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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.17632/nrntzs2 A significant question in the study of microstructurally small cracks (MSCs) is: What is the minimum
zb7.1 microstructural volume that should be included in studies involving MSCs? To answer this, representative volume
elements for microstructurally small cracks (RVEygc), or the minimum volume of microstructure required
around an MSC to achieve convergence of crack-front parameters with respect to volume size, were previously
determined using finite element (FE) simulations. The large computational expense of determining RVEg
via FE simulations motivated the implementation of convolutional neural networks (CNNs) to expedite the
determination of RVEys. (Part I). In addition to expediting the determination of RVEysc, trained CNNs provide
the opportunity to gain insights about RVEys. predictions through various interpretation methods, which we
investigate in the current work. First, an inspection of CNN predictions reveals trends learned by the CNN.
Second, an input sampling grid study offers insights into the volume of microstructure around an MSC that
most influences predictions of RVEyg.. Third, an input feature sensitivity analysis compares the influence
of microstructural and geometrical features on RVE,;. predictions. Fourth, visual inspections of saliency
maps reveal the local microstructure that is most important to the CNN when predicting RVEy;sc. The CNN
interpretation results show that microstructural features are more critical than geometrical features to the
CNN predictions. Despite inherent limitations in interpreting saliency maps, the results demonstrate that the
CNN can learn to identify various microstructural arrangements at individual crack-front points. Overall, this
study highlights the importance of considering a variety of microstructural instantiations when determining
RVEysc, as RVEygq should be a conservative minimum volume requirement that applies across a wide range
of microstructural instantiations.
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1. Introduction Although the FE-based framework was successful at identifying

RVE)sc sizes and key influences on volume requirements, a significant

Microstructurally small cracks (MSCs) are cracks whose lengths are
on the order of the size of the predominant microstructural features [1].
Given the strong dependence of MSC behavior on microstructural fea-
tures [2-14], there is a need to know how much volume of hetero-
geneous microstructure should be included in studies of MSCs. In a
previous study, DeMille and Spear [15] addressed this issue by de-
termining representative volume elements for microstructurally small
cracks (RVEygc). By definition, RVEygc is “the smallest heterogeneous
volume containing an MSC such that local crack-front parameters are
converged with respect to volume size” [15]. Using a finite-element
(FE) simulation framework, RVEysc was determined for linear-elastic
microstructures, and it was found that microstructural heterogeneity,
material constraint, and crack size influence the volume required for
J-integral values to converge with respect to volume size.
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limitation of the FE-based determination of RVEy;sc was the requisite
computational expense; thus, a method for expediting the determina-
tion of RVEygc was proposed by DeMille and Spear in Part I [16]. In the
proposed method, convolutional neural networks (CNNs) were trained
to predict RVEyg¢ , sizes given microstructural and geometrical inputs,
where RVEyg;, is the minimum volume required for the J-integral
at a crack-front point p in microstructural instantiation i to converge
with respect to volume size. The CNN predictions of RVEygcj, Sizes
were used to make CNN-based estimates of RVEygc; (the minimum
volume required for the J-integral values at all crack-front points in
microstructural instantiation i to converge with respect to volume size)
by taking the maximum RVEy;c;, size among all crack-front points
in microstructural instantiation i. The rapidly determined CNN-based
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Nomenclature

a Half-crack length

alg Normalized crack length

d In-plane distance from a crack front to the
sides of a volume

dy; d, value corresponding to RVEygc;

dyp d, value corresponding to RVEygc

d, Distance from crack plane to the top and
bottom of microstructural volume

dy; d, value corresponding to RVEyg¢;

dyp d, value corresponding to RVEygc i

dahead Distance by which CNN sampling grid
extends radially ahead of crack front

dpehind Distance by which CNN sampling grid
extends radially behind crack front

derp Euclidean distance from sampling grid
point to crack-front point

dy Distance from crack-front point to free
surface in crack plane

Agria Grid spacing in CNN sampling grid

E Elastic modulus

g Average grain size

MSE Mean squared error

N Number of points per dimension in CNN
sampling grid

R? Coefficient of determination

RVEysc Representative volume element for a mi-
crostructurally small crack

RVEysc;i Minimum volume requirement for a mi-
crostructure i

RVEyisc,ip Minimum volume requirement for crack-
front point p in microstructure i

0.ris Position along crack front with the largest
prediction of an RVEyg ;, parameter

estimates of RVEygc; were then used to downselect microstructural
instantiations predicted to have large RVEyg; sizes. The downselected
instantiations could then be simulated using FE analysis to determine
RVEpsc, where RVEyqc ensures convergence of J-integral values at
all crack-front points in all microstructural instantiations considered.
Through the analysis completed in Part I [16], CNNs were shown to
have the potential to expedite the computationally expensive, FE-based
framework for determining RVEy;gc.

Despite key findings on CNN performance from Part I [16], the
impacts of local microstructure and geometry features on CNN model
predictions of volume requirements for J-integral convergence with
respect to volume size were not revealed during the assessment of
CNN performance. For example, the analysis of CNN performance
did not answer questions such as: What is the relative importance of
microstructure and geometry in predicting RVE g i, and RVEygc,;? What is
the size of the region of local microstructure around a crack-front point that
contains the grains that most influence CNN predictions of RVEygc;, and
RVEygc;? Which grains or arrangements of grains have the most influence
on CNN predictions of RVEygc,, and RVEyc,;?

Although CNNs have been demonstrated to be very adept at han-
dling complex microstructures (e.g., to predict effective responses of
microstructures [17-23], to segment microstructural images [24-29],
to classify microstructures [30], to detect composite fibers [31], and to
predict local material behavior [32-35]), CNNs are known as ‘“black-
box” machine learning (ML) models [26,36,37]. Namely, the CNN takes
input and provides an output (or prediction) without directly informing
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the user why an output was predicted. However, methods for gaining
insights into the predictions made by a CNN are available [36]. Beniwal
et al. [18] and Eslamibidgoli et al. [38] used class activation mapping
to visualize the regions of input microstructures that most contribute
to CNN predictions. Similarly, Pokuri et al. [39] used saliency maps to
visualize the regions of input microstructures that contributed the most
to CNN predictions. Cecen et al. [17] visualized convolutional layer
filter weights to identify microstructural patterns that a CNN searched
for when making predictions. Kantzos et al. [40] visualized the output
of intermediate CNN layers to identify regions of an input image that
had the most influence on CNN predictions. Rahman et al. [41] used
an occlusion sensitivity analysis, while Sung [42] used a sensitivity
analysis, fuzzy curves, and a change of mean squared error (MSE)
method to explore the importance of neural network inputs.

Part II of this work aims to explore the factors that influence the
CNN predictions of RVEys( ;, and the CNN-based estimates of RVEygc;
made in Part I of this work [16]. The RVEygc; and RVEygg;, data
used in this work were obtained from the original RVEygc study by
the authors [15]. The following sections discuss various interpretations
of the CNNs implemented in Part I [16]. First, predictions from five-
fold cross-validations are inspected to discover general trends in CNN
predictions and estimates of RVEygc ;, and RVEygc; parameter values.
Second, input sensitivity analyses are conducted to provide a model-
level interpretation of the relative importance of different inputs in
predicting RVEygc;, parameter values. Third, an input sampling grid
study provides a model-level interpretation of the region surrounding a
crack-front point that contains the grains that most influence the CNN
predictions of RVEyg;, parameter values. Fourth, saliency maps are
generated to provide visualizations of the relative importance of local
microstructural arrangements in predicting RVEygc j, parameter values.

2. Methods
2.1. Previous work: RVEysc data

The data [43] used in Part I [16] and again in this work were
obtained from a previous study by the authors [15] and are briefly
described here for completeness. In the previous study, FE models
of cracked microstructures were simulated to determine RVEy;. for
linear-elastic, heterogeneous domains. Each idealized microstructural
volume contained a static, semi-circular, planar surface crack of half-
length a, surrounded by cube-shaped grains with side length g and
elastic moduli E ranging from 75 to 225 GPa. The volume of microstruc-
ture surrounding a given crack was parameterized using two values: d,
(the minimum in-plane distance between the crack front and the sides
of the volume) and d, (the distance between the plane of the crack and
the upper and lower surfaces of the volume). For generalization, half-
crack lengths and volume parameters were expressed relative to grain
size, g. The FE simulations provided J-integral values' that were used
to determine RVEygc i, RVEygc ;, and RVEy g sizes under two different
types of boundary conditions. Key aspects, assumptions, and relevant
outputs of the FE simulations from the original RVEy. study [15],
including idealized microstructure representation, volume parameteri-
zation, and boundary condition sets, are shown in Fig. 1. For complete
details of the models, simulations, calculation of volume requirements,
and analysis, see DeMille and Spear [15] and Part I [16] of this work.

1 J-integral values corresponding to nodes located at grain boundaries were
not considered in the FE-based determination of volume requirements due to
spurious J-integral values that occur at grain boundaries.
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Fig. 1. Key features of FE simulations used to generate RVE,s. data during a previous
study [15]: (a) Idealized, heterogeneous microstructures consisted of cube-shaped
grains of side length g with elastic moduli values ranging from 75 to 225GPa. (b)
Two parameters (d, and d,) were used to describe the volume of microstructure
around a crack. (c) Two types of boundary conditions were investigated; displacements
applied to the highlighted surfaces in each case were interpolated from a global
model under uniaxial tension. (d) Results from FE simulations were used to identify
volume requirements for J-integral convergence at a given crack-front point in a given
microstructure (RVEyqc;,), for an entire given microstructure (RVEyqc;), and for an
entire population of given microstructures (RVEy;gc).

2.2. Convolutional neural network

In Part I [16], CNNs [44,45] were implemented to expedite the
determination of RVEygc using the data described above. In the cur-
rent work, the same CNNs are interpreted to explore the mechanisms
governing the predictions made regarding J-integral convergence with
respect to volume size. Several of the interpretation methods presented
in this work are inherently tied to the model training process; therefore,
rather than simply using the trained models or results from Part I,
the CNN models are re-trained in this study for the purpose of model
interpretation. For completeness, the CNN model setups described in
Part I, including inputs, architecture, and targets, are described again
here but in less detail. Four different CNNs are used to predict two
RVEygcp parameters (d,;, and d,;,) for each of the two boundary
condition types (free sides and full submodeling). The reader is referred
to Part I [16] for a more detailed description.
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2.2.1. CNN inputs

Fig. 2a shows the four features that define the microstructural inputs
(viz., local elastic modulus values (E)) and geometrical inputs (viz.,
normalized crack size (a/g), distance to the free surface (d;,), and
distance to crack-front point (d.,)) for a given crack-front point p in
microstructural instantiation i. The inclusion of the E and d;, inputs
reflect observations that scatter in small crack behavior is caused by
variations in microstructure and that small crack behavior is strongly
dependent on free surfaces, respectively [2,7,46]. The inputs a/g and
dy, are scalars, where d;, is the distance in the z-direction between p
and the unconstrained model face at z = 0. The inputs E and d, are 3D
arrays of microstructural or geometrical features sampled from a grid
surrounding crack-front point p. Elastic modulus values are sampled
for the E array, while Euclidean distances between a grid point and
crack-front point p are sampled for the d ¢, array.

The sampling strategy for obtaining the E and d, arrays involves
NxXNxN grids located at each crack-front point p and oriented tangent
to the crack front. Various sampling grids are shown in Fig. 3. The
coverage of a sampling grid is defined through three parameters: d .4,
dyening> and N. As shown in Fig. 3, dy.,q is the distance the grid extends
ahead of the crack-front point, dy,;,q is the distance the grid extends
behind the crack-front point, and N is the number of grid points in
each direction. The grid spacing, 4,,;4, in each direction can be derived
from the previous three parameters using the equation:

Agrid - dahea]dv"'_dfehmd . (1)
Unless otherwise noted, each sampling grid for this work contains
16 x 16 x 16 points and extends 4.00 grains ahead of and 0.95
grains behind a given crack-front point. Thus, the grid spacing is 0.33
grains. For more details on the selection of these grid parameters, see
Part I [16]. With this sampling strategy, some sampling points fall
outside of the FE model volume, in which case a value of —1 is assigned
to those points in the input arrays (shown in purple in Fig. 2a). Before
being input to the CNN, both scalar inputs and array inputs for grid
points that fall within the FE model volume are normalized to a range
of 0 to 1.

2.2.2. CNN architecture

The CNN architecture consists of three blocks of convolutional
and pooling layers followed by dropout and fully connected layers,
as shown in Fig. 2b. The 3D arrays are input to the first block of
convolutional/pooling layers. The scalar inputs are concatenated with
the flattened output from the third block of convolutional/pooling
layers prior to the first fully connected layer. The predicted RVEygc 3,
parameter value is output from the second fully connected layer. The
blocks of two convolutional layers followed by a maximum pooling
layer are based on VGG-16 [47]. Each CNN is trained using the MSE
as the loss function. The CNNs are implemented using Keras [48] and
TensorFlow [49]. For more details of the CNN architecture and training
parameters, see Part I [16].

2.2.3. CNN targets

As shown in Fig. 2c, the targets of the CNN models are RVEygc
parameter values (d,;, and d,;,). Four separate CNNs are trained,
where each CNN predicts either d, ;, or d,;, values under either free-
sides or full-submodeling boundary conditions. Using four separate
CNNs is similar to the approach used by Rovinelli et al. [50,51],
where separate ML models were used to predict different crack-growth
parameters. The target RVEygc;, parameters are calculated from the
FE simulations completed in the previous RVEy;s. determination study
by the authors [15]. The calculation of RVEMSC,ip parameter values is
described in full detail in Part I [16]. The target RVEygc;, parameter
values are normalized to a range of O to 1 for use in the CNN.
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a) Microstructural and geometrical input »b) Convolutional
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»c) RVEysc,, Predictions
neural network

Conv (16), Conv (16)
Max pooling

Conv (32), Conv (32)
Max pooling

Conv (64), Conv (64)
Max pooling

Dropout

Fully connected (32)

Dropout
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| —
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Normalized feature value

0.0

Fully connected (1)

Fig. 2. Summary of the CNNs used in Part I [16] and re-trained in this work using various methods for model interpretation. The main components of the CNNs are: (a)
microstructural and geometrical input features, (b) CNN architecture, and (c) RVEygc;, parameter predictions. Input and output features are obtained from FE simulations completed

during the original RVEy. study [15].
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Fig. 3. The five sampling grids used to sample 3D array inputs during the input sampling grid study. In the study, the distance sampled ahead of the crack front (d,.,q) is varied
from 1 to 5 grains. The resulting grid point spacing for each sampling grid is shown on the bottom right.

2.2.4. CNN-based estimates of RVEygc; and RVEygc

The CNN-based predictions of RVEygc;, at individual crack-front
points are used to establish minimum volume requirements for indi-
vidual microstructural instantiations (RVEysc,) and for all considered
microstructural instantiations (RVEygc) by taking, respectively, the
maximum RVEygq;, parameter values across all crack-front points in
microstructural instantiation i:

@

dy;= m[flx(dl,ip)

3

dy = max(ds ;)

and subsequently the maximum RVEysc; parameter values across all
microstructural instantiations:

€3]

dimsc = m‘ax(dl,,-)

dy psc = miax(dzy,-). (5)
2.2.5. CNN data overview and splitting

In total, 88 cracked microstructural instantiations were simulated
using FE analysis during the previous study [15]: 22 microstructural
instantiations for each of four different normalized crack sizes (a/g =
0.25, 0.45, 1.0, 3.0). Depending on the size of the crack, each cracked
microstructural instantiation contained between 91 and 269 crack-
front points (excluding points located at grain boundaries). Each set of
crack-front points from a given cracked microstructural instantiation
constitutes one crack-front point (CFP) group. Each of the four CNNs
(one for each combination of boundary condition and RVEygc;, pa-
rameter) has a total of 88 CFP groups of data points available for CNN
training and testing. Altogether, these 88 CFP groups contain a total of



K.J. DeMille and A.D. Spear

Table 1

Input feature combinations considered during an input feature sensitivity analysis.
During the sensitivity analysis, a repeated five-fold CV is performed for each of the
input feature combinations.

Dropped input Array Inputs Scalar Inputs

None E, dg, afg, dy,
E derp a/g, di,
desp E a/g, dgs
a/g E, dg, [N
dg, E, dy, alg

14 168 data points. When splitting the data for training and testing, the
data are split according to the CFP group (i.e., points within each CFP
group are kept together). This splitting approach ensures that the CNN
remains unbiased during testing, as similar data points from a given
cracked microstructure are not contained in both the training and test
set.

2.2.6. Five-fold cross-validation

A five-fold cross-validation (CV) is used to assess the performance of
the CNN models. The 88 CFP groups are split into five folds containing
17, 17, 17, 17, and 20 CFP groups, respectively. The model is then
trained and tested using three folds for training, one fold for validation,
and the remaining fold for testing. This training and testing process
is repeated five times, using each fold as the test set during one of
five independent training runs. At the beginning of each independent
training run, model weights are re-initialized. Each CFP group is used
as test data exactly once during the CV. In other words, the five-fold
CV provides five estimates of model performance (one for each inde-
pendent training run) and a blind prediction of an RVEygc ;, parameter
for each crack-front point, where each blind prediction comes from one
of the five models trained during the CV. These blind predictions of
RVEysc,jp parameters can then be used to determine blind estimates of
RVEysc; parameters for each cracked microstructural instantiation.

2.3. CNN interpretation studies

2.3.1. Input feature sensitivity analysis

A sensitivity analysis is performed to determine which of the four
CNN input features most influences the prediction of RVEygc;, values.
In this study, the CNNs are trained using five different combinations of
input features. The first combination uses all four of the input features.
In the remaining input combinations, one of the four input features is
omitted from the CNN. The five input feature combinations are shown
in Table 1. The approach used for the sensitivity analysis is similar to
an occlusion sensitivity study performed by Rahman et al. [41] and a
change of MSE study performed by Sung [42].

Five-fold CVs (Section 2.2.6) are used to assess the performance of
the CNNs with various input features. For each input combination, the
five-fold CV process is repeated five different times, using a different
split of the 88 CFP groups each time. The CV is repeated to obtain more
performance metrics over which to average and, thus, to better gauge
model performance for each set of input parameters. Given that each
CV provides five estimates of model performance, the CVs provide 25
different estimates of model performance for each input combination.
The average of 25 model performance metrics is used to compare input
combinations.

2.3.2. Input sampling grid study

The physical size of the 3D sampling grids (Section 2.2.1) is varied
to compare the influence that microstructural features at various dis-
tances from the crack front have on volume requirement predictions.
Five different sampling grids are considered, where each grid extends
a different distance ahead of the crack front (dg.,q = 1,2,3,4,5 grains).
The grid parameters dy;, and N are kept fixed at 0.95 grains and 16,

Computational Materials Science 227 (2023) 112261

respectively. Fig. 3 shows the five sampling grids along with the grid
spacing (4,iq) for each grid.

As in the input feature sensitivity analysis (Section 2.3.1), five-
fold CVs (Section 2.2.6) are used to assess the performance of the
CNNs with different input sampling grids. Repeated CVs are used to
increase the number of available CNN performance estimates. For each
sampling grid, five different splits of the 88 CFP groups are used in
five independent five-fold CVs. The CVs provide 25 different estimates
of model performance metrics for each sampling grid (one CV provides
five performance estimates). The 25 performance metrics are averaged
to compare CNN performance with inputs sampled using various d .4
values.

2.3.3. Saliency maps

Saliency maps are extracted from trained CNN models to identify
microstructural input voxels that are most critical to the prediction of
RVEjyg¢cp- The trained CNN models come from a five-fold CV (Sec-
tion 2.2.6), where the CNN model used to generate a given saliency
map is the model trained while the crack-front point of interest is held
out as part of the test data. As described by Simonyan et al. [52],
saliency maps are found by taking the absolute value of the derivative
of a CNN model output with respect to the model input arrays via
back-propagation. Given that the CNN models have multiple 3D input
arrays, the maximum absolute value of the derivative over all input
arrays is taken at each voxel location. The resulting saliency maps are
3D arrays with the same dimensions as the input arrays (16 x 16 x 16
for this work). The saliency maps are extracted using the package tf-
keras-vis [53] alongside Keras [48] with a TensorFlow backend [49].
SmoothGrad [54] is used to reduce noise in the extracted saliency maps.
For each CNN model, one saliency map is extracted at each crack-front
point p in each microstructural instantiation i.

3. Results
3.1. Five-fold CV predictions/estimates

Fig. 4 shows actual and CNN-estimated RVEyqgc; parameter val-
ues (assuming a 5% J-integral convergence tolerance) for the 22 mi-
crostructural instantiations associated with each crack size. The actual
RVEysc; parameter values, shown in blue in Fig. 4, were found using
the FE simulations described in previous work [15]. Meanwhile, CNN-
estimated RVEygc; parameter values, shown in red in Fig. 4, are
obtained from blind RVEygc;, predictions made during a five-fold CV.
The sizes of the points reflect the number of times a given parameter
value was repeated in the data. Results are shown for four normalized
crack sizes (a/g = 0.25, 0.45, 1.0, 3.0), two boundary conditions (full
submodeling and free sides), and two RVEygc; parameters (d;; and
d, ;). The results in Fig. 4 are used to evaluate the trends present in
CNN-based RVEyg¢; estimates, discussed in Sections 4.1, 4.2, and 4.7.

Fig. 5 shows actual and CNN-estimated RVEygc; parameter val-
ues from a five-fold CV. Results are plotted for three types of mi-
crostructural instantiations. Parameter values for uniform and “2nn
max/min E” microstructural instantiations are shown in red and cyan,
respectively. Parameter values for all instantiations with varied E val-
ues are shown in blue, where the size of each point reflects the
number of times a given parameter value is repeated. For uniform
microstructural instantiations, all grains have E = 138 GPa. For 2nn
max/min E instantiations, one cracked grain is assigned the maximum
(or minimum) possible E value, and all of its second-nearest-neighbor
grains are assigned the minimum (or maximum) possible E value. The
second-nearest-neighbor grains are all grains that share one face with
a first-nearest-neighbor grain. Similarly, first-nearest-neighbor grains
share one face with a cracked grain. Note that the 2nn max/min
E microstructural instantiations are also included in the set of var-
ied E instantiations. The results in Fig. 5 are used to evaluate the
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Fig. 4. Comparison between actual and CNN-estimated RVEy;g; parameter values (d;; and d,;) for 22 microstructural instantiations per crack size under two sets of boundary
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trends present in CNN-based RVEygq; estimates of extreme volume
requirements (discussed in Sections 4.4 and 4.8).

Fig. 6a compares the actual and predicted d,;, values for the
microstructural instantiation having the maximum CNN-estimated d ;
value for a/g = 1 under full-submodeling boundary conditions. In
the plot, actual and predicted d,;, values are plotted for each point
along the crack front. A slice of the local microstructure (E array)
in the neighborhood of the crack-front point with the maximum d, ;,
prediction (corresponding to ;) is shown in Fig. 6b. Recall, the d, ;,

prediction that governs the CNN estimate of d,; is the maximum d, ;,
prediction over all crack-front points p in instantiation i. The dashed
and solid green lines on the slice of microstructure serve as indicators
for the orientation of the slice relative to the crack front. The results
in Fig. 6 are used to evaluate the trends present in RVEyg¢;, predic-
tions for one illustrative microstructure (discussed in Sections 4.1 and
4.7) and to explore microstructural arrangements that influence CNN-
based RVEyg; estimates of extreme volume requirements (discussed
in Section 4.4).
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3.2. Input feature sensitivity analysis

The results of the input feature sensitivity analysis described in
Section 2.3.1 are shown in Fig. 7. For each combination of boundary
condition type and RVEyg¢;, parameter, R? values for RVEysc,p Pa-
rameter predictions are shown for each input feature combination in
Table 1. Each blue point represents the CNN performance during one of
the 25 CNN training runs completed in a repeated five-fold CV. Each red
point represents the average CNN performance from the repeated five-
fold CV for a given input feature combination. The average R? value for
the complete input set (no dropped input features) serves as a baseline
estimate of CNN model performance. The baseline R? value is shown
as a black dashed line. The percent difference between the average
R? and the baseline is shown for each input feature combination. The
results in Fig. 7 are used to compare the sensitivity of CNN predictions
to different input features (discussed in Section 4.2.)

3.3. Input sampling grid study

The results of the input sampling grid study, as described in Sec-
tion 2.3.2, are shown in Fig. 8. For each combination of boundary
condition type and RVEygq;, parameter, R? values are shown for
RVEygcp parameter value predictions from CNN models trained with
3D array inputs sampled from grids extending 1, 2, 3, 4, and 5 grains
ahead of the crack front. Each blue point represents the CNN perfor-
mance for one of 25 training runs completed during a repeated five-fold
CV. The black dashed line shows the trend in average R? as the distance
sampled ahead of the crack front increases. The results in Fig. 8 are
used to evaluate how the location of microstructural features relative
to crack-front point p impact the influence of the features on RVEyg( i
predictions (discussed in Section 4.3).

3.4. Saliency maps

Saliency maps (Section 2.3.3) corresponding to d, ;, predictions for
cracks of length a/g = 1 under full-submodeling boundary conditions

are shown in Figs. 9, 10, and 11. Due to the challenge of visualizing
3D data, select 2D slices of the 3D saliency maps are visualized. The
slices are taken from the saliency map arrays at locations adjacent
to a given crack-front point. The slices are oriented either parallel or
perpendicular to the plane of the crack. For slices perpendicular to
the crack’s plane, the slices are either tangent or normal to the crack
front. The saliency values within the slice are normalized to a range
of 0 to 1. On each slice, the location of the crack-front point is shown
as a black point and grain boundaries are shown as black lines. For
reference, corresponding slices of the input E array are shown alongside
the saliency maps. Although both the E and d, arrays are used to
calculate the saliency maps, only the E arrays are shown alongside the
saliency maps because the E values are the larger source of variability
among the two types of arrays input to the CNNs. Note, while the
saliency map slices shown here comprise only a small portion of the
saliency map data,” high-level trends observed across many saliency
maps are represented.

In Fig. 9, saliency map slices from one particular microstructure
(called Microstructure A) are shown. The saliency map slices are taken
from five different crack-front points and are oriented parallel to the
crack plane. The five crack-front points are located at 0°, 30°, 90°, 120°,
and 180° along the crack front. The top row of heat maps shows the in-
put E arrays at the slice location, while the middle row of figures shows
the normalized saliency maps at the slice location. The bottom row
shows the physical location of the slice relative to the crack front. On
each slice, two sides of the heat maps are marked in solid and dashed
green lines, respectively, to assist with visual orientation. For each
slice, microstructural regions corresponding to high saliency values are
labeled a, b, ¢, d, and e. Note that each region label is placed at the
center of an area of interest within the microstructure in Microstructure
A. There is overlap between sampling grids for different crack-front
points, so a labeled region of microstructure may be represented in

2 One 3D saliency map is associated with each of 14168 data points from
each of four CNN models.
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multiple saliency maps (i.e., regions a, b, ¢, d, and e). The results in
Fig. 9 are used to evaluate how the sensitivity of CNN predictions to
voxels corresponding to individual arrangements of grains varies at
different crack-front points (discussed in Section 4.5).

Fig. 10 provides examples of saliency maps from four cracked
microstructural instantiations (Microstructures B, C, D, and E). Mi-
crostructure B is a uniform microstructure case (uniform E in Fig. 5),

with all grains assigned E = 138 GPa. Microstructure C has a random
E value assigned to each grain. Microstructure D has all first-nearest-
neighbor grains of a cracked grain assigned the minimum E, and
Microstructure E has all second-nearest-neighbor grains of a cracked
grain assigned the minimum E (2nn max/min E in Fig. 5). The saliency
map slices are oriented in three ways: perpendicular to the crack
plane/tangent to the crack front (Fig. 10a), parallel to the crack plane
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Fig. 9. Slices of E input arrays (top row) and saliency maps (middle row) from five crack-front points in Microstructure A. The location of each slice relative to the crack front
is indicated in the bottom row. Regions of microstructure corresponding to voxels with high saliency values are labeled a—e; note, the regions appear in multiple slices due to
overlap in the sampling grids. The black dots represent the location of the crack-front point of interest.

(Fig. 10b), and perpendicular to the crack plane/normal to the crack
front (Fig. 10c). The orientations of the slices are shown in the far
left column. The E input array (top row) and normalized saliency
(bottom row) heat maps are shown for each slice orientation of each
microstructure. As in Fig. 9, solid and dashed green lines assist with
visual orientation of the heat maps relative to the crack front. The
results in Fig. 10 are used to evaluate how the sensitivity of CNN predic-
tions to individual voxels varies with variations in local microstructure
(discussed in Sections 4.4 and 4.5).

Fig. 11 shows saliency maps from two additional cracked mi-
crostructural instantiations (Microstructures F and G) extracted from
five independently trained CNN models. During these training runs, the
data points used for training and validation are varied. Additionally,
the initial CNN model weights vary from one training run to another.
In the left column, a slice of the input E array, oriented parallel to the
crack plane, is shown for each microstructure. The location of the slice
relative to the crack is shown for reference. The five rightmost columns
show saliency map slices taken at the indicated location, where each
column corresponds to one of five independent CNN training runs.
Certain voxel regions located near high saliency values in one or more
training runs are labeled a, b, c, d, and e in the E array and saliency map
slices. The results in Fig. 11 are used to evaluate how the sensitivity
of CNN predictions to individual voxels varies from one trained CNN
model to another (discussed in Section 4.6).

4. Discussion

4.1. Trends captured in CNN RVEygc;, predictions and corresponding
RVEys,; estimates

Using geometrical (a/g, dy,, dcfp) and microstructural (E) inputs,
four CNNs (one for each combination of boundary condition type and

RVEysc,p parameter) can learn to predict RVEygc, sizes and subse-
quently estimate RVEy5c; sizes. Considering all crack sizes, boundary
conditions, and microstructural instantiations (including the uniform
microstructure case with the same E value assigned to each grain), the
CNN-based estimates of RVEygc; sizes range from 8 to 3288 grains.
This range of RVEygc; sizes is similar to the range of actual RVEyqc;
sizes (2 to 3439 grains). Fig. 4 shows how similar ranges of actual
and CNN-estimated RVE)sc; sizes are achieved as the CNNs learn to
match key trends from the actual RVEygc; parameter values. First, the
ranges of actual and CNN-estimated d, ; values decrease with increasing
crack size, while the ranges of actual and CNN-estimated d,; values
remain similar among all crack sizes. Second, the actual and CNN-
estimated d, ; values for free-sides boundary conditions tend to increase
with increasing crack size. In contrast, the actual and CNN-estimated
d,; values for free-sides boundary conditions tend to decrease with
increasing crack size. Thus, the CNNs are able to estimate reasonable
ranges of RVEygc; parameters and match key trends in the actual
RVEygc,; data.

The CNNs can also predict RVEygc;, parameter values that match
key trends in the actual RVEy;gc;, data. Fig. 6a shows two general
trends captured by both the actual and predicted d,;, values. First,
the predicted d,;, values lie within the same general range as the
corresponding actual d, ;, values. Second, the actual and predicted d, ;,
values are both generally larger at 6 < 90° than at 6 > 90°. While not
representative of all RVEyg¢ 5, predictions, Fig. 6a shows that the CNNs
are able to estimate reasonable ranges of RVEygc;, parameters for a
given microstructural instantiation and can capture local variations of
RVEysc,jp parameters along a crack front.

4.2. Relative importance of microstructural and geometrical features on
volume requirement predictions

As discussed in Section 4.1, microstructural (E) and geometrical
(a/g, dg, dp) inputs to the CNN allow the CNNs to learn key trends
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Fig. 10. Slices of E input arrays (top row) and saliency maps (bottom row) from Microstructures B, C, D, and E. The slices are oriented: (a) perpendicular to the crack plane and
tangent to the crack front, (b) parallel to the crack plane, and (c) perpendicular to the crack plane and perpendicular to the crack front. The black dots represent the location of

the crack-front point of interest.

in volume requirements (RVEygc; and RVEygc ;). However, the im-
portance of an individual input feature to the CNN predictions is not
immediately evident. The sensitivity analysis, with results shown in
Fig. 7, allows the relative importance of the four input features to be
compared. The largest decrease in CNN performance occurs when the E
input array is dropped from the CNN input set, resulting in a decrease
in R? between 64.3% and 111.4% relative to the baseline predictions
for RVEyg;, parameters. Thus, the microstructural data captured in
the E array are more critical to CNN predictions of RVEyg , than the
geometrical data included in the other three inputs.

Besides the decreases in CNN performance with the removal of the
E input, the largest reduction in R*> from the baseline (11.6 %) occurs
when a/g is removed from the CNN that predicts d,;, for free-sides
boundary conditions (Fig. 7a). The decrease in CNN performance with
the removal of a/g as input is smaller for the three other combinations
of boundary condition type and RVEygc; parameter (Figs. 7b,c,d).

10

Looking at the actual and CNN-estimated RVEyg¢; parameters in Fig. 4,
the free sides, d,; values (Fig. 4a) show a strong dependence on a/g,
as the minimum value of d,; increases with increasing crack size. For
the other three cases (Figs. 4b,c,d), the minimum value of d,; or dy;
remains less than one grain across all crack sizes. Thus, the CNNs are
capturing the trends in the actual data used for training, which show
that the relationship between volume requirements for MSCs and a/g
varies with boundary condition type and volume parameter [15].

In the sensitivity study results (Fig. 7), the CNN inputs associated
with the smallest decreases in R? (relative to the baseline) are the
dg, array and the dy scalar. The slight impact of removing these
inputs from the CNN suggests that these inputs may be unnecessary or
redundant. The d ¢, array is likely unnecessary because the sampling
grids are fixed in size when sampling inputs for a given CNN. As
a result, the d, array only varies when a sampling grid has points
outside the physical volume (see Section 2.2.1). The d;, input is likely
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Fig. 11. Slices of E input arrays (far left column) and saliency maps (right columns) from Microstructures F and G. Each column of saliency map slices is obtained from one of
five CNN training runs. The black dots represent the location of the crack-front point of interest. Locations near high saliency values are labeled a-e.

redundant because the sampling of the input arrays implicitly accounts
for the location of the free surface by including values of —1 for points
that fall outside the microstructural volume. Thus, the CNN may be able
to identify crack-front points that are close to the free surface through
the presence of placeholder (—1) values in the input arrays.

4.3. Impact of microstructural feature location on volume requirement
predictions

Having established that the E array is the most critical input feature,
the impact of the location of microstructural features within the E
array on predictions of RVEygc; can be seen in the results of the
input sampling grid study. As shown in Fig. 8, the largest increase
in average R> occurs between input grids that extend d,.,q = 1 and
dahead = 2 grains ahead of the crack front. Modest increases in average
R? occur as the input grid sampling region is extended from dy.,q =
2 t0 dype,q = 3 grains. Extending the input sampling grids beyond
dyead = 3 grains provides little improvement in the average R?. The
input sampling grids with dg.,q = 2 and dy,.,q = 3 grains sample 1.5
grains and 2 grains, respectively, in the direction tangent to the crack
front and above/below the crack plane. Thus, most of the important
microstructural features for RVEygq;, predictions are within 2 grains
of the crack front. However, some important microstructural features
for the CNN predictions are between 2 and 3 grains away from the
crack front. These findings are similar to results from our previous
RVEp;sc study [15], where features from the second or third nearest-
neighbor grains of a crack were found to be most strongly correlated
with RVEysc; values when features from first through fourth nearest-
neighbor grains were considered. Other studies have also found that
local material responses, including stress, strain, and fatigue indicator
parameters, are primarily influenced by grains up to three grains away
from a point of interest [55-57].

4.4. Identification of microstructural arrangements corresponding to ex-
treme volume requirement predictions

With the goal of identifying key microstructural arrangements re-
lated to volume requirement predictions, trends in CNN-estimated
RVEygc; parameter values are considered. In Fig. 5, the maximum
CNN-estimated RVEyg; parameters for each crack size correspond
to microstructures in which all second-nearest neighbors of a cracked
grain are assigned the maximum or minimum E value (i.e., 2nn max/
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min E). These regions of extreme E values represent regions featuring
elevated elastic heterogeneity. On the other hand, the minimum CNN-
estimated RVE)gc; parameters correspond to uniform microstructures,
in which all grains were assigned the same E value (i.e., uniform E).
The uniform E microstructures implicitly represent a homogeneous
material with no elastic heterogeneity. Although not shown, the trend
of 2nn max/min E and uniform E cases having maximum and minimum
CNN-estimated RVEyg¢; parameters, respectively, is also seen for the
free-sides d,; and full-submodeling d;; cases. Additionally, Fig. 6b
shows that the microstructure surrounding the crack-front point at
Ocrit, whose d, ;, prediction governs the maximum CNN-estimated d,
value (for a/g = 1 under full-submodeling boundary conditions),
contains the cluster of second-nearest neighbors assigned the minimum
E. Thus, the CNN has learned to predict minimum volume requirements
for microstructures with no elastic heterogeneity (uniform E) and
maximum volume requirements for microstructures with clusters of
large differences in local elastic properties (2nn max/min E). This is
similar to the findings that increases in anisotropy (i.e., higher possible
differences in local elastic properties) increased the size of an RVE for
elastic homogenization of polycrystals [58-60].

The sensitivity of RVEygc;, predictions to clusters of minimum E
value grains is further shown in the saliency maps in Fig. 10. Mi-
crostructures D and E have regions of minimum E values at the first and
second nearest-neighbor grains, respectively, of a cracked grain (which
is assigned the maximum E). In the saliency map slices for Microstruc-
ture D, elevated saliency values correspond to voxels located around
the first nearest-neighbor grains (dark blue grains in microstructure
D). In the saliency map slices for Microstructure E, elevated saliency
values are located around the second nearest-neighbor grains (dark blue
grains in microstructure E). Although not shown here, similar trends
within saliency maps are seen for instantiations having regions of grains
with the maximum E value. Thus, at crack-front points near clusters of
minimum- or maximum-valued E grains, the RVEygc ;, predictions are
highly dependent on the grains within the minimum or maximum E
clusters.

4.5. Sensitivity of volume requirement predictions to individual input voxels

Although some key microstructural arrangements have been iden-
tified using inspection of CNN-estimated RVEy; parameters, these
arrangements are only present in a portion of the E arrays provided to
the CNNs. Saliency maps are visually inspected to compare the sensitiv-
ity of CNN predictions to voxels corresponding to other microstructural
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arrangements in the E arrays. Visual (qualitative) inspection represents
a common state of practice for the evaluation of CNN saliency maps
in machine learning, and further interpretation of saliency maps using
quantitative measures remains an open area of research, even within
the computer science community [61]. Recall that saliency maps com-
pare the relative importance of individual voxels to CNN output within
the input arrays. For this reason, the saliency map slices have been
individually normalized such that saliency values in a given slice vary
from O to 1. While this normalization technique does not allow for the
comparison of saliency values among different slices, it does allow the
influence of individual voxels on CNN output to be easily compared and
visualized within a slice. As discussed in Section 3.4, the saliency maps
presented in Figs. 9 and 10 do not represent all saliency data for the
CNNs, as a 3D saliency map exists for every crack-front point. However,
the included saliency map slices capture general trends observed within
the saliency data. Several key findings from the saliency maps are
discussed in the following paragraphs.

First, the saliency maps show that CNN predictions are more influ-
enced by the values of voxels located within the physical volume of
microstructure than voxels located outside of the physical volume. In
Figs. 9 and 10, voxels located outside the physical volume are shown
in purple in the E array slices. The saliency values at voxels outside
the physical volume are low relative to other saliency values in the
slice. In some cases, sharp decreases in saliency values are observed
when crossing from inside the physical volume to outside the physical
volume. A good example of this is seen in the saliency map slice in
Fig. 9 for & = 0°, where strong saliency values are seen just inside
the physical volume, and much lower saliency values are seen outside
of the physical volume. Thus, the saliency maps demonstrate that the
CNN has learned to focus on data corresponding to regions inside the
physical volume.

Second, the saliency maps show that the locations of voxels (rel-
ative to a crack-front point of interest) that most influence RVEygc
predictions vary at different crack-front points and in different mi-
crostructural instantiations. The saliency-map slices shown in Fig. 9
exemplify how the locations of voxels having the most influence on the
CNN'’s learning trends for RVEygc;, vary at different crack-front points
within the same microstructural configuration. For example, voxels to
the left of the crack-front point have high saliency values at 6 = 0°,
but have low saliency values at § = 180°. The saliency maps shown in
Fig. 10 demonstrate how the influential microstructural regions around
a fixed crack-front position vary with respect to microstructural instan-
tiation. For each of the three slice orientations, the location of voxels
having high saliency values varies in each of the four microstructures.
Thus, rather than looking at fixed voxel locations within the E array,
the CNN has learned to identify arrangements of grains that tend to
influence predictions of J-integral convergence behavior (with respect
to volume size).

Third, the saliency maps show that multiple RVEyg¢;, predictions
can be influenced by one arrangement of grains. Examples of this are
shown in Fig. 9. Recall, the labels in Fig. 9 correspond to regions of
elevated saliency values within Microstructure A and are represented
in saliency maps for multiple crack-front points, as there is overlap
between sampling grids for different crack-front points. In the saliency
maps for crack-front points at & = 0° and § = 30°, regions a and b
feature high saliency values, despite a shift in the location of the voxels
corresponding to regions a and b within the two arrays. A similar trend
is seen with the saliency values for regions c and d in the saliency maps
at 0 = 90° and 6 = 120°. Thus, the CNN has learned that predictions of
volume requirements for multiple crack-front points may be influenced
by the same arrangement of grains.

Fourth, the saliency maps show that the influence of a given ar-
rangement of grains on RVEygc ;, predictions varies along a crack front.
In Fig. 9, region b corresponds to high saliency values at § = 0° and
0 = 30°. The normalized saliency values around region b are only
slightly elevated at # = 90°, then decrease to nearly zero at 6 = 120°.
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Similarly, the normalized saliency values around region a are high at
0 = 0°, lower at § = 30°, then nearly zero at # = 90°; and the normalized
saliency values around region e are slightly elevated at § = 120° and
high at 6 = 180°. Thus, the CNN has learned that the influence of a
certain arrangement of grains on the prediction of volume requirements
varies from one crack-front point to another.

4.6. Considerations for the interpretation of saliency maps

The interpretation of the CNNs via saliency maps poses several
challenges. First, the saliency maps comprise a large set of 3D data.
As described in Section 2.3.3, a 3D saliency map is associated with
each crack-front point for each of the four CNN models. In total, the
saliency map data contain four sets of 14168 16 x 16 x 16 arrays.
Second, saliency maps can vary from one training run to another.
Fig. 11 shows variations in saliency map slices from Microstructures F
and G during five different CNN training runs. Third, saliency maps are
primarily visual interpretation tools that have inherent limitations and
cannot be easily interpreted quantitatively [61-64]. Thus, users must
manually inspect many saliency maps to identify general, model-level
trends related to CNN learning. Additionally, a user may need domain
knowledge to identify and interpret key trends in the saliency maps.

This work takes steps to overcome the challenges associated with
saliency maps. First, only slices adjacent to the crack-front point of
interest are manually inspected, as 3D saliency maps are difficult to
visualize. Second, tens of thousands of saliency maps are available, so
only saliency map slices for d,;, predictions under full-submodeling
boundary conditions with crack size a/g = 1 are considered when
initially identifying trends in the saliency maps. Domain knowledge
related to the RVEygc , data set is leveraged in identifying trends. Once
trends are identified, other sets of saliency maps are inspected to verify
that the identified trends exist in other sets of saliency maps.

Saliency maps are analyzed qualitatively to avoid issues with varia-
tions in saliency maps during different training runs. In the qualitative
analysis of the saliency maps, the identification of high-level trends
is prioritized over the inspection of individual saliency values. As
seen in Fig. 11, the location of maximum saliency varies between
different training runs. For example, In Microstructure F, the maximum
saliency value is located near a, b, or ¢ depending on the training run.
Similarly, in Microstructure G, the maximum saliency value is around
the crack-front point, d, or e depending on the training run. Due to the
local fluctuations, emphasis is placed on identifying general regions of
elevated saliency values during the interpretation of the saliency maps.
In Microstructure F, elevated saliency values tend to be located near
points a, b, and c in all training runs. Training runs 3 and 4 also have
an additional region of elevated saliency values on the left edge of
the saliency maps for Microstructure F. In Microstructure G, elevated
saliency values tend to be located near the crack-front point, d, or e.
Thus, qualitative analysis of elevated saliency regions shows that the
CNNs learn similar patterns during different training runs, despite local
fluctuations between training runs.

4.7. Implications on the determination of RVEysc

As discussed in Section 4.1, the CNNs capture general trends in
RVEjysc; and RVEygc 5, but some observations in the actual RVEygc;
and RVEygc;, parameter values are not captured in the CNN predic-
tions or estimates. First, there are noticeable differences between actual
and CNN-estimated RVE)s¢ ; parameter ranges. For example, the ranges
of CNN-estimated d;; values in Fig. 4a do not cover the full range of
actual d,; values for a/g = 0.25, 0.45, and 1.0. The maximum CNN-
estimated d,; values for a/g = 1.0 in Figs. 4c,d exceed the maximum
actual d,; values by more than two grains. Second, the predicted d, ;,
values in Fig. 6a deviate from some trends that are present in the
actual d, ;, values. The actual d,;, values for the maximum RVEyg;
instantiation increase between crack-front points located at 6§ = 150°
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and 180°, while the predicted d,;, values do not increase. These dif-
ferences between actual and predicted (or CNN-estimated) RVEygc;
(or RVEMSC,ip) parameters support the finding from Part I [16] that
CNN predictions are not sufficiently accurate to completely replace FE
simulations when determining RVEygc.

The findings discussed in the previous sections also demonstrate
that local microstructural arrangements strongly contribute to varia-
tions in both actual and CNN-estimated RVEygc; values. The demon-
strated dependence of RVEyg; on local microstructure emphasizes the
importance of considering a variety of microstructural instantiations in
the determination of RVEygc. Overall, the goal of determining RVEygc
is to establish conservative guidelines for volume requirements in stud-
ies of MSCs. The conservative guideline should guarantee convergence
of crack-front parameters (J-integral values in this work) with respect
to volume size in arbitrary microstructural instantiations. In other
words, RVEy5c should be equivalent to the maximum RVEyg; size
identified among a population of microstructures. Given the strong
dependence of RVE)gc; on local microstructure, determining a conser-
vative RVEyc size requires the identification of RVEygc; sizes for a
variety of microstructural instantiations.

4.8. Implications for applications of CNN interpretation to computational
materials science problems

Recently, CNNs have been implemented in computational materi-
als science research because of their ability to make rapid material
behavior predictions based on high-dimensional material data (viz.,
microstructural images). However, CNN models are “black-box” ML
models. The methods explored in this work demonstrate how insight
into “black-box” CNN learning can be gained through interpretation.
An inspection of CNN predictions reveals trends learned by a CNN. For
example, an input feature sensitivity analysis (Section 2.3.1) reveals the
most critical input features to material behavior predictions. An input
sampling grid study (Section 2.3.2) reveals the region of local material
features that primarily influences predictions of a target material be-
havior. Saliency maps (Section 2.3.3) compare the relative influence of
different input voxels in predicting material behavior.

It is important to note that findings from CNN interpretation rep-
resent trends learned by the CNN, but not necessarily physics-based
trends. Consider a comparison of the trends in actual and CNN-
estimated RVEygc; parameter values. In Fig. 5b, the uniform E mi-
crostructures have the minimum actual and CNN-estimated d, ; values.
In this case, a trend learned by the CNN matches a trend in the actual
data. In Fig. 5a, the uniform E microstructures have the minimum CNN-
estimated d,; values. However, the uniform E microstructures do not
always have the minimum actual 4, ; values. Specifically, at crack sizes
of a/g = 1.0 and a/g = 3.0, the minimum d,; values for free-sides
boundary conditions are associated with microstructures other than the
uniform E microstructure. The trend of predicting minimum volume
requirements for uniform E cases does not reflect the trend in the
actual data. Thus, the trends learned by a CNN cannot be guaranteed
to represent the physics of a problem. Nonetheless, trends learned
by a CNN could be used to inform the design of future experiments
investigating the physics of the problem.

5. Limitations

The conclusions drawn from the interpretation of CNNs are lim-
ited to the assumptions made when obtaining the training data [15].
The training data were limited to results from previous linear-elastic
FE simulations of idealized microstructural instantiations, where each
instantiation comprised cube-shaped grains and contained one semi-
circular surface crack. Grain orientations were implicitly represented
by varying the E assigned to each grain, and the crack was assumed to
be static. Future studies will be needed to incorporate more complex
conditions into the determination of RVEys.. However, the findings
from Parts I [16] and II of this work can be applied to improve the
tractability and interpretability of future RVEygc studies through the
assistance of CNN predictions.
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6. Conclusions

Convolutional neural networks (CNNs) are a type of machine learn-
ing (ML) model capable of handling high-dimensional data and making
highly accurate predictions when provided with sufficient training
data. While CNNs have grown in popularity among the materials sci-
ence community, they are considered “black-box” models in that the
relationships between inputs and model predictions are not directly
interpretable. In this work, a variety of interpretation methods are im-
plemented to uncover the learning trends of CNN models trained on the
task of predicting minimum volume requirements for microstructures
containing a microstructurally small crack (MSC).

In Part I [16], CNN models were trained to estimate RVEygc, or the
size of a representative volume element for a microstructure containing
an MSC, which, by definition, is the minimum microstructural volume
required to achieve convergence of crack-front parameters with respect
to volume size [15]. Training data were derived from computationally
expensive finite-element (FE) simulations. CNNs were implemented
to expedite the process of determining RVEyc, specifically by pre-
dicting RVEygc;, (the minimum volume of microstructure required
around an MSC for the J-integral value at crack-front point p in mi-
crostructural instantiation i to converge with respect to volume size)
given microstructural and geometrical input features. The predictions
of RVEygc, parameters (d, ;, and d, ;,) were subsequently used to make
CNN-based estimates of RVEysc; (the minimum volume of microstruc-
ture required around an MSC for the J-integral values in microstructural
instantiation i to converge with respect to volume size) for a given
microstructural instantiation and RVEyg. for an entire population of
microstructural instantiations.

In this work (Part II), several approaches are used to interpret
the CNNs discussed in Part I. First, CNN predictions are inspected to
identify high-level relationships between microstructure and predicted
volume requirements. Second, an input feature sensitivity study com-
pares the importance of different input features to CNN predictions.
Third, the physical dimensions of the input sampling grids are varied
to determine how many nearest-neighbor grains influence CNN pre-
dictions of volume requirements. Fourth, saliency maps are inspected
to explore the influence of individual microstructural arrangements on
volume requirement predictions. The following conclusions are drawn:

+ Inspection of CNN predictions (or estimates) reveals certain ar-
rangements of grains that consistently correspond to extreme
(maximum or minimum) predictions of volume requirements.
There are some cases for which grain arrangements predicted by
the CNNs to have extreme-volume requirements do not actually
have extreme-volume requirements. However, in most cases, the
CNN-predicted extreme-volume arrangements agree with those
identified in the training data. Thus, trends in the CNN predic-
tions often, but not always, correspond to physics-based trends.
Given microstructural and geometrical inputs, CNNs can capture
many trends in RVEyq;, including variations due to crack size
and microstructure. Through an input feature sensitivity study,
microstructural input is shown to be more important to CNN
predictions of RVEygc;, than geometrical input. The importance
of crack size to volume requirements depends on the RVEyg(
parameter and boundary conditions for which RVEygc;, is being
predicted.

Varying the physical size of the 3D sampling grids for the CNN
input arrays shows that most of the important microstructural
features to RVEygq;, predictions are within two to three grains
of a crack-front point.

Saliency maps extracted from trained CNNs demonstrate the abil-
ity of a CNN to identify patterns of specific microstructural ar-
rangements within a given volume that tend to influence predic-
tions of the convergence behavior of crack-front parameters. For
example, voxels corresponding to second-nearest-neighbor grains
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(of a cracked grain) that have minimum or maximum E values
consistently have high saliency values. On the other hand, vox-
els sampled from outside the physical volume of microstructure
consistently have low saliency values, demonstrating the CNN’s
ability to de-emphasize irrelevant regions.

The strong dependence of RVEygcj, predictions (and thus, CNN-
based RVE)sc; estimates) on microstructure highlights the need
to define a conservative RVEy size by considering multiple
microstructural instantiations. By considering many microstruc-
tural instantiations and identifying the upper bound of volume
requirements, the resulting RVEygc guidelines can generalize to
a wide range of microstructural instantiations.

The interpretation approaches explored in this work demonstrate
that “black-box” CNN models can provide benefits beyond the time-
savings capabilities demonstrated in Part I [16]. The results show that
analyses of trained CNNs can provide model-verification approaches for
determining whether a model is learning expected trends. The results
also show that CNN interpretation can be used to compare input feature
importance and identify key patterns within inherently complex data.
As demonstrated in Part I [16] and in this work, CNNs can be harnessed
to both expedite the determination of and provide potential insights
into RVEygc.

Given the complex, high-dimensional nature of materials data, the
interpretation of CNNs is a potentially valuable tool for better under-
standing material behavior in other computational materials science
applications. During training, CNNs can learn to process complex, high-
dimensional material data to extract relevant, low-dimensional features
related to material behavior trends. Interpretation methods can then
be used to explore the features (or patterns) identified by the CNN to
be most relevant to the predictions. Future studies in computational
materials science can harness the data processing power of CNNs along-
side CNN interpretation to explore trends in complex, high-dimensional
materials data.
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