riemannian manifold (M, g) has positive (p, n)-intermediate scalar curvature, then it has positive (q, n)-

intermediate scalar curvature for 0 � q � p.

Note that the converse is not true. For any dimension n and any 0 � p < n − 2, we can construct a Riemannian manifold 
that has positive (p, n)-intermediate scalar curvature, but not positive (p + 1, n)-intermediate scalar curvature. In fact we 
only need to look at products of spheres.

Example 2.3. Let M be the n-dimensional Riemannian product manifold of m standard round spheres of radius one and of 
dimension at least one. Then M has positive (p, n)-intermediate scalar curvature if and only if p < n −m.

This example can be extended to include other factors with positive sectional curvature.

2.2. Isotopy and Concordance

Various notions of isotopy and concordance arise throughout Mathematics. Here, we are only concerned with metrics of 
positive (p, n)-intermediate scalar curvature and we define these notions in this case.

Definition 2.4. Two metrics g0, g1 on an n-dimensional manifold M with positive (p, n)-intermediate scalar curvature are 
said to be (sp,n > 0)-isotopic if they are connected by a path t 	→ gt in the space of positive (p, n)-intermediate scalar 
curvature metrics on M , t ∈ [0, 1]. The connecting path is called an (sp,n > 0)-isotopy.

Definition 2.5. The metrics g0 and g1 on M are said to be (sp,n > 0)-concordant if, for some L > 0, there is a metric ḡ on 
the cylinder M × [0, L + 2], of positive (p, n + 1)-curvature, and satisfying

ḡ|M×[0,1] = g0 + dt2 and ḡ|M×[L+1,L+2] = g1 + dt2.

The metric ḡ is known as an (sp,n > 0)-concordance.

We will frequently shorten (sp,n > 0)-isotopy and (sp,n > 0)-concordance to just isotopy and concordance. It is straight-
forward to show that both isotopy and concordance determine equivalence relations on the space of positive (p, n)-

intermediate scalar curvature metrics on the manifold.

The problem of whether or not a given pair of concordant metrics are in turn isotopic is notoriously difficult and we do 
not consider it here. The converse problem however is much more tractable. It has long been known in the case of metrics 
of positive scalar curvature that isotopic metrics are concordant. This indeed holds more generally, as we demonstrate in 
Proposition 3.3 below.

3. Isotopy Implies Concordance

We start with an isotopy gr on M . To create a concordance from this isotopy, it seems natural to turn this into the metric 
gr +dr2 on M ×[0, 1]. However, this metric does not necessarily have positive (p, n +1)-intermediate scalar curvature since, 
even though the metric gr on the slice M × {r} has positive curvature, there may be negative curvature coming from the 
r direction. Therefore we will introduce a function f : R → [0, 1] and consider a new metric g f (t) + dt2 on M × R. This 
function will allow us to control the changes in the t-direction so we can minimize the contributions of negative curvature 
while keeping the positive contributions from the metric g f (t) on the slice M × { f (t)}.

We begin with a lemma about the Riemann curvature of such a metric.

Lemma 3.1. Let M be an n-dimensional manifold, gr with r ∈ [0, 1] a smooth path of metrics on M, and f : R → [0, 1] a smooth 
function. Define the metric ḡ = g f (t) + dt2 on M × R. If (x0, t0) ∈ M × R has local coordinates (x1, . . . , xn, t) where (x1, . . . , xn) are 
normal coordinates for x0 with respect to the metric g f (t0) on M, then the Riemannian curvatures R̄ of ḡ at (x0, t0) satisfy

R̄�
i jk = R�

i jk + O (| f ′|2), R̄t
i jk = O (| f ′|), and R̄t

itk = O (| f ′|2) + O (| f ′′|).

In particular, the sectional curvatures K̄ of ḡ are then given by

K̄ i j = K i j + O (| f ′|2) and K̄ it = O (| f ′′|) + O (| f ′|2).
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Proof. Denote the coordinate vector fields by ∂1, . . . , ∂n, ∂t . Let ∇ and ∇̄ be the Levi-Civita connections of g f (t0) and ḡ
respectively and let �̄k

i j
and �k

i j
be the Christoffel symbols of ∇̄ and ∇ , respectively, at (x0, t0). We denote the Riemannian 

and sectional curvatures, respectively, by R̄�
i jk

and K̄ i j for ḡ and R�
i jk

and K i j for g f (t0) .

Since K̄ i j =
∑

�

ḡi� R̄
�
i j j
, and K̄ it = −ḡtt R̄

t
iti

−
∑

� �=t ḡ�t R̄
�
iti

= −R̄t
iti
, the results for the sectional curvatures follow immedi-

ately.

Since ḡi j = (g f (t0))i j , we have �̄k
i j

= �k
i j

for i, j, k ∈ {1, . . . , n}. Moreover, we have the constant values ḡit = 0 for all 

i ∈ {1, . . . , n} and ḡtt = ḡtt = 1. Therefore

�̄t
it = �̄k

tt = �̄t
tt = 0,

�̄t
i j = −

1

2
∂t ḡi j, and �̄k

it =
1

2

∑

�

ḡk�∂t ḡi�.

Setting r = f (t), we obtain

∂t ḡi j =
∂(gr)i j

∂r
f ′(t),

and using normal coordinates at the point (x0, t0) this gives us that

�̄t
i j = −

1

2

[

∂(gr)i j

∂r

]

(x0, f (t0))

f ′(t0) = O (| f ′|),

�̄k
it =

1

2

[

∂(gr)ik

∂r

]

(x0, f (t0))

f ′(t0) = O (| f ′|).

We now calculate the Riemannian curvatures. For i, j, k, � ∈ {1, . . . , n}, since �̄k
i j = �k

i j and m varies over 1, . . . , n and t , 
we have

R̄�
i jk = ∂i�

�
jk − ∂ j�

�
ik +

∑

m �=t

(��
im�m

jk − ��
jm�m

ik) + �̄�
it �̄

t
jk − �̄�

jt �̄
t
ik

= R�
i jk −

1

4

[

∂(gr)i�

∂r

∂(gr) jk

∂r
−

∂(gr) j�

∂r

∂(gr)ik

∂r

]

(x0, f (t0))

( f ′(t0))
2

= R�
i jk + O (| f ′|2).

For the Riemannian curvatures involving t , we only need to compute R̄t
i jk

and R̄t
itk

for i, j, k ∈ {1, . . . , n}. First,

R̄t
i jk = ∂i�̄

t
jk − ∂ j�̄

t
ik +

∑

m �=t

(�̄t
im�̄m

jk − �̄t
jm�̄m

ik) + �̄t
it �̄

t
jk − �̄t

jt �̄
t
ik

= −
1

2

[

∂2(gr) jk

∂xi∂r
−

∂2(gr)ik

∂x j∂r

]

(x0, f (t0))

f ′(t0)

= O (| f ′|).

To calculate R̄t
itk

at the point (x0, t0), a straightforward calculation gives us

∂t �̄
t
ik = −

1

2

[

∂2(gr)ik

∂r2

]

(x0, f (t0))

( f ′(t0))
2 −

1

2

[

∂(gr)ik

∂r

]

(x0, f (t0))

f ′′(t0).

Therefore, we have

R̄t
itk =

1

2

[

∂(gr)ik

∂r

]

(x0, f (t0))

f ′′(t0) +

⎡

⎣

1

2

∂2(gr)ik

∂r2
−

1

4

∑

m �=t

∂(gr)im

∂r

∂(gr)km

∂r

⎤

⎦

(x0, f (t0))

( f ′(t0))
2

= O (| f ′′|) + O (| f ′|2). �

We are now ready to estimate the (p, n + 1)-intermediate scalar curvature on (M × R, ̄g).

Lemma 3.2. Let M be a compact n-dimensional manifold and gr with r ∈ [0, 1] a smooth path of (sp,n > 0)-metrics on M. Then there 
exists a positive constant C � 1 so that for every smooth function f : R → [0, 1] with | f ′|, | f ′′| � C the metric ḡ = g f (t) + dt2 on 
M × R has positive (p, n + 1)-intermediate scalar curvature, 0 � p � n − 2.

5
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Proof. Choose a point z0 = (x0, t0) ∈ M × R. We use R̄ , K̄ , s̄p,n to denote Riemann, sectional, and intermediate scalar 
curvatures for the metric ḡ and R , K , sp,n for those curvatures in the metric g f (t0) . Fix a value 0 � p � n − 2.

Since M is compact, the Grassmannian Grp(M) is also compact. By the continuity of the curvature, this means for each r
there is a positive lower bound for the (p, n)-intermediate scalar curvature of the metric gr . As the r vary over the compact 
interval [0, 1], we can choose a positive lower bound B p for the (p, n)-intermediate scalar curvatures of all the metrics and 
thus a positive lower bound B p−1 for the (p − 1, n)-intermediate scalar curvatures of the metrics gr as well.

Let P be a p-plane in T z0 (M × R) so that P⊥ is (n − p + 1)-dimensional. We denote the hyperplane T z0 (M × {t0}) by T . 
Consider the intersection Q = P⊥ ∩ T . If P⊥ is properly contained in T then Q = P⊥ . If P⊥ is not properly contained in T , 
then the span of both must be the entire (n + 1)-dimensional T z0 (M × R), and so by Grassmann’s identity we have

dim(Q ) = dim(P⊥ ∩ T ) = dim(P⊥) + dim(T ) − dim(P⊥ + T )

= (n − p + 1) + n − (n + 1) = n − p.

This leads to three cases: Case 1, where P⊥ is contained in T , Case 2, where P is contained in T , and Case 3, where neither 
P nor P⊥ is contained in T .

Case 1: P⊥ is contained in T .
In this case, we can take an orthonormal basis {e1, . . . , en−p+1} for P⊥ and extend it to orthonormal bases {e1, . . . , en}

for T and {e1, . . . , en, et} for T z0(M × R). Using the exponential map for g f (t0) , we get local coordinates (x1, . . . , xn, xt) at 
z0 where (x1, . . . , xn) are normal coordinates at x0 . Then, using Lemma 3.1, we compute

s̄p,n+1(P ) =

n−p+1
∑

i, j=1

K̄ i j

=

n−p+1
∑

i, j=1

[

K i j + O (| f ′|2)
]

= sp−1,n(P ∩ T ) + O (| f ′|2).

As sp−1,n(P ∩ T ) � B p−1 > 0, then for a small enough value of C , we can force the contributions of f to not be too negative 
and allow s̄p,n+1(P ) to remain positive.

Case 2: P is contained in T .
If P ⊆ T then T⊥ ⊆ P⊥ , and since T⊥ is 1-dimensional, let et be a unit vector spanning T⊥ . Then taking an orthonor-

mal basis {e1, . . . , en−p} for Q = P⊥ ∩ T , we have an orthonormal basis {e1, . . . , en−p, et} for P⊥ . We can extend this to 
orthonormal bases {e1, . . . , en} for T and {e1, . . . , en, et} for T z0 (M × R) and again we get local coordinates (x1, . . . , xn, xt)
at z0 where (x1, . . . , xn) are normal coordinates at x0 . Then we compute using Lemma 3.1

s̄p,n+1(P ) =

n−p
∑

i, j=1

K̄ i j + 2

n−p
∑

i=1

K̄ it

=

n−p
∑

i, j=1

[

K i j + O (| f ′|2)
]

+ 2

n−p
∑

i=1

[

O (| f ′|2) + O (| f ′′|)
]

= sp,n(P ) + O (| f ′|2) + O (| f ′′|).

As sp,n(P ) � B p > 0, then for a small enough value of C , we can again force the contributions of f to allow s̄p,n+1(P ) to 
remain positive.

Case 3: Neither P nor P⊥ is contained in T .
In this case Q = P⊥ ∩ T is (n − p)-dimensional. We depict this situation in Fig. 3.1. Take {e1, . . . , en−p} to be an or-

thonormal basis for Q , and choose v ∈ P⊥ \ Q so that {e1, . . . , en−p, v} is an orthonormal basis for P⊥ . Then obviously v is 
not in T , but it also is not perpendicular to T , or we would have P ⊆ T . Therefore v has a nonzero projection onto T , which 
we denote by αen−p+1 , where en−p+1 is a unit vector. Putting this together with the previously defined ei , we extend to 
orthonormal bases {e1, . . . , en} for T and {e1, . . . , en, et} for T z0(M ×R) and again we get local coordinates (x1, . . . , xn, xt) at 
z0 where (x1, . . . , xn) are normal coordinates at x0 . Note that by construction, we have v = αen−p+1 +βet , as the projection 
of v onto T is a multiple of en−p+1 .

We compute the curvatures for 1 � i � n − p using Lemma 3.1

K̄ (ei, v) = ḡ(R̄(v, ei)ei, v)

= ḡ(R̄(αen−p+1 + βet, ei)ei,αen−p+1 + βet)

6
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Fig. 3.1. The arrangement of the subspace P ⊂ T z0 (M × R) in Case 3.

= α2 R̄
n−p+1
(n−p+1)ii + 2αβ R̄t

(n−p+1)ii + β2 R̄t
tii

= α2
[

R
n−p+1
(n−p+1)ii + O (| f ′|2)

]

+ 2αβO (| f ′|) + β2
[

O (| f ′|2) + O (| f ′′|)
]

= α2K i(n−p+1) + O (| f ′|) + O (| f ′|2) + O (| f ′′|).

Therefore we have

s̄p,n+1(P ) =

n−p
∑

i, j=1

K̄ i j + 2

n−p
∑

i=1

K̄ (ei, v)

=

n−p
∑

i, j=1

[

K i j + O (| f ′|2)
]

+ 2

n−p
∑

i=1

[

α2K i(n−p+1) + O (| f ′|) + O (| f ′|2) + O (| f ′′|)
]

=

n−p
∑

i, j=1

K i j + 2α2

n−p
∑

i=1

K i(n−p+1) + O (| f ′|) + O (| f ′|2) + O (| f ′′|).

Set A =
n−p
∑

i, j=1

K i j and B = 2 
n−p
∑

i=1

K i(n−p+1) . Then A = sp,n(Q
⊥) � B p > 0 and

A + B =

n−p+1
∑

i, j=1

K i j = sp−1,n(P ∩ T )� B p−1 > 0.

Since α2 > 0, for B � 0, we have A +α2B � A � B p . For B < 0 since α2 < 1, we have A +α2B > A + B � B p−1 . In either 
case, A + α2B �min{B p, B p−1}, and hence for a small enough choice of C , we can force the contributions of f ′ and f ′′ to 
allow s̄p,n+1(P ) to remain positive as well. �

Rephrasing this result in the language of isotopy and concordance, we obtain the following result.

Proposition 3.3. Let M be a smooth compact manifold of dimension n. Then, for any p ∈ {0, 1, · · · , n − 2}, metrics which are 
(sp,n > 0)-isotopic on M are also (sp,n > 0)-concordant.

Proof. Let g0 and g1 be two (sp,n > 0)-isotopic metrics on M with the isotopy gr for r ∈ [0, 1]. By Lemma 3.2, there is 
a C � 1 such that for every smooth function f : R → [0, 1] with | f ′|, | f ′′| � C , the metric ḡ = g f (t) + dt2 on M × R has 
positive (p, n + 1)-intermediate scalar curvature.

7
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Let μ : (−∞, ∞) → [0, 1] be the function

μ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 t � 0
e−1/t

e−1/t+e
− 1

1−t

t ∈ (0,1)

1 t � 1

that smoothly transitions from 0 to 1 over the interval [0, 1]. For any L > 0, a translation and rescaling gives us the function 
μL(t) = μ 

(

t−1
L

)

that smoothly transitions from 0 to 1 over the interval [1, L + 1]. The derivatives μ′ and μ′′ are bounded 
and we have μ′

L(t) =
1
L
μ′

(

t−1
L

)

and μ′′
L (t) =

1
L2

μ′′
(

t−1
L

)

. Therefore we can choose L sufficiently large to force |μ′
L |, |μ

′′
L | � C .

Taking f to be the restriction of μL to the interval [0, L + 2], the manifold M × [0, L + 2] with metric ḡ = g f (t) × dt2

has positive (p, n + 1)-intermediate scalar curvature. Since ḡ = g0 × dt2 for 0 � t � 1 and ḡ = g1 × dt2 for L + 1 � t � L + 2, 
then by definition, this is a (sp,.n > 0)-concordance between g0 and g1 . �

4. Curvature of Warped Product Metrics

We first fix notation. Let (Bb, gB) and (Fn, gF ) be, respectively, b- and n-dimensional Riemannian manifolds and consider 
their product, M = B × F with the warped product metric g = gB + β2gF , where β : B → (0, ∞) is a smooth function. We 
assume that b, n � 1. We denote by πB and πF , the corresponding projections from M to B and to F , and for a point x ∈ M , 
set

x̌ := πB(x) and x̂ = πF (x).

At each point x ∈ M , the maps, πB and πF , induce derivative maps

(πB)∗ : TxM → T x̌B and (πF )∗ : TxM → T x̂F .

The warped product structure of the metric gives us the following horizontal and vertical spaces at x ∈ M

Hx := Tx(B × {πF (x)}) and Vx := Tx({πB(x)} × F ).

In particular, the restriction of the derivative map (πB )∗ to the horizontal space Hx is the isometry

(πB)∗|Hx : (Hx, gx|Hx) → (T x̌B, (gB)x̌).

We denote the vertical and horizontal distributions of the submersion by V or H . The notation, V , H , serves a dual 
purpose as we also use it to mean the projection onto the vertical or horizontal subspace. Let u ∈ TxM be some tangent 
vector. Then,

uF := V (u) ∈ Vx and uB := H (u) ∈ Hx,

denote the corresponding orthogonal projections. Note that the vectors uB and uV in Vx and Hx are distinct from their 
corresponding isometric images under (πF )∗ and (πB)∗ . In the case of the derivative maps, we write:

û := (πF )∗(u) and ǔ = (πB)∗(u).

4.1. The Riemann Curvature Tensor

In computing the curvature tensor, we will make use of well-known formulas of Gray [15] and O’Neill [25], (see also 
Theorem 9.28 in [1]). These formulas involve the tensors, A,T : �(TM) ⊗ �(TM) → �(TM), defined for vectors fields E1, E2

on M as follows:

AE1 E2 = H (∇H (E1)V (E2)) + V (∇H (E1)H (E2)),

TE1 E2 = H (∇V (E1)V (E2)) + V (∇V (E1)H (E2)).

Note that here with the warped product metric the horizontal distribution for each x ∈ M is naturally identified with 
T x̌B and in particular, this horizontal distribution is integrable (see Chapter 19 in Lee [22]) so the A tensor above vanishes 
in our case (see Proposition 9.24 in [1]).

We recall the formulas from [1] involving the T tensor.

Theorem 4.1. [1] Let manifold M = B × F be equipped with the warped product metric g = gB +β2gF . Let X, Y be a pair of horizontal 
vector fields and U , V , a pair of vertical vector fields tangent to M. Then

8
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TXU = TXY = 0, TU V = H (∇U V ) = TV U , TU X = V (∇U X),

and

g(TU V , X) = −g(TU X, V ).

We adapt Theorem 9.28 in [1], using the fact that A is everywhere zero.

Theorem 4.2. [1] Let the manifold M = B × F be equipped with the warped product metric g = gB + β2gF . Let πB : (M, g) →
(B, gB) denote a Riemannian warped product submersion for some warping function β : B → (0, ∞). Let X, Y , Z , Z ′ be horizontal 
and U , V , W , W ′ vertical vector fields tangent to M. Finally, let RB and R F denote the respective Riemann curvature tensors for 
(B, gB) and (F , gF ). Then the Riemann curvature tensor, R, of g satisfies the following properties:

1. R(U , V , W , W ′) = g(R F (Û , V̂ )Ŵ , Ŵ ′) + g(TUW , TV W
′) − g(TV W , TUW ′);

2. R(U , V , W , X) = g((∇UT)V W , X) − g((∇V T)UW , X);

3. R(X, U , Y , V ) = g(TU X, TV Y ) − g((∇XT)U V , Y );

4. R(U , V , X, Y ) = g(TU X, TV Y ) − g(TV X, TU Y );

5. R(X, Y , Z , U ) = 0; and
6. R(X, Y , Z , Z ′) = g(RB( X̌, Y̌ ) Ž , Ž ′).

We now introduce some conventions we will use to make our computations easier to follow. On the manifold B × F , 
we assume coordinate vector fields ∂1, · · · , ∂b+n , such that ∂1, . . . , ∂b are horizontal and ∂b+1, . . . , ∂b+n are vertical and 
gx(∂i, ∂ j) = 0 for i �= j, and gx(∂i, ∂ j) = β(x̌)2δi j for i, j ∈ {b +1, · · · , b +n}. We adopt the convention that the indices λ, μ, ν
will be used for the base directions {1, . . . , b} and the indices i, j, k, � will be used for the fiber directions {b + 1, . . . , b +n}. 
For an index that varies over all of {1, . . . , b + n}, we use s.

The following lemma gives us the Christoffel symbols for a warped product metric. We note that there are six cases to 
consider depending on whether the coordinates are in the base or the fiber. The proof is a straightforward computation that 
we leave to the reader (see Burkemper [4] for more details).

Lemma 4.3. Let (B × F , gB +β2gF ) be as described above. Then at a point x ∈ B × F , the Christoffel symbols are given by the following 
equations

�ν
λμ = �̌ν

λμ, �k
i j = �̂k

i j,

�k
λμ = 0, �ν

λ j = 0, (4.1)

�k
λ j =

βλ

β
δ jk, and �ν

i j = −ββν g
νν
B δi j.

From now on, we let vB and vF denote the horizontal and vertical parts of v . Using Properties 1, 5, and 6 of Theorem 4.2

and the symmetries of the curvature tensor, we obtain the following lemma, giving us an expression for the Riemann 
curvature tensor of a 2-plane, P ⊂ TxM generated by v and w in terms of the horizontal and vertical parts of each vector.

Lemma 4.4. Let (B × F , gB +β2gF ) be as described above. Given x ∈ B × F , consider an arbitrary 2-dimensional subspace P ⊂ TxM. 
We let v, w ∈ P ⊂ TxM be an arbitrary pair of linearly independent vectors. Then

R(v, w, w, v) = RB(v̌B, w̌B, w̌B, v̌B) + β2R F (v̂F, ŵF, ŵF, v̂F) + g(TvFwF,TvFwF) − g(TvF vF,TwF
wF)

+ g((∇vBT)wF
wF, vB) − g(TwF

vB,TwF
vB) + g((∇wB

T)vF vF, wB) − g(TvFwB,TvFwB)

(4.2)

− 2g((∇wF
T)vFwF, vB) + 2g((∇vFT)wF

wF, vB) + 2g((∇wF
T)vF vF, wB) − 2g((∇vFT)wF

vF, wB)

+ 2g(TwF
vB,TvFwB) − 2g(TvF vB,TwF

wB) + 2g(TwF
vB,TvFwB) − 2g((∇vBT)wF

vF, wB).

Using Theorem 4.1 and Display (4.1), we obtain the following expressions for the components of the T tensor at the 
point x:

T∂i∂ j = −
∑

λ

ββλg
λλ
B δi j∂λ, and T∂i∂λ =

βλ

β
∂i .

9
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With these expressions, we can compute the inner products involving the T tensor in Display (4.2). We obtain

g(T∂i∂ j,T∂k∂�) = β2δi jδk�

∑

λ

(βλ)
2gB

λλ,

g(T∂i∂λ,T∂ j
∂μ) = βλβμδi j,

g(T∂i∂λ,T∂ j
∂μ) = βλβμδi j,

g((∇∂λ
T)∂i∂ j, ∂μ) = −δi j

[

(

ββλμ − βλβμ

)

+
∑

ν

ββν

(

∂λ(g
μν
B ) + gνν

B �̌
μ
λν

)

gB
μμ

]

, and

g((∇∂iT)∂ j
∂k, ∂λ) = 0.

(4.3)

Setting v =
b+n
∑

s=1

vs∂s and w =
b+n
∑

s=1

ws∂s , then vB =
∑

λ

vλ∂λ, wB =
∑

λ

wλ∂λ, vF =
∑

i

v i∂i, and wF =
∑

i

w i∂i . With these 

conventions, from Display (4.3), we obtain

g(TvFwF,TvFwF) =
∑

i, j,λ

v iw iv jw j β
2β2

λ g
B
λλ,

g(TvF vF,TwF
wF) =

∑

i, j,λ

v2i w
2
j β

2β2
λ g

B
λλ,

g(TwF
vB,TwF

vB) =
∑

i,λ,μ

w2
i vλvμ βλβμ,

g(TvFwB,TvFwB) =
∑

i,λ,μ

v2i wλwμ βλβμ,

g(TvF vB,TwF
wB) =

∑

i,λ,μ

v iw ivλwμ βλβμ,

g(TwF
vB,TvFwB) =

∑

i,λ,μ

v iw ivλwμ βλβμ,

g((∇wF
T)vFwF, vB) = 0,

g((∇vFT)wF
wF, vB) = 0,

g((∇wF
T)vF vF, wB) = 0,

g((∇vFT)wF
vF, wB) = 0,

g((∇vBT)wF
wF, vB) = −

∑

i,λ,μ

w2
i vλvμ

[

ββλμ − βλβμ +
∑

ν

ββν

(

∂λ(g
μν
B ) + gνν

B �̌
μ
λν

)

gB
μμ

]

,

g((∇wB
T)vF vF, wB) = −

∑

i,λ,μ

v2i wλwμ

[

ββλμ − βλβμ +
∑

ν

ββν

(

∂λ(g
μν
B ) + gνν

B �̌
μ
λν

)

gB
μμ

]

, and

g((∇vBT)wF
vF, wB) = −

∑

i,λ,μ

v iw ivλwμ

[

ββλμ − βλβμ +
∑

ν

ββν

(

∂λ(g
μν
B ) + gνν

B �̌
μ
λν

)

gB
μμ

]

.

(4.4)

Substituting these equalities from Display (4.4) into Display (4.2), we obtain the following result.

Proposition 4.5. Let (B × F , gB + β2gF ) be as described above. Given x ∈ B × F , consider an arbitrary 2-dimensional subspace P ⊂

TxM. We let v, w ∈ P ⊂ TxM be an arbitrary pair of linearly independent vectors, written in components as v =
b+n
∑

s=1

vs∂s and w =

b+n
∑

s=1

ws∂s . Then

10
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R(v, w, w, v) = RB(v̌B, w̌B, w̌B, v̌B) + β2R F (v̂F, ŵF, ŵF, v̂F)

−
∑

i< j,λ

(v iw j − v jw i)
2β2β2

λ g
B
λλ

−
∑

i,λ,μ

(w2
i vλvμ + v2i wλwμ − 2v iw ivλwμ)

[

ββλμ +
∑

ν

ββν

(

∂λ(g
μν
B ) + gνν

B �̌
μ
λν

)

gB
μμ

]

.

(4.5)

Note that in the case of a product metric, β = 1. Since this makes each of the derivatives of β zero, Equation (4.5)
reduces to the well-known formula

R(v, w, w, v) = RB(v̌B, w̌B, w̌B, v̌B) + R F (v̂F, ŵF, ŵF, v̂F). (4.6)

4.2. The Sectional Curvature of the Specific Warped Product

We now restrict our attention to a metric of the form

g = dr2 + ω(r, t)2dt2 + β(r)2ds2n

defined on the product manifold M = B × F where B = (0, b1) × (0, b2) and F = Sn for n � 2 with the standard round 
metric, where β : (0, b1) → (0, ∞) and ω : (0, b1) × (0, b2) → (0, ∞) are smooth warping functions. We are interested in 
computing the (p, n + 2)-intermediate scalar curvatures of (M, g). We begin by computing some of the sectional curvatures 
using our earlier work.

Lemma 4.6. The sectional curvatures of M = B × F as above, are given by

Krt = −
ωrr

ω
, Kri =

−βrr

β
, Kti = −

ωrβr

ωβ
, K i j =

1− β2
r

β2
. (4.7)

Proof. The metric on the base is given by gB = dr2 + ω(r, t)2dt2 . We compute the Christoffel symbols and obtain

�r
rr = 0,

�t
rr = 0,

�r
rt = 0,

�r
tt = −ωωr,

�t
tt =

ωt

ω
, and

�t
rt =

ωr

ω
.

(4.8)

Note that since we are dealing with coordinate vector fields, we have ∇∂r ∂t = ∇∂t ∂r . Thus,

∇∂r∂r = 0,

∇∂t ∂t = −ωωr∂r +
ωt

ω
∂t, and

∇∂r∂t =
ωr

ω
∂t .

Since ∇∂r ∂r = 0, we have ∇∂t∇∂r ∂r = 0, and a calculation gives ∇∂r∇∂t ∂r = ωrr
ω ∂t . Therefore

〈R(∂t, ∂r)∂r, ∂t〉 = −
ωrr

ω
ω2. (4.9)

We now expand out the sums over the base directions r and t in our Riemann curvature equation (4.5). Since we know 
the form of the base metric and its inverse matrix, and that the function β only depends on r, so that βt = 0. Equation (4.5)
then simplifies to

11
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R(v, w, w, v) = RB(v̌B, w̌B, w̌B, v̌B) + β2R F (v̂F, ŵF, ŵF, v̂F)

−
∑

i< j,λ

(v iw j − v jw i)
2β2β2

r

−
∑

i

(w2
i vrvr + v2i wrwr − 2v iw ivrwr)

[

ββrr + ββr�̌
r
rr

]

−
∑

i

(w2
i vrvt + v2i wrwt − 2v iw ivrwt)ββr�̌

t
rrω

2

−
∑

i

(w2
i vt vr + v2i wtwr − 2v iw ivtwr)ββr�̌

r
tr

−
∑

i

(w2
i vt vt + v2i wtwt − 2v iw ivtwt)ββr�̌

t
trω

2.

Using the Christoffel symbols we computed in Display (4.8), we then obtain

R(v, w, w, v) = RB(v̌B, w̌B, w̌B, v̌B) + β2R F (v̂F, ŵF, ŵF, v̂F) −
∑

i< j

(v iw j − v jw i)
2β2β2

r

−
∑

i

(v iwr − w ivr)
2ββrr −

∑

i

(v iwt − w ivt)
2ββrωωr .

The fibers F are unit spheres of dimension at least 2 with K F = 1, so we have

R F (v̂F, ŵF, ŵF, v̂F) = |v̂F ∧ ŵF|
2
F K F (v̂F, ŵF)

=
∑

i< j

(v iw j − v jw i)
2.

Similarly, the base B is two-dimensional and from Lemma 4.6 its sectional curvature is given by Krt = −ωrr
ω . So using 

the metric gB = dr2 + ω2dt2 , we have

R F (v̌B, w̌B, w̌B, v̌B) = |v̌B ∧ w̌B|
2
B K F (v̌B, w̌B)

= −ωωrr(vtwr − vrwt)
2.

Therefore, we get

R(v, w, w, v) = −ωωrr(vtwr − vrwt)
2 +

∑

i< j

(v iw j − v jw i)
2β2(1− β2

r )

−
∑

i

(v iwr − w ivr)
2ββrr −

∑

i

(v iwt − w ivt)
2ββrωωr .

(4.10)

We now compute the specific sectional curvatures when the vectors v and w are in the coordinate directions. First we 
start with v = ∂t and w = ∂i , so that vt = 1, vr = v j = 0 for all j directions in the fiber, wr = wt = 0, w i = 1, and w j = 0

for all j �= i. Substituting this information into Equation (4.10), we get

Rtiit = −(vtw i)
2ββrωωr = −ββrωωr . (4.11)

Next, let v = ∂r and w = ∂i , so that vr = 1, vt = v j = 0 for all j directions in the fiber, wr = wt = 0, w i = 1, and w j = 0

for all j �= i. Substituting this information into Equation (4.10), we get

Rriir = −(vrw i)
2ββrr = −ββrr . (4.12)

Finally, let v = ∂i and w = ∂ j for i �= j so that vr = vt = wr = wt = 0 and vk = wk = 0, except for v i = 1 and w j = 1. 
Since K F = 1, we have

R i j ji = (v iw j)
2β2(1− β2

r ) = β2(1 − β2
r ). (4.13)

The result now follows from Equations (4.9), (4.11), (4.12), and (4.13). �

12
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4.3. Intermediate Scalar Curvature

We will now use the sectional curvatures we have computed in the previous section to derive a formula for the (p, n +2)-

intermediate scalar curvatures of our metric. Throughout this section, the vectors v and w always represent a pair of unit 
length orthogonal vectors. Let 0 � p � n and let P be a p-plane in TxM . Then P⊥ is a (n − p +2)-plane. Since the dimension 
of P⊥ + TxS

n can be at most the dimension of TxM ,

dim(P⊥ ∩ TxS
n) = dim(P⊥) + dim(TxS

n) − dim(P⊥ + TxS
n)

� (n − p + 2) + n − (n + 2)

= n − p.

Therefore, we know that there are at least n − p linearly independent vectors in P⊥ tangent to the sphere.
Without loss of generality, we will assume that the coordinate vector fields on the sphere are ∂1, . . . , ∂n where 

∂1, . . . , ∂n−p are in P⊥ . Completing an orthogonal basis for P⊥ , we have at most two unit length orthogonal vectors v, w
that are not in TxS

n . We consider three cases.

Case 1. The projections of v and w into TxS
n span a 0-dimensional subspace. This means that v and w do not have any 

fiber component and must be spanned by ∂r and ∂t . However, this means that ∂r and ∂t must be in P⊥ and we can just 
assume that these satisfy v = ∂r and w = 1

ω ∂t . In particular, P⊥ has the orthogonal basis {∂r , ∂t , ∂1, . . . , ∂n−p}. We compute 
the (p, n + 2)-intermediate scalar curvature,

sp,n+2(P ) = 2
∑

i< j

K i j + 2

n−p
∑

i=1

Kri + 2

n−p
∑

i=1

Kti + 2Krt

= (n − p)(n − p − 1)
1− β2

r

β2
− 2(n − p)

βrr

β
− 2(n − p)

ωrβr

ωβ
−

2ωrr

ω
.

Case 2. The projections of v and w into TxS
n span a 1-dimensional subspace. This subspace is orthogonal to the directions 

∂1, . . . , ∂n−p , and so without loss of generality, we can assume that it is spanned by ∂n−p+1 . Setting k = n − p +1 for brevity, 
this means that the vectors v and w have the form

v = vr∂r +
vt

ω
∂t +

vk

β
∂k, w = wr∂r +

wt

ω
∂t +

wk

β
∂k.

Using Equation (4.10), for 1 � i � n − p, we obtain

K (v, ∂i) = R(v, ∂i, ∂i, v) = v2k (1− β2
r ) − v2r

βrr

β
− v2t

βrωr

βω
and

K (w, ∂i) = R(w, ∂i, ∂i, w) = w2
k(1 − β2

r ) − w2
r

βrr

β
− w2

t

βrωr

βω
.

Similarly,

K (v, w) = R(v, w, w, v) = −(vtwr − vrwt)
2 ωrr

ω
− (vkwr − wkvr)

2 βrr

β
− (vkwt − wkvt)

2 βrωr

βω
.

The (p, n + 2)-intermediate scalar curvature is then given by

sp,n+2(P ) =2
∑

i< j

K i j + 2

n−p
∑

i=1

K (v, ∂i) + 2

n−p
∑

i=1

K (w, ∂i) + 2K (v, w)

=(n − p)(n − p − 1)
1 − β2

r

β2

+ 2(n − p)

(

v2k (1− β2
r ) − v2r

βrr

β
− v2t

βrωr

βω

)

+ 2(n − p)

(

w2
k (1 − β2

r ) − w2
r

βrr

β
− w2

t

βrωr

βω

)

− 2

(

(vtwr − vrwt)
2 ωrr

ω
+ (vkwr − wkvr)

2 βrr

β
+ (vkwt − wkvt)

2 βrωr

βω

)

=(n − p)(n − p − 1)
1 − β2

r

β2

13
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+ 2(n − p)

(

(v2k + w2
k )(1 − β2

r ) − (v2r + w2
r )

βrr

β
− (v2t + w2

t )
βrωr

βω

)

− 2

(

(vtwr − vrwt)
2 ωrr

ω
+ (vkwr − wkvr)

2 βrr

β
+ (vkwt − wkvt)

2 βrωr

βω

)

.

Case 3. The projections of v and w onto TxS
n span a 2-dimensional subspace. This subspace is orthogonal to the directions 

∂1, . . . , ∂n−p , and so without loss of generality, we can assume that it is spanned by ∂n−p+1 and ∂n−p+2 . Setting k = n − p +1

so that k + 1 = n − p + 2, this means that the vectors v and w have the form

v = vr∂r +
vt

ω
∂t +

vk

β
∂k +

vk+1

β
∂k+1, w = wr∂r +

wt

ω
∂t +

wk

β
∂k +

wk+1

β
∂k+1.

Using Equation (4.10), for 1 � i � n − p, we get

K (v, ∂i) = R(v, ∂i, ∂i, v) = (v2k + v2k+1)(1 − β2
r ) − v2r

βrr

β
− v2t

βrωr

βω
, and

K (w, ∂i) = R(w, ∂i, ∂i, w) = (w2
k + w2

k+1)(1− β2
r ) − w2

r

βrr

β
− w2

t

βrωr

βω
.

Furthermore, we have

K (v, w) = R(v, w, w, v) = −(vtwr − vrwt)
2 ωrr

ω
+ (vkwk+1 − vk+1wk)

2(1− β2
r )

− [(vkwr − wkvr)
2 + (vk+1wr − wk+1vr)

2]
βrr

β

− [(vkwt − wkvt)
2 + (vk+1wt − wk+1vt)

2]
βrωr

βω
.

The (p, n + 2)-intermediate scalar curvature is then given by

sp,n+2(P ) = 2
∑

i< j

K i j + 2

n−p
∑

i=1

K (v, ∂i) + 2

n−p
∑

i=1

K (w, ∂i) + 2K (v, w)

= (n − p)(n − p − 1)
1− β2

r

β2

+ 2(n − p)

(

(v2k + v2k+1)(1 − β2
r ) − v2r

βrr

β
− v2t

βrωr

βω

)

+ 2(n − p)

(

(w2
k + w2

k+1)(1 − β2
r ) − w2

r

βrr

β
− w2

t

βrωr

βω

)

+ 2

[

−(vtwr − vrwt)
2 ωrr

ω
+ (vkwk+1 − vk+1wk)

2(1− β2
r )

− [(vkwr − wkvr)
2 + (vk+1wr − wk+1vr)

2]
βrr

β

− [(vkwt − wkvt)
2 + (vk+1wt − wk+1vt)

2]
βrωr

βω

]

.

Since we know the warping functions β and ω are strictly positive by definition, and most coefficients in our final 
formulas for the intermediate scalar curvatures involve nonnegative squared terms, we summarize these three cases in the 
following proposition.

Proposition 4.7. Let M = B × F with B = (0, b1) × (0, b2) and F = Sn , having a metric of the form

g = dr2 + ω(r, t)2dt2 + β(r)2ds2n

where β : (0, β1) → (0, ∞) and ω : (0, b1) × (0, b2) → (0, ∞) are smooth warping functions. If x ∈ M and P is a p-plane in TxM for 
p ∈ {0, · · · , n}, then the (p, n + 2)-intermediate scalar curvature of P has the form

sp,n+2(P ) = (n − p)(n − p − 1)
1− β2

r

β2
+ A2(1− βr)

2 − B2 ωrr

ω
− C2 βrr

β
− D2 βrωr

βω
,

for some bounded real-valued functions A, B, C and D depending only on the plane P .

14
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5. Standard Metrics on the Sphere and the Disk

In this section we recall some well known metrics on the disk and sphere. In particular, we recall the so-called torpedo
and boot metrics. Such metrics are described in detail in section 3 of [32] although in the context of positive scalar curvature. 
Here we will establish conditions whereby these metrics have positive (p, n)-intermediate scalar curvature for appropriate 
p ∈ {0, 1, · · ·n − 2}.

5.1. Introducing the Metrics

Before we get into a formal construction of the metrics, we give a very brief description with the aid of Figs. 5.1 and 
5.2. An important point to note is that each space will be topologically the disk Dn+2 , but each will be distinguished by its 
metric.

A (δ, λ)-torpedo metric on a disk, Dn+2 , (where n � 0) is metriccally a cylinder, of length λ, of a round (n + 1)-sphere 
of radius δ near the boundary of the disk, before closing up as a round (n + 2)-dimensional hemisphere at the center. We 
denote such a metric, gn+2

torp (δ)λ and it is depicted in the first picture in Fig. 5.1.

Restricting such a metric to an upper half-disk Dn+2
+ results in a half-(δ, λ)-torpedo metric, denoted gn+2

torp+(δ)λ . This is the 
second picture in Fig. 5.1.

By carefully gluing to a cylinder of torpedo metrics, gn+1
torp (δ)λ + dt2 , on Dn+1 × [0, 1] a half-torpedo metric, gn+2

torp+(δ)λ , 

on Dn+2
+ along a Dn+1 contained in the boundary of Dn+2

+ , we obtain a metric denoted gn+2
toe (δ)λ1,λ2

on the manifold with 
corners, Dn+2

stretch
, obtained by attaching and smoothing the underlying manifolds Dn+2

+ and Dn+1 × [0, 1]. We refer to the 

metric gn+2
toe (δ)λ1,λ2

as the toe metric for its shape and its role in the next construction. This is the third picture in Fig. 5.1.

Fig. 5.1. Various metrics on the disk Dn+2 .

Finally, we introduce an (n + 2)-dimensional δ-boot metric. Briefly, this metric is constructed in 4 steps as follows.

Step 1. Beginning with some torpedo metric, gn+1
torp (δ)λ , trace out a cylinder of torpedo metrics before bending the cylinder 

around an angle of π
2

to finish as a Riemannian cylinder perpendicular to the first part of the cylinder in the direction 
suggested by the third image of Fig. 5.1. The resulting object has two cylindrical ends with different metrics. One is of the 
form dr2 + gn+1

torp (δ)λ and the other dt2 + gn+1
torp (δ)λ , where r and t are orthogonal coordinates depicted in Fig. 5.2.

Step 2. In order to control any negative sectional curvatures arising from the bending itself, we control the bending with a 
parameter 
 > 0. Essentially, the bending takes place along a quarter-circle of radius 
 > 0. A large choice of 
 ensures 
that negative curvatures arising from the bending are small.

Step 3. Away from the “caps” of the torpedos, this metric takes the form dr2 + dt2 + δ2ds2n . This part can easily be extended 
to incorporate the corner depicted in the third image of Fig. 5.1 and so that the necks of the torpedo “ends” have any 
desired lengths, l1 and l4 . These distances along with 
 determine the distances l2 and l3 , which are pictured in Fig. 5.2.

Step 4. Finally, we smoothly “cap-off” the cylindrical end which takes the form dt21 + gn−1
torp (δ)l1 , by attaching a half-torpedo 

metric, gn+2
torp+(δ)l1 . This is the so-called “toe” of the boot metric.

The resulting metric is denoted gn+2
boot

(δ)
,l̄ where 
 > 0 is the bending constant discussed above and l̄ = (l1, l2, l3, l4) ∈

R4
+ determines the various neck-lengths. While the choices of l1 and l4 are arbitrary, the constants l2 and l3 , as mentioned 

above, are determined by 
, l1 and l4 .
In the remainder of this section we will establish some results about the (p, n +2)-intermediate scalar curvature of these 

metrics.
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Fig. 5.2. The boot metric gn+2
boot

(δ)
,l̄ .

5.2. The Torpedo Metric

We consider a pair of smooth functions α, β : [0, b] → [0, ∞), where b > 0, which satisfy the following conditions.

α(r) = α0 −

r
∫

0

√

1− βr(u)2du, where α0 = 1+

b
2

∫

0

√

1− βr(u)2du, and (5.1)

(i) β(r) > 0, for all r ∈ (0,b);

(ii) β(0) = 0, βr(0) = 1, β(even)(0) = 0, and;

(iii) β(b) = 0, βr(b) = −1, β(even)(b) = 0.

(5.2)

The important point to note here is that α and β satisfy (αr)
2 + (βr)

2 = 1. In particular, if β(r) = sin r on (0, b) = (0, π), 
then α(r) = 1 + cos r. We now consider the map, Fβ , defined by:

Fβ : (0,b) × Sn+1 −→ R
n+2 × R,

(r, θ) 	−→ (β(r)θ,α(r)),

and recall Proposition 3.1 of [32].

Proposition 5.1. [32] For any smooth functions α, β : [0, b] → [0, ∞) satisfying the conditions laid out in Displays (5.2) and (5.1), the 
map Fβ above is an embedding.

Pulling back the Euclidean metric on Rn+2 × R via Fβ induces a metric, gβ , which we compute to be

gβ := F ∗
β(dx21 + dx22 + · · · + dx2n+2 + dx2n+3)

=dr2 + β(r)2ds2n+1,

where ds2n+1 is the standard round metric of radius 1 on Sn+1 . The following proposition is proved in Chapter 1, Section 3.4 
of Petersen [26].

Proposition 5.2. [26] Provided the smooth function β : [0, b] → [0, ∞) satisfies the conditions laid out in Display (5.2), the metric gβ

extends uniquely to a rotationally symmetric metric on Sn+2. Furthermore, if we drop condition (iii) of Display (5.2) and simply insist 
that β(b) > 0, this metric is now a smooth rotationally symmetric metric on the disk Dn+2.

In particular, by setting β(r) = δ sin r
δ
for r ∈ [0, δπ ], we obtain for gβ the standard round metric of radius δ on Sn+2 .

Let μ : R → [0, 1] be the function

μ(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 r � 0
e−1/r

e−1/r+e
− 1

1−r

r ∈ (0,1)

1 r � 1
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Fig. 5.3. A torpedo function ηδ,λ and the resulting torpedo metric gn+2
torp (δ)λ on the disk.

that smoothly transitions from 0 to 1. For any δ > 0 and λ � 0, let ηδ,λ : [0, δ π
2

+ λ] → [0, 1] be the smooth function with 
derivative

∂ηδ,λ

∂r
(r) = cos

( r

δ

)

μ

(

2−
4r

δπ

)

.

This function satisfies conditions (i) and (ii) of (5.2) as well as the following:

(i) ηδ,λ(r) = δ sin r
δ
when r � δ π

4
;

(ii) ηδ,λ(r) = Cδ when r � δ π
2

for C ≈ 0.916;

(iii) ηδ,λ(r) � δ sin r
δ
and ∂ηδ,λ

∂r
(r) � cos r

δ
for δ π

4
< r < δ π

2
;

(iv) ∂2

∂r
(ηδ,λ(r)) � 0; and

(v)
∂(k)ηδ,λ

∂r
(δ π

2
) = 0 for all k � 1.

The function ηδ,λ is known as a torpedo function. As it satisfies conditions (i) and (ii) of Display (5.2) and has ηδ,λ(
π
2

+

λ) > 0, it gives rise to a smooth metric on Dn+2 . The resulting metric is called a torpedo metric of radius δ and neck length λ

(or (δ, λ)-torpedo metric). It is denoted gn+2
torp (δ)λ and given by the formula:

gn+2
torp (δ)λ = dr2 + ηδ,λ(r)

2ds2n+1,

where r ∈ [0, πδ
2

+ λ]. Such a metric is rotationally symmetric metric on the disk Dn+2 and roughly, a round hemisphere of 
radius δ near the center of the disk and takes a radius δ cylindrical form on the annular region where r ∈ [πδ

2
, πδ

2
+ λ]; see 

Fig. 5.3.

Proposition 5.3. Suppose n � 1 and p satisfies 0 � p � n − 1. For any δ > 0, λ � 0 the metric gn+2
torp (δ)λ has positive (p, n + 2)-

intermediate scalar curvature. Moreover, this curvature can be bounded below with an arbitrarily large positive constant by choosing 
δ sufficiently small.

Proof. Excluding the point at r = 0, the metric gn+2
torp (δ)λ is the warped product metric dr2 +β2ds2n+1 , where β = ηδ,λ . Recall 

the Riemann curvatures of a warped product from Equation (4.5). Here the base is the one-dimensional B = (0, πδ
2

) and the 
fibers are (n + 1)-spheres F = Sn+1 with constant sectional curvature equal to 1. Therefore Equation (4.5) reduces to

R(v, w, w, v) =
∑

i< j

(v iw j − v jw i)
2β2

(

1− (βr)
2
)

−
∑

i

(vrw i − v iwr)
2ββrr .

If P is a p-plane in TxM , then P⊥ has dimension n − p + 2. Since the dimension of P⊥ + TxS
n+1 can be at most the 

dimension of TxM ,

dim(P⊥ ∩ TxS
n+1) = dim(P⊥) + dim(TxS

n+1) − dim(P⊥ + TxS
n+1)

� (n − p + 2) + (n + 1) − (n + 2)

= n − p + 1.

Therefore, we have two cases.

Case 1. The projection of P⊥ into TxM has dimension n − p +1. This means there is a direction in P⊥ orthogonal to TxS
n+1 , 

and so we can take {∂1, . . . , ∂n−p+1, ∂r} as an orthonormal basis for P⊥ where ∂1, . . . , ∂n−p+1 are tangent to the sphere. 
Therefore the (p, n + 2)-intermediate curvature is given by

sp,n+2(P ) =

n−p+1
∑

i, j=1

K (∂i, ∂ j) + 2

n−p+1
∑

i=1

K (∂i, ∂r)

= (n − p + 1)(n − p)
1− β2

r

β2
− 2(n − p + 1)

βrr

β
.

(5.3)
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Case 2. The projection of P⊥ into TxS
n+1 has dimension n − p +2. Then we can take an orthonormal basis {∂1, . . . , ∂n−p+1, v}

for P⊥ where ∂1, . . . , ∂n−p+1 are tangent to the sphere. We can write v = vn−p+2∂n−p+2+ vr∂r where ∂n−p+2 is a unit vector 
in TxS

n+1 orthogonal to the other ∂i . Therefore the (p, n + 2)-intermediate sectional curvature is given by

sp,n+2(P ) =

n−p+1
∑

i, j=1

K (∂i, ∂ j) + 2

n−p+1
∑

i=1

K (∂i, v)

= (n − p + 1)(n − p)
1− β2

r

β2

+ 2(n − p + 1)

[

v2n−p+2

(

1 − β2
r

)

− v2r
βrr

β

]

.

(5.4)

Since β > 0, β2
r � 1, and βrr � 0, we have that − βrr

β
� 0 and 1 −β2

r � 0, so the second terms of Equations (5.3) and (5.4)

are nonnegative. Consider K i j =
1−β2

r

β2 . For 0 < r � πδ
4
, we have β(r) = ηδ,λ(r) = δ sin r

δ
and β ′(r) = cos r

δ
. Therefore,

K i j =
1− cos2( r

δ
)

δ2 sin2( r
δ
)

=
sin2( r

δ
)

δ2 sin2( r
δ
)

=
1

δ2
.

On the other hand, when r � πδ
2
, we have β(r) = ηδ,λ(r) = Cδ and βr(r) = 0. Hence in this case, as C < 1, we immediately 

have K i j =
1

C2δ2
> 1

δ2
. In the transition region πδ

4
< r < πδ

2
, since ηδ,λ(r) � δ sin r

δ
and ∂ηδ,λ

∂r
(r) � cos r

δ
, then

K i j �
1− cos2( r

δ
)

δ2 sin2( r
δ
)

=
1

δ2
.

This means that as long as r > 0, the second terms of Equations (5.3) and (5.4) are non-negative, while the first terms 
consist of K i j �

1
δ2
. Since p � n − 1, then n − p > 0, and so the first terms are both strictly positive and can be bounded 

below by an arbitrarily large positive constant by choosing δ sufficiently small.

This leaves just the point at r = 0. Since β(r) = ηδ,λ(r) = δ sin r
δ

when r is near 0, and the sectional curvature is con-
tinuous, we can compute the curvature at this point using limits. Note that β(0) = 0, βr(0) = 1, and βrr(0) = 0. Since 
βrrr(r) = − 1

δ2
cos r

δ
for r near 0, we also have βrrr(0) = − 1

δ2
. Then we apply L’Hôpital’s rule, and we get the sectional 

curvatures

lim
r→0

1− (βr)
2

β2
= lim

r→0
−

2βrrβr

2βrβ
= lim

r→0
−

βrr

β
= lim

r→0
−

βrrr

βr

=
1

δ2
.

Hence at r = 0, all sectional curvatures are in fact equal to the positive value 1
δ2
. Therefore sp,n+2(P ) = 2(n − p + 2)(n −

p + 1) 1
δ2

is positive, so that gn+2
torp (δ)λ has positive (p, n + 2)-intermediate scalar curvature that can be bounded below by an 

arbitrarily large positive constant by choosing δ sufficiently small. �

We also need to consider the product of a torpedo metric with an interval in the construction of the boot metric. The 
proof of the following proposition follows directly from Proposition 4.7 by setting ω(r, t) = 1 and B = (0, b1) × (0, 1).

Proposition 5.4. Suppose n � 1 and p satisfies 0 � p � n − 2. For any δ > 0, λ � 0 the metric gn+1
torp (δ)λ + dt2 on the product 

Dn+1 × (0, 1) has positive (p, n + 2)-intermediate scalar curvature.

5.3. The Toe Metric

In this section we discuss the construction of the toe metric gn+2
toe (δ)λ1,λ2

. In Lemma 2.1 of Walsh [31] it is shown that 
the metric smoothing, necessary in constructing gn+2

toe (δ)λ1,λ2
, can be done so as to preserve positive scalar curvature. In 

the following Lemma, we show that the construction described in [31] actually preserves positive (p, n + 2)-curvature for 
p � n − 2.

Lemma 5.5. Suppose n � 2 and 0 � p � n − 2. For any δ, λ1, λ2 > 0, the metric gn+2
toe (δ)λ1,λ2

has positive (p, n + 2)-curvature. 
Moreover, this curvature can be bounded below with an arbitrarily large positive constant by choosing δ sufficiently small.

Proof. The strategy of proof involves describing the metric as in Lemma 2.1 of [31] and then computing its (p, n + 2)-

curvature. Thus, we regard gn+2
toe (δ)λ1,λ2

as obtained by, firstly, tracing out a cylinder of torpedo metrics, gn+1
torp (δ), in one 

direction before, secondly, bending by an angle of π
2

to finish with another cylinder in an orthogonal direction. It is then 
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easy to extend the “rectangular” part of this metric which takes the form dr2 + dt2 + δ2ds2n to obtain any desired pair of 
neck-lengths, λ1, λ2 > 0.

Along the region where the bending has taken place, this metric takes the form

gn+2
toe (δ)λ1,λ2 = dr2 + ω(r, t)2dt2 + β(r)2ds2n,

for certain smooth warping functions ω : [0, b] × [−2, π
2

+ 2] → [1, ∞) and β : [0, b] → [0, ∞). The function β is a torpedo 
function and so we can assume, for all r ∈ [0, b], β(r) = ηδ,λ(r) as in Section 5.2, for some appropriate neck-length λ. Note 
that, there is a corresponding real-valued function, α, on [0, b] which satisfies the Condition (5.1) above. The other warping 
function, ω, is now constructed to satisfy the following conditions:

ω(r, t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 t ∈ [−2,−1]

μ(−t) + (1− μ(−t))α(r) t ∈ [−1,0]

α(r) t ∈ [0, π
2
]

μ(t − π
2
) + (1 − μ(t − π

2
))α(r) t ∈ [π

2
, π

2
+ 1]

1 t ∈ [π
2

+ 1, π
2

+ 2],

where μ : [0, 1] → [0, 1] is a cut-off function satisfying μ(t) = 0 when t is near 0, μ(t) = 1 when t is near 1 and μ′(t) � 0

for all t ∈ [0, 1].
Given the form of the metric, recall from Proposition 4.7, the (p, n +2)-curvatures, sp,n+2(P ), of this metric for a p-plane 

P in the tangent space have the form

sp,n+2(P ) = (n − p)(n − p − 1)
1− β2

r

β2
+ A2(1− βr)

2 − B2 ωrr

ω
− C2 βrr

β
− D2 βrωr

βω
,

for some numbers A, B , C , and D depending on the plane P .
Since p � n − 2, the coefficient on the first term is non-zero. Positivity of this term follows from the definition of β

as a δ-torpedo function, applying L’Hôpital’s rule at r = 0. Indeed, as in Proposition 5.3, this term can be made arbitrarily 
large by choosing δ > 0 sufficiently small. Similarly, the second term is nonnegative. The remaining terms involve either 
−ωrβr , −ωrr or −βrr . By construction, ωrr and βrr are both non-positive. Hence, the corresponding terms above are also 
non-negative. Finally, ωr is a non-negative constant multiple of αr . Moreover, when αr and βr are non-zero, they have 
opposite signs, so the remaining terms above are also non-negative. This completes the proof. �

5.4. The Boot Metric

We now consider, gn+2
boot

(δ)
,l̄ , the boot metric introduced above. As our only concern here is establishing conditions for 

positivity of the (p, n +2)-curvature of such a metric, the values of the particular components of the vector ̄l are unimportant 
and so we will suppress them from the notation, writing the metric simply as gn+2

boot
(δ)
 . This metric can be regarded as 

consisting of four pieces:

gn+2
boot

(δ)
 :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

gn+2
toe (δ) on R1 = Dn+2

stretch

gn+2
bend

(δ)
 on R2
∼= Dn+1 × [0,1]

gn+1
torp (δ) + dt2 on R3

∼= Dn+1 × [0,1]

dr2 + dt2 + δ2ds2n on R4
∼= D2 × Sn,

(5.5)

as depicted in Fig. 5.4 below.

While the first, second and fourth components of this metric above are clearly defined, the third component gn+2
bend

(δ)


requires some description. A detailed account of this construction is given in Section 5 of [32] and so we will be brief. 
As mentioned above, the metric component, gn+2

bend
(δ)
 , is obtained by bending a cylinder of torpedo metrics gn+1

torp (δ) + dt2

around a quarter circle. Importantly, the bend is in the opposite direction to that employed in Lemma 5.5, and, unlike in 
that case creates negative curvature. Provided we perform the bending slowly enough, that is provided the quarter circle 
has sufficiently large radius, we can minimize such negative curvature. The parameter 
 is the radius of this quarter circle. 
In section 5, page 892, of [32], the metric gn+2

bend
(δ)
 is defined as follows:

gn+2
bend

(δ)
 := dr2 + ω
(r, t)2dt2 + β(r)2ds2n,

where r ∈ [0, b], t ∈ [−3, π
2

+ 3]. Here β : [0, b] → [0, ∞) is defined as:

β(r) = ηδ(b − r),
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Fig. 5.4. The various components of the boot metric, to the left are the “assembly instructions” for the boot and to the right is the assembled boot.

with respect to a torpedo function ηδ as defined in Equation 5.2, where we suppress the neck length λ as it is unimportant. 
The corresponding smooth function α, is constructed from β to satisfy α2

r +β2
r = 1, as defined in Equation (5.1). The function

ω
 : [0,b] ×
[

−3,
π

2
+ 3

]

−→ [1,∞)

is now defined to satisfy the following properties:

(i)

ω
(r, t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 if −3� t � −2


 if − 3
2
� t �− 1

2


 + α(r) if t ∈ [0, π
2
]


 if π
2

+ 1
2
� t � π

2
+ 3

2

1 if π
2

+ 2� t � π
2

+ 3;

(ii) ω
(r, t) �
 −max{|α(r)| : r ∈ [0, b]} when t ∈ [− 3
2
, π

2
+ 3

2
];

(iii)
∂w


∂r
(r, t) = 0 when t ∈ [−3, − 1

2
] ∪ [π

2
+ 1

2
, π

2
+ 3];

(iv)

∣

∣

∣

∣

∣

∂(k)w


∂r(k)
(r, t)

∣

∣

∣

∣

∣

�

∣

∣

∣

∣

∣

∂(k)α

∂r(k)
(r)

∣

∣

∣

∣

∣

for all k ∈ {0, 1, 2, · · · }; and

(v)
∂2w


∂r2
� 0.

In Fig. 5.5 we provide a schematic description of this function on its rectangular domain [0, b] × [−3, π
2

+ 3], to aid the 
reader. The white regions in this picture indicate the smooth transition by way of a cut-off function in exactly the spirit of 
the cut-off function μ used when defining the warping function ω in the proof of Lemma 5.5.

Fig. 5.5. The function ω
 .

Lemma 5.6. For n � 2 and any δ > 0 there is a positive constant 
 for which the metric gn+2
bend

(δ)
 has positive (p, n +2)-intermediate 
scalar curvature for all p ∈ {0, · · · , n − 2}.
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Proof. Making use of Proposition 4.7, with ω replaced by ω
 , we obtain the following formula for the intermediate scalar 
curvatures sp,n+2(P ) for some P , a p-dimensional subspace of the tangent space.

sp,n+2(P ) = (n − p)(n − p − 1)
1− β2

r

β2
+ A2(1− βr)

2 − B2 (ω
)rr

ω


− C2 βrr

β
− D2 βr(ω
)r

βω


,

where A, B , C , and D are real valued functions dependent on the plane P , as defined in Proposition 4.7.

As with the proof of Lemma 5.5, the condition on p and the fact that β is a torpedo function, albeit pointing in the 
opposite direction, means that the first term is positive and the second term is nonnegative. As βrr � 0 and (ω
)rr � 0, the 
third and fourth terms are also nonnegative.

Unlike the case of Lemma 5.5 however, we do not get such a nice relationship between the signs of the first derivatives 
of β and α. This is because βr � 0 in this case. Thus, there may be some negativity arising from the βr(ω
)r

βω

term. This 

negativity arises only in the region where t ∈ [− 1
2
, π

2
+ 1

2
], since ∂ω


∂r
= 0 off this region. By choosing 
 sufficiently large, 

this negativity can be minimized.

The first potential problem is that β tends to zero as r tends to zero. However, on this region (t ∈ [− 1
2
, π

2
+ 1

2
]), we have 

ω
 = 
 + α. When r is near zero, α and β satisfy

α(r) = δ cos(
r

δ
) and β(r) = δ sin(

r

δ
).

Thus when r is near zero, the quotient

(ω
)r

β
= −

1

δ
.

The functions α, β , and their derivatives, all of which are bounded, are fixed and independent of 
. Since the factor of 
D2 in this term depends continuously on the choice of plane P which varies over the compact Grassmannian, Grp(T R2), 
there is some choice of 
 sufficiently large to minimize the negative impact of these terms and ensure overall positivity of 
sp,n+2(P ). �

Corollary 5.7. For n � 2 and any δ > 0 there is a positive constant, 
, for which the boot metric gn+2
boot

(δ)
 has positive (p, n + 2)-

intermediate scalar curvature for all p ∈ {0, · · · , n − 2}.

Proof. Here we simply utilize the description in Equation (5.5), of gn+2
boot

(δ)
 and its four component metrics. On R1 , the 

metric gn+2
toe (δ) has positive (p, n +2)-intermediate scalar curvature by Lemma 5.5. On R2 , the metric gn+2

bend
(δ)
 has positive 

(p, n + 2)-intermediate scalar curvature by Lemma 5.6. On R3 , the metric dt2 + gn+1
torp (δ) has positive (p, n + 2)-intermediate 

scalar curvature by Proposition 5.4.

Finally, on R4 , we have the metric dr2 +dt2 + δ2ds2n . By Proposition 4.7, using ω = 1 and β = δ, we have for any p-plane,

sp,n+2(P ) = (n − p)(n − p − 1) + A2

for some function A of the plane P . Since n − p � 2, this is positive for all planes P so we have positive (p, n + 2)-

intermediate scalar curvature on R3 . �

5.5. The Product of the Boot with a Sphere

The next proposition generalizes the result of Corollary 5.7 to the product of a boot metric and a round sphere.

Proposition 5.8. For n � 2, m � 0 and any δ > 0, there is a positive constant 
 for which the product metric gn+2
boot

(δ)
 + ds2m has 
positive (p, n +m + 2)-intermediate scalar curvature for all p ∈ {0, . . . , n − 2}.

Proof. Let M be the product B × Sm where B is a disk with a boot metric gn+2
boot

(δ)
 and Sm is the unit round sphere for 
some m � 0 with the standard product metric

gn+2
boot

(δ)
 + ds2m

Let p ∈ {0, . . . , n −2} so that the boot (B, gn+2
boot

(δ)
) has positive (p, n +2)-intermediate scalar curvature for large enough 

. If x ∈ M and P is a p-plane in TxM , then the orthogonal complement P⊥ has dimension n +m + 2 − p. Since the sum 
P⊥ + TxB is at most the entire tangent space TxM , we have

dim(P⊥ ∩ TxB) = dim(P⊥) + dim(TxB) − dim(P⊥ + TxB)

� (n +m + 2− p) + (n + 2) − (n +m + 2)

= n + 2− p.
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Therefore, we can take an orthonormal basis for P⊥ consisting of vectors {e1, . . . , en+2−p} from TxB and {v1, . . . , vm}

the other m vectors. Therefore the (p, n +m + 2)-intermediate scalar curvature of P is

sp,n+m+2(P ) =
∑

i, j

K (ei, e j) + 2
∑

i, j

K (ei, v j) +
∑

i, j

K (v i, v j). (5.6)

If we denote the sectional curvatures of the boot and sphere by KB and K S respectively, and we have orthonormal 
vectors v = vB + v S and w = wB + w S in TxM where vB , wB are tangent to the boot and v S , w S are tangent to the sphere, 
then recall the formula,

K (v, w) =
∣

∣

∣
vB ∧ wB

∣

∣

∣

2
KB(v

B , wB) +
∣

∣

∣
v S ∧ w S

∣

∣

∣

2
K S(v

S , w S).

For the first summand of Equation (5.6), since all of the ∂i are entirely in TxB and are still orthonormal there,
∑

i, j

K (ei, e j) =
∑

i, j

KB(ei, e j) = sn+2,p(Q ),

where Q is the p-plane in TxB that is the orthogonal complement of span({e1, . . . , en+2−p}). As a (p, n + 2)-curvature of 
the boot, so long as we choose a large enough 
, this summand is strictly positive.

Moving on to the second summand of Equation (5.6), since v j is orthogonal to ei , which is already contained in TxB , the 
projection vB

j
remains orthogonal to ei . Therefore,

K (ei, v j) =
∣

∣

∣
ei ∧ vB

j

∣

∣

∣

2
KB(ei, v

B
j ) = ‖vB

j ‖
2KB(ei, v

B
j ).

For the third summand, the only immediate simplification we can make is to use the fact that the sphere has constant 
curvature equal to 1,

K (v i, v j) =
∣

∣

∣
vB
i ∧ vB

j

∣

∣

∣

2
KB(v

B
i , vB

j ) +
∣

∣

∣
v S
i ∧ v S

j

∣

∣

∣

2
K S(v

S
i , v

S
j )

=
∣

∣

∣
vB
i ∧ vB

j

∣

∣

∣

2
KB(v

B
i , vB

j ) +
∣

∣

∣
v S
i ∧ v S

j

∣

∣

∣

2
.

The second term of this only adds positivity, so we focus on the first term. That is, we need to deal with the sectional 
curvatures of the boot KB(v, w). There are four cases depending on where the projection of the point x is in Fig. 5.4. 
However by construction, R1 , R3 , and R4 have nonnegative sectional curvature, so when the projection of x is in any of 
these regions, we have that the first summand of Equation (5.6) is strictly positive, while the other two are nonnegative. 
Therefore sp,n+m+2(P ) > 0 in these cases. All that remains is to consider the case when x projects into the R2 region.

Since the metric on R2 is given by

gn+2
bend

(δ)
 = dr2 + ω
(r, t)2dt2 + β(r)2ds2n,

we have from Equation (4.10), with ω = ω
 ,

∑

i, j

KB(ei, v
B
j ) =

∑

i, j

1

‖vB
j
‖2

[

−(et vr − er vt)
2 (ω
)rr

ω


+
∑

k<�

(ekv� − e�vk)
2(1− β2

r )

−
∑

k

(ekvr − er vk)
2 βrr

β
−

∑

k

(ekvt − et vk)
2 βr(ω
)r

βω


]

,

and

∑

i, j

KB(v
B
i , wB

j ) =
∑

i, j

1

|vB
i

∧ wB
j
|2

[

−(v iw j − v jw i)
2 (ω
)rr

ω


+
∑

k<�

(vkw� − v�wk)
2(1 − β2

r )

−
∑

k

(vkwr − vrwk)
2 βrr

β
−

∑

k

(vkwt − vtwk)
2 βr(ω
)r

βω


]

.

Incorporating these two expressions into Equation (5.6), we have

sp,n+m+2(P ) =
∑

i, j

KB(ei, e j) + 2
∑

i, j

‖vB
i ‖2KB(ei, v

B
j ) +

∑

i, j

|vB
i ∧ wB

j |
2KB(v

B
i , wB

j ) +
∑

i, j

|v S
i ∧ w S

j |
2

= sp,n+2(Q ) − A2 (ω
)rr

ω


+ B2(1 − β2
r ) − C2 βrr

β
− D2 βr(ω
)r

βω


+ E2,
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for real-valued functions A, B, C, D, E ranging over the choice of plane P . As in the proof of Lemma 5.6, the second, third, 
and fourth terms are all nonnegative, as is the sixth term. The first term is the (p, n + 2)-intermediate scalar curvature of 
the boot metric, and by Corollary 5.7 this is positive provided we choose 
 large enough.

However, as in the proof of Lemma 5.6 we can make sure that the negativity contributed by the fifth term is bounded, 
and so ensure overall positivity of sp,n+m+2(P ). �

6. Proof of Theorem A

6.1. The Surgery Theorem of [16] and [27] for Positive (p, n)-Intermediate Scalar Curvature

We begin with a smooth manifold M of dimension n. Suppose φ : Sk × D�+1 → M is an embedding, where n = k + � + 1. 
Recall that a surgery on M , with respect to the embedding φ, is the construction of a manifold, Mφ obtained by removing 
the image of φ from M and using the restricted map φ|Sk×S� to attach Dk+1 × S� along the common boundary.

The trace of the surgery on φ is the cobordism between M and Mφ , obtained by gluing the cylinder M × [0, 1] to the 
disk product Dk+1 × D�+1 via the embedding φ. This is done by attaching M × {1} to the boundary component Sk × D�+1

through the composition i ◦ φ : Sk × D�+1 → M × {1} where i : M → M × {1} is the inclusion i(x) = (x, 1). After appropriate 
smoothing, we obtain the elementary cobordism M̄φ .

Returning to the embedding, φ, we consider the family of rescaling maps

σρ : Sk × D�+1 −→ Sk × D�+1

(x, y) 	−→ (x,ρ y),

where ρ ∈ (0, 1]. We then set φρ := φ ◦ σρ and Nρ := φρ(Sk × D�+1) and N := N1 . Thus, for any metric g on M and any 
ρ ∈ (0, 1], φ∗

ρ g is the metric obtained by taking the restriction metric g|Nρ , pulling it back via φ to obtain the metric φ∗g|Nρ

on Sk × D�+1(ρ) and finally, via the obvious rescaling map σρ , pulling it back to obtain a metric on Sk × D�+1 .

The positive scalar curvature Surgery Theorem of [16] and [27] was generalized for positive (p, n)-intermediate scalar 
curvature in [21]. At its heart is the following theorem from [21].

Theorem 6.1. [21] Let M be a smooth n-dimensional manifold and φ : Sk × D�+1 → M an embedding with k + � + 1 = n. We further 
assume that � � 2 and p ∈ {0, 1, · · · , � − 2}. Then for any metric g on M with positive (p, n)-intermediate scalar curvature, there is a 
metric gstd with positive (p, n)-intermediate scalar curvature such that:

1. In the neighborhood N1/2 = φ1/2(S
k × D�+1), gstd pulls back to the metric

φ∗
1/2gstd = ds2k + g�+1

torp; and

2. Outside N = φ(Sk × D�+1), gstd = g.

The metric gstd is thus prepared for surgery or standardized on N1/2 . By removing part of the standard piece taking the form

(Sk × D�+1,ds2k + g�+1
torp),

and replacing it with

(Dk+1 × S�, gk+1
torp + ds2�),

we obtain a metric g′ on M ′ with positive (p, n)-intermediate scalar curvature.
In order to prove our main theorem, we require one more fact: that the metrics g and gstd above are (sp,n > 0)-isotopic. 

Proofs of this fact for the case of positive scalar curvature, that is when p = 0, can be found in Theorem 2.3 of [30] and 
in Ebert and Frenck [8]. More recently, Kordass [19], proved this fact for a variety of general curvature conditions including 
positive (p, n)-intermediate scalar curvature. In particular, Theorem 3.1 from [19], which we state below, is a special case of 
his results.

Lemma 6.2. [19] Let M be a smooth n-dimensional manifold and let φ : Sk × D�+1 → M be an embedding with k + � + 1 = n, � � 2

and p ∈ {0, 1, · · · , � − 2}. Then for any metric g on M with positive (p, n)-intermediate scalar curvature, there is an isotopy through 
(sp,n > 0)-metrics, gt, t ∈ [0, 1] which satisfies the following conditions:

1. gt |M\N = g|M\N for all t ∈ [0, 1], and
2. g0 = g and g1 = gstd , where gstd is the metric obtained from g by Theorem 6.1 above and satisfies

φ∗
1/2gstd = ds2k + g�+1

torp .
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We will now make use of this lemma to prove Theorem A, which we restate for the sake of the reader.

Theorem 6.3. Let M be a smooth n-dimensional manifold, φ : Sk × D�+1 → M, a smooth embedding, and {M̄φ; M, Mφ}, the trace of 
the surgery on φ . Suppose that � � 2 and p ∈ {0, 1, · · ·� − 2}. Then for any metric g on M with positive (p, n)-intermediate scalar 
curvature, there are metrics gφ on Mφ and ḡφ on M̄φ satisfying:

1. The metrics gφ and ḡφ have respectively positive (p, n) and (p, n + 1)-intermediate scalar curvature on Mφ and M̄φ , and
2. Near the boundary components M and Mφ of M̄φ , ḡφ takes the form of the respective product metrics ḡφ = g + dt2 and ḡφ =

gφ + dt2 .

Proof. We begin by employing Lemma 6.2 to obtain an isotopy, gt for t ∈ [0, 1], between g0 = g and g1 = gstd , as defined 
above. Corollary 3.3 gives us a concordance, ḡ , on a cylinder M × [0, L + 2] for some L > 0 which satisfies the following 
conditions:

ḡ|M×[0,1] = g + dt2 and ḡ|M×[L+1,L+2] = gstd + dt2.

This concordance is schematically depicted in Fig. 6.1.

Fig. 6.1. The concordance ḡ .

Consider a boot metric, g�+2
boot

(1)
,l̄ , as depicted in Fig. 5.2, now with δ = 1. By Corollary 5.7, we may choose 
 to ensure 

positive (p, n + 1)-curvature for p ∈ {0, · · · , � − 2}. Recall here that l̄ is a quadruple (l1, l2, l3, l4) determining the lengths 
of various sides of the boot metric, see Fig. 5.2. We set l1 = l4 = 1. Recall that l2 and l3 depend on 
 and may be large, 
so without loss of generality, we may assume that both are greater than 1. To simplify notation, we refer to this metric 
henceforth as g�+2

boot
.

We next extend the collar M ×[L +1, L +2] to M ×[L +1, L +1 + l3] and extend the metric ḡ as gstd +dt2 on this larger 
cylinder. Consider the restriction of the metric, ḡ , to the region, N1/2 × [L + 1, L + l3]. Here, ḡ takes the form

ḡ|N1/2×[L+1,L+1+l3] = ds2k + g�+1
torp + dt2.

We replace ḡ|N1/2×[L+1,L+1+l3] on N1/2 × [L + 1, L + 1 + l3] with the metric

ds2k + g�+2
boot

,

as depicted in Fig. 6.2, to obtain the metric

ḡboot :=

⎧

⎪

⎨

⎪

⎩

ḡ|M×[0,L+1] on M × [0, L + 1],

ḡ|(M\N1/2)×[L+1,L+1+l3] on (M \ N1/2) × [L + 1, L + 1+ l3], and

ds2
k
+ g�+2

boot
on N1/2 × [L + 1, L + 1+ l3].

Fig. 6.2. The metric resulting from “attaching boots”, ḡboot .

This metric has positive (p, n + 1)-curvature for all p ∈ {0, 1, · · ·� − 2}. In particular, on N1/2 × [L + l3, L + 1 + l3], this 
metric takes the form of a product gstd,l2 + dt2 , where
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gstd = ds2k + g�+1
torp(1)l2 .

In other words, this metric is a cylinder of standard metrics with torpedo necks stretched from length 1 to length l2 . The 
metric ḡboot is readymade for surgery.

Returning to the region, N1/2 × [L + 1, L + 1+ l3], where the metric ḡboot takes the form ds2
k

+ g�+1
boot

, we recall that 

the boot factor g�+1
boot

takes the form of a toe, ĝ�+1
toe (1), see Fig. 5.4, on a subregion. As depicted in Fig. 6.3, we replace 

ds2
k
+ ĝ�+2

toe (1) with gk+1
torp + g�+1

torp by “cutting off the toes” and introducing a “handle”.

Fig. 6.3. Replacing the toes with a handle.

After gluing on this handle, we obtain the desired metric ḡφ on the trace M̄φ of the surgery as shown in Fig. 6.4.

Fig. 6.4. The space (M̄φ , ḡφ) obtained as the trace of the surgery.

This completes the proof of Theorem A. �

7. The Proof of Theorem B

The proof of Theorem B follows closely that of [5] for the case of positive scalar curvature. There is also a very readable 
summary of the method of [5] in section 4.2 of [29]. We will therefore provide only the relevant information and refer the 
reader to these sources for further detail. As before, we restate the theorem to aid the reader.

Theorem 7.1. Let M be a smooth, closed, spin manifold of dimension 4n − 1, n � 2, which admits an (sp,4n−1 > 0)-curvature metric 
for some p ∈ {0, 1, · · · , 2n − 3}. Then Rsp,4n−1>0(M) has infinitely many path components.

Proof. We begin by considering the case where M is the sphere, S4n−1 for some n � 2. In section 4 of [5], the author 
constructs an infinite collection, Xq , q ∈ {1, 2, · · · }, with the following properties:

(i) Xq is a smooth 4n-dimensional manifold with boundary ∂ Xq diffeomorphic to S4n−1 , the standard sphere;
(ii) Xq is homotopy equivalent to a finite wedge of 2n-spheres; and
(iii) For q0 �= q1 , the closed manifold X̄q0,q1 := Xq0 ∪(S4n−1× I) ∪ Xq1 , where I = [0, 1] and obtained by gluing along common 

boundaries, has α( X̄q0,q1) �= 0. Thus X̄q0,q1 admits no metrics of positive scalar curvature.

These manifolds are constructed using the technique of plumbing disk bundles of the tangent bundle T S4n with respect to 
certain graphs, see, for example, section 4.2.1 of [29]. It is well known that performing this construction with respect to 
the graph which is the Dynkin diagram of the exceptional Lie group E8 results in a smooth manifold, XE8 , whose boundary 
is homeomorphic to the sphere S4n−1; see, for example, Ch. VI, Sec. 12 in Kozinski [20]. In the case of Xq , the plumbing 
construction is in accordance with graphs based on qθ4n−1 copies of the Dynkin diagram for E8 , where θ4n−1 is the order 
of the boundary, ∂ XE8 , in the group, �4n−1 , of homeomorphic smooth (4n − 1)-spheres.

Let Wq := Xq \ D4n denote the result of removing a disk, D4n , from the interior of Xq . Thus, we obtain a cobordism, 
{Wq; ∂D4n, ∂ Xq}, where each boundary component is diffeomorphic to S4n−1 . Making use of an appropriate Morse function, 
we may decompose this into a finite union of elementary cobordisms:
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Fig. 7.1. The implied Riemannian manifold X̄q0,g1 , ḡq0,g1 .

{Wq; S
4n−1
0 = ∂D4n, S4n−1

1 = ∂ Xq} = {Y1; S
4n−1
0 , S4n−1

1 } ∪ {Y2; S
4n−1
1 , S4n−1

2 } ∪ · · · ∪ {Ym; S4n−1
m−1 , S4n−1

m },

where S4n−1
0 is the boundary of the 4n-dimensional disk we removed from the interior of Xq and S4n−1

m = ∂ Xq . Property (ii) 
above means that each elementary cobordism is the trace of a surgery on a (2n − 1)-dimensional embedded sphere. Thus, 
each surgery takes place in codimension (4n − 1) − (2n − 1) = 2n.

Equipping S4n−1
0 with the round metric, ds24n−1 , and fixing collars near the boundaries of the individual elementary 

cobordisms, we repeatedly apply the geometric trace construction of Theorem A to obtain a Riemannian metric, ḡq on Wq . 
Given that all surgeries are in codimension 2n, we can ensure that Wq with the resulting metric, ḡq , has sp,4n > 0 for 
p = 2n − 3 and hence all p ∈ {0, 1, · · ·2n − 3}. Moreover, ḡq takes a product structure near the boundary and the restriction 
gq = ḡ|∂ Xq is a metric on S4n−1 , with sp,4n−1 > 0.

Suppose now that we apply this procedure for a pair q0 �= q1 . For each i = 0, 1, we can now form sp,4n > 0 metrics, h̄qi
on Xqi , from ḡi on Wqi , by simply replacing the previously removed interior 4n-disks and equipping the replacement disks 
with torpedo metrics g4ntorp . Thus,

(Xqi , h̄qi ) = (Wqi , ḡqi ) ∪ (D4n, g4ntorp).

The product structure near the round boundary (4n − 1)-spheres mean these attachments are smooth.

If gq0 and gq1 lie in the same path component of Rsp,4n−1>0(S4n−1), there is an (sp,4n−1 > 0)-isotopy and so, by 
Lemma 3.2, an (sp,4n−1 > 0)-concordance between them. We denote this concordance, h̄q0,q1 . This allows us to construct 
the closed Riemannian manifold

( X̄q0,q1 , ḡq0,q1) := (Xq0 , h̄q0) ∪ (S4n−1 × I, h̄q0,q1) ∪ (Xq1 , h̄q1),

depicted in Fig. 7.1.
The metric ḡq0,g1 is a union of (sp,4n > 0)-metrics and so is itself an (sp,4n > 0)-metric for p ∈ {0, 1, · · · , 2n −3}. However 

this is impossible since, by Property 3 above, X̄q0,q1 does not admit positive scalar curvature metrics when q0 �= q1 , and 
hence admits no sp,n > 0 metric for any p � 0. Thus, there is no isotopy between gq0 and gq1 and, by implication, the space 
R

sp,4n−1(S4n−1) has infinitely many path components. This proves Theorem B for the case M = S4n−1 .

We now consider the more general case of a closed smooth spin manifold, M , of dimension 4n − 1, which admits an 
(sp,4n−1 > 0)-metric, gM , for p ∈ {0, 1, · · · , 2n − 3}. For any (sp,4n−1 > 0)-metric, g , on the sphere S4n−1 , the connected sum 
metric, gM#g , obtained by applying the surgery construction in Theorem A, is an (sp,4n−1 > 0)-metric also. We will show 
that for any pair q0 �= q1 , the metrics gM#gq0 and gM#gq1 , where gq0 and gq1 are the metrics constructed above, lie in 
different path components of Rsp,4n−1>0(M).

For each i = 0, 1, let Wqi denote the manifold obtained above by removing a 4n-dimensional disk, D4n , from the 
interior of Xqi . Thus, ∂Wqi = S4n−1

i0 � S4n−1
i1 , where S4n−1

i0 = ∂D4n and S4n−1
i1 = ∂ Xqi . For i, j = 0, 1, we let the maps: 

τi j : S
4n−1 × [0, ε) −→ Wqi , where τi j(S4n−1 × {0}) = S4n−1

i j , denote the disjoint collar neighborhood embeddings, employed 
in the metric construction of Theorem A. Choose path embeddings, γi : [0, 1] → Wqi , i = 0, 1, satisfying the following com-

patibility conditions:

• the endpoints of γi satisfy γi(0) ∈ S4n−1
i0 and γi(1) ∈ S4n−1

i1 ,

• when t is near 0, τ−1
i0 ◦ γi(t) = t while, when t is near 1, τ−1

i1 ◦ γi(t) = 1 − t .

Finally, we specify a path γ : I → M × I , defined by γ (t) = (x0, t) for some fixed point x0 ∈ M . By removing small tubular 
neighborhoods around γi and γ , we perform a slicewise-connected sum along these embedded paths to obtain Zqi :=

Wqi#(M × I), as depicted in Fig. 7.2. We will assume that in Zqi , our slicewise connected sum construction associates S4n−1
i j

with M × { j}. Thus, Zqi is a manifold whose boundary is a disjoint union of two diffeomorphic copies of M .
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Fig. 7.2. Constructing the manifold Zqi as a slicewise connected sum (with respect paths γi and γ ) of Xqi and M × I .

By Theorem A, with respect to the collars τi j , we have (sp,n > 0)-metrics, ḡqi on Wqi for each i = 0, 1. Each metric, 
ḡqi , has a product structure near the boundary and, we assume, restricts as ds24n−1 near S4n−1

i0 and gqi + dt2 near S4n−1
i1 . 

Employing the technique of Theorem A over the slicewise connected sum leads to a metric, ḡZqi
, on Zqi which has the 

following properties:

• The manifold Zqi with the metric ḡZqi
has sp,4n > 0 and has a product structure near the boundary.

• The metric ḡZqi
takes the form, ds24n−1#gM , on the S4n−1

i0 #(M × {0}) ∼= M boundary component.

The first of these properties is ensured by the earlier compatibility conditions on the paths, γi , which ensure the connected 
sum construction is constant near the boundary.

Thus, we can form the Riemannian manifold with boundary

(Zq0,q1 , ḡZq0,q1
) := (Zq0 , ḡZq0

) ∪ (Zq1 , ḡZq1
),

by gluing together the S4n−1
00 and S4n−1

10 boundary components where both metrics agree. By construction Zq0,q1 with this 
metric has sp,4n > 0, has a product structure near its boundary and restricts respectively on its two spherical boundary 
components, S4n−1

01 and S4n−1
11 , as gq0 and gq1 .

As before, if gq0 and gq1 are (sp,4n−1 > 0)-isotopic, there is an (sp,4n−1 > 0)-concordance on the cylinder, (M × I, ̄hq0,q1). 
Attaching this cylinder to Zq0,q1 , so that each boundary of the cylinder is attached to one of the boundary components of 
Zq0,q1 , gives rise to a closed, (sp,4n > 0)-Riemannian manifold:

(Yq0,q1 , ḡYq0,q1
) := (Zq0,q1 , ḡZq0,q1

) ∪ (S4n−1 × I, h̄q0,q1).

Now Yq0,q1 is easily seen to be diffeomorphic to the connected sum Xq0,q1#(M × S1). The additive property of the α-

invariant over connected sums implies that:

α(Yq0,q1) = α(Xq0,q1#(M × S1)) = α(Xq0,q1) + α(M × S1) = α(Xq0,q1) + 0 �= 0.

The summand, α(M × S1), vanishes since M admits a psc-metric and hence, so does M × S1 . Thus, Yq0,q1 admits no metric 
of positive scalar curvature and so we have a contradiction. Therefore, the metrics gM#gq0 and gM#gq1 lie in different path 
components of Rsp,4n−1>0(M). �
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