
Vol.:(0123456789)

Japan Journal of Industrial and Applied Mathematics (2023) 40:95–107
https://doi.org/10.1007/s13160-022-00509-y

1 3

ORIGINAL PAPER

A least squares approach for saddle point problems

Gul Karaduman1  · Mei Yang2 · Ren‑Cang Li2

Received: 14 October 2021 / Revised: 16 March 2022 / Accepted: 28 March 2022 /
Published online: 10 April 2022
© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2022

Abstract
Saddle point linear systems arise in many applications in computational sciences
and engineering such as finite element approximations to Stokes problems, image
reconstructions, tomography, genetics, statistics, and model order reductions for
dynamical systems. In this paper, we present a least-squares approach to solve sad-
dle point linear systems. The basic idea is to construct a projection matrix and trans-
form a given saddle point linear system to a least-squares problem and then solve
the least-squares problem by an iterative method such as LSMR: an iterative method
for sparse least-squares problems. The proposed method rivals LSMR applied to the
original problem in simplicity and ease to use. Numerical experiments demonstrate
that the new iterative method is efficient and converges fast

Keywords  Saddle point problem · Iterative method · Linear system · LSMR ·
SPPvsLS

1  Introduction

In this paper, we consider the saddle point linear system of the form

(1a)Az = b,

Supported in part by NSF grants DMS-1719620 and DMS-2009689.

 *	 Gul Karaduman
	 gkaraduman@kmu.edu.tr

	 Mei Yang
	 mei.yang@mavs.uta.edu

	 Ren‑Cang Li
	 rcli@uta.edu

1	 Vocational School of Health Services, Karamanoglu Mehmetbey University, Karaman 70200,
Turkey

2	 Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019‑0408, USA

http://orcid.org/0000-0002-2776-759X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13160-022-00509-y&domain=pdf

96	 G. Karaduman et al.

1 3

where A ∈ ℝ
(n+m)×(n+m) is a sparse matrix with 2-by-2 block structure, b ∈ ℝ

n+m ,
and z ∈ ℝ

n+m is the unknown vector to be found. Specifically, it takes the form

 where A is a sparse matrix. We are interested in the case when m ≪ n and for that
reason, B1 and B2 may or may not be necessarily sparse. We comment that it is not
restrictive to assume that the last m entries of vector b are 0. Later, in Sect. 2, we
will remark how to deal with the case when the last m entries of b are not 0.

Iterative solutions for the saddle point problem (1) have been an active research
topic in numerical linear algebra. Many applications in computational sciences
and engineering applications give rise to saddle point problems such as Stokes
problems, flow problems, statistics, image processing, and constrained optimiza-
tion, see, e.g., [4, 8, 11–16]. In particular, it naturally arises from the following
constrained quadratic minimization problem [2, 9]

 In fact, the corresponding Lagrangian function is

where y is the vector of Lagrangian multipliers. The KKT condition for () is
∇L(x, y) = 0 which turns out to be the saddle point problem (1) [9]. The reader is
referred to the survey article [1] of Benzi, Golub, and Liesen for a more extensive
list of the fields where saddle point problems may arise.

The goal of this paper is to seek a least-squares approach. The key idea is to
construct a projection matrix and transform the original problem into a least-
squares problem and then solve the least-squares problem by an iterative method
such as LSMR: an iterative algorithm for sparse least-squares problems [5].

The saddle point problem (1) has a unique solution when A is nonsingular.
A necessary condition for that is rank (B1) = rank (B2) = m . Therefore if either
rank (B1) < m or rank (B2) < m , then (1) may or may not have any solution, and
when it does have a solution, there are infinitely many solutions. Our proposed
method will find a solution to the saddle point problem (1) and it will be in the
least-squares sense when no solution exists. Broadly, our method works for the
case even if A is not a square matrix.

Az ≡

n m

n A BT
1

m B2 0
n x
m y

= b ≡ n f
m 0 , (1b)

(2a)min h(x) = xTAx + xTBT
1
y − f T x,

(2b)subject to B2x = 0.

L(x, y) ≡ h(x) + yTB2x

= xTAx + xTBT
1
y − f T x + yTB2x

=

[
x

y

]T [
A BT

1

B2 0

] [
x

y

]
−

[
x

y

]T [
f

0

]
,

97

1 3

A least squares approach for saddle point problems

Throughout this article, we work with real matrices but the idea can be straight-
forwardly extended to complex coefficient matrices with minor modifications.

The remainder of this paper is organized as follows. In Sect. 2, we explain how
the saddle point problem (1) can be transformed into a least-squares problem. In
Sect. 3, we demonstrate the numerical solution of the transformed least-squares
problem and present our algorithm. In Sect. 4, we present our numerical results to
show the performance of our method for saddle point problems. Finally, some con-
clusions are made in Sect. 5.

Notation ℝn×m is the set of all n × m real matrices, ℝn = ℝ
n×1 , and ℝ = ℝ

1 . The
superscripts “ ⋅T ” takes the transpose of a matrix or vector. In (or simply I if its
dimension is clear from the context) is the n × n identity matrix, and ej is its jth col-
umn. For a matrix X ∈ ℝ

n×m , R(X) and N(X) denote the range (column space) and
null space of X, respectively. Denote by ‖x‖2 the Euclidean norm of a vector x, and
by ‖X‖1 the �1 operator norm of a matrix X.

2 � Transforming(1)

Let r = rank (B2) ≤ m , and perform a QR decomposition with column pivoting [7]
on BT

2
:

where Q ∈ ℝ
n×r has orthonormal columns, i.e., QTQ = Ir , and R ∈ ℝ

r×m is upper
triangular (more precisely, trapezoidal), Π ∈ ℝ

m×m is a permutation matrix (to
numerically reveal the rank r = rank (B2)).

Define

which is the orthogonal projector onto R(BT
2
)⊥ , the orthogonal complement of

R(BT
2
) . When r = m , P⊥ can be expressed explicitly in terms of B2 as

The next theorem characterizes vectors in N(B2).

Theorem 1  A vector x ∈ N(B2) if and only if it can be written as x = P⊥w for some
w ∈ ℝ

n , where P⊥ is as given in (4).

Proof  If x ∈ N(B2) , then B2x = 0 . Thus

because RT has full column rank. Therefore P⊥x = (I − QQT)x = x , i.e., x = P⊥w
for w = x . On the other hand, if x = P⊥w for some w ∈ ℝ

n , then

(3)BT
2
Π = QR,

(4)P⊥ = I − QQT ∈ ℝ
n×n,

(5)P⊥ = I − BT
2
(B2B

T
2
)−1B2 ∈ ℝ

n×n,

0 = ΠTB2x = RTQT x ⇒ QT x = 0,

98	 G. Karaduman et al.

1 3

as expected. 	� ◻

Returning to (1), blockwise we have Ax + BT
1
y = f and B2x = 0 . In particular, for

any solution z =
[
x

y

]
 of (1), we know x ∈ N(B2) , or equivalently, x ∈ R(BT

2
)⊥ . By

Theorem 1, x takes the form x = P⊥w for some w ∈ ℝ
n . Now substitute x = P⊥w

into the saddle point problem (1) to obtain

Since B2P⊥w = 0 always, the system (6) is equivalent to

This is an under-determined linear system: n equations with n + m unknowns. If it

has a solution, it will have infinitely many solutions. In fact, if
[
w

y

]
 is a solution, then [

w + q

y

]
 is also one for any q ∈ N(B2) . Fortunately, for our purpose, in the end, we set

x = P⊥w , and so this non-uniqueness does not cause any concern to us at all.
We emphasize that numerically P⊥ should never be formed explicitly. If formed,

it is usually a dense n × n matrix, and thus it will take n2 places to store, which can
be a burden for large n, and a matrix–vector product with P⊥ will cost 2n2 flops,
which is too much of cost. However, if we let P⊥ = I − QQT exist in this form, then
it takes only rn places to store and

can be computed in (4r + 1)n flops which are far less than 2n2 flops.
Based on our discussions above, the saddle point problem (1) turned into

which is a least squares problem and any solution
[
w

y

]
 of it leads to a solution

of the original saddle point problem (1). This least-squares problem can be effi-
ciently solved only if matrix–vector products with the coefficient matrix

ΠTB2x = ΠTB2P⊥w = RTQT (I − QQT)w

= RT (QT − QTQQT)w

= RT (QT − QT)w = 0,

(6)
[
A BT

1

B2 0

] [
P⊥w

y

]
=

[
f

0

]
.

(7)AP⊥w + BT
1
y = f ⇒

[
AP⊥ BT

1

] [w
y

]
= f .

(8)P⊥w = w − (Q(QTw))

(9)min
w∈ℝn, y∈ℝm

‖‖‖‖‖
[
AP⊥ BT

1

] [w
y

]
− f

‖‖‖‖‖2
,

z =

[
P⊥w

y

]

99

1 3

A least squares approach for saddle point problems

can be efficiently implemented. The latter is guaranteed, provided that matrix–vector
products with A, B1 , and P⊥ are efficient to do. Since A and B1 come with the origi-
nal saddle point problem and thus any numerical method such as LSMR [5] that
relies on matrix–vector products with A and B1 is on an equal footing, in this paper,
we will not delve into the matrix–vector products with A and B1 . Matrix–vector
products with P⊥ can be done efficiently according to (8). For future reference, we
summarize in Algorithms 1 and 2 how matrix–vector products Bz and BT u should
be computed.

Algorithm 1 Efficient Matrix-Vector Product by B of (10)

Input: z ≡ w
y

, where w ∈ Rn and y ∈ Rm;

Output: Bz.
1: compute u = P⊥w as in (8);
2: return z = Au+BT

1 y.

Algorithm 2 Efficient Matrix-Vector Product by BT of (10)
Input: u ∈ Rn;
Output: BTu.
1: compute v1 = ATu;
2: compute v = P⊥v1 as in (8);

3: return
v

B1u
.

Remark 1  Now, we comment on how to deal with the case when the last m entries
of b are not 0. Let us say we have B2x = c , instead of B2x = 0 as implied by (1). We
use (3) to find a particular solution x0 = QR−TΠT c to B2x = c . Perform change of
variable x = x0 + x̃ to get

which is in the form of (1).

(10)B ∶= [AP⊥,B
T
1
]

[
A BT

1

B2 0

] [
x̃

y

]
=

[
f − Ax0

0

]
,

100	 G. Karaduman et al.

1 3

3 � Solve (9) iteratively

We will solve the under-determined least-squares problem (9) by using a Krylov
subspace-based method. In principle, any such method would do. Most recently,
LSMR appears to be rather more efficient than any other. For this reason, we will
be focusing on using LSMR to solve (9) as an illustration.

Given an initial guess
[
w0

y0

]
 , perform change of variable

to transform (9) to

where r0 = B

[
w0

y0

]
− f  . LSMR is an iterative solution technique for sparse least-

squares problems. It is based on the Golub-Kahan bidiagonalization [6] which is a
recursive procedure to partially bi-diagonalize, in our case, B = [AP⊥,B

T
1
] . Once

(12) is solved, the solution to (9) can be recovered by (11).
The Golub-Kahan bidiagonalization [6] on B = [AP⊥,B

T
1
] goes as follows:

1.	 set �1 = ‖r0‖2 , u1 = r0∕�1 , v̂1 = B
T u1 , 𝛼1 = ‖v̂1‖2 , v1 = v̂1∕𝛼1;

2.	 for i = 1, 2,… , k do

Here k is the number of the bidiagonalization step, usually as a parameter that has
to be preset. The process runs to its completion if no breakdown occurs, i.e., all
𝛽i > 0 and 𝛼i > 0 . We have

where Vk =
[
v1 v2 ⋯ vk

]
 , Uk =

[
u1 u2 ⋯ uk

]
 , U T

k
Uk = I , V T

k
Vk = I , and

Two major actions in performing the Golub-Kahan bidiagonalization are
matrix–vector products by B and BT . They can be efficiently done as outlined in
Algorithms 1 and 2. It can be seen that

(11)
[
w

y

]
=

[
w0

y0

]
+

[
w̃

ỹ

]

(12)min
w̃∈ℝn, ỹ∈ℝm

‖‖‖‖‖
[
AP⊥ BT

1

] [w̃
ỹ

]
− r0

‖‖‖‖‖2
,

ûi+1 = Bvi − 𝛼iui, 𝛽i+1 = ‖ûi+1‖2, ui+1 = ûi+1∕𝛽i+1,

v̂i+1 = B
T ui+1 − 𝛽i+1vi, 𝛼i+1 = ‖v̂i+1‖2, vi+1 = v̂i+1∕𝛼i+1.

(13)BVk = Uk+1Fk, B
TUk+1 = VkF

T
k
+ �k+1vk+1e

T
k+1

,

Fk =

⎡
⎢⎢⎢⎢⎣

�1
�2 �2

⋱ ⋱

�k �k
�k+1

⎤
⎥⎥⎥⎥⎦
.

101

1 3

A least squares approach for saddle point problems

where Kk

(
B

T
B,BT r0

)
 stands for the kth Krylov subspace of BT

B on BT r0 . We
are seeking the best approximate solution, in the certain sense, to (12) within
Kk

(
B

T
B,BT r0

)
 . By (14), such a solution can be expressed as

For LMSR [5], it is required

We have to solve (15). To this end, we notice

Since V T
k+1

Vk+1 = Ik+1 , we find

where 𝛽k = 𝛼k𝛽k and 𝛽1 = 𝛼1𝛽1 . LSMR [5] uses the double QR decomposition on
F T
k
Fk to solve (16). Let tk be the minimzer. The kth LSMR approximation to (12) is

then given by

What we have just explained is the basic mathematics behind LSMR and it is not for
numerical implementation. In fact, Fong and Saunders [5] designed a very elegant

and numerically efficient two-term recursive formulas to generate
[
w̃k

ỹk

]
 , without hav-

ing to store all vi . The interested reader is referred to [5] for details.
A reasonable stopping criterion is

(14)
R(Vk) = Kk

(
B

T
B,BT r0

)

∶= span
(
B

T r0,B
T
B(BT r0),⋯ , (BT

B)k−1(BT r0)
)
,

[
w̃

ỹ

]
= Vkt for some t ∈ ℝ

k to be determined.

(15)min
t

‖‖‖B
T r

‖‖‖2 with r = r0 − B

[
w̃

ỹ

]
= r0 − BVkt.

B
T r = B

T r0 − B
T
BVkt (by (15))

= �1�1v1 − B
TUk+1Fkt (by (13))

= �1�1v1 − (VkF
T
k
+ �k+1vk+1e

T
k+1

)Fkt

= �1�1v1 − Vk+1

[
F T
k

�k+1e
T
k+1

]
Fkt

= Vk+1

(
�1�1e1 −

[
F T
k
Fk

�k+1�k+1e
T
k

]
t

)
.

(16)min
t

‖‖‖B
T rk

‖‖‖2 = min
t

‖‖‖‖‖
𝛽1e1 −

[
F T
k
Fk

𝛽k+1e
T
k

]
t
‖‖‖‖‖2
,

[
w̃k

ỹk

]
= Vktk.

102	 G. Karaduman et al.

1 3

where tol is a prescribed tolerance. Ideally, the matrix spectral norms of A, B1 , and
B2 should be used in (17), but they are replaced with the �1 operator norms for com-
putational convenience. In designing stopping criterion (17), we take into consid-
eration that roughly BT rk is computed to BT rk + O(‖BT ‖2‖rk‖2)� and that BT rk
should be 0 at a solution, where � is the unit machone roundoff.In our numerical
tests, tol is set to 10−12 which is usually sufficient for most applications.

Algorithm 3 Saddle Point Problem via Least Squares (SPPvsLS)

Input: A and b as in (1b), an initial guess
w0
y0

to (7);

Output: an approximate solution x
y

to the saddle point problem (1).

1: compute the QR decomposition with column pivoting (3) of BT
2 ;

2: solve least squares problem (12) by LSMR [5] to find an approximate solution w̃
ỹ

;

3: recover an approximate solution
w
y

to (9) by (11);

4: compute x = P⊥w as in (8).

5: return
x
y

.

4 � Numerical results

In this section, we present numerical experiments to demonstrate the performance of
our method SPPvsLS (Algorithm 3) for the saddle point problem (1). For that pur-
pose, we apply SPPvsLS to the induced least-squares problem (9) and compare it with
LSMR [5] applied to the original problem (1) directly.

In what follows, we will conduct a brief comparison between SPPvsLS (Algo-
rithm 3) and LSMR for the saddle point problems (1).We choose to compare with
LSMR because of the fact that LSMR is one of the methods that are comparable, in
simplicity and ease of use, to our (Algorithm 3). The other method is LSQR [10] but
LSMR currently is the state-of-the-art.

In Table 1, we estimate the numbers of flops for SPPvsLS and LSMR per itera-
tion for solving (1), where (MV) represents the number of flops by one-matrix–vector

(17)
���B

T rk
���2 =

�����
B

T

�
r0 − B

�
w̃k

ỹk

�������2
≤ tol ‖rk‖2(‖A‖1 + ‖B1‖1 + ‖B2‖1),

Table 1   Flops per iteration for
SPPvsLS and LSMR

Method Flops

SPPvsLS 2 (MV)+12 nm
LSMR 2 (MV)+8 nm

103

1 3

A least squares approach for saddle point problems

multiplication with A ∈ ℝ
n×n , which is usually taken to be twice the number of nonzero

entries in A. We also assume, for simplicity, that B1 and B2 are dense matrices. At the k-
th step, we can see that the computations for solving the reduced least squares problems
are comparable for both methods because the reduced problems have the same size.
When m ≪ n , often one (MV) is much larger than O(nm) and than the cost for solv-
ing the reduced least squares problems, and hence SPPvsLS and LSMR cost about the
same per iterative step, making the number of iterative steps by either method a reliable
measure as to how expensive each of the method is for comparison purpose. But we
point out that SPPvsLS involves the rank-revealing QR decomposition (3) as preproc-
essing at cost of O(nm2) that is linear in n.

All numerical results shown in this section were obtained using Matlab. The
testing matrices are detailed in Table 2, where the column “nonzero” lists the num-
ber of nonzero entries of each A . These testing matrices are taken from Suite Sparse
Matrix Collection [3]. Some of them have singular coefficient matrices A , but the
associated linear systems are consistent, however, and hence solutions exist. Specifi-
cally, A is singular in GL6_D_6 with rank 156 and in GL7d11 with rank 59.

We report the relative residual

to gauge the accuracy of an approximate solution z. The trivial initial guess, i.e., the
zero vector, is used for all problems. Our stopping criterion is either when the num-
ber of iterations reaches 6000 or the relative residual (18) is no bigger than 10−12.

Figures 1, 2, 3, 4 and 5 plot the convergence histories in terms of the relative
residual (18) for approximations by Algorithm 3 and by LSMR on the testing matri-
ces in Table 2.

Table 3 lists the numbers of iterations by SPPvsLS and by LSMR to achieve a
relative residual (18) less than or equal to 10−12 , except the one marked by “-" which
means that the maximum number 6,000 of iterations is reached without achieving
the goal of making the relative residual (18) less or equal to 10−12.

(18)
‖‖b −Az‖‖2

‖‖b‖‖2

Table 2   Testing matrices with full rank B2

Matrix n m Nonzero Application

lshape2 634 179 6926 Statistics
dynamicSoaringProblem_1 363 284 5367 Optimal control
maxwell3 1504 481 18,598 Electromagnetics
maxwell4 6080 1985 76,902 Electromagnetics
navier_stokes_N8 352 127 9372 Statistics
navier_stokes_N16 1472 511 41,692 Incompressible flow
stokes_N8 352 127 9372 Computational fluid dynamics
stokes_N16 1472 511 41,692 Computational fluid dynamics
GL6_D_6 469 201 2839 Combinatorial optimization
GL7d11 1019 60 2611 Combinatorial optimization

104	 G. Karaduman et al.

1 3

0 500 1000 1500 2000 2500 3000 3500
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
R

el
at

iv
e

R
es

id
ua

l

LSMR
SPPvsLS

0 1000 2000 3000 4000 5000 6000
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

Fig. 1   Left: Relative residual vs. iteration number for lshape2; Right: Relative residual vs. iteration
number for dynamicSoaringProblem1 

0 50 100 150 200 250 300 350 400
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

Fig. 2   Left: Relative residual vs. iteration number for maxwell3; Right: Relative residual vs. iteration
number for maxwell4 

0 50 100 150 200 250 300 350 400 450
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

0 1000 2000 3000 4000 5000 6000 7000
iteration number

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

Fig. 3   Left: Relative residual vs. iteration number for navierstokesN8; Right: Relative residual vs.
iteration number for navierstokesN16 

105

1 3

A least squares approach for saddle point problems

0 50 100 150 200 250 300 350
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
R

el
at

iv
e

R
es

id
ua

l

LSMR
SPPvsLS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

Fig. 4   Left: Relative residual vs. iteration number for stokesN8; Right: Relative residual vs. iteration
number for stokesN16 

0 50 100 150 200 250 300 350 400
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

LSMR
SPPvsLS

Fig. 5   Left: Relative residual vs. iteration number for GL6D6; Right: Relative residual vs. iteration num-
ber for GL7d11 

Table 3   Number of iterations by
LSMR and SPPvsLS

Matrix LSMR SPPvsLS

lshape2 3309 3109
dynamicSoaringProblem_1 5499 2820
maxwell3 397 304
maxwell4 4730 3781
navier_stokes_N8 436 272
navier_stokes_N16 – 3792
stokes_N8 306 186
stokes_N16 4868 2797
GL6_D_6 353 345
GL7d11 1863 1829

106	 G. Karaduman et al.

1 3

According to the numerical results obtained from Figs. 1, 2, 3, 4 and 5, we have
the following observations:

–	 In 7 out of 10 examples, SPPvsLS takes much fewer iterations than LSMR to
converge. For the other three examples, SPPvsLS performs comparably to LSMR
on GL6_D_6 and GL7d11, while still a little better on lshape2.

–	 On navier_stokes_N16 LSMR fails to make the relative residual (18) less
than or equal to 10−12 within the maximum allowable number of iterations 6000.

In summary, numerical evidence shows that SPPvsLS is in general favored over
LSMR.

Next, we compare CPU time by SPPvsLS and LSMR on an Apple laptop with
macOS and Intel i7 processor with 2.7 GHz and 8GB memory. Table 4 lists the
CPU times by each method in MATLAB to achieve a relative residual less or equal
to 10−12 . In 6 out of 10 examples, SPPvsLS wins over LSMR in CPU time. In par-
ticular, LSMR fails on navier_stokes_N16 to produce a sufficiently accurate
approximation, within 6,000 iterative steps.

5 � Conclusions

We have presented an iterative method SPPvsLS for the saddle point linear system
in the form of (1) by first constructing a projection matrix to eliminate the last m
equations of the system and turn it into a least-squares problem and then solving
the resulting least-squares problem by LSMR (or any other iterative method). The
method rivals LSMR, a popular iterative method, in their simplicity and ease to use,
but more importantly it converges faster, as our numerical examples demonstrate.
Because of its simplicity, the method can be easily embedded, by scientists and
engineers, into application packages whose intermediate step involves solving large
and sparse saddle point linear systems.

Table 4   CPU times Matrix LSMR SPPvsLS

lshape2 .16 .24
dynamicSoaringProblem_1 .09 .12
maxwell3 .28 .31
maxwell4 .11 .46
navier_stokes_N8 .17 .10
navier_stokes_N16 – .08
stokes_N8 .07 .02
stokes_N16 .94 .37
GL6_D_6 .13 .05
GL7d11 .19 .10

107

1 3

A least squares approach for saddle point problems

Acknowledgements  The authors would like to thank the anonymous referees for their constructive com-
ments and suggestions that improve the paper.

References

	 1.	 Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14,
1–137 (2005)

	 2.	 Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
	 3.	 Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw.

38(1), 1–25 (2011)
	 4.	 Estrin, R., Greif, C.: On nonsingular saddle-point systems with a maximally rank deficient leading

block. SIAM J. Matrix Anal. Appl. 36(2), 367–384 (2015)
	 5.	 Fong, D.C., Saunders, M.A.: LSMR: An iterative algorithm for sparse least-squares problems.

SIAM J. Sci. Comput. 33(5), 2950–2971 (2011)
	 6.	 Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J.

Numer. Anal. 2, 205–224 (1965)
	 7.	 Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Balti-

more (2013)
	 8.	 Maryska, J., Rozlozník, M., Tuma, M.: The potential fluid problem and the convergence rate of the

minimum residual method. Numer. Linear Algebra Appl. 3, 525–542 (1996)
	 9.	 Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)
	10.	 Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least

squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)
	11.	 Pearson, J.W., Pestana, J., Silvester, D.J.: Refined saddle-point preconditioners for discretized Stokes

problems. Numer. Math. 138(2), 331–363 (2018)
	12.	 Pestena, J., Rees, T.: Null-space preconditioners for saddle point systems. SIAM J. Matrix Anal.

Appl. 37(3), 1103–1128 (2015)
	13.	 Reid, N.: Saddle point methods and statistical inference. Statist. Sci. 3(2), 213–227 (1988)
	14.	 Song, Y., Yuen, X., Yue, H.: An inexact Uzawa algorithmic framework for nonlinear saddle point

problems with applications to elliptic optimal control problem. SIAM J. Numer. Anal. 57(6), 2656–
2684 (2019)

	15.	 Wu, S.L., Salkuyeh, D.: A shift-splitting preconditioner for asymmetric saddle point problems.
Comput. Appl. Math. 39(4), 314 (2020)

	16.	 Yang, A.L., Li, X., Wu, Y.J.: On semi-convergence of the uzawa-hss method for singular saddle-
point problems. Appl. Math. Comput. 252, 88–98 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A least squares approach for saddle point problems
	Abstract
	1 Introduction
	2 Transforming(1)
	3 Solve (9) iteratively
	4 Numerical results
	5 Conclusions
	Acknowledgements
	References

