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Abstract

Saddle point linear systems arise in many applications in computational sciences
and engineering such as finite element approximations to Stokes problems, image
reconstructions, tomography, genetics, statistics, and model order reductions for
dynamical systems. In this paper, we present a least-squares approach to solve sad-
dle point linear systems. The basic idea is to construct a projection matrix and trans-
form a given saddle point linear system to a least-squares problem and then solve
the least-squares problem by an iterative method such as LSMR: an iterative method
for sparse least-squares problems. The proposed method rivals LSMR applied to the
original problem in simplicity and ease to use. Numerical experiments demonstrate
that the new iterative method is efficient and converges fast

Keywords Saddle point problem - Iterative method - Linear system - LSMR -
SPPvsLS
1 Introduction

In this paper, we consider the saddle point linear system of the form

Az =0b, (1a)
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where A € RU+™X+m) j5 a sparse matrix with 2-by-2 block structure, b € R™”,
and z € R"" is the unknown vector to be found. Specifically, it takes the form

_n ABlTnLC__nf (1b)
= la s |2 o=l

where A is a sparse matrix. We are interested in the case when m < n and for that
reason, B; and B, may or may not be necessarily sparse. We comment that it is not
restrictive to assume that the last m entries of vector b are 0. Later, in Sect. 2, we
will remark how to deal with the case when the last m entries of b are not 0.

Iterative solutions for the saddle point problem (1) have been an active research
topic in numerical linear algebra. Many applications in computational sciences
and engineering applications give rise to saddle point problems such as Stokes
problems, flow problems, statistics, image processing, and constrained optimiza-
tion, see, e.g., [4, 8, 11-16]. In particular, it naturally arises from the following
constrained quadratic minimization problem [2, 9]

min  A(x) =xTAx+x"Bly-fTx, (2a)

subjectto  B,x = 0. (2b)
In fact, the corresponding Lagrangian function is

L(x,y) = h(x) + yT Byx
=x"Ax+x"By—fTx+y"Byx

-0 G5 -ET 6
yI B2 0]y |y [0]°
where y is the vector of Lagrangian multipliers. The KKT condition for () is
VL(x,y) = 0 which turns out to be the saddle point problem (1) [9]. The reader is
referred to the survey article [1] of Benzi, Golub, and Liesen for a more extensive
list of the fields where saddle point problems may arise.

The goal of this paper is to seek a least-squares approach. The key idea is to
construct a projection matrix and transform the original problem into a least-
squares problem and then solve the least-squares problem by an iterative method
such as LSMR: an iterative algorithm for sparse least-squares problems [5].

The saddle point problem (1) has a unique solution when A is nonsingular.
A necessary condition for that is rank (B,) = rank (B,) = m. Therefore if either
rank (B,) < m or rank (B,) < m, then (1) may or may not have any solution, and
when it does have a solution, there are infinitely many solutions. Our proposed
method will find a solution to the saddle point problem (1) and it will be in the
least-squares sense when no solution exists. Broadly, our method works for the
case even if A is not a square matrix.
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Throughout this article, we work with real matrices but the idea can be straight-
forwardly extended to complex coefficient matrices with minor modifications.

The remainder of this paper is organized as follows. In Sect. 2, we explain how
the saddle point problem (1) can be transformed into a least-squares problem. In
Sect. 3, we demonstrate the numerical solution of the transformed least-squares
problem and present our algorithm. In Sect. 4, we present our numerical results to
show the performance of our method for saddle point problems. Finally, some con-
clusions are made in Sect. 5.

Notation R™" is the set of all n X m real matrices, R” = R™! and R = R!. The
superscripts “-T” takes the transpose of a matrix or vector. I, (or simply I if its
dimension is clear from the context) is the n X n identity matrix, and ¢ is its jth col-
umn. For a matrix X € R™", R(X) and M(X) denote the range (column space) and
null space of X, respectively. Denote by ||x||, the Euclidean norm of a vector x, and
by [|X]|, the £, operator norm of a matrix X.

2 Transforming(1)

Let r = rank (B,) < m, and perform a QR decomposition with column pivoting [7]
onBT:
2

BTl = QR, 3)

where Q € R™" has orthonormal columns, i.e., QTQ = I,, and R € R™" is upper
triangular (more precisely, trapezoidal), IT € R™™ is a permutation matrix (to
numerically reveal the rank r = rank (B,)).

Define

PJ_ =] - QQT c Rnxn’ (4)

which is the orthogonal projector onto R(BzT )%, the orthogonal complement of
72(32T ). When r = m, P can be expressed explicitly in terms of B, as

P, =1-B)(B,B])"'B, € R™, (%)
The next theorem characterizes vectors in M(B,).

Theorem 1 A vector x € N(B,) if and only if it can be written as x = P, w for some
w € R", where P, is as given in (4).

Proof 1f x € M(B,), then B,x = 0. Thus
0=1"B,x=RTQ"™x = QTx=0,

because RT has full column rank. Therefore P x = (I — QQ")x =x, ie., x=P,w
for w = x. On the other hand, if x = P, w for some w € R”, then
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N'Bx=T"B,P,w=RTQT(I - 00w
=R"(Q" -0"00")w
=RT(Q" -0")w=0,

as expected. O

Returning to (1), blockwise we have Ax + B lT y =f and B,x = 0. In particular, for
any solution z = i of (1), we know x € M(B,), or equivalently, x € 7'\’,(32T ). By

Theorem 1, x takes the form x = P, w for some w € R". Now substitute x = P, w
into the saddle point problem (1) to obtain

A Bl| [P
1=l ©
2 y
Since B,P, w = 0 always, the system (6) is equivalent to
AP w+Bly=f = [AP, B] [Vyv] =f. )

This is an under-determined linear system: n equations with n + m unknowns. If it

has a solution, it will have infinitely many solutions. In fact, if [y] is a solution, then

[W ;_ q]is also one for any g € M(B,). Fortunately, for our purpose, in the end, we set

x = P w, and so this non-uniqueness does not cause any concern to us at all.

We emphasize that numerically P, should never be formed explicitly. If formed,
it is usually a dense n X n matrix, and thus it will take n? places to store, which can
be a burden for large n, and a matrix—vector product with P, will cost 2n* flops,
which is too much of cost. However, if we let P| = I — QQ7 exist in this form, then
it takes only rn places to store and

Pow=w—(Q(Q"w)) 8)

can be computed in (4r + 1)n flops which are far less than 2n? flops.
Based on our discussions above, the saddle point problem (1) turned into

min
weR", yeR™

) ®)

2

e ][] -1

which is a least squares problem and any solution [V;] of it leads to a solution

P
=[]
Yy
of the original saddle point problem (1). This least-squares problem can be effi-
ciently solved only if matrix—vector products with the coefficient matrix
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= [AP,,B]] (10)

can be efficiently implemented. The latter is guaranteed, provided that matrix—vector
products with A, B}, and P, are efficient to do. Since A and B, come with the origi-
nal saddle point problem and thus any numerical method such as LSMR [5] that
relies on matrix—vector products with A and B, is on an equal footing, in this paper,
we will not delve into the matrix—vector products with A and B,. Matrix—vector
products with P, can be done efficiently according to (8). For future reference, we
summarize in Algorithms 1 and 2 how matrix—vector products Bz and B u should
be computed.

Algorithm 1 Efficient Matrix-Vector Product by B of (10)

Input: z = Bﬂ , where w € R" and y € R™;

Output: Bz.
1: compute u = P, w as in (8);
2: return z = Au + BlTy

Algorithm 2 Efficient Matrix-Vector Product by BT of (10)
Input: v € R

Output: BTu.

1: compute v1 = ATu;

2: compute v = P v as in (8);

v
3: return {Blu .

Remark 1 Now, we comment on how to deal with the case when the last m entries
of b are not 0. Let us say we have B,x = c, instead of B,x = 0 as implied by (1). We
use (3) to find a particular solution x, = QR TTIT ¢ to B,x = c. Perform change of

variable x = x;, + X to get
A B [x _ V- Ax0
B, 0

which is in the form of (1).
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100 G. Karaduman et al.

3 Solve (9) iteratively

We will solve the under-determined least-squares problem (9) by using a Krylov
subspace-based method. In principle, any such method would do. Most recently,
LSMR appears to be rather more efficient than any other. For this reason, we will
be focusing on using LSMR to solve (9) as an illustration.

Given an initial guess ;VO , perform change of variable
0
w] Wo w
= 15 (11
Y Yo y

e, 7] [5] -

to transform (9) to

min
WeRn, jeRM

: (12)
2

Wo

where r, = B —f. LSMR is an iterative solution technique for sparse least-

squares problems. It is based on the Golub-Kahan bidiagonalization [6] which is a
recursive procedure to partially bi-diagonalize, in our case, B =[AP,,B IT]. Once
(12) is solved, the solution to (9) can be recovered by (11).

The Golub-Kahan bidiagonalization [6] on B = [AP,,B IT] goes as follows:

~ T ~ N .
1. set B = |lrplly, uy = ”o/ﬁl’ V=B up =Vl vy =0 /ag;
fori=1,2,...,kdo
Uiy = Bvi =y iy = Nl llas iy = 841/ Bisrs
A _ T —us _a
Dist =B iy = Bvis @iy = Diglles vy = Vg /iy
Here k is the number of the bidiagonalization step, usually as a parameter that has

to be preset. The process runs to its completion if no breakdown occurs, i.e., all
p; > 0 and a; > 0. We have

BV, = Ui Fro B Uy = ViFy| + a Vel 13)
where V, = [v; vy = v Up = [uy uy - ] UTU =L VV, =1, and

a
Py a
F, = wo
Be o

Prs1
Two major actions in performing the Golub-Kahan bidiagonalization are
matrix—vector products by B and BT. They can be efficiently done as outlined in
Algorithms 1 and 2. It can be seen that
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R(V,) = K (BTB,B"ry)

14
:=span(B" ry, BT BB ry), -+, (BT B (BT 1)), (1

where ICk(BTB,BTrO) stands for the kth Krylov subspace of BT B on BT r,. We
are seeking the best approximate solution, in the certain sense, to (12) within
K, (BTB, BT ro)- By (14), such a solution can be expressed as

w

[y] =Vt for some ¢t € R" to be determined.

For LMSR [5], it is required

min |87/, with r=r, -5 [Vyv] ) (15)

We have to solve (15). To this end, we notice
BYr=8B"r, - BBVt (by(15))
= fayv, — BT U, Fit (by (13))
= By — (ViFL + oy vip e, DFit

FT
=ﬁ1alv1 _Vk+l P keT Fkt
k+1% k41

FIF
=V <ﬁ1a161 - [“k+1fbk+fekT] t>-

Since V! Vi, = Iy, we find

k+1

mtin ”BTrk”2 =m[in , (16)

T
e, - [Fk Fk]t

i~ T
Prsr€;

where ﬁk = q;f, and ﬁ] = a,f,- LSMR [5] uses the double QR decomposition on
F kT F, to solve (16). Let t, be the minimzer. The kth LSMR approximation to (12) is

then given by
W
5 = Vi
5] = via

What we have just explained is the basic mathematics behind LSMR and it is not for
numerical implementation. In fact, Fong and Saunders [5] designed a very elegant

. . . w .
and numerically efficient two-term recursive formulas to generate y" , without hav-
k

ing to store all v;. The interested reader is referred to [5] for details.
A reasonable stopping criterion is
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B" <r0 -B [vfk] )
Yk
where tol is a prescribed tolerance. Ideally, the matrix spectral norms of A, B, and
B, should be used in (17), but they are replaced with the ¢, operator norms for com-
putational convenience. In designing stopping criterion (17), we take into consid-
eration that roughly B r, is computed to BT re + o(|BT [I21l7]l2)e and that BT Ty

should be O at a solution, where ¢ is the unit machone roundoff.In our numerical
tests, tol is set to 10~!2 which is usually sufficient for most applications.

1B, = < tol Il ANl + 1Byl + 1201, (17)

2

Algorithm 3 Saddle Point Problem via Least Squares (SPPvsLS)

Input: A and b as in (1b), an initial guess [l?j(ﬂ to (7);

Output: an approximate solution [ﬂ to the saddle point problem (1).

[y

compute the QR decomposition with column pivoting (3) of B;F;

2: solve least squares problem (12) by LSMR [5] to find an approximate solution {lg],

3: recover an approximate solution [zﬂ to (9) by (11);
4: compute z = P w as in (8).

5: return

4 Numerical results

In this section, we present numerical experiments to demonstrate the performance of
our method SPPvsLS (Algorithm 3) for the saddle point problem (1). For that pur-
pose, we apply SPPvsLS to the induced least-squares problem (9) and compare it with
LSMR [5] applied to the original problem (1) directly.

In what follows, we will conduct a brief comparison between SPPvsLS (Algo-
rithm 3) and LSMR for the saddle point problems (1).We choose to compare with
LSMR because of the fact that LSMR is one of the methods that are comparable, in
simplicity and ease of use, to our (Algorithm 3). The other method is LSQR [10] but
LSMR currently is the state-of-the-art.

In Table 1, we estimate the numbers of flops for SPPvsLS and LSMR per itera-
tion for solving (1), where (MV) represents the number of flops by one-matrix—vector

Table 1 Flops per iteration for Method

Flops
SPPvsLS and LSMR
SPPvsLS 2(MV)+12 nm
LSMR 2(MV)+8 nm
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multiplication with A € R™", which is usually taken to be twice the number of nonzero
entries in A. We also assume, for simplicity, that B| and B, are dense matrices. At the k-
th step, we can see that the computations for solving the reduced least squares problems
are comparable for both methods because the reduced problems have the same size.
When m < n, often one (MV) is much larger than O(nm) and than the cost for solv-
ing the reduced least squares problems, and hence SPPvsLS and LSMR cost about the
same per iterative step, making the number of iterative steps by either method a reliable
measure as to how expensive each of the method is for comparison purpose. But we
point out that SPPvsLS involves the rank-revealing QR decomposition (3) as preproc-
essing at cost of O(nm?) that is linear in n.

All numerical results shown in this section were obtained using MatLAB. The
testing matrices are detailed in Table 2, where the column “nonzero” lists the num-
ber of nonzero entries of each A. These testing matrices are taken from Suite Sparse
Matrix Collection [3]. Some of them have singular coefficient matrices .4, but the
associated linear systems are consistent, however, and hence solutions exist. Specifi-
cally, A is singular in GL6_D 6 with rank 156 and in GL7d11 with rank 59.

We report the relative residual

16— Azl
121l

to gauge the accuracy of an approximate solution z. The trivial initial guess, i.e., the
zero vector, is used for all problems. Our stopping criterion is either when the num-
ber of iterations reaches 6000 or the relative residual (18) is no bigger than 10712,

Figures 1, 2, 3, 4 and 5 plot the convergence histories in terms of the relative
residual (18) for approximations by Algorithm 3 and by LSMR on the testing matri-
ces in Table 2.

Table 3 lists the numbers of iterations by SPPvsLS and by LSMR to achieve a
relative residual (18) less than or equal to 107!2, except the one marked by “-" which
means that the maximum number 6,000 of iterations is reached without achieving
the goal of making the relative residual (18) less or equal to 10712,

(18)

Table 2 Testing matrices with full rank B,

Matrix n m Nonzero Application

lshape2 634 179 6926 Statistics
dynamicSoaringProblem 1 363 284 5367 Optimal control

maxwell3 1504 481 18,598 Electromagnetics

maxwell4d 6080 1985 76,902 Electromagnetics

navier stokes N8 352 127 9372 Statistics

navier stokes N16 1472 511 41,692 Incompressible flow

stokes N8 352 127 9372 Computational fluid dynamics
stokes N16 1472 511 41,692 Computational fluid dynamics
GL6 D 6 469 201 2839 Combinatorial optimization
GL7d11 1019 60 2611 Combinatorial optimization
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Fig. 1 Left: Relative residual vs. iteration number for 1shape?2; Right: Relative residual vs. iteration
number for dynamicSoaringProbleml
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Fig.2 Left: Relative residual vs. iteration number for maxwe113; Right: Relative residual vs. iteration
number for maxwell4
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Fig.3 Left: Relative residual vs. iteration number for navierstokesN8; Right: Relative residual vs.
iteration number for navierstokesN16
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Fig.5 Left: Relative residual vs. iteration number for GL6D6; Right: Relative residual vs. iteration num-

ber for GL7d11

Table 3 Number of iterations by
LSMR and SPPvsLS

Matrix LSMR SPPvsLS
lshape? 3309 3109
dynamicSoaringProblem 1 5499 2820
maxwell3 397 304
maxwell4 4730 3781
navier stokes N8 436 272
navier stokes N16 - 3792
stokes N8 306 186
stokes N16 4868 2797
GL6 D 6 353 345
GL7d11 1863 1829
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Table4 CPU times

Matrix LSMR SPPvsLS
lshape?2 .16 24
dynamicSoaringProblem 1 .09 12
maxwell3 28 31
maxwell4d 11 46
navier stokes N8 17 .10
navier stokes N16 - .08
stokes N8 .07 .02
stokes N16 .94 .37
GL6 D 6 13 .05
GL7d11 .19 .10

According to the numerical results obtained from Figs. 1, 2, 3, 4 and 5, we have
the following observations:

— In 7 out of 10 examples, SPPvsLS takes much fewer iterations than LSMR to
converge. For the other three examples, SPPvsLS performs comparably to LSMR
on GL6 D 6 and GL7d11, while still a little better on 1shape2.

— Onnavier stokes N16 LSMR fails to make the relative residual (18) less
than or equal to 10~!2 within the maximum allowable number of iterations 6000.

In summary, numerical evidence shows that SPPvsLS is in general favored over
LSMR.

Next, we compare CPU time by SPPvsLS and LSMR on an Apple laptop with
macOS and Intel i7 processor with 2.7 GHz and 8GB memory. Table 4 lists the
CPU times by each method in MATLAB to achieve a relative residual less or equal
to 1072, In 6 out of 10 examples, SPPvsLS wins over LSMR in CPU time. In par-
ticular, LSMR fails on navier stokes N16 to produce a sufficiently accurate
approximation, within 6,000 iterative steps.

5 Conclusions

We have presented an iterative method SPPvsLS for the saddle point linear system
in the form of (1) by first constructing a projection matrix to eliminate the last m
equations of the system and turn it into a least-squares problem and then solving
the resulting least-squares problem by LSMR (or any other iterative method). The
method rivals LSMR, a popular iterative method, in their simplicity and ease to use,
but more importantly it converges faster, as our numerical examples demonstrate.
Because of its simplicity, the method can be easily embedded, by scientists and
engineers, into application packages whose intermediate step involves solving large
and sparse saddle point linear systems.
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