ELSEVIER

Contents lists available at ScienceDirect

Environmental Technology & Innovation

journal homepage: www.elsevier.com/locate/eti

Catalytic and char-promoting effects of potassium on lignocellulosic biomass torrefaction and pyrolysis

Larissa Richa ^{a,*}, Baptiste Colin ^a, Anélie Pétrissans ^{a,*}, Ciera Wallace ^b, Allen Hulette ^b, Rafael L. Quirino ^b, Wei-Hsin Chen ^{c,d,e,**}, Mathieu Pétrissans ^a

- ^a Université de Lorraine, INRAE, LERMaB, F-88000 Epinal, France
- b Chemistry Department, Georgia Southern University, Statesboro, GA 30460, USA
- ^c Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
- ^d Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- ^e Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan

ARTICLE INFO

Article history: Received 25 March 2023 Received in revised form 3 May 2023 Accepted 4 May 2023 Available online 10 May 2023

Keywords:
Wood
Potassium catalyst
Lignocellulosic components
Biochar
Torrefaction
Pyrolysis
Thermogravimetric analysis

ABSTRACT

Torrefaction is a potential pretreatment method to produce biochar used as a solid fuel or as an environmentally friendly construction material. However, the torrefaction performance varies when wood composition and mineral content change. Potassium (K) is an abundant mineral present in plants and is claimed to influence the degradation of lignocellulosic biomass. Therefore, a full understanding of the role of potassium is required to predict torrefaction behavior. Samples of beech, celluloses, hemicelluloses, and lignin were impregnated with different potassium carbonate K₂CO₃ concentrations (0.004, 0.008, and 0.012 M). Thermogravimetric analysis was utilized to analyze their thermal degradation characteristics under different temperatures. At 250 °C, the catalytic effect of potassium was weak. At 300 °C, potassium acted as a catalyst until a precise mass loss (65 wt%) and torrefaction duration (105 min) promoted char formation. The changed effect of this weight loss was possibly related to the relative increase in lignin content compared to cellulose and hemicelluloses While at a higher temperature (380 °C), the catalytic effect of potassium was rapid, and the increased char content was better observed. The potassium was found to act mainly on cellulose and hemicelluloses. After pyrolysis, the char weight increased with K up to 25.86 and 15.23 % for heating rates of 10 and 20 K min⁻¹, respectively. FTIR and XRD showed that potassium did not significantly impact the structure or the crystallinity of wood at ambient conditions. The obtained results provide a novel insight into the role of potassium in the thermal treatment of biomass, with a better understanding of the thermal degradation mechanisms. This information could help to reduce the operating time and/or temperature, thus rendering torrefaction a green method for waste wood valorization.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The exponential increase of the world's population and the expansion of industries lead to increased energy demand. Subsequently, renewable energy sources such as solar, wind, hydropower, and bioenergy have been considered potential

^{*} Corresponding authors at: Université de Lorraine, INRAE, LERMaB, F-88000 Epinal, France

^{***} Corresponding author at: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan.

E-mail addresses: larissa.richa@univ-lorraine.fr (L. Richa), anelie.petrissans@univ-lorraine.fr (A. Pétrissans), weihsinchen@gmail.com, chenwh@mail.ncku.edu.tw (W.-H. Chen).

Nomenclature

Abbreviations

VM Volatile matter(wt% dry basis)
FC Fixed carbon (wt% dry basis)
HHV Higher heating value (MJ/kg)
TGA Thermogravimetric analysis

DTG Derivative thermogravimetric curve (wt%.s⁻¹)

DTG_{max} Maximum point of DTG (wt%.s⁻¹)
DTG" Second derivative of TG (wt%.s⁻²)
FTIR Fourier-Transform infrared spectroscopy

XRD X-ray diffraction analysis

Molecules

CO₂ Carbon dioxide Carbon

O Oxygen
H Hydrogen
N Nitrogen
Na Sodium

K / K⁺ Potassium / Potassium ion

Ca Calcium

Mn Manganese

Mg Magnesium

KCl Potassium chloride

K₂SO₄ Potassium sulfate

KOH Potassium hydroxide

K₂CO₃ Potassium carbonate

Greek letter

 β Heating rate (K min⁻¹)

Symbols

 T_i Initiation temperature (°C) at 5% weight loss T_p Peak temperature corresponding to DTG_{max} (°C)

 W_R Residual weight at 850°C (wt%)

T onset hc Onset temperature of hemicelluloses (°C)

T_{shoulder} Maximum degradation temperature of hemicelluloses (°C)

 $T_{offset\ c}$ Final degradation temperature of cellulose (°C)

Cr_I Crystallinity index (%)

 I_{002} Maximum intensity peak at the crystalline plane between 21° and 23° (a.u.) I_{am} Minimum intensity at the amorphous plane between 17° and 20° (a.u.)

alternatives to conventional fossil fuels. The primary purpose of renewable energy is to limit the negative environmental impact of burning fossil fuels (Manzano-Agugliaro et al., 2013). Choosing wood energy over fossil fuel can effectively cut CO₂ emissions and is a potential solution for global warming mitigation (Sulaiman et al., 2020). It is mainly valorized in combustion in suspension-fired boilers (Yin, 2020). However, boilers face technical issues when operating with biomass, among which is biomass's difficult and energy-consuming grinding (Bashir et al., 2012). Furthermore, using biomass in boilers results in high particle matter emissions and other technical issues such as biomass transportation cost, particle size heterogeneity, and differences in properties compared to coal (Gil and Rubiera, 2019; Sippula et al., 2017). Therefore, despite its many advantages, bioenergy still requires extensive and unbiased optimizations to overcome its limitations (Aghbashlo et al., 2022).

Torrefaction is a thermochemical conversion process where biomass is heated in an inert atmosphere at 200–300 °C. It effectively upgrades biomass and improves solid biofuel quality, also known as biochar (Chen et al., 2021a, 2015). It is recommended as an effective pretreatment for biomass use in the energy sector (Brachi et al., 2021). Torrefaction

can effectively reduce the moisture content and the atomic ratios of O/C and H/C. Furthermore, it lifts wood's calorific properties and improves grindability (Chen et al., 2021b; Yek et al., 2021). Torrefied wood can also be used for construction without the detrimental effects of using toxic chemicals to make it withstand environmental conditions (Haloni and Vergnaud, 1997). Consequently, torrefied wood can be used for construction first, and then instead of being discarded at the end-of-life, it could be used for heat/power generation. Energy conversion processes generate waste heat between 200–300 °C, which can be recovered and used for torrefaction, thus achieving a sustainable cycle (Chen et al., 2022a).

Biomass thermal decomposition characteristics change during torrefaction and pyrolysis (Li et al., 2023). The variance depends on its three main components: hemicelluloses, cellulose and lignin (Ong et al., 2021). Hemicelluloses are a group of saccharides, including xylose, glucose, galactose, etc. They are amorphous and contain branches that allow them to be degraded at a low-temperature range of 220–315 °C. Cellulose is a long glucose polymer, ordered and semi-crystalline, containing crystalline and amorphous forms. It has more substantial thermal stability and is degraded in a temperature range of 315–400 °C. At the same time, lignin has a complex structure, full of aromatic bonds with branches. Therefore, it has a broad degradation range of 100–900 °C (Yang et al., 2007; Yu et al., 2017). The polymers are linked through hydrogen bonds, covalent linkages, etc. (Jin et al., 2006).

Wood's composition also includes minerals that influence the thermal degradation mechanisms (Dai et al., 2019). Five of them were proven to have the highest impact on biomass pyrolysis: Na, K, Ca, Mn, and Mg (Aho et al., 2013). Studies on organically bonded minerals determined that K and Na had the most dominant effect on torrefaction by increasing the weight loss between 240 °C and 280 °C (Khazraie Shoulaifar et al., 2016; Mahadevan et al., 2016). Additionally, even tiny quantities of these two minerals (0.1 wt%) will suppress levoglucosan formation. In contrast, Mg, Ca, and Mn had less influence (Khazraie Shoulaifar et al., 2016; Mahadevan et al., 2016). Potassium is a mineral with a nutritive role essential for plant growth (Fromm, 2010) and is in the form of an ion (K⁺) in the greenwood, which could be mobile or attached to some functional groups, or as dissolved salts (Yu and Zhang, 2001). Once dried, potassium ion in wood makes linkages that form salts such as K₂CO₃, KOH, KCl, and K₂SO₄ (van Lith et al., 2008). Zhang et al. (2019) compared the effects of potassium and magnesium on the products at torrefaction temperatures below 270 °C. They reported that potassium increased the carbon content in solids due to deoxygenation. Both K and Mg promoted the formation of small-molecule gases by catalyzing the decomposition of larger liquid molecules, with K being the dominant catalyst.

In pyrolysis, potassium inhibits the formation of levoglucosan, and therefore, the interaction of potassium and cellulose leads to more stable products instead of tar formation (Nishimura et al., 2009; Wang et al., 2010). On an industrial scale, tar is an undesired byproduct of torrefaction, and its removal is necessary to avoid clogging pipes and decreasing the unit's failure rates (Chen et al., 2021c; Rabou et al., 2009). The potassium remaining in the char catalyzes combustion, achieving a higher carbon burn-out conversion (Jones et al., 2007). The potassium that remains in the char acts as a base catalyst and promotes ring-opening (Ryu et al., 2020). In addition, the produced biochar is highly porous and is efficient for soil amendment (Ajeng et al., 2020; Ray et al., 2021) and mercury capture in flue gas (Čespiva et al., 2023). When enriched with potassium, biochar can be valorized as a natural fertilizer essential for plant growth (Fachini et al., 2022; Seo et al., 2022). On an industrial scale, tar removal is necessary to avoid clogging pipes and decreasing the unit's failure rates (Rabou et al., 2009). Furthermore, Di Blasi et al. (2017, 2018) reported that potassium improves the exothermic reactions during pyrolysis in a packed bed and leads to a beginning of a self-sustainable process.

Potassium is a key factor in combustion since it increases decomposition kinetics and changes the products' composition, implying an alteration in the reaction mechanism. It causes heterolytic ring fission and cracks reactions that favor char production and low molecular weight products over furans and levoglucosan (Nowakowski et al., 2007; Patwardhan et al., 2010). The potassium remaining in the char catalyzes combustion, achieving a higher carbon burn-out conversion (Jones et al., 2007). Subsequently, the produced biochar is enriched in minerals and carbon that can be valorized for soil amendment (Chia et al., 2014). However, the volatilization of potassium risks increasing the slagging behavior and corrosion of the equipment (Nutalapati et al., 2007; Wang et al., 2017). Therefore, depending on the desired application, lower heating rates and operating at temperatures between 750–850 °C are recommended to avoid volatilization of K (Hu et al., 2019; Lee et al., 2022). These temperatures are considered optimal to safely benefit from the improvements provided by K-catalyzed thermochemical conversion processes (Wu et al., 2011).

Different torrefaction performances vary with the composition and K⁺ content variability between wood species. The literature found a duality in the role of potassium where at low temperatures (torrefaction), it catalyzes the wood's degradation (Yang et al., 2006; Zhao et al., 2020), and at higher temperatures (pyrolysis), it favors char formation (Wang et al., 2022; Wongmat and Wagner, 2022). The area between the two effects remains ambiguous and needs exploring. Due to the stated inconsistent factors, it is desired to predict the torrefaction behavior and understand the factors that lead to the varying behavior of potassium. Therefore, this study aims to better understand the influence of potassium on wood torrefaction and lignocellulosic components. It explores the effects of torrefaction duration, temperature, and chemical composition on thermodegradation kinetics. The objective is to help optimize torrefaction as a pretreatment for power or heat generation by providing a deeper understanding of the reaction mechanisms.

2. Materials and methods

2.1. Sample preparation

The selected wood species for this study was Beech wood (Fagus sylvatica) since it is abundant but has limited applications in the French market. It was obtained from Vosges region in France (Vosges PromoBois sawmill). The cellulose

source used was Whatman Ashless filter paper, d = 42.5 mm. It consisted of high purity α -cellulose (>99%) and was used in the literature to represent wood's cellulose (Khazraie Shoulaifar et al., 2016; Nishimura et al., 2009). Beech xylan (Sigma Aldrich) was selected for the hemicelluloses existing in beech (Macedo et al., 2018; Shen et al., 2020), and lignin was obtained from Domtar Corporation, USA.

According to a procedure commonly adopted in the literature, potassium was inserted into the biomass through chemical impregnation using K_2CO_3 (Khazraie Shoulaifar et al., 2016; Nishimura et al., 2009). The potassium carbonate K_2CO_3 employed was obtained from Sigma Aldrich with 99.99% purity. Based on the literature, carbonate had the slightest effect on torrefaction among various salts used for impregnation, while the cation in alkali metals is believed to be the main catalyst of biomass (Patwardhan et al., 2010; Yang et al., 2006). As a consequence, the dominant impact observed in the experiments corresponds to K^+ .

The impregnation solutions were prepared by dissolving K_2CO_3 with deionized water according to the desired concentrations (0.004, 0.008, and 0.012 M). The samples were labeled according to the K_2CO_3 concentration. Dry powdered beech wood, cellulose, xylan, and lignin samples were potassium-impregnated. The beech wood blocks were ground to powder using a knife-mill SM100 (*Retsch*, *Germany*) equipped with trapezoidal meshes of 0.5 mm. The samples were impregnated by mixing 2 g of oven-dried samples with K_2CO_3 solution using a mixing ratio of 10 mL g^{-1} . The mixture was stirred for 1 h at ambient conditions before being filtered using Büchner vacuum filtration. The sample was then placed in the oven at 60 °C until weight stabilization. Since xylan was difficult to filter, it was immediately dried in the oven following the impregnation.

2.2. Physicochemical characterization

The proximate analysis of raw beech was obtained on an anhydrous basis in accordance with ISO-18122 (NF EN ISO 18122, 2015a), ISO-18123 (NF EN ISO 18123, 2015b), and ISO-18124 (NF EN ISO 18134, 2022) respectively, for the ash, the volatile matter (VM), and moisture content (MC). The fixed carbon (FC) was calculated by difference (FC = 100 - ash - VM - MC). Each measurement was performed in triplicate, and the average value was computed along with its standard deviation: $\sqrt{\frac{\sum (X-X_{00})^2}{n}}$; where X is the value measured (wt%), X_{av} is the average value (wt%), and n is the number of trials. The elemental composition of the raw beech was determined using a *PerkinElmer 2400 Series II CHNS/O* elemental analyzer performed on a dry-ash-free basis. The percentages of hydrogen (H), carbon (C), and nitrogen (N) were experimentally obtained and represented as an averaged value of the triplicate with a standard deviation. The oxygen (O) content was obtained by difference (O = 100 - (C + H + N)).

The chemical composition of beech was obtained using NREL/TP-510-42619 (NREL/TP-510-42619, 2005) for the extractives and the Klason method NREL/TP-510-42618 (NREL/TP-510-42618, 2012) for the lignin. After complete delignification, the wood is heated, and holocelluloses are extracted using sodium chlorite and acetic acid solutions, followed by an alkaline attack with sodium hydroxide to acquire the α -cellulose eventually. The higher heating value (HHV) for solid fuel was determined using ISO-18125 (NF EN ISO 18125, 2017). In brief, it consists of packing 0.5 g of the sample into a pellet placed in the bomb calorimeter (*Parr 6100 Calorimeter*) filled with pure oxygen. The sample is combusted in the bomb, and the equipment computes the HHV directly. The potassium content in the raw and K-impregnated beech samples was determined by inductively coupled plasma optical emission spectroscopy (*ICP-AES 720/725 Agilent*) using 200 mg of sample (\pm 0.5 mg) that was mineralized before the measurement.

2.3. Thermogravimetric analysis

2.3.1. Torrefaction

A thermogravimetric analyzer was used to analyze the wood's thermodegradation according to a specific temperature profile. A high-precision thermobalance tracks the sample's mass evolution according to the treatment duration and temperature. The *Mettler Toledo TGA-2* was operated with an inert gas (N_2) flow of 100 mL min⁻¹. The ground samples were oven-dried for 24 h at 105 °C. Then 5 mg of the sample was loaded in an alumina crucible in the thermogravimetric analysis (TGA) machine. The system was heated with a heating rate of $\beta = 20$ K min⁻¹ from 50 to 105 °C. Then it was held at this temperature for 30 min to remove moisture, followed by heating the sample to each of the desired torrefaction/pyrolysis temperatures (250, 300, and 380 °C) with the same heating rate. After reaching the desired temperature, it was held for 2 h. The purpose of the isothermal step was to observe the change in the degradation kinetics with potassium. Finally, the sample was pyrolyzed to 850 °C using the same heating rate of 20 K min⁻¹. The time derivative of the TGA curve was calculated and plotted as the differential thermogravimetric (DTG) curve. The TGA curves were duplicated, and a low relative error (<2 wt%) was obtained, showing repeatable results.

2.3.2. Pyrolysis

Pyrolysis experiments were also performed, heating the sample with a constant heating rate. The purpose of this experiment was to observe in detail the decomposition of lignocellulosic components with increased potassium concentration. The pyrolysis experiments were conducted similarly to the torrefaction until the moisture removal step. Then the temperature was increased from 105 to 850 °C with a heating rate of $\beta = 10$ K min⁻¹ (El-Sayed and Khairy, 2015; Pan et al., 2015) or $\beta = 20$ K min⁻¹ (Bach and Chen, 2017; Lu et al., 2013). The higher heating rate is used to obtain

a sharper peak intensity, and the lower one is chosen to observe better the separation of the curves (larger peaks). The experiments were performed on beech wood (raw and potassium impregnated). In addition to TGA and DTG curves, the second derivative (DTG") was also calculated to determine each biopolymer's more precise decomposition range. Through the DTG" the exact temperature corresponding to the hemicelluloses shoulder could be determined, as well as the temperature of the end of the celluloses degradation/ main lignin decomposition. The experiments were triplicated with a relative error below 2%, and the average curves were elaborated.

2.4. Chemical analysis

2.4.1. Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy (FTIR) was utilized to qualitatively investigate the effect of potassium impregnation on the chemical structure of beech and its constituents. Using a Nicolet iS10 spectrometer equipped with an attenuated total reflectance (ATR) device, the FTIR spectra were obtained for the raw and impregnated samples of beech, cellulose, xylan, and lignin. All spectra were normalized according to the CH stretch at 2900 cm⁻¹ (Gonultas and Candan, 2018). The obtained spectra are an average of 32 scans per sample.

2.4.2. X-ray diffraction

An Empyrean Malvern PANalytical Powder X-ray Diffractometer was used to obtain the diffraction patterns of raw and impregnated wood samples. Powder X-ray diffraction was measured between 5° and 60°. The patterns reported correspond to the average of 10 diffractograms per sample. Each measurement was performed in triplicate, and the average value was recorded with its standard deviation.

Different methods exist to determine the crystallinity index, all of which pivot around the same principle of finding the amorphous-to-crystalline ratio (Šoštarić et al., 2020; Wang et al., 2013). In this article, the crystallinity index was calculated according to the Segal Empirical Method (Eq. (1)) since it takes into account each curve's intensity peaks (Chen et al., 2022b):

$$Cr_I = \frac{I_{002} - I_{am}}{I_{002}} \times 100 \tag{1}$$

where Cr_I is the crystallinity index in %, I_{002} is the maximum intensity peak at the crystalline plane between 21° and 23°, I_{am} is the minimum intensity at the amorphous plane between 17° and 20°.

3. Results and discussion

3.1. Physicochemical properties

The properties of raw beech wood are shown in Table 1. The chemical composition obtained for the beech is comparable to the literature, where cellulose is the most abundant component (Bodîrlău et al., 2008; Candelier et al., 2013). To check the efficiency of the impregnation process, the K content in the different samples measured by the ICP-AES is also presented in Table 1. The results show a consistent increase of the potassium content in wood with the increased K₂CO₃ concentration in the impregnating solution. Potassium was increased more than 3 times its original content, ranging from 0.101 wt% in the raw beech sample to 0.310 wt% in the 0.012 M sample. The impregnation efficiency was different for each lignocellulosic component. It can be seen that xylan has the most K because it was not filtered after impregnation. The differences in K content after impregnating each lignocellulosic component can be attributed to the differences in molecule structure and powder texture.

3.2. Torrefaction

The thermogravimetric analysis of beech (TGA and DTG) during torrefaction is presented in Fig. 1. For the torrefaction at 300 °C, potassium had a significant role in the thermodegradation of the biomass (Fig. 1 b). By increasing the potassium content from the raw beech to 0.012 M, the weight decreased by 8.47% at the same time (82 min). The curves met at the same point around the end of the isothermal plate, corresponding to a solid yield of 32–34 wt%. After the intersection, the potassium that previously catalyzed the wood degradation increased char formation. The double roles of potassium were reported by Yang et al. (2006), stating that at temperatures lower than 315 °C, potassium addition increased weight loss, while above 315 °C, it produced more char. Nevertheless, the results found in this study demonstrated that the treatment duration was also responsible for the observed effects of potassium. The reaction time and temperature were reported to influence torrefaction strongly (Trubetskaya et al., 2017). Therefore, it was reasonable that the impact of potassium on the torrefaction also depended on these two variables.

At 250 °C torrefaction (Fig. 1a), the K-impregnated samples did not differ significantly from the raw biomass. Yet it still catalyzed the degradation reactions of the wood to some extent during the isothermal step. Then, during the pyrolysis step, the curves intersected and inverted at 380 °C. This result clearly shows the two distinct roles of potassium in the different stages of thermal degradation. Moreover, potassium addition promoted char formation in the samples treated

 Table 1

 Beech wood and lignocellulosic components properties.

Material	Beech wood		
Proximate analysis (wt% anhydrous basis)			
Ash	$0.59 (0.06)^{a}$		
Volatile matter (VM)	77.49 (0.02)		
Moisture content (MC)	3.71 (0.12)		
Fixed carbon (FC) (by difference)	18.21		
Elemental analysis (wt% dry-ash-free basis)			
C	55.66 (1.83)		
Н	6.10 (0.10)		
N	0.55 (0.06)		
O (by difference)	37.69		
Chemical composition (wt%)			
Cellulose	47.27 (0.85)		
Hemicelluloses	23.04 (0.74)		
Lignin	23.7 (0.25)		
Extractives	2.67 (0.27)		
$HHV (MJ.kg^{-1})$	18.5 (0.2)		
K (wt%) anhydrous basis			
Beech wood			
Raw	0.101		
0.004 M	0.176		
0.008 M	0.230		
0.012 M	0.310		
Cellulose			
Raw	0.001		
0.004 M	0.155		
0.008 M	0.162		
0.012 M	0.248		
Xylan			
Raw	0.020		
0.004 M	0.369		
0.008 M	0.631		
0.012 M	0.965		
Lignin			
Raw	0.101		
0.004 M	0.237		
0.008 M	0.421		
0.012 M	0.561		

^aStandard deviation.

at 380 °C for 2 h (Fig. 1c). After reaching the isothermal step at 380 °C (approximately 49 min), the char yield increased by 3.3 wt% from the raw to 0.012 M sample, stemming from polycondensation (Safar et al., 2019). The conversion of monomers and oligomers catalyzed by potassium increases the production of char and volatiles (Szabó et al., 1996).

In addition, for all the torrefaction temperatures, the curves intersected at the same point (32–34 wt% remaining). Under these conditions, most hemicelluloses and cellulose are degraded, leaving a relatively higher lignin content (Safar et al., 2019). The effect of potassium may depend on the wood's chemical composition. After a specific lignin content, potassium either inhibits thermal degradation or alters the reaction mechanism. It is speculated that in a sample where lignin becomes the dominant component, lignin-K interactions promote deoxygenation reactions, favoring the formation of highly aromatic products (char). This result conforms with the study of Saleh et al. (2013), stating that torrefaction of samples rich in lignin produced more char when adding potassium. This impact could be attributed to multiple phenomena: (1) For wood particles larger than 0.2 mm, the tars that are produced during the heating lead to secondary reactions that result in char formation (Trubetskaya et al., 2017), (2) potassium could impact the interactions between lignin and the other biopolymers or their byproducts leading to subsequent reactions that promote char formation (Wang et al., 2022), (3) K_2CO_3 in lignin, leads to the cleavage of β -O-4 bonds into G-type aromatic compounds resulting in depolymerization into small molecular weight phenols that undergo oligomerization that results in char formation (Toledano et al., 2014; Zhang et al., 2020).

The TGA of the separate wood components (Fig. 2) displayed that the presence of potassium changed the degradation behavior of cellulose and hemicelluloses. The temperature of maximum degradation (attributed to cellulose decomposition) corresponding to the DTG peak (Fig. 2 b) shifted from 300 °C to around 280 °C, comparable to that of hemicelluloses (Fig. 2a). This phenomenon is consistent with the literature (Szabó et al., 1996; Yang et al., 2006) that found an overlap between cellulose and hemicellulose peaks with the addition of K_2CO_3 . Close similarities in the obtained TGA and DTG profiles of cellulose were reported in the literature (Macedo et al., 2018). Therefore, reducing the temperature of the maximum degradation of wood (Fig. 1) could be partially attributed to the effect of potassium on cellulose that shifts the DTG peak to a lower temperature/time.

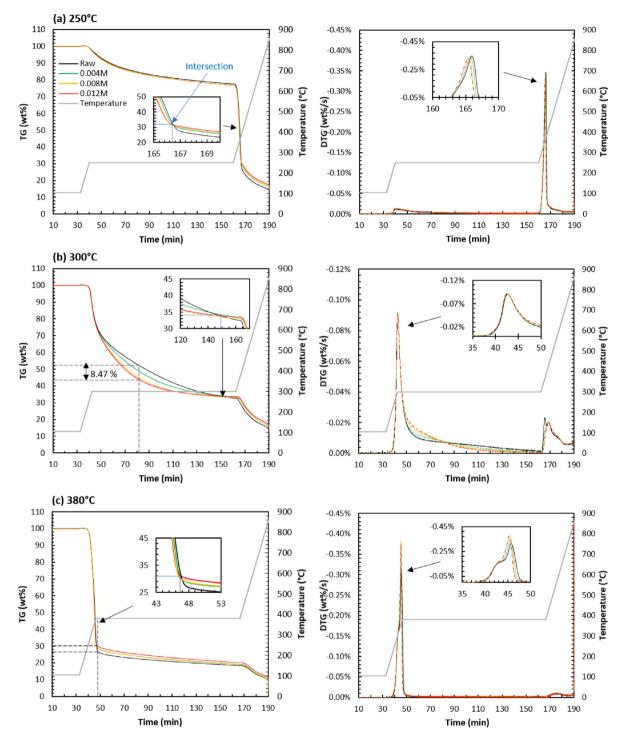


Fig. 1. TGA and DTG of beech samples with different potassium contents during torrefaction at 250 °C (a), 300 °C (b), and 380 °C (c).

The torrefaction at 300 °C of potassium-impregnated xylan (Fig. 2c–d) increased the char yield which coheres with the results of Khazraie Shoulaifar et al. (2016) using galactoglucomannan as hemicelluloses. However, Macedo et al. (2018) stated that potassium had a negligible effect on xylan. As for lignin, the TGA (Fig. 2e) and DTG (Fig. 2f) showed unimportant variations with impregnation. Shen et al. (2020) noted that the catalyzing effect of potassium compounds on lignin decomposition was insignificant. The insignificant variations could result from isolating the lignin as a separate component. The lignocellulosic components interact mostly with lignin (Yu et al., 2017). For instance, lignin interacts with

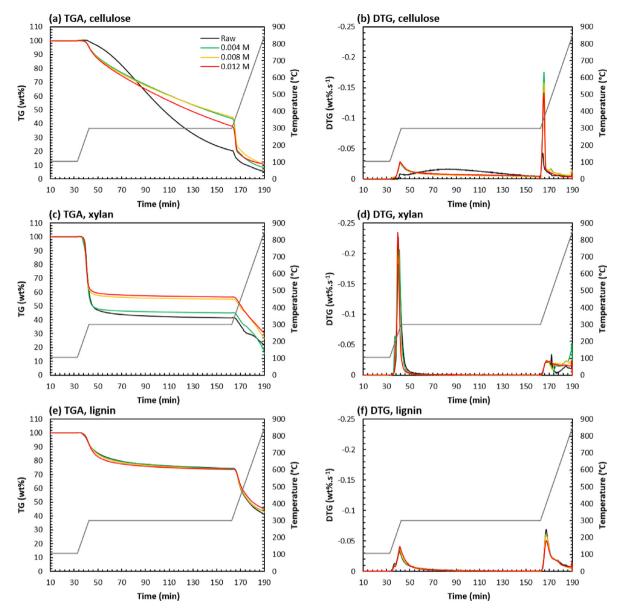
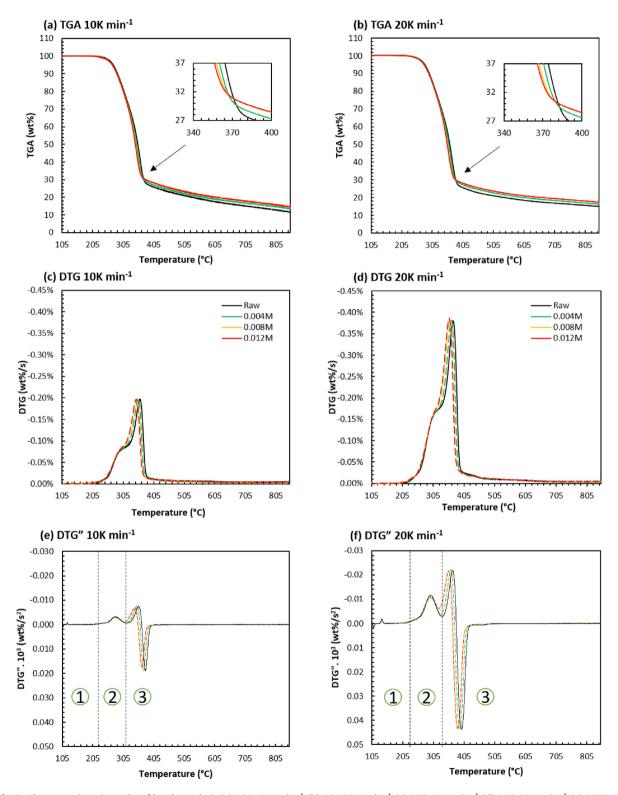
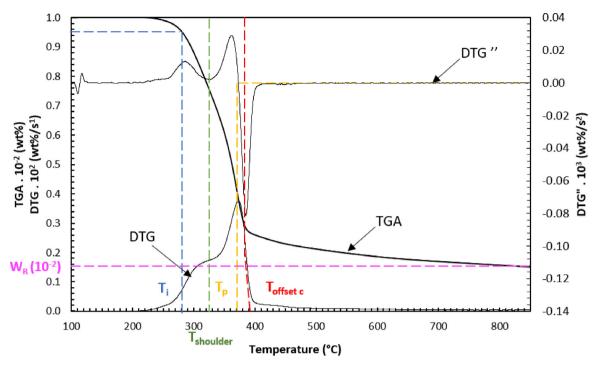



Fig. 2. TGA (a,c,e) and DTG (b,d,f) of lignocellulosic components torrefaction at 300 °C.


cellulose during thermal treatment, inhibiting levoglucosan's polymerization (Hosoya et al., 2007). Therefore, potassium could be acting on some of the lignin's interactions which go unnoticeable when analyzing lignin by itself. Moreover, Shen et al. (2020) reported that the degradation of xylan and cellulose is onset earlier for the K-rich samples. It correlates with the study of Lin et al. (2021) suggesting that potassium initiates the degradation of hemicelluloses at lower temperatures. Guo et al. (2016) developed a model for the degradation of wood during pyrolysis with potassium impregnation. The study reported that the potassium accelerated hemicellulose decomposition in the initial stage of pyrolysis and intensified cellulose degradation in the main stage.

3.3. Pyrolysis

The TGA results (Fig. 3a-b) confirm that the intersection occurs at one point (\sim 31wt%), regardless of the heating rate and the intersection temperature: 370 °C for 10 K min⁻¹ and 380 °C for 20 K min⁻¹. This point reinforces the supposition that the chemical composition of wood contributes to the change of potassium's role from catalyzing weight loss to facilitating char formation. Like torrefaction, adding potassium to the samples shifted the DTG peaks (Fig. 3c-d) towards lower temperatures and reduced the hemicellulose shoulder. The DTG" (Fig. 3e-f) followed the same profile as DTG,

Fig. 3. Thermogravimetric results of beech pyrolysis (a) TGA 10 K min⁻¹ (b) TGA 20 K min⁻¹ (c) DTG 10 K min⁻¹ (d) DTG 20 K min⁻¹ (e) DTG" 10 K min⁻¹ (f) DTG" 20 K min⁻¹. Section 1 is the moisture removal zone, 2 is the main zone of hemicelluloses decomposition, and Section 3 consists of cellulose decomposition (peak) and lignin degradation (trough).

Fig. 4. Thermogravimetric parameters determination. The principal y-axis corresponds to TG (10^{-2} wt%) and DTG (10^{2} wt%. s^{-1}), the x-axis is the temperature, and the secondary y-axis is DTG" (10^{3} wt%. s^{-2}).

Table 2Thermogravimetric parameters evolution with the increase of potassium concentration during pyrolysis at two heating rates.

β (K min ⁻¹)	Sample	T_i (°C)	$T_p(^{\circ}C)$	W_R (wt%)	$T_{shoulder}$ (°C)	$T_{offsetc}$ (°C)
10	Raw	272.8	359.8	11.6	323.3	378.2
	0.004 M	270.1	354.0	13.6	308.8	372.7
	0.008 M	269.8	350.0	14.7	300.3	369.6
	0.012 M	269.3	348.3	14.6	301.0	367.4
20	Raw	281.3	370.3	15.1	322.0	389.8
	0.004 M	279.7	364.3	16.3	316.3	384.5
	0.008 M	278.0	359.3	17.5	313.7	379.7
	0.012 M	278.0	356.7	17.4	312.3	378.3

where the main cellulose decomposition zone (3) was primarily impacted by the increase of K content. The peaks moved to lower temperatures towards the range of hemicelluloses degradation (2) for both heating rates used. The effect was more prominent for the higher heating rate $\beta=20$ K min⁻¹. The shift validates that the celluloses degrade at lower temperatures with potassium, as seen in torrefaction.

The pyrolysis parameters representing the evolution of the degradation of wood and lignocellulosic components were determined according to Fig. 4, and the values are presented in Table 2. The initial temperature (T_i) is measured after 5 wt% conversion, representing the initiation of pyrolysis linked to hemicelluloses degradation. The peak temperature (T_p) is the maximum degradation temperature at DTG_{max} (inflection point in DTG"). The weight residue (W_R) is defined as the weight of the sample remaining at the end of the pyrolysis; in this case it is at 850 °C (Guo et al., 2016; Zhou et al., 2013). From the DTG" the following parameters were deduced: $T_{shoulder}$ is the temperature of the maximum hemicelluloses degradation determined by the local minimum between the two peaks. $T_{offset\ c}$ corresponds to the temperature dominated by the final phase of cellulose decomposition obtained by extrapolating the minimum of DTG" and forming a slope with 0 of the DTG axis (Grønli et al., 2002).

As expected, potassium catalyzed the wood degradation in the first stage, where T_i decreased by 3 °C with an almost equal temperature between 0.008 and 0.012 M. This indicates that a certain concentration of potassium (0.008 M) was required to weaken hydrogen bonds, after which the glycosidic linkage can be broken (Chen et al., 2022c). Beyond 0.008 M (0.230 wt% K), potassium's impact on T_i remains constant, which suggests a saturating effect of the catalytic action of K on T_i . With the DTG", a differentiation between the overlapping peaks of hemicelluloses and celluloses decomposition was possible. The main degradation of hemicelluloses occurred between 300 and 323 °C, while that of celluloses was between 378 and 390 °C. The tangible effect of potassium on triggering hemicellulose degradation was shown in $T_{shoulder}$ where it

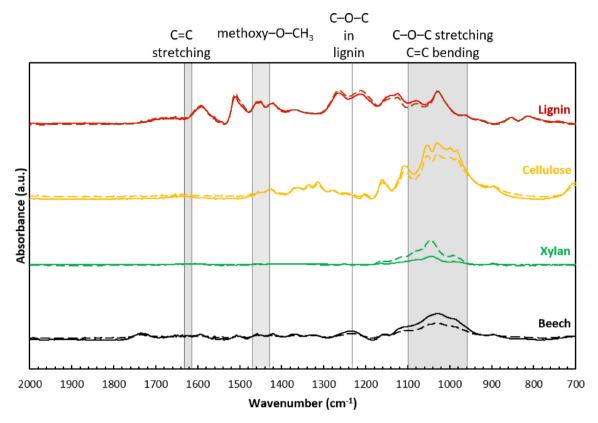


Fig. 5. FTIR spectra of beech, xylan, cellulose, and lignin. The continuous line is the raw sample, and the dashed one is the 0.004 M sample.

was remarkably reduced, especially at the lower heating rate (Lin et al., 2021), thus highlighting the efficiency of high K content to operate at lower temperatures during torrefaction/pyrolysis. For both heating rates, increasing potassium from raw to 0.012 M decreased T_p (mainly attributed to the degradation of cellulose) by 11 and 14 °C, respectively, for $\beta = 10$ K min⁻¹ and 20 K min⁻¹.

Opposingly, W_R increased with potassium, which agrees with the literature (Persson and Yang, 2019). With the addition of K from the raw to 0.012 M, W_R increased more for the lower heating rate (25.86% increase) than the higher one (15.23% increase). This correlates with the study of Trubetskaya et al. (2017), which reported that potassium alters the activation energy for char production, especially at a lower heating rate. Zhou et al. (2017) found that adding potassium salts decreased T_p and increased W_R . This behavior was attributed to potassium facilitating the ring-opening reactions and glycosidic link breaking. Potassium possibly increased the char yield by modifying pyrolytic reaction pathways. It could promote polymerization reactions involving alkene intermediates via the ionic mechanistic route (Evans and Milne, 1987). Saddawi et al. (2012) reported a linear fit trend for char increase with the addition of potassium acetate. However, the regression coefficient was 0.55. Moreover, they stated that the apparent reaction rate of willow pyrolysis reached a saturation point at 4 wt% (K) due to the fulfillment of all active sites. In this study, at 0.012 M, W_R became almost equal to that of 0.008 M, which complies with the saturating effect stated in the literature. However, the linear regression of W_R as a function of K content had a higher R^2 coefficient of 0.80 and 0.83, respectively, for $\beta = 10$ K min⁻¹ and $\beta = 20$ K min⁻¹. It can be assumed that the potassium bonds to carboxylic groups during torrefaction and facilitates their degradation (Khazraie Shoulaifar et al., 2012). However, after a certain concentration in wood, K bonds to phenolic and carboxylic groups in lignin, that are harder to degrade during torrefaction (Khazraie Shoulaifar et al., 2016).

Since cellulose is degraded at higher temperatures, the two heating rates had the same effect on its degradation. Hence, $T_{offset\ c}$ was reduced by 11 °C from raw to 0.012 M according to the torrefaction experiments and the literature (Silveira et al., 2022; Wang et al., 2010).

3.4. Fourier transform infrared spectroscopy

In the FTIR spectra displayed in Fig. 5, potassium led to minor modifications of the wood's chemical structure and some of its biopolymers at ambient conditions. Therefore, the impact of potassium occurs with increasing temperature during torrefaction and pyrolysis (Sections 3.2 and 3.3). As observed in Fig. 5, lignin displays signals corresponding to

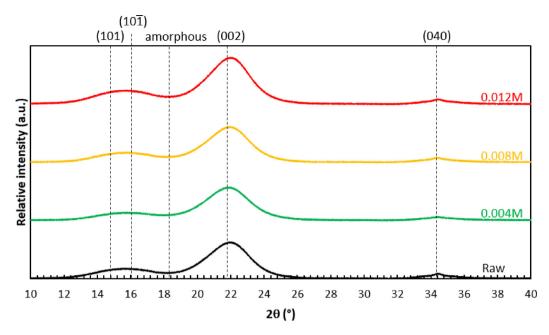


Fig. 6. XRD spectra and crystallographic planes of beech.

C-O-C (1232 cm⁻¹), methoxy-O-CH₃ (1470–1430 cm⁻¹), and aromatic C=C stretch (1632–1613 cm⁻¹) characteristic of its complex structure (Yang et al., 2007). According to the FTIR results, potassium impregnation had little to no impact on the lignin structure.

The K increased slightly influences cellulose, xylan, and beech in $1150-920 \, \mathrm{cm}^{-1}$. The band at $1100 \, \mathrm{cm}^{-1}$ is attributed to the glycosidic symmetric vibrations of C-O-C in cellulose and hemicelluloses (Moosavinejad et al., 2019; Yang et al., 2020). The results indicated a minor degradation of cellulose due to the impregnation, possibly associated with the removal of amorphous domains. Potassium can interact with the glycosidic bonds of cellulose at ambient conditions and facilitates their cleavage during torrefaction, as stated in Section 3.2. The decreased peak intensity with potassium in the range $1200-900 \, \mathrm{cm}^{-1}$ indicates a possible limitation of the production of large molecular volatiles with the addition of K_2CO_3 (Liu et al., 2008). The peak intensity decreased in beech since its main component was cellulose (Table 1). However, the band at $1120 \, \mathrm{cm}^{-1}$ increased with potassium for xylan, possibly because the impregnation dissolved some amorphous branches in the sample. Moreover, the drying could have led to partial C-O-C degradation and condensation.

3.5. X-ray diffraction

Native cellulose in wood has four dominant crystalline planes (101, $10\overline{1}$, 002, and 040) observable in XRD patterns. Wood cellulose also has an amorphous part corresponding to the local minimum between two peaks (Park et al., 2010; Popescu et al., 2011). The four crystalline planes correlating with literature were identified (Fig. 6) with two peaks overlapping between 15.44° and 15.91°, attributed to (101) and (10 $\overline{1}$), 21.9° and 21.98° (002), 34.34° and 34.52° (040). The amorphous plane was distinguished at $2\theta = 17.99^{\circ}$ –18.32°.

The crystallinity index of beech varies between 86.8% (3.3%) for the raw sample and 85.5% (1.9%) for the 0.012 M sample. The change in crystallinity of wood with the addition of K_2CO_3 is below 2% and therefore is not considered significant. Therefore, the cellulose structure is not severely altered under the applied experimental conditions and using K_2CO_3 for impregnation. The impregnation with potassium does not impact the thermal degradation profile at torrefaction temperatures lower than $450\,^{\circ}C$ (Wang et al., 2013). Some sources in the literature reported a rise in biomass crystallinity after alkaline treatment, where the crystalline structure of the treated sample became more ordered than the control. However, the overall thermal stability of the biomass decreased with the alkali impregnation (Šoštarić et al., 2020; Xu et al., 2020).

4. Conclusions and prospects

The torrefaction experiments showed that potassium had two effects on wood's thermal degradation. Potassium had a significant impact on the torrefaction at 300 °C, in which it catalyzed the degradation of the sample. Though after 34% mass remaining, potassium promoted char production, possibly by breaking the glycosidic bonds and cleaving hydrogen bonds. It reduced the temperature of maximum degradation of cellulose due to the action of K^+ in weakening the hydrogen

bonds. It also acted on the thermal decomposition of hemicelluloses by increasing char production. However, lignin was difficult to degrade, and the addition of potassium had little effect.

Pyrolysis experiments were conducted to observe detailed changes in the main degradation parameters. The addition of potassium triggered the thermal degradation of biomass at lower temperatures. Potassium acted by effectively reducing the peak temperature of beech, in which the degradation was at its highest level due to the promoted decomposition of cellulose and hemicelluloses. A saturating potassium concentration in biomass seemed to exist, after which the effect of potassium on the initiation temperature and the char yield was limited. This concentration was optimal for an efficient catalyzing role of potassium. From FTIR and XRD, potassium did not alter wood's crystallinity or structure, including its constituents at ambient conditions.

Based on the results obtained, the catalytic effect of potassium depends on the torrefaction temperature, duration, and chemical composition. Until now, the temperature was believed to be the only parameter that causes the duality in potassium's effect. This study demonstrates that after reaching a specific composition, potassium starts to improve char production, thus switching from the effect observed during torrefaction to the effect observed during pyrolysis, even when keeping the temperature constant.

By apprehending the impact on the individual components, a systematic relationship to the whole biomass will be possible. Potassium impregnation could be a solution to enhance the properties of biomass that facilitate the grinding and reduce the operating cost. Based on the intended use of wood, the species should be selected according to potassium content and chemical composition. High potassium content with lower lignin content reduces operating time and temperature during torrefaction, thus reducing the cost. Furthermore, the produced char is high in potassium salts, which are nutrients for soil, and could be consequently used as fertilizers.

In industry, wood boards are used; therefore, potassium's effect on wood's torrefaction should be tested on a larger scale using wood boards instead of powder. When changing the scale, the impregnation might be less efficient, and the thermal degradation profile may differ. Moreover, the study only uses small quantities of wood and therefore does not take into account the exothermic reactions that could be more visible for large samples. Therefore, future studies should be performed using wood boards to understand better the efficiency of the K-impregnation and torrefaction in industrial conditions. Moreover, a techno-economic analysis should be done to evaluate the feasibility of the process with the time/temperature gain compared to the expenses related to the impregnation. Future works should also look into the possible changes in char properties after potassium impregnation.

CRediT authorship contribution statement

Larissa Richa: Formal analysis, Methodology, Validation, Writing – original draft. **Baptiste Colin:** Conceptualization, Project administration, Supervision, Writing – review & editing. **Anélie Pétrissans:** Conceptualization, Funding acquisition, Project administration, Supervision, Writing – review & editing. **Ciera Wallace:** Data acquisition, Methodology. **Allen Hulette:** Data acquisition, Methodology. **Rafael L. Quirino:** Validation, Writing – review & editing. **Wei-Hsin Chen:** Funding acquisition, Validation, Formal analysis, Investigation, Writing – review & editing. **Mathieu Pétrissans:** Funding acquisition, Project administration, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the financial support under the program ANR-11-LABEX-0002-01 (Lab of Excellence ARBRE) in France, the National Science Foundation (NSF), USA under the grant NSF-IRES 1952402 (I-CEMITURE (International-CEMITURE)) awarded by the NSF Office of International Science and Engineering (OISE), Georgia Southern University USA; Thomas Jefferson Fund of the Embassy of France in the United States and the FACE Foundation, United States. The authors also acknowledge the financial support of the National Science and Technology Council, Taiwan, R.O.C., under the contract MOST 109-2221-E-006-040-MY3 for this research.

References

Aghbashlo, M., Hosseinzadeh-Bandbafha, H., Shahbeik, H., Tabatabaei, M., 2022. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 9 (3), 1697–1706. http://dx.doi.org/10.18331/BRJ2022.9.3.5.

Aho, A., DeMartini, N., Pranovich, A., Krogell, J., Kumar, N., Eränen, K., Holmbom, B., Salmi, T., Hupa, M., Murzin, D. Yu, 2013. Pyrolysis of pine and gasification of pine chars – Influence of organically bound metals. Bioresour. Technol. 128, 22–29. http://dx.doi.org/10.1016/j.biortech.2012.10.093. Ajeng, A.A., Abdullah, R., Ling, T.C., Ismail, S., Lau, B.F., Ong, H.C., Chew, K.W., Show, P.L., Chang, J.-S., 2020. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environ. Technol. Innov. 20, 101168. http://dx.doi.org/10.1016/j.eti.2020.101168.

Bach, Q.-V., Chen, W.-H., 2017. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresour. Technol. 246, 88–100. http://dx.doi.org/10.1016/j.biortech.2017.06.087.

- Bashir, M.S., Jensen, P.A., Frandsen, F., Wedel, S., Dam-Johansen, K., Wadenbäck, J., Pedersen, S.T., 2012. Suspension-firing of biomass. Part 1: Full-scale measurements of ash deposit build-up. Energy Fuels 26 (4), 2317–2330. http://dx.doi.org/10.1021/ef201680k.
- Bodîrlău, R., Teacă, C.A., Spiridon, I., 2008. Chemical modification of beech wood: Effect on thermal stability. pp. 789-800.
- Brachi, P., Tumuluru, J.S., Nhuchhen, D.R., Chen, W.-H., 2021. Editorial: Torrefaction pretreatment for biomass upgrading: Fundamentals and technologies. Front. Energy Res. 9, 769625. http://dx.doi.org/10.3389/fenrg.2021.769625.
- Candelier, K., Dumarçay, S., Pétrissans, A., Desharnais, L., Gérardin, P., Pétrissans, M., 2013. Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuum. Polym. Degrad. Stab. 98 (2), 677–681. http://dx.doi.org/10.1016/j.polymdegradstab.2012.10.022.
- Chen, C.-Y., Chen, W.-H., Lim, S., Ong, H.C., Ubando, A.T., 2021b. Synergistic interaction and biochar improvement over co-torrefaction of intermediate waste epoxy resins and fir. Environ. Technol. Innov. 21, 101218. http://dx.doi.org/10.1016/j.eti.2020.101218.
- Chen, W.-H., Lin, B.-J., Lin, Y.-Y., Chu, Y.-S., Ubando, A.T., Show, P.L., Ong, H.C., Chang, J.-S., Ho, S.-H., Culaba, A.B., Pétrissans, A., Pétrissans, M., 2021c. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 82, 100887. http://dx.doi.org/10.1016/j.pecs. 2020.100887.
- Chen, F., Martín, C., Lestander, T.A., Grimm, A., Xiong, S., 2022a. Shiitake cultivation as biological preprocessing of lignocellulosic feedstocks substrate changes in crystallinity, syringyl/guaiacyl lignin and degradation-derived by-products. Bioresour. Technol. 344, 126256. http://dx.doi.org/10.1016/j.biortech.2021.126256.
- Chen, C., Qu, B., Wang, W., Wang, W., Ji, G., Li, A., 2021a. Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass. Environ. Technol. Innov. 24, 101872. http://dx.doi.org/10.1016/j.eti.2021.101872.
- Chen, W.-H., Uribe, M.Carrera., Kwon, E.E., Lin, K.-Y.A., Park, Y.-K., Ding, L., Saw, L.H., 2022b. A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renew. Sustain. Energy Rev. 169, 112917. http://dx.doi.org/10.1016/j.rser.2022.112917.
- Chen, Y., Zhang, Y., Yang, H., Zhang, H., Zhang, S., Chen, H., 2022c. Influence of interaction between biomass inorganic components and volatiles on corncob pyrolysis and char structure. Fuel Process. Technol. 235, 107360. http://dx.doi.org/10.1016/j.fuproc.2022.107360.
- Chen, D., Zheng, Z., Fu, K., Zeng, Z., Wang, J., Lu, M., 2015. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel 159, 27–32. http://dx.doi.org/10.1016/j.fuel.2015.06.078.
- Chia, C.H., Singh, B.P., Joseph, S., Graber, E.R., Munroe, P., 2014. Characterization of an enriched biochar. J. Anal. Appl. Pyrolysis 108, 26–34. http://dx.doi.org/10.1016/j.jaap.2014.05.021.
- Dai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., Jiang, L., Zeng, Z., Tian, X., 2019. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renew. Sustain. Energy Rev. 107, 20–36. http://dx.doi.org/10.1016/j.rser.2019.02.015.
- Di Blasi, C., Branca, C., Galgano, A., 2017. Influences of potassium hydroxyde on rate and thermicity of wood pyrolysis reactions. Energy Fuels 31 (6), 6154–6162. http://dx.doi.org/10.1021/acs.energyfuels.7b00536.
- Di Blasi, C., Branca, C., Galgano, A., 2018. Role of the potassium chemical state in the global exothermicity of wood pyrolysis. Ind. Eng. Chem. Res. 57 (34), 11561–11571. http://dx.doi.org/10.1021/acs.iecr.8b02047.
- El-Sayed, S.A., Khairy, M., 2015. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels 6 (3-4), 157-170. http://dx.doi.org/10.1080/17597269.2015.1065590.
- Evans, R.J., Milne, T.A., 1987. Molecular characterization of the pyrolysis of biomass. Energy Fuels 1 (2), 123–137. http://dx.doi.org/10.1021/ef00002a001.
- Fachini, J., Figueiredo, C.C. de, Vale, A.T. do., 2022. Assessing potassium release in natural silica sand from novel K-enriched sewage sludge biochar fertilizers. J. Environ. Manag. 314, 115080. http://dx.doi.org/10.1016/j.jenvman.2022.115080.
- Fromm, J., 2010. Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol. 30 (9), 1140–1147. http://dx.doi.org/10.1093/treephys/tpq024.
- Gil, M.V., Rubiera, F., 2019. Coal and biomass cofiring. In: New Trends in Coal Conversion. Elsevier, pp. 117–140. http://dx.doi.org/10.1016/B978-0-08-102201-6.00005-4.
- Gonultas, O., Candan, Z., 2018. Chemical characterization and ftir spectroscopy of thermally compressed eucalyptus wood panels. Maderas. Ciencia Y Tecnologí, Ahead http://dx.doi.org/10.4067/S0718-221X2018005031301.
- Grønli, M.G., Várhegyi, G., Di Blasi, C., 2002. Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41 (17), 4201–4208. http://dx.doi.org/10.1021/ie0201157.
- Guo, F., Liu, Y., Wang, Y., Li, X., Li, T., Guo, C., 2016. Pyrolysis kinetics and behavior of potassium-impregnated pine wood in TGA and a fixed-bed reactor. Energy Convers. Manage. 130, 184–191. http://dx.doi.org/10.1016/j.enconman.2016.10.055.
- Haloni, A., Vergnaud, J.M., 1997. Study of the release in water of chemicals used for wood preservation. Effect of wood dimensions. Wood Sci. Technol. 31 (1), 51–62. http://dx.doi.org/10.1007/BF00705700.
- Hosoya, T., Kawamoto, H., Saka, S., 2007. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature. J. Anal. Appl. Pyrolysis 80 (1), 118–125. http://dx.doi.org/10.1016/j.jaap.2007.01.006.
- Hu, Q., Yang, H., Wu, Z., Lim, C.J., Bi, X.T., Chen, H., 2019. Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2. Energy 171, 678–688. http://dx.doi.org/10.1016/j.energy.2019.01.050.
- Jin, Z., Katsumata, K.S., Lam, T.B.T., liyama, K., 2006. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers 83 (2), 103–110. http://dx.doi.org/10.1002/bip.20533.
- Jones, J.M., Darvell, L.I., Bridgeman, T.G., Pourkashanian, M., Williams, A., 2007. An investigation of the thermal and catalytic behaviour of potassium in biomass combustion. Proc. Combust. Inst. 31 (2), 1955–1963. http://dx.doi.org/10.1016/j.proci.2006.07.093.
- Khazraie Shoulaifar, T., DeMartini, N., Ivaska, A., Fardim, P., Hupa, M., 2012. Measuring the concentration of carboxylic acid groups in torrefied spruce wood. Bioresour. Technol. 123, 338–343. http://dx.doi.org/10.1016/j.biortech.2012.07.069.
- Khazraie Shoulaifar, T., DeMartini, N., Karlström, O., Hupa, M., 2016. Impact of organically bonded potassium on torrefaction: Part 1. Exp. Fuel 165, 544–552. http://dx.doi.org/10.1016/j.fuel.2015.06.024.
- Lee, D., Nam, H., Seo, M.Won., Lee, S.Hoon., Tokmurzin, D., Wang, S., Park, Y.-K., 2022. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chem. Eng. J. 447, 137501. http://dx.doi.org/10.1016/j.cej.2022.137501.
- Li, H., Chen, J., Zhang, W., Zhan, H., He, C., Yang, Z., Peng, H., Leng, L., 2023. Machine-learning-aided thermochemical treatment of biomass: A review. Biofuel Res. J. 10 (1), 1786–1809. http://dx.doi.org/10.18331/BRJ2023.10.1.4.
- Lin, Y.-Y., Chen, W.-H., Colin, B., Lin, B.-J., Leconte, F., Pétrissans, A., Pétrissans, M., 2021. Pyrolysis kinetics of potassium-impregnated rubberwood analyzed by evolutionary computation. Bioresour. Technol. 319, 124145. http://dx.doi.org/10.1016/j.biortech.2020.124145.
- Liu, Q., Wang, S., Luo, Z., Cen, K., 2008. Catalysis mechanism study of potassium salts on cellulose pyrolysis by using TGA-FTIR analysis. J. Chem. Eng. Japan 41 (12), 1133–1142. http://dx.doi.org/10.1252/jcej.08we056.
- Lu, K.-M., Lee, W.-J., Chen, W.-H., Lin, T.-C., 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl. Energy 105, 57–65. http://dx.doi.org/10.1016/j.apenergy.2012.12.050.
- Macedo, L. A. de, Commandré, J.-M., Rousset, P., Valette, J., Pétrissans, M., 2018. Influence of potassium carbonate addition on the condensable species released during wood torrefaction. Fuel Process. Technol. 169, 248–257. http://dx.doi.org/10.1016/j.fuproc.2017.10.012.

- Mahadevan, R., Adhikari, S., Shakya, R., Wang, K., Dayton, D., Lehrich, M., Taylor, S.E., 2016. Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis of lignocellulosic biomass: A microreactor study. Energy Fuels 30 (4), 3045–3056. http://dx.doi.org/10.1021/acs.energyfuels.5b02984.
- Manzano-Agugliaro, F., Alcayde, A., Montoya, F.G., Zapata-Sierra, A., Gil, C., 2013. Scientific production of renewable energies worldwide: An overview. Renew. Sustain. Energy Rev. 18, 134–143. http://dx.doi.org/10.1016/j.rser.2012.10.020.
- Moosavinejad, S.M., Madhoushi, M., Vakili, M., Rasouli, D., 2019. Evaluation of degradation in chemical compounds of wood in historical buildings using FT-ir and FT-Raman vibrational spectroscopy. Maderas. Ciencia Y Tecnologí, Ahead http://dx.doi.org/10.4067/S0718-221X2019005000310.
- NF EN ISO 18122, 2015a. Solid biofuels-Determination of ash content.
- NF EN ISO 18123, 2015b. Solid biofuels-Determination of the content of volatile matter.
- NF EN ISO 18125, 2017. Solid biofuels—Determination of calorific value. https://viewerbdc.afnor.org/html/display/FXrT1lEaYyQ1.
- NF EN ISO 18134, 2022. Solid biofuels-Determination of moisture content.
- Nishimura, M., Iwasaki, S., Horio, M., 2009. The role of potassium carbonate on cellulose pyrolysis. J. Taiwan Inst. Chem. Eng. 40 (6), 630-637. http://dx.doi.org/10.1016/j.jtice.2009.05.005.
- Nowakowski, D., Jones, J., Brydson, R., Ross, A., 2007. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86 (15), 2389–2402. http://dx.doi.org/10.1016/j.fuel.2007.01.026.
- NREL/TP-510-42618, 2012. Determination of structural carbohydrates and lignin in biomass. http://www.nrel.gov/biomass/analytical_procedures.html. NREL/TP-510-42619, 2005. Determination of extractives in biomass. http://www.nrel.gov/biomass/analytical_procedures.html.
- Nutalapati, D., Gupta, R., Moghtaderi, B., Wall, T.F., 2007. Assessing slagging and fouling during biomass combustion: A thermodynamic approach allowing for alkali/ash reactions. Fuel Process. Technol. 88 (11–12), 1044–1052. http://dx.doi.org/10.1016/j.fuproc.2007.06.022.
- Ong, H.C., Yu, K.L., Chen, W.-H., Pillejera, M.K., Bi, X., Tran, K.-Q., Pétrissans, A., Pétrissans, M., 2021. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sustain. Energy Rev. 152, 111698. http://dx.doi.org/10.1016/j.rser.2021.111698.
- Pan, L., Dai, F., Li, G., Liu, S., 2015. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of jimsar oil shale. Energy 86, 749–757. http://dx.doi.org/10.1016/j.energy.2015.04.081.
- Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3 (1), 10. http://dx.doi.org/10.1186/1754-6834-3-10.
- Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., 2010. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 101 (12), 4646–4655. http://dx.doi.org/10.1016/j.biortech.2010.01.112.
- Persson, H., Yang, W., 2019. Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel 252, 200–209. http://dx.doi.org/10.1016/j.fuel.2019.04. 087.
- Popescu, M.-C., Popescu, C.-M., Lisa, G., Sakata, Y., 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct. 988 (1–3), 65–72. http://dx.doi.org/10.1016/j.molstruc.2010.12.004.
- Rabou, L.P.L.M., Zwart, R.W.R., Vreugdenhil, B.J., Bos, L., 2009. Tar in biomass producer gas, the energy research centre of The Netherlands (ECN) experience: An enduring challenge. Energy Fuels 23 (12), 6189–6198. http://dx.doi.org/10.1021/ef9007032.
- Ray, I., Mridha, D., Roychowdhury, T., 2021. Waste derived amendments and their efficacy in mitigation of arsenic contamination in soil and soil-plant systems: A review. Environ. Technol. Innov. 24, 101976. http://dx.doi.org/10.1016/j.eti.2021.101976.
- Ryu, H.W., Kim, D.H., Jae, J., Lam, S.S., Park, E.D., Park, Y.-K., 2020. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresour. Technol. 310, 123473. http://dx.doi.org/10.1016/j.biortech.2020.123473.
- Saddawi, A., Jones, J.M., Williams, A., 2012. Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process. Technol. 104, 189–197. http://dx.doi.org/10.1016/j.fuproc.2012.05.014.
- Safar, M., Lin, B.-J., Chen, W.-H., Langauer, D., Chang, J.-S., Raclavska, H., Pétrissans, A., Rousset, P., Pétrissans, M., 2019. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Appl. Energy 235, 346–355. http://dx.doi.org/10.1016/j.apenergy.2018.10.065.
- Saleh, S.B., Hansen, B.B., Jensen, P.A., Dam-Johansen, K., 2013. Influence of biomass chemical properties on torrefaction characteristics. Energy Fuels 27 (12), 7541–7548. http://dx.doi.org/10.1021/ef401788m.
- Seo, M.W., Lee, S.H., Nam, H., Lee, D., Tokmurzin, D., Wang, S., Park, Y.-K., 2022. Recent advances of thermochemical conversion processes for biorefinery. Bioresour. Technol. 343, 126109. http://dx.doi.org/10.1016/j.biortech.2021.126109.
- Shen, Y., Zhang, N., Zhang, S., 2020. Catalytic pyrolysis of biomass with potassium compounds for co-production of high-quality biofuels and porous carbons. Energy 190, 116431. http://dx.doi.org/10.1016/j.energy.2019.116431.
- Silveira, E.A., Macedo, L.A., Rousset, P., Candelier, K., Galvão, L.G.O., Chaves, B.S., Commandré, J.-M., 2022. A potassium responsive numerical path to model catalytic torrefaction kinetics. Energy 239, 122208. http://dx.doi.org/10.1016/j.energy.2021.122208.
- Sippula, O., Lamberg, H., Leskinen, J., Tissari, J., Jokiniemi, J., 2017. Emissions and ash behavior in a 500 kW pellet boiler operated with various blends of woody biomass and peat. Fuel 202, 144–153. http://dx.doi.org/10.1016/j.fuel.2017.04.009.
- Šoštarić, T., Petrović, M., Stojanović, J., Marković, M., Avdalović, J., Hosseini-Bandegharaei, A., Lopičić, Z., 2020. Structural changes of waste biomass induced by alkaline treatment: The effect on crystallinity and thermal properties. Biomass Convers. Biorefinery http://dx.doi.org/10.1007/s13399-020-00766-2
- Sulaiman, C., Abdul-Rahim, A.S., Ofozor, C.A., 2020. Does wood biomass energy use reduce CO2 emissions in European union member countries? Evidence from 27 members. J. Clean. Prod. 253, 119996. http://dx.doi.org/10.1016/j.jclepro.2020.119996.
- Szabó, P., Várhegyi, G., Till, F., Faix, O., 1996. Thermogravimetric/mass spectrometric characterization of two energy crops, arundo donax and miscanthus sinensis. J. Anal. Appl. Pyrolysis 36 (2), 179–190. http://dx.doi.org/10.1016/0165-2370(96)00931-X.
- Toledano, A., Serrano, L., Labidi, J., 2014. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 116, 617–624. http://dx.doi.org/10.1016/j.fuel.2013.08.071.
- Trubetskaya, A., Surup, G., Shapiro, A., Bates, R.B., 2017. Modeling the influence of potassium content and heating rate on biomass pyrolysis. Appl. Energy 194, 199–211. http://dx.doi.org/10.1016/j.apenergy.2017.03.009.
- Čespiva, J., Jadlovec, M., Výtisk, J., Serenčíšová, J., Tadeáš, O., Honus, S., 2023. Softwood and solid recovered fuel gasification residual chars as sorbents for flue gas mercury capture. Environ. Technol. Innov. 29, 102970. http://dx.doi.org/10.1016/j.eti.2022.102970.
- van Lith, S.C., Jensen, P.A., Frandsen, F.J., Glarborg, P., 2008. Release to the gas phase of inorganic elements during wood combustion. Part 2: Influence of fuel composition. Energy Fuels 22 (3), 1598–1609. http://dx.doi.org/10.1021/ef060613i.
- Wang, W., Lemaire, R., Bensakhria, A., Luart, D., 2022. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrolysis 163, 105479. http://dx.doi.org/10.1016/j.jaap.2022.105479.
- Wang, Z., McDonald, A.G., Westerhof, R.J.M., Kersten, S.R.A., Cuba-Torres, C.M., Ha, S., Pecha, B., Garcia-Perez, M., 2013. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J. Anal. Appl. Pyrolysis 100, 56–66. http://dx.doi.org/10.1016/j.jaap.2012.11.017.
- Wang, Y., Tan, H., Wang, X., Du, W., Mikulčić, H., Duić, N., 2017. Study on extracting available salt from straw/woody biomass ashes and predicting its slagging/fouling tendency. J. Clean. Prod. 155, 164–171. http://dx.doi.org/10.1016/j.jclepro.2016.08.102.
- Wang, Z., Wang, F., Cao, J., Wang, J., 2010. Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel Process. Technol. 91 (8), 942–950. http://dx.doi.org/10.1016/j.fuproc.2009.09.015.

- Wongmat, Y., Wagner, D.R., 2022. Effect of potassium salts on biochar pyrolysis. Energies 15 (16), 5779. http://dx.doi.org/10.3390/en15165779.
- Wu, Y., Wang, J., Wu, S., Huang, S., Gao, J., 2011. Potassium-catalyzed steam gasification of petroleum coke for H2 production: Reactivity, selectivity and gas release. Fuel Process. Technol. 92 (3), 523–530. http://dx.doi.org/10.1016/j.fuproc.2010.11.007.
- Xu, E., Wang, D., Lin, L., 2020. Chemical structure and mechanical properties of wood cell walls treated with acid and alkali solution. Forests 11 (1), 87. http://dx.doi.org/10.3390/f11010087.
- Yang, X., Fu, Z., Han, D., Zhao, Y., Li, R., Wu, Y., 2020. Unveiling the pyrolysis mechanisms of cellulose: Experimental and theoretical studies. Renew. Energy 147, 1120–1130. http://dx.doi.org/10.1016/j.renene.2019.09.069.
- Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12–13), 1781–1788. http://dx.doi.org/10.1016/j.fuel.2006.12.013.
- Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D., Liang, D., 2006. Influence of mineral matter on pyrolysis of palm oil wastes. Combust. Flame 146 (4), 605–611. http://dx.doi.org/10.1016/j.combustflame.2006.07.006.
- Yek, P.N.Y., Cheng, Y.W., Liew, R.K., Wan Mahari, W.A., Ong, H.C., Chen, W.-H., Peng, W., Park, Y.-K., Sonne, C., Kong, S.H., Tabatabaei, M., Aghbashlo, M., Lam, S.S., 2021. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. Renew. Sustain. Energy Rev. 151, 111645. http://dx.doi.org/10.1016/j.rser.2021.111645.
- Yin, C., 2020. Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability. Energy 196, 117129. http://dx.doi.org/10.1016/j.energy.2020.117129.
- Yu, J., Paterson, N., Blamey, J., Millan, M., 2017. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191, 140–149. http://dx.doi.org/10.1016/j.fuel.2016.11.057.
- Yu, C., Zhang, W., 2001. Modeling potassium release in biomass pyrolysis. In: Bridgwater, A.V. (Ed.), Progress in Thermochemical Biomass Conversion. Blackwell Science Ltd, pp. 1107–1115. http://dx.doi.org/10.1002/9780470694954.ch89.
- Zhang, X., Jiang, W., Ma, H., Wu, S., 2020. Relationship between the formation of oligomers and monophenols and lignin structure during pyrolysis process. Fuel 276, 118048. http://dx.doi.org/10.1016/j.fuel.2020.118048.
- Zhang, S., Su, Y., Ding, K., Zhang, H., 2019. Impacts and release characteristics of K and Mg contained in rice husk during torrefaction process. Energy 186, 115888. http://dx.doi.org/10.1016/j.energy.2019.115888.
- Zhao, L., Zhou, H., Xie, Z., Li, J., Yin, Y., 2020. Effects of potassium on solid products of peanut shell torrefaction. Energy Sources, Part A: Recovery, Utilization, and Environ. Effects 42 (10), 1235–1246. http://dx.doi.org/10.1080/15567036.2019.1602232.
- Zhou, L., Jia, Y., Nguyen, T.-H., Adesina, A.A., Liu, Z., 2013. Hydropyrolysis characteristics and kinetics of potassium-impregnated pine wood. Fuel Process. Technol. 116, 149–157. http://dx.doi.org/10.1016/j.fuproc.2013.05.005.
- Zhou, L., Zou, H., Wang, Y., Le, Z., Liu, Z., Adesina, A.A., 2017. Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene. Renew. Energy 102, 134–141. http://dx.doi.org/10.1016/j.renene.2016.10.028.