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1 INTRODUCTION

In their seminal work, Hsiang and Kleiner [26] showed that for a closed, orientable,
positively curved Riemannian manifold M of dimension 4 admitting an isometric ac-
tion of the circle T, M is homeomorphic to S* or CP2. This classification was
obtained via a study of the structure of the orbit space of such a circle action and
an analysis of the fixed-point sets of that action, combined with the homeomorphism
classification of 4-manifolds due to Freedman [12].

The orbit space M /T is a positively curved Alexandrov space, and our understand-
ing of these spaces is much improved since the publication of [26]. By making use of
Alexandrov geometry, as well as the resolution of the Poincaré Conjecture, this clas-
sification has been strengthened to show that the manifolds are actually equivariantly
diffeomorphic to S* or CP2 with a linear action by work of Grove and Searle [21] and
Grove and Wilking [23].

The nature of these results can be probed further by relaxing certain of the hypotheses.
If we assume only non-negative sectional curvature, it was shown independently by
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Kleiner [29] and Searle and Yang [44], that we add in, up to homeomorphism, only
S2 x S? and CP?# + CP2. Galaz-Garcfa [13], Galaz-Garcia and Kerin [17], and [23]
showed that this classification too can be improved to equivariant diffeomorphism.
Alternatively, one can relax the assumption that the spaces are Riemannian manifolds.
In [47], Yeroshkin considers the case of positively curved Riemannian orbifolds. With
the additional assumption that the orbifold fundamental group is trivial, he proves that
the underlying topological space of the orbifold is homotopy equivalent to S* or has
the cohomology of CP2. In the case where there is a 2-dimensional fixed-point set,
he improves the classification to homeomorphism, showing that it is S* or a weighted
complex projective space, (CPz’ v, He conjectures that this also holds true when there
are only isolated fixed points (see Conjecture 5.3 [47]). We resolve this conjecture in
the affirmative.

THEOREM 1.1 (ORBIFOLD CLASSIFICATION). Let T act isometrically and ef-
fectively on X 4 where X* is a 4-dimensional, closed, positively curved, orientable
Riemannian orbifold, with 79*> (X ) = {0}. Then, up to equivariant homeomorphism,
the underlying topological space | X | is one of the following spaces:

1. The 4-sphere, with a linear action; or

2. A weighted complex projective space, with an action induced by a linear T*?
action on S°.

This result is obtained as an immediate corollary of a more general result, Theo-
rem 1.4, which relaxes further the hypothesis on the space to permit Alexandrov
spaces, a class of spaces that include Riemannian orbifolds. Symmetries of low-
dimensional Alexandrov spaces have been studied elsewhere (see work of Nufiez-
Zimbroén [35] in dimension 3 and Corro, Nufiez-Zimbron, and Zarei [8] and Galaz-
Garcia [14] in dimension 4).

A crucial element of the Riemannian results described above is the determination of an
upper bound on the number of isolated fixed points in the space. This is established by
an elegant argument which relies on an understanding of the geometry of the space of
directions at these fixed points in the orbit space. In particular, the space of directions
contains no triangles with perimeter exceeding 7, or, in the language of extents, the
3-extent is bounded above by 7. In this paper, we refer to such spaces of directions as
small.

The proof of the upper bound on the 3-extent is straightforward in the Riemannian
cases, both for manifolds and orbifolds, since the geometry of the space of directions
is rigid. The greater flexibility in general Alexandrov spaces creates a surprising diffi-
culty in proving the upper bound in full generality. We define here a condition which
permits the extension of this bound.

DEFINITION 1.2 (CONDITION Q). An isometric action of the circle 7 on an
Alexandrov space X2 of dimension 3 with curv > 1 is said to satisfy Condition Q' if
it is fixed-point-free and the following hold:
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1. $3/T1 is a small space;

2. The double branched cover of ¥3/T! over any two points corresponding to
finite isotropy is small; and

3. If there are three components of finite isotropy, diam (23 / Tl) <7

The first part of the condition is sufficient to bound the number of isolated fixed points.
The other two parts are used to obtain that the singular set is unknotted in the orbit
space. While Condition Q' may seem technical, we show in Lemma 7.2 that it is
satisfied for any fixed-point-free isometric circle action on a 3-dimensional spherical
orbifold of constant curvature 1.

DEFINITION 1.3 (CONDITION Q). An isometric action of the circle T on a 4-
dimensional Alexandrov space is said to satisfy Condition Q if at every isolated fixed
point the isotropy action satisfies Condition Q'.

For example, any isometric circle action on a Riemannian 4-orbifold satisfies Condi-
tion Q by Lemma 7.2.

MAIN THEOREM 1.4. Let T' act isometrically and effectively on X* so as to sat-
isfy Condition Q, where X 4 is a 4-dimensional, closed, positively curved, orientable
Alexandrov space. Then, up to equivariant homeomorphism, X is one of the following
spaces:

1. The suspension of a spherical 3-manifold, with a linear action; or
2. A finite quotient of a weighted complex projective space with a linear action.

Let us immediately point out how Theorem 1.1 follows from this result. First, the
Main Theorem 1.4 is applicable, since a closed, positively curved, orientable Rie-
mannian orbifold is an example of a closed, positively curved, orientable Alexandrov
space satisfying Condition Q. The restriction on the orbifold fundamental group sim-
ply means that we exclude any finite quotients from the classification, so that the
spherical 3-manifold can be taken to be S3.

Note that this list of possible spaces in the Main Theorem 1.4 is very restrictive, with
every space being the quotient of a sphere. The additional spaces obtained by relaxing
the Riemannian hypothesis arise only because the class of Alexandrov spaces is closed
under taking the quotient by an isometric group action, even when that action is not
free.

As in the manifold case, the bound on the symmetry rank of a positively curved n-
dimensional Alexandrov space is ["T“J It is interesting to compare the Main The-
orem 1.4 to the following result of the authors [27], which shows that all spaces that
achieve this bound are obtained as quotients of spheres.

THEOREM 1.5 (MAXIMAL SYMMETRY RANK THEOREM [27]). Let X be an n-
dimensional, compact, Alexandrov space with curv > 1 admitting an isometric T*
action with k = | 2L |. Then either
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1. X is a spherical orbifold, homeomorphic to S™ /G, where G is a finite subgroup
of the centralizer of the maximal torus in O(n + 1); or

2. Only in the case that n is even, X ~ S"T1 /G, where G is a rank one subgroup
of the maximal torus in O(n + 2)

and in both cases the action on X is equivalent to that induced by the maximal torus.

We note that while for positively curved Riemannian manifolds there is no difference
in dimension 4 between the maximal and almost maximal symmetry rank cases, there
is a difference for Alexandrov spaces. Namely, while the spaces obtained in Theo-
rems 1.4 and 1.5 are all linear quotients of S* and S®, in the Main Theorem 1.4 there
are a greater variety of quotients possible, as the dihedral and binary polyhedral sub-
groups of SO(5) and SO(6) also occur.

ORGANIZATION. The paper is organized as follows. In Section 2, we present nota-
tion and conventions, as well as background material about Alexandrov spaces, group
actions on Alexandrov spaces, and Seifert manifolds. In Section 3, we describe the
restrictions imposed by positive curvature on isolated singular points and singular
knots. In Section 4, we prove a topological classification when there are three isolated
points of circle isotropy. In Section 5 we classify isometric circle actions on posi-
tively curved 3-spaces and in Section 6 we address the 4-dimensional case, proving
the Main Theorem 1.4. In Section 7, we discuss a conjecture about the extents of
quotients of Alexandrov spaces by isometric group actions which, if true, would show
that Condition Q is always satisfied.
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2  PRELIMINARIES

In this section we fix notation and recall basic definitions and theorems about Alexan-
drov spaces, as well as discuss how unnormalized invariants are assigned to Seifert
manifolds.

2.1 ALEXANDROV GEOMETRY

A finite-dimensional Alexandrov space is a locally complete, locally compact, con-
nected (except in dimension 0, where a two-point space is admitted), length space,
with a lower curvature bound in the triangle comparison sense. We assume through-
out that the space is compact, and usually without boundary, in which case it is said
to be closed. There are a number of introductions to Alexandrov spaces to which
the reader may refer for basic information (see, for example, Burago, Burago, and
Ivanov [4], Burago, Gromov, and Perelman [5], Plaut [42], and Shiohama [46]). Rie-
mannian orbifolds are simple examples of Alexandrov spaces: in fact, 4-dimensional
Alexandrov spaces are all homeomorphic to orbifolds.

The space of directions of an Alexandrov space X" of dimension n at a point p is,
by definition, the completion of the space of geodesic directions at p and is denoted
by ¥, X or, when there is no confusion, 3,. It is a compact Alexandrov (n — 1)-
dimensional space with curv > 1. A small metric ball around p, B, (p), is homeo-
morphic to an open cone on ¥, by work of Perelman [39]. The local model for an
Alexandrov space is therefore given by a cone on any space of positive curvature. In
the case of a Riemannian orbifold, X, is isometric to a quotient of the unit sphere by
a finite group.

The class of Alexandrov spaces is closed under taking quotients by isometric group
actions, even when those actions are not free. Furthermore, the subclass of spaces
with curv > 1 is closed under taking spherical suspensions and spherical joins.

An Alexandrov space has an open dense subset which is a topological manifold, and in
the event that the space has no boundary then the complement of the manifold part has
codimension at least three. In low dimensions, the structure is then relatively simple.
In dimension three, the only topological singularities are isolated points with space
of directions homeomorphic to RP2. In fact, Galaz-Garcia and Guijarro [16] have
classified the positively curved 3-spaces as follows.

PROPOSITION 2.1. Any positively curved 3-space is homeomorphic to a quotient
of S® by some finite subgroup T' of O(4). In particular, it is homeomorphic to the
suspension of RP? or to a spherical manifold.

By Lemma 3.3 in [27], an Alexandrov space without boundary, X, is orientable if and
only if its manifold part is orientable. If, for some p € X, ¥, is not orientable, then X
does not even admit a local orientation near p. In general, if the space is not orientable,
it may be obtained as the quotient of an orientable Alexandrov space by an isometric
involution by Theorem 3.4 in [27] (see also [16] for the 3-dimensional case).

In an oriented Alexandrov space X, the intersection number of two subsets A and B,
#(AN B), is defined as usual on the manifold part of X. In this paper, A and B are
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either two curves in a surface, or a curve and a surface in a 3-dimensional space.
We recall Petrunin’s analogue of Synge’s Theorem [41] for Alexandrov spaces, giving
here the version from [27].

THEOREM 2.2 (GENERALIZED SYNGE’S THEOREM). Let X be an Alexandrov
space of dimension n with curv > 1.

1. Let X be even-dimensional. If X is either orientable or locally non-orientable
then X is simply connected, and otherwise it has fundamental group Zo.

2. If X is odd-dimensional and locally orientable then X is orientable.

2.2 EQUIVARIANT ALEXANDROV GEOMETRY

‘We now concentrate our attention on isometric group actions on Alexandrov spaces.
Given an isometric (left) action G x X — X of a Lie group G, and a point p € X,
we let G(p) = {gp : g € G} be the orbit of p under the action of G. The isotropy
group of p is the subgroup G, = {g € G : gp = p}. Recall that G(p) = G/G).
We denote the orbit space of this action by X = X/G. Similarly, the image of a point
p € X under the orbit projection map 7 : X — X is denoted by 5 € X. We assume
throughout that G is compact and its action is effective, that is, that ﬂpe x Gy is the
trivial subgroup {e} of G. By Theorem 2.2 in Galaz-Garcia and Guijarro [15], the set
of principal orbits forms an open dense subset of X.

As in the case of Riemannian manifolds, the space of directions at any point p decom-
poses as the spherical join of the orbital directions (the unit sphere in the Lie algebra)
and the normal directions v, which in general might be any Alexandrov space with
curv > 1, see Galaz-Garcia and Searle [18]. If G acts effectively on X then the in-
duced isometric action of G}, on 3, must be effective. Where G, <1 G, it follows that
the G, action on v, must also be effective.

We recall the following results from [27].

THEOREM 2.3 (SLICE THEOREM [27]). Let G, a compact Lie group, act isomet-
rically on an Alexandrov space X. Then for all p € X, there is some ro > 0 such that
for all v < rq there is an equivariant homeomorphism ®: G x ¢, Kv, — B,.(G(p))
where vy, is the space of normal directions to the orbit G(p).

LEMMA 2.4 [27]. Let T* act by isometries on X*", a compact even-dimensional
Alexandrov space of positive curvature. Then T has a fixed point.

PROPOSITION 2.5 [27]. Let T act isometrically and effectively on X™, a compact
Alexandrov space. Then the components of the fixed-point set are of even codimension
in X™.

An action of G on X such that X¢ # () and dim(X %) = dim(X/G) — 1 is called
fixed-point homogeneous. The following description of positively curved fixed-point-
homogeneous Alexandrov spaces from [27] is very useful in our classification. Since v
might be any positively curved space, this result of the authors shows that, in marked
contrast to the Riemannian setting, fixed-point homogeneity is not a very restrictive
concept in Alexandrov geometry.
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THEOREM 2.6 (FIXED-POINT-HOMOGENEOUS ACTIONS). [27] Let G, a com-
pact Lie group, act isometrically and fixed-point-homogeneously on X, an Alexandrov
space with curv > 1. If F is the component of X with maximal dimension then the
Sfollowing hold:

1. There is a unique orbit G(p) = G /G, at maximal distance from F (the “soul”
orbit);

2. The space X is homeomorphic to (v x G) /Gy, where v is the space of normal
directions to the orbit at p and G, acts on the left on the spherical join, v x G,
the action on v being the isotropy action at p and the action on G being the
inverse action on the right; and

3. The above homeomorphism is in fact G-equivariant, where the action of G on
(v * G) /G, is induced by the left action on v x G given by the join of the trivial
action and the left action.

Consider the subset X ) C X which is the image of all orbits with isotropy sub-
group conjugate to H C G. Perelman and Petrunin [40] have shown that its closure
cl ()_( ( H)) is an extremal subset of X, that is, a closed subset which is preserved under
the gradient flow of dist(p, -) for all p € X. Extremal sets stratify an Alexandrov
space into topological manifolds. Extremal sets of codimension one make up the
boundary. A primitive 1-dimensional extremal set, that is, one which cannot be ex-
pressed as a union of proper subsets which are also extremal, is a curve, which is either
closed or terminates in 0-dimensional extremal sets.

It is clear from the Relative Stability Theorem of Kapovitch [29] that, if the Alexan-
drov space X is a topological manifold and F is an extremal subset, the top stratum
of E, that is, the complement in £ of any strictly smaller extremal subsets, is a locally
flat submanifold (see also Lemma 5.1 in [23]). Recall that a locally flat submanifold
is the topological analogue of an embedded submanifold in the differential category.
More precisely, if M™ is a manifold then N* C M™ is locally flat if, for each p € N,
there is a neighborhood U of p so that (U, U N N) = (R, R*), where R* is included
in R™ in the standard way.

2.3 ASSIGNING UNNORMALIZED INVARIANTS TO SEIFERT MANIFOLDS

In Section 4.1 we assign invariants to 7'*-actions on orientable Alexandrov 4-spaces.
The 4-spaces under consideration there have isolated fixed points. Let p be any such
isolated fixed point. Then Proposition 2.1 implies ¥,, is homeomorphic to S3/T". The
isotropy action defines a Seifert fibration on ¥,,.

For this reason, Seifert fibrations are key to defining the invariants we need to classify
these 4-spaces, and so we establish here notational conventions for the invariants of
Seifert manifolds. Note that we do not include the Seifert invariants related to ori-
entability or the presence of fixed points, since these are not relevant here.

We follow the approach of Jankins and Neumann [28], since it is better suited to the
present work than the normalized Seifert invariants which were used by Fintushel [11]
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Figure 1: The orbit space Z in the case g = 2, n = 3.

to classify 4-manifolds with circle actions. We collect all of the notation into Table 1
at the end of this subsection for easy reference.

Let 7" act on Z3, an oriented 3-manifold, without fixed points. Let the projection
map be denoted by 7: Z — Z = Z/T"'. Let g be the genus of Z, which for the
purposes of this paper is always zero. Orient Z so that its orientation followed by the
orientation of the orbits gives the orientation of Z3.

Let {Z1,...,%,} C Z be the image of a non-empty collection of orbits, which in-
cludes all of the exceptional orbits. In fact, it is sufficient to choose only the excep-
tional orbits unless this produces an empty collection, in which case the image of one
principal orbit suffices. Choose disjoint 2-disk neighborhoods, V;, of each Z;. Orient
dV; by its inward normal. The closure of the complement of the disks is denoted by
R =cl(Z\ (U;_, V;)) and is the surface of genus g with n boundary components.
See Figure 1.

The preimage of the disk, V; = 7=1(V;) = D? x S!, is a solid torus. Orient the
boundary torus OV; = T2 by its inward normal. Let z; be contained in 7~!(Z;), the
core of V;. Denote the slice at z; by S; = D2, and note that 7(.S;) = V; = D? is the
quotient of S; by the finite cyclic group T111 Orient \S; so that its intersection number
with T (x;), #(S; N T*(x;)), is equal to +1.

Let m; be the boundary curve of S;, oriented by its inward normal. This curve is a
meridian of OV}, that is, a curve representing a generator of H; (0V;; Z) which bounds
a disk in V;. Let [; be a longitudinal curve on 9V}, chosen so that #(I; Nm;) = +1.
Note that this does not uniquely specify /;, which can be varied by adding any multiple
of m;. Further, we freely identify oriented curves with the corresponding elements of
H1(0Vi; Z).

The pair (I;, m;) now forms an oriented basis for H1(9V;; Z). The homology class of
any other closed curve ¢ in 9V; may be written as t = al; +bm; for some a,b € Z. The
coefficients then give the intersection numbers #(t N'm;) = a and #(¢ N ;) = —b.
Let h; be an oriented principal orbit on OV;. Writing h; = «;l; + v;m;, we have that
#(h; N'm;) = «; is the order of the isotropy group at z; (see Figure 2) and this gives
one Seifert invariant for the orbit over z;.

We remove the neighborhoods V7, . . ., V,, from Z to obtain the surface with boundary
R=cl(Z\ (U;_; V;))- Recall that principal 7" -bundles over a base B are classified
by H2(B), so all principal T'!-bundles over surfaces with boundary are trivial. Thus,
we can choose a section, o: R — R. Consider the curves ¢; := o(9V;) for i =
1,...,n. These curves lie on the tori dV; and, since they are sections, they intersect
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Figure 2: A meridian, m;, longitude, I;, and principal orbit, h;, on V;. The inter-
section number of h; with m; is a; = 2, the order of the isotropy at the exceptional
orbit.

each principal orbit on 9V} exactly once, so #(h; N ¢;) = 1.

We orient the ¢; so that #(h; N ¢;) = +1. The ¢; are the boundary components of the
image of the section, U(R), but to achieve this sign convention they must be oriented
by the outward normal to U(R). That is, the orientation of the g; is that which agrees
with the orientation of OV as the boundary of V;.

The pair (h;, ¢;) form a second basis of H;(0V;; Z), with the same orientation, and so
they can be related by some element of SL(2, Z),

()= (5 %))

Since ¢; = —fil; + d;m;, we have that 5; = #(m; N ¢;) is independent of our choice
of longitude, and so we obtain a second Seifert invariant for the orbit. By choosing a
different section, ¢’, the class ¢; may be altered by adding a multiple of A, although
in this case at least some of the other ¢; for j # ¢ must also change. The invariant j3;
is therefore only determined up to a multiple of «;.

Since ( 3, 3°) € SL(2,Z), we have that ged(a;, 3;) = 1. Furthermore, inverting the
matrix, we can write m; = «;q; + Bih;.

The pair (v, 8;) are the Seifert invariants for the orbit 7! (x;) and we say that the
Seifert invariants of the 7! action on Z2 are

{g; (alv 51)7 RS (()én, Bn)}'

These invariants are not uniquely determined by the action, not only because the index
set may be permuted, but also for a more significant reason, already noted above: the
Bi depend on the choice of section . However, the generalized Euler number given
by the sum

e=-Y & (1
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is independent of the choice of o.

In Proposition 6.14, we calculate the orbifold fundamental group of some 4-spaces. A
necessary ingredient in this calculation is the fundamental group of a Seifert manifold.
The following theorem shows how the Seifert invariants may be used to compute the
fundamental group of the manifold. See Theorem 6.1 in [28] for the proof. We give
the result below for the case g = 0, since this is the only case we are interested in
here.

THEOREM 2.7. Let Z3 be a Seifert manifold with invariants

{0; (ah 51)7 ) (Oén, ﬁn)}

Then the fundamental group is given by
7Tl(Z) = <Q17~~ . aQTlah’ ‘ [Q17h] = 17‘]?‘]7'51 = 1,Q1QQ' Qn = 1>

Note that Seifert invariants are usually normalized [36]. The most frequent convention
is to impose the constraint 0 < ; < «; and to include an additional principal orbit of
type (1, b), so that we still have b + > 1| ‘g— = —e.

The most natural point of view to take in understanding the normalized invariants is
that they arise from making the choice of the sections ¢; first in order to satisfy the
constraints 0 < 3; < «;. The obstruction to extending the ¢; to a global section o is
then given by b. However, in the present work it is convenient to fix the global section
o first, and so unnormalized invariants are more suitable.

Table 1: Table of notation for unnormalized Seifert invariants

Z A 3-manifold with a fixed-point-free 7" action.
Z  Tts orbit space, Z/T*, a surface with singular points.
g The genus of the surface Z.
Z; Fori = 1,...,n, a collection of points in Z which includes the image of
each exceptional orbit T (;).
Vi A 2-disk neighborhood of Z;.
V;  Its preimage, a solid torus neighborhood of T (z;).
R The complement of the V;, cl (Z \ (U:':l VZ) ) a surface with boundary.
o A section of the action defined on R.
S;  The slice at some x;, oriented so that # (Si n Tl(xi)) =+1.
m; The boundary of .S;, a meridian on 0V;.
l;  Alongitude on dV; chosen so that #(I; N'm;) = +1.
h;  An oriented principal orbit on 9V;.
q; The oriented curve U(@Vi) C 0V;, which depends on ¢ and is a section for

the action on dV; such that #(h; N ¢;) = +1.
a;  The order of the isotropy at x;, given by #(h; N'm;).
B;  The intersection number #(m; N ¢; ), which depends on the choice of o.
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3 SINGULARITIES AND POSITIVE CURVATURE

3.1 EXTENTS OF SPACES OF DIRECTIONS

For a metric space X, we define the g-extent of X to be the maximum of the average
distance function among ¢ points in X:

xtq(X) = Zdlst T, T5).

T1,T2,. wv CX
{12 q} K;

In particular, the following lemma, originally given for the case where X is a quotient
of a Riemannian manifold but stated below in full generality, provides a particularly
nice application of extents to control the number of highly singular points in the pres-
ence of positive curvature.

LeMMA 3.1 (EXTENT LEMMA [22, 20]). Let X be an Alexandrov space. For any
choice of (q + 1) distinct points po, . .. ,pq € X one has

™
q+1ZXt (2,.X) )g

whenever one has curv(X) (; 0
In light of this result, we make the following distinction between spaces of directions.

DEFINITION 3.2 (SMALL SPACES). Let ¥ be an Alexandrov space of curv > 1.
We say that ¥ is small if xt3(¥) < %. Then for a general Alexandrov space X and a
point p € X we say that p has a small space of directions if xt3(X,) <

It then follows that in a positively curved Alexandrov space we can bound the total
number of points with small spaces of directions.

PROPOSITION 3.3. Let X be a positively curved Alexandrov space. Then there can
be at most three distinct points with small spaces of directions.

Proof. Assume, aiming for a contradiction, that there are four such points. Then there
would be four points in X having spaces of directions with 3-extent bounded above by
/3. By a simple application of the Extent Lemma 3.1, this is not possible. Therefore
there are at most three such points. O

We remark that the application of the Extent Lemma in this proof essentially synthe-
sizes the argument given in the original paper of Hsiang and Kleiner [26] to bound the
total number of isolated fixed points.
By design, Condition Q ensures that the space of directions at the image in the orbit
space of an isolated fixed point is small. Therefore Proposition 3.3 yields the following
bound on the number of fixed points.

PROPOSITION 3.4. Let X be a positively curved Alexandrov space on which T acts
isometrically and effectively so as to satisfy Condition Q. Then there can be at most
three isolated fixed points.
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3.2 SINGULAR KNOTS

Under Condition Q, not only is the space of directions at the image in the orbit space
of an isolated fixed point a small space, so too is any double branched cover over two
points corresponding to finite isotropy. This allows us to investigate singular knots by
combining the results of the previous section with results on double branched covers
over knots. We define the following condition.

DEFINITION 3.5 (CONDITION O). Let X2 be an Alexandrov space homeomorphic
to S containing an extremal closed curve, c. We say that (X, c) satisfies Condition O
if there are two points p1, p2 € X, not necessarily on ¢, which have small spaces of
directions and that the corresponding points p;,% = 1, 2 in the double branched cover
of X over ¢, X»(c), also have small spaces of directions.

The following theorem synthesizes information from Section 2 of [23].

THEOREM 3.6. Let X3 be a positively curved Alexandrov space homeomorphic to
S3. If c C X3 is an extremal closed curve and (X3, c) satisfies Condition O, then c is
unknotted.

Proof. Consider the double branched cover over the closed curve ¢, X3(c). By Con-
dition O, we see that X3(c) has at least two singular points with small spaces of di-
rections. Recall that by Lemma 5.2 in [23], X3 (c) is also positively curved. It follows
that its universal cover, X3(c), is also positively curved, with at least 2|71 (X3(c))]
singular points. By Proposition 3.3, 2|71 (X3(c))| < 3, hence X3(c) is simply con-
nected.

Theorem C of [23] tells us that we can determine whether a closed curve, c, is knotted
by considering the double branched cover, X3(c), over that curve. Namely, if c is the
unknot, X3(c) is simply connected, and otherwise the fundamental group has order at
least 3. In particular, this allows us to conclude that ¢ is the unknot. O

3.3 EQUIVARIANT SUSPENSION THEOREM

If the orbit space of a G-action is given by a suspension, with the suspension points
corresponding to G-fixed points, then the G-action is also on a suspension. This
allows us to give an Alexandrov geometry analogue of Theorem 1.4 in [22], Grove
and Searle’s Equivariant Sphere Theorem.

PROPOSITION 3.7. Let X be a closed, positively curved Alexandrov space on
which G acts by isometries. Suppose that p1,p2 € X are two fixed points and that
X = X/G is homeomorphic to a suspension so that the homeomorphism respects the
stratification by orbit types while taking p1 and ps to the suspension points.

Then ¥, = X,, = ¥ are equivariantly homeomorphic, and X is equivariantly
homeomorphic to the spherical suspension of 3.

Proof. Following the methodology of Section 4 of [27], let W be the “blow up” of X
at the fixed points p; and py. That is, remove the points p; and ps from X and replace
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them with their spaces of directions to obtain . Then W admits a G-action and the
orbit space W/G corresponds to the blow up of X at §; and po.

Since X is a suspension, W/G is homeomorphic to 3 x [0, 1], where the orbit types
respect the product structure and ¥ = ¥; = Y. By the Covering Homotopy
Theorem of Palais [38] (see also Theorem IL.7.1 in [1]), W is also a product and G
acts on it with a product action.

It follows that 3, and 3, are equivariantly homeomorphic, and so we identify them
as X. Then X is a suspension on 3, and the group action on X is the suspension of
the isotropy action on X. O

THEOREM 3.8 (EQUIVARIANT SUSPENSION THEOREM). Let X be a closed,
positively curved Alexandrov space on which G acts by isometries. Suppose that
p1,p2 € X are two fixed points and that diam(Xp,) < % for i = 1,2. Then
Yp, =2 X,, = X are equivariantly homeomorphic, and X is equivariantly homeo-
morphic to the spherical suspension of 3.

Proof. Denote by X the orbit space X/G. Let ¢ € X \ {p1, P2} be chosen arbitrarily.
Then Zp1gqpz > 5. Then, just as in Theorem 4.5 in [39], the function dist(p;, -) is
regular, so that X \ {p1, P2} fibers over an interval, and X is homeomorphic to the
suspension of 3, where ¥ 2 ¥, = %5 . Following the method of proof of the Rel-
ative Stability Theorem 4.3 of the authors’ previous work [27], this homeomorphism
respects the stratification by extremal subsets.

The result then follows from Proposition 3.7. O

In Section 6.4, we apply this result in the context of 7T'!-actions on 4-dimensional
spaces satisfying Condition Q in order to understand the isotopy type of extremal 6-
graphs, that is, graphs with two vertices, three edges and no loops, with the shape of
the letter 6. Where the isotropy action at a fixed point p has three components of finite
isotropy, Condition Q" at that point implies that diam(¥;) < %, and so the result is
applicable.

Alternatively, arguments similar to those used in Section 3.2 for extremal knots to-
gether with Lemma 2.3 of Calcut and Metcalf-Burton [6] could be applied to show
that the 0-graphs are unknotted.

4  TOPOLOGICAL CLASSIFICATION FOR THREE ISOLATED FIXED POINTS

In this section we classify actions of 7' on closed oriented Alexandrov spaces, X?,
such that the orbit space X® = S? and the fixed-point set comprises three isolated
points, {p1,p2,p3}, with the entire singular set lying on a locally flat closed curve
¢, which is unknotted. The classification is up to orientation-preserving, equivariant
homeomorphism.

The classification we obtain is based on Fintushel’s classification of simply connected
4-manifolds with circle actions [11]. We generalize his work, in the sense that we
consider Alexandrov spaces rather than manifolds, but we also specialize it by con-
straining the structure of the orbit space.
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In Section 4.1 we assign invariants,

(2250,

Cll’ag70(3

to the actions in a manner similar to that of [11]. There are various degrees of free-
dom in how these invariants are defined, and in Section 4.2 we define an equivalence
relation on Q3 which removes these freedoms. The invariants are then uniquely de-
fined up to equivalence. In Lemma 4.5, we also show that certain invariants do not
correspond to actions: those where c[j_) = g—f for some ¢ # j. In Section 4.3, we prove
a uniqueness result, showing that if two 4-spaces have equivalent invariants then there
is an orientation-preserving, equivariant homeomorphism between them, so that these
invariants are sufficient for classification.

In Section 4.4, we prove an existence result which is a key ingredient in proving the
Main Theorem 1.4. Theorem 4.8 shows that every set of invariants, barring those
where two of the triple are equal, corresponds to an action on a finite quotient of some
CP2

a,b,c*

REMARK 4.1. All of the results in Sections 4.1, 4.2 and 4.3 can easily be shown
to hold for any number n of isolated points lying on an unknotted curve with the

appropriate modifications. Note that those n-tuples for which % = g ‘ii , where the

indices are taken modulo n, do not correspond to an action.

4.1 ASSIGNING INVARIANTS TO ACTIONS

In this subsection we assign invariants to actions on oriented 4-spaces. Fintushel refers
to these invariants as weights in [11], but to prevent ambiguity later when making use
of weighted projective spaces, we avoid this terminology.

Orient X so that its orientation, followed by the orientation of the orbits, gives the
orientation of X4,

Label the arc of ¢ between the pair of fixed points (7;, p;41) in X4/T! = X3 = 83
by J;, as shown in Figure 3, where the arithmetic here is modulo 3. Orient ¢ so that
it is traversed as (P1P2ps3). Note that a renumbering of the p; permits the opposite
orientation of the curve.

Let U = S! x D? be a closed neighborhood of &. We decompose U into three balls
B, each containing one fixed point p;, so that B;n Bi+1 =V,a locally flat 2-disk.
Then §B;, a submanifold of X4, is a Seifert manifold, which we denote by Z2, and
we orient it by its inward normal.

Orient each disk V; so that the intersection number # (XZ N Ji) = +1. This is equiv-
alent to orienting it as a submanifold of Z;;1 (see Figure 4). We then orient the
boundary 9V; by the inward normal.

We decompose X3 as U U W, where W = cl()? \ U). Since ¢ is unknotted, W
is homeomorphic to S* x D? and, in particular, H2(W;Z) = 0. Indeed, a simple
application of the Mayer—Vietoris sequence shows that 2 is trivial even when ¢ is
knotted. The free circle action on W therefore corresponds to a trivial 7'*-principal
bundle, which admits a section, o: W — W.
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Figure 3: Structure of the neighborhood U of the curve ¢ C X3 =2 §3.

Figure 4: The base of the Seifert manifold Z; = 0B;. Note that V; is orientegl as a
submanifold of Z, since .J; corresponds to the inward normal here. Ijowever, V1 has
the opposite orientation, and is instead oriented as a submanifold of Z,.
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Let the image of the restricted section oy, , oriented by OV;, be denoted by ¢;. We
may use ¢; to define the pair of Seifert invariants (cvi, B;) for the exceptional fiber in
V; — V;, following the conventions given in Section 2.3. If .J; does not correspond
to a component of finite isotropy, then there is no exceptional fiber and the pair of
invariants is of the form (1, 3;).

DEFINITION 4.2. The invariants of the T action on the oriented space X*, with
respect to the section ¢ and the labeling of the curve ¢, are

(B22) e

[e5] ’ (%) ’ [0 %
We always assume that fractions are written in their lowest terms, with a positive de-
nominator. Note that reversing the orientation of X* changes the sign of the invariants.
These invariants differ from Fintushel’s weighted orbit spaces [11] in three key ways,
which we review here.

I. NORMALIZATION OF INVARIANTS. Fintushel requires that the invariants for the
exceptional fiber in V; — V; be normalized so that 0 < Bi < «;. These normalized
invariants then correspond to a particular choice of section OV; — OV;. Theorem 3.6
of [11] shows that these may be extended to a section U — 9U.

However, the existence of an extension relies in a key way on the spaces of directions,
Yp,;, being spheres, which does not hold in Alexandrov geometry. In our case, the
normalized invariants need not extend to a section over OU. For this reason, we begin
with the global section, and so use unnormalized invariants.

II. VIRTUAL EDGES. If two of the three fixed points are not joined by a component
of finite isotropy, the singular set in the orbit space does not contain a closed curve.
Fintushel analyzes the resulting arcs and isolated fixed points separately. However,
given the limited number of orbit space types being considered here, it is simplest to
unify the treatment.

The singular set does lie on a closed curve, ¢, though some arcs .J; on the curve
correspond to principal orbits. These arcs are “virtual edges” in the orbit space. They
are treated as though they correspond to orbits with finite isotropy of order 1. This
results in the inclusion of invariants of the form (1, 5;) in the set of invariants for ¥, .

III. WEIGHTED ORBIT SPACES. Finally, Fintushel attaches his invariants to the orbit
space to create a weighted orbit space. The isomorphism type of this weighted orbit
space is a key concept in his arguments, and is a convenient way of keeping track
of the different links and arcs in the space. In our case, since an orbit space always
comprises a single unknotted curve in the sphere, we suppress any explicit mention of
isomorphisms of weighted orbit spaces. The concept can be reduced to the equivalence
of invariants, and this is done in the next section.

4.2 EQUIVALENCE OF INVARIANTS

Observe that the section o: W — W is not unique, and hence the invariants of the Tt
action on X are not uniquely defined. Such a section is amap S* x D? — T2 x D2
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Consider a longitudinal circle, S* x {z} and lift it to T2 x D2. The homology class
of the lifted circle clearly does not depend on z, and it can be varied by adding kh,
where k € Z and h € Hy(W;Z) is an oriented orbit. Varying the section in this way
changes each of the §; to 8; + k«;, adding & to each fraction.

Now we consider the impact of this change on the invariants for the Seifert manifold
Z; — Z;, oriented by its inward normal. There are two exceptional fibers, and they
have neighborhoods V;_; and —Vj, by which we mean V; with the reverse orientation
(see Figure 4). With respect to the original section o, the invariants are therefore
{0; (vj—1, Bi—1), (avi, —Bi) }. Varying o, we see that 5;_1 is increased by ka;—1 while
—p; is decreased by ko, so that the generalized Euler number, given by the sum of
the fractions as in Equation (1), is unchanged as required. Moreover, the labeling of
the fixed points on c is also arbitrary. The starting point of the closed curve, as well as
its orientation, may be freely changed. These changes also alter the invariants.

The effects of these choices on the invariants can be expressed using the following
equivalence relation on Q3.

DEFINITION 4.3. Two points in Q? are related by the equivalence relation ~ if they
are the same up to

1. Rotation of co-ordinates: (a, b, ¢) ~ (b, ¢, a);

2. Reversal of co-ordinates with a change of sign:
(a‘7 b7 C) ~ (707 71)7 70/)5

3. Translation by an integer multiple of (1, 1,1):
(a,b,¢) ~ (a+ k,b+ k,c+ k) for some k € Z;

or any combination of Relations (1), (2), and (3).
The following lemma is then clear from the preceding discussion.

LEMMA 4.4. Let TY act on X*, a closed oriented Alexandrov space, so that X3x~g3
and the fixed-point set comprises three isolated points with the entire singular set lying
on a closed curve which is unknotted. If the action has invariants (a,b, c¢) € Q3 with
respect to some section o and some labeling of the curve, then for any (a',V',c') ~
(a,b,c) € Q3 there is a section o' and labeling of the curve with respect to which the
invariants of the action are (a', b, ).

Comparing once more to [11], we note that Relations (1) and (2), which are associ-
ated to the labeling of the curve, are referred to in Section 3.3 in [11], but Relation
(3), which is associated to the section, is not used, because of the decision to use
normalized invariants.

From now on, we simply refer to the triple (%, g—z, g—z

of the action, and only make reference to the section and labeling of the curve where
it is necessary.

As mentioned earlier, it is not the case that any triple of fractions can correspond to
an action. The next lemma gives a constraint on the values the fractions can take, and
we see later in Theorem 4.8 that it is, in fact, the only constraint. This result may be
compared to [11, Lemma 3.5], in the more rigid manifold situation.

) € Q3 as being the invariants
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LEMMA 4.5. Let T* act on X*, a 4-dimensional, closed, oriented Alexandrov space,
so that X3 = S3 and the fixed-point set comprises three isolated points with the entire
singular set lying on a closed curve which is unknotted. Let the action have invariants

(3—11, 5—; g—i) € Q3. Then the fractions i—z,fori = 1,2, 3, are pairwise unequal.
Proof. Recall that the Seifert invariants of the 7' action restricted to the manifold Z;
are {0; (-1, Bi—1), (i, —B:)}. By Theorem 4 in Orlik and Raymond [37], which
classifies circle actions on 3-manifolds, it therefore follows that Z; is a lens space,

unless 222 = B in which case Z; = S2 x S. However, Z; is homeomorphic to

Qj—1 [e 77
the space of directions at p;, and so must admit positive curvature, and this yields a

contradiction. It follows that all three fractions g— are pairwise unequal. |

4.3 CLASSIFICATION BY INVARIANTS

In this subsection, we show that if two spaces admit circle actions with equivalent in-
variants then there is an orientation-preserving, equivariant homeomorphism between
them, so that these invariants suffice for classification. We then show, in the follow-
ing subsection, that for any possible set of invariants, there is a finite quotient of a
weighted complex projective space with a circle action with those invariants.

Before proceeding, we need a basic lemma on equivariant isotopies of the torus.

LEMMA 4.6. Let T' act freely on the torus T2. Let 0,0 : S — T2 be two homolo-
gous sections of the action, and let f: T? — T2 be an equivariant homeomorphism
which satisfies f o 0 = o’. Then there is an orbit-preserving, equivariant isotopy
from idr2 to f, that is, an isotopy through equivariant homeomorphisms all of which

induce idg:.

Proof. Note first that f is unique, since if g were another such homeomorphism then
g~ o f would be an equivariant homeomorphism fixing all points on the section o,
and therefore g~! o f = idpe. Let 7: T? — S! be the projection to the orbit space.
Write f as p +— (¢ o w(p)) - p, where ¢: ST — T'! is a continuous map from the orbit
space into the circle group.

For any two sections o and ¢’ there is some k € Z so that, in integral homology,
[0'] = [o] = k[h], where [R] is the homology class of the orbit (see Section 2.3). Since
f oo =o', we have deg(¢) = k. By assumption o and ¢’ are homologous, so that
deg(¢) = 0. It follows that ¢ is homotopic to a constant map and, in particular, to
the map to the identity element of T'. This induces the desired isotopy from id2
to f. O

The following theorem generalizes Theorems 3.6 and 6.2 of [11] to the Alexandrov
space setting.

THEOREM 4.7 (UNIQUENESS). Let X} and X3 be two 4-dimensional, closed, ori-
ented Alexandrov spaces, each admitting isometric circle actions. Suppose that these
actions are such that X}-& = S3 for j = 1,2 and that for each j the fixed-point set
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comprises three isolated points with the entire singular set lying on a locally flat un-
knot. Suppose further that the actions have equivalent invariants. Then there is an
orientation-preserving, equivariant homeomorphism X1 = Xo.

Proof. Recall that invariants are defined with respect to a section and a labeling of
the curve. By Lemma 4.4, we may choose the sections and labelings so that the two
actions have invariants which are equal, rather than merely equivalent.

Denote by p; 1, fori = 1,2, 3, the three fixed points in X f. Denote the fixed points in
X4 by p; 2. The X; induce orientations of the orbit spaces X ;, and the orbit spaces can
be identified via an orientation-preserving, homeomorphism which carries p; 1 +— Pj,2
for each 7. From here on we denote both X; = X, by X. Let ¢ be the unknotted closed
curve, let U be a regular neighborhood of ¢, and let U be decomposed as described in
Section 4.1 (see Figure 3).

Let W = cl(X \ U) and let o;: W — W; C X be the sections, which have been
chosen so that the invariants are equal. Using o; and o2, we construct an orientation-
preserving, equivariant homeomorphism fiyr : W1, — Wo with fyr = id|yy, satisfying
fw oo =o032. _
Now consider two solid tori, V; 1 C Uy and V; o C Us, both over the disk V; C
U C X, corresponding to the pair of invariants (c;, 3;). Let ( %5, 3. ) € SL(2,Z).
Both V; ; are equivariantly homeomorphic to S* x D? with a circle action given by
p- (e rel?) = (u®ie'?, yYire'?). The choice of element in SL(2, Z) corresponds to
specifying longitudinal circles on each 9V; ;. The solid tori V;; and V; 5 are there-
fore equivariantly homeomorphic to each other, and we choose f;: V;1 — Vj2, an
equivariant homeomorphism preserving the specified longitudes, so that f; = id|‘7i .
Now consider the oriented curves o; (8171) In B(Sl X D2) these curves are both
homologous to v +— (1/_[’)1, U‘S’). Therefore the equivariant homeomorphism f; is
such that f; o 014y, := 03 is a new section homologous to 2|y, -

We now let h = f; 0 fv_vl‘ OVia be the induced self-homeomorphism of 9V; 5. By
definition h o oo = o}, and this new section o4 is homologous to 2. Therefore
we can apply Lemma 4.6 to obtain an orbit-preserving equivariant isotopy from A to
i[5y, ,- Composing, we obtain an isotopy from h o fw|ay, | = filay, , 1o fwlay, -
Since f; is defined over all of V; 1, this allows us to extend fy over all of V; ; as well.
We can then extend the homeomorphism over the interior of the B; by coning, which
gives us the result. |

As previously noted in Remark 4.1, this result can be generalized to classify actions
with any number, n, of isolated fixed points, provided the entire singular set lies on an
unknotted closed curve in S3.

2
a,b,c

4.4 THE WEIGHTED COMPLEX PROJECTIVE SPACE CP

Now, for any possible set of invariants, we construct a finite quotient of a weighted
complex projective space with a circle action with those invariants.

The circle actions constructed on weighted complex projective spaces are induced by
T3 actions on S°. We first describe the basic set-up.
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When T3 acts on S5, there are three distinguished circle subgroups, up to orientation,
acting fixed-point-homogeneously, and we take these circles to be the generators of
H(T?, 7).

The quotient space S°/T2 is a 2-simplex, A2. The isotropy groups at the edges are
the circle subgroups of 72 that act fixed-point-homogeneously on S® and the isotropy
groups at the vertices are the 72 subgroups generated by pairs of these.

Let a, b, ¢ be integers satisfying gcd(a, b, ¢) = 1. Define the subgroup Tal’b#C < T3 by
the inclusion A — (A%, AY, A). This group acts almost freely on S°, and the quotient
space S°/T) , . is the weighted complex projective space CP2 , .. It has an induced
action by 72 = T°/T, , .. Note that by changing the signs of the weights, there are
eight different ways to represent each (CPi"lw,
Since T, ,, . acts almost freely, the isotropy subgroups of the 7% action on CP? , are
isomorphic to the isotropy subgroups of the 7% action of S°. In particular, there are
three fixed points of the 7' action and there are three distinct circle subgroups of 72,
each acting fixed-point-homogeneously on (Cngh .- It follows that any other circle
subgroup of T2 has exactly three fixed points. We denote the homology classes in
H1(T?;Z) of the fixed-point-homogeneous circle subgroups by m1, mso and ms.
Choose a basis for T2 so that none of the fixed-point-homogeneous circles are basis
elements. Consider the circle subgroup 7! C T2 given by p + (1, ). Denote its
corresponding homology class by h € H'(T?;Z), so that h is a basis element of
H1(T?;Z) and h # 4m, for any i. The numbers co; = #(h N m;), provide the order
of the finite isotropy groups. Since the choice of orientation of the m; was arbitrary,
we may assume o; > 0.

The orbit space CP2 , /T is homeomorphic to S*. The T action on S® induces one
final circle action on (CP?Lb’C /T, As observed above, the orbit space is homeomor-
phic to the 2-simplex A2, There is an unknotted closed curve in S® which contains
F U E, and this curve is fixed by the circle action. The image of the unknotted curve
is OAZ.

four in each orientation.

THEOREM 4.8 (EXISTENCE). Consider a set of invariants

(B22)cq

aq ’ [e%)] ’ a3
so that the fractions (’/‘j—i,_fori =1, 2,3, are pairwise unequal. Then there is a weighted
2
a,b,c
/T contains a circle action with these invariants.

complex projective space CP and a finite group T so that the standard T? action

on CP?

a,b,c

Proof. Consider an arbitrary weighted complex projective space, CPZ,b, .- As noted

above, (CPi’ ». admits an action by 7', with orbit space a 2-simplex A, and three
fixed-point-homogeneous circle subgroups represented in homology by £m;.

Let T'* be the circle subgroup of 72 defined by p ~ (1, 1), and denote its homology
class by h. By a suitable choice of basis for T2, we may assume h # £m;. Denote the
homology class of the circle subgroup defined by v — (v, 1) by ¢. The basis chosen

for T2 determines an orientation on each orbit so that #(qg N h) = +1.
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z3
T2

Y c1

1

Figure 5: The structure of CP2, /T2, as in the proof of Theorem 4.8.

a,b,c

Orient A? so that its orientation followed by the orientation of the 72 orbits gives
the orientation of CP2 , ., and orient JA? by its inward normal. Consider a collar
neighborhood Y of 9A2. Fix three points x; on A2, one on each edge, so that 9A?
with its orientation is traversed as (z1x223). Draw curves ¢; starting from each z; and
ending at y; € JY so that the ¢; split Y into three components as shown in Figure 5.
The preimage in CP , ./T" = S* of this structure on Y consists of an unknot, ¢,
with a tubular neighborhood U, and three separating disks, denoted by V;, as depicted
in Figure 3. We can use these to define the invariants of the action.

Orient S3 by the orientation of A2, followed by the orientation of the orbit of the
induced circle action on S®. Our choice of 7! C T? as the second basis element
guarantees that this orientation of 3, followed by the orientation of the orbit of 7' on

2 . . 2 .
CP3 , .- is the orientation of CP , ., as required.

Orient the unknot by A2, Then if V; is given its orientation as the circle orbit over
y;, and V; is oriented by OV; with respect to the inward normal, #(VL al E) = +1. To
see this, note that the inward normal to JV; descends to a vector which points in the
opposite direction to the inward normal to A2,

The regular part of the 72 action on (CPi_’b,c is a trivial principal bundle over the
interior of A2 and so admits a section, 7. We can use the circle subgroup of T2 given
by v — (v,1), whose homology class is denoted by ¢, together with the section 7 to
define a section of the T action, o : (S3 \ E) — CP2

a,b,c*

To use o to define the invariants, we must identify the oriented curve 0’(8‘77;) c IV;.
Since 9V} is oriented as the circle orbit over Yis 0(8‘71') = ¢. Recall, however, that
when 9V is considered as the 7% orbit over y;, we have #(hN¢) = —1, which
has the wrong sign for calculating invariants. This is resolved by observing that the
orientation of OV as a boundary is, in fact, opposite to its orientation as an orbit.

We also need to identify the meridian curves. Since the circle subgroup corresponding
to the curve m; fixes the core of the solid torus V;, m; is contractible in V; and so is a
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meridian.

The intersection number #(h N'm;) = «;, the order of the finite isotropy, while
#(gNm;) = —pB;. Therefore, we need m; = «;q + B;h.

The map p: T — T?/T , . induces a map p.: H,(T%7Z) — Hy(T?Z) in ho-
mology. Clearly p brings the fixed-point-homogeneous circles in T2 to the desired
m; € Hi(T%Z) if p. = (3 5 55 ). Note that p, is of full rank. If one row were a
multiple of the other, then g— would have the same value for each 7, but each fraction
must be different.

In case @ = ged(ay) and B = ged(3;) are both 1, to realize this map, it is enough
to find the kernel of p, as a linear transformation R? — R2, and note that this corre-
sponds to a circle subgroup of 73, which should be taken to be Tal,b,c' The resulting
CP2, carries a T? action. The quotient by the subgroup Zg x Z 5 can then be taken

a,b,c
if necessary. O

REMARK 4.9. It might appear at first sight that not all CP? , _can be obtained in

a,b,c
this way. For instance, any invariants associated to CP? = CP? | | must satisfy

sy (1 o . ) .
(5 5 %) ( i) = (), which is not compatible with the constraint that o; > 0.

However, recalling that (CP%L1 = (CP%_’,L,P for example, the equation can be
solved.

5 ALMOST MAXIMAL SYMMETRY RANK: DIMENSION 3

We consider circle actions on positively curved Alexandrov spaces of dimension three
and four, beginning in this section with those of dimension three.

REMARK 5.1. If a positively curved Alexandrov space has boundary, then there is a
unique point at maximal distance from the boundary and the space is homeomorphic
to a cone, with this “soul” point corresponding to the cone point. The soul point is
fixed by the action, and by the Slice Theorem 2.3 the isotropy action at the soul de-
termines the equivariant homeomorphism type (see [27]). For this reason, we always
assume that the spaces have no boundary.

We recall first the manifold classification. The topological classification of the under-
lying spaces follows from the work of Hamilton [25], which shows that the positively
curved manifolds are precisely the spherical space forms. The actions on these mani-
folds were classified by Raymond [43].

THEOREM 5.2. Let T act isometrically and effectively on M3, a closed, positively
curved Riemannian manifold. Then M is equivariantly diffeomorphic to S* /T with a
linear action, where T is a freely acting finite subgroup of SO(4).

The extension of Theorem 5.2 to Alexandrov spaces in dimension 3 is straightforward,
and we give it without the hypothesis of orientability.
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PROPOSITION 5.3 (CIRCLE ACTIONS IN DIMENSION 3). Let T act isometrically
and effectively on X3, where X is a 3-dimensional, closed, positively curved Alexan-
drov space. Then X3 is equivariantly homeomorphic to S® /T with a linear T* action,
where T is a finite subgroup of O(4).

Proof. It was shown in [16] that every positively curved Alexandrov 3-space, X3, is
homeomorphic to either a spherical manifold or Susp (RPQ) . If it is a manifold, the re-
sult follows by Raymond [43]. If it is Susp (RPQ), then it follows by the classification
of circle actions on closed three-dimensional Alexandrov spaces [35]. O

Note that not every I' < O(4) yields an orbifold S?/T" which admits a circle action:
Dunbar [9] demonstrates that there are twenty-one subgroups of SO(4) yielding non-
fibering orbifolds.

6 ALMOST MAXIMAL SYMMETRY RANK: DIMENSION 4

We proceed to consider circle actions on positively curved Alexandrov spaces of di-
mension four. As before, we always assume that the space has no boundary. We pro-
vide the classification for orientable spaces only: the non-orientable spaces are quo-
tients by an involution which commutes with the circle action by Theorem A of [27].
We recall first the manifold classification.

THEOREM 6.1 [26, 21, 23]. Let T' act isometrically and effectively on M*, a 4-
dimensional, closed, positively curved Riemannian manifold. Then M is equivariantly
diffeomorphic to S*, RP* or CP? with a linear action.

As mentioned in the Introduction, the proof for simply connected 4-manifolds is
given up to equivariant homeomorphism by [26] and up to equivariant diffeomorphism
by [21] and [23]. Note that while all these actions extend to actions by homeomor-
phisms of 72 (see [23]), in contrast, in dimension three, S3/T" does not admit a 7
action when I' is not a cyclic group by work of Mostert [33] and Neumann [34]. Thus,
we see that there are some spaces in the Main Theorem 1.4 which do not admit a T2
action.

We now outline the proof of the Main Theorem 1.4. By Proposition 6.6, either (1) the
action is fixed-point homogeneous; or (2) the fixed-point set is comprised of two or
three isolated points.

Case (1) is covered by Proposition 6.7. In Case (2), Theorem 6.9 covers actions with
three fixed points, while those with two fixed points are addressed by Propositions 6.12
and 6.14.

6.1 THE STRUCTURE OF THE ORBIT SPACE

We begin this subsection by demonstrating that when a circle acts on a 4-dimensional
Alexandrov space the structure of the orbit space is that of a stratified 3-manifold with
the singular strata consisting of the non-principal orbits.

Recall by Lemma 2.4, that when the 4-space is positively curved the fixed-point set
of the circle action is non-empty. We describe this fixed-point set and investigate
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the structure of the orbit space when there are only isolated fixed points. We show
in Lemma 6.4 that in this case the quotient space is homeomorphic to S® and there
are no closed curves corresponding entirely to points of finite isotropy. Lemma 6.5
combined with Proposition 3.3 gives us that the number of fixed points must be two
or three.

We fix the following notation. Let 7: X% — X3 = X*/T. Let F denote the set of
fixed points and let E denote the set of points of finite isotropy in X ¢. Their images
in X3 are denoted by F and F respectively.

LEMMA 6.2. Let T" act isometrically and effectively on X*, a 4-dimensional, closed,
orientable Alexandrov space. Then X® is a topological 3-manifold and the decom-
position of X by orbit type gives a stratification into manifolds. Moreover, we can
describe the structure of the stratification as follows:

1. F is the union of the (possibly empty) boundary of X3 with a (possibly empty)
set of isolated points in the interior of X3; and

2. E is the union of a (possibly empty) set of curves in the interior of X3. These
curves are locally flat submanifolds of X> and have endpoints in F or are sim-
ple, closed curves. No more than three curves in E can intersect at a point of
F.

In other words, the strata are Xo = F\ 0X, X1 = E, Xo = 0X \ cl(E) and
X=X\ (FUE).

Proof. In order to show that X3 is a topological manifold, it suffices to show that at
every point the space of directions is either S2 or D2.

Orientable Alexandrov spaces of dimension three or less are topological manifolds
(see Exercise 10.10.4 Part (2) of [4]). Thus, the space of directions normal to any
orbit in X* is an orientable, positively curved manifold. Additionally, the isotropy
action on it is orientation-preserving and so the quotient is an orientable, positively
curved 2-space, that is, S> or D2. But the space of directions at a point in X? is
precisely this quotient, proving the claim.

Note further that the only time D? arises as a space of directions is when the isotropy
group is 7', This shows that X3 is a subset of I

At a fixed point p € X*, the isotropy group T'* acts on the 3-dimensional space of
directions Eg. According to Proposition 5.3, the action is the quotient of a linear
action on a sphere. The fixed-point set of the isotropy action is therefore empty, or
a circle. Therefore each component of F' has corresponding dimension 0 or 2. The
components of dimension 0 are isolated fixed points, whose spaces of directions are
homeomorphic to S? and thus are interior points. The components of dimension 2
make up the boundary of X3, thus proving Part (1).

To prove Part (2), consider a point p such that Tp1 = 7. The orbit T*(p) is a circle,
and so the normal space is homeomorphic to S2. The effective, isotropy action of Zy, is
orientation-preserving, so the action is by a rotation, fixing two points. Hence, ¥;X =
S? and it has two points which make up E,;E, so that F is a locally flat 1-dimensional
manifold without boundary, with isotropy constant on connected components.
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Now we consider the endpoints of the connected components of £ which are open
arcs. This is the set cI(E) \ E. Since points in cl(E) \ E are, by continuity, fixed by
a cyclic subgroup but are not themselves in £, they must be fixed by the entire circle,
so 0E C F.

Since a circle action on a positively curved 3-space can have no more than three
components of finite isotropy, the bound on the number of intersecting curves is ob-
tained. O

REMARK 6.3. In the case where X* is a manifold, Zg = S3 for every point p. If p is
a fixed point, then the isotropy action of T' on Eg cannot have both fixed points and
points of finite isotropy, which implies that F N E is comprised only of isolated points
of F.

However, in general 213) could have the type of any spherical 3-manifold. In case Eg is
a lens space, the isotropy action can have both fixed points and a circle orbit of finite
isotropy. In this case, arcs of E can terminate in the boundary of X°.

The case where 9X # () corresponds to fixed-point-homogeneous actions, and these
are classified in Section 6.2. For the remainder of this subsection, we restrict ourselves
to the case where X = (), so that the fixed-point set is discrete. In this case, the strata
are simply Xg = F, X; = Eand X3 = X \ (FUE).

By ruling out the possibility that £ could contain simple closed curves, the next lemma
shows that, assuming positive curvature, the singular strata form an embedded multi-
graph in S having maximal degree at most three. Recall that a multigraph is a graph
where two vertices may be joined by multiple edges, or where an edge may join a
vertex to itself to form a loop.

LEMMA 6.4. Let T' act isometrically and effectively on X*, a 4-dimensional, pos-
itively curved, closed, orientable Alexandrov space, with only isolated fixed points.
Then X is homeomorphic to S* and E contains no simple closed curves.

Proof. By Lemma 6.2, X3 is a closed manifold. By the Generalized Synge Theorem
2.2, X* is simply connected and it follows by Corollary I1.6.3 of [ 1], that X3 is simply
connected. By the resolution of the Poincaré Conjecture, it is homeomorphic to S3.
Lemma 2.3 of Montgomery and Yang [32] then guarantees that there are no simple
closed curves in E. Since this Lemma is not given in precisely the correct context,
and the notation there conflicts confusingly with ours, we repeat the argument here.
Suppose ¢ C E is a closed curve, corresponding to isotropy Z. Let Q C X be an
oriented surface bounded by ¢, and assume, without loss of generality, that QN F' = )
and (Q \ €) N E is finite.

Then @ \ ¢, after a closed submanifold of dimension 1 corresponding to finitely
many exceptional orbits is removed, is an orientable 3-manifold. Let z generate
H3(Q,QNE;Z) = Z. Then 0z € Hs(c;Z). We can see that +9z is also an in-
tegral cycle on ¢, but it does not bound on @), since z is not divisible by k. This shows
that @ has 2-torsion, which is a contradiction. O

The following lemma provides a lower bound of two on the number of isolated fixed
points. In the Riemannian case, the simplest method of proof for Lemma 6.5 is to
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use the fact that the Euler characteristic of a Riemannian manifold or orbifold, which
in the simply connected case in dimension 4 is at least two, is given by the Euler
characteristic of the fixed-point set of any isometric circle action. The proof of this
(see Kobayashi [30]) relies on the Lefschetz Fixed-Point Theorem, and so ultimately
on the triangulability of Riemannian spaces.

The question of whether a general Alexandrov space is triangulable remains open.
Since S? is triangulable, it is probably possible to lift a triangulation of S3 to X*, but
we do not investigate this question here.

LEMMA 6.5. Let T' act isometrically and effectively on X*, a 4-dimensional, pos-
itively curved, closed, orientable Alexandrov space, with only isolated fixed points.
Then there are at least two fixed points.

Proof. By Lemma 6.4, the orbit space is X = S% and by Lemma 2.4, there is at
least one fixed point. We assume that there is exactly one fixed point, p, to derive a
contradiction. There are two cases to consider: Case (1), where there is finite isotropy,
and Case (2), where there is none. In both cases, we show that the space of direc-
tions at p, ¥,,, is homeomorphic to St x S2. Since St x S? has infinite fundamental
group, by the Bonnet-Myers theorem it does not admit positive curvature, yielding
the contradiction.

We consider Case (1), where the action has points of finite isotropy. Then by Lem-
mas 6.2 and 6.4 the singular strata are given by a multigraph. It has only one vertex,
p, and the vertex has degree at most three. It follows that the multigraph can contain
only one loop. This unique closed curve is denoted by c.

Then, following the notation of Section 4.1, let U = S! x D? be the closure of a
neighborhood of ¢ and let W = CI(X \U ) Using the Mayer—Vietoris sequence
applied to X = U U W, we see that W has the integral homology of a circle. Since
¢ = E U F, the action on W is free and so a section 8U — OU can be specified.
The Seifert invariants of the isotropy action on ¥,, with respect to this section are then
{0; (aus, Bi), (s, —Bi) }, so that &, = S* x S? and we obtain the desired contradiction.
We now consider Case (2), where T acts freely on the complement of p. Let € > 0
be so small that B.(p) is homeomorphic to the cone on £, X and B.(p) = D?. By
Theorem 4.4 of [27] and for sufficiently small €, 3(B.(p)) = S? and admits a collared
neighborhood. Now, since X® = S? by Lemma 6.4, it follows from the Generalized
Schoenflies Theorem (see, for example, Brown [2]), that X3 \ B.(p) = D3.

The circle T acts freely on the complement of B.(p), U = X*\ B.(p). Hence U
is the total space of a principal 7"*-bundle over D? and is homeomorphic to S! x D3,
Then ¥, X4 22 S x 2, and, once again, we obtain the desired contradiction.

Hence there are at least two fixed points. O

We summarize the situation with the following proposition, which follows from the
foregoing Lemmas, except for the upper bound, which follows from Proposition 3.4.

PROPOSITION 6.6 (ORBIT SPACE STRUCTURE). Let T act isometrically and ef-
fectively on X 4 4 4d-dimensional, positively curved, closed, orientable Alexandrov
space. Then either
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1. The action is fixed-point homogeneous; or

2. The orbit space X* is homeomorphic to S* and the non-principal orbits are
represented by an embedded multigraph of maximal degree three, having at
least two vertices. The vertices correspond to F while the edges correspond to

E.

In the event that the action satisfies Condition Q and the fixed-point set is discrete,
there are at most three fixed points.

6.2 THE FIXED-POINT-HOMOGENEOUS CASE

In this subsection we classify the fixed-point-homogeneous circle actions on positively
curved Alexandrov 4-spaces.

PROPOSITION 6.7. Let T act isometrically and effectively on X*, a positively
curved, compact, 4-dimensional Alexandrov space, in a fixed-point-homogeneous
manner. Then, X* is equivariantly homeomorphic to either the spherical suspension
of S3/Zy, or to a finite quotient of a weighted complex projective space with a linear
T action.

Proof. Let T (p) be the orbit furthest from F2, the unique codimension two compo-
nent of Fix(X, T'!). Then by Theorem 2.6, we have

Xt (wxTh/T,,

where T]} acts on the left on v * T, the action on v being the isotropy action at p and
the action on 7" being the inverse action on the right. The T"*-action on (v + T")/T}
is induced by the left action of T on itself.

In the case where 7)) is finite, v =2 S, and so X* = (S? x S') /Z, = Susp(S®/Zy).
In the case where 1)) = T, X* = (v® + T") /T for some positively curved v. By
Proposition 5.3, v3 2 S3 /T for some I' C SO(4) and the circle action is induced by
a linear one. We claim that the space must be an orbifold. Since v/3 * T! =2 S$5/T is
certainly an orbifold, it is enough to check that Tpl does not fix points of /3. If it did,
the fixed-point set would be of codimension two in 1, so that p € F2, contradicting
the original choice of p. This proves the claim. These orbifolds are finite quotients of
CP2 a

a,b,c*

6.3 THREE ISOLATED FIXED POINTS

Ip the case vyhere there are three isolated fixed points, we determine the structure of
F and E'U F and then use Section 4 to obtain the classification.

LEMMA 6.8. Let T act isometrically and effectively on X*, a positively curved,
closed, orientable, 4-dimensional Alexandrov space, so as to satisfy Condition Q. If
there are three isolated fixed points, then E C X° comprises at most one curve be-
tween each pair of points, and those curves are locally flat. If EUF is a closed curve,
then it contains all three fixed points, and is unknotted.
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Proof. The proof makes use of the results and methods of Section 3.2. Local flatness
follows from E being an extremal set (see Section 2.2). If a pair of points were joined
by more than one curve, any two such curves would generate a closed curve c. The
third point would then appear twice in the double branched cover over ¢, X3(c), and
s0 X3(c) would have at least four singular points with small spaces of directions,
contradicting Proposition 3.3. Therefore any closed curve must contain all three fixed
points. Denoting the curve again by c, note that (X3, ¢) satisfies Condition O (see
Definition 3.5) and an application of Theorem 3.6 shows that the curve is unknotted.

a

In case the finite isotropy does not form a closed curve, we may choose additional
arcs between the fixed points so that the entire singular set £ U F still lies on an
unknotted closed curve. Furthermore, we may assume that the curve is locally flat. By
adding these virtual edges, we take the multigraph representing the singular set to be
the complete graph K3, and treat all spaces with three fixed points in a unified way.
The problem of identifying the Alexandrov space now lies in the context addressed by
Section 4. Applying Theorem 4.8, we have the following result.

THEOREM 6.9. Let T act isometrically and effectively on X*, a positively curved,
closed, orientable Alexandrov space, so as to satisfy Condition Q. If there are three
isolated fixed points, then X* is a finite quotient of a weighted complex projective
space. Furthermore, the circle action can be extended to an action by homeomor-
phisms of T?, which is induced from the standard T? action on S°.

REMARK 6.10. In contrast to Theorem 6.9, when there are just two isolated
fixed points, not all T' actions extend, including those actions that are fixed-point-
homogeneous.

6.4 TWwWO ISOLATED FIXED POINTS

We begin this section by analyzing the possible configurations of the singular strata in
the orbit space. We find two broad cases, which are investigated separately.

LEMMA 6.11. Let T" act isometrically and effectively on X*, a positively curved,
closed, orientable, 4-dimensional Alexandrov space so as to satisfy Condition Q, with
fixed-point set consisting of two isolated points. Then the orbit space X* is homeo-
morphic to S* and the singular strata E U F are given by:

1. Two discrete points, F, and at most three curves, E, each of which joins the two
points, so that the graph is unknotted, that is, the orbit space is homeomorphic
as a stratified set to the suspension of a 2-sphere with at most three points in its
0-stratum; or

2. Two discrete points, F, and either one or two curves, E, of which one is an
unknotted loop based at one of the points while the other, should it exist, joins
the two points.
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Figure 6: Multigraphs on two vertices with maximal degree at most three.

Proof. From Lemma 6.2 and Proposition 6.6, we know that X3 is homeomorphic to
a 3-sphere. The non-principal orbits project to a multigraph in X3 which has two
vertices, corresponding to fixed points, and has maximal degree at most three.

Since the circle action satisfies Condition Q, the spaces of directions at the vertices
are small, and for any closed curve c in the multigraph, (X2, ¢) satisfies Condition O.
It follows that any closed curve in the multigraph is unknotted.

We consider the possible configurations by maximal degree of the multigraph, all
of which are shown in Figure 6. When the maximal degree is zero, there are two
disconnected vertices (a). If it is one, the vertices are joined by an edge (b). Both of
these are covered under Item (1).

When the maximal degree is two, there are three possible multigraphs. There may be
two edges, each connecting the two vertices (c). This space is also covered under Item
(1). There may be two loops, each based at a separate vertex (d). By taking a double
branched cover over one loop, and then over the other, we obtain a space with at least
four points with small spaces of directions, in violation of Proposition 3.3.

The final possibility in maximal degree two is that there may be only one loop, c,
based at one vertex, p, while the other vertex, ¢, is disconnected (e). This case falls
under Item (2). By adding a virtual edge between the vertices, we can treat this case
in a unified manner with (f).
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When the maximal degree is three, there are again three possible graphs. If there are
two edges, then one edge forms a loop while the other joins the two vertices (f), as
described under Item (2). If there are three edges, then two edges form loops, one
at each vertex (g). This is ruled out by the argument in the previous paragraph for
the case of two loops. Finally, the three edges may each join the two vertices (h). In
this case, the Equivariant Suspension Theorem 3.8 shows that the resulting graph is
unknotted, so that the case falls under Item (1). [l

We first consider the orbit spaces which fall under Item (1) in Lemma 6.11, which are
those shown in Figure 6 (a—c, h). We obtain the following proposition by applying
Propositions 3.7 and 5.3.

PROPOSITION 6.12 (SUSPENSION CASE). Let T act isometrically and effectively
on X% a positively curved, closed, orientable, 4-dimensional Alexandrov space with
fixed-point set consisting of two isolated points. Suppose that X° is homeomorphic
as a stratified set to a suspension, that is, it is homeomorphic to S3, F is two discrete
points and E is at most three curves, each of which joins the two points of F, so that
the singular strata are unknotted.

Then X* is equivariantly homeomorphic to the suspension of S /T with a linear T*
action for some finite T' C SO(4).

Before we turn to the orbit spaces given by Item (2) of Lemma 6.11, which are those
shown in Figure 6 (e—f), we note that as part of this investigation we need to make use
of the fundamental groupoid. Recall that this is an enhanced version of the fundamen-
tal group allowing for multiple base points. If A is a set of base points in a topological
space X we write the fundamental groupoid as 71 (X, A). The groupoid is made up
of the homotopy classes of paths between the base points, including the loops.

The fundamental groupoid is often represented in terms of category theory: the base
points provide the objects of the category and the paths between the base points are the
morphisms. Composition of morphisms is the concatenation of paths. All morphisms
are invertible, since paths can be traversed backwards. This permits a neat statement
of the Seifert—van-Kampen Theorem which does not require the intersections of the
two covering subsets to be path connected. The following version is stated and proved
in Section 1.6 in [3]".

THEOREM 6.13 [3]. Let X1, Xa, be open subsets of a topological space X, with
X = X7 UXs. Let Xg = X1 N Xo and let A be a subset of X meeting each path
component of X1, Xo, and X (and therefore of X ). Let A; = X; N A fori =0,1,2.
Then the following diagram of morphisms induced by inclusion

™ (Xo, Ag) = mi (X1, A1)
lflz lbl
b2
7T1(X2,A2) —_— 7T1(X, A)

is a pushout of groupoids.

IThe relevant extract is available at https://groupoids.org.uk/pdffiles/vKT-proof.pdf.
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We now consider the orbit spaces which fall under Item (2) in Lemma 6.11, which are
those shown in Figure 6 (e, f).

PROPOSITION 6.14 (LOOP-AND-SPUR CASE). Let T act isometrically and effec-
tively on X 4 a positively curved, closed, orientable, 4-dimensional Alexandrov space
with fixed-point set consisting of two isolated points. Suppose that the orbits of ex-
ceptional isotropy project to one or two curves, E C X, of which one is an unknotted
loop based at one of the points, while the other, should it exist, joins the two points.
Then X* is equivariantly homeomorphic to a finite quotient of a weighted complex
projective space with a T' action induced by a linear action on S°.

Proof. To unify the treatment, if £ contains only one curve, we add the geodesic g
to the graph as a “virtual edge” which corresponds to orbits with isotropy Z;. The
multigraph given by the singular set is then that with two vertices, one loop, and one
edge. We denote the loop by c, the vertex on ¢ by p, and the other vertex by g.

We show that X* is the quotient by an involution of some space such that the lifted
circle action has three fixed points. Theorem 6.9 then gives us the result.

In order to do this we endow X * with an orbifold structure. The only topological sin-
gularities in X* are at the isolated fixed points of the action. Neighborhoods of these
points can be given charts with a local group I' C SO(4) such that I is isomorphic to
the fundamental group of the space of directions. All other points are manifold points
and we take the local group there to be trivial.

Now we can calculate the orbifold fundamental group of X*, 79™(X*). Using a
transversality argument, one sees that 79" (X)) is determined by the regular part of X
and singularities of codimension one and two only (see Theorem A.L.4 in [24]). So,
since X* has no singularities of codimension two, 7¢™ (X *) = 7y (X1, ), where X1,
is the regular part of the orbifold.

We decompose X into four regions as shown in Figure 7, which lifts to a decompo-
sition of X%, Tt simplifies this discussion to treat the sets as though they were closed
sets which meet along their boundary. In order to apply the Seifert—van-Kampen The-
orem, we need an open cover of X*. However, using closed sets does not generate
any problems, provided the boundaries of these sets have collar neighborhoods.

Let A be a conical neighborhood of  and let B be a conical neighborhood of § so that
they intersect in a D? which is transverse to the edge pg. Let C' be a neighborhood of
(¢ \ A) homeomorphic to [0, 1] x D?, intersecting A at {0, 1} x D? but disjoint from
B.LetDbe X \ (AUBUC). Note that D = S x D2 Let A, B, C and D be the
preimages of each of A, B,C,and D, respectively.

CALCULATING 71 (Areg U Breg). The sets A and B are both cones on spherical
manifolds. It follows that A, and Bce are homotopy equivalent to those spheri-
cal manifolds. We calculate the fundamental groups of those 3-manifolds from their
Seifert invariants.

Note that 7 : D — D is a principal S' bundle, and recall that these are classified by
H?(D) = 0. Therefore, there exists a section ¢: D — D. This section can be used
to define the invariants, as described in Sections 2.3 and 4.1. Let ¢; and g2 be the two
components of 0(8 ([1 n C)) where A N C is oriented as a submanifold of OA. Let
q3 be 0(8(21 N B)), again with AN B oriented as a submanifold of 9 A.
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Figure 7: Decomposition of X® = S? into four closed sets, where D is the comple-
ment of the solid torus, AU B U C, viewed in S® \ {oc}.

Without loss of generality, 0 may be chosen so that the invariants of A are
{0; (k,—1), (k,1), (o, B)} and the invariants of OB are then {0; (o, —3)}. Where
the edge in the graph is only virtual, & = 1. Since A cannot be S? x S!, we have
B # 0. By assumption, the loop is not virtual and so k& > 2.

We may also assume that the three pairs of invariants correspond to the loops q1, g2, ¢3
in that order. Since the first pair is (k, —1), the curve ¢; is, in fact, homotopic to the
corresponding exceptional orbit of isotropy Zy.

From these invariants, using Theorem 2.7, we obtain the following presentations of the
fundamental groups. Letting h be a principal orbit, the group 71 (Ayeg, x) is generated
by h, g1, g2 and g3 and is given by

(q1,02,03.h | [h, @] = 1,¢fh ™" = 1,¢5h = 1,¢51° = 1, quqaqs = 1).

Note that the section g3 must have its orientation reversed for the calculation of
71(Breg, ), While h is unchanged. Since §3 is the intersection number of g3 and
m, [ also changes sign, so that we get

77_1(-Breg7w) = <Q3_17h | [h7(13_1] = 17(13_ah7ﬂ = 17(]3_1 = 1> = Zlﬁ\

When applying the Seifert—van-Kampen Theorem to calculate 71 (AregUBreg, ) there
is no need to include any additional relations, since these are encoded in the use of g3
and h as generators of both groups. Taking advantage of g5 L' = 1 we immediately
obtain g; = ¢; *. Since h = ¢ we may discard the relation [k, q;] = 1 as being
already implied, but it is convenient later to maintain both generators. The group
reduces to

71 (Areg U Breg, ) = <q1,h | q]fh_1 =1,n% = 1>,

which is simply the cyclic group of order k|3|, generated by ¢;. We note once more
that ¢; is an orbit with isotropy Z;, corresponding to the “loop” in X3 and h = ¢¥ isa
principal orbit.

CALCULATING 71 (Areg U Breg U Creg). In order to include C, observe that (A U
B) N C has two components. This means we must make use of the fundamental
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groupoid rather than the fundamental group. Let [ be a longitudinal curve on the torus
8(A UBU C‘) such that [ N C, and hence [ N (A U B), is connected. We choose
y, z € o(l), one in each component of (A U B) N C, as the basepoints.

The groupoid 71 (AregUBreg, {Y, 2 }) has the points y and z as objects. The morphisms
y — y and z — z are both given by the fundamental group, so they are the cyclic
group generated by ¢;. The morphisms y — z are given by the portion of o(l) lying
in AU B, which we call m, composed with an element of 7 (Areg U Breg, z) Itis clear
that m followed by ¢1 € 71 (Areg U Breg, 2) is homotopic to g1 € 71 (Areg U Breg, ¥)
followed by m.

Note that C is contractible and that C = Cieg, 50 m1(Creg, y) is the cyclic group
generated by ¢;. The full groupoid is then given by a second copy of the cyclic group
for 71 (Creg, #) with the morphisms y — =z given by the remaining part of o (1), which
we call n, composed with an element of 71 (Cheg, 2). Once more, n commutes with
q1-

We now obtain 71 (Areg U Breg U Creg, {y, 2}) by Theorem 6.13 as the push-out in
the category of groupoids. Note that the fundamental groupoid of the intersection,
71 ((Areg U Breg) N Creg, {y, 2}), is given by two copies of the cyclic group generated
by ¢ for morphisms y — y and z — z while the set of morphisms y — z is empty.
The composition of m followed by n~! introduces a new loop based at 3, which we
call a, that commutes with ¢;. Clearly a = o(I). We obtain

7T1(Areg U Breg U Oregvy) = <a7QI7h ’ [a7 QI] = 17q11€h71 = lvhﬁ = 1>-

1

Similarly, if we use z as the basepoint, a loop @’ = m o n~! is introduced, so that

7T1(Areg ) Breg U Creg-,z) = <a/7(h7h ‘ [alvql] = 17Q{€h71 = 17}7’5 = 1>

CALCULATING 71 (Areg U Breg U Creg U Dyeg ). Finally, D is a solid torus, with fun-
damental group generated by m, the meridianal curve on 9(A U BUC). Note D =
Dieg. Letting b = o(m), the group 71 (Dreg, y) is generated by b and h. The funda-
mental group of the boundary 71 (0 Dreg, y) is generated by b, a and h. Since a is killed
by the inclusion Dyeg — Dieg and the inclusion OD,eg — (Areg U Breg U Creg)
maps b — ¢1, we are left with

ﬂ-?rb(Xélay) = ﬂl(lelegvy) = Zk\[ﬁh

a cyclic group generated by the orbit with isotropy Zj,, where k > 2 and 3 # 0.

CONSEQUENCES. Now take the universal cover of ~X 4 X, and consider the lifted
circle action. The point p € X* has only one lift in X, while g has ¥ lifts. There are
therefore k + 1 fixed points of the circle action on X so, by Proposition 3.4, k+1 < 3
and therefore k = 2. By Theorem 6.9 and the triviality of 7"®(X), X is some
CP? , .. The space X * is therefore a quotient by an involution of some CP? , ./Z3).
It is now possible to check that the local group at p, which is 7 (Ayeg), is in fact the
dihedral group of order 4«|3|. The local group at the lift of p is generated by the loop
g3 € m1(Areg), Which is a cyclic normal subgroup of order 2a.. The local group at the

lifts of ¢ will be trivial, and therefore X (CP?EM’ 1,1 |
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6.5 EXAMPLES PRODUCING THE LOOP-AND-SPUR CONFIGURATION

Here we explicitly give examples of involutions on weighted complex projective
spaces which produce the loop-and-spur configuration discussed in Proposition 6.14.
Recall the description of the weighted (CP(ZL’,,A’C in Section 4.4. Consider the 72 action
on §° C C? generated by the circles T3, ; _; and T3, 5 ;, as well as the invo-
lution ¢: S5 — S° given by (21, 22, 23) — (%1, 73, —%). The quotient of S® by the
first circle is the space CP%n.,l,,l, and the second circle induces a circle action on
(CPgn’flﬁ1 with three fixed points and two components of finite isotropy of order n,
so that the Seifert invariants are (%, :—ll, %)

The involution descends to an involution z on CP%, _; _; which has exactly one fixed
point, corresponding to the circle (z1,0,0) C S®. The circles (0, z2,0) and (0,0, z3),
the other two fixed points of the circle action on CP%n,—l,—l’ are interchanged by .
The circle still acts on (CP%nfol /7, and in fact the involution ¢ descends all the way
to CP%,,“,L,l/Tl & 33, where it fixes a circle. Since 7 fixed only a single point in
CP%,,L’AFI, it follows that the circle action on (CP%,L’A_?I/Z has a codimension 2
component of Zy isotropy, and that in the orbit space, S?, this maps to a loop based at
the fixed point of z. As noted earlier, the other two fixed points of the circle action are
identified by ¢, so the orbit space has the structure of a loop of Zs isotropy and a spur

of Z,, isotropy.

7 GENERAL ALEXANDROV SPACES

This work has been entirely motivated by the following conjecture.

CONJECTURE 7.1. Let T' act isometrically and effectively on X*, where X* is a
4-dimensional, closed, positively curved, orientable Alexandrov space. Then, up to
equivariant homeomorphism, X is one of the following spaces:

1. The suspension of a spherical 3-manifold, with a linear action; or
2. A finite quotient of a weighted complex projective space with a linear action.

The only remaining obstacle to proving this conjecture is the requirement that the
action satisfy Condition Q. In this section we review how Condition Q is used in
proving the Main Theorem 1.4 in order to clarify what further work is necessary to
remove it.

Recall that there are three conditions for the isotropy action at a fixed point to satisfy
Condition Q’:

1. ¥3/T1 is a small space;

2. The double branched cover of ¥3/T? over any two points corresponding to
finite isotropy is small; and

us

3. If there are three components of finite isotropy, diam (23 / Tl) <7
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As mentioned in the Introduction, while Condition Q' may seem technical, the follow-
ing lemma shows that it is satisfied for any fixed-point-free isometric circle action on
any 3-dimensional spherical orbifold of constant curvature 1.

LEMMA 7.2. Let TV act isometrically and without fixed points on a 3-dimensional
spherical orbifold $° of constant curvature 1. Then the action satisfies Condition Q'

Proof. We recall from McGowan [31] that if G is a compact Lie group acting by
isometries on the n-sphere S™, and G denotes the connected component of the iden-
tity element, then G/Gy acts on S™ /Gy by isometries. So, for any isometric circle
action on 3, we have %3 /T = (5§3(1)/T!)/T, where T is a finite group. Note that
83 /T is either a “football” orbifold or it is S2(1/2).
In the case that S3/T* is a football orbifold, there is a natural distance-decreasing
map from S2(1/2) to 33 /T as well as to the double branched cover over the points
of finite isotropy, showing that Conditions (1) and (2) are satisfied.
In the case where $3/T1 = S%(1/2), then curv(X3/T?1) > 4 and the same is true of
any double branched cover over points of finite isotropy. By comparison to S(1/2),
see [20], Conditions (1) and (2) must hold. It is clear that if there are three components
of finite isotropy, then the group I' is not cyclic. So the diameter bound, Condition (3),
holds by Greenwald [19] (see also Dunbar, Greenwald, McGowan, and Searle [10]).
a

The first condition guarantees that if p is a fixed point, then the image of the fixed
point, p € X4/T1, has a small space of directions, Xp. If X% is positively curved,
then Proposition 3.4 yields the crucial upper bound of three on the number of fixed
points.

Where there are three fixed points, the second condition is used in Lemma 6.8 to show
that Condition O is satisfied, which guarantees that any closed curve is unknotted and
passes through all three points. Here it is crucial that, for p a fixed point, not only is >
small, but its double-branched cover over two points corresponding to finite isotropy
is also small.

Where there are two fixed points, Lemma 6.11 uses the second condition in the same
way to guarantee that any closed curves are unknotted. The third condition is used to
show that 0-graphs are unknotted, by permitting the application of Theorem 3.8.
Since closed, orientable 3-dimensional Alexandrov spaces are equivariantly homeo-
morphic to S3/T" with a linear T action, the following conjecture would imply that
Condition Q' is always satisfied.

CONJECTURE 7.3. Let T act isometrically and without fixed points on ¥3* = S3 /T,
a closed, orientable 3-dimensional Alexandrov space with curv > 1. Then

xtg(B%/T) = xt((S%)/T)/T") < xtq((S*(1)/T)/TY),
where T acts so that S3(1) /T and %3 are T*-equivariantly homeomorphic.

In 4-dimensional Riemannian manifolds and orbifolds the spaces of directions are
isometric to S3(1) or finite quotients of the same, and so Conjecture 7.3 holds trivially.
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We are motivated in making Conjecture 7.3 by the general principle that spaces with
curv > 1 are in some sense “smaller” than spaces with constant curvature 1.
In particular, Theorem A of Grove and Markvorsen [20] states that

xtq(X™) < xtq(S"(1))

for any Alexandrov space X with curv > 1. Conjecture 7.3 can then be viewed as
the correct equivariant version of Theorem A of [20], at least in the particular case of
spherical 3-manifolds.
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