

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. Cross, F. Chong, and R. Gu

In this paper, we present Giallar, a toolkit that helps pro-
grammers write quantum compiler passes and formally ver-
ify their correctness in a push-buttonmanner. Giallar requires
no manual annotations, invariants, specifications, or proofs
about the implementation of the quantum compiler pass.
Giallar performs verification to check if the compiler pass
preserves the semantics of quantum circuits. An executable
pass implementation is produced if the verification succeeds.
If there is a bug, Giallar produces a counterexample to help
identify and fix the cause.
The main challenge in applying formal verification to

building correct quantum compilers is to minimize proof
burden. Recent efforts [2, 15] have shown that it is feasi-
ble to manually verify the correctness of quantum compiler
passes using interactive theorem provers such as Coq [5].
However, writing such proofs requires a significant time
investment from formal verification experts, and the size
of proofs can be several times or even more than an order
of magnitude larger than that of the compiler implementa-
tion, making the proofs expensive to develop and maintain.
For example, Hietala et al. [15] reported that verifying cir-
cuit mapping, a single transformation pass consisting of 70
lines of code, requires writing 2,100 lines of proofs. These
verification frameworks are impractical for verifying fast-
moving and frequently changing quantum compilers such
as Qiskit, which has 683 commits on the main branch from
64 contributors in the first 10 months of the year 2021 [38].
To allow non-formal-verification-experts to develop cor-

rect quantum compilers without such a proof burden, Giallar
provides fully automated reasoning. Conceptually, showing
that a quantum compiler pass is correct involves proving
that it preserves the semantics for any input quantum circuit
in all possible execution paths. In practice, automating such
a proof faces classical and quantum challenges.
On the one hand, a quantum compiler is a classical pro-

gram that intensely uses unbounded loops and complex util-
ity functions (containing nested loops and recursions) to
perform transformations and optimizations based on the in-
formation of the whole circuit. These program features in
general are hard to reason about automatically. For example,
automated verification frameworks such as Alive [23] and
Hyperkernel [33] require the input program to be loop-free
and recursion-free, or only have bounded loops.
On the other hand, the correctness of a quantum com-

piler pass is usually defined as the semantics preservation
property for quantum circuits, while efficient equivalence
checking for general quantum circuits is still beyond reach.
Previous quantum verification works [1, 4, 15] rely on users
manually reasoning about the equivalence of quantum cir-
cuits either using the denotational semantics [34] (i.e., the
matrix representation), which requires exponential time and
memory to compute, or using the path-sum semantics [1],
which only supports a restricted subset of quantum states.

Neither of these approaches is feasible for automated verifi-
cation of quantum compilers.

Our Giallar toolkit addresses the above challenges by lever-
aging domain-specific knowledge of quantum compilation.
First, most of the unbounded loops in quantum compilers
follow one of a few specific patterns to traverse the input
quantum circuit. Giallar abstracts these patterns into three
loop templates for users to write unbounded loops, whose
loop invariants can be automatically inferred without any
user input. The compiler pass containing unbounded loops
then becomes symbolically executable by reducing the loops
with the inferred invariants. For each loop, Giallar will also
generate a separate proof goal that the symbolic execution of
the loop body indeed retains the inferred invariants. Giallar
formulates such proof goals as SMT problems and invokes
Z3 [8] to solve them. Our three loop templates cover all the
unbounded loops in all verified Qiskit passes, while new
loop templates can be easily introduced to meet future needs.
As for complex utility functions that contain nested loops
and recursions, Giallar provides a verified library of utility
functions that is shared by multiple passes, such that their
invocations can be replaced by their specifications during
the symbolic execution.

Second, instead of directly using the matrix representation
to check the equivalence of the input and output quantum cir-
cuits, Giallar shows that the output quantum circuit can be
obtained from the input circuit through a sequence of equiva-
lent rewrites. To define such rewrite rules, we define symbolic
representation and execution for quantum circuits, which
are different from the symbolic execution of the compiler
implementation mentioned above. All rewrite rules operate
the symbolic quantum circuit and preserve the results of
the symbolic execution. The set of rewrite rules provided
by Giallar is general enough to cover common quantum
compilations and small enough to enable efficient checks.
The rewrite rules are manually verified in the Coq proof
assistant [5], and the verification is done once and for all.

Third, in contrast to existing automated verification frame-
works [23, 32, 44] that require users to provide specifications,
Giallar introduces a set of Python virtual classes for different
types of passes in Qiskit. Giallar can automatically generate
proof obligations for the pass implementations inheriting
these virtual classes.
We have used Giallar to implement and verify 44 out of

56 compiler passes in 13 versions (from v0.19 to v0.32) of
the Qiskit compiler. Among 12 failed passes, eight passes
deal with pulse-level behaviors, two passes rely on external
solvers, one pass involves a randomized routing algorithm,
and one pass produces an approximated circuit within a
given error bound. These passes are not supported by Gi-
allar, and are also costly or infeasible to manually verify
using existing quantum verification frameworks [1, 2, 4, 15].
During the verification, we found three critical bugs in (and
confirmed by) the Qiskit team, two of which are unique to

642

Giallar: Push-Button Verification for the Qiskit Quantum Compiler PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

𝑋 𝐻
•

J𝑋 K =

[
0 1

1 0

]
J𝐻K = 1√

2

[
1 1

1 −1

]
J𝐶𝑋 K =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



Figure 1. Circuit diagram symbols (top) and the denotational se-

mantics (bottom) for several 1-qubit and 2-qubit gates.

quantum computing. Our evaluation shows that most of
the Qiskit compiler passes can be automatically verified in
seconds and the verified compiler passes only have modest
performance overhead compared with the unverified Qiskit
implementation.
This paper makes the following contributions:

• The Giallar toolkit that allows non-formal-verification-
experts to build provably correct quantum compilers
in the face of frequent changes and new features.

• A domain-specific approach using loop templates, vir-
tual classes for passes, and verified utility library to
fully automate the verification of quantum compilers.

• A set of verified rewrite rules that enables the efficient
equivalence checking for quantum circuits.

• A case study of implementing and verifying the com-
piler passes of Qiskit, the most widely-used quantum
compiler, using Giallar. Three critical bugs have been
found during the verification and confirmed by Qiskit.

2 Background

We first introduce the necessary background on the verifica-
tion of quantum computing and quantum compilation. For
more details of quantum computing, please refer to [27].

2.1 Quantum Basics

Quantum states are represented as 2-dimensional complex
vectors, named qubits, e.g., |0⟩ = (1, 0)𝑇 and |1⟩ = (0, 1)𝑇 .
Quantum gates are operations of quantum states that can be
represented by unitary matrices (see Figure 1). In contrast
with classical computing, an n-qubit state (or gate) is rep-
resented by a 2𝑛-dimensional vector (or a 2𝑛 × 2𝑛 vector),
leading to the exponential cost in space and time required to
directly simulate quantum programs using matrix and vector
representations.

2.2 Quantum Program

Quantum programs process quantum states with quantum
gates. They are often represented graphically with gates as
nodes and qubits as wires (see Figure 1). The most widely-
used quantum programming language is OpenQASM [6].

|0⟩ 𝐻 •

|0⟩ •
|0⟩

//GHZ circuit

OPENQASM 2.0;

include "qelib1.inc";

qreg q[3];

h q[0];

cx q[0],q[1];

cx q[1],q[2];

Figure 2. Circuit diagram (left) and the OPENQASM IR (right) of a

simple GHZ circuit [10].

JskipKnqreg := 𝐼qreg

J𝑈 Knqreg := matrix(𝑈𝑞1,...,𝑞𝑛) ⊗ 𝐼qreg\{𝑞1,...,𝑞𝑛 }
J𝐶1 ;𝐶2Knqreg := J𝐶1Knqreg × J𝐶2Knqreg

Figure 3. Denotational semantics of quantum circuits in Giallar,

where matrix denotes the unitary matrices of the quantum opera-

tions and qreg denotes the set of qubit registers.

Figure 2 shows an example of a 3-qubit circuit in graphical
representation and in OpenQASM.
Programs considered in Giallar follow a variant of the

OpenQASM language as below.

𝑃 := skip

| 𝑈 (𝑞1, . . . , 𝑞𝑛)
| 𝑃1; 𝑃2

Empty circuit is denoted as skip; applying an n-qubit gate on
selected qubits 𝑞1, ...𝑞𝑛 is denoted as𝑈 (𝑞1, . . . , 𝑞𝑛); concate-
nation of two circuits 𝑃1 and 𝑃2 is denoted as 𝑃1; 𝑃2. Features
in OpenQASM that are not supported by existing hardware
such as classical control flow are not included in our syntax.
Nevertheless, this syntax is general enough to support a wide
range of gate representations, circuit transformations, and
various targeting hardware. This restriction on syntax is also
a common practice in previous work on manual verification
of quantum compilers [15]. The input and output of each
quantum compilation pass are both quantum programs.

Denotational semantics. Figure 3 shows the denotational
semantics of a quantum circuit𝐶 , which is defined as its cor-
responding unitary matrix and is denoted as J𝐶Knqreg, where
nqreg is the number of qubits in the quantum register used
in the circuit. The denotational semantics of an empty circuit
with nqreg qubits is the identity matrix of size nqreg. The
semantics for a quantum gate is the tensor product of its
matrix representation on its qubit operands and the identity
matrix on other unrelated qubits. The semantics of the con-
catenation of two quantum programs is the multiplication
of their matrix representations.

643

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. Cross, F. Chong, and R. Gu

•
• •

𝑅𝑧

(a) The original circuit

𝑎 𝑏 𝑐

(b) Physical qubits

𝑎 •
𝑏 • •
𝑐 𝑅𝑧

(c) After layout selection

•

× 𝑅𝑧 × •
× • ×

(d) After routing

Figure 4. An example of layout selection and routing passes acting

on a quantum circuit. (a) The original quantum circuit. Each line

represents a logical qubit. (b) The target quantum computer’s qubit

arrangement, lines denote that two-qubit gates are allowed between

the qubit pair. (c) After layout selection, the logical qubits in the

circuit get mapped to physical qubits. At this point, the circuit is

still not runable on the target quantum computer because there is

a 2-qubit gate between a and c. (d) After routing, swap gates are

added into the circuit so that all 2-qubit gates are allowed.

2.3 Quantum Compilation

Quantum compilation is the process of translating high-level
quantum circuit descriptions into optimized low-level cir-
cuits that are executable on hardware. Most quantum compil-
ers follow a design philosophy resembling that of LLVM [18]:
circuit IRs are sequentially fed into a cascade of compiler
components, called passes, to be transformed and optimized.
The Qiskit compiler has seven types of compiler passes: lay-
out selection, routing, basis change, optimizations, circuit
analysis, synthesis, and additional assorted passes.

Layout selection and routing passes. A layout selection
pass maps logical qubits in the program to physical qubits
on a specific hardware. A routing pass ensures that the quan-
tum circuit conforms to the topological constraints of the
quantum hardware. For example, in Figure 4, the quantum
hardware has 3 physical qubits 𝑎, 𝑏, and 𝑐 with the topology
constraints that 2-qubit gates can only be preformed between
𝑎 − 𝑏 and 𝑏 − 𝑐 . The layout selection pass first assigns the
three logical qubits in the circuit to 𝑎, 𝑏, and 𝑐 . The routing
pass then inserts swap gates so that all 2-qubit gates satisfy
the topological constraints. Because CNOT gates cannot be
preformed between 𝑎 and 𝑐 , a swap gate between 𝑏 and 𝑐

is inserted before the first CNOT gate. To perform the last
CNOT gate, 𝑏 and 𝑐 need to be swapped back.

Other passes. A basis change pass helps with the decom-
position of quantum circuits into the gate set supported by
a target hardware backend. An optimization pass includes
various circuit-rewriting-based optimizations such as gate
cancellation [24], scheduling optimization [42], noise adap-
tation [28], and crosstalk mitigation [29]. A circuit analysis

1 import giallar

2 class SimpleCXCancellation(GeneralPass):

3 def run(self, input):

4 remain = input.copy()

5 output = QCircuit()

6 while remain.size() != 0:

7 gate = remain[0]

8 if gate.isCXGate():

9 next = next_gate(remain, 0)

10 g = remain[next]

11 if g.isCXGate() and

12 g.qubits == gate.qubits:

13 remain.delete(next)

14 else:

15 output.append(gate)

16 else:

17 output.append(gate)

18 remain.delete(0)

19 return output

Figure 5. A simplified implementation of the CXCancellation pass.

pass does not modify the circuits but returns important in-
formation about the circuits. A synthesis pass performs large
unitary matrix decomposition. Additional assorted passes
perform miscellaneous tasks such as circuit validation.

2.4 The Z3Py Tool

Z3Py supports the symbolic execution of sequential Python
code without loops and branches, and introduces two primi-
tives assume(cond) and assert(cond). The assume(cond)
primitive adds the condition cond into the assumption list.
The assert(cond) primitive calls the Z3 SMT solver to check
whether the current symbolic execution state satisfies cond
given the assumption list. For example, given the code snip-
pet below,

assume(x >= 3)

y = x * x

assert(y > x)

z = y + 1

assert(z > 10)

x >= 3 added to assumptions

Symbolic execution: y = x * x

SMT check x >= 3 -> x * x > x success

Symbolic execution: z = x * x + 1

SMT check x >= 3 -> x * x + 1 > 10 fail

Z3Py will output łverifiedž for the first assertion and a coun-
terexample ł𝑥 = 3ž for the second assertion.

3 The Giallar Workflow

The goal of the Giallar toolkit is to allow quantum program-
mers without much formal verification background to write
provably correct quantum compiler passes, which can be
readily integrated into the open-source Qiskit compiler and
used in real-world quantum experiments.
Giallar consists of five major components (see Figure 6):

1) The Giallar preprocessor that translates the compiler im-
plementation into symbolically executable code; 2) A set of
loop templates that can be used to infer loop invariants for
unbounded loops in the pass implementation; 3) A verified

644

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. Cross, F. Chong, and R. Gu

To validate the inferred loop invariant, Giallar will gen-
erate a separate proof goal that the invariant holds on the
symbolic execution results of the loop body.

Expand branch statements. To support branches in the
Z3Py tool, Giallar generates the sequential code for each
branch. As for the loop body in the CXCancellation pass,
three pieces of sequential code will be generated: 1) gate
is a CNOT gate and a matching gate is found to perform
the cancellation; 2) gate is a CNOT gate and no matching
gates are found; and 3) gate is not a CNOT gate. The branch
conditions will be added as assumptions to the generated
sequential code. For example, the transformed code for the
first branch is as follows:

gate = remain[0]

assume(gate.isCXGate())

next = next_gate(remain, 0)

g = remain[next]

assume(g.isCXGate() and g.qubits == gate.qubits)

remain.delete(next)

remain.delete(0)

Replace utility functionswith specifications. TheQiskit
compiler implementations rely on many utility functions,
which are shared by different passes and may contain code
that is hard to automatically verify. Giallar extracts a library
of utility functions and manually verifies all the functions
with respect to their specifications. A compiler pass can then
be retrofitted to invoke utility functions in Giallar’s verified
library. Such invocations will be replaced by the correspond-
ing specifications of the utility functions during the symbolic
execution. Take the next_gate utility function that is used
in four optimization passes of Qiskit as an example. This
function scans through the circuit and returns the index of
the next gate that shares a qubit with the current gate. In-
stead of repeatedly verifying this function whenever it is
invoked, Giallar replaces its invocations with the verified
specification. For example, its invocation at line 9 in Figure 5
will be replaced by the following specification about the re-
turned integer x of next_gate(remain, 0): 1) x is a valid
index of the remain circuit, i.e., 0 ≤ x < remain.size(); 2)
x is after the gate 0, i.e., x > 0; 3) there is no gate between
gates 0 and x that shares a qubit with gate 0; and 4) gate x
shares a qubit with gate 0.

Verify proof goals with rewrite rules. The Giallar veri-
fier first symbolically executes the transformed code using
the Z3Py tool. The Z3 SMT solver will then be queried to
solve the proof goals using the symbolic execution results.
As for the CXCancellation pass, we need to prove that all
three branches will preserve the equivalence of circuits, i.e.,
[[output; remain]]nqreg ≡ [[input]]nqreg. The only non-trivial
case is the branch where a cancellation happens.
Because the circuits are equivalent before executing the

branch, and the input and output circuits remain unchanged
in this branch (since CNOT gates are cancelled out and will

not be appended to output), we only need to prove that the
remain list of gates has the same denotational semantics after
cancelling out two adjacent CNOT gates. Such a proof goal
can be stated using the following matrix representations:

(
matrix(𝐶𝑁𝑂𝑇𝑞1,𝑞2) ⊗ 𝐼 {1,...,nqreg}\{𝑞1,𝑞2 }

)2
= 𝐼2nqreg

For a quantum circuit of 𝑛 qubits, the above proof goal re-
quires the equivalence check of matrices with a size 2𝑛 × 2𝑛 ,
which is impractical to solve using any existing solvers. The
fact that 𝑛, 𝑞1, and 𝑞2 are arbitrary makes such a check even
harder.

Giallar introduces a set of rewrite rules to enable the equiv-
alence check for quantum circuits at the symbolic level with-
out the need to reason about their denotational semantics.
These rules are also qubit-based, meaning that we only need
to prove that the two related qubits (𝑞1 and 𝑞2) are equivalent
and do not need to worry about 𝑛 and the relative location
of 𝑞1 and 𝑞2. For example, Giallar provides the following
two rewrite rules to cancel out two adjacent CNOT gates,
with which the equivalence check for remain can be solved
automatically and efficiently by Z3.

app(𝐶𝑁𝑂𝑇 𝑞1 𝑞2;𝐶𝑁𝑂𝑇 𝑞1 𝑞2, 𝑞1) ≡ 𝑞1

app(𝐶𝑁𝑂𝑇 𝑞1 𝑞2;𝐶𝑁𝑂𝑇 𝑞1 𝑞2, 𝑞2) ≡ 𝑞2 .

4 The Giallar Preprocessor

The Giallar preprocessor aims to soundly transform the com-
piler source code, with complex control flow and external
function calls, into simple sequential code with verification
conditions, thus symbolically executable and verifiable using
Z3Py. A verification condition is defined as a Hoare triple
{𝑃}𝐶{𝑄}, with a pre-condition list 𝑃 and a post-condition
list 𝑄 [16]. The Hoare triple means that if the program state
before executing the code 𝐶 satisfies 𝑃 , then after executing
𝐶 , the resulting state must satisfy𝑄 . Giallar uses assume and
assert primitives in Z3Py to represent the pre- and post-
conditions respectively. The Giallar preprocessor parses and
transforms the pass implementation with complex control
flows into sequential code and corresponding verification
conditions.

Branch statements. The Giallar preprocessor expands all
branch statements. The verification condition of a branch
is expanded into two separate verification conditionsÐone
for each branch. The branch condition will be added to the
list of pre-conditions for the transformed sequential code
representing the łtruež branch, while the negation of the
branch condition will be added to the list of pre-conditions
for the łfalsež branch. These pre-conditions are then used
to generate further verification conditions. Note that Giallar
requires that all branch conditions must be representable
as SMT formulas to enable the push-button verification. Al-
though this expansion approach may lead to an exponential
number of verification conditions, fortunately, the number

646

Giallar: Push-Button Verification for the Qiskit Quantum Compiler PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

of branches in real Qiskit compiler passes is usually smaller
than nine and remains tractable.

Loop statements. Unbounded loops are hard to automat-
ically verify since their verification requires a sufficiently
strong loop invariant, which is generally undecidable to
compute and usually provided by the user. Fortunately, in
the domain of quantum compilation, this problem can be
practically solved as loops in quantum compiler passes often
follow one of a few fixed patterns. Giallar provides three loop
templates as library functions, which can be used to rewrite
all the loops in the Qiskit compiler passes. Giallar then stati-
cally analyzes the loop implementation and automatically
determines how the placeholders in the loop template can
be mapped to the variables in the loop implementation.
Each of Giallar’s loop template pre-defines one shape of

the loop invariants. For example, iterate_all_gates(circ,
func) is a template for loops that iterate over all the gates in
circ and apply the same function func (i.e., the loop body) to
each gate to generate the new circuit, denoted as new_circ.
Since this compiler pass preserves the semantics of the cir-
cuits, the generated new_circ should be equivalent to a pre-
fix of the original circuit. Thus, the invariant for this loop
template is that, at the 𝑖-th iteration of the loop, new_circ
should be equivalent to the first 𝑖 gates in the original circuit.
This loop template is implemented as follows:

1 def iterate_all_gates(circ, func):

2 # subgoal

3 assertion.push()

4 i = Int("i")

5 n = circ.size()

6 cur_circ = QCircuit()

7 assume(i >= 0)

8 assume(i + 1 < n)

9 assume(equiv_part(cur_circ, circ, i))

10 new_circ = func(cur_circ, circ[i])

11 assert(equiv_part(new_circ, circ, i+1))

12 assertion.pop()

13

14 ret_circ = DAG()

15 assume(equiv_part(ret_circ, circ, circ.size()))

16 return ret_circ

Lines 7-12 check if the loop body (i.e., func) preserves the
loop invariant. In the verification process, when Giallar in-
vokes this loop template, it will generate and try to prove
the subgoal that if the current circuit cur_circ is equiva-
lent to the first 𝑖 gates of the original circuit circ before
the 𝑖-th iteration, the newly generated circuit new_circ af-
ter this iteration must be equivalent to the first 𝑖 + 1 gates
of circ. Once this subgoal is proved, the loop invariant is
valid and a new pre-condition stating that the result of the
loop is a circuit that is equivalent to circ will be added into
the pre-condition list (see line 15). To synthesize the exact
loop invariant from the code, Giallar will infer the variable
name in the loop body that should be mapped to the circ
argument of iterate_all_gates(circ, func).

The other two loop templates provided by Giallar are
while_gate_remaining and collect_runs. The unbounded
loop in the CXCancellation pass (see Section 3) can be imple-
mented using the while_gate_remaining template, which
maintains a remaining gate list to be scanned. The loop
invariant for this template is that at each iteration of the
loop, the concatenation of the currently built part of output
circuit and the remaining gates is equivalent to the input
circuit. The collect_runs template is the batch version of
the iterate_all_gates template and is used in passes such
as commutative_cancellation (see Section 7.2). In this tem-
plate, the input circuit is partitioned into several batches and
each loop round will transform one batch of the circuit into
an equivalent circuit. The invariant for this template is that
the currently built output circuit in the 𝑖-th iteration of the
loop is equivalent to the combination of first 𝑖 batches of the
input circuit.

Utility function calls. Many compiler passes are imple-
mented using some shared utility functions, including circuit
manipulating functions such as next_gate, gate optimiza-
tion functions such as merge, and coupling map related func-
tions such as shortest_path. To enable the push-button
verification for Qiskit compiler passes without the need to
unfold and repeatedly verify these shared utility functions at
all their invocations, Giallar pre-verifies all these functions
with respect to their specifications and replaces their invoca-
tions with the specifications during the symbolic execution.
Take the next_gate utility function invoked by four passes
(CXCancellation, MergeAdjacentBarriers, RemoveFinalMea-
sure and RemoveDiagBeforeMeasure) as an example. Giallar
models a quantum gate as a record type with two fieldsÐan
operation name and a qubit list (analogous to the opcode
and operands in classical computing) and model a quantum
circuit as a list of gates. Giallar verifies that the next_gate
function meets the specification that scans through the cir-
cuit list and finds the index of the first gate that shares a qubit
with the given gate. Although the library of utility functions
is verified manually, this verification effort is done once and
for all can be re-used in future Qiskit compiler passes.
Note that Giallar’s verified utility library implements a

quantum circuit as a list of gates, while the original Qiskit li-
brary implements a circuit as a directed acyclic graph (DAG)
of gates. Giallar’s design significantly simplifies the library’s
verification since lists are much easier to reason about in
Coq than DAGs. To integrate passes implemented using our
verified library into the Qiskit platform, Giallar provides con-
version functions to convert circuits implemented in different
data structures, as well as a Qiskit wrapper that performs
the following steps: 1) it first converts the input DAG circuit
from the Qiskit compilation flow to the OpenQASM IR; 2)
then it invokes the compiler pass written using Giallar to
compile the converted circuit represented as a gate list; and

647

Giallar: Push-Button Verification for the Qiskit Quantum Compiler PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

number of gates, their soundness can also be proven easily
using the matrix representation. We also prove in Coq that
the equivalence guarantee of the rewrite rules on a subset of
qubits can be extended to the global circuit with an arbitrary
number of qubits. Again, although these soundness proofs
are developed manually in Coq, they only need to be done
once.

6 The Giallar Verifier

The Giallar verifier generates proof obligations for compiler
passes as SMT problems and invokes Z3 to solve them with
the rewrite rules.

Proof obligations for a compiler pass. Giallar does not
require the user to explicitly provide the specifications to
the compiler pass, which is usually required by other auto-
mated verification frameworks such as Yggdrasil [44] and
Serval [32]. Instead, Giallar pre-defines the proof obligations
for all seven types of quantum compiler passes. Aside from
routing passes, the other six types of compiler passes share
the same specification that the input and output circuits are
equivalent, defined using the following virtual class:

class GeneralPass():

@classmethod

def test(cls):

optimizer = cls()

init_circ = QCircuit()

out_circ = optimizer.run(init_circ)

assert(equivalent(out_circ, init_circ))

print(cls.__name__ + " verified")

In the above test() method, Giallar first generates a sym-
bolic circuit init_circ to represent the input quantum cir-
cuit, then symbolically executes the pass implementation
through optimizer.run to get the symbolic representation
of the output circuit, and finally attempts to verify that these
two circuits are equivalent.

To enable the automated generation of proof obligations,
Giallar requires the user to retrofit the compiler passes (in
the above six types) with the GeneralPass virtual class as
the parent class. For example, the class definition for the
CXCancellation pass is shown as follows:

class CXCancellationPass(GeneralPass):

#implementation omitted

#...

Different from the other six types, the routing passes may
insert swap gates to make the circuit satisfy the qubit con-
nectivity constraint (see Section 2.3), such that the output
circuit may not be strictly equivalent to the input circuit.
However, the output circuit is equivalent to the input cir-
cuit up to a permutation that represents all inserted swaps.
Giallar provides a RoutingPass virtual class for users to im-
plement routing passes, whose proof obligations will then
be automatically generated by Giallar.

Verification for a compiler pass. We will use the CXCan-
cellation pass (see Section 3) as a running example to show
how the Giallar verifier works. This CXCancellation pass
is an optimization pass and contains an unbounded loop
maintaining two circuit variables output and remain. The
variable output contains gates that have been scanned, while
remain contains gates that have not been scanned yet. Each
loop iteration will attempt to find two CNOT gates with the
same pair of input qubits in remain and cancel them out.
The CXCancellation pass inherits the GeneralPass vir-

tual class and the proof obligation generated by Giallar is
to show that the input and output circuits are equivalent,
which can be derived using the while_gate_remaining loop
template. Giallar will then attempt to solve the following
subgoal generated for the loop body:

P1 : app (output𝑜𝑙𝑑 ; remain𝑜𝑙𝑑 , 𝑄) ≡ app (input, 𝑄)
G1 : app (output𝑛𝑒𝑤 ; remain𝑛𝑒𝑤, 𝑄) ≡ app (input, 𝑄) ,

where the new symbolic values for variables output and
remain are produced by the loop body from the old ones. To
generate the relation between the old and new variables, the
Giallar verifier uses Z3Py to symbolically execute the loop
body, getting the following preconditions:

P2 : output𝑛𝑒𝑤 = output𝑜𝑙𝑑

P3 : remain𝑜𝑙𝑑[0] = 𝐶𝑋

P4 : remain𝑜𝑙𝑑[x] = 𝐶𝑋

P5 : remain𝑛𝑒𝑤 = remain𝑜𝑙𝑑[1:x]; remain𝑜𝑙𝑑[x+1:],

where x is the return value of next_gate(remain, 0). For
convenience, we use𝐶1 and𝐶2 to represent remain𝑜𝑙𝑑[1:x]
and remain𝑜𝑙𝑑[x+1:] respectively, and thus we have

remain𝑜𝑙𝑑 = 𝐶𝑋 ;𝐶1;𝐶𝑋 ;𝐶2

remain𝑛𝑒𝑤 = 𝐶1;𝐶2 .

Using P1 ∼ P5, we can rewrite the proof goal G1 as:

G2 : app (𝐶𝑋 ;𝐶1;𝐶𝑋 ;𝐶2, 𝑄
′) ≡ app (𝐶1;𝐶2, 𝑄

′) ,
where 𝑄 ′ is the quantum state after applying output𝑜𝑙𝑑 or
output𝑛𝑒𝑤 to 𝑄 . Giallar then performs symbolic execution
on both sides of G2, shown as follows:

Left: app(𝐶𝑋 ;𝐶1;𝐶𝑋 ;𝐶2, 𝑄
′)

⇀ app
(
𝐶1;𝐶𝑋 ;𝐶2, app(𝐶𝑋,𝑄 ′)

)

· · ·
⇀ app

(
𝐶2, app(𝐶𝑋, app(𝐶1, app(𝐶𝑋,𝑄 ′)))

)

Right: app(𝐶1;𝐶2, 𝑄
′) ⇀ app(𝐶2, app(𝐶1, 𝑄

′)).

Thus, after removing the same application of 𝐶2 on both
sides of G2, the proof goal becomes:

G3 : app (𝐶𝑋, app(𝐶1, app(𝐶𝑋,𝑄 ′))) ≡ app(𝐶1, 𝑄
′).

Note that the specification of next_gate(0) also adds the
following precondition that the gate x can be reordered to

649

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. Cross, F. Chong, and R. Gu

the second gate of remain𝑜𝑙𝑑 :

P6 : ∀𝑄1, app (𝐶𝑋, app(𝐶1, 𝑄1)) ≡ app (𝐶1, app(𝐶𝑋,𝑄1)) .
Besides, Giallar’s rewrite rule set contains a cancellation

rule to cancel out two adjacent𝐶𝑋 gates, which is introduced
as the following precondition to the proof goal:

P7 : ∀𝑄2, app (𝐶𝑋, app(𝐶𝑋,𝑄2)) ≡ 𝑄2

The Giallar verifier finally encodes the preconditions and
goals into the following formula and invokes Z3 to solve:

P6 ∧ P7 ∧ ¬G3,

which is expanded into qubit-local formulas containing app2𝑞
of symbolic representation for quantum circuits (see Sec-
tion 5). If the above formula is satisfiable, the compiler pass is
incorrect and a counter-example is generated by the verifier.
Otherwise when Z3 proves the above formula is unsatisfi-
able, we successfully verify that the compiler pass correctly
preserves the semantics using Giallar.
The above formula is unsatisfiable, i.e., P6 and P7 imply

G3, and can be proven using Z3. We show why P6 and P7

imply G3 as follows. By instantiating 𝑄1 with app(𝐶𝑋,𝑄 ′)
and rewriting the left side of G3 using P6, the proof goal
becomes:

G4 : app (𝐶1, app(𝐶𝑋, app(𝐶𝑋,𝑄 ′))) ≡ app(𝐶1, 𝑄
′).

After removing the same application of 𝐶1 on both sides of
G4, the proof goal becomes:

G5 : app (𝐶𝑋, app(𝐶𝑋,𝑄 ′)) ≡ 𝑄 ′,

which can be directly proven using the cancellation rule P7.

Requirements of the Giallar verifier. For a pass to be ver-
ified using Giallar, it needs to be written in a way that 1)
each loop in the pass follows one of the three loop patterns
introduced in Section 4; 2) it uses Giallar’s verified library to
represent quantum programs; and 3) the transformation of
quantum gates must be expressible using the given rewrite
rules. Note that new loop templates, verified library func-
tions, and rewrite rules can be easily added.

7 Case Studies

In this section, we will present three case studies to show
howwe use Giallar to discover quantum-specific bugs during
the push-button verification of the Qiskit compiler.

7.1 The optimize_1q_gate Pass

We first focus on the verification of the optimize_1q_gate
pass and show that, using Giallar, we can reveal bugs that
only arise in quantum software.
The optimize_1q_gate pass invokes the utility function

merge_1q_gate to collapse a chain of 1-qubit gates into a
single, more efficient gate [25], to mitigate noise accumu-
lation. It operates on 𝑢1, 𝑢2, and 𝑢3 gates, which are native
gates in the IBM quantum devices. These gates can be nat-
urally described as linear operations on the Bloch sphere;

Table 1. Matrix representation of physical gates 𝑢1, 𝑢2 and 𝑢3,

where 𝑢1 is a Z rotation on the Bloch sphere.

𝑢1 (𝜆) =
(
1 0

0 𝑒𝑖𝜆

)
, 𝑢2 (𝜙, 𝜆) =

√
2
2

(
1 −𝑒𝑖𝜆
𝑒𝑖𝜙 𝑒𝑖 (𝜆+𝜙)

)

𝑢3 (𝜃, 𝜙, 𝜆) =
√
2
2

(
cos(𝜃) −𝑒𝑖𝜆sin(𝜃)

𝑒𝑖𝜙 sin(𝜃) 𝑒𝑖 (𝜆+𝜙)cos(𝜃)

)

𝑢1 (𝜆1) 𝑢3 (𝜃2, 𝜙2, 𝜆2) m1g
−−−−→ 𝑢3 (𝜃2, 𝜆1 + 𝜙2, 𝜆2)

(a) A correct merge of gates 𝑢1 and 𝑢3. The cuicuit is equiv-

alent before and after merging.

•

𝑢1 (𝜆1) 𝑢3 (𝜃2, 𝜙2, 𝜆2) m1g
−−−−→ 𝑢3 (𝜃2, 𝜆1 + 𝜙2, 𝜆2)

(b) An incorrect merge. The new curcuit is not equivalent

because 𝑢3 was a controlled gate before merging.

Figure 8. Correct execution (top) and incorrect execution (bottom)

of merge_1q_gate.

for example, 𝑢1 gates are rotations with respect to the Z axis.
For clarity, we list their matrix representations in Table 1.

The optimize_1q_gate pass has two function calls. First,
it calls the collect_runs method to collect groups of con-
secutive 𝑢1, 𝑢2, and 𝑢3 gates. Then it calls merge_1q_gate to
merge the gates in each group. The merge_1q_gate method
(see Fig. 8a) first transforms the 1-qubit gates from the Bloch
sphere representation to the unit quaternion representa-
tion [9] and then applies the merge() function to that repre-
sentation to merge the rotations.
In Qiskit, all gates can be modified with a c_if or q_if

method to condition its execution on the state of other clas-
sical or quantum bits. When proving that merge() does not
change semantics of the quantum program, we found that
in some cases the compiler pass attempts to optimize these
gates without noticing that the gate is controlled by other
(qu)bits, leading to an incorrect execution as in Figure 8b. For
this reason, in our retrofitted implementation of this pass, we
inserted checks that gate1.q_if == False and gate1.c_if
== False before merging the 1-qubit gates.

Bugs similar to the one described above, which relates to
how quantum circuit instructions can be conditioned, have
been observed in Qiskit in the past [37, 39]. In the absence of
the rigorous verification provided by tools like Giallar, such
bugs are hard to discover. In practice, this is usually done via
extensive randomized testing of input and output circuits,
which does not provide any guarantee of finding faulty code.
The results of merge_1q_gate here demonstrate that Giallar
is effective for detecting quantum-related bugs.

650

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. Cross, F. Chong, and R. Gu

8 Evaluation

To demonstrate its effectiveness at verifying quantum com-
piler passes, we implemented and evaluated Giallar on 56
compiler passes in 13 versions (from v0.19 to v0.32) of the
Qiskit compiler that are listed on the Qiskit website [36].
The implementation consists of 3.6k lines of code for the
Giallar framework, including quantum circuit-related data
structures, loop templates, virtual classes, the Giallar pre-
processor, and the Qiskit wrapper, and 168 lines of code for
utility functions.
Using Giallar, we have successfully verified 44 out of the

56 compiler passes. Among all 12 passes that Giallar fails
to verify, eight passes are scheduling passes that deal with
pulse instructions which are at a lower abstraction level than
quantum gates. Same as the previous verification frameworks
for quantum computing [1, 15], Giallar only supports the
abstraction at the quantum gate level and cannot reason
about pulse-level behaviors. The other four passes that we
do not verify are StochasticSwap, CrosstalkAdaptiveSchedule,
BIPMapping, and UnitarySynthesis passes. StochasticSwap
uses a randomized routing algorithm that Giallar does not
yet support. CrosstalkAdaptiveSchedule and BIPMapping are
passes that invoke Z3 and CPLEX solvers respectively to find
the output circuit. Giallar does not have formal semantics
for solvers and therefore cannot model these two passes.
UnitarySynthesis is a synthesis pass that produces an ap-
proximated circuit when the exact circuit includes gates
that cannot be performed on the given quantum hardware.
This cannot be verified without a proper way to specify and
reason about the error bound of the approximated compi-
lation. Note that all the above failed passes are also costly
or infeasible to manually verify using previous verification
frameworks for quantum compilers [1, 15].

Experiment setup. Our evaluation only focuses on the 44
verified passes. We have evaluated the performance of veri-
fying these 44 passes, as well as running verified passes to
compile real quantum circuits compared with the unverified
Qiskit passes. The system ran with Python 3.8.7 and Z3 4.8.12.
All verification and compilation tasks ran on a Dell Precision
5829 workstation with a 4.3GHz 28-core Intel Xeon W-2175,
62GB RAM and a 512GB Intel SSD Pro 600p.

Verification performance. Table 2 gives the result of the
verification for all 44 Qiskit passes. The verification of all
passes completed in less than 30 seconds.

Table 2 also lists the number of subgoals to be proved after
preprocessing each pass. We can see that even if theoretically
there may be an exponential number of subgoals when there
are many branch statements, there are at most eight subgoals
for all Qiskit passes.

Compiler performance. We have also evaluated our veri-
fied compiler and the original unverified Qiskit compiler on a

Table 2. Verification result of the 44 verified passes in Qiskit.

Pass Pass #sub- Verif.

name LOC goals time(s)

ApplyLayout 11 2 0.7

SetLayout 8 1 0.7

TrivialLayout 10 1 0.7

Layout2qDistance 19 1 0.7

DenseLayout 77 1 0.7

NoiseAdaptiveLayout 192 1 0.7

SabreLayout 62 1 0.7

CSPLayout 52 1 0.7

EnlargeWithAncilla 8 1 0.8

FullAncillaAllocation 8 1 0.7

BasicSwap 36 4 2.4

LookaheadSwap 100 3 3.5

SabreSwap 96 3 3.8

Unroller 23 3 1.5

Unroll3qOrMore 23 3 1.4

Decompose 23 3 2.0

UnrollCustomDefinitions 22 3 1.5

BasisTranslator 119 3 1.5

Optimize1qGates 32 3 25.1

Optimize1qGatesDecomp 32 3 25.2

Collect2qBlocks 9 1 0.7

ConsolidateBlocks 19 3 1.4

CXCancellation 24 4 4.2

CommutationAnalysis 6 1 0.7

CommutativeCancellation 17 3 1.3

RemoveDiagBeforeMeasure 24 3 18.1

RemoveReseatInZeroState 16 3 1.3

Width 8 1 0.6

Depth 8 1 0.6

Size 9 1 0.6

CountOps 8 1 0.7

CoutOpsLongestPath 8 1 0.7

NumTensorFactors 8 1 0.7

DAGLongestPath 8 1 0.9

CheckMap 19 1 0.7

CheckCXDirection 19 1 0.7

CheckGateDirection 19 1 0.7

CXDirection 29 4 2.3

GateDirection 55 8 5.6

MergeAdjacentBarriers 24 4 4.1

BarrierBeforeFinalMeasure 22 4 19.7

RemoveFinalMeasure 20 3 2.9

DAGFixedPoint 17 1 0.6

FixedPoint 17 1 0.6

Sum 1,366 95 145.4

series of quantum circuits fromQASMBench [20]. The bench-
mark includes 48 quantum circuits with various near-term
quantum applications, including quantum state preparation
(cat_state, bell, ghz_state), quantum arithmetic (adder), quan-
tum chemistry simulation (ising), quantummachine learning
(dnn), and other famous quantum algorithms (deutsch, qft,

652

Giallar: Push-Button Verification for the Qiskit Quantum Compiler PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

grover, qaoa). These quantum circuits contain up to 27 qubits
and up to 5,000 quantum gates.
We ran all 48 circuits in the benchmark using the (most

computationally expensive) lookahead swap pass for the
Qiskit implementation and the Giallar implementation. Fig-
ure 11 summarizes the running time of all 31 benchmark
circuits that Qiskit succeeded. We can see that Giallar suc-
cessfully compiled all these 31 circuits as well. For smaller
circuits, the performance overhead of Giallar was at most 0.5
seconds, while for larger circuits, the performance overhead
was at most 10%. The overhead mainly came from loading
the verified library in Python, the data structure conversion
between Qiskit DAG and Giallar list representations, and the
Qiskit wrapper. The results show that the formal correctness
guarantee of Giallar introduces only a modest compilation
performance overhead.

Reusability. Most of Giallar’s rewrite rules and utility func-
tions are shared across passes. Among all three classes of
rewrite rules shown in Figure 7, the cancellation rules are
used by optimization passes including CommutativeCancel-
lation, CXCancellation, Optimize1qGates, and Consolidate-
Blocks. The commutativity rules are used in the Commuta-
tiveAnalysis and CommutitiveCancellation passes. The swap
rules are used in all routing passes. The utility functions in
Giallar include: 1) the circuit manipulating operations (e.g.,
next_gate) which are used among all passes; 2) the coupling
map related operations (e.g., shortest_path) that are used
in all routing passes; and 3) the circuit merging and gate
expanding operations merge which are used in the Consoli-
dateBlocks and Optimize1qGate passes.

Adding new passes. Our experience shows that many new
passes introduced can be verified automatically. Giallar was
first developed for Qiskit 0.19 (see our technical report [43]).
When we applied Giallar to verify the 16 new passes intro-
duced by Qiskit 0.32, 15 out of 16 were verified automatically.
The failed one uses an ECR gate that Giallar did not model.
We added the symbolic execution and the corresponding
rewrite rule for this new gate feature to enable its verifica-
tion.

Limitations. Compared with the manual verification frame-
work [15], Giallar has a larger trusted computing base, in-
cluding the Giallar implementation, the Z3 SMT solver, the
Coq proof checker, the symbolic execution of Z3Py, and the
equivalence of data structures defined in Python, Coq and
Z3. We note that such a larger trusted computing base is
common in prior work on push-button verification [32, 33].
Giallar matches loops against a pre-defined set of loop

templates. While applicable to the current Qiskit compiler,
Giallar may fail to handle future compiler versions with new
patterns of loops. We would like to explore how to integrate
previous work on loop invariant learning [41, 47] to remove
the loop templates in the future.

Giallar’s rewrite rule set is incomplete and may not be
able to prove the equivalence for some future passes. The
symbolic execution for quantum circuits is also incomplete
and does not model some gate features. New rewrite rules
and more gate support may be needed to support future
Qiskit passes. Besides, the rewrite rules for quantum circuits
in Giallar only supports local equivalence of quantum states.
It does not support non-local quantum circuit optimizations
that are implemented using other quantum state representa-
tions, such as the phase polynomial representation [1, 2, 30]
and the state vector quantum assertion [14].

Besides, Giallar is only designed to prove that the compiled
quantum circuits preserve the semantics of the input circuits
and satisfy the topological constraints given by the coupling
map. Non-critical statements and function invocations which
do not affect the generated circuits will be discarded dur-
ing the preprocessing, such that the correctness of these
statements and the generated debugging information is not
verified.

9 Related Work

Verified quantum compilation. Following the approach
of verifying classical compilation [11, 12, 19], previous efforts
on verifying quantum compilation mainly rely on interactive
theorem provers to construct manual proofs. ReVerC [2] is
a verified compiler for reversible circuits, a subset of quan-
tum circuits that are easier to reason about. The verification
is done in 𝐹 ∗ [26]. ReQWire [40] verifies ancillae uncom-
putation, one specific step of quantum compilation, using
Coq [5]. VOQC [15] verifies several quantum optimization
passes such as circuit mapping and gate cancellation using
Coq. Compared with Giallar, these frameworks have the ben-
efit of a smaller trusted computing base, and may support
more complicated compilation passes whose proof goals are
not provable by an SMT solver. However, these frameworks
require both formal verification expertise and a significant
proof burden. Moreover, all these works only verified one
static version of their passes, and their proofs cannot adapt
to the fast changing real-world quantum compilers such
as Qiskit. In contrast, Giallar is a push-button verification
toolkit, allowing developers without much formal verifica-
tion background to write and verify compiler passes. With
Giallar, newly developed or modified passes can be easily
introduced and automatically verified.

Equivalence checking for quantum circuits. Algorithms
to perform efficient equivalence checking for quantum cir-
cuits have been discussed from the view of quantum algo-
rithms [46], quantum communication protocols [3], and ver-
ification of compilation [1]. Given two concrete quantum
circuits 𝐶1 and 𝐶2, these checking algorithms can answer
if 𝐶1 and 𝐶2 are equivalent. However, to verify a quantum
compiler, we must prove that for any quantum circuit 𝐶 ,
the compiled circuit 𝐶 ′ is equivalent to 𝐶 . This is beyond

653

Giallar: Push-Button Verification for the Qiskit Quantum Compiler PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

[3] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. 2011. Equiv-

alent Quantum Circuits. Technical Report. Universidad de Valladolid,

Dpto. Teoria de la Senal e Ing. arXiv:1110.2998v1

[4] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Per-

relle, and Benoît Valiron. 2021. An Automated Deductive Verification

Framework for Circuit-building Quantum Programs.. In Proceedings

of the 30th European Symposium on Programming (ESOP ’21). 148ś177.

https://doi.org/10.1007/978-3-030-72019-3_6

[5] The Coq Development Team. 2012. The Coq Reference Manual, version

8.4. Available electronically at http://coq.inria.fr/doc.

[6] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta.

2017. Open quantum assembly language. arXiv:1707.03429

[7] Manjeet Dahiya and Sorav Bansal. 2017. Black-box equivalence check-

ing across compiler optimizations. In Proceedings of the 15th Asian

Symposium on Programming Languages and Systems (APLAS ’17). 127ś

147. https://doi.org/10.1007/978-3-319-71237-6_7

[8] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS ’08),

Vol. 4963. 337ś340. https://doi.org/10.1007/978-3-540-78800-3_24

[9] Philippe Gille and Tamas Szamuely. 2009. Central Simple Algebras and

Galois Cohomology. Cambridge University Press. https://doi.org/10.

1017/cbo9780511607219

[10] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. 1989.

Going Beyond Bell’s Theorem. Springer Netherlands, Dordrecht, 69ś72.

https://doi.org/10.1007/978-94-017-0849-4_10

[11] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,

Xiongnan Newman Wu, Shu-Chun Weng, and Haozhong Zhang. 2015.

Deep specifications and certified abstraction layers. In Proceedings of

the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages (POPL ’15). 595ś608. https://doi.org/10.1145/2775051.

2676975

[12] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan NewmanWu, Jérémie

Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina

Ramananandro. 2018. Certified concurrent abstraction layers. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’18). 646ś661. https:

//doi.org/10.1145/3296979.3192381

[13] Shubhani Gupta, Abhishek Rose, and Sorav Bansal. 2020.

Counterexample-guided correlation algorithm for translation

validation. Proceedings of the ACM on Programming Languages 4,

OOPSLA (2020), 1ś29. https://doi.org/10.1145/3428289

[14] Thomas Häner, Torsten Hoefler, and Matthias Troyer. 2018. Using

Hoare Logic for Quantum Circuit Optimization. arXiv:1810.00375

[15] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael

Hicks. 2021. A Verified Optimizer for Quantum Circuits. Proceedings

of the ACM on Programming Languages 5, POPL (2021). https://doi.

org/10.1145/3434318

[16] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.

Commun. ACM 12, 10 (Oct 1969), 576ś580. https://doi.org/10.1145/

363235.363259

[17] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying,

Michael Hicks, and Xiaodi Wu. 2019. Quantitative robustness anal-

ysis of quantum programs. Proceedings of the ACM on Programming

Languages 3, POPL (2019), 1ś29. https://doi.org/10.1145/3290344

[18] Chris Lattner and VikramAdve. 2003. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. Technical Report.

UIUC. http://llvm.cs.uiuc.edu/

[19] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.

ACM 52, 7 (2009), 107ś115. https://doi.org/10.1145/1538788.1538814

[20] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2021.

QASMBench: A Low-level QASM Benchmark Suite for NISQ Evalua-

tion and Simulation. arXiv:2005.13018

[21] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping

Problem for NISQ-era Quantum Devices. In Proceedings of the 24th

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’19). 1001ś1014. https:

//doi.org/10.1145/3297858.3304023

[22] Shusen Liu, Xin Wang, Li Zhou, Ji Guan, Yinan Li, Yang He, Runyao

Duan, and Mingsheng Ying. 2018. 𝑄 |𝑆𝐼 ⟩: A Quantum Programming

Environment. In Lecture Notes in Computer Science. Vol. 11180. Springer,

133ś164. https://doi.org/10.1007/978-3-030-01461-2_8

[23] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John

Regehr. 2015. Provably Correct Peephole Optimizations with Alive.

In Proceedings of the 36th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI ’15). 22ś32. https:

//doi.org/10.1145/2737924.2737965

[24] Dmitri Maslov, Gerhard W. Dueck, Michael Miller, and Camille Ne-

grevergne. 2008. Quantum Circuit Simplification and Level Com-

paction. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 27, 3 (2008), 436ś444. https://doi.org/10.1109/

TCAD.2007.911334

[25] David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk,

Lev Bishop, Jiayin Chen, Jerry M. Chow, Antonio D. Córcoles, Daniel

Egger, Stefan Filipp, Juan Gomez, Michael Hush, Ali Javadi-Abhari,

Diego Moreda, Paul Nation, Brent Paulovicks, Erick Winston, Christo-

pher J. Wood, James Wootton, and Jay M. Gambetta. 2018. Qiskit

Backend Specifications for OpenQASM and OpenPulse Experiments.

arXiv:1809.03452

[26] Microsoft. 2016. F*. https://github.com/FStarLang/FStar/

[27] Frank Mueller, Greg Byrd, and Patrick Dreher. 2020. Programming

Quantum Computers: A Primer with IBM Q and D-Wave Exercises.

https://sites.google.com/ncsu.edu/qc-tutorial

[28] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T.

Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler

Mappings for Noisy Intermediate-Scale Quantum Computers. In Pro-

ceedings of the 24th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASLPOS ’19). 1015ś

1029. https://doi.org/10.1145/3297858.3304075

[29] Prakash Murali, David C. Mckay, Margaret Martonosi, and Ali Javadi-

Abhari. 2020. Software Mitigation of Crosstalk on Noisy Intermediate-

Scale Quantum Computers. In Proceedings of the 25th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’20). 1001ś1016. https://doi.org/10.1145/

3373376.3378477

[30] Yunseong Nam, Neil J Ross, Yuan Su, Andrew M Childs, and Dmitri

Maslov. 2018. Automated Optimization of Large Quantum Circuits

with Continuous Parameters. npj Quantum Information 4, 1 (2018),

1ś12.

[31] George C Necula. 2000. Translation Validation for an Optimizing

Compiler. In Proceedings of the 21st ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI ’00). 83ś94.

https://doi.org/10.1145/349299.349314

[32] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina

Torlak, and XiWang. 2019. Scaling Symbolic Evaluation for Automated

Verification of Systems Code with Serval. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles (SOSP ’19). 225ś242.

https://doi.org/10.1145/3341301.3359641

[33] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,

James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:

Push-Button Verification of an OS Kernel. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP ’17). 252ś269. https:

//doi.org/10.1145/3132747.3132748

[34] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation

and Quantum Information: 10th Anniversary Edition (10th ed.). Cam-

bridge University Press. https://doi.org/10.1017/CBO9780511976667

655

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. Cross, F. Chong, and R. Gu

[35] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A

Core Language for Quantum Circuits. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages (PLDI

’17). 846ś858. https://doi.org/10.1145/3009837.3009894

[36] Qiskit 0.32.0 Documentation 2021. Available at https://qiskit.org/

documentation/index.htm.

[37] Qiskit Bug Report 2019. Available at https://github.com/Qiskit/qiskit-

terra/issues/1871.

[38] Qiskit Github repository 2021. Available at https://github.com/Qiskit/

qiskit-terra.

[39] Qiskit Terra Github issue page 2018. Available at https://github.com/

Qiskit/qiskit-terra/issues.

[40] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic.

2019. ReQWIRE: Reasoning about Reversible Quantum Circuits.

arXiv:1901.10118

[41] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana.

2020. CLN2INV: Learning Loop Invariants with Continuous Logic

Networks. In Proceedings of the 8th International Conference on Learn-

ing Representations (ICLR ’20). https://openreview.net/forum?id=

HJlfuTEtvB

[42] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I. Schus-

ter, Henry Hoffmann, and Frederic T. Chong. 2019. Optimized Compi-

lation of Aggregated Instructions for Realistic Quantum Computers.

In Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

’19). 1031ś1044. https://doi.org/10.1145/3297858.3304018

[43] Yunong Shi, Runzhou Tao, Xupeng Li, Ali Javadi-Abhari, Andrew W

Cross, Frederic T Chong, and Ronghui Gu. 2019. CertiQ: A Mostly-

automated Verification of a Realistic Quantum Compiler. Technical

Report. arXiv:1908.08963

[44] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.

2016. Push-Button Verification of File Systems via Crash Refinement.

In Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’16). 1ś16. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/sigurbjarnarson

[45] Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T Chong,

and Ronghui Gu. 2021. Gleipnir: toward practical error analysis for

Quantum programs. In Proceedings of the 42nd ACM SIGPLAN Interna-

tional Conference on Programming Language Design and Implementa-

tion (PLDI ’21). 48ś64. https://doi.org/10.1145/3453483.3454029

[46] George F. Viamontes, Igor L. Markov, and John P. Hayes. 2007. Check-

ing Equivalence of Quantum Circuits and States. In Proceedings of the

2007 International Conference on Computer-Aided Design (ICCAD ’07).

69ś74. https://doi.org/10.1109/ICCAD.2007.4397246

[47] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui

Gu. 2020. Learning nonlinear loop invariants with gated continuous

logic networks. In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’20). 106ś120.

https://doi.org/10.1145/3385412.3385986

[48] Vladimir Zamdzhiev. 2016. Quantum Computing: the Good, the bad,

and the (not so) Ugly! Invited Talk at University of Oxford.

[49] Pengzhan Zhao, Jianjun Zhao, Zhongtao Miao, and Shuhan Lan. 2021.

Bugs4Q: A Benchmark of Real Bugs for Quantum Programs. In Pro-

ceedings of the 36th IEEE/ACM International Conference on Automated

Software Engineering (ASE ’21). 1373ś1376. https://doi.org/10.1109/

ASE51524.2021.9678908

656

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Basics
	2.2 Quantum Program
	2.3 Quantum Compilation
	2.4 The Z3Py Tool

	3 The Giallar Workflow
	4 The Giallar Preprocessor
	5 Rewrite Rules for Quantum Circuits
	6 The Giallar Verifier
	7 Case Studies
	7.1 The optimize_1q_gate Pass
	7.2 The commutation Passes
	7.3 Termination in routing Passes

	8 Evaluation
	9 Related Work
	10 Conclusion
	References

