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Abstract

We consider global generation of sheaves of coinvariants on moduli of curves given by
simple modules over certain vertex operator algebras, extending results for affine vertex
operator algebras at integrable levels on stable pointed rational curves. A number of
examples illustrate the subtlety of the problem.

1. Introduction

Given an object in any category, a natural objective is to find the maps admitted by it. On Mg,n,
the moduli stack parametrizing families of stable n-pointed curves of genus g, globally generated
coherent sheaves define rational maps, which are regular on the locus where they are free.

Sheaves of coinvariants, determined by n simple admissible modulesW i over a vertex operator
algebra V (a VOA), are defined on J g,n, the moduli stack parametrizing families of stable pointed
curves with first-order tangent data. Under mild assumptions, they descend to sheaves Vg(V ;W •)
on Mg,n; see [DGT21, DGT19]. If V is C2-cofinite, these sheaves are coherent [DGK22]; if V is
also rational, they are vector bundles [DGT19]; and if V is strongly rational, their Chern classes
are tautological [DGT22] (see § 2 for definitions). Examples include those given by affine VOAs,
certain W -algebras, even lattice VOAs, and holomorphic VOAs (like the moonshine module),
and others obtained as tensor products, orbifold algebras, and through coset constructions.

Affine VOAs are derived from (quotients of) the affinization of a Lie algebra g, and ℓ ∈ C,
with −ℓ not equal to the dual Coxeter number. The simple affine VOA Lℓ(g), generated by its
degree 1 component g, is strongly rational if and only if ℓ ∈ Z>0. For g reductive, Vg(Lℓ(g);W

•)
was shown to be a vector bundle on Mg,n in [TUY89] and globally generated on M0,n in [Fak12].

In this work, we investigate global generation in a more general context. Our main result is
the following.

Theorem 1. Sheaves of coinvariants defined by simple admissible modules over a vertex operator
algebra, strongly generated in degree 1, are globally generated on J 0,n, and on M0,n if defined.

Here we assume that all VOAs are of CFT-type. By [Lia94], the VOAs in Theorem 1 are
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On global generation of vector bundles from VOAs

quotients of the affinization of a not-necessarily reductive Lie algebra structure on their degree 1
component (see Remark 2.4.1). By [DM06], if V is strongly rational (rational, C2-cofinite, simple,
and self-contragredient), then we have V ∼=

⊗r
i=1 Lℓi(gi), where the gi are simple Lie algebras,

ℓi ∈ Z>0, and V1 ∼=
⊕r

i=1 gi. In Theorem 1, the VOA V need not be simple, C2-cofinite, or
rational, and may for instance be applied to Lℓ(g), for g simple and such that ℓ is admissible
but not in Z>0. Such VOAs Lℓ(g) are not C2-cofinite but are quasi-lisse, a natural generalization
of C2-cofiniteness, introduced in [AK18]. It follows from [Ara16, Main Theorem] that simple
admissible highest-weight modules over Lℓ(g) have rational conformal weights, as do more general
V -modules (see Remark 2.7.3). In particular, their associated sheaves of coinvariants are defined
on M0,n (see Remark 3.2.2). As in [Lia94], there are many other examples to which Theorem 1
applies.

By Corollary A, sheaves described in Theorem 1 are coherent. This improves [AN03], giving
coherence on M0,n for C2-cofinite and self-contragredient V , and [DGK22], where coherence was
proved on M0,n for C2-cofinite V . By Corollary B, such sheaves are vector bundles on M0,n. If V
is C2-cofinite and rational, by [DGT19], these are vector bundles on Mg,n, and by Corollary C,
these vector bundles are globally generated on M0,n, extending [TUY89, Fak12].

While we have not found conditions to guarantee global generation for g > 0, or for VOAs
which are not strongly generated in degree 1, to illustrate the subtlety of this problem, we give
several representative examples, including

– globally generated and positive bundles of coinvariants (see §§ 7–9),
– sheaves of coinvariants that are not globally generated (see §§ 8 and 9).

Influenced by these, we ask questions and pose potential extensions of Theorem 1 (see § 10).
We next describe our methods, and our findings in more detail.

Given n simple admissible modules W i over a vertex operator algebra V of CFT-type, we
define a constant sheaf of finite rank and a morphism of sheaves (3.2) from it to the sheaf of
coinvariants (Lemma 3.2.1). Each simple admissible V -module W i is a direct sum of vector
spaces W i

d, graded by the natural numbers, and the fibers of the constant sheaf are isomorphic
to the tensor product of the lowest-weight spaces

⊗
iW

i
0.

To prove that the sheaf of coinvariants is globally generated, we show that the map (3.2)
from Lemma 3.2.1 is surjective. For this, it suffices to prove that the induced map on fibers is so,
and to achieve this, we use a filtration induced by the grading on W • by degree. In particular,
we show that all positive-degree elements come from the degree zero part of the filtration, which
is naturally a quotient of the constant sheaf. Crucial to our argument is Zhu’s result that any
simple admissible V -module is generated in degree zero over V ; see [Zhu96, Theorem 2.2.2].

The proof of the surjectivity of (3.2) restricted to fibers at smooth pointed curves is a reinter-
pretation of the core of the argument of Tsuchiya, Ueno, and Yamada [TUY89, Proposition 2.3.1],
that implies the global generation of bundles defined by affine Lie algebras at integrable levels
ℓ ∈ Z>0 on M0,n, as their analysis has essential features in common with ours. However, at
pointed curves with singularities, due to differences in the definitions of the Lie algebras used
to define the coinvariants in these two settings, our proof of surjectivity is considerably more
involved than Fakhruddin’s proof [Fak12] of the global generation of V0(Lℓ(g);W

•) on M0,n for
ℓ ∈ Z>0.

The terms we refer to are defined in § 2, and in § 3 we construct the constant bundle, proving
Lemma 3.2.1. Theorem 1 is proved in § 5, after preparation is given in § 4. Proofs of the corollaries
are given in § 6. We remark that Corollary A follows primarily from the proof of Theorem 1,
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while Corollary B is obtained by combining Corollary A with results from [DGT21]. Corollary C
follows from Theorem 1 and results from [DGT19].

If Vg(V ;W •) is a globally generated bundle on Mg,n for g > 0, as we next explain, it is
necessary that V has non-negative central charge. Globally generated sheaves will have non-
negative rank, and first Chern classes will be nef (a divisor is nef if it non-negatively intersects
all curves). Suppose that V is C2-cofinite, and rational so Vg(V ;W •) is known to be a vector
bundle [DGT19]. If V is also self-contragredient, then by [DGT22, Corollary 2], the first Chern
classes of Vg(V ;W •) are linear combinations of tautological classes, including λ (the first Chern
class of the Hodge bundle). By [GKM02, Theorem 2.1], for g ⩾ 2, the coefficient of λ is a rational
expression involving the rank of the bundle and the central charge of V . In particular, the central
charge must be non-negative for Vg(V ;W •) to be nef. While not necessary, strong unitarity of V
is sufficient to guarantee that the central charge is positive, and such examples are therefore of
interest.

In § 10, we discuss questions inspired by a number of examples we have studied, represented
in simple cases here. The leitmotif is that sheaves of coinvariants derived from vertex operator
algebras related to affine VOAs seem to be geometric in nature. For instance, in Question 1 we
ask whether Vg

(⊗r
j=1 Lℓj (gj);

⊗r
j=1W

•
j

)
is isomorphic to

⊗r
j=1Vg

(
Lℓj (gj);W

•
j

)
. In this case,

dual sheaves of coinvariants could be identified with generalized theta functions and would be
subject to strange dualities (see Remark 10.0.1).

Our remaining questions are about positivity. As illustrated in Example 8.0.5, in cases where
the rank of the constant bundle W•

0 was at least as large as the rank of the sheaf of coinvariants
on M0,n, the latter had positivity properties whenever an integral degree condition was satisfied
(see Definition 2.3.1). In particular, since Chern classes of globally generated bundles are base-
point-free, we were able to establish non–global generation by checking that if n = 4, the degree
of the sheaf was negative.

In § 7, we consider a class of line bundles defined by holomorphic VOAs and the affine VOA
given by E8. The associated sheaves W•

0 also have rank 1. While Theorem 1 does not apply in
positive genus, we can see that these bundles are globally generated on Mg,n for g > 0.

Tools from VOA theory like factorization, Zhu’s algebra, and Zhu’s character formula can
often help one compute Chern classes and the ranks of the sheaves of coinvariants and of W•

0 , the
latter of which is determined by the dimensions of the degree zero components of the module.

In [Zhu96], Zhu introduced an associative algebra A(V ) and established functors between
categories of A(V )-modules and V -modules. By [Zhu96, Theorem 2.2.2], any simple admissible
V -module W =

⊕
d∈NWd corresponds to the simple A(V )-module W0. In particular, if A(V )

is commutative, then W0 is 1-dimensional, and the constant sheaf has rank 1. Minimal series
principal W -algebras Wℓ(g) and their simple quotients Wℓ(g) have commutative Zhu algebras
(see Example 3.2.3). These rational, C2-cofinite, self-contragredient VOAs have appeared promi-
nently in the literature and are related to other important families of VOAs. For instance, given
ℓ ∈ Z⩾2 and r = −ℓ + (ℓ+ 1)/(ℓ+ 2), there is a well-known isomorphism between Wr(sl2, ℓ)
and the Parafermion algebras K(sl2, ℓ), first proven in [ALY19]. A complete list of such isomor-
phisms between Wr(sln, ℓ) and K(sl2, ℓ), for any r and n, is given in [Lin21, Theorem 10.3].
Both Wℓ(g) and Wℓ(g) can be realized as cosets of tensor products of affine vertex operator
algebras (proved for simply laced g in [ALY19, ACL19] and for non-simply laced g in [CL22]). In
§ 8, we consider bundles of coinvariants defined by modules over K(sl2, 2) equal to the Virasoro
VOA Vir 1

2
.
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Many VOAs do not have a commutative Zhu algebra. For instance, generally speaking,
affine Lie algebras and even lattice VOAs do not. One can often compute the rank of the
constant bundle W•

0 using Zhu’s chararacter formula, which involves modular forms, as we
explain in § 9. There we consider sheaves on M0,n generated by modules over even lattice
vertex algebras, which have rank 1 by [DGT22]. Except in special cases, even lattice VOAs
do not coincide with, nor are they constructed from, affine VOAs. We see that depending on
how the modules are chosen, first Chern classes may be negative (so sheaves are not globally
generated), zero (so sheaves are constant), or positive (so sheaves are possibly globally gener-
ated).

2. Background

Following [FLM88, TUY89, FB04, DGT19], we briefly give notation and results used here. We
also recommend [DGT22, DGK22], which were written primarily for algebraic geometers.

2.1 Virasoro (Lie) algebra

The Virasoro (Lie) algebra Vir is a 1-dimensional central extension of the Witt (Lie) algebra
Der K. The Witt algebra represents the functor which assigns to a C-algebra R the Lie algebra
Der K(R) := R((z))∂z generated over R by the derivations Lp := −zp+1∂z, for p ∈ Z, with
relations [Lp, Lq] = (p − q)Lp+q. In particular, we can view the Lie algebra Vir as representing
the functor which assigns to R the Lie algebra generated over R by a formal vector K and the
elements Lp, for p ∈ Z, with Lie bracket given by

[K,Lp] = 0 and [Lp, Lq] = (p− q)Lp+q +
1
12K

(
p3 − p

)
δp+q,0 .

2.2 Vertex operator algebras

By a vertex operator algebra, we mean a four-tuple (V,1, ω, Y (·, z)), where

(i) V =
⊕

i∈N Vi is a non-negatively graded C–vector space with dim Vi <∞;

(ii) 1 is an element in V0, called the vacuum vector ;

(iii) ω is an element in V2, called the conformal vector ;

(iv) Y (·, z) : V → End(V )Jz, z−1K is a linear map taking A ∈ V to Y (A, z) :=
∑

i∈ZA(i)z
−i−1.

The series Y (A, z) is called the vertex operator assigned to A.

The datum (V,1, ω, Y (·, z)) is required to satisfy four axioms which we state in [DGT19],
including axioms that vertex operators satisfy a weak version of commutativity and a weak
version of associativity. One may regard this as framing a VOA as generalizing a commutative
associative algebra. We highlight here the main properties that we will use in this paper, and we
refer to [DGT21, DGT19, FLM88] for more details.

(i) Conformal structure: The Virasoro algebra acts on V through the identifications Lp = ω(p+1)

and K = cV IdV for some complex number cV called central charge of V .

(ii) Vacuum axiom: Y (1, z) = IdV .

(iii) Graded action: If A ∈ Vk, then A(j)Vℓ ⊆ Vℓ+k−j−1.

(iv) Commutator formula: [A(i), B(j)] =
∑

k⩾0

( i
k

) (
A(k)(B)

)
(i+j−k)

.

(v) Associator formula:
(
A(i)(B)

)
(j)

=
∑

k⩾0(−1)k
( i
k

) (
A(i−k)B(j+k) − (−1)iB(i+j−k)A(k)

)
.
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A VOA V is strongly rational, or of CohFT-type, if V is simple, self-contragredient, and if V is

(I) of CFT-type: V =
⊕

i∈N Vi with V0
∼= C1;

(II) rational: there are finitely many simple V -modules, and every finitely generated module is
a direct sum of simple modules;

(III) C2-cofinite: the space C2(V ) := spanC
{
A(−2)B : A,B ∈ V

}
has finite codimension in V .

2.3 V -Modules

By a V -module W , we mean what in the literature is known as an admissible V -module, that is
a pair (W,Y W (−, z)) consisting of

(i) an N-graded vector space W =
⊕

i⩾0Wi with dim(Wi) <∞ and W0 ̸= 0,

(ii) a linear map Y W (−, z) : V → End(W )Jz, z−1K, A 7→ Y W (A, z) =
∑

i∈ZA
W
(i)z

−i−1.

In order for this pair to define an admissible V -module, certain axioms need to hold [DGT19,
FHL93, DL93]. Instead of reporting all the properties that

(
W,Y W (z,−)

)
must satisfy, we list

here only those that will be used in this paper (see [DGT19] for more details).

(i) Conformal structure: The Virasoro algebra acts on W through the identification Lp
∼=

ωW
(p+1).

(ii) Vacuum axiom: Y W (1, z) = IdW .

(iii) Graded action: If A ∈ Vk, then A
W
(j)Wℓ ⊆Wℓ+k−j−1, and we write deg

(
AW

(j)

)
= deg(A)−j−1.

(iv) Commutator formula:
[
AW

(i), B
W
(j)

]
=
∑

k⩾0

( i
k

) (
A(k)(B)

)W
(i+j−k)

.

(v) Associator formula:
(
A(i)(B)

)W
(j)

=
∑

k⩾0(−1)k
( i
k

)(
AW

(i−k)B
W
(j+k) − (−1)iBW

(i+j−k)A
W
(k)

)
.

In what follows, the endomorphism AW
(j) will simply be denoted by A(j). It is important to

observe that V is a V -module and that the commutator and associator formulas for V and for
V -modules both arise from the Jacobi identities for V and for V -modules. Moreover, when W is
a simple V -module, there exists an element α ∈ C, called the conformal dimension of W , such
that L0(w) = (α+ deg(w))w for every homogeneous element w ∈W .

Definition 2.3.1. An n-tuple
(
W 1, . . . ,W n

)
of admissible V -modules W i of conformal dimen-

sion αi is said to satisfy the integrality condition, or integrality property, if the sum of conformal
dimensions

∑n
i=1 αi is an integer (which can be zero).

2.4 Strong finite generation

A vertex algebra V is called finitely strongly generated if there exist finitely many elements
A1, . . . , Ar ∈ V such that V is spanned by the elements of the form

Ai1
(−n1)

· · ·Air
(−nr)

1 ,

with r ⩾ 0 and ni ⩾ 1 (see [Ara12]). We say that V =
⊕

i∈N Vi is strongly generated in degree d
if it is possible to choose the generators Aij to be in Vm for m ⩽ d.

By [Liu22, Proposition 2.5], one has that V is finitely strongly generated if and only if V is
C1-cofinite. If V is C2-cofinite, then it is C1-cofinite. However, the quasi-lisse but not C2-cofinite
affine VOAs defined by simple Lie algebras and admissible, non-integral levels are strongly finitely
generated in degree 1.
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Remark 2.4.1. VOAs of CFT-type, strongly generated in degree 1, were classified in [Lia94].
More generally, for any so-called preVOA V of CFT-type, by [Lia94, Theorem 3.7], the de-
gree 1 component V1 has the structure of a Lie algebra, with bracket [A,B] = A(0)(B). This
Lie algebra (V1, [ , ]), which need not be simple, or reductive, is equipped with a symmetric
invariant bilinear form ⟨A,B⟩ = A(1)(B). Roughly speaking, in the terminology of [Lia94], a
preVOA satisfies many of the properties of a VOA except those involving a conformal vector.
Given any pair consisting of a Lie algebra g and symmetric invariant bilinear form ⟨ , ⟩, Lian
defines the affinization, and proves in [Lia94, Theorem 4.11] that for any preVOA V of CFT-
type, if V is strongly generated in degree 1, then it is isomorphic to a quotient of the affinization
of (V1, ⟨ , ⟩) by some ideal. The last step in the classification is to determine which preVOAs
admit a Virasoro vector and have the structure of a VOA. He classifies such Virasoro vectors
(see [Lia94, Corollary 6.15]). As pointed out to us by a referee of our paper (who told us of this
work), the most interesting aspect of [Lia94] is that this class of examples is much richer than
the affinizations of reductive Lie algebras and their quotients. New examples are given in [Lia94,
§ 6.4].

2.5 Coordinatized curves

As the sheaf of coinvariants on Mg,n, the constant sheaf constructed in Lemma 3.2.1 is defined

first on a covering ËMg,n of Mg,n and then descended to Mg,n along two maps which we recall

here. At the second step, one applies Tsuchimoto’s method, as in [DGT21, DGT19]. By ËMg,n, we
mean the moduli space of triples (C,P•, t•), where (C,P•) ∈ Mg,n and t• is an n-tuple of formal
coordinates ti at each of the marked points Pi. This space is described in detail in [DGT19,
§ 2.2.2]. To understand the maps along which the two sheaves are to descend, we next describe
the group scheme AutO and the varieties AutC/S on which it acts.

Consider the functor which assigns to a C-algebra R the group

AutO(R) =
{
z 7→ ρ(z) = a1z + a2z

2 + · · · | ai ∈ R, a1 a unit
}

of continuous automorphisms of the algebra RJzK preserving the ideal zRJzK. The group law is
given by composition of series: ρ1 · ρ2 := ρ2 ◦ ρ1. This functor is represented by a group scheme,
denoted by AutO.

First suppose that C is a smooth curve, and let AutC be the smooth variety whose set of
points are pairs (P, t), with P ∈ C and t ∈ ÔP such that t ∈ mP \m2

P a formal coordinate at P .

Here mP is the maximal ideal of ÔP , the completed local ring at the point P . There is a simply
transitive right action of AutO on AutC → C, given by changing coordinates:

AutC ×AutO −→ AutC , ((P, t), ρ) 7−→ (P, t · ρ := ρ(t)) ,

making AutC a principal (AutO)-bundle on C. A choice of formal coordinate at P gives a trivi-
alization

AutO ≃t−−→ AutP , ρ 7−→ ρ(t) .

If C is a nodal curve, then to define a principal (AutO)-bundle on C, one may give a principal
(AutO)-bundle on its normalization, together with a gluing isomorphism between the fibers
over the preimages of each node. For simplicity, suppose that C has a single node Q, and let‹C → C denote its normalization, with Q+ andQ− the two preimages of Q in ‹C. A choice of formal
coordinates s± at Q±, respectively, determines a smoothing of the nodal curve C over Spec(CJqK)
such that, locally around the point Q in C, the family is defined by s+s− = q. One may identify
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the fibers at Q± by the gluing isomorphism induced from the identification s+ = γ(s−):

AutQ+ ≃s+ AutO
∼=−−→ AutO ≃s− AutQ− , ρ(s+) 7−→ ρ ◦ γ(s−) ,

where γ ∈ AutO is the involution defined as

γ(z) :=
1

1 + z
− 1 = −z + z2 − z3 + · · · .

This may be carried out in families to define AutC/S → C/S. The identification of the universal

curve Cg
∼= Mg,1 → Mg leads to the principal (AutO)-bundle ËMg,1 → Mg,1.

The group scheme Aut+O represents the functor assigning to a C-algebra R the group:

Aut+O(R) =
{
z 7→ ρ(z) = z + a2z

2 + · · · | ai ∈ R
}
,

and one has AutO = Gm ⋉Aut+O. In particular, by [DGT21], the projection ËMg,n → Mg,n is
an (AutO)⊕n-torsor and factors as the composition of an (Aut+O)⊕n-torsor and a G⊕n

m -torsor:ËMg,n

(Aut+O)⊕n
''

(AutO)⊕n

// Mg,n

J g,n ,
G⊕n

m

77

where J g,n parametrizes objects of type (C,P•, τ•), where (C,P•) is a stable n-pointed genus g
curve and τ• = (τ1, . . . , τn) with τi a non-zero 1-jet of a formal coordinate at Pi, for each i.

2.6 Lie algebras that act

To define the sheaf of coinvariants V(V ;W •) on ËMg,n, one uses the sheaf of ancillary Lie alge-
bras L(V )n and the sheaf of chiral Lie algebras LÁCg,n\P•

(V ), each of which acts on the tensor

productW • =
⊗

iW
i. The fiber of L(V )n over (C,P•, t•) is given by the direct sum

⊕n
i=1 LPi(V )

of the ancillary Lie algebras

LPi(V ) :=
V ⊗ C((ti))

Im∇
with ∇ = L−1 ⊕ ∂ti ,

with Lie bracket given by
[
A[j], B[k]

]
=
∑

ℓ⩾0

(j
ℓ

)(
A(ℓ)(B)

)
[j+k−ℓ]

, where A[j] is the class of the

element A ⊗ tji in LPi(V ). In particular, the diagonal action of
⊕n

i=1 LPi(V ) on W • ⊗ OÈMg,n
is

induced by the map LPi(V ) → End(W i) that takes A[j] to the endomorphism AW i

(j) . The degree

of every element of LPi(V ) is identified with the degree of the associated endomorphism; that is,
for homogeneous elements A ∈ V and j ∈ Z, we have deg(A[j]) = deg(A)− j − 1.

By [DGT19], there is a coordinate-independent version of LPi(V ), which we briefly recount.
One can define a coordinate-independent version of the ancillary Lie algebras as well as give
a description of the sheaf of chiral Lie algebras, and their actions on W •, using the sheaf of vertex
algebras VC on the curve C. The sheaf VC was originally defined on smooth curves in [FB04].
To define the sheaf VC on a nodal curve C, it is enough to define it on open subsets which do
not include nodes and then for each node Q, define the sheaf on the normalization of the curve
and specify isomorphisms of fibers over the preimages of each node. This is explained in detail
in [DGT19, § 2.5], where it is shown that VC is a sheaf of OC-modules.

If ti is a local coordinate at Pi, then the ancillary Lie algebra of V at Pi is isomorphic to

H0
(
D×

Pi
,VC ⊗ ωC/ Im∇

) ≃ti−−−→ LPi(V ) ,
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the chiral Lie algebra for (C,P•) is defined to be

LC\P•(V ) := H0
(
C \ P•,VC ⊗ ωC/Im∇

)
,

and one has a map of sheaves of Lie algebras given by restriction:

LC\P•(V ) −→
n⊕

i=1

H0
(
D×

Pi
,V‹C ⊗ ω‹C/ Im∇

) ≃ti−−−→
n⊕

i=1

LPi(V ) . (2.1)

In what follows, the image of σ in
⊕n

i=1 LPi(V ) will be denoted by (σP1 , . . . , σPn).

2.7 Coinvariants in two steps

We describe how the sheaf of coinvariants, first defined over ËMg,n, descends to a sheaf over Mg,n.
Details of this construction can be found in [DGT19].

2.7.1 The sheaf of Lie algebras LÁCg,n\P•
(V ) on ËMg,n acts on the constant vector bundle

W • ⊗ OÈMg,n
so that LÁCg,n\P•

(V ) ·
(
W • ⊗ OÈMg,n

)
is a submodule of W • ⊗ OÈMg,n

. The sheaf of

coinvariants is the quotientÊVg(V ;W •) =
W • ⊗ OÈMg,n

LÁCg,n\P•
(V )

(
W • ⊗ OÈMg,n

) . (2.2)

We recall that the transitive action given by changing coordinates gives ËMg,n the structure of

a principal (AutO)n-bundle over Mg,n, where π : ËMg,n → Mg,n, is the forgetful map (see § 2.5).
The actions of (AutO)n and of LÁCg,n\P•

(V ) on W • ⊗ OÈMg,n
are compatible [DGT19], and the

action of (AutO)n on W •⊗OÈMg,n
preserves the submodule LÁCg,n\P•

(V )
(
W •⊗OÈMg,n

)
, inducing

an action of (AutO)n on ÊVg(V ;W •). The sheaf of coinvariants on Mg,n is then defined to be

Vg(V ;W •) :=
(
π∗ÊVg(V ;W •)

)AutOn

.

2.7.2 More explicitly, the descent of coinvariants is carried out in two steps:ËMg,n
step 1−−−−→ J g,n

step 2−−−−→ Mg,n .

In the first step, the group scheme (Aut+O)n acts equivariantly on W • ⊗ OÈMg,n
, and the

quotient by this action descends to a vector bundle VJ (V ;W •) on J = J g,n, with fibers

VJ (V ;W •)(C,P•,τ•) =

n⊗
i=1

W i
Pi,τi

/
LC\P•(V ) ·

Å n⊗
i=1

W i
Pi,τi

ã
.

Here, W i
Pi,τi

is the coordinate-independent realization of the V -module W i assigned at (Pi, τi)

as defined in [DGT21]. In the second step, we then descend VJ (V ;W •) to Mg,n. The action of
Gn

m
∼= (C×)n is induced by the Z-gradation of eachW i; it is described as follows: for (z1, . . . , zn) ∈

(C×)n and w• = w1 ⊗ · · · ⊗ wn ∈
⊗

j W
j given by homogeneous wi ∈W , we set

(z1, . . . , zn) · w• := z1
− deg(w1)w1 ⊗ z2

− deg(w2)w2 ⊗ · · · ⊗ zn
− deg(wn)wn .

When descending along the G⊕n
m -torsor to Mg,n, one applies the following method, inspired

by Tsuchimoto in [Tsu93] and used in [DGT21, DGT19]. This is explained in detail using a root
stack in case the conformal dimensions of modules are rational in [DGT19, § 8.7], while a more
general procedure without rationality assumption is described in [DGT19, Remark 8.7.3(ii)].
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Remark 2.7.3. There are a number of sufficient conditions for V that ensure that simple V -
modules will have rational conformal dimension. For Lk(g), where g is a simple Lie algebra and k
is an admissible level that is not a positive integer, as mentioned in the introduction, by [Ara16,
Main Theorem], the conformal weights of modules in category O are rational, as they are from
(slightly) larger categories (that allow for dense modules, spectral flow twists, and finite length
extensions as studied in for instance [CRW14]) where the weights are determined by those in
Arakawa’s classification by formulas that preserve rationality. Rationality has also been shown
using various types of modularity of characters in different contexts [AM88, Zhu96, Miy04]. For
instance, this is proved for C2-cofinite VOAs in [Miy04, Corollary 5.10] using that the span over C
of ordinary and pseudo trace functions is SL(2,Z)-invariant. Admissible affine VOAs have the
modular invariance property [KW88].

2.8 Formulas for the rank

An important feature of the sheaves of coinvariants Vg(V ;W •) from a vertex algebra V of CohFT-
type is that their rank can be computed by induction on the genus g. This is a consequence of
the factorization theorem [DGT19] and can be seen via the equality

rankVg(V ;W •) =
∑

W∈W
rankVg−1(V ;W • ⊗W ⊗W ′) ,

where the sum is over the finite set of simple admissible V -modules W. That W is finite follows
from the assumption that V is rational as well as from the assumption that V is C2-cofinite.
Moreover, for every non-negative integer i smaller than or equal to g and for every partition
I ⊔ Ic of {1, . . . , n}, the following equality also holds:

rankVg(V ;W •) =
∑

W∈W
rankVg−i

(
V ;W I ⊗W

)
rankVi

(
V ;W Ic ⊗W ′) . (2.3)

2.9 Formulas for first Chern classes in case V ∼= V ′

One can use first Chern classes to test the positivity of a given vector bundle. First Chern classes
of globally generated vector bundles are base-point-free, and they define nef divisors. A divisor D
on a projective variety X is nef if it non-negatively intersects every curve on X. We recall the
formula derived in [DGT22, Corollary 2] for first Chern class of a vector bundle of coinvariants
defined by a rational, C2-cofinite self-contragredient vertex operator algebra V of CFT-type, with
central charge c, and n simple V -modules W i of conformal dimension ai:

c1
(
Vg(V ;W •)

)
= rankVg(V ;W •)

Å
c

2
λ+

n∑
i=1

aiψi

ã
− birrδirr −

∑
i,I

bi:Iδi:I , (2.4)

where

birr =
∑

W∈W
aW rankVg−1(V ;W • ⊗W ⊗W ′)

and

bi:I =
∑

W∈W
aW rankVi

(
V ;W I ⊗W

)
rankVg−i

(
V ;W Ic ⊗W ′) .

In the coefficients birr of the boundary divisor δirr and bi:I of δi:I in (2.4), we sum over the finite
set of simple admissible V -modules W.
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2.10 Test curves

F -Curves, which span A1(Mg,n), are defined to be the numerical equivalence classes of the
image of prescribed clutching maps from M1,1 and M0,4. A picture of all possible such maps
and formulas for the intersections of F -curves with divisors is given in [GKM02]. The F -curves
on M0,n are given by a partition {1, . . . , n} = N1∪N2∪N3∪N4 into four non-empty sets, which
determines a map from M0,4 to M0,n, where given (C, q•) ∈ M0,4, we obtain a point in M0,n by
attaching to qi, for i ∈ {1, . . . , 4}, any stable |Ni|+ 1 pointed curve of genus zero by gluing qi to
the +1 point. The F -curve, denoted by FN1,N2,N3,N4 , is defined to be the numerical equivalence
class of the image of this map.

3. Constant sheaves associated with coinvariants

Here we show how to associate with any n-tuple
(
W 1, . . . ,W n

)
of admissible V -modules a sheaf

W•
k based on the degree k part of the standard filtration Fk(

⊗
j W

j), defined in § 3.1. Each of

these sheaves, considered in § 3.2, descends from a constant sheaf on ËMg,n and in case k = 0
remains constant. In Example 3.2.3, we discuss the rank 1 constant sheaves associated with any
n-tuple of representations over the minimal series principal W -algebra related in some cases to
the parafermions and the discrete series Virasoro VOAs, considered in § 8.

3.1 Filtration

The standard filtration on the sheaf of coinvariants ÊVg(V ;W •) on ËMg,n defined in (2.2) is induced
from a filtration on LC\P•(V ), given for k ∈ N by

Fk LC\P•(V ) :=
{
σ ∈ LC\P•(V ) | deg σPi ⩽ k, for all i

}
;

so LC\P•(V ) is a filtered Lie algebra. There is also a filtration on W • defined for k ∈ N by

FkW
• =

⊕
0⩽d⩽k

W •
d , where W •

d :=
∑

d1+···+dn=d

W 1
d1 ⊗ · · · ⊗Wn

dn .

Since Fk LC\P•(V ) · FℓW
• ⊂ Fk+ℓW

•, it follows that W • is a filtered LC\P•(V )-module, and we
set

Fk

(
W •

LC\P• (V )

)
:=
(
FkW

• + LC\P•(V ) ·W •)/LC\P•(V ) ·W • .

3.2 Sheaves W•
k

In this section, we consider an n-tuple
(
W 1, . . . ,W n

)
of simple admissible V -modules.

Lemma 3.2.1. Given n admissible V -modules W j , there is a natural map

ϕJ : (W•
k)

J =
(
Fk(W

•)⊗ π∗OÈMg,n

)Aut+ On

−→
(
π∗ÊVg(V ;W •)

)Aut+ On

= VJ (V ;W •) (3.1)

from the sheaf (W•
k)

J on J = J g,n with fibers at closed points given by (Wk)(C,P•)
∼= Fk(W

•).

If the sheaf of coinvariants descends to Mg,n, then ϕ
J descends to a map

ϕ : W•
k =

(
Fk(W

•)⊗ π∗OÈMg,n

)AutOn

−→
(
π∗ÊVg(V ;W •)

)AutOn

= Vg(V ;W •) (3.2)

of sheaves over Mg,n. In case k = 0, the sheaf W•
0 (respectively, (W•

0 )
J ) on Mg,n (respectively,

on J ) is constant, with fibers (W0)(C,P•) =
⊗

j W
j
0 .
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Remark 3.2.2. If the conformal dimensions of the modules are rational, then the sheaf of coin-
variants VJ (V ;W •) on J = J g,n descends to the sheaf Vg(V ;W •) on Mg,n (see [DGT19, § 8]).

Proof of Lemma 3.2.1. Consider the constant bundle Fk(
⊗

j W
j) ⊗ OÈMg,n

on ËMg,n, where

Fk(
⊗

j W
j) is the degree k part of the filtration defined in § 3.1. Then Fk(

⊗
jW

j) ⊗ OÈMg,n

is a subbundle of W • ⊗ OÈMg,n
, and there is a natural composition

Fk(
⊗

j W
j)⊗ OÈMg,n

↪−−→W • ⊗ OÈMg,n
−→

W • ⊗ OÈMg,n

LÁCg,n\P•

(
W • ⊗ OÈMg,n

) = ÊVg(V ;W •) . (3.3)

To show that this induces the maps (3.1) and (3.2), it is enough to show that Fk(
⊗

j W
j) is

an AutOn-equivariant subset of W •. For this purpose, recall that AutO = Gm ⋉ Aut+O. The
action of Aut+On is given by exponentiating the action of Li for i ⩾ 1, which shifts the degree
in the negative direction, hence preserving Fk(W

•). By definition, an element z ∈ Gm sends
a homogeneous element w ∈ W j to z− deg ww; hence it preserves the degree of the element. It

follows that W•
k :=

(
Fk(W

•)⊗π∗OÈMg,n

)AutOn

is well defined, and the morphisms (3.1) and (3.2)

are induced from (3.3).

For the last claim, it is enough to show that every element of AutOn acts onW •
0 =

⊗
j W

j
0 as

the identity. From what we have just observed, every element of Aut+O acts onW j
0 as the identity

because the modules are positively graded. From the description of the action of Gm onW j given
above, we have that the action of z• = (z1, . . . , zn) ∈ Gn

m on the element w• = w1
0⊗· · ·⊗wn

0 ∈W •
0

is given by

z• · w• = z
deg(w1

0)
1 w1

0 ⊗ z
deg(w2

0)
2 w2

0 ⊗ · · · ⊗ z
deg(wn

0 )
n wn

0 = w• ,

so the restriction of this action to W •
0 is the identity, as wanted. It follows that the action of

(Aut O)n on W •
0 ⊗ OÈMg,n

is only given by the action of (Aut O)n on OÈMg,n
, and hence

π∗
(
W •

0 ⊗ OÈMg,n

)(Aut O)n
=W •

0 ⊗
(
π∗OÈMg,n

)(Aut O)n
=W •

0 ⊗ OMg,n
,

which concludes the proof.

Example 3.2.3. When g is simply laced, the minimal series principal W -algebras Wℓ(g) are
simple, rational, C2-cofinite, and of CFT-type for any (non-degenerate) admissible level ℓ; see
[Ara15b, Ara15a]. In case ℓ + h∨ = (k + h∨)/(k + h∨ + 1), for any positive integer k, these
algebras are unitary. The W -algebra Wℓ(g) is the simple quotient of the universal W -algebra
Wℓ(g). Zhu’s algebra A

(
Wℓ(g)

)
is isomorphic to the center Z(U(g)) of the universal enveloping

algebra of g, and A(Wℓ(g)) is a quotient of Z(U(g)) (see, for example, [DK06]). In particular,
these algebras are commutative. Since the irreducible representations of a commutative algebra
are 1-dimensional, any constant sheaf W•

0 made from simple modules over Wℓ(g) or Wℓ(g) on
M0,n is a line bundle.

As mentioned in the introduction, by [ACL19, Main Theorem 2] in types A, D, and E, and
by [CL22, Corollary 4.1 and Theorem 7.1]) in types B and C, both Wℓ(g) and Wℓ(g) can be
realized as cosets of tensor products of affine vertex operator algebras. The result in type A with
k = 1 was also proved in [ALY19]. In particular, except possibly when k + h∨ ∈ Q⩽0,

Wℓ(g) ∼= Com(Vk+1(g), Vk(g)⊗ L1(g)) and Wℓ(g) ∼= Com(Lk+1(g), Lk(g)⊗ L1(g)) .

Remark 3.2.4. Although by [DGT22], bundles of coinvariants for even lattice VOAs have rank 1
on M0,n, it is not true that Zhu’s algebra A(VL) will be commutative, even for an even lattice
of rank 1.
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4. Preparations for the proof of Theorem 1

Here we develop some tools that will be useful for proving Theorem 1. Although the theorem only
discusses vertex algebras which are strongly generated in degree 1, we first analyze properties of
vertex algebras strongly generated in degree d for d ⩾ 1 and then restrict to d = 1.

Lemma 4.0.1. Assume that V is strongly finitely generated in degree d andW is an admissible V -
module. Then every element w ∈W can be written as a linear combination of elements of the form

A1
−j1A

2
−j2 · · ·A

m
−jmw0 (4.1)

for some m ⩾ 0, with Ai ∈ Fd(V ) \ V0 such that

(i) if deg(w) = 0, then deg
(
Am

−jm

)
⩾ 0, and

(ii) if deg(w) > 0, then degAm
−jm

⩾ 1.

Proof. We begin by observing that we can exclude the case where Ai ∈ V0 = C1 since 1−j acts
on W either by zero or by the identity.

By the proof of [Zhu96, Theorem 2.1.2], every element w ∈W can be written as a combination
of B1

−j1
B2

−j2
· · ·Bℓ

−jℓ
u0 for some Bi in V and u0 ∈W0. Since V is strongly generated in degree d,

we know that every element Bi of V can be written as a combination of elements of the type
Bi,1

−ki1
· · ·Bi,ni

−kini

1, where deg
(
Bi,s

)
⩽ d for all s ∈ {1, . . . , ni}.

Using this notation, we are then left to prove that every element written as

w =
(
B1,1

−k11
· · ·B1,n1

−k1n1

1
)
−j1

·
(
B2,1

−k21
· · ·B2,n2

−k2n2

1
)
−j2

· · ·
(
Bℓ,1

−kℓ1
· · ·Bℓ,nℓ

−kℓnℓ

1
)
−jℓ

· u0

can be rewritten as a linear combination of elements as in equation (4.1). This result is true by
repeated use of the associator formula applied from left to right. That is, we first write

w1 :=
(
B2,1

−k21
· · ·B2,n2

−k2n2

1
)
−j2

· · ·
(
Bℓ,1

−kℓ1
· · ·Bℓ,nℓ

−kℓnℓ

1
)
−jℓ

· u0 ,

so that

w =
(
B1,1

−k11
·B1,2

−k12
· · ·B1,n1

−k1n1

1
)
−j1

w1 =
(
B1,1

−k11

(
B1,2

−k12
· · ·B1,n1

−k1n1

1
)

=:D1,2

)
−j1

w1 =
(
B1,1

−k11

(
D1,2

))
−j1

w1 .

We can then expand
(
B1,1

−k11

(
D1,2

))
−j1

using the associator formula. Following the expansion,

we rewrite D1,2 as B1,2
−k12

(
D1,3

)
, where D1,3 =

(
B1,3

−k13
· · ·B1,n1

−k1n1

)
, and again expand using the

associator formula. Repeating this for all D1,i =
(
B1,i

−k1i
· · ·B1,n1

−k1n1

)
, expanding using the associator

formula, and then carrying out the same procedure for the factors of w1, we arrive at a linear
combination of terms of the form described in (4.1).

We note that once in the form given in (4.1), if the term Am
−jm

adjacent to w0 has negative de-
gree, then Am

−jm
w0 = 0 sinceW is graded by N. If Am

−jm
has degree zero, then Am

−jm
w0 = u0 ∈W0,

and we may as well replace it.

Given Lemma 4.0.1, we make the following definition for the length of an element in W ,
which will be used to argue by induction in the proof of Lemma 4.0.3.

Definition 4.0.2. Suppose that V is strongly generated in degree d and that W is a simple
V -module. For ℓ ∈ N, set

Gℓ(W ) := Span
{
A1

−j1 · · ·A
ℓ
−jℓ
w0 | Aj ∈ Fd(V ) \ V0, w0 ∈W0

}
.
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We say that w has d-length ℓ if w ∈ Lℓ(W ) := GℓW \Gℓ−1(W ).

When there is no ambiguity on d, we will simply use length in place of d-length. Given two
elements w1 and w2 ∈ W , we say that w1 is shorter than w2 if the length of w1 is smaller than
the length of w2. For the proof of Theorem 1, we will need a refined version of Lemma 4.0.1.

Lemma 4.0.3. Assume that V is strongly finitely generated in degree d. Then every element
w ∈ W such that deg(w) > 0 can be written as a combination of elements of the form in (4.1)
with the additional properties:

(i) If deg
(
A1
)
= 1, then j1 ⩾ 1.

(ii) In case d = 1, every element Ai
−ji

has positive degree or, equivalently, ji ⩾ 1 for every i.

Proof. We start by proving part (ii) and observe that by induction on the length of the elements,
it is enough to consider only the case m = 2. Using the commutator formula, we have that

A1
−j1A

2
−j2w0 = A2

−j2A
1
−j1w0 +

∑
k⩾0

(
A1

kA
2
)
−j1−j2−k

w0 .

We now show that each non-zero term on the right-hand side of the equality is a term which
either is of degree zero or satisfies the wanted property. The first term of the right-hand side is
zero if deg

(
A1

−j1

)
is negative and A2

−j2
u0 for some u0 ∈W 0 if deg

(
A1

−j1

)
= 0. Else, deg

(
A1

−j1

)
is

positive. We now look at the other terms. Since both A1 and A2 have degree 1, the only non-zero
summands are those where k = 0 or k = 1. When k = 0, we have that B = A1

0A
2 is an element

of degree 1; hence we reduce the statement to the case m = 1. When k = 1, the element A1
1A

2

has degree zero, which implies that it is a multiple of the vacuum vector, and so it can act on
w0 only by a scalar.

We are left to prove part (i). In this case too, the proof follows from the commutator for-
mula and induction on the length of elements. With more details, let w = A1

−j1
· · ·Am

−jm
u0 as

in Lemma 4.0.1, and define the K-value of w, denoted by K(w), as the smallest integer in
{0, 1, . . . ,m} such that deg

(
AK(w)

)
⩾ 2, with K(w) = 0 if all the elements have degree 1. It is

enough to show that every element with K(w) ⩾ 2 can be written as a sum of shorter elements
and elements with smaller K-value. By repeating the argument, we reduce to the case where
either K = 0 or K = 1. Observe that if K = 0, then we are done by part (ii) above, while if
K = 1, then we are in the situation deg

(
A1
)
⩾ 2. When K(w) = K ⩾ 2, using the commutator

formula, we can write w as

A1
−j1 · · ·A

K
−jK

·AK−1
−jK−1

·AK+1
−jK+1

· · ·Am
−jmu0

+
∑
k⩾0

A1
−j1 · · ·A

K−2
−jK−2

·
(
AK−1

k

(
AK
))

−jK−jK−1−k
·AK+1

−jK+1
· · ·Am

−jmu0 .

The first term is an element with K-value less than K. Moreover, since deg
(
AK−1

)
= 1, for

every k ⩾ 0, we have that degAK−1
k

(
AK
)
⩾ d, which shows that the terms in the second line

are shorter than w.

5. Proof of Theorem 1

Here we prove Theorem 1. We recall that in § 2.7.1 we describe the descent of coinvariants fromËMg,n to Mg,n, which is carried out in two steps, first to a vector bundle VJ (V ;W •) on J g,n

and then, if possible, to Mg,n. To show that the sheaf of coinvariants is globally generated, we
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show that each of the maps ϕJ and ϕ (when it exists) defined in Lemma 3.2.1 from the constant
bundle W•

0 to V0(V ;W •) is surjective. For this, it is sufficient to show that the map under
consideration is surjective on fibers.

Since fibers of either sheaf are isomorphic, and the arguments are the same, without loss of
generality we make the argument for the map ϕ and assume (C,P•) ∈ M0,n. Then the restriction
ϕ|(C,P•) of ϕ to the fiber is induced by the composition

W •
0 ↪−−→W • −→→W •/LC\P•(V )W • ∼=W •

LC\P• (V ) .

It is enough to show that every element of W • can be written as a combination of elements
of W •

0 and elements in LC\P•(V ) ·W •.

For this purpose, it suffices to show that for every d ⩾ 1, we can write any element w• of
W •

d = Fd(W
•) \ Fd−1(W

•) as a linear combinations of element in LC\P•(V ) ·W • ∪ Fd−1(W
•).

In other words, we will prove that there exist elements

σ ∈ LC\P•(V ) and v• ∈W •

such that

σ(v•)− w• ∈ Fdeg(w•)−1(W
•) . (5.1)

In view of part (ii) of Lemma 4.0.3, we can further assume that w• is of the form w1⊗· · ·⊗wn,
where

– every wk is a homogeneous element of W k of degree dk;

– for one i ∈ {1, . . . , n}, we can write wi = A−ju
i, with ui a homogeneous elements of W i,

A ∈ V1, and j ⩾ 1.

We start by showing that there exists an element σ = A ⊗ µ ∈ LC\P•(V ) that has a pole of
order j at Pi and is regular at all the other points. Since the description of LC\P•(V ) over nodal
curves requires some extra work, the proof continues treating separately the cases of C being
a smooth or a nodal curve.

5.1 The smooth case: C ∼= P1

Since C \ P• is affine, we can deduce that

LC\P•(V ) ∼= H0(C \ P•,VC ⊗ ωC/Im∇) ∼= H0(C \ P•,VC ⊗ ωC)/∇H0(C \ P•,VC) .

By [DGT19], one has

H0(C \ P•,VC ⊗ ωC) ∼=
⊕
m⩾0

H0
(
C \ P•,

(
ω1−m
C

)dimVm
) ∼= ⊕

m⩾0

Vm ⊗H0
(
C \ P•, ω

1−m
C

)
.

Using the Riemann–Roch theorem, if D = OC(jPi), the subset⊕
m⩾0

Vm ⊗H0
(
C,ω1−m

C (D)
)
⊆
⊕
m⩾0

Vm ⊗H0
(
C \ P•, ω

⊗1−m
C

)
is non-zero. In particular, it contains an element σ = A⊗ µ, where µ ∈ H0(C,O(jPi)) has a pole
of order j at Pi and is regular elsewhere.

We next show that the element v• = w1 ⊗ · · · ⊗wi−1 ⊗ ui ⊗wi+1 ⊗ · · ·wn satisfies (5.1). The
action of LC\P•(V ) on W • is given by the diagonal action of σPk

on W k (this is the image of σ
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along the map LC\P• → LPk
(V ) arising from (2.1)). From the definition of σ, we have that

σPi = A[−j] +
∑
m⩾1

α−j+mA[−j+m] ,

and since σ is regular at the other points, we have that σPk
=
∑

q⩾0 bqA[q] with bq ∈ C, hence

σPk
·W j

dk
⊂W j

dk
. (5.2)

Summarizing, we conclude that

σ(v•)− w• =
∑
m⩾1

α−j+m

(
w1 ⊗ · · · ⊗ wi−1 ⊗A(−j+m)u

i ⊗ wi+1 ⊗ · · · ⊗ wn
)

+
∑
k ̸=i

w1 ⊗ · · · ⊗ ui ⊗ · · · ⊗ wk−1 ⊗ σPk

(
wk
)
⊗ wk+1 ⊗ · · ·wn . (5.3)

Terms in the first line of the right-hand side of (5.3) are in Fdeg(w•)−m(W •) for m ⩾ 1. Each
summand in the second line of (5.3) is in Fdeg(w•)−j(W

•) by (5.2). Since j ⩾ 1 by assumption,
we can conclude that (5.1) holds, concluding the proof in the smooth case.

5.2 C is nodal

The stability condition ensures that C \P• is an affine curve. Moreover, without loss of generality,
we can assume that C has two components C+ and C− which meet at only one node Q as in
Figure 1. The marked points on C+ will be indexed by P•,+, and the marked points on C− will
be indexed by P•,−. Assume that the point Pi = P lies in the component C+. The preimages

of Q via the normalization morphism η : ‹C = C+ ⊔ C− → C are the points Q+ and Q− with
local coordinates t+ and t−.

P∞

C−

P•,−

P

C+

P•,+

Q

η

P∞

C−

P•,−

Q−

P

C+

P•,+

Q+

Figure 1. Normalization map

As in the smooth case, the goal is to construct an element of LC\P•(V ) such that (5.1) holds.
To do so, we view LC\P •(V ) as consisting of elements of L‹C,P•⊔Q•

(V ) = LC+\P•,+⊔Q+
(V ) ⊕

LC−\P •
−⊔Q−(V ) satisfying conditions described in [DGT19, Proposition 3.3.1] and stated here

for convenience. For this purpose, recall that LQ±(V ) ∼= L(V ) is filtered, so that it admits
a triangular decomposition L(V ) = L(V )<0⊕L(V )0⊕L(V )>0. Let σQ± ∈ LQ±(V ) be the image
of σ ∈ L‹C\P•⊔Q•

(V ), and let
[
σQ±

]
0
be the image of σQ± under the projection LQ±(V ) ∼=
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L(V ) → L(V )0. The involution ϑ of L(V ), which restricts to an involution on L(V )0, is given for
a homogeneous element B ∈ V of degree b by

ϑ
(
B[b−1]

)
= (−1)b−1

∑
i⩾0

1

i!
Li
1B[b−i−1] .

With this notation, [DGT19, Proposition 3.3.1] says that

LC\P•(V ) =
{
σ ∈ L‹C\P•⊔Q•

(V ) | σQ+ , σQ− ∈ L(V )⩽0, and [σQ− ]0 = ϑ([σQ+ ]0)
}
.

Following the argument of § 5.1, we can show that there exists an element σ+ = A ⊗ µ of
LC+\P•,+(V ) ⊆ LC+\P•,+⊔Q+

(V ), where µ is a form which has a pole of order j at P and is
regular at other points. The expansion of σ+ at the other points Pk,+ ̸= P can be seen as an
endomorphism of W k of degree less than or equal to zero as in (5.2). The expansion of σ+ at the
point Q+ can be written as the element

σ+Q+
=
∑
i⩾0

aiA[i] ∈ L(V ) . (5.4)

Note that the components of σ+Q+
have non-positive degree and [σ+]0 := [σ+Q+

]0 = a0A[0].

To produce an element in LC\P•(V ), we need to construct an element σ− ∈ LC−\P•,−(V )
which is compatible with σ+. The compatibility condition requires that

[σ−]0 = ϑ[σ+]0 = a0A[0] + a0L1(A)[−1] = a0A[0] + a11[−1] (5.5)

for some a1 ∈ C since V is of CFT-type.

We are left to show that there is an element σ− in LC−\P•,−⊔Q−(V ) whose image in L(V )0 is
a0A[0] + a11[−1]. To do so, we consider the two components independently and use the fact that

LC−\P•,−⊔Q−(V ) is a quotient of
⊕

k⩾0H
0
(
C− \ P•,− ⊔Q−, Vk ⊗ ω1−k

)
.

We first observe that V1 = H0(C−, V1 ⊗ O) ⊆
⊕

k⩾0H
0
(
C− \ P•,− ⊔ Q−, Vk ⊗ ω1−k

)
. Hence

we can lift a0A[0] to an element β ∈ LC−\P•,−⊔Q−(V ) such that

β|Q− = a0A and β|P−
j

= a0A . (5.6)

After observing that H0(C−, V0 ⊗ ω(Q−)) = 0, let P∞ be any point in P•,−, and note that
V0 ∼= H0(C−, V0 ⊗ω(Q− +P∞)) ⊆

⊕
k⩾0H

0
(
C− \P•,− ⊔Q−, Vk ⊗ω1−k

)
is 1-dimensional. Hence

there exists an element γ ∈ LC−\P•,−⊔Q−(V ) satisfying

γ|Q− = a11⊗t−1
− +1⊗F (t−) , γ|P∞ = a∞1⊗t∞−1+1⊗G(t∞) , γ|Pj,− ̸=P∞ = aj⊗H(tj) (5.7)

with F (t−) ∈ CJt−K, G(t∞) ∈ CJt∞K and H(tj) ∈ CJtjK.
It follows that the pair (σ+, β + γ) defines an element σ of LC\P•(V ). We are left to prove

that under this choice, (5.1) holds, but this follows from (5.6) and (5.7) and the fact that σ+ has
poles only at P .

6. The corollaries

The proof of Theorem 1, and the definition of admissible modules, implies the following state-
ment.

Corollary A. The sheaf of coinvariants V0(V ;W •) on M0,n, defined by n simple admissible
modules over a vertex operator algebra V of CFT-type and strongly generated in degree 1, is
coherent.
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Proof. By definition, for every i ∈ {1, . . . , n}, the admissible V -moduleW i has finite-dimensional
lowest-weight component W i

0. This fact, together with Lemma 3.2.1, gives that W•
0 is a vector

bundle of finite rank on M0,n. By the proof of Theorem 1, the map ϕ : W•
0 → V0(V ;W •) defined

in (3.2) is surjective. From this and the coherence of W•
0 , we therefore deduce the coherence of

V0(V ;W •), giving the assertion.

A further consequence, owing to both Corollary A and [DGT21, Theorem 7.1], is the following.

Corollary B. The sheaf of coinvariants V0(V ;W •), defined by n simple admissible modules
over a vertex operator algebra V of CFT-type and strongly generated in degree 1, is locally free
of finite rank on M0,n.

Proof. Since by Corollary A, we have that V0(V ;W •) is coherent, it is enough to show that the
restriction of V0(V ;W •) to M0,n is equipped with a projectively flat connection. This is guar-
anteed by [DGT21, Theorem 7.1], whose hypotheses are actually weaker than what is assumed
for Corollary B.

Finally, applying results from [DGT19], we obtain the following.

Corollary C. For V a rational, C2-cofinite vertex operator algebra of CFT-type and strongly
generated in degree 1, the sheaf V0(V ;W •) defined by n simple admissible V modules is a globally
generated vector bundle on M0,n.

Proof. This follows from [DGT19, VB Corollary] and Theorem 1.

7. Higher-genus examples

In this section, we describe vector bundles of coinvariants on Mg,n defined by holomorphic
vertex algebras of CFT-type, which are globally generated for positive genus (Example 7.0.1).
As explained in Remark 7.0.2, global generation is not given by Theorem 1.

Example 7.0.1. A VOA is holomorphic if it is self-contragredient and the only irreducible V -
module is itself. By [DGT22, § 1.6.1], using factorization, it was shown that bundles of coinvariants
defined by holomorphic VOAs V of CFT-type have rank 1, with Chern class 1

2cV λ, where cV
is the central charge of V . Line bundles are globally generated if their first Chern class is base-
point-free. It is well known that λ, the first Chern class of the Hodge bundle, is base-point-free,
and non-trivial if g > 0. As explained in [LS19a, § 3], by [DM04b, Theorems 1 and 2], any
holomorphic VOA of CohFT-type has positive central charge (in fact, cV is divisible by 8). In
particular, sheaves of coinvariants defined by holomorphic vertex operator algebras are globally
generated on Mg,n.

Moreover, if cV ⩽ 24, the character of V and the degree 1 component V1 are uniquely de-
termined, and in particular there are many examples for which V1 ̸= ∅. For instance, if V is
a C2-cofinite, holomorphic vertex operator algebra of CFT-type (in the language of [DM04b],
V is strongly rational and holomorphic), then for c = 8, V = VL is the lattice VOA given by
the E8 root lattice [DM04a, Theorem 1]. In particular, the affine VOA bundles Vg(L1(e8);W

•)
have first Chern classes which are multiples of λ, so are base-point-free (see also [Fak12, Corol-
lary 6.3 and Remark 6.4]). If c = 16, then V = VL, where L is one of the two unimodular rank 16
lattices [DM04a, Theorem 2], and if cV = 24, then if V1 is abelian of rank 24, V is isomorphic
to the Leech lattice VOA [DLM00], and if V1 is zero, then V ∼= V ♮. If on the other hand V1
is semi-simple, then relations between the dual Coxeter number, the dimension, and the level
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of its affinization and other constraints led Shellekens, in [Sch93], to propose a list of 69 other
Lie algebra structures for V1, that he conjectured would determine these holomorphic VOAs
of conformal dimension 24 (these 71 make up what is called Schellekens’ list). As described
by Lam and Shimakura in [LS19a], all such V have now been constructed [Bor86, FLM88,
Don93, DGM96, Lam11, LS12, Miy13, SS16, vEMS20a, Möl21, LS16, LL20]. The last cases re-
quired substantial development of orbifold theory and were completed in [vEMS20a, vEMS20b].
The uniqueness of these VOAs was proven in [vEMS20a, vEMS20b, LS19b, LS20b, LS20a,
LS20b].

Remark 7.0.2. Since holomorphic vertex operator algebras of CFT-type have 1-dimensional de-
gree zero components, associated sheaves W•

0 have rank 1. However, although the Vg(V ;W •) are
globally generated, we do not know if it is possible to prove that the map (3.2) from Lemma 3.2.1
from W•

0 to Vg(V ;W •) is surjective (see Question 3).

8. Discrete series bundles

Sheaves defined from the discrete series representations of the Virasoro vertex algebra Virc were
introduced in [BFM91]. Such VOAs are the simplest case of a family referred to as the minimal
series principal W -algebras Wk(g), see [Ara11, ALY14], and in case g = sl2, one obtains Virc (see
Example 3.2.3). The minimal series principalW -algebras arise in many contexts (see [ALY14] and
references therein). Unlike affine VOAs, the minimal series principal W -algebras are not strongly
generated in degree 1 [ACL19]; however, as discussed in Example 3.2.3, they are related to affine
VOAs through a coset construction. In § 8.0.2, we describe the discrete series representations of
Virc and their modules, afterwards giving a formula for their ranks, and a specific example of
the Chern classes of bundles they define for n = 4. But first, in § 8.0.1, we give a brief summary
of our findings about them.

8.0.1 Summary. Since the Zhu algebra A(Virc) is commutative, for any bundle of coinvari-
ants V(Virc;W •), the associated constant sheaf W•

0 has rank 1. As we show, one can cook up
bundles of coinvariants V(Virc;W •) of ranks 0, 1, and larger than 1. In all the examples we
considered, if V(Virc;W •) had rank 1, then it was positive. If the rank was larger than 1, it was
positive if and only if its modules satisfied an integral degree condition (see Definition 2.3.1 and
Question 2).

8.0.2 Description of the discrete series representations of Virc and their modules. Let
Vir⩾0 := CK ⊕ zCJzK∂z be a Lie subalgebra of the Virasoro Lie algebra Vir, and let Mc,h :=
U(Vir)⊗U(Vir⩾0)C1 be the Verma module of highest weight h ∈ C and central charge c ∈ C (note
that Mc,h is a module over Mc,0). There is a unique maximal proper submodule Jc,h ⊂ Mc,h.
Set Lc,h := Mc,h/Jc,h and Virc := Lc,0. By [Wan93, Theorem 4.2 and Corollary 4.1], one has
that Virc is rational if and only if c = cp,q = 1 − 6(p− q)2/pq, where p and q ∈ {2, 3, . . . } are
relatively prime. By [DLM00, Lemma 12.3] (see also [Ara12, Proposition 3.4.1]), the VOA Virc is
C2-cofinite for c = cp,q, and by [FZ92, Theorem 4.3], the VOA Virc is of CFT-type. By [Wan93,
Theorem 4.2], the modules Lc,h are irreducible if and only if

h =
(np−mq)2 − (p− q)2

4pq
, with 0 < m < p , and 0 < n < q .
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Note that, by definition, h is the conformal dimension of Lc,h. These vertex operator algebras
are unitary if |q − p| = 1.

8.0.3 A particular example. Let V = L 1
2
,0 = Virc3,4 be the discrete series vertex operator

algebra with central charge 1
2 . This vertex operator algebra has only two non-trivial simple

modules, W1 = L 1
2
, 1
2
and W2 = L 1

2
, 1
16
. Divisors associated with bundles of rank zero are trivial

and hence are trivially nef. We show that this rank is determined by the parity of W1 and W2:

Proposition 8.0.4. On M0,i+j+k, for i+ j + k ⩾ 3, one has

rank
(
V0

(
V ;V ⊗i ⊗W⊗j

1 ⊗W⊗k
2

))
=


2ℓ if k = 2ℓ+ 2 with ℓ ⩾ 0 ,

1 if j is even and k = 0 ,

0 otherwise .

Example 8.0.5. On M0,4,

deg
(
V0

(
V ;W⊗j

1 ⊗W⊗k
2

))
=


1 if j = k = 2 ,

2 if j = 4 ,

−1 if k = 4 .

In particular, the line bundles V0

(
V ;W⊗2

1 ⊗W⊗2
2

)
and V0

(
V ;W⊗4

1

)
are globally generated on

M0,4, while the bundle V0

(
V ;W⊗4

2

)
, which has rank 2, is not globally generated on M0,4.

Proposition 8.0.4 is proved by induction, using formulas from § 2.8, with base case dependent
on the following.

Lemma 8.0.6 ([DMZ94]). For V = Virc3,4 , W1 = L 1
2
, 1
2
, and W2 = L 1

2
, 1
16
, the dimension of

V0(V ;W •) on M0,3 is 1 if W • is (V, V, V ), (V,W1,W1), (V,W2,W2), or (W1,W2,W2); it is zero
otherwise.

Proof of Proposition 8.0.4. By propagation of vacua, if j + k ⩾ 3, then the rank of the vector
bundle V0

(
V ;V ⊗i ⊗W⊗j

1 ⊗W⊗k
2

)
is the same as the rank of V0

(
V ;W⊗j

1 ⊗W⊗k
2

)
. We then need

to prove the theorem only for bundles of the form V0

(
V ;W⊗j

1 ⊗W⊗k
2

)
for j + k ⩾ 3.

We first show that V0

(
V ;W⊗j

1 ⊗W⊗2ℓ+2
2

)
has rank 2ℓ by double induction on ℓ and j, where

the cases j = 0, 1 and ℓ = 0 follow from Lemma 8.0.6. Using (2.3), we obtain that

rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ+2
2

)
= rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ
2

)
rankV0

(
V ;W⊗2

2

)
+ rankV0

(
V ;W⊗j+1

1 ⊗W⊗2ℓ
2

)
rankV0

(
V ;W1 ⊗W⊗2

2

)
+ rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ+1
2

)
rankV0

(
V ;W⊗3

2

)
.

By induction on ℓ and Lemma 8.0.6, we deduce that

rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ+2
2

)
= 2ℓ−1 + rankV0

(
V ;W⊗j+1

1 ⊗W⊗2ℓ
2

)
,

and using (2.3) again, Lemma 8.0.6, and induction on ℓ and j, we obtain that

rankV0

(
V ;W⊗j+1

1 ⊗W⊗2ℓ
2

)
= rankV0

(
V ;W⊗j−1

1 ⊗W⊗2ℓ
2

)
rankV0

(
V ;W⊗2

1

)
+ rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ
2

)
rankV0

(
V ;W⊗3

1

)
+ rankV0

(
V ;W⊗j−1

1 ⊗W⊗2ℓ+1
2

)
rankV0

(
V ;W⊗2

1 ⊗W2

)
= rankV0

(
V ;W⊗j−1

1 ⊗W⊗2ℓ
2

)
= 2ℓ−1,
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so that rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ+2
2

)
= 2ℓ−1 + 2ℓ−1 = 2ℓ, as claimed.

We then show that rankV0

(
V ;W⊗j

1

)
is equal to 1 when j is even and is zero when j is odd.

This is shown by induction on j, knowing the result for 0 ⩽ j ⩽ 3. Assume j ⩾ 4. Using (2.3),
we obtain that

rankV0

(
V ;W⊗j

1

)
= rankV0

(
V ;W⊗j−2

1

)
rankV0

(
V ;W⊗2

1

)
+ rankV0

(
V ;W⊗j−1

1

)
rankV0

(
V ;W⊗3

1

)
+ rankV0

(
V ;W⊗j−2

1 ⊗W2

})
rankV0

(
V ;W⊗2

1 ⊗W2

)
,

which in view of Lemma 8.0.6 is equal to rankV0

(
V ;W⊗2n

1

)
= rankV0

(
V ;W⊗j−2

1

)
. So the result

holds by induction on j, as claimed.

We prove by induction on ℓ and j that rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ+1
2

)
= 0, knowing the result

for j = 0, 1 and ℓ = 0 or j = 0 and ℓ = 1. By (2.3), Lemma 8.0.6, and induction on ℓ, we have
that

rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ+1
2

)
= rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ−1
2

)
rankV0

(
V ;W⊗2

2

)
+ rankV0

(
V ;W⊗j+1

1 ⊗W⊗2ℓ−1
2

)
rankV0

(
V ;W1 ⊗W⊗2

2

)
= rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ
2

)
rankV0

(
V ;W⊗3

2

)
= rankV0

(
V ;W⊗j+1

1 ⊗W⊗2ℓ−1
2

)
.

Using (2.3) again, we have that

rankV0

(
V ;W⊗j+1

1 ⊗W⊗2ℓ−1
2

)
= rankV0

(
V ;W⊗j−1

1 ⊗W⊗2ℓ−1
2

)
rankV0

(
V ;W⊗2

1

)
+ rankV0

(
V ;W⊗j

1 ⊗W⊗2ℓ−1
2

)
rankV0

(
V ;W⊗2

1

)
+ rankV0

(
V ;W⊗j−1

1 ⊗W⊗2ℓ
2

)
rankV0

(
V ;W⊗2

1 ⊗W2

)
,

which is zero by induction on j and by Lemma 8.0.6.

Example 8.0.5, continued. We use the results of [DGT22] summarized in § 2.9 together with the
rank computations to prove the degree results stated in Example 8.0.5. Observe that the rank
of the bundle is trivial except in three cases analyzed below:

Case 1: j = k = 2. Since the degree of ψP on M0,4 is 1, as is δ{P1,P2}, and since the conformal

dimension of V is zero, we have that deg
(
V0

(
V ;W⊗2

1 ⊗W⊗2
2

))
= 21

2 + 2 1
16 − 2 1

16 = 1.

Case 2: k = 0, and j = 4. We have that deg(V0(V ;W⊗4
1 )) = 4

2 − 0 = 2.

Case 3: k = 4, j = 0. We have that deg
(
V0

(
V ;W⊗4

2

))
= 2 4

16 − 3
2 = −1.

9. Lattice divisor classes

In a special case, lattice VOAs coincide with affine Lie algebras at level 1. But generally, they
are distinct. In § 9.0.2, we describe these VOAs and their modules, giving representatives of the
examples of lattice VOA bundles we have considered. But first, in § 9.0.1, we give a brief summary
of our findings about them.

9.0.1 Summary. We show here two series of lattice VOA bundles of rank 1, the first with
trivial first Chern class (Example 9.1.1), and the second with negative first Chern class (Exam-
ple 9.1.3). For the simplest example in each case, we show that the constant bundle W•

0 also
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has rank 1, where the rank is computed using Zhu’s character formula (Example 9.2.1). In the
second case, the simplest example has the property that the modules satisfy the integral degree
condition specified in Definition 2.3.1.

9.0.2 Description of lattice VOAs and their modules. Let V = VL be the lattice vertex
operator algebra associated with the even lattice (L, q), where L =

⊕d
i=1 Zei is a rank d lattice

and q is an even positive-definite form on Z such that q(ei, ei) = 2 · ki for some ki ∈ Z⩾1 (see
[Bor86, FLM88, Don93]). By [Don93, Theorem 3.1], the set of irreducible representations of VL
is in bijection with the cosets of L inside L′ = {a ∈ L⊗Q | q(a, e) ∈ Z for all e ∈ L}. Note that
L′/L further has the structure of an abelian group. Given an element [λ] ∈ L′/L, its conformal
dimension is given by the rational number 1

2 mine∈L q(λ + e, λ + e). Assume L′/L ∼= Z/mZ, so
that the simple representations of L are indexed by elements in {0, . . . ,m− 1}. From [DGT22],
we know that

rankVg

(
VL;W

⊗n1
1 ⊗ · · · ⊗W

⊗nm−1

m−1

)
= mgδ∑m−1

j=1 jnj≡0 (mod m) ,

so that on M0,N , these sheaves of coinvariants are either trivial or line bundles.

9.1 Particular examples: Computing degrees

In what follows, L will be the lattice L = Ze with pairing q(e, e) = 4k for some positive k ∈ Z.
It follows that L′/L is isomorphic to Z/4kZ ∼= {0, . . . , 4k − 1}.

In what follows, the sheaf V0(VL;Wi1 ⊗ · · · ⊗Wir), with ij ∈ {0, . . . , 4k− 1}, will be denoted
by V0(i1, . . . , ir).

Example 9.1.1. Consider on M0,4 the space of coinvariants associated with the representa-
tions (1, 1, 1, 4k − 3). The degree of the line bundle V0(1, 1, 1, 4k − 3) is given by the degree
of c1(V0(1, 1, 1, 4k − 3)), that is,Å

1

8k
ψ1 +

1

8k
ψ2 +

1

8k
ψ3 +

9

8k
ψ4

ã
−
Å

4

8k
δ[1,1][1,4k−3] +

4

8k
δ[1,1][1,4k−3] +

4

8k
δ[1,4k−3][1,1]

ã
,

where boundary classes are indexed by partitions of the four points. This can be seen to have
zero degree:

deg(V0(1, 1, 1, 4k − 3)) =

Å
1

8k
+

1

8k
+

1

8k
+

9

8k

ã
−
Å

4

8k
+

4

8k
+

4

8k

ã
= 0 .

Remark 9.1.2. In the simplest case where k = 1, the line bundle V0(1, 1, 1, 1) has degree zero,
and we will see in § 9.2 how to use Zhu’s character formula to prove that the constant bundle
W•

0 associated with (1, 1, 1, 1) is also a line bundle.

Example 9.1.3. Consider on M0,4 the sheaf of coinvariants associated with the representations
(k, k, k, k). The conformal dimension of the representation represented by k equals k/8. Following
§ 2.9, the first Chern class of this line bundle is

c1(V0(k, k, k, k)) =

Å
k

8
ψ1 +

k

8
ψ2 +

k

8
ψ3 +

k

8
ψ4

ã
−
Å
k

2
δ[2,2][2,2] +

k

2
δ[2,2][2,2] +

k

2
δ[2,2][2,2]

ã
,

where the boundary classes are indexed by the partitions of the four points. It follows that

deg(V0(k, k, k, k)) =
k

8
+
k

8
+
k

8
+
k

8
−
Å
k

2
+
k

2
+
k

2

ã
= −k ,

and so this bundle is not globally generated.
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Remark 9.1.4. We note that in this example, the conformal dimensions of each of the modules
is k/8, so for k = 2, the sum of these conformal dimensions is integral (see Definition 2.3.1), but
the bundle still has negative degree. This example explains why we restrict Question 2 to vertex
algebras that can be obtained from affine vertex algebras through tensor products, orbifold, and
coset constructions.

We will see in § 9.2 how to use Zhu’s character formula to prove that the constant bundle W•
associated with V0(2, 2, 2, 2) is also a line bundle. We had not seen this behavior for the Virasoro
bundles. The main distinction between them in this instance is that these lattice VOAs are not
constructed from an affine VOA.

9.2 Computing ranks with Zhu’s character formula

Here we illustrate how to use Zhu’s character formula to compute the dimension for the lowest-
weight spaces of modules over even lattice VOAs. Suppose that V = VL is a vertex operator
algebra associated with an even lattice L. In particular, the lattice L is determined by its rank d
and the quadratic form Q = q( , )/2. Let W = VL+λ be a simple admissible module of conformal
dimension aλ. By Zhu’s character formula [Zhu96, Introduction, p. 238] and [MT10], for V of
central charge c,

qaW− c
24

∑
n⩾0

dimWaW+nq
n =

1

η(τ)d

∑
α∈L

qQ(α+λ)

=

(
q

−1
24

∞∏
n=1

Å
1

1− qn

ã)d ∑
j∈Q⩾0

∣∣Lλ
j

∣∣qj = q
−d
24

( ∞∏
n=1

Å
1

1− qn

ã)d ∑
j∈Q⩾0

∣∣Lλ
j

∣∣qj , (9.1)

where

Lλ
j := {α ∈ L | Q(α+ λ) = j} . (9.2)

We note that
∞∏
n=1

Å
1

1− qn

ã
=

( ∞∑
n1=0

qn1

)
·

( ∞∑
n2=0

q2n2

)
·

( ∞∑
n3=0

q3n3

)
· · · =

∞∑
n=0

P (n)qn , (9.3)

where P (n) is the number of ways to write n as a sum of positive integers and P (0) = 1. Since
V = VL has central charge c = d, we obtain from (9.1) and (9.3) that

∞∑
n⩾0

dimWaW+nq
n =

∑
n∈Q⩾0

( ∑
n1,n2,...,nd∈N

j∈Q⩾0,
∑

ni+j=n

|Lλ
j |
∏
i

P (ni)

)
qn−aW .

In summary, the coefficient of q0 on the right-hand side is equal to the number of ways to write

aW = n1 + n2 + · · ·+ nd + j with ni ∈ Z⩾0 and j ∈ Q⩾0 ,

and for each such way, the contribution is given by the product
∣∣Lλ

m

∣∣∏
i P (ni). For instance,

taking the trivial module W = VL, represented by λ = 0 with h = 0, we have dim(W0) = 1 since∣∣L0
0

∣∣ = 1, and P (0) = 1.

Example 9.2.1. Consider the lattice VOA from Example 9.1, and take k = 2 and L = eZ, with
pairing q(e, e) = 8, so Q(a) = a2 · 4 for every a ∈ Q. Then VL has central charge 1, and the
module W = W 1

4
has conformal dimension Q(14) =

1
4 . From the argument above, it follows that
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the dimension of W0 is given by the following recipe:

dimW0 =

∞∑
N=0

∣∣L 1
4
1
4
−N

∣∣P (N) . (9.4)

In fact, there is only one way in which we can write 1
4 = aw = N + j with N ∈ Z⩾0 and j ∈ Q⩾0,

that is, N = 0 and j = 1
4 . Otherwise said, in (9.4) we can see that 1

4 −N is non-negative only for

N = 0, which implies that the only non-zero contribution from
∣∣L 1

4
1
4
−N

∣∣ is obtained when N = 0.

It follows that dimW0 =
∣∣L 1

4
1
4

∣∣. In particular, one has that dimW0 = 1 since by the definition of

Lj
λ, we have

L
1
4
1
4

=
{
α ∈ Z | Q

(
α+ 1

4

)
= 1

4

}
= {α ∈ Z | 2α(2α+ 1) = 0} = {0} .

10. Questions

Given r simple Lie algebras gj , positive integers ℓj , and for j ∈ {1, . . . , r}, an n-tuple of simple
Lℓj (gj)-modules (W 1

j , . . . ,W
n
j ), we can ask the following.

Question 1. Are Vg(
⊗r

j=1 Lℓj (gj);
⊗r

j=1W
•
j ) and

⊗r
j=1Vg(Lℓj (gj);W

•
j ) isomorphic?

Remark 10.0.1. Much is known about the classes of bundles of coinvariants for simple affine
VOAs Lℓ(g), which are C2-cofinite and rational if and only if ℓ ∈ Z>0. For instance, by [Ber93,
Tha94, Fal94, KNR94, BL94, Pau96], in this case, there are canonical isomorphisms between
generalized theta functions with (the dual spaces to) vector spaces of coinvariants at smooth
curves. It has been shown that this extends to families of stable pointed curves with singularities
[BF19]:

V(Lℓ(g);W
•)|∨(C,P•)

∼= H0
(
BunParG (C,P•),Lℓ

)
. (10.1)

Here L is a canonical line bundle on the stack BunParG (C,P•) of parabolic G-bundles, and G is
a simple, simply connected algebraic group with Lie(G) = g. For G = SL(r) and W • = V •, there
is a natural map SD:

V(Lℓ(slr);W
•)|(C)

∼= H0
(
MSL(r)(C),Lℓ

)∨ ∼=
SD

// H0
(
MGL(ℓ)(C), θ

r
)
,

where MSL(r)(C) is the moduli space of semi-stable vector bundles of rank r with trivial deter-
minant on C, MGL(ℓ)(C) is the moduli space of semi-stable vector bundles of rank ℓ and degree

ℓ(g−1) on C, and where one has θ =
{
E ∈ MGL(ℓ) : H

0(C, E) ̸= 0
}
. Donagi and Tu [DT94] showed

that the dimensions of these vector spaces were the same and stated what became known as the
strange duality conjecture. Various special cases had appeared earlier in the physics literature,
for example in [NS90] (see also [NT92]). Pantev [Pan94] generalized the dimension statement
to the case where R is reductive and G = [R,R] is semi-simple. The conjecture was proved in
type A by Belkale [Bel08] and Marian–Oprea [MO07]. Strange duality was proved by Abe in
[Abe08] in the symplectic setting conjectured by Beauville [Bea06] (see also [Bel12]) and has
been studied for other cases [Muk16a, Muk16b, BP10, MW19]. In [DGT22, Question 1], it was
asked whether there are analogous geometric interpretations of dual spaces for vector spaces of
conformal blocks defined by vertex operator algebras.

If the answer to Question 1 is yes, then by Theorem 1, [DT94], and [Pan94], an induced
level-rank duality dimension statement will hold for vector spaces of conformal blocks given by
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any simple, rational, C2-cofinite, self-contragredient, vertex operator algebra V of CFT-type,
strongly generated in degree 1 since by [DM06], we have that V ∼= ⊗jLℓj (gj). One also obtains
a canonical identification between generalized theta functions with (the dual spaces to) vector
spaces of coinvariants from (10.1) for these spaces. Moreover, if the gj are (combinations) in
types A or C, then by [Bel08, MO07, Abe08], the vector spaces will be subject to strange
dualities.

In § 7, examples of globally generated line bundles defined on moduli spaces of positive genus
curves were given. For these, the constant sheaf also had rank 1. In § 8, we have given a repre-
sentative example where if the rank of the constant bundle W•

0 was at least as large as the rank
of the coinvariants, then the vector bundle of coinvariants was positive whenever its modules
satisfied an integral degree condition (see Definition 2.3.1).

Question 2. Let V be a VOA that can be obtained from affine vertex algebras through tensor
product, orbifold, or coset construction. Suppose that both of the following properties hold:

(i) The rank of the constant bundle W•
0 is at least as large as the rank of the coinvariants.

(ii) The conformal dimensions of the modules sum to an integer.

Is V0(V ;W •) globally generated on M0,n?

Question 3. Is there another constant bundle that maps to the sheaf of coinvariants
Vg(V ;W •)?

Remark 10.0.2. Tsuchiya, Ueno, and Yamada have observed that the map from the dth part of
the filtration Fd(W

•) to grd(Vg(Lℓ(g);W
•)|(C,P•)) is surjective at integrable levels, for (C,P•)

a smooth n-pointed curve [TUY89, Proposition 3.23]. Together with factorization, this is used
to prove the coherence of Vg(Lℓ(g);W

•) on Mg,n. Using the Weierstrass gap theorem, one can
extend their observation to stable curves with singularities for g > 0 and n ≫ 0. This defines a
surjective map from the sheaf W•

d introduced in Lemma 3.2.1 to Vg(Lℓ(g);W
•), analogous to the

surjective map from W•
0 to V0(Lℓ(g);W

•) shown in the proof of Theorem 1. Also in Lemma 3.2.1,
the sheaf W•

0 is shown to be independent of a change of coordinates, so descends to a constant
sheaf on M0,n. However, we know from examples of non-nef divisors c1(Vg(Lℓ(g);W

•)) that for
positive genus g, without further assumptions, W•

d is not independent of a change of coordinates
and does not descend to a constant sheaf on Mg,n.

One could also try to base a constant bundle on the product
⊗

iW
i/C2(W

i), which maps sur-
jectively onto coinvariants (the key step for proving finite generation [DGT19, Proposition 5.1.1]).
However, again, without further assumptions, such a sheaf would not be independent of a change
of coordinates.

Remark 10.0.3. We have been asked whether bundles of coinvariants from modules over general
vertex operator algebras give new nef classes, apart from those given by bundles from affine Lie
algebras. The ranks of the more general bundles are the same as the ranks of the bundles from
affine Lie algebras, but in the formulas for the first Chern class given in [DGT22], which are valid
if V is self-contragredient, rational, C2-cofinite, and of CFT-type, the coefficients determined by
the conformal dimensions of the modules can be very different from those for simple affine
VOAs. One can therefore obtain new classes, although we have not done a careful study to see
if the cones obtained with more general VOAs are larger than cones generated by the classical
divisors.
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