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A B S T R A C T

A significant question in the study of microstructurally small cracks (MSCs) is: What is the minimum
microstructural volume that should be included in studies involving MSCs? To answer this, representative volume
elements for microstructurally small cracks (RVEMSC), or the minimum volume of microstructure required
around an MSC to achieve convergence of crack-front parameters with respect to volume size, were previously
determined using finite element (FE) simulations. The large computational expense of determining RVEMSC
via FE simulations motivated the implementation of convolutional neural networks (CNNs) to expedite the
determination of RVEMSC (Part I). In addition to expediting the determination of RVEMSC, trained CNNs provide
the opportunity to gain insights about RVEMSC predictions through various interpretation methods, which we
investigate in the current work. First, an inspection of CNN predictions reveals trends learned by the CNN.
Second, an input sampling grid study offers insights into the volume of microstructure around an MSC that
most influences predictions of RVEMSC. Third, an input feature sensitivity analysis compares the influence
of microstructural and geometrical features on RVEMSC predictions. Fourth, visual inspections of saliency
maps reveal the local microstructure that is most important to the CNN when predicting RVEMSC. The CNN
interpretation results show that microstructural features are more critical than geometrical features to the
CNN predictions. Despite inherent limitations in interpreting saliency maps, the results demonstrate that the
CNN can learn to identify various microstructural arrangements at individual crack-front points. Overall, this
study highlights the importance of considering a variety of microstructural instantiations when determining
RVEMSC, as RVEMSC should be a conservative minimum volume requirement that applies across a wide range
of microstructural instantiations.
1. Introduction

Microstructurally small cracks (MSCs) are cracks whose lengths are
on the order of the size of the predominant microstructural features [1].
Given the strong dependence of MSC behavior on microstructural fea-
tures [2–14], there is a need to know how much volume of hetero-
geneous microstructure should be included in studies of MSCs. In a
previous study, DeMille and Spear [15] addressed this issue by de-
termining representative volume elements for microstructurally small
cracks (RVEMSC). By definition, RVEMSC is ‘‘the smallest heterogeneous
volume containing an MSC such that local crack-front parameters are
converged with respect to volume size’’ [15]. Using a finite-element
(FE) simulation framework, RVEMSC was determined for linear-elastic
microstructures, and it was found that microstructural heterogeneity,
material constraint, and crack size influence the volume required for
J-integral values to converge with respect to volume size.

∗ Corresponding author.
E-mail address: ashley.spear@utah.edu (A.D. Spear).

Although the FE-based framework was successful at identifying
RVEMSC sizes and key influences on volume requirements, a significant
limitation of the FE-based determination of RVEMSC was the requisite
computational expense; thus, a method for expediting the determina-
tion of RVEMSC was proposed by DeMille and Spear in Part I [16]. In the
proposed method, convolutional neural networks (CNNs) were trained
to predict RVEMSC,ip sizes given microstructural and geometrical inputs,
where RVEMSC,ip is the minimum volume required for the J-integral
at a crack-front point p in microstructural instantiation i to converge
with respect to volume size. The CNN predictions of RVEMSC,ip sizes
were used to make CNN-based estimates of RVEMSC,i (the minimum
volume required for the J-integral values at all crack-front points in
microstructural instantiation i to converge with respect to volume size)
by taking the maximum RVEMSC,ip size among all crack-front points
in microstructural instantiation i. The rapidly determined CNN-based
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Nomenclature

𝑎 Half-crack length
𝑎∕𝑔 Normalized crack length
𝑑1 In-plane distance from a crack front to the

sides of a volume
𝑑1,𝑖 𝑑1 value corresponding to RVEMSC,i
𝑑1,𝑖𝑝 𝑑1 value corresponding to RVEMSC,ip
𝑑2 Distance from crack plane to the top and

bottom of microstructural volume
𝑑2,𝑖 𝑑2 value corresponding to RVEMSC,i
𝑑2,𝑖𝑝 𝑑2 value corresponding to RVEMSC,ip
𝑑ahead Distance by which CNN sampling grid

extends radially ahead of crack front
𝑑behind Distance by which CNN sampling grid

extends radially behind crack front
𝑑cfp Euclidean distance from sampling grid

point to crack-front point
𝑑fs Distance from crack-front point to free

surface in crack plane
𝛥grid Grid spacing in CNN sampling grid
𝐸 Elastic modulus
𝑔 Average grain size
MSE Mean squared error
𝑁 Number of points per dimension in CNN

sampling grid
𝑅2 Coefficient of determination
RVEMSC Representative volume element for a mi-

crostructurally small crack
RVEMSC,i Minimum volume requirement for a mi-

crostructure i
RVEMSC,ip Minimum volume requirement for crack-

front point p in microstructure i
𝜃𝑐𝑟𝑖𝑡 Position along crack front with the largest

prediction of an RVEMSC,ip parameter

estimates of RVEMSC,i were then used to downselect microstructural
nstantiations predicted to have large RVEMSC,i sizes. The downselected
instantiations could then be simulated using FE analysis to determine
RVEMSC, where RVEMSC ensures convergence of J-integral values at
ll crack-front points in all microstructural instantiations considered.
hrough the analysis completed in Part I [16], CNNs were shown to
ave the potential to expedite the computationally expensive, FE-based
ramework for determining RVEMSC.
Despite key findings on CNN performance from Part I [16], the

mpacts of local microstructure and geometry features on CNN model
redictions of volume requirements for J-integral convergence with
espect to volume size were not revealed during the assessment of
NN performance. For example, the analysis of CNN performance
id not answer questions such as: What is the relative importance of
icrostructure and geometry in predicting RVEMSC,ip and RVEMSC,i? What is
he size of the region of local microstructure around a crack-front point that
ontains the grains that most influence CNN predictions of RVEMSC,ip and
VEMSC,i? Which grains or arrangements of grains have the most influence
n CNN predictions of RVEMSC,ip and RVEMSC,i?
Although CNNs have been demonstrated to be very adept at han-

ling complex microstructures (e.g., to predict effective responses of
icrostructures [17–23], to segment microstructural images [24–29],
o classify microstructures [30], to detect composite fibers [31], and to
redict local material behavior [32–35]), CNNs are known as ‘‘black-
ox’’ machine learning (ML) models [26,36,37]. Namely, the CNN takes
nput and provides an output (or prediction) without directly informing
2

s

he user why an output was predicted. However, methods for gaining
nsights into the predictions made by a CNN are available [36]. Beniwal
t al. [18] and Eslamibidgoli et al. [38] used class activation mapping
o visualize the regions of input microstructures that most contribute
o CNN predictions. Similarly, Pokuri et al. [39] used saliency maps to
isualize the regions of input microstructures that contributed the most
o CNN predictions. Cecen et al. [17] visualized convolutional layer
ilter weights to identify microstructural patterns that a CNN searched
or when making predictions. Kantzos et al. [40] visualized the output
f intermediate CNN layers to identify regions of an input image that
ad the most influence on CNN predictions. Rahman et al. [41] used
n occlusion sensitivity analysis, while Sung [42] used a sensitivity
nalysis, fuzzy curves, and a change of mean squared error (MSE)
ethod to explore the importance of neural network inputs.
Part II of this work aims to explore the factors that influence the

NN predictions of RVEMSC,ip and the CNN-based estimates of RVEMSC,i
made in Part I of this work [16]. The RVEMSC,i and RVEMSC,ip data
used in this work were obtained from the original RVEMSC study by
the authors [15]. The following sections discuss various interpretations
of the CNNs implemented in Part I [16]. First, predictions from five-
fold cross-validations are inspected to discover general trends in CNN
predictions and estimates of RVEMSC,ip and RVEMSC,i parameter values.
Second, input sensitivity analyses are conducted to provide a model-
level interpretation of the relative importance of different inputs in
predicting RVEMSC,ip parameter values. Third, an input sampling grid
study provides a model-level interpretation of the region surrounding a
crack-front point that contains the grains that most influence the CNN
predictions of RVEMSC,ip parameter values. Fourth, saliency maps are
generated to provide visualizations of the relative importance of local
microstructural arrangements in predicting RVEMSC,ip parameter values.

2. Methods

2.1. Previous work: RVEMSC data

The data [43] used in Part I [16] and again in this work were
obtained from a previous study by the authors [15] and are briefly
described here for completeness. In the previous study, FE models
of cracked microstructures were simulated to determine RVEMSC for
linear-elastic, heterogeneous domains. Each idealized microstructural
volume contained a static, semi-circular, planar surface crack of half-
length 𝑎, surrounded by cube-shaped grains with side length 𝑔 and
elastic moduli E ranging from 75 to 225GPa. The volume of microstruc-
ture surrounding a given crack was parameterized using two values: 𝑑1
(the minimum in-plane distance between the crack front and the sides
of the volume) and 𝑑2 (the distance between the plane of the crack and
the upper and lower surfaces of the volume). For generalization, half-
crack lengths and volume parameters were expressed relative to grain
size, 𝑔. The FE simulations provided J-integral values1 that were used
to determine RVEMSC,ip, RVEMSC,i, and RVEMSC sizes under two different
types of boundary conditions. Key aspects, assumptions, and relevant
outputs of the FE simulations from the original RVEMSC study [15],
including idealized microstructure representation, volume parameteri-
zation, and boundary condition sets, are shown in Fig. 1. For complete
details of the models, simulations, calculation of volume requirements,
and analysis, see DeMille and Spear [15] and Part I [16] of this work.

1 J-integral values corresponding to nodes located at grain boundaries were
ot considered in the FE-based determination of volume requirements due to
purious J-integral values that occur at grain boundaries.
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Fig. 1. Key features of FE simulations used to generate RVEMSC data during a previous
tudy [15]: (a) Idealized, heterogeneous microstructures consisted of cube-shaped
rains of side length g with elastic moduli values ranging from 75 to 225GPa. (b)
Two parameters (𝑑1 and 𝑑2) were used to describe the volume of microstructure
around a crack. (c) Two types of boundary conditions were investigated; displacements
applied to the highlighted surfaces in each case were interpolated from a global
model under uniaxial tension. (d) Results from FE simulations were used to identify
volume requirements for J-integral convergence at a given crack-front point in a given
microstructure (RVEMSC,ip), for an entire given microstructure (RVEMSC,i), and for an
entire population of given microstructures (RVEMSC).

2.2. Convolutional neural network

In Part I [16], CNNs [44,45] were implemented to expedite the
determination of RVEMSC using the data described above. In the cur-
rent work, the same CNNs are interpreted to explore the mechanisms
governing the predictions made regarding J-integral convergence with
respect to volume size. Several of the interpretation methods presented
in this work are inherently tied to the model training process; therefore,
rather than simply using the trained models or results from Part I,
the CNN models are re-trained in this study for the purpose of model
interpretation. For completeness, the CNN model setups described in
Part I, including inputs, architecture, and targets, are described again
here but in less detail. Four different CNNs are used to predict two
RVEMSC,ip parameters (𝑑1,𝑖𝑝 and 𝑑2,𝑖𝑝) for each of the two boundary
condition types (free sides and full submodeling). The reader is referred
3

to Part I [16] for a more detailed description. v
2.2.1. CNN inputs
Fig. 2a shows the four features that define the microstructural inputs

(viz., local elastic modulus values (E)) and geometrical inputs (viz.,
normalized crack size (𝑎∕𝑔), distance to the free surface (𝑑fs), and
distance to crack-front point (𝑑cfp)) for a given crack-front point p in
microstructural instantiation i. The inclusion of the E and 𝑑fs inputs
reflect observations that scatter in small crack behavior is caused by
variations in microstructure and that small crack behavior is strongly
dependent on free surfaces, respectively [2,7,46]. The inputs 𝑎∕𝑔 and
fs are scalars, where 𝑑fs is the distance in the z-direction between p
nd the unconstrained model face at 𝑧 = 0. The inputs E and 𝑑cfp are 3D
rrays of microstructural or geometrical features sampled from a grid
urrounding crack-front point p. Elastic modulus values are sampled
or the E array, while Euclidean distances between a grid point and
rack-front point p are sampled for the 𝑑cfp array.
The sampling strategy for obtaining the E and 𝑑cfp arrays involves

×𝑁×𝑁 grids located at each crack-front point p and oriented tangent
o the crack front. Various sampling grids are shown in Fig. 3. The
overage of a sampling grid is defined through three parameters: 𝑑ahead,
behind, and 𝑁 . As shown in Fig. 3, 𝑑ahead is the distance the grid extends
head of the crack-front point, 𝑑behind is the distance the grid extends
ehind the crack-front point, and 𝑁 is the number of grid points in
ach direction. The grid spacing, 𝛥grid, in each direction can be derived
rom the previous three parameters using the equation:

grid =
𝑑ahead + 𝑑behind

𝑁 − 1
. (1)

Unless otherwise noted, each sampling grid for this work contains
16 × 16 × 16 points and extends 4.00 grains ahead of and 0.95
grains behind a given crack-front point. Thus, the grid spacing is 0.33
grains. For more details on the selection of these grid parameters, see
Part I [16]. With this sampling strategy, some sampling points fall
outside of the FE model volume, in which case a value of −1 is assigned
to those points in the input arrays (shown in purple in Fig. 2a). Before
being input to the CNN, both scalar inputs and array inputs for grid
points that fall within the FE model volume are normalized to a range
of 0 to 1.

2.2.2. CNN architecture
The CNN architecture consists of three blocks of convolutional

and pooling layers followed by dropout and fully connected layers,
as shown in Fig. 2b. The 3D arrays are input to the first block of
convolutional/pooling layers. The scalar inputs are concatenated with
the flattened output from the third block of convolutional/pooling
layers prior to the first fully connected layer. The predicted RVEMSC,ip
parameter value is output from the second fully connected layer. The
blocks of two convolutional layers followed by a maximum pooling
layer are based on VGG-16 [47]. Each CNN is trained using the MSE
as the loss function. The CNNs are implemented using Keras [48] and
TensorFlow [49]. For more details of the CNN architecture and training
parameters, see Part I [16].

2.2.3. CNN targets
As shown in Fig. 2c, the targets of the CNN models are RVEMSC,ip

parameter values (𝑑1,𝑖𝑝 and 𝑑2,𝑖𝑝). Four separate CNNs are trained,
here each CNN predicts either 𝑑1,𝑖𝑝 or 𝑑2,𝑖𝑝 values under either free-
ides or full-submodeling boundary conditions. Using four separate
NNs is similar to the approach used by Rovinelli et al. [50,51],
here separate ML models were used to predict different crack-growth
arameters. The target RVEMSC,ip parameters are calculated from the
E simulations completed in the previous RVEMSC determination study
y the authors [15]. The calculation of RVEMSC,ip parameter values is
escribed in full detail in Part I [16]. The target RVEMSC,ip parameter

alues are normalized to a range of 0 to 1 for use in the CNN.
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Fig. 2. Summary of the CNNs used in Part I [16] and re-trained in this work using various methods for model interpretation. The main components of the CNNs are: (a)
icrostructural and geometrical input features, (b) CNN architecture, and (c) RVEMSC,ip parameter predictions. Input and output features are obtained from FE simulations completed
uring the original RVEMSC study [15].
Fig. 3. The five sampling grids used to sample 3D array inputs during the input sampling grid study. In the study, the distance sampled ahead of the crack front (𝑑ahead) is varied
rom 1 to 5 grains. The resulting grid point spacing for each sampling grid is shown on the bottom right.
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.2.4. CNN-based estimates of RVEMSC,i and RVEMSC
The CNN-based predictions of RVEMSC,ip at individual crack-front

oints are used to establish minimum volume requirements for indi-
idual microstructural instantiations (RVEMSC,i) and for all considered
icrostructural instantiations (RVEMSC) by taking, respectively, the
aximum RVEMSC,ip parameter values across all crack-front points in
icrostructural instantiation i:

1,𝑖 = max
𝑝

(𝑑1,𝑖𝑝) (2)

2,𝑖 = max
𝑝

(𝑑2,𝑖𝑝) (3)

nd subsequently the maximum RVEMSC,i parameter values across all
icrostructural instantiations:

= max(𝑑 ) (4)
4

1,𝑀𝑆𝐶 𝑖 1,𝑖
2,𝑀𝑆𝐶 = max
𝑖
(𝑑2,𝑖). (5)

.2.5. CNN data overview and splitting
In total, 88 cracked microstructural instantiations were simulated

sing FE analysis during the previous study [15]: 22 microstructural
nstantiations for each of four different normalized crack sizes (𝑎∕𝑔 =
.25, 0.45, 1.0, 3.0). Depending on the size of the crack, each cracked
microstructural instantiation contained between 91 and 269 crack-
front points (excluding points located at grain boundaries). Each set of
crack-front points from a given cracked microstructural instantiation
constitutes one crack-front point (CFP) group. Each of the four CNNs
(one for each combination of boundary condition and RVEMSC,ip pa-
rameter) has a total of 88 CFP groups of data points available for CNN
training and testing. Altogether, these 88 CFP groups contain a total of
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Table 1
Input feature combinations considered during an input feature sensitivity analysis.
During the sensitivity analysis, a repeated five-fold CV is performed for each of the
input feature combinations.
Dropped input Array Inputs Scalar Inputs

None 𝐸, 𝑑cfp 𝑎∕𝑔, 𝑑fs
𝐸 𝑑cfp 𝑎∕𝑔, 𝑑fs
𝑑cfp 𝐸 𝑎∕𝑔, 𝑑fs
𝑎∕𝑔 𝐸, 𝑑cfp 𝑑fs
𝑑fs 𝐸, 𝑑cfp 𝑎∕𝑔

14 168 data points. When splitting the data for training and testing, the
data are split according to the CFP group (i.e., points within each CFP
group are kept together). This splitting approach ensures that the CNN
remains unbiased during testing, as similar data points from a given
cracked microstructure are not contained in both the training and test
set.

2.2.6. Five-fold cross-validation
A five-fold cross-validation (CV) is used to assess the performance of

the CNN models. The 88 CFP groups are split into five folds containing
17, 17, 17, 17, and 20 CFP groups, respectively. The model is then
trained and tested using three folds for training, one fold for validation,
and the remaining fold for testing. This training and testing process
is repeated five times, using each fold as the test set during one of
five independent training runs. At the beginning of each independent
training run, model weights are re-initialized. Each CFP group is used
as test data exactly once during the CV. In other words, the five-fold
CV provides five estimates of model performance (one for each inde-
pendent training run) and a blind prediction of an RVEMSC,ip parameter
or each crack-front point, where each blind prediction comes from one
f the five models trained during the CV. These blind predictions of
VEMSC,ip parameters can then be used to determine blind estimates of
VEMSC,i parameters for each cracked microstructural instantiation.

.3. CNN interpretation studies

.3.1. Input feature sensitivity analysis
A sensitivity analysis is performed to determine which of the four

NN input features most influences the prediction of RVEMSC,ip values.
n this study, the CNNs are trained using five different combinations of
nput features. The first combination uses all four of the input features.
n the remaining input combinations, one of the four input features is
mitted from the CNN. The five input feature combinations are shown
n Table 1. The approach used for the sensitivity analysis is similar to
n occlusion sensitivity study performed by Rahman et al. [41] and a
hange of MSE study performed by Sung [42].
Five-fold CVs (Section 2.2.6) are used to assess the performance of

he CNNs with various input features. For each input combination, the
ive-fold CV process is repeated five different times, using a different
plit of the 88 CFP groups each time. The CV is repeated to obtain more
erformance metrics over which to average and, thus, to better gauge
odel performance for each set of input parameters. Given that each
V provides five estimates of model performance, the CVs provide 25
ifferent estimates of model performance for each input combination.
he average of 25 model performance metrics is used to compare input
ombinations.

.3.2. Input sampling grid study
The physical size of the 3D sampling grids (Section 2.2.1) is varied

o compare the influence that microstructural features at various dis-
ances from the crack front have on volume requirement predictions.
ive different sampling grids are considered, where each grid extends
different distance ahead of the crack front (𝑑ahead = 1, 2, 3, 4, 5 grains).
5

he grid parameters 𝑑behind and 𝑁 are kept fixed at 0.95 grains and 16, i
espectively. Fig. 3 shows the five sampling grids along with the grid
pacing (𝛥grid) for each grid.
As in the input feature sensitivity analysis (Section 2.3.1), five-

old CVs (Section 2.2.6) are used to assess the performance of the
NNs with different input sampling grids. Repeated CVs are used to
ncrease the number of available CNN performance estimates. For each
ampling grid, five different splits of the 88 CFP groups are used in
ive independent five-fold CVs. The CVs provide 25 different estimates
f model performance metrics for each sampling grid (one CV provides
ive performance estimates). The 25 performance metrics are averaged
o compare CNN performance with inputs sampled using various 𝑑𝑎ℎ𝑒𝑎𝑑
alues.

.3.3. Saliency maps
Saliency maps are extracted from trained CNN models to identify
icrostructural input voxels that are most critical to the prediction of
VEMSC,ip. The trained CNN models come from a five-fold CV (Sec-
ion 2.2.6), where the CNN model used to generate a given saliency
ap is the model trained while the crack-front point of interest is held
ut as part of the test data. As described by Simonyan et al. [52],
aliency maps are found by taking the absolute value of the derivative
f a CNN model output with respect to the model input arrays via
ack-propagation. Given that the CNN models have multiple 3D input
rrays, the maximum absolute value of the derivative over all input
rrays is taken at each voxel location. The resulting saliency maps are
D arrays with the same dimensions as the input arrays (16 × 16 × 16
or this work). The saliency maps are extracted using the package tf-
eras-vis [53] alongside Keras [48] with a TensorFlow backend [49].
moothGrad [54] is used to reduce noise in the extracted saliency maps.
or each CNN model, one saliency map is extracted at each crack-front
oint p in each microstructural instantiation i.

. Results

.1. Five-fold CV predictions/estimates

Fig. 4 shows actual and CNN-estimated RVEMSC,i parameter val-
es (assuming a 5% J-integral convergence tolerance) for the 22 mi-
rostructural instantiations associated with each crack size. The actual
VEMSC,i parameter values, shown in blue in Fig. 4, were found using
he FE simulations described in previous work [15]. Meanwhile, CNN-
stimated RVEMSC,i parameter values, shown in red in Fig. 4, are
btained from blind RVEMSC,ip predictions made during a five-fold CV.
he sizes of the points reflect the number of times a given parameter
alue was repeated in the data. Results are shown for four normalized
rack sizes (𝑎∕𝑔 = 0.25, 0.45, 1.0, 3.0), two boundary conditions (full
ubmodeling and free sides), and two RVEMSC,i parameters (𝑑1,𝑖 and
2,𝑖). The results in Fig. 4 are used to evaluate the trends present in
NN-based RVEMSC,i estimates, discussed in Sections 4.1, 4.2, and 4.7.
Fig. 5 shows actual and CNN-estimated RVEMSC,i parameter val-

es from a five-fold CV. Results are plotted for three types of mi-
rostructural instantiations. Parameter values for uniform and ‘‘2nn
ax/min E ’’ microstructural instantiations are shown in red and cyan,
espectively. Parameter values for all instantiations with varied E val-
es are shown in blue, where the size of each point reflects the
umber of times a given parameter value is repeated. For uniform
icrostructural instantiations, all grains have 𝐸 = 138GPa. For 2nn
ax/min E instantiations, one cracked grain is assigned the maximum
or minimum) possible E value, and all of its second-nearest-neighbor
rains are assigned the minimum (or maximum) possible E value. The
econd-nearest-neighbor grains are all grains that share one face with
first-nearest-neighbor grain. Similarly, first-nearest-neighbor grains
hare one face with a cracked grain. Note that the 2nn max/min
microstructural instantiations are also included in the set of var-
ed E instantiations. The results in Fig. 5 are used to evaluate the
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Fig. 4. Comparison between actual and CNN-estimated RVEMSC,i parameter values (𝑑1,𝑖 and 𝑑2,𝑖) for 22 microstructural instantiations per crack size under two sets of boundary
conditions (free sides and full submodeling). The actual values were calculated in a previous RVEMSC study by the authors [15]. The CNN-estimated RVEMSC,i parameter values are
obtained from CNN predictions of RVEMSC,ip parameters made during a five-fold CV. The size of each point reflects the number of times a value is repeated in the set.
Fig. 5. Comparison between actual and CNN-estimated RVEMSC,i parameter values for two sets of RVEMSC,i parameters. Parameters shown are: (a) Free sides, 𝑑1,𝑖 and (b) Full
submodeling, 𝑑2,𝑖. Parameter values for three specific types of microstructural instantiations are highlighted. Uniform and varied E instantiations have the same and different
value(s) assigned to grains, respectively. The 2nn max/min E instantiations have all second-nearest-neighbor grains of a one cracked grain assigned either the maximum or
inimum E value. Actual parameter values were obtained from a previous study [15] and CNN-estimated parameter values are obtained from CNN predictions made during a
ive-fold CV. The size of each point represents the number of times a given value is repeated in the data set.
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rends present in CNN-based RVEMSC,i estimates of extreme volume
equirements (discussed in Sections 4.4 and 4.8).
Fig. 6a compares the actual and predicted 𝑑1,𝑖𝑝 values for the
icrostructural instantiation having the maximum CNN-estimated 𝑑1,𝑖
alue for 𝑎∕𝑔 = 1 under full-submodeling boundary conditions. In
he plot, actual and predicted 𝑑1,𝑖𝑝 values are plotted for each point
long the crack front. A slice of the local microstructure (E array)
n the neighborhood of the crack-front point with the maximum 𝑑1,𝑖𝑝
rediction (corresponding to 𝜃 ) is shown in Fig. 6b. Recall, the 𝑑
6

crit 1,𝑖𝑝 i
rediction that governs the CNN estimate of 𝑑1,𝑖 is the maximum 𝑑1,𝑖𝑝
rediction over all crack-front points p in instantiation i. The dashed
nd solid green lines on the slice of microstructure serve as indicators
or the orientation of the slice relative to the crack front. The results
n Fig. 6 are used to evaluate the trends present in RVEMSC,ip predic-
ions for one illustrative microstructure (discussed in Sections 4.1 and
.7) and to explore microstructural arrangements that influence CNN-
ased RVEMSC,i estimates of extreme volume requirements (discussed
n Section 4.4).
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Fig. 6. A comparison between the actual and predicted 𝑑1,𝑖𝑝 values for the microstructure having the maximum 𝑑1,𝑖 value when subjected to full-submodeling boundary conditions
nd containing a crack of size 𝑎∕𝑔 = 1. (a) Actual and predicted 𝑑1,𝑖𝑝 values are plotted as a function of position, 𝜃, along the crack front. Actual values are from FE simulations [15],
and predicted values are from a trained CNN model. The crack-front point corresponding to the largest predicted 𝑑1,𝑖𝑝 value is denoted 𝜃𝑐𝑟𝑖𝑡. (b) The microstructural configuration
in the neighborhood of 𝜃𝑐𝑟𝑖𝑡 is depicted by a slice through the 3D microstructure; the position and orientation of the slice are shown at top, and the normalized E values around
𝑐𝑟𝑖𝑡 are shown at bottom.
.2. Input feature sensitivity analysis

The results of the input feature sensitivity analysis described in
ection 2.3.1 are shown in Fig. 7. For each combination of boundary
ondition type and RVEMSC,ip parameter, 𝑅2 values for RVEMSC,ip pa-
ameter predictions are shown for each input feature combination in
able 1. Each blue point represents the CNN performance during one of
he 25 CNN training runs completed in a repeated five-fold CV. Each red
oint represents the average CNN performance from the repeated five-
old CV for a given input feature combination. The average 𝑅2 value for
the complete input set (no dropped input features) serves as a baseline
estimate of CNN model performance. The baseline 𝑅2 value is shown
as a black dashed line. The percent difference between the average
𝑅2 and the baseline is shown for each input feature combination. The
results in Fig. 7 are used to compare the sensitivity of CNN predictions
to different input features (discussed in Section 4.2.)

.3. Input sampling grid study

The results of the input sampling grid study, as described in Sec-
ion 2.3.2, are shown in Fig. 8. For each combination of boundary
ondition type and RVEMSC,ip parameter, 𝑅2 values are shown for
RVEMSC,ip parameter value predictions from CNN models trained with
3D array inputs sampled from grids extending 1, 2, 3, 4, and 5 grains
ahead of the crack front. Each blue point represents the CNN perfor-
mance for one of 25 training runs completed during a repeated five-fold
CV. The black dashed line shows the trend in average 𝑅2 as the distance
ampled ahead of the crack front increases. The results in Fig. 8 are
sed to evaluate how the location of microstructural features relative
o crack-front point p impact the influence of the features on RVEMSC,ip
redictions (discussed in Section 4.3).

.4. Saliency maps

Saliency maps (Section 2.3.3) corresponding to 𝑑1,𝑖𝑝 predictions for
cracks of length 𝑎∕𝑔 = 1 under full-submodeling boundary conditions
7

are shown in Figs. 9, 10, and 11. Due to the challenge of visualizing
3D data, select 2D slices of the 3D saliency maps are visualized. The
slices are taken from the saliency map arrays at locations adjacent
to a given crack-front point. The slices are oriented either parallel or
perpendicular to the plane of the crack. For slices perpendicular to
the crack’s plane, the slices are either tangent or normal to the crack
front. The saliency values within the slice are normalized to a range
of 0 to 1. On each slice, the location of the crack-front point is shown
as a black point and grain boundaries are shown as black lines. For
reference, corresponding slices of the input E array are shown alongside
the saliency maps. Although both the E and 𝑑cfp arrays are used to
calculate the saliency maps, only the E arrays are shown alongside the
saliency maps because the E values are the larger source of variability
among the two types of arrays input to the CNNs. Note, while the
saliency map slices shown here comprise only a small portion of the
saliency map data,2 high-level trends observed across many saliency
maps are represented.

In Fig. 9, saliency map slices from one particular microstructure
(called Microstructure A) are shown. The saliency map slices are taken
from five different crack-front points and are oriented parallel to the
crack plane. The five crack-front points are located at 0°, 30°, 90°, 120°,
and 180° along the crack front. The top row of heat maps shows the in-
put E arrays at the slice location, while the middle row of figures shows
the normalized saliency maps at the slice location. The bottom row
shows the physical location of the slice relative to the crack front. On
each slice, two sides of the heat maps are marked in solid and dashed
green lines, respectively, to assist with visual orientation. For each
slice, microstructural regions corresponding to high saliency values are
labeled a, b, c, d, and e. Note that each region label is placed at the
center of an area of interest within the microstructure in Microstructure
A. There is overlap between sampling grids for different crack-front
points, so a labeled region of microstructure may be represented in

2 One 3D saliency map is associated with each of 14 168 data points from
each of four CNN models.
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Fig. 7. Comparisons of CNN performance while predicting RVEMSC,ip as each input feature is removed from the CNN input set. For each input feature combination, a repeated
five-fold CV is performed. The average 𝑅2 values are compared with the baseline performance of the CNN with no features dropped from the CNN model.
Fig. 8. Comparisons of CNN performance using 3D sampling grids of different physical dimensions. For each sampling grid, a repeated five-fold CV is performed. The 𝑅2 values

from individual training runs are shown as blue points, and average 𝑅2 values are shown as black lines.
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multiple saliency maps (i.e., regions a, b, c, d, and e). The results in
Fig. 9 are used to evaluate how the sensitivity of CNN predictions to
voxels corresponding to individual arrangements of grains varies at
different crack-front points (discussed in Section 4.5).

Fig. 10 provides examples of saliency maps from four cracked
icrostructural instantiations (Microstructures B, C, D, and E). Mi-
rostructure B is a uniform microstructure case (uniform E in Fig. 5),
8

p

ith all grains assigned 𝐸 = 138GPa. Microstructure C has a random
value assigned to each grain. Microstructure D has all first-nearest-
eighbor grains of a cracked grain assigned the minimum E, and
icrostructure E has all second-nearest-neighbor grains of a cracked
rain assigned the minimum E (2nn max/min E in Fig. 5). The saliency
ap slices are oriented in three ways: perpendicular to the crack
lane/tangent to the crack front (Fig. 10a), parallel to the crack plane
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Fig. 9. Slices of E input arrays (top row) and saliency maps (middle row) from five crack-front points in Microstructure A. The location of each slice relative to the crack front
is indicated in the bottom row. Regions of microstructure corresponding to voxels with high saliency values are labeled a–e; note, the regions appear in multiple slices due to
overlap in the sampling grids. The black dots represent the location of the crack-front point of interest.
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(Fig. 10b), and perpendicular to the crack plane/normal to the crack
ront (Fig. 10c). The orientations of the slices are shown in the far
eft column. The E input array (top row) and normalized saliency
bottom row) heat maps are shown for each slice orientation of each
icrostructure. As in Fig. 9, solid and dashed green lines assist with
isual orientation of the heat maps relative to the crack front. The
esults in Fig. 10 are used to evaluate how the sensitivity of CNN predic-
ions to individual voxels varies with variations in local microstructure
discussed in Sections 4.4 and 4.5).
Fig. 11 shows saliency maps from two additional cracked mi-

rostructural instantiations (Microstructures F and G) extracted from
ive independently trained CNN models. During these training runs, the
ata points used for training and validation are varied. Additionally,
he initial CNN model weights vary from one training run to another.
n the left column, a slice of the input E array, oriented parallel to the
rack plane, is shown for each microstructure. The location of the slice
elative to the crack is shown for reference. The five rightmost columns
how saliency map slices taken at the indicated location, where each
olumn corresponds to one of five independent CNN training runs.
ertain voxel regions located near high saliency values in one or more
raining runs are labeled a, b, c, d, and e in the E array and saliency map
lices. The results in Fig. 11 are used to evaluate how the sensitivity
f CNN predictions to individual voxels varies from one trained CNN
odel to another (discussed in Section 4.6).

. Discussion

.1. Trends captured in CNN RVEMSC,ip predictions and corresponding
VEMSC,i estimates

Using geometrical (𝑎∕𝑔, 𝑑fs, 𝑑cfp) and microstructural (E) inputs,
9

our CNNs (one for each combination of boundary condition type and (
VEMSC,ip parameter) can learn to predict RVEMSC,ip sizes and subse-
uently estimate RVEMSC,i sizes. Considering all crack sizes, boundary
onditions, and microstructural instantiations (including the uniform
icrostructure case with the same E value assigned to each grain), the
NN-based estimates of RVEMSC,i sizes range from 8 to 3288 grains.
his range of RVEMSC,i sizes is similar to the range of actual RVEMSC,i
izes (2 to 3439 grains). Fig. 4 shows how similar ranges of actual
nd CNN-estimated RVEMSC,i sizes are achieved as the CNNs learn to
atch key trends from the actual RVEMSC,i parameter values. First, the
anges of actual and CNN-estimated 𝑑1,𝑖 values decrease with increasing
rack size, while the ranges of actual and CNN-estimated 𝑑2,𝑖 values
emain similar among all crack sizes. Second, the actual and CNN-
stimated 𝑑1,𝑖 values for free-sides boundary conditions tend to increase
ith increasing crack size. In contrast, the actual and CNN-estimated
2,𝑖 values for free-sides boundary conditions tend to decrease with
ncreasing crack size. Thus, the CNNs are able to estimate reasonable
anges of RVEMSC,i parameters and match key trends in the actual
VEMSC,i data.
The CNNs can also predict RVEMSC,ip parameter values that match

ey trends in the actual RVEMSC,ip data. Fig. 6a shows two general
rends captured by both the actual and predicted 𝑑1,𝑖𝑝 values. First,
he predicted 𝑑1,𝑖𝑝 values lie within the same general range as the
orresponding actual 𝑑1,𝑖𝑝 values. Second, the actual and predicted 𝑑1,𝑖𝑝
alues are both generally larger at 𝜃 < 90° than at 𝜃 > 90°. While not
epresentative of all RVEMSC,ip predictions, Fig. 6a shows that the CNNs
re able to estimate reasonable ranges of RVEMSC,ip parameters for a
iven microstructural instantiation and can capture local variations of
VEMSC,ip parameters along a crack front.

.2. Relative importance of microstructural and geometrical features on
olume requirement predictions

As discussed in Section 4.1, microstructural (E) and geometrical

𝑎∕𝑔, 𝑑fs, 𝑑cfp) inputs to the CNN allow the CNNs to learn key trends
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Fig. 10. Slices of E input arrays (top row) and saliency maps (bottom row) from Microstructures B, C, D, and E. The slices are oriented: (a) perpendicular to the crack plane and
tangent to the crack front, (b) parallel to the crack plane, and (c) perpendicular to the crack plane and perpendicular to the crack front. The black dots represent the location of
the crack-front point of interest.
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in volume requirements (RVEMSC,i and RVEMSC,ip). However, the im-
ortance of an individual input feature to the CNN predictions is not
mmediately evident. The sensitivity analysis, with results shown in
ig. 7, allows the relative importance of the four input features to be
ompared. The largest decrease in CNN performance occurs when the E
nput array is dropped from the CNN input set, resulting in a decrease
n 𝑅2 between 64.3% and 111.4% relative to the baseline predictions
or RVEMSC,ip parameters. Thus, the microstructural data captured in
he E array are more critical to CNN predictions of RVEMSC,ip than the
eometrical data included in the other three inputs.
Besides the decreases in CNN performance with the removal of the
input, the largest reduction in 𝑅2 from the baseline (11.6%) occurs
hen 𝑎∕𝑔 is removed from the CNN that predicts 𝑑1,𝑖𝑝 for free-sides
oundary conditions (Fig. 7a). The decrease in CNN performance with
he removal of 𝑎∕𝑔 as input is smaller for the three other combinations
f boundary condition type and RVE parameter (Figs. 7b,c,d).
10

MSC,ip o
Looking at the actual and CNN-estimated RVEMSC,i parameters in Fig. 4,
he free sides, 𝑑1,𝑖 values (Fig. 4a) show a strong dependence on 𝑎∕𝑔,
s the minimum value of 𝑑1,𝑖 increases with increasing crack size. For
he other three cases (Figs. 4b,c,d), the minimum value of 𝑑1,𝑖 or 𝑑2,𝑖
emains less than one grain across all crack sizes. Thus, the CNNs are
apturing the trends in the actual data used for training, which show
hat the relationship between volume requirements for MSCs and 𝑎∕𝑔
aries with boundary condition type and volume parameter [15].
In the sensitivity study results (Fig. 7), the CNN inputs associated

ith the smallest decreases in 𝑅2 (relative to the baseline) are the
cfp array and the 𝑑fs scalar. The slight impact of removing these
nputs from the CNN suggests that these inputs may be unnecessary or
edundant. The 𝑑cfp array is likely unnecessary because the sampling
rids are fixed in size when sampling inputs for a given CNN. As
result, the 𝑑cfp array only varies when a sampling grid has points

utside the physical volume (see Section 2.2.1). The 𝑑fs input is likely
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Fig. 11. Slices of E input arrays (far left column) and saliency maps (right columns) from Microstructures F and G. Each column of saliency map slices is obtained from one of
five CNN training runs. The black dots represent the location of the crack-front point of interest. Locations near high saliency values are labeled a–e.
redundant because the sampling of the input arrays implicitly accounts
for the location of the free surface by including values of −1 for points
that fall outside the microstructural volume. Thus, the CNN may be able
to identify crack-front points that are close to the free surface through
the presence of placeholder (−1) values in the input arrays.

4.3. Impact of microstructural feature location on volume requirement
predictions

Having established that the E array is the most critical input feature,
the impact of the location of microstructural features within the E
array on predictions of RVEMSC,ip can be seen in the results of the
input sampling grid study. As shown in Fig. 8, the largest increase
in average 𝑅2 occurs between input grids that extend 𝑑ahead = 1 and
𝑑ahead = 2 grains ahead of the crack front. Modest increases in average
𝑅2 occur as the input grid sampling region is extended from 𝑑ahead =
2 to 𝑑ahead = 3 grains. Extending the input sampling grids beyond
𝑑ahead = 3 grains provides little improvement in the average 𝑅2. The
input sampling grids with 𝑑ahead = 2 and 𝑑ahead = 3 grains sample 1.5
grains and 2 grains, respectively, in the direction tangent to the crack
front and above/below the crack plane. Thus, most of the important
microstructural features for RVEMSC,ip predictions are within 2 grains
f the crack front. However, some important microstructural features
or the CNN predictions are between 2 and 3 grains away from the
rack front. These findings are similar to results from our previous
VEMSC study [15], where features from the second or third nearest-
eighbor grains of a crack were found to be most strongly correlated
ith RVEMSC,i values when features from first through fourth nearest-
eighbor grains were considered. Other studies have also found that
ocal material responses, including stress, strain, and fatigue indicator
arameters, are primarily influenced by grains up to three grains away
rom a point of interest [55–57].

4.4. Identification of microstructural arrangements corresponding to ex-
treme volume requirement predictions

With the goal of identifying key microstructural arrangements re-
lated to volume requirement predictions, trends in CNN-estimated
RVEMSC,i parameter values are considered. In Fig. 5, the maximum
CNN-estimated RVEMSC,i parameters for each crack size correspond
to microstructures in which all second-nearest neighbors of a cracked
grain are assigned the maximum or minimum E value (i.e., 2nn max/
11
min E). These regions of extreme E values represent regions featuring
elevated elastic heterogeneity. On the other hand, the minimum CNN-
estimated RVEMSC,i parameters correspond to uniform microstructures,
in which all grains were assigned the same E value (i.e., uniform E).
The uniform E microstructures implicitly represent a homogeneous
material with no elastic heterogeneity. Although not shown, the trend
of 2nn max/min E and uniform E cases having maximum and minimum
CNN-estimated RVEMSC,i parameters, respectively, is also seen for the
free-sides 𝑑2,𝑖 and full-submodeling 𝑑1,𝑖 cases. Additionally, Fig. 6b
shows that the microstructure surrounding the crack-front point at
𝜃crit, whose 𝑑1,𝑖𝑝 prediction governs the maximum CNN-estimated 𝑑1,𝑖
value (for 𝑎∕𝑔 = 1 under full-submodeling boundary conditions),
contains the cluster of second-nearest neighbors assigned the minimum
E. Thus, the CNN has learned to predict minimum volume requirements
for microstructures with no elastic heterogeneity (uniform E) and
maximum volume requirements for microstructures with clusters of
large differences in local elastic properties (2nn max/min E). This is
similar to the findings that increases in anisotropy (i.e., higher possible
differences in local elastic properties) increased the size of an RVE for
elastic homogenization of polycrystals [58–60].

The sensitivity of RVEMSC,ip predictions to clusters of minimum E
value grains is further shown in the saliency maps in Fig. 10. Mi-
crostructures D and E have regions of minimum E values at the first and
second nearest-neighbor grains, respectively, of a cracked grain (which
is assigned the maximum E). In the saliency map slices for Microstruc-
ture D, elevated saliency values correspond to voxels located around
the first nearest-neighbor grains (dark blue grains in microstructure
D). In the saliency map slices for Microstructure E, elevated saliency
values are located around the second nearest-neighbor grains (dark blue
grains in microstructure E). Although not shown here, similar trends
within saliency maps are seen for instantiations having regions of grains
with the maximum E value. Thus, at crack-front points near clusters of
minimum- or maximum-valued E grains, the RVEMSC,ip predictions are
highly dependent on the grains within the minimum or maximum E
clusters.

4.5. Sensitivity of volume requirement predictions to individual input voxels

Although some key microstructural arrangements have been iden-
tified using inspection of CNN-estimated RVEMSC,i parameters, these
arrangements are only present in a portion of the E arrays provided to
the CNNs. Saliency maps are visually inspected to compare the sensitiv-

ity of CNN predictions to voxels corresponding to other microstructural
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arrangements in the E arrays. Visual (qualitative) inspection represents
a common state of practice for the evaluation of CNN saliency maps
in machine learning, and further interpretation of saliency maps using
quantitative measures remains an open area of research, even within
the computer science community [61]. Recall that saliency maps com-
pare the relative importance of individual voxels to CNN output within
the input arrays. For this reason, the saliency map slices have been
individually normalized such that saliency values in a given slice vary
from 0 to 1. While this normalization technique does not allow for the
comparison of saliency values among different slices, it does allow the
influence of individual voxels on CNN output to be easily compared and
visualized within a slice. As discussed in Section 3.4, the saliency maps
presented in Figs. 9 and 10 do not represent all saliency data for the
CNNs, as a 3D saliency map exists for every crack-front point. However,
the included saliency map slices capture general trends observed within
the saliency data. Several key findings from the saliency maps are
discussed in the following paragraphs.

First, the saliency maps show that CNN predictions are more influ-
enced by the values of voxels located within the physical volume of
microstructure than voxels located outside of the physical volume. In
Figs. 9 and 10, voxels located outside the physical volume are shown
in purple in the E array slices. The saliency values at voxels outside
the physical volume are low relative to other saliency values in the
slice. In some cases, sharp decreases in saliency values are observed
when crossing from inside the physical volume to outside the physical
volume. A good example of this is seen in the saliency map slice in
Fig. 9 for 𝜃 = 0°, where strong saliency values are seen just inside
the physical volume, and much lower saliency values are seen outside
of the physical volume. Thus, the saliency maps demonstrate that the
CNN has learned to focus on data corresponding to regions inside the
physical volume.

Second, the saliency maps show that the locations of voxels (rel-
ative to a crack-front point of interest) that most influence RVEMSC,ip
predictions vary at different crack-front points and in different mi-
crostructural instantiations. The saliency-map slices shown in Fig. 9
exemplify how the locations of voxels having the most influence on the
CNN’s learning trends for RVEMSC,ip vary at different crack-front points
within the same microstructural configuration. For example, voxels to
the left of the crack-front point have high saliency values at 𝜃 = 0°,
but have low saliency values at 𝜃 = 180°. The saliency maps shown in
Fig. 10 demonstrate how the influential microstructural regions around
a fixed crack-front position vary with respect to microstructural instan-
tiation. For each of the three slice orientations, the location of voxels
having high saliency values varies in each of the four microstructures.
Thus, rather than looking at fixed voxel locations within the E array,
the CNN has learned to identify arrangements of grains that tend to
influence predictions of J-integral convergence behavior (with respect
to volume size).

Third, the saliency maps show that multiple RVEMSC,ip predictions
can be influenced by one arrangement of grains. Examples of this are
shown in Fig. 9. Recall, the labels in Fig. 9 correspond to regions of
elevated saliency values within Microstructure A and are represented
in saliency maps for multiple crack-front points, as there is overlap
between sampling grids for different crack-front points. In the saliency
maps for crack-front points at 𝜃 = 0° and 𝜃 = 30°, regions a and b
feature high saliency values, despite a shift in the location of the voxels
corresponding to regions a and b within the two arrays. A similar trend
is seen with the saliency values for regions c and d in the saliency maps
at 𝜃 = 90° and 𝜃 = 120°. Thus, the CNN has learned that predictions of
volume requirements for multiple crack-front points may be influenced
by the same arrangement of grains.

Fourth, the saliency maps show that the influence of a given ar-
rangement of grains on RVEMSC,ip predictions varies along a crack front.
In Fig. 9, region b corresponds to high saliency values at 𝜃 = 0° and
𝜃 = 30°. The normalized saliency values around region b are only
12

slightly elevated at 𝜃 = 90°, then decrease to nearly zero at 𝜃 = 120°.
Similarly, the normalized saliency values around region a are high at
𝜃 = 0°, lower at 𝜃 = 30°, then nearly zero at 𝜃 = 90°; and the normalized
saliency values around region e are slightly elevated at 𝜃 = 120° and
high at 𝜃 = 180°. Thus, the CNN has learned that the influence of a
certain arrangement of grains on the prediction of volume requirements
varies from one crack-front point to another.

4.6. Considerations for the interpretation of saliency maps

The interpretation of the CNNs via saliency maps poses several
challenges. First, the saliency maps comprise a large set of 3D data.
As described in Section 2.3.3, a 3D saliency map is associated with
each crack-front point for each of the four CNN models. In total, the
saliency map data contain four sets of 14 168 16 × 16 × 16 arrays.
Second, saliency maps can vary from one training run to another.
Fig. 11 shows variations in saliency map slices from Microstructures F
and G during five different CNN training runs. Third, saliency maps are
primarily visual interpretation tools that have inherent limitations and
cannot be easily interpreted quantitatively [61–64]. Thus, users must
manually inspect many saliency maps to identify general, model-level
trends related to CNN learning. Additionally, a user may need domain
knowledge to identify and interpret key trends in the saliency maps.

This work takes steps to overcome the challenges associated with
saliency maps. First, only slices adjacent to the crack-front point of
interest are manually inspected, as 3D saliency maps are difficult to
visualize. Second, tens of thousands of saliency maps are available, so
only saliency map slices for 𝑑1,𝑖𝑝 predictions under full-submodeling
boundary conditions with crack size 𝑎∕𝑔 = 1 are considered when
initially identifying trends in the saliency maps. Domain knowledge
related to the RVEMSC,ip data set is leveraged in identifying trends. Once
trends are identified, other sets of saliency maps are inspected to verify
that the identified trends exist in other sets of saliency maps.

Saliency maps are analyzed qualitatively to avoid issues with varia-
tions in saliency maps during different training runs. In the qualitative
analysis of the saliency maps, the identification of high-level trends
is prioritized over the inspection of individual saliency values. As
seen in Fig. 11, the location of maximum saliency varies between
different training runs. For example, In Microstructure F, the maximum
saliency value is located near a, b, or c depending on the training run.
Similarly, in Microstructure G, the maximum saliency value is around
the crack-front point, d, or e depending on the training run. Due to the
local fluctuations, emphasis is placed on identifying general regions of
elevated saliency values during the interpretation of the saliency maps.
In Microstructure F, elevated saliency values tend to be located near
points a, b, and c in all training runs. Training runs 3 and 4 also have
an additional region of elevated saliency values on the left edge of
the saliency maps for Microstructure F. In Microstructure G, elevated
saliency values tend to be located near the crack-front point, d, or e.
Thus, qualitative analysis of elevated saliency regions shows that the
CNNs learn similar patterns during different training runs, despite local
fluctuations between training runs.

4.7. Implications on the determination of RVEMSC

As discussed in Section 4.1, the CNNs capture general trends in
RVEMSC,i and RVEMSC,ip, but some observations in the actual RVEMSC,i
and RVEMSC,ip parameter values are not captured in the CNN predic-
tions or estimates. First, there are noticeable differences between actual
and CNN-estimated RVEMSC,i parameter ranges. For example, the ranges
of CNN-estimated 𝑑1,𝑖 values in Fig. 4a do not cover the full range of
actual 𝑑1,𝑖 values for 𝑎∕𝑔 = 0.25, 0.45, and 1.0. The maximum CNN-
estimated 𝑑2,𝑖 values for 𝑎∕𝑔 = 1.0 in Figs. 4c,d exceed the maximum
actual 𝑑2,𝑖 values by more than two grains. Second, the predicted 𝑑1,𝑖𝑝
values in Fig. 6a deviate from some trends that are present in the
actual 𝑑1,𝑖𝑝 values. The actual 𝑑1,𝑖𝑝 values for the maximum RVEMSC,i

instantiation increase between crack-front points located at 𝜃 = 150°
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and 180°, while the predicted 𝑑1,𝑖𝑝 values do not increase. These dif-
ferences between actual and predicted (or CNN-estimated) RVEMSC,i
(or RVEMSC,ip) parameters support the finding from Part I [16] that
CNN predictions are not sufficiently accurate to completely replace FE
simulations when determining RVEMSC.

The findings discussed in the previous sections also demonstrate
hat local microstructural arrangements strongly contribute to varia-
ions in both actual and CNN-estimated RVEMSC,i values. The demon-
strated dependence of RVEMSC,i on local microstructure emphasizes the
importance of considering a variety of microstructural instantiations in
the determination of RVEMSC. Overall, the goal of determining RVEMSC
is to establish conservative guidelines for volume requirements in stud-
ies of MSCs. The conservative guideline should guarantee convergence
of crack-front parameters (J-integral values in this work) with respect
to volume size in arbitrary microstructural instantiations. In other
words, RVEMSC should be equivalent to the maximum RVEMSC,i size
identified among a population of microstructures. Given the strong
dependence of RVEMSC,i on local microstructure, determining a conser-
vative RVEMSC size requires the identification of RVEMSC,i sizes for a
variety of microstructural instantiations.

4.8. Implications for applications of CNN interpretation to computational
materials science problems

Recently, CNNs have been implemented in computational materi-
als science research because of their ability to make rapid material
behavior predictions based on high-dimensional material data (viz.,
microstructural images). However, CNN models are ‘‘black-box’’ ML
models. The methods explored in this work demonstrate how insight
into ‘‘black-box’’ CNN learning can be gained through interpretation.
An inspection of CNN predictions reveals trends learned by a CNN. For
example, an input feature sensitivity analysis (Section 2.3.1) reveals the
most critical input features to material behavior predictions. An input
sampling grid study (Section 2.3.2) reveals the region of local material
features that primarily influences predictions of a target material be-
havior. Saliency maps (Section 2.3.3) compare the relative influence of
different input voxels in predicting material behavior.

It is important to note that findings from CNN interpretation rep-
resent trends learned by the CNN, but not necessarily physics-based
trends. Consider a comparison of the trends in actual and CNN-
estimated RVEMSC,i parameter values. In Fig. 5b, the uniform E mi-
crostructures have the minimum actual and CNN-estimated 𝑑2,𝑖 values.
In this case, a trend learned by the CNN matches a trend in the actual
data. In Fig. 5a, the uniform E microstructures have the minimum CNN-
estimated 𝑑1,𝑖 values. However, the uniform E microstructures do not
always have the minimum actual 𝑑1,𝑖 values. Specifically, at crack sizes
of 𝑎∕𝑔 = 1.0 and 𝑎∕𝑔 = 3.0, the minimum 𝑑1,𝑖 values for free-sides
boundary conditions are associated with microstructures other than the
uniform E microstructure. The trend of predicting minimum volume
requirements for uniform E cases does not reflect the trend in the
actual data. Thus, the trends learned by a CNN cannot be guaranteed
to represent the physics of a problem. Nonetheless, trends learned
by a CNN could be used to inform the design of future experiments
investigating the physics of the problem.

5. Limitations

The conclusions drawn from the interpretation of CNNs are lim-
ited to the assumptions made when obtaining the training data [15].
The training data were limited to results from previous linear-elastic
FE simulations of idealized microstructural instantiations, where each
instantiation comprised cube-shaped grains and contained one semi-
circular surface crack. Grain orientations were implicitly represented
by varying the E assigned to each grain, and the crack was assumed to
be static. Future studies will be needed to incorporate more complex
conditions into the determination of RVEMSC. However, the findings
from Parts I [16] and II of this work can be applied to improve the
tractability and interpretability of future RVEMSC studies through the
assistance of CNN predictions.
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6. Conclusions

Convolutional neural networks (CNNs) are a type of machine learn-
ing (ML) model capable of handling high-dimensional data and making
highly accurate predictions when provided with sufficient training
data. While CNNs have grown in popularity among the materials sci-
ence community, they are considered ‘‘black-box’’ models in that the
relationships between inputs and model predictions are not directly
interpretable. In this work, a variety of interpretation methods are im-
plemented to uncover the learning trends of CNN models trained on the
task of predicting minimum volume requirements for microstructures
containing a microstructurally small crack (MSC).

In Part I [16], CNN models were trained to estimate RVEMSC, or the
size of a representative volume element for a microstructure containing
an MSC, which, by definition, is the minimum microstructural volume
required to achieve convergence of crack-front parameters with respect
to volume size [15]. Training data were derived from computationally
expensive finite-element (FE) simulations. CNNs were implemented
to expedite the process of determining RVEMSC, specifically by pre-
dicting RVEMSC,ip (the minimum volume of microstructure required
around an MSC for the J-integral value at crack-front point p in mi-
crostructural instantiation i to converge with respect to volume size)
given microstructural and geometrical input features. The predictions
of RVEMSC,ip parameters (𝑑1,𝑖𝑝 and 𝑑2,𝑖𝑝) were subsequently used to make
CNN-based estimates of RVEMSC,i (the minimum volume of microstruc-
ure required around an MSC for the J-integral values in microstructural
nstantiation i to converge with respect to volume size) for a given
icrostructural instantiation and RVEMSC for an entire population of
icrostructural instantiations.
In this work (Part II), several approaches are used to interpret

he CNNs discussed in Part I. First, CNN predictions are inspected to
dentify high-level relationships between microstructure and predicted
olume requirements. Second, an input feature sensitivity study com-
ares the importance of different input features to CNN predictions.
hird, the physical dimensions of the input sampling grids are varied
o determine how many nearest-neighbor grains influence CNN pre-
ictions of volume requirements. Fourth, saliency maps are inspected
o explore the influence of individual microstructural arrangements on
olume requirement predictions. The following conclusions are drawn:

• Inspection of CNN predictions (or estimates) reveals certain ar-
rangements of grains that consistently correspond to extreme
(maximum or minimum) predictions of volume requirements.
There are some cases for which grain arrangements predicted by
the CNNs to have extreme-volume requirements do not actually
have extreme-volume requirements. However, in most cases, the
CNN-predicted extreme-volume arrangements agree with those
identified in the training data. Thus, trends in the CNN predic-
tions often, but not always, correspond to physics-based trends.

• Given microstructural and geometrical inputs, CNNs can capture
many trends in RVEMSC,i, including variations due to crack size
and microstructure. Through an input feature sensitivity study,
microstructural input is shown to be more important to CNN
predictions of RVEMSC,ip than geometrical input. The importance
of crack size to volume requirements depends on the RVEMSC,ip
parameter and boundary conditions for which RVEMSC,ip is being
predicted.

• Varying the physical size of the 3D sampling grids for the CNN
input arrays shows that most of the important microstructural
features to RVEMSC,ip predictions are within two to three grains
of a crack-front point.

• Saliency maps extracted from trained CNNs demonstrate the abil-
ity of a CNN to identify patterns of specific microstructural ar-
rangements within a given volume that tend to influence predic-
tions of the convergence behavior of crack-front parameters. For

example, voxels corresponding to second-nearest-neighbor grains
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(of a cracked grain) that have minimum or maximum E values
consistently have high saliency values. On the other hand, vox-
els sampled from outside the physical volume of microstructure
consistently have low saliency values, demonstrating the CNN’s
ability to de-emphasize irrelevant regions.

• The strong dependence of RVEMSC,ip predictions (and thus, CNN-
based RVEMSC,i estimates) on microstructure highlights the need
to define a conservative RVEMSC size by considering multiple
microstructural instantiations. By considering many microstruc-
tural instantiations and identifying the upper bound of volume
requirements, the resulting RVEMSC guidelines can generalize to
a wide range of microstructural instantiations.

The interpretation approaches explored in this work demonstrate
that ‘‘black-box’’ CNN models can provide benefits beyond the time-
savings capabilities demonstrated in Part I [16]. The results show that
analyses of trained CNNs can provide model-verification approaches for
determining whether a model is learning expected trends. The results
also show that CNN interpretation can be used to compare input feature
importance and identify key patterns within inherently complex data.
As demonstrated in Part I [16] and in this work, CNNs can be harnessed
to both expedite the determination of and provide potential insights
into RVEMSC.

Given the complex, high-dimensional nature of materials data, the
interpretation of CNNs is a potentially valuable tool for better under-
standing material behavior in other computational materials science
applications. During training, CNNs can learn to process complex, high-
dimensional material data to extract relevant, low-dimensional features
related to material behavior trends. Interpretation methods can then
be used to explore the features (or patterns) identified by the CNN to
be most relevant to the predictions. Future studies in computational
materials science can harness the data processing power of CNNs along-
side CNN interpretation to explore trends in complex, high-dimensional
materials data.
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