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of vertex operator algebras
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ABSTRACT

We consider global generation of sheaves of coinvariants on moduli of curves given by
simple modules over certain vertex operator algebras, extending results for affine vertex
operator algebras at integrable levels on stable pointed rational curves. A number of
examples illustrate the subtlety of the problem.

1. Introduction

Given an object in any category, a natural objective is to find the maps admitted by it. On My,
the moduli stack parametrizing families of stable n-pointed curves of genus g, globally generated
coherent sheaves define rational maps, which are regular on the locus where they are free.

Sheaves of coinvariants, determined by n simple admissible modules W* over a vertex operator
algebra V (a VOA), are defined on 7, ,, the moduli stack parametrizing families of stable pointed
curves with first-order tangent data. Under mild assumptions, they descend to sheaves V4 (V; W*)
on M, n; see [DGT21, DGT19]. If V is Cy-cofinite, these sheaves are coherent [DGK22]; if V is
also rational, they are vector bundles [DGT19]; and if V' is strongly rational, their Chern classes
are tautological [DGT22| (see §2 for definitions). Examples include those given by affine VOAs,
certain WW-algebras, even lattice VOAs, and holomorphic VOAs (like the moonshine module),
and others obtained as tensor products, orbifold algebras, and through coset constructions.

Affine VOAs are derived from (quotients of) the affinization of a Lie algebra g, and ¢ € C,
with —¢ not equal to the dual Coxeter number. The simple affine VOA L(g), generated by its
degree 1 component g, is strongly rational if and only if £ € Z+(. For g reductive, V,(Ly(g); W*)
was shown to be a vector bundle on M, ,, in [TUY89] and globally generated on My, in [Fak12].

In this work, we investigate global generation in a more general context. Our main result is
the following.

THEOREM 1. Sheaves of coinvariants defined by simple admissible modules over a vertex operator
algebra, strongly generated in degree 1, are globally generated on Jo., and on My, if defined.

Here we assume that all VOAs are of CFT-type. By [Lia94], the VOAs in Theorem 1 are
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ON GLOBAL GENERATION OF VECTOR BUNDLES FROM VOAS

quotients of the affinization of a not-necessarily reductive Lie algebra structure on their degree 1
component (see Remark 2.4.1). By [DMO6], if V' is strongly rational (rational, Cs-cofinite, simple,
and self-contragredient), then we have V = @):_, Ly, (g;), where the g; are simple Lie algebras,
l; € Zso, and Vi = @;_, gi- In Theorem 1, the VOA V need not be simple, Cy-cofinite, or
rational, and may for instance be applied to L,(g), for g simple and such that ¢ is admissible
but not in Z~g. Such VOAs Ly(g) are not Co-cofinite but are quasi-lisse, a natural generalization
of Cy-cofiniteness, introduced in [AK18]. It follows from [Aral6, Main Theorem| that simple
admissible highest-weight modules over Ly(g) have rational conformal weights, as do more general
V-modules (see Remark 2.7.3). In particular, their associated sheaves of coinvariants are defined
on Mo, (see Remark 3.2.2). As in [Lia94], there are many other examples to which Theorem 1
applies.

By Corollary A, sheaves described in Theorem 1 are coherent. This improves [AN03], giving
coherence on M ,, for Co-cofinite and self-contragredient V', and [DGK22], where coherence was
proved on M ,, for Co-cofinite V. By Corollary B, such sheaves are vector bundles on Mop. IEV
is Cy-cofinite and rational, by [DGT19], these are vector bundles on My ,, and by Corollary C,
these vector bundles are globally generated on M, extending [TUY89, Fak12].

While we have not found conditions to guarantee global generation for g > 0, or for VOAs
which are not strongly generated in degree 1, to illustrate the subtlety of this problem, we give
several representative examples, including

— globally generated and positive bundles of coinvariants (see §§ 7-9),

— sheaves of coinvariants that are not globally generated (see §§8 and 9).

Influenced by these, we ask questions and pose potential extensions of Theorem 1 (see §10).
We next describe our methods, and our findings in more detail.

Given n simple admissible modules W* over a vertex operator algebra V of CFT-type, we
define a constant sheaf of finite rank and a morphism of sheaves (3.2) from it to the sheaf of
coinvariants (Lemma 3.2.1). Each simple admissible V-module W' is a direct sum of vector
spaces Wé, graded by the natural numbers, and the fibers of the constant sheaf are isomorphic
to the tensor product of the lowest-weight spaces ), Wg.

To prove that the sheaf of coinvariants is globally generated, we show that the map (3.2)
from Lemma 3.2.1 is surjective. For this, it suffices to prove that the induced map on fibers is so,
and to achieve this, we use a filtration induced by the grading on W* by degree. In particular,
we show that all positive-degree elements come from the degree zero part of the filtration, which
is naturally a quotient of the constant sheaf. Crucial to our argument is Zhu’s result that any
simple admissible V-module is generated in degree zero over V; see [Zhu96, Theorem 2.2.2].

The proof of the surjectivity of (3.2) restricted to fibers at smooth pointed curves is a reinter-
pretation of the core of the argument of Tsuchiya, Ueno, and Yamada [TUY89, Proposition 2.3.1],
that implies the global generation of bundles defined by affine Lie algebras at integrable levels
l € Zwo on My, as their analysis has essential features in common with ours. However, at
pointed curves with singularities, due to differences in the definitions of the Lie algebras used
to define the coinvariants in these two settings, our proof of surjectivity is considerably more
involved than Fakhruddin’s proof [Fak12] of the global generation of Vo(L.(g); W*) on My, for
le Z>0.

The terms we refer to are defined in § 2, and in § 3 we construct the constant bundle, proving
Lemma 3.2.1. Theorem 1 is proved in § 5, after preparation is given in § 4. Proofs of the corollaries
are given in §6. We remark that Corollary A follows primarily from the proof of Theorem 1,
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while Corollary B is obtained by combining Corollary A with results from [DGT21]. Corollary C
follows from Theorem 1 and results from [DGT19].

If V,(V;W*) is a globally generated bundle on M,, for g > 0, as we next explain, it is
necessary that V' has non-negative central charge. Globally generated sheaves will have non-
negative rank, and first Chern classes will be nef (a divisor is nef if it non-negatively intersects
all curves). Suppose that V' is Cy-cofinite, and rational so V4 (V;W*®) is known to be a vector
bundle [DGT19]. If V is also self-contragredient, then by [DGT22, Corollary 2], the first Chern
classes of V4(V; W*) are linear combinations of tautological classes, including A (the first Chern
class of the Hodge bundle). By [GKMO02, Theorem 2.1], for g > 2, the coefficient of A is a rational
expression involving the rank of the bundle and the central charge of V. In particular, the central
charge must be non-negative for V,(V; W*) to be nef. While not necessary, strong unitarity of V'
is sufficient to guarantee that the central charge is positive, and such examples are therefore of
interest.

In § 10, we discuss questions inspired by a number of examples we have studied, represented
in simple cases here. The leitmotif is that sheaves of coinvariants derived from vertex operator
algebras related to affine VOAs seem to be geometric in nature. For instance, in Question 1 we
ask whether Vg ( ®’_; L, (g;); @)=, W) is isomorphic to @’_, V (L, (g;); W7). In this case,
dual sheaves of coinvariants could be identified with generalized theta functions and would be
subject to strange dualities (see Remark 10.0.1).

Our remaining questions are about positivity. As illustrated in Example 8.0.5, in cases where
the rank of the constant bundle W3 was at least as large as the rank of the sheaf of coinvariants
on My, the latter had positivity properties whenever an integral degree condition was satisfied
(see Definition 2.3.1). In particular, since Chern classes of globally generated bundles are base-
point-free, we were able to establish non—global generation by checking that if n = 4, the degree
of the sheaf was negative.

In §7, we consider a class of line bundles defined by holomorphic VOAs and the affine VOA
given by Eg. The associated sheaves WV also have rank 1. While Theorem 1 does not apply in
positive genus, we can see that these bundles are globally generated on ngn for g > 0.

Tools from VOA theory like factorization, Zhu’s algebra, and Zhu’s character formula can
often help one compute Chern classes and the ranks of the sheaves of coinvariants and of W, the
latter of which is determined by the dimensions of the degree zero components of the module.

In [Zhu96], Zhu introduced an associative algebra A(V') and established functors between
categories of A(V)-modules and V-modules. By [Zhu96, Theorem 2.2.2], any simple admissible
V-module W = @,y Wy corresponds to the simple A(V)-module Wy. In particular, if A(V)
is commutative, then Wy is 1-dimensional, and the constant sheaf has rank 1. Minimal series
principal W-algebras W¥(g) and their simple quotients W, (g) have commutative Zhu algebras
(see Example 3.2.3). These rational, Ca-cofinite, self-contragredient VOAs have appeared promi-
nently in the literature and are related to other important families of VOAs. For instance, given
0 € Zsyand r =+ (L+1)/(¢+2), there is a well-known isomorphism between W, (sla, ¢)
and the Parafermion algebras K(sla, ¢), first proven in [ALY19]. A complete list of such isomor-
phisms between W, (sl,,¢) and K(sls,¢), for any r and n, is given in [Lin21, Theorem 10.3].
Both W*(g) and W;(g) can be realized as cosets of tensor products of affine vertex operator
algebras (proved for simply laced g in [ALY19, ACL19] and for non-simply laced g in [CL22]). In
§ 8, we consider bundles of coinvariants defined by modules over K(slz,2) equal to the Virasoro
VOA Vir 1.
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Many VOAs do not have a commutative Zhu algebra. For instance, generally speaking,
affine Lie algebras and even lattice VOAs do not. One can often compute the rank of the
constant bundle W using Zhu’s chararacter formula, which involves modular forms, as we
explain in §9. There we consider sheaves on My, generated by modules over even lattice
vertex algebras, which have rank 1 by [DGT22]|. Except in special cases, even lattice VOAs
do not coincide with, nor are they constructed from, affine VOAs. We see that depending on
how the modules are chosen, first Chern classes may be negative (so sheaves are not globally
generated), zero (so sheaves are constant), or positive (so sheaves are possibly globally gener-
ated).

2. Background

Following [FLM8&8, TUY89, FB04, DGT19], we briefly give notation and results used here. We
also recommend [DGT22, DGK22], which were written primarily for algebraic geometers.

2.1 Virasoro (Lie) algebra

The Virasoro (Lie) algebra Vir is a 1-dimensional central extension of the Witt (Lie) algebra
Der K. The Witt algebra represents the functor which assigns to a C-algebra R the Lie algebra
Der K(R) := R((2))0, generated over R by the derivations L, := —zPt19,, for p € Z, with
relations [Ly, Ly] = (p — q)Lp+q. In particular, we can view the Lie algebra Vir as representing
the functor which assigns to R the Lie algebra generated over R by a formal vector K and the
elements L,, for p € Z, with Lie bracket given by

[K,Lp] =0 and [Lp, Lo] = (p — q)Lp4q + %K(pg - p)5p+q,0 :

2.2 Vertex operator algebras

By a wvertex operator algebra, we mean a four-tuple (V,1,w,Y (-, z)), where

(i) V =&,y Vi is a non-negatively graded C-vector space with dim V; < oo;
(ii) 1 is an element in Vj, called the vacuum vector;

) w is an element in V5, called the conformal vector;

) Y(-,2): V = End(V)[z,27"] is a linear map taking A € V to Y(A,z) := >, .5 Az "L
The series Y (A, z) is called the vertex operator assigned to A.

(iii

(iv

The datum (V,1,w,Y (-, 2)) is required to satisfy four axioms which we state in [DGT19],
including axioms that vertex operators satisfy a weak version of commutativity and a weak
version of associativity. One may regard this as framing a VOA as generalizing a commutative
associative algebra. We highlight here the main properties that we will use in this paper, and we
refer to [DGT21, DGT19, FLMS&S]| for more details.

(i) Conformal structure: The Virasoro algebra acts on V' through the identifications L, = w,41)
and K = cyldy for some complex number ¢y called central charge of V.

Vacuum aziom: Y (1,z) = Idy.
Graded action: If A € Vi, then AV, C Viyp—j-1.

)
)
(iv) Commutator formula: [Ag), Byl = Y k=0 (1 ) (A (B ))(i+j—k)'
) Associator formula: (Ag)(B )) = sol— 1)F (k) (A=) B(j+k) — (1) Blitj—i) Ak)) -
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A VOA V is strongly rational, or of CohF'T-type, if V is simple, self-contragredient, and if V is
(I) of CFT-type: V = @,y Vi with Vp = C1;

(IT) rational: there are finitely many simple V-modules, and every finitely generated module is
a direct sum of simple modules;

(IIT) Cy-cofinite: the space Cy(V) := spanc{A_9B: A, B € V} has finite codimension in V.

2.3 V-Modules
By a V-module W, we mean what in the literature is known as an admissible V -module, that is
a pair (W, YW (—,2)) consisting of
(i) an N-graded vector space W = ;- W; with dim(W;) < oo and Wy # 0,
(ii) a linear map YW (—,2): V = End(W)[z, 27 '], A= YW (A,2) =¥,y A%z‘i_l.
In order for this pair to define an admissible V-module, certain axioms need to hold [DGT19,

FHIL93, DL93]. Instead of reporting all the properties that (VV, YW (z, —)) must satisfy, we list
here only those that will be used in this paper (see [DGT19] for more details).

(i) Conformal structure: The Virasoro algebra acts on W through the identification L, =
W

“p+1)°

Vacuum aziom: YW (1, 2) = Idy.

)

(iii) Graded action: If A € Vi, then AE/V) Wy € Wyy—j—1, and we write deg (Az/)) = deg(A)—j—1.
)
)

(iv) Commutator formula: [AEV), BW] > k>0 () (A (B))Z/Jrj—k)‘
(v) Associator formula: (A (B )) = so(—1)F ()(AE/V k)Bg/JVJrk) (— )B(l”;j k)AYkV)).

In what follows, the endomorphism A(j) will simply be denoted by A;). It is important to
observe that V is a V-module and that the commutator and associator formulas for V' and for
V-modules both arise from the Jacobi identities for V' and for V-modules. Moreover, when W is
a simple V-module, there exists an element « € C, called the conformal dimension of W, such
that Lo(w) = (o + deg(w))w for every homogeneous element w € W.

DEFINITION 2.3.1. An n-tuple (Wl, cee W”) of admissible V-modules W* of conformal dimen-
sion «; is said to satisfy the integrality condition, or integrality property, if the sum of conformal
dimensions )" | a; is an integer (which can be zero).

2.4 Strong finite generation
A vertex algebra V is called finitely strongly generated if there exist finitely many elements
Al ... A" € V such that V is spanned by the elements of the form

11 s
Al Alnn
with 7 > 0 and n; > 1 (see [Aral2]). We say that V = @, . Vi is strongly generated in degree d
if it is possible to choose the generators A% to be in V;, for m < d.

1,

By [Liu22, Proposition 2.5], one has that V' is finitely strongly generated if and only if V is
C-cofinite. If V' is Ca-cofinite, then it is C-cofinite. However, the quasi-lisse but not Cs-cofinite
affine VOAs defined by simple Lie algebras and admissible, non-integral levels are strongly finitely
generated in degree 1.
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Remark 2.4.1. VOAs of CFT-type, strongly generated in degree 1, were classified in [Lia94].
More generally, for any so-called preVOA V of CFT-type, by [Lia94, Theorem 3.7], the de-
gree 1 component Vi has the structure of a Lie algebra, with bracket [A, B] = A(g)(B). This
Lie algebra (V4,[, ]), which need not be simple, or reductive, is equipped with a symmetric
invariant bilinear form (A, B) = A(;)(B). Roughly speaking, in the terminology of [Lia94], a
preVOA satisfies many of the properties of a VOA except those involving a conformal vector.
Given any pair consisting of a Lie algebra g and symmetric invariant bilinear form ( , ), Lian
defines the affinization, and proves in [Lia94, Theorem 4.11] that for any preVOA V of CFT-
type, if V is strongly generated in degree 1, then it is isomorphic to a quotient of the affinization
of (V1,(, )) by some ideal. The last step in the classification is to determine which preVOAs
admit a Virasoro vector and have the structure of a VOA. He classifies such Virasoro vectors
(see [Lia94, Corollary 6.15]). As pointed out to us by a referee of our paper (who told us of this
work), the most interesting aspect of [Lia94] is that this class of examples is much richer than
the affinizations of reductive Lie algebras and their quotients. New examples are given in [Lia94,
§6.4].

2.5 Coordinatized curves

As the sheaf of coinvariants on ﬂg’n, the constant sheaf constructed in Lemma 3.2.1 is defined
first on a covering /ﬁg,n of M, , and then descended to ﬂg,n along two maps which we recall
here. At the second step, one applies Tsuchimoto’s method, as in [DGT21, DGT19]. By /ﬁgyn, we
mean the moduli space of triples (C, Py, ts), where (C, Ps) € M, and t, is an n-tuple of formal
coordinates t; at each of the marked points P;. This space is described in detail in [DGT19,
§2.2.2]. To understand the maps along which the two sheaves are to descend, we next describe
the group scheme Aut O and the varieties Autz/g on which it acts.

Consider the functor which assigns to a C-algebra R the group
AutO(R) = {z + p(z) = a1z + a2+ |a; €R, a; a unit }

of continuous automorphisms of the algebra R[z] preserving the ideal zR[z]. The group law is
given by composition of series: p1 - pa := pg 0 p1. This functor is represented by a group scheme,
denoted by Aut O.

First suppose that C' is a smooth curve, and let Auic be the smooth variety whose set of
points are pairs (P,t), with P € C and t € Op such that t € mp \ m%, a formal coordinate at P.
Here mp is the maximal ideal of 0 p, the completed local ring at the point P. There is a simply
transitive right action of Aut O on Autc — C, given by changing coordinates:

Aute x Aut O — Aute,  ((P,t),p) — (Pt p:=p(t)),

making Autc a principal (Aut O)-bundle on C. A choice of formal coordinate at P gives a trivi-
alization

Aut O =% Autp, pr+—— p(t).

If C is a nodal curve, then to define a principal (Aut O)-bundle on C, one may give a principal
(Aut O)-bundle on its normalization, together with a gluing isomorphism between the fibers
over the preimages of each node. For simplicity, suppose that C has a single node @, and let
C — C denote its normalization, with () and @) _ the two preimages of () in C. A choice of formal
coordinates sy at @+, respectively, determines a smoothing of the nodal curve C over Spec(C[q])
such that, locally around the point @ in C, the family is defined by sys_ = ¢q. One may identify
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the fibers at @+ by the gluing isomorphism induced from the identification s = y(s_):

Autg, ~s, AutO =y AutO Autg_, p(sy)— poy(s-),

where v € Aut O is the involution defined as
1
This may be carried out in families to define Autc/g — C/S. The identification of the universal
curve 59 o ﬂg,l — Mg leads to the principal (Aut O)-bundle Jﬁg,l — ﬂg,l.
The group scheme Aut, O represents the functor assigning to a C-algebra R the group:

Aut; O(R) = {z— p(2) = 2+ asz* + - | a; € R},

—l=—z4+22-224+.--.

and one has Aut O = G,, X Aut;O. In particular, by [DGT21], the projection /\797n — My is
an (Aut O)®"-torsor and factors as the composition of an (Aut;O)®"-torsor and a G"-torsor:

— (Aut ©)&" —
Mgn My n

)

(Autm 4

Tgn

where 79771 parametrizes objects of type (C, Pe,Te), where (C, P,) is a stable n-pointed genus g
curve and 7¢ = (71,...,Ty) With 7; a non-zero 1-jet of a formal coordinate at P;, for each i.

2.6 Lie algebras that act

To define the sheaf of coinvariants V(V; W*) on ﬁg,m one uses the sheaf of ancillary Lie alge-

bras £(V)" and the sheaf of chiral Lie algebras Lz \P (V), each of which acts on the tensor
g,n\le

product W*® = &, W'. The fiber of £(V)™ over (C, P, t,) is given by the direct sum @}, £p, (V)
of the ancillary Lie algebras

gp(v) = L)

with Lie bracket given by [A[ﬂ’ B[kﬂ =2 >0 () (A(g)(B))[j+k_7£],
element A @t} in £p,(V). In particular, the diagonal action of @;_; £p,(V) on W*® O s

. g,m
induced by the map £p,(V) — End(W") that takes A to the endomorphism Ag;. The degree
of every element of £p, (V) is identified with the degree of the associated endomorphism; that is,
for homogeneous elements A € V' and j € Z, we have deg(A[;) = deg(A4) —j — 1.

with V = L_, ® 0y,

where A[ﬂ is the class of the

By [DGT19], there is a coordinate-independent version of £p,(V'), which we briefly recount.
One can define a coordinate-independent version of the ancillary Lie algebras as well as give
a description of the sheaf of chiral Lie algebras, and their actions on W*, using the sheaf of vertex
algebras V¢ on the curve C. The sheaf Vo was originally defined on smooth curves in [FB04].
To define the sheaf Vo on a nodal curve C| it is enough to define it on open subsets which do
not include nodes and then for each node @, define the sheaf on the normalization of the curve
and specify isomorphisms of fibers over the preimages of each node. This is explained in detail
in [DGT19, §2.5], where it is shown that V¢ is a sheaf of Oc-modules.

If ¢; is a local coordinate at P;, then the ancillary Lie algebra of V' at P; is isomorphic to

HY(D}, Ve @ we/ImV) — £p,(V),
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the chiral Lie algebra for (C, P,) is defined to be
Lovp, (V) =H(C\ P.,Ve ® we/ImV)
and one has a map of sheaves of Lie algebras given by restriction:
Lovp,(V) — @PHD}, Va @ wg/ImV) —5 P Lp(V). (2.1)
=1 =1
In what follows, the image of o in @;"; £p,(V) will be denoted by (op,,...,0p,).

2.7 Coinvariants in two steps

We describe how the sheaf of coinvariants, first defined over /\79,”, descends to a sheaf over M, ,,.
Details of this construction can be found in [DGT19].

2.7.1  The sheaf of Lie algebras Lz \P. (V) on ./\79,” acts on the constant vector bundle
g.,n .
We® Oﬁg,n so that Eam\P.(V) (W Oﬂm) is a submodule of W* ® Oﬂg,n' The sheaf of
coinvariants is the quotient
- We® Oﬁ
Vo (Vi W*) = . . (2.2)

Ea}}n\P. (V) (W' X Oﬁg,n)

We recall that the transitive action given by changing coordinates gives M g,n the structure of

a principal (Aut O)"-bundle over M, ,,, where m: Mg ,, — My, is the forgetful map (see §2.5).

The actions of (Aut Q)" and of E@g n\P.(V) on W*® O/ﬁg . are compatible [DGT19], and the

action of (Aut O)" on W*® Oﬁq _ preserves the submodule ﬁ@g AP, V) (We® Oﬁq n), inducing

an action of (Aut Q)" on \A/g(V; W*). The sheaf of coinvariants on M,,, is then defined to be
° & o\ Aut O™
Vo(ViW*) = (m Vg (V; W?*)) .

2.7.2  More explicitly, the descent of coinvariants is carried out in two steps:

_

step 1 - step 2 -~
Mg,n ? jg,n — Mg,n .

In the first step, the group scheme (AutyO)" acts equivariantly on W* ® Oz, » and the
g,mn

quotient by this action descends to a vector bundle VY (V;We®)on J = 79,717 with fibers

n n

VJ(V’ W.)(C,P.ﬂ'.) = ® WIZDL?TZ/EC\P. (V) ’ ( ® W]ljivTi> '

i=1 i=1
Here, Wli%,n is the coordinate-independent realization of the V-module W' assigned at (P, 7;)
as defined in [DGT21]. In the second step, we then descend V7 (V;W*) to Mg ,,. The action of
G, = (C*)™ is induced by the Z-gradation of each W; it is described as follows: for (21, ...,2,) €
(C)" and w®* =w! ® - - @w" € X, W7 given by homogeneous w’ € W, we set

_ 1 _ 2 _ n
(21, .y 2n) - w® =21 deg(wh) )l @ 2o~ de8(W )2 @ L @ 2, deB W)y

When descending along the G$™-torsor to M, ,, one applies the following method, inspired
by Tsuchimoto in [Tsu93] and used in [DGT21, DGT19]. This is explained in detail using a root
stack in case the conformal dimensions of modules are rational in [DGT19, §8.7], while a more
general procedure without rationality assumption is described in [DGT19, Remark 8.7.3(ii)].
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Remark 2.7.3. There are a number of sufficient conditions for V' that ensure that simple V-
modules will have rational conformal dimension. For Lj(g), where g is a simple Lie algebra and &
is an admissible level that is not a positive integer, as mentioned in the introduction, by [Aral6,
Main Theorem]|, the conformal weights of modules in category O are rational, as they are from
(slightly) larger categories (that allow for dense modules, spectral flow twists, and finite length
extensions as studied in for instance [CRW14]) where the weights are determined by those in
Arakawa’s classification by formulas that preserve rationality. Rationality has also been shown
using various types of modularity of characters in different contexts [AMS88, Zhu96, Miy04]. For
instance, this is proved for Co-cofinite VOAs in [Miy04, Corollary 5.10] using that the span over C
of ordinary and pseudo trace functions is SL(2,Z)-invariant. Admissible affine VOAs have the
modular invariance property [KKW88].

2.8 Formulas for the rank

An important feature of the sheaves of coinvariants V,(V; W*) from a vertex algebra V' of CohFT-
type is that their rank can be computed by induction on the genus g. This is a consequence of
the factorization theorem [DGT19] and can be seen via the equality

rank Vo (V; W*) = Z rankVy_ (VW@ W o W'),
wew

where the sum is over the finite set of simple admissible V-modules W. That W is finite follows
from the assumption that V' is rational as well as from the assumption that V is Cs-cofinite.
Moreover, for every non-negative integer ¢ smaller than or equal to g and for every partition
Tureof {1,...,n}, the following equality also holds:

rank Vg (V; W*) = Z rank Vy_; (V; W @ W) rank V; (V; W @ W) . (2.3)
wew

2.9 Formulas for first Chern classes in case V = V'

One can use first Chern classes to test the positivity of a given vector bundle. First Chern classes
of globally generated vector bundles are base-point-free, and they define nef divisors. A divisor D
on a projective variety X is nef if it non-negatively intersects every curve on X. We recall the
formula derived in [DGT22, Corollary 2] for first Chern class of a vector bundle of coinvariants
defined by a rational, C>-cofinite self-contragredient vertex operator algebra V' of CFT-type, with
central charge ¢, and n simple V-modules W* of conformal dimension a;:

a1 (Vg(V; W?*)) = rank Vy (V; W*) (g)\ + Z aﬂ/h‘) — bireOirr — Z bi:10i.1 , (2.4)
i=1 i1
where
iy = Z aw rank V,_1(V; W@ W @ W)
wew
and

bir = ) awrankV;(V; W' @ W)rank Vi (V; W' @ W’).
Wew

In the coefficients b;;, of the boundary divisor &,y and b;.; of d;.7 in (2.4), we sum over the finite
set of simple admissible V-modules W.
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2.10 Test curves

F-Curves, which span A;(M,,,), are defined to be the numerical equivalence classes of the
image of prescribed clutching maps from Mj; and Mo 4. A picture of all possible such maps
and formulas for the intersections of F-curves with divisors is given in [GKMO02]. The F-curves
on ﬂo,n are given by a partition {1,...,n} = Ny U N2 U N3U Ny into four non-empty sets, which
determines a map from HOA to ﬂo,n, where given (C, qs) € M@A, we obtain a point in My, by
attaching to ¢;, for i € {1,...,4}, any stable |N;| + 1 pointed curve of genus zero by gluing ¢; to
the +1 point. The F-curve, denoted by F, n, Ns,N,, is defined to be the numerical equivalence
class of the image of this map.

3. Constant sheaves associated with coinvariants

Here we show how to associate with any n-tuple (Wl, e W”) of admissible V-modules a sheaf
Wi based on the degree k part of the standard filtration F4(Q), W), defined in §3.1. Each of

these sheaves, considered in §3.2, descends from a constant sheaf on M, , and in case k = 0
remains constant. In Example 3.2.3, we discuss the rank 1 constant sheaves associated with any
n-tuple of representations over the minimal series principal W-algebra related in some cases to
the parafermions and the discrete series Virasoro VOAs, considered in § 8.

3.1 Filtration

The standard filtration on the sheaf of coinvariants XA’g(V; W*) on M, g,n defined in (2.2) is induced
from a filtration on Loy p, (V), given for k € N by

FeLevp,(V) :={o € Lcvp, (V) | degop, <k, for all i} ;
so Leyp, (V) is a filtered Lie algebra. There is also a filtration on W* defined for k € N by

FW®= P Wi, where W= ) Wi®---@W.
0<d<k di+-+dn=d
Since F Lo p, (V) - FeW* C Fr W, it follows that W* is a filtered Lc p, (V)-module, and we
set

Fi(Weo o) = (FW* + Lavp, (V) - W®) /Loy, (V) - W*.

3.2 Sheaves W4,

In this section, we consider an n-tuple (Wl, cee W”) of simple admissible V-modules.

LEMMA 3.2.1. Given n admissible V-modules W7, there is a natural map

)Aut+ on

o7 (W) = (F(W*) @ w05 — (@ V(v w) M =T () (3.)

from the sheaf (Wp)Y on J = J ., with fibers at closed points given by Wi c,py = F(W*).
If the sheaf of coinvariants descends to mg,m then ¢7 descends to a map

Aut O™ AutO™

6: Wi = (F(W*) @m0z ) — (mV,(V; W) —V,(V;W®)  (3.2)

of sheaves over M, ,,. In case k = 0, the sheaf W (respectively, W$)7) on M, ,, (respectively,
on J) is constant, with fibers (Wo)c,p,) = &, wy.
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Remark 3.2.2. If the conformal dimensions of the modules are rational, then the sheaf of coin-
variants V/(V; W*) on J = J ., descends to the sheaf V,(V;W*) on M, (see [DGT19, §8]).
Proof of Lemma 3.2.1. Consider the constant bundle Fi(Q); Wi ® Oﬁgn on /ﬁg,n» where
Fie(®; W) is the degree k part of the filtration defined in §3.1. Then fk(®jo) ® Oz
g,n
is a subbundle of W* & O A, and there is a natural composition
We*® 0=

; M
. W — o — g,
Fk(®j W ) ® OMg’" wre oMg’" - ,Cég n\Pe (W. & Oﬁg n)

=V,(V;W*).  (3.3)

To show that this induces the maps (3.1) and (3.2), it is enough to show that F4(Q), W) is
an Aut O"-equivariant subset of W*. For this purpose, recall that Aut O = G,,, x Auty O. The
action of Aut;O" is given by exponentiating the action of L; for ¢ > 1, which shifts the degree
in the negative direction, hence preserving Fi(W?*). By definition, an element z € G, sends
a homogeneous element w € W7 to 2~ 98 Wi hence it preserves the degree of the element. It
follows that Wi = (F(W*)@m05 )™ is well defined, and the morphisms (3.1) and (3.2)
are induced from (3.3). ,

For the last claim, it is enough to show that every element of Aut O" acts on W = Q) ; Wg as

the identity. From what we have just observed, every element of Aut™O acts on Wg as the identity
because the modules are positively graded. From the description of the action of G,,, on W7 given

above, we have that the action of ze = (21, ...,2,) € G?, on the element w® = W} ®- - -@uwk € WS
is given by
1 2 n
Ze W = Z?eg(wo)’w(l) ® deg(wo)w% ® - deg(wo)wg —— ’

so the restriction of this action to W is the identity, as wanted. It follows that the action of
(Aut O)" on Wg ® Oz s only given by the action of (Aut O)" on Oz , and hence
g,n g,mn

)(Aut o) )(Aut o)m

m(We ® Oxg =W ® (0=

j— d J—
Mg,n - WO ® OMQ:” ’

which concludes the proof. O

Ezample 3.2.3. When g is simply laced, the minimal series principal W-algebras Wy(g) are
simple, rational, Ca-cofinite, and of CFT-type for any (non-degenerate) admissible level ¢; see
[Aral5b, Aralbal. In case £ + hY = (k+h")/(k+h"Y + 1), for any positive integer k, these
algebras are unitary. The W-algebra W;(g) is the simple quotient of the universal W-algebra
W¥(g). Zhu’s algebra A(W*(g)) is isomorphic to the center Z(U(g)) of the universal enveloping
algebra of g, and A(W,(g)) is a quotient of Z(U(g)) (see, for example, [DKO06]). In particular,
these algebras are commutative. Since the irreducible representations of a commutative algebra
are 1-dimensional, any constant sheaf Y/ made from simple modules over W¥(g) or Wy(g) on
ﬂo,n is a line bundle.

As mentioned in the introduction, by [ACL19, Main Theorem 2] in types A, D, and E, and
by [CL22, Corollary 4.1 and Theorem 7.1]) in types B and C, both W*(g) and Wy(g) can be
realized as cosets of tensor products of affine vertex operator algebras. The result in type A with
k =1 was also proved in [ALY19]. In particular, except possibly when k + h" € Q«o,

W¥(g) = Com(Viy1(g), Vi(g) ® L1(g)) and Wy(g) = Com(Ly1(g), Li(g) ® L1(g)) -

Remark 3.2.4. Although by [DGT22], bundles of coinvariants for even lattice VOAs have rank 1
on Mo,n, it is not true that Zhu'’s algebra A(V7) will be commutative, even for an even lattice
of rank 1.
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4. Preparations for the proof of Theorem 1

Here we develop some tools that will be useful for proving Theorem 1. Although the theorem only
discusses vertex algebras which are strongly generated in degree 1, we first analyze properties of
vertex algebras strongly generated in degree d for d > 1 and then restrict to d = 1.

LEMMA 4.0.1. Assume that V is strongly finitely generated in degree d and W is an admissible V -
module. Then every element w € W can be written as a linear combination of elements of the form

1 2 m
for some m > 0, with A* € F4(V') \ Vo such that
(i) if deg(w) = 0, then deg (Aij) > 0, and
(i) if deg(w) > 0, then deg A™; > 1.

Proof. We begin by observing that we can exclude the case where A’ € V = C1 since 1_; acts
on W either by zero or by the identity.

By the proof of [Zhu96, Theorem 2.1.2], every element w € W can be written as a combination
of Blle%jQ e ijéuo for some B’ in V and ug € Wy. Since V is strongly generated in degree d,
we know that every element B’ of V can be written as a combination of elements of the type

Bﬁq BZ_Z%ZL where deg (B"*) < d for all s € {1,...,n;}.
Using this notation, we are then left to prove that every element written as

, , : : 0, 0,
w= (Bi;% . .Bigil 1)_],1 . (Bi;% . ..332521)_j2 e (3416{ . "372521)—]'@ g

can be rewritten as a linear combination of elements as in equation (4.1). This result is true by
repeated use of the associator formula applied from left to right. That is, we first write

= 271 DY 27n2 DY £71 DR £7ne .
wy = (B,k% Bfk,%Q 1)_].2 (Bik{ B—kﬁel)—je U ,
so that
_(pll  pl2  plm _(pll (pl2 plm _ (pLl (12
w= (B—k% B—k% B—k}”l)fjlwl - <B—ki (Bfké Bfk},ll 1)>7j1w1 = (B—k% (D ))ﬂ'lwl'
=: D12

We can then expand (Bi’;l (DL?))ij1 using the associator formula. Following the expansion,
1

we rewrite D12 as Bi’zé (D1’3), where D13 = (B1’3 ...BbM ), and again expand using the

—kg —kiy
associator formula. Repeating this for all D = (Bi’;l ‘e Bigf ), expanding using the associator
7 n1

formula, and then carrying out the same procedure for the factors of wy, we arrive at a linear
combination of terms of the form described in (4.1).

We note that once in the form given in (4.1), if the term A’fjm adjacent to wg has negative de-
gree, then A™, wo = 0 since W is graded by N. If A™; ~has degree zero, then A™; wo = ug € Wo,
and we may as well replace it. O

Given Lemma 4.0.1, we make the following definition for the length of an element in W,
which will be used to argue by induction in the proof of Lemma 4.0.3.

DEFINITION 4.0.2. Suppose that V is strongly generated in degree d and that W is a simple
V-module. For ¢ € N, set

GZ(W) = Span{Al_j1 . --Ae_jzwo | A7 e Fy(V)\ Vo, wo € Wo} .
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We say that w has d-length ¢ if w € LY(W) := G'W \ G*~Y(W).

When there is no ambiguity on d, we will simply use length in place of d-length. Given two
elements wy and we € W, we say that wq is shorter than ws if the length of w; is smaller than
the length of ws. For the proof of Theorem 1, we will need a refined version of Lemma 4.0.1.

LEMMA 4.0.3. Assume that V' is strongly finitely generated in degree d. Then every element
w € W such that deg(w) > 0 can be written as a combination of elements of the form in (4.1)
with the additional properties:

(i) If deg (A') =1, then j; > 1.

(ii) In case d = 1, every element A* j, has positive degree or, equivalently, j; > 1 for every i.

Proof. We start by proving part (ii) and observe that by induction on the length of the elements,
it is enough to consider only the case m = 2. Using the commutator formula, we have that
1 42 _ 42 g1 142
A AT jywo = AZ5, A wo + Z (AkA )—jl—jg—k)wo :
k>0

We now show that each non-zero term on the right-hand side of the equality is a term which
either is of degree zero or satisfies the wanted property. The first term of the right-hand side is
zero if deg (Al_jl) is negative and Az_j2 ug for some ug € WY if deg (Al_jl) = 0. Else, deg (Al_jl) is
positive. We now look at the other terms. Since both A' and A? have degree 1, the only non-zero
summands are those where k = 0 or k = 1. When k = 0, we have that B = A}A? is an element
of degree 1; hence we reduce the statement to the case m = 1. When k = 1, the element A%A2
has degree zero, which implies that it is a multiple of the vacuum vector, and so it can act on
wo only by a scalar.

We are left to prove part (i). In this case too, the proof follows from the commutator for-
mula and induction on the length of elements. With more details, let w = AL R Aijuo as
in Lemma 4.0.1, and define the K-value of w, denoted by K(w), as the smallest integer in
{0,1,...,m} such that deg (AK(“’)) > 2, with K(w) = 0 if all the elements have degree 1. It is
enough to show that every element with K(w) > 2 can be written as a sum of shorter elements
and elements with smaller K-value. By repeating the argument, we reduce to the case where
either K = 0 or K = 1. Observe that if K = 0, then we are done by part (ii) above, while if
K =1, then we are in the situation deg (A') > 2. When K(w) = K > 2, using the commutator
formula, we can write w as

Lo oA K- K+ m
A*jl A*]K A_ijl A_jK+1 A*Jmuo
1 K-2 i K-1 K . K+1 LA™
+ Z A*jl A_jK72 (Ak (A ))—jK—jK_l—k A_jK+1 A*Jmuo :
k>0

The first term is an element with K-value less than K. Moreover, since deg (AK _1) =1, for

every k > 0, we have that deg AkK _1(AK ) > d, which shows that the terms in the second line
are shorter than w. O

5. Proof of Theorem 1

Here we prove Theorem 1. We recall that in §2.7.1 we describe the descent of coinvariants from
Mg, to Mg, which is carried out in two steps, first to a vector bundle VI(V;W*) on J an
and then, if possible, to M, ,,. To show that the sheaf of coinvariants is globally generated, we
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show that each of the maps ¢ and ¢ (when it exists) defined in Lemma 3.2.1 from the constant
bundle W§ to Vo(V;W?*) is surjective. For this, it is sufficient to show that the map under
consideration is surjective on fibers.

Since fibers of either sheaf are isomorphic, and the arguments are the same, without loss of
generality we make the argument for the map ¢ and assume (C, P,) € M ,,. Then the restriction
®l(c,p,) of ¢ to the fiber is induced by the composition

WO. — W* —» W./EC\P. (V)W. = WZC\P. V)

It is enough to show that every element of W* can be written as a combination of elements
of W and elements in Loy p, (V) - W*.

For this purpose, it suffices to show that for every d > 1, we can write any element w® of
W3 = Fa(W*)\ F4-1(W?*) as a linear combinations of element in Lcyp, (V) - W*® U Fy1(W?®).
In other words, we will prove that there exist elements

o€ Lap, (V) and v*eW?*
such that
a(v*) —w® € Faeg(we)—1(W?*). (5.1)

In view of part (ii) of Lemma 4.0.3, we can further assume that w® is of the form w!'®- - -@w",

where

— every w” is a homogeneous element of W of degree dj;

— for one i € {1,...,n}, we can write w' = A_jui, with 4’ a homogeneous elements of W,
AeVi,and j > 1.

We start by showing that there exists an element 0 = A® u € L\ p, (V) that has a pole of
order j at P; and is regular at all the other points. Since the description of L p, (V) over nodal
curves requires some extra work, the proof continues treating separately the cases of C' being
a smooth or a nodal curve.

5.1 The smooth case: C = P!
Since C'\ P, is affine, we can deduce that
Lop,(V)=H(C\ P, Ve ®@we/ImV) 2 HY(C\ P, Ve @ we)/VHY(C\ P, Ve).
By [DGT19], one has
HY(C'\ P, Ve @ we) = @ HY(C\ A, (ws™) ™ ™) = @) Vi @ HO(C'\ Po,wi™) .
m=0 m=0
Using the Riemann—Roch theorem, if D = O¢(jP;), the subset
P Vin @ H(C,ws ™(D)) € @D Vi @ HY(C'\ Po,w@™™)
m=0 m=0

is non-zero. In particular, it contains an element o = A ® p, where u € H°(C,9(jP;)) has a pole
of order j at P; and is regular elsewhere.

We next show that the element v* = w! ® -+ @ W™t @ u' @ Wl ® - - - w" satisfies (5.1). The
action of Loy p, (V) on W* is given by the diagonal action of op, on WP (this is the image of o
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along the map Lo\ p, — £p (V) arising from (2.1)). From the definition of o, we have that

op = A+ D Osrm AL

m>1

and since o is regular at the other points, we have that op, = >0 bgA[g with by € C, hence
op, - Wy C Wy . (5.2)
Summarizing, we conclude that

o(v*) — w® = Z O[_J.er(wl ® 2wl A(fjer)ui outle. .. o w™)
m>=1
+Y weeue-euT @op (W) @ut @ W (5.3)
ki

Terms in the first line of the right-hand side of (5.3) are in Fyeg(uwe)—m (W*®) for m > 1. Each
summand in the second line of (5.3) is in Fyeg(we)—;(W*®) by (5.2). Since j > 1 by assumption,
we can conclude that (5.1) holds, concluding the proof in the smooth case.

5.2 C is nodal

The stability condition ensures that C'\ P, is an affine curve. Moreover, without loss of generality,
we can assume that C' has two components C; and C_ which meet at only one node @ as in
Figure 1. The marked points on C; will be indexed by P, 1, and the marked points on C_ will
be indexed by P, —. Assume that the point P, = P lies in the component C\. The preimages

of @) via the normalization morphism n: C' = Cy U C_ — C are the points Q4+ and @_ with

local coordinates ¢4 and _.
Qs
n
<—
Po,+ P-,— P0,+
P
Py
c.

c-
As in the smooth case, the goal is to construct an element of Lc p, (V') such that (5.1) holds.
To do so, we view Ly ps(V) as consisting of elements of Ea,P.uQ.(V) = Lop 0 (V) @
Lo \peug_ (V) satisfying conditions described in [DGT19, Proposition 3.3.1] and stated here
for convenience. For this purpose, recall that £g, (V) = £(V) is filtered, so that it admits
a triangular decomposition £(V) = £(V)<o @ £(V)o ® £(V)>0. Let 0g, € £, (V) be the image

of 0 € Ea\P.uQ. (V), and let [0q,], be the image of o, under the projection £q, (V) =

FIGURE 1. Normalization map
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L£(V) — £(V)o. The involution ¢ of £(V'), which restricts to an involution on £(V)g, is given for
a homogeneous element B € V' of degree b by

N
9 (Bp-y)) = (-1)° 12 5L13[b—i—1] :
i>0

With this notation, [DGT19, Proposition 3.3.1] says that
Lovp, (V) ={0 € Lz p,0,(V) |0, 00- € £(V)<0, and [og_Jo =9([0g.Jo)} -

Following the argument of §5.1, we can show that there exists an element o, = A ® u of
Lonp, (V) S Lop\p,.ug. (V), where p is a form which has a pole of order j at P and is
regular at other points. The expansion of o at the other points P # P can be seen as an
endomorphism of W of degree less than or equal to zero as in (5.2). The expansion of o at the
point Q4+ can be written as the element

04, = ZaiAm e &(V). (5.4)
120
Note that the components of 0y, have non-positive degree and [o1]o := [0+, Jo = apA[p)-

To produce an element in Lc\p, (V), we need to construct an element o € Lo \p, (V)

which is compatible with ;. The compatibility condition requires that
[U_}o = 19[04.]0 = aoA[O] + aoglq (A)[_H = aoA[O] -+ all[_l] (5.5)
for some a1 € C since V is of CFT-type.

We are left to show that there is an element o in Lo_\p, _g_ (V) whose image in £(V)o is
agAjo) + a11;_yj. To do so, we consider the two components independently and use the fact that
Lo \p,_ug_ (V) is a quotient of P~ H° (CL \Pe_LUQ_,V; ® wl_k).

We first observe that Vi = H(C_,V4 ® 0) € @0 H°(C- \ Ps— U Q_,V; ® w'~F). Hence
we can lift agAjg) to an element 8 € Lo \p, _g_ (V) such that

Blo. = apA and B|Pj— = apA. (5.6)
After observing that HO(C_,Vp ® w(Q_)) = 0, let Py, be any point in P, _, and note that
Vo 2 HY(C_,Vo®w(Q_+ Py)) C D=0 HY(C_\ P, UQ_, Vi ®w! ™) is 1-dimensional. Hence
there exists an element v € Lo \p, _g_ (V) satisfying
Yoo = a1t +H1QF(t), Y|p. = a0ol®tes '+10G(t), lp,_£p. = a;@H(t;) (5.7)
with F'(t_) € C[t_], G(t) € Cltoo] and H(t;) € C[t;].
It follows that the pair (04,3 + ) defines an element o of Lcyp, (V). We are left to prove

that under this choice, (5.1) holds, but this follows from (5.6) and (5.7) and the fact that o has
poles only at P.

6. The corollaries

The proof of Theorem 1, and the definition of admissible modules, implies the following state-
ment.

COROLLARY A. The sheaf of coinvariants Vo(V; W*®) on My, defined by n simple admissible
modules over a vertex operator algebra V of CFT-type and strongly generated in degree 1, is
coherent.
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Proof. By definition, for every i € {1,...,n}, the admissible V-module W* has finite-dimensional
lowest-weight component W¢. This fact, together with Lemma 3.2.1, gives that W] is a vector
bundle of finite rank on My . By the proof of Theorem 1, the map ¢: W — Vo(V; W*) defined
in (3.2) is surjective. From this and the coherence of Wg, we therefore deduce the coherence of
Vo(V; W*), giving the assertion. O

A further consequence, owing to both Corollary A and [DGT21, Theorem 7.1], is the following.

COROLLARY B. The sheaf of coinvariants Vo(V;W*), defined by n simple admissible modules
over a vertex operator algebra V' of CFT-type and strongly generated in degree 1, is locally free
of finite rank on My .

Proof. Since by Corollary A, we have that Vo(V;W*®) is coherent, it is enough to show that the
restriction of Vo(V;W?*) to My, is equipped with a projectively flat connection. This is guar-
anteed by [DGT21, Theorem 7.1], whose hypotheses are actually weaker than what is assumed
for Corollary B. O

Finally, applying results from [DGT19], we obtain the following.

COROLLARY C. For V a rational, Cy-cofinite vertex operator algebra of CFT-type and strongly
generated in degree 1, the sheifVo(V; W*) defined by n simple admissible V' modules is a globally
generated vector bundle on My j,.

Proof. This follows from [DGT19, VB Corollary] and Theorem 1. O

7. Higher-genus examples

In this section, we describe vector bundles of coinvariants on Mg, defined by holomorphic
vertex algebras of CFT-type, which are globally generated for positive genus (Example 7.0.1).
As explained in Remark 7.0.2, global generation is not given by Theorem 1.

Example 7.0.1. A VOA is holomorphic if it is self-contragredient and the only irreducible V-
module is itself. By [DGT22, § 1.6.1], using factorization, it was shown that bundles of coinvariants
defined by holomorphic VOAs V' of CFT-type have rank 1, with Chern class %cv)\, where ¢y
is the central charge of V. Line bundles are globally generated if their first Chern class is base-
point-free. It is well known that A, the first Chern class of the Hodge bundle, is base-point-free,
and non-trivial if ¢ > 0. As explained in [LS19a, §3], by [DM04b, Theorems 1 and 2], any
holomorphic VOA of CohFT-type has positive central charge (in fact, cy is divisible by 8). In
particular, sheaves of coinvariants defined by holomorphic vertex operator algebras are globally
generated on ﬂgm.

Moreover, if ¢y < 24, the character of V' and the degree 1 component V; are uniquely de-
termined, and in particular there are many examples for which V; # ). For instance, if V is
a Co-cofinite, holomorphic vertex operator algebra of CFT-type (in the language of [DMO04b],
V is strongly rational and holomorphic), then for ¢ = 8, V' = V7, is the lattice VOA given by
the Eg root lattice [DM04a, Theorem 1]. In particular, the affine VOA bundles V(L1 (eg); W*®)
have first Chern classes which are multiples of A, so are base-point-free (see also [Fak12, Corol-
lary 6.3 and Remark 6.4]). If ¢ = 16, then V' = V7, where L is one of the two unimodular rank 16
lattices [DM04a, Theorem 2], and if ¢y = 24, then if V] is abelian of rank 24, V' is isomorphic
to the Leech lattice VOA [DLMO00], and if V; is zero, then V = V& If on the other hand V;
is semi-simple, then relations between the dual Coxeter number, the dimension, and the level
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of its affinization and other constraints led Shellekens, in [Sch93], to propose a list of 69 other
Lie algebra structures for Vi, that he conjectured would determine these holomorphic VOAs
of conformal dimension 24 (these 71 make up what is called Schellekens’ list). As described
by Lam and Shimakura in [LS19a], all such V' have now been constructed [Bor86, FLMS8,
Don93, DGM96, Lam11, LS12, Miy13, SS16, vEMS20a, M&121, LS16, LL20]. The last cases re-
quired substantial development of orbifold theory and were completed in [vEMS20a, vEMS20Db].
The uniqueness of these VOAs was proven in [vEMS20a, vEMS20b, LS19b, LS20b, LS20a,
LS20b).

Remark 7.0.2. Since holomorphic vertex operator algebras of CFT-type have 1-dimensional de-
gree zero components, associated sheaves Wg have rank 1. However, although the V,(V; W*) are
globally generated, we do not know if it is possible to prove that the map (3.2) from Lemma 3.2.1
from W to V,(V; W?*) is surjective (see Question 3).

8. Discrete series bundles

Sheaves defined from the discrete series representations of the Virasoro vertex algebra Vir, were
introduced in [BEM91]. Such VOAs are the simplest case of a family referred to as the minimal
series principal W-algebras Wy(g), see [Arall, ALY 14], and in case g = slz, one obtains Vir, (see
Example 3.2.3). The minimal series principal W-algebras arise in many contexts (see [ALY 14] and
references therein). Unlike affine VOAs, the minimal series principal W-algebras are not strongly
generated in degree 1 [ACL19]; however, as discussed in Example 3.2.3, they are related to affine
VOAs through a coset construction. In §8.0.2, we describe the discrete series representations of
Vir, and their modules, afterwards giving a formula for their ranks, and a specific example of
the Chern classes of bundles they define for n = 4. But first, in §8.0.1, we give a brief summary
of our findings about them.

8.0.1 Summary. Since the Zhu algebra A(Vir.) is commutative, for any bundle of coinvari-
ants V(Virg; W*), the associated constant sheaf W$ has rank 1. As we show, one can cook up
bundles of coinvariants V(Vir.; W*®) of ranks 0, 1, and larger than 1. In all the examples we
considered, if V(Vire; W*) had rank 1, then it was positive. If the rank was larger than 1, it was
positive if and only if its modules satisfied an integral degree condition (see Definition 2.3.1 and
Question 2).

8.0.2 Description of the discrete series representations of Vir. and their modules. Let
Viryg := CK @ 2C[z]0. be a Lie subalgebra of the Virasoro Lie algebra Vir, and let M. :=
U(Vir) @y (virs) C1 be the Verma module of highest weight h € C and central charge ¢ € C (note
that M., is a module over M.g). There is a unique maximal proper submodule J.j, C M,p,.
Set Lep := Mcp/Jen and Vire := L.o. By [Wan93, Theorem 4.2 and Corollary 4.1], one has
that Vir. is rational if and only if ¢ = ¢, ; = 1 — 6(p — ¢)?/pg, where p and ¢ € {2,3,...} are
relatively prime. By [DLMO0O, Lemma 12.3] (see also [Aral2, Proposition 3.4.1]), the VOA Vir, is
Cy-cofinite for ¢ = ¢, 4, and by [FZ92, Theorem 4.3], the VOA Vir, is of CFT-type. By [Wan93,
Theorem 4.2], the modules L.}, are irreducible if and only if

(np —mq)* — (p — q)*

h =
4pq

, with0O<m<p,and0<n<gq.
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Note that, by definition, h is the conformal dimension of L.j. These vertex operator algebras
are unitary if |¢ — p| = 1.

8.0.3 A particular example. Let V = Li, = Vir.,, be the discrete series vertex operator
27 ’

algebra with central charge % This vertex operator algebra has only two non-trivial simple

modules, W7 = L1 1 and Wy = L1 1 . Divisors associated with bundles of rank zero are trivial
272 2’16

and hence are trivially nef. We show that this rank is determined by the parity of W and Wa:

ProposiTION 8.0.4. On ﬂo,i-s—jﬂg, for i+ j+ k > 3, one has
20 if k=20+2 with(>0,
rank(VO(V; Ve Wf@j ® Wg‘@’“)) =<1 if jisevenand k=0,

0 otherwise.

Ezample 8.0.5. On M4,

1 if j=k=2,
deg (Vo(V; W7 @ Wek)) =< 2 if j=4,
1 if k=4.

In particular, the line bundles Vg (V; W{m ® Wém) and Vj (V; WfM) are globally generated on
ﬂoA, while the bundle V (V; W5®4), which has rank 2, is not globally generated on ﬂ0,4.

Proposition 8.0.4 is proved by induction, using formulas from § 2.8, with base case dependent

on the following.
LEMMA 8.0.6 ([DMZ94]). For V. = Vire,,, W1 = Li 1, and Wy = L1
: 1

AL )
Vo(V;W*®) on Moz is 1 if W* is (V,V, V), (V, W1, W), (V,Wa, W3), or (
otherwise.

, the dimension of

, Wa, Wa); it is zero

N}
=l

Proof of Proposition 8.0.4. By propagation of vacua, if j + k > 3, then the rank of the vector
bundle V (V; Ve ® W1®] ® ng)k) is the same as the rank of Vg (V; W1®] ® W2®k) We then need

to prove the theorem only for bundles of the form Vj (V; ngj ® VVQ@)I’C ) for 5+ k > 3.

We first show that V (V; W{@j ® W§®2e+2) has rank 2¢ by double induction on ¢ and j, where
the cases j = 0,1 and £ = 0 follow from Lemma 8.0.6. Using (2.3), we obtain that

rank Vo (V; Wi @ We2H2) = rank Vo (V; W™ @ W) rank Vo (V; W5?)
+ rank Vo (V; W @ W) rank Vo (V; Wy @ Wi2)
+ rank Vg (V; W1®j ® Wfbyﬂ) rank V (V; W2®3) )
By induction on ¢ and Lemma 8.0.6, we deduce that
rank Vo (V; W7 @ W242) = 271 4 rank Vo (V; W @ W)
and using (2.3) again, Lemma 8.0.6, and induction on ¢ and j, we obtain that
rank Vo (V; W7 @ W) = rank Vo (V; W7 @ W) rank Vo (V; W)
+ rank Vo (V; W @ W) rank Vo (V; W)
+ rank Vo (V; W1 @ W) rank Vo (V; W2 @ Wh)
= rank Vo (V; W7~ @ W) = 2071,
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so that rank Vo (V; Wi @ Wi22) = 261 4 2671 = 21 a5 claimed.

We then show that rank V (V; Wl®j ) is equal to 1 when j is even and is zero when j is odd.
This is shown by induction on j, knowing the result for 0 < j < 3. Assume j > 4. Using (2.3),
we obtain that

rank Vo (V; Wi = rank Vo (V; W ~2) rank Vo (V; W*2)
+ rank Vo (V; W 1) rank Vo (V; W3)
+ rank Vo (V; W72 @ Wy} ) rank Vo (V; WE2 @ W)

which in view of Lemma 8.0.6 is equal to rank V (V; W{m") = rank Vy (V; Wl®j72). So the result
holds by induction on j, as claimed.

We prove by induction on ¢ and j that rank Vj (V; W{X) 7 ® ng)%*l) = 0, knowing the result
forj=0,1and £ =0o0r j =0 and ¢ = 1. By (2.3), Lemma 8.0.6, and induction on ¢, we have
that

rank Vo (V; Wi @ W) = rank Vo (V; W7 @ W) rank Vo (V; W5*2)
+ rank Vo (V; W @ W21) rank Vo (V; W7 @ W)
= rank Vo (V; W @ W5 rank Vo (V; W)
= rank Vo (V; W+ @ w21
Using (2.3) again, we have that
rank Vo (V; W7 @ W) = rank Vo (V; W ™1 @ WE21) rank Vo (V; WP2)
+ rank Vo (V; W @ Wi271) rank Vo (V; W2)
+ rank Vo (V; Wt Wﬁ@%) rank Vo (V; W @ W),
which is zero by induction on j and by Lemma 8.0.6. O

Ezample 8.0.5, continued. We use the results of [DGT22] summarized in § 2.9 together with the
rank computations to prove the degree results stated in Example 8.0.5. Observe that the rank
of the bundle is trivial except in three cases analyzed below:

Case 1: j = k = 2. Since the degree of ¥p on My 4 is 1, as is o¢py, P2}, and since the conformal
dimension of V is zero, we have that deg (Vo(V; W @ ng)) =21+ 24 1 2% =1.

Case 2: k = 0, and j = 4. We have that deg(Vo(V; W) = 2 — 0 = 2

Case 3: k =4, j = 0. We have that deg (VO(V7 W2®4)) 2% % =—1.

9. Lattice divisor classes

In a special case, lattice VOAs coincide with affine Lie algebras at level 1. But generally, they
are distinct. In §9.0.2, we describe these VOAs and their modules, giving representatives of the
examples of lattice VOA bundles we have considered. But first, in §9.0.1, we give a brief summary
of our findings about them.

9.0.1 Summary. We show here two series of lattice VOA bundles of rank 1, the first with

trivial first Chern class (Example 9.1.1), and the second with negative first Chern class (Exam-
ple 9.1.3). For the simplest example in each case, we show that the constant bundle W] also
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has rank 1, where the rank is computed using Zhu’s character formula (Example 9.2.1). In the
second case, the simplest example has the property that the modules satisfy the integral degree
condition specified in Definition 2.3.1.

9.0.2 Description of lattice VOAs and their modules. Let V = Vi be the lattice vertex
operator algebra associated with the even lattice (L, q), where L = @?:1 Ze; is a rank d lattice
and ¢ is an even positive-definite form on Z such that q(e;,e;) = 2 - k; for some k; € Z>1 (see
[Bor86, FLMS88, Don93]). By [Don93, Theorem 3.1], the set of irreducible representations of Vi,
is in bijection with the cosets of L inside L' = {a € L® Q | q(a,e) € Z for all e € L}. Note that
L'/L further has the structure of an abelian group. Given an element [\] € L'/L, its conformal
dimension is given by the rational number % mineer, g(A + e, A + €). Assume L'/L = Z/mZ, so
that the simple representations of L are indexed by elements in {0,...,m — 1}. From [DGT22],
we know that

rank V (Vi; W™ @ - @ Wern™) = mgézgﬁ:—lljnjzo (mod m) *

so that on Mo, ~, these sheaves of coinvariants are either trivial or line bundles.

9.1 Particular examples: Computing degrees
In what follows, L will be the lattice L = Ze with pairing ¢(e, e) = 4k for some positive k € Z.
It follows that L'/L is isomorphic to Z/4kZ = {0, ..., 4k — 1}.

In what follows, the sheaf Vo(V; Wy, @ --- @ W;,), with i; € {0,...,4k — 1}, will be denoted
by Vo(i1,...,0r).

Ezample 9.1.1. Consider on My 4 the space of coinvariants associated with the representa-
tions (1,1,1,4k — 3). The degree of the line bundle Vy(1,1,1,4k — 3) is given by the degree
of ¢1(Vo(1,1,1,4k — 3)), that is,

1 1 1 9 4 4 4
(8]91/}1 + 87@1/]2 + 87:% + 8191/}4) - <8k:5[1’1”1 4ak—3) T 87:5[1,1}[1,41673] + 8k5[1,4k3][1,|]) :

where boundary classes are indexed by partitions of the four points. This can be seen to have
zero degree:
1 1 1 9 4 4 4
deg(Vo(1,1,1,4k—3)) = <8/€+8k+8k§+8/€) - <8]€+8k‘+8k§) =0
Remark 9.1.2. In the simplest case where k = 1, the line bundle V((1,1,1,1) has degree zero,

and we will see in §9.2 how to use Zhu’s character formula to prove that the constant bundle
WS associated with (1,1,1,1) is also a line bundle.

Ezample 9.1.3. Consider on My 4 the sheaf of coinvariants associated with the representations
(k,k, k, k). The conformal dimension of the representation represented by k equals k/8. Following
§2.9, the first Chern class of this line bundle is

k k k k k k k
c1(Vo(k, k, k, k) = <§¢1 ¥t gUst g%) - (55[2,2][272} + 502222 + 5%,2][2,2]) ;

where the boundary classes are indexed by the partitions of the four points. It follows that

k kE k k k k k
deg(vo<k7k,k,k)>=8+8+8+8_<2+2+2)

and so this bundle is not globally generated.

=k,
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Remark 9.1.4. We note that in this example, the conformal dimensions of each of the modules
is k/8, so for k = 2, the sum of these conformal dimensions is integral (see Definition 2.3.1), but
the bundle still has negative degree. This example explains why we restrict Question 2 to vertex
algebras that can be obtained from affine vertex algebras through tensor products, orbifold, and
coset constructions.

We will see in §9.2 how to use Zhu’s character formula to prove that the constant bundle W,
associated with V(2,2,2,2) is also a line bundle. We had not seen this behavior for the Virasoro
bundles. The main distinction between them in this instance is that these lattice VOAs are not
constructed from an affine VOA.

9.2 Computing ranks with Zhu’s character formula

Here we illustrate how to use Zhu’s character formula to compute the dimension for the lowest-
weight spaces of modules over even lattice VOAs. Suppose that V' = V7, is a vertex operator
algebra associated with an even lattice L. In particular, the lattice L is determined by its rank d
and the quadratic form @ = q(, )/2. Let W =V, be a simple admissible module of conformal
dimension ay. By Zhu’s character formula [Zhu96, Introduction, p. 238] and [MT10], for V of
central charge c,

. 1
g"W =2y dim Wy ng" = > g%t

n=0 17(7-)61 a€l
[e'e] 1 d o0 1 d
—1 . —d .
(A I)) Sl () S e oo
n=1 q jEQ>O n=1 4 jEQZO
where
LY ={a€L|Qa+\) =j}. (9.2)
We note that
o0 1 oo oo o o0
() - (Z q’“) | (Z q) | (Z q) =X P, (93)
n=1 n1=0 no=0 n3=0 n=0

where P(n) is the number of ways to write n as a sum of positive integers and P(0) = 1. Since
V' =V, has central charge ¢ = d, we obtain from (9.1) and (9.3) that

Z dim We, 4nq" = Z ( Z |L;‘| H P(nl)> qnTw .

n=0 ’VLEQ2O n1,m9,...,ngEN

J€Qx0, Y ni+j=n
In summary, the coefficient of ¢° on the right-hand side is equal to the number of ways to write
aw =ni+ne+---+ng+j withn; € Z>p and j € Qxo,

and for each such way, the contribution is given by the product |L;\n| IL; P(n;). For instance,
taking the trivial module W = V7, represented by A = 0 with h = 0, we have dim(Wj) = 1 since
|L§| =1, and P(0) = 1.

Ezxample 9.2.1. Consider the lattice VOA from Example 9.1, and take k = 2 and L = eZ, with

pairing g(e,e) = 8, so Q(a) = a® - 4 for every a € Q. Then V1, has central charge 1, and the

module W = W1 has conformal dimension Q(}) = 1. From the argument above, it follows that
4
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the dimension of Wy is given by the following recipe:
X1
dim W = ) i\ [P(N). (9.4)
N=0

In fact, there is only one way in which we can write i =ay, = N+j with N € Z>o and j € Qx,

that is, N =0 and j = %. Otherwise said, in (9.4) we can see that % — N is non-negative only for

1
N = 0, which implies that the only non-zero contribution from ‘Li_ N| is obtained when N = 0.
4

1
It follows that dim Wy = ’Li ‘ In particular, one has that dim Wy = 1 since by the definition of
4

L3, we have

1
Li={a€Z|Q(a+7}) =1} ={ae€Z]|2a(20+1) =0} ={0}.
4
10. Questions
Given r simple Lie algebras g;, positive integers ¢;, and for j € {1,...,r}, an n-tuple of simple

Ly, (g7)-modules (le, ..., WJ'), we can ask the following.
Question 1. Are Vo (Q®'_; Le;(95); &= W) and @j_; Vy(Le,(g;); W) isomorphic?

Remark 10.0.1. Much is known about the classes of bundles of coinvariants for simple affine
VOAs Ly(g), which are Co-cofinite and rational if and only if ¢ € Z~. For instance, by [Ber93,
Tha94, Fal94, KNR94, BL94, Pau96], in this case, there are canonical isomorphisms between
generalized theta functions with (the dual spaces to) vector spaces of coinvariants at smooth
curves. It has been shown that this extends to families of stable pointed curves with singularities
[BF19]:

V(Le(a); W*)I{,p,y = H (Bung™ (C, P.), L) . (10.1)

Here £ is a canonical line bundle on the stack Bungar(C, P,) of parabolic G-bundles, and G is
a simple, simply connected algebraic group with Lie(G) = g. For G = SL(r) and W* = V*, there
is a natural map SD:

V(Le(sl); W*) |0y = HO(Mgp(C), £) 7 % H (ML), 07)

where Mg, (C) is the moduli space of semi-stable vector bundles of rank r with trivial deter-
minant on C, Mgqr,)(C) is the moduli space of semi-stable vector bundles of rank ¢ and degree
£(g—1) on C, and where one has 6 = {€ € Mg : H°(C,€) # 0}. Donagi and Tu [DT94] showed
that the dimensions of these vector spaces were the same and stated what became known as the
strange duality conjecture. Various special cases had appeared earlier in the physics literature,
for example in [NS90] (see also [NT92]). Pantev [Pan94] generalized the dimension statement
to the case where R is reductive and G = [R, R] is semi-simple. The conjecture was proved in
type A by Belkale [Bel08] and Marian-Oprea [MOO7]. Strange duality was proved by Abe in
[Abe08] in the symplectic setting conjectured by Beauville [Bea0O6] (see also [Bell2]) and has
been studied for other cases [Mukl16a, Muk16b, BP10, MW19]. In [DGT22, Question 1], it was
asked whether there are analogous geometric interpretations of dual spaces for vector spaces of
conformal blocks defined by vertex operator algebras.

If the answer to Question 1 is yes, then by Theorem 1, [DT94], and [Pan94], an induced
level-rank duality dimension statement will hold for vector spaces of conformal blocks given by
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any simple, rational, Cs-cofinite, self-contragredient, vertex operator algebra V of CFT-type,
strongly generated in degree 1 since by [DMO06], we have that V = ®;Le;(g7). One also obtains
a canonical identification between generalized theta functions with (the dual spaces to) vector
spaces of coinvariants from (10.1) for these spaces. Moreover, if the g; are (combinations) in
types A or C, then by [Bel08, MOO07, Abe08], the vector spaces will be subject to strange
dualities.

In § 7, examples of globally generated line bundles defined on moduli spaces of positive genus
curves were given. For these, the constant sheaf also had rank 1. In §8, we have given a repre-
sentative example where if the rank of the constant bundle W was at least as large as the rank
of the coinvariants, then the vector bundle of coinvariants was positive whenever its modules
satisfied an integral degree condition (see Definition 2.3.1).

Question 2. Let V be a VOA that can be obtained from affine vertex algebras through tensor
product, orbifold, or coset construction. Suppose that both of the following properties hold:

(i) The rank of the constant bundle W} is at least as large as the rank of the coinvariants.

(ii) The conformal dimensions of the modules sum to an integer.

Is Vo(V; W*) globally generated on My ,,?

Question 3. Is there another constant bundle that maps to the sheaf of coinvariants
Vy (Vi W*)?

Remark 10.0.2. Tsuchiya, Ueno, and Yamada have observed that the map from the dth part of
the filtration Fy(W*) to gr (Vy(Le(g); W*)l(c,p,)) is surjective at integrable levels, for (C, Ps)
a smooth n-pointed curve [TUY89, Proposition 3.23]. Together with factorization, this is used
to prove the coherence of V,(L,(g); W*®) on M, ,,. Using the Weierstrass gap theorem, one can
extend their observation to stable curves with singularities for ¢ > 0 and n > 0. This defines a
surjective map from the sheaf WY introduced in Lemma 3.2.1 to V4(L,(g); W*), analogous to the
surjective map from W{ to Vo(L,(g); W*) shown in the proof of Theorem 1. Also in Lemma 3.2.1,
the sheaf W is shown to be independent of a change of coordinates, so descends to a constant
sheaf on My ,,. However, we know from examples of non-nef divisors ¢1(V,(Le(g); W*)) that for
positive genus g, without further assumptions, Wj is not independent of a change of coordinates
and does not descend to a constant sheaf on Mg,n.

One could also try to base a constant bundle on the product @), W*/Co(W*), which maps sur-
jectively onto coinvariants (the key step for proving finite generation [DGT19, Proposition 5.1.1]).
However, again, without further assumptions, such a sheaf would not be independent of a change
of coordinates.

Remark 10.0.3. We have been asked whether bundles of coinvariants from modules over general
vertex operator algebras give new nef classes, apart from those given by bundles from affine Lie
algebras. The ranks of the more general bundles are the same as the ranks of the bundles from
affine Lie algebras, but in the formulas for the first Chern class given in [DGT22], which are valid
if V' is self-contragredient, rational, Ca-cofinite, and of CFT-type, the coefficients determined by
the conformal dimensions of the modules can be very different from those for simple affine
VOASs. One can therefore obtain new classes, although we have not done a careful study to see
if the cones obtained with more general VOAs are larger than cones generated by the classical
divisors.
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