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ABSTRACT

It has been shown through quantum estimation theory that Rayleigh’s limit can be avoided for single-lens
imaging, referred to as superresolution. The quantum estimation approach has recently been used to show
superresolution is also possible for imaging based on interferometer arrays in the weak source limit. Following
this line of discussion, we consider the resolution limit of estimating the separation between two point sources
of arbitrary strength using interferometer arrays. By carefully designing the measurement, we find it is possible
to overcome the well-known resolution limit of interferometer arrays as determined by the longest baseline. We
construct an optimal measurement to achieve superresolution using linear beam-splitters and photon-number-
resolved detection.
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1. INTRODUCTION

In the imaging problem, Rayleigh’s limit quantifies the resolution limit of a finite-sized single lens under
diffraction.! It was surprisingly discovered that we can avoid Rayleigh’s limit for estimating the separation
of two weak incoherent point sources using a single lens by employing a more suitable measurement strategy as
determined by quantum estimation theory.? In this approach, imaging is modeled as a parameter estimation
problem based on knowledge of the structure of the source. Then, quantum estimation theory is applied to
optimize over measurements. This result has triggered much effort to model more imaging problems using
parameter estimation. Several strategies for resolving two weak point sources have been discussed: the projection
onto the Hermite-Gaussian spatial modes,? using an image-inversion interferometer,® adding a phase plate before
half of the image,* exploiting Hong-Ou-Mandel interference using two copies of the incoming photonic state® and
using an array of homodyne detectors.® Experimentally, superresolution has been demonstrated.*” More types
of sources have been discussed, including studying strong point sources®? and those of unequal strength,'® !
estimating point source locations in two and three dimensions,'?1® and finding the sensitivity limit of imaging
a more general extended source.!672!

Besides single lens imaging, interferometric imaging is also a widely used imaging method, which enables an
array of lenses to work together as a much larger effective aperture. Interferometric imaging is based on the Van
Cittert-Zernike theorem,?? which shows the coherence function between distant telescopes gives information
about the Fourier components of the intensity distribution in the source plane. This method has become
a very powerful imaging method especially in the radio wavelength.?>24 The first image of a supermassive
black hole at the center of the Messier 87 Galaxy was obtained by the Event Horizon Telescope (EHT), a
radio interferometer array.?® The estimation of mutual coherence has been modeled as a parameter estimation
problem and explored both theoretically and experimentally.?%2” Methods to overcome the transmission loss
of interferometric imaging systems while combining light from distant telescopes using quantum information
techniques have been proposed.?® 29
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Conventionally, astronomical interferometry involves measuring many coherence functions of different baseline.
To improve the performance of interferometric imaging, most previous discussion has focused on how to estimate
the mutual coherence function with better sensitivity, but the ability to resolve two point sources using interferometric
telescope arrays is also limited by the longest baseline. This is because the reconstructed image based on the Van
Cittert-Zernike theorem is the convolution of the original source with an effective point spread function (PSF)
whose width is roughly determined by the longest baseline. This resolution limit holds even if we have infinite
sensitivity of estimating the coherence function. The effective PSF will degrade the reconstructed image as long
as the sampling of the image plane is incomplete, which is an analog of Rayleigh’s limit for a finite-size single
lens.

Inspired by the superresolution discussion for a single lens, we now ask the following question: can we achieve
superresolution for interferometric imaging systems and avoid the resolution limit due to the effective PSEF? This
is first discussed in Ref.,?! where they consider the fundamental limit of resolving positions of weak point sources
using an interferometer array. Their result confirms that superresolution is also achievable for interferometric
imaging of weak sources as long as the measurement is carefully designed. Here we present our recently published
work?3? that extends the discussion of superresolution using interferometer arrays by removing the weak source
limit used in Ref.?2! We focus on the resolution limit for measuring the positions of point sources of arbitrary
strength using an interferometric imaging system. Strong thermal sources can have multiphoton coincidences and
photon bunching that are ignored in discussions assuming the weak limit,?! which has important consequences
in some situations.®! In addition, for astronomical interferometer arrays, heterodyne detection has very different
sensitivity for strong versus weak thermal sources,??> which is due to strong vacuum noise in the weak limit.
These effects raise the question of whether we can achieve superresolution without invoking the weak limit. The
consequence of strength has been discussed for imaging two incoherent point sources of arbitrary strength using
a single lens.®? We here present a similar discussion to show how superresolution will be affected by the strength
of the source. We find that superresolution is still possible for incoherent thermal sources of arbitrary strength
and give the construction of an optimal measurement to achieve superresolution. The measurement we find
requires beam-splitters and photon-number-resolved detection.

2. FUNDAMENTAL LIMIT OF RESOLVING TWO POINT SOURCES

We consider the estimation of the separation and centroid of two incoherent point sources of equal strength in
one dimension using a linear interferometer consisting of two telescopes as shown in Fig. 1(a). The two sources
at positions X; and X5 are assumed to be monochromatic and described by canonical annihilation and creation
operators cq, cJ{ and co, c; The sources ¢, co are in a thermal state described by
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where N determines the strength of each source.

We now derive the state received at the two telescopes, described by aq, a{ and as, a; The evolution of

mode ¢ 2 to a2 is given by

ci = nar + meiag + /1= 2nv;, i=1,2, (2)

where v; are auxiliary environmental modes and 7 is the attenuation ratio. Besides attenuation, the state acquires
phases ¢1 = kB Xol and ¢ = kB<2 X2 due to differences in light path lengths,2!:33 where B is the length of the
baseline, k is the wavevector of the light and sg is the longitudinal distance to the source plane. From this
evolution, we derive the states received by the interferometer a2 as
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Figure 1. (a) Set up for estimating the position of two incoherent thermal point sources ¢1 and c2 at positions X1 and X»
in one dimension. Telescopes collect the light from the two sources, comprising a two-mode interferometer. The difference
in path length introduces phases ¢1 and ¢2 to the received state by the two interferometer modes. (b) The quantum
Fisher information Fio for estimating the separation 02, in units of nNk?B?/s3, as a function of the separation 62, for
different source strengths nN.

where N represents the strength of each source and |or + @) and |ale’id’1 + 0426*1'4’2> are the coherent states
of the two interferometer modes a; and as.

The imaging problem is reduced to the estimation of centroid 6, = %(X 1+ X32) and the separation between
the two sources 0 = X1 — X5. As a parameter estimation problem, we now consider the fundamental limit of
estimating 6 » with two telescopes. The sensitivity of estimating §; and 65 is bounded by the Fisher information
(FI) F: S5 > F~1, with its (1, v) element [S4],, = E [(6,, — 0,,)(6, — 0,))], where 6, is the unbiased estimator of
the p-th unknown parameter. This sensitivity limit given by the FI is the Cramér-Rao bound (CRB).3* The FI
depends on the positive operator-valued measure (POVM) performed on the states. The optimal FI optimized
for all POVM performed on a state is the quantum Fisher information (QFI) which gives a fundamental limit
for the sensitivity, which is usually called the quantum Cramér-Rao bound (QCRB).37738

The QFT for the estimation of the centroid 6; is

22B2  nN(1+cos(¢r — ¢2)) a0 K2B2

Fi1=— _ — == 4—nN. 4
H s3  —1—nN +nN cos(¢1 — ¢2) s3 K 4
The QFT for the separation 6, is given by
k% B2 nN(1+ 39N + nN cos(¢1 — ¢2)) 0,0 Kk?B? _
Fyy = —— = 7o = — V. (5)
s¢ —1—=2nN(2+4+nN) + 2n2N2 cos(¢p1 — ¢2) 53

We have checked that the off-diagonal elements of the QFI vanish; i.e., Fio = F5; = 0. We plot the values
of Fye, which is the QFI per photon of estimating separation 03, in Fig. 1(b). We can see that when the
separation between the two point sources tends to zero, i.e. 3 — 0, the quantum Fisher information approaches
a constant. This means fundamentally we are allowed to estimate the separation with a finite sensitivity and will
not encounter a resolution limit similar to Rayleigh’s limit. For the intermediate values of 65, the QFI decreases
with 7N, which is a net effect of multiphoton events, as argued for the case of a single lens.? Fyy is periodic
over 0. This is because two telescopes in an interferometer array can only distinguish the separation with a
sensitivity that depends on ¢; — ¢ and that thus cycles with integer 27. To address this, we can add more
telescopes in the interferometer array.
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3. OPTIMAL MEASUREMENT AND OTHER PRACTICAL ISSUES

We now construct a measurement strategy that can achieve the sensitivity limit derived in the previous section.
According to quantum estimation theory,?*3® the optimal POVM can be found from the eigenbasis of the
symmetric logarithmic derivative (SLD). We find the SLD for estimating the separation 65 is

Ly, = 2l1aJ{a1 + 2l1a;a2 + 2l2a1a; + 21§a1a2 + Co,, (6)
where
Co, = —nN[8l1 + 20x(e 4 €'%2) + 205 (e 711 4 e71%2)],
kB (1 +4nN) cot ¢17¢2
LS I N+ V)] + SN cos(61 — 6 ()

kB e 24®1162)(1 4 3nN + N cos(dy — ¢s)) csc 2 ¢2
w0 AT= 2N+ ) + 2PN cos(r — 6]

lg=—

In order to find the eigenbasis of the SLD, we diagonalize Lg, by assuming d; = \/5 (a1 + €®ay), dy = %(al —eay)

and drop the constant terms to find
Lo, =20y + lre™® + [3e=®)dldy + (201 — lpe™® — e~ ®)dbdy + (Ioe™ — 15e™)dldy — (Iye™ — I5e=)didy.  (8)

When we choose loe™ — I3~ = 0 or equivalently § = %(d)l + ¢2), the eigenbasis of the SLD are the Fock basis
of di, dy. Thus, the optimal POVM for estimating 03 is {|m,n),; (m,n|;}{mn}, with did, |m,n), =m|m,n),
and did, |m,n), =n|m,n),.

The SLD for estimating the centroid 6 is

Lo, = 2l3a1a; + 21;@;0,2 + Coy,, (9)
where ~ . ‘ ‘ ‘
Cy, = —nN[213(e"" + €92 + 205 (e™ ™1 + e7%2)],
z kB eI 4 emiv2 (10)
=7— .
27 sy —4— 4nN + 49N cos(¢1 — o)
)

We also diagonalize Ly, by assuming dy; = %(al +eay), dy = f(al —¢e"ay) and dropping the constant terms:
Lo, = (13" + e~ )dldy — (Ise” + L5e ™) dbdy + (Ise — e )dldy — (I3e” — I3e=%)dbd; . (11)

When we choose l3¢? — I3~ = 0 or equivalently § = %(¢1 +¢2) — %, the eigenbasis of the SLD is the Fock basis
of dy, da. Thus, the optimal POVM for estimating 01 is {|m,n) (m, n[;} {m ny, with dJ{dl |m,n), = m|m,n), and
d;dg |m,n), =nlm,n),.

In the implementation of the optimal POVM constructed above, the light received at the two telescopes is
simply combined and photon-number-resolving detection is performed after adding phase delays, as shown in
Fig. 1(a). Then, each temporal mode of the received state of the interferometer is projected onto the Fock
bases |m, n), of the d; » modes. The number of outcomes (m, n) are counted and the corresponding probability
is calculated to find the estimated P(m,n). The probability distribution P(m,n) for different 61 2 can be
theoretically calculated. We show some of these P(m,n) in Fig. 2(a) as examples. The theoretical and estimated
P(m,n) are fitted to obtain an estimated separation 2. In practice, the detectors may only be able to resolve
Fock states |m,n), with m < M, n < N. We calculate the FI for different M, N as shown in Fig. 2(b). We see
that even if we are unable to implement the ideal measurement with M, N — oo, we can still get reasonable
sensitivity when compared to the ideal case. In particular, as the separation 3 — 0, the FI with small M, N
also approaches a nonvanishing constant.

Now that we have determined the fundamental sensitivity limit and the optimal measurement to saturate
the bound, an important question is: how does this compare with the conventional interferometric imaging
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Figure 2. (a) The probability P(m,n) of projecting the state onto |m,n), with nN = 0.1 as a function of ¢2 — ¢1. (b)
Fisher information for photon-number-resolving detection that can only distinguish the Fock state |m,n) for m < M,
n < N. Events with greater photon number are ignored. Other parameters are chosen as n/N = 1. (c) Approximate Fisher
information (blue dashed curve) and the quantum Fisher information (solid orange curve) as a function of separation 6s.
Other parameters are chosen as N = 0.01; m,n < 3.

method? The key difference is that in the conventional method, although we also interfere the light from the two
telescopes on a beam splitter, we do not choose the same phase delay as constructed above. We now compare the
performance of estimating the separation #; between the conventional method and our method by calculating the
FI. Assume the centroid is known and gives %(qbl +¢2) = 27/3. For the conventional method, we choose the phase
delay § = 0, 5, which is conventionally used to extract information about the coherence function. The FI of the
conventional method and the QFI are shown in Fig. 2(c) as a function of separation. We can see from Fig. 2(c)
that for the conventional method, the separation must be larger than sg/kB to get reasonable sensitivity, which
is consistent with the angular resolution of an interferometric array A/B, where X is the wavelength. And when
the separation 6 tends to zero, the FI vanishes, which implies the resolution limit, as argued before based on
an effective PSF. But the QFI remains a constant. This shows that a better POVM can help avoid this limit,
which is thus referred to as superresolution. For a more intuitive comparison of the performance between the
conventional method and our method, we consider some practical examples. Assume the observation is made
with wavelength A = 5 mm, longest baseline B = 10 km and nN = 0.01. Then the resolution of the conventional
method is A/B = 5 x 1077 radians =~ 0.1”. For the case when the angular separation of the two point sources is
02/s0 = 0.05"”,0.01”,0.005”, the FI of our scheme is larger than the conventional method by a factor of roughly 4,
30, 100, respectively. With the assumption that mean square error scales with the inverse of number of samples
n as A(f2/s9)? < 1/n, our scheme outperforms the conventional method by a factor of 4, 30, 100 in terms of
observation.

The optimal POVM constructed above for the estimation of the centroid and the separation requires prior
knowledge about the centroid because the phase delay § depends on the centroid 6 = ¢1 + ¢2 of the two point
sources. Thus, it is not possible to perfectly implement the optimal measurement if the estimation of the centroid
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is not infinitely accurate, and misalignment of the centroid must be taken into account in practice. We now show
how the superresolution predicted by the QFI is affected by a deviation § from %(qbl + ¢2). Define the deviation
as c= %(d)l + ¢2) — 0. We only keep the contribution of |m,n), (m,n|, with m < 3, n < 3, which is a reasonable
assumption because even for small M, N we will still have nonvanishing FI as 62 — 0, as discussed previously.
We first fix the misalignment ¢ and plot the FI as a function of separation 6, in Fig. 3(a). With a nonzero
misalignment, when the separation tends to zero, the FI will vanish, which means the deviation can destroy the
superresolution. We then fix the separation 2 and plot the FI as a function of the misalignment ¢ in Fig. 3(b).
We observe that as misalignment increases, the FI decreases, which indicates poorer sensitivity. The deviation ¢
must be smaller than the separation 02/(so/kB) in order to get reasonable sensitivity. However, we emphasize
that there is no fundamental limit, such as Rayleigh’s limit, to prevent us from improving the accuracy of
estimating the centroid. So, in principle, it is always possible to make sure the deviation ¢ is smaller than the
threshold to have good sensitivity.
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Figure 3. _(a) Fisher information as a function of separation 6 for fixed misalignment ¢ = 1073, Other parameters are
chosen as N = 0.01, m,n < 3. (c) Fisher information as a function of misalignment c for fixed separation 02/(so/kB) =
1073, Other parameters are chosen as N = 0.01; m,n < 3.

4. CONCLUSION

We have considered the imaging of two point sources of arbitrary strength using an interferometer array consisting
of two telescopes. Although the resolution of conventional interferometric imaging for resolving the separation
between two point sources is limited by an effective PSF just as in Rayleigh’s limit, we showed that it is
possible to avoid this limit by carefully designing the measurement. The optimal measurement that saturates
the fundamental limit can be implemented with beam-splitters and photon-number-resolving detection. We hope
our work can inspire more discussion about the fundamental imaging limit of interferometer arrays. Possible
extensions include: resolving two point sources of unequal strength,'% ' estimating separation in three dimensions
similarly to Refs.,'® 2! and imaging a general extended source similarly to Refs.!7>1®
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