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Figure 2: Quantum Neural Networks Architecture. QNN has multiple blocks, each has an encoder to encode classical values to

quantum domain, quantum layers with trainable weights, and a measurement layer that obtains classical values.

• Extensive experiments on 8ML tasks with 5 different design spaces

on 6 quantum devices show that QuantumNAT can improve ac-

curacy by up to 42%, 43%, 23% for 2-class, 4-class and 10-class

classification tasks and demonstrates over 94%, 80% and 34% accu-

racy for 2-, 4-, and 10-classifications on real quantum hardware.

• The code for construction and noise-aware training of PQC is

available at the TorchQuantum library. It is an convenient infras-

tructure to query noise models from QC providers such as IBMQ,

extract noise information, perform training on CPU/GPU and fi-

nally deploy on real QC.

2 BACKGROUND AND RELATED WORK

QML and QNN. Quantum machine learning explores performing

ML tasks on quantum devices. The path to quantum advantage on

QML is typically provided by the quantum circuit’s ability to gen-

erate and estimate highly complex kernels, which would otherwise

be intractable to compute with conventional computers. They have

been shown to have potential speed-up over classical counterparts

in various tasks, including metric learning, data analysis, and prin-

cipal component analysis. Quantum Neural Networks is one type

of QML models using variational quantum circuits with trainable

parameters to accomplish feature encoding of input data and perform

complex-valued linear transformations thereafter. Various theoret-

ical formulations for QNN have been proposed such as quantum

Boltzmann machine [1] and quantum classifier [3, 17, 18, 20], etc.

Quantum error mitigation. As the error forms the bottleneck of

the quantum area. Researchers have developed various error mitiga-

tion techniques [21]. Extrapolation methods [16] perform multiple

measurements of a quantum circuit under different error rates and

then extrapolate the ideal measurement outcomes when there is no

noise. [11] trains PQC using RL with noisy simulator. QuantumNAT

is fundamentally different from existing methods: (i) Prior work

focuses on low-level numerical correction in inference only; Quan-

tumNAT embraces more optimization freedom in both training and

inference. It improves the intrinsic robustness and statistical fidelity

of PQC parameters. (ii) PQC has a good built-in error-tolerance which

motivates QuantumNAT’s post-measurement quantization to reduce

the numerical precision of intermediate results while preserving ac-

curacy. (iii) QuantumNAT has a small overhead (<2%), while others

introduce high measurements, circuit complexity cost, etc. We show

that existing extrapolation method is orthogonal to QuantumNAT

in Section 4.

Quantization and noise injection of classical NN. To improve

NN efficiency, extensive work has been explored to trim down redun-

dant bit representation in NNweights and activations [4, 19]. Though

low-precision quantization limits the model capacity, it can improve

the generalization and robustness [12]. An intuitive explanation is

that quantization corrects errors by value clamping, thus avoiding

cascaded error accumulation. Moreover, by sparsifying the parameter

space, quantization reduces the NN complexity as a regularization

mechanism that mitigates potential overfitting issues. Similarly, in-

jecting noises into neural network training is demonstrated to help

obtain a smoothed loss landscape for better generalization [14].

3 NOISE-AWARE PQC TRAINING

We use QNN as the benchmark PQC in this work. Figure 2 shows

the QNN architecture. The inputs are classical data such as image

pixels, and the outputs are classification results. The QNN consists

of multiple blocks. Each has three components: encoder encodes the

classical values to quantum states with rotation gates such as RY;

trainable quantum layers contain parameterized gates that can be

trained to perform certain ML tasks; measurement part measures

each qubit and obtains a classical value. The measurement outcomes

of one block are passed to the next block. For the MNIST-4 example

in Figure 2, the first encoder takes the pixels of the down-sampled 4×
4 image as rotation angles � of 16 rotation gates. The measurement

results of the last block are passed through a Softmax to output

classification probabilities. QuantumNAT overview is in Figure 3.

3.1 Post-Measurement Normalization

Measurement outcome shift due to quantum noises. Through

extensive experiments, we find that the quantum noises apply a linear

transformation to themeasurement outcome� of a QNN for the input

� . This can be formulated as � (�� ) = ��� + �� , where (1) � ∈ [−1, 1]
is an input-independent constant scaling factor, (2) �� is an input-

dependent shift. By analyzing the noise distribution, we observe that

the changes in measurement results can often be compensated by

proper post-measurement normalization across input batches. The

method is most powerful when applied on a small batch of input data

x = {�1, . . . , ��}. For small noises, � is close to 1, and �� is close to

0 for all � ∈ [�]. Therefore, the distribution of noisy measurement

results undergoes a constant scaling by � ≤ 1 and a small shift by

each �� . In the small-batch regime when � = {�1, . . . , ��} has small

variance, the distribution is shifted by its mean � = E[�]. Since
the input-dependent shifts can be approximated as their average

value, i.e., � (�� ) ≈ ��� + � , our normalization method can effectively

compensate for such noise.

Post-measurement normalization. Based on the analysis above,

we propose post-measurement normalization to offset the distribution

scaling and shift. For each qubit, we collect its measurement results

on a batch of inputs, compute their mean and std., then make the

distribution of each qubit across the batch zero-centered and of unit

variance. This is performed during both training and inference. Dur-

ing training, for a batch ofmeasurement results:� = {�1, . . . , ��}, the
normalized results are �̂� = (��−E[�])/

√
Var(�). For noisy inference,
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Figure 3: QuantumNAT Overview. (1) Post-measurement normalization matches the distribution of measurement results between

noise-free simulation and real QC. (2) Based on realistic noise models, noise-injection inserts quantum error gates to the training

process to increase the classification margin between classes. (3) Measurement outcomes are further quantized for denoising.
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Figure 4: Post-measurement normalization reduces the dis-

tribution mismatch between noise-free simulation and noisy

results, thus improving the Signal-to-Noise Ratio (SNR).

we correct the error as �� (�� ) = (� (�� ) − E[� (�)])/
√
Var(� (�)) =

((��� + �) − (�E[�] + �))/
√
�2Var(�) = �̂� .

Figure 4 compares the noise-free measurement result distribution

of 4 qubits (blue) with their noisy counterparts (yellow) for MNIST-4.

Qualitatively, we can clearly observe that the post-measurement nor-

malization reduces the mismatch between two distributions. Quan-

titatively, we adopt signal-to-noise ratio, ��� = ‖�‖2
2
/‖� − �̃‖2

2
,

the inverse of relative matrix distance (RMD), as the metric. The

SNR on each qubit and each individual measurement outcome is

clearly improved. Though similar, it is different from Batch Normal-

ization [7] as the testing batch uses its own statistics instead of that

from training, and there is no trainable affine parameter.

3.2 Quantum Noise Injection

Although the normalization above mitigates error impacts, we can

still observe small discrepancies on each individual measurement

outcome, which degrade the accuracy. Therefore, to make the QNN

model robust to those errors, we propose noise injection to the train-

ing process.

Quantum error gate insertion. As introduced in Section 2, differ-

ent quantum errors can be approximated by Pauli errors via Pauli

Twirling. The effect of Pauli errors is the random insertion of Pauli X,

Y, and Z gates to the model with a probability distribution E. How to

compute E is out of the scope of this work. But fortunately, we can

directly obtain it from the realistic device noise model provided by

quantum hardware manufacturers such as IBMQ. The noise model

specifies the probability E for different gates on each qubit. For

single-qubit gates, the error gates are inserted after the original gate.

For two-qubit gates, error gates are inserted after the gate on one or

both qubits. For example, the SX gate on qubit 1 on IBMQ-Yorktown

device has E as {X: 0.00096, Y: 0.00096, Z: 0.00096, None: 0.99712}.

When ‘None’ is sampled, we will not insert any gate. The same gate

on different qubits or different hardware will have up 10× probability

difference. As in Figure 5, during training, for each QNN gate, we

sample error gates based on E and insert it after the original gate. A

new set of error gates is sampled for each training step. In reality,

the QNN is compiled to the basis gate set of the quantum hardware

(e.g., X, CNOT, RZ, CNOT, and ID) before performing gate insertion and

training. We will also scale the probability distribution by a constant

noise factor � and scale the X, Y, Z probability by � during sampling.

� factor explores the trade-off between adequate noise injection and

training stability. Typical � values are in the range of [0.5, 1.5]. The

gate insertion overhead is typically less than 2%.

Readout noise injection. Obtaining classical values from qubits

is referred as readout/measurement, which is also error-prone. The

realistic noise model provides the statistical readout error in the form

of a 2× 2 matrix for each qubit. For example, the qubit 0 of IBMQ-

Santiago has readout error matrix [[0.984, 0.016], [0.022, 0.978]]

which means the probability of measuring a |0〉 as 0 is 0.984 and

as 1 is 0.016. We emulate the readout error effect during training

by changing the measurement outcome. For instance, originally

� (0) = 0.3, � (1) = 0.7, the noise injected version will be � ′(0) =

0.3×0.984+0.7×0.022 = 0.31, � ′(1) = 0.7×0.978+0.3×0.016 = 0.69.

Direct perturbation. Besides gate insertion, we also experimented

with directly perturbing measurement outcomes or rotation angles

as noise sources. For outcome perturbation, with benchmarking sam-

ples from the validation set, we obtain the error ��� distribution

between the noise-free and noisy measurement results and compute

the mean ���� and std 
��� . During training, we directly add noise

with Gaussian distribution N(���� , 
2��� ) to the normalized mea-

surement outcomes. Similarly, for rotation angle perturbation, we

add Gaussian noise to the angles of all rotation gates in QNN and

make the effect of rotation angle Gaussian noise on measurement

outcomes similar to real QC noise. We show in Section 4 that the

gate insertion method is better than direct perturbations.

3.3 Post-Measurement Quantization

Finally, we propose post-measurement quantization on the normal-

ized results to further denoise the measurement outcomes. We first

clip the outcomes to [����, ���� ], where � are pre-defined thresh-

olds, and then perform uniform quantization. The quantized values

are later passed to the next block’s encoder. Figure 6 shows one real
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Figure 6: Left: Error maps before and after post-measurement

quantization.Most errors can be corrected.Right: 5-level quan-

tization buckets with a quadratic penalty loss.

example from Fashion-4 on IBMQ-Santiago with five quantization

levels and ���� = −2, ���� = 2. The left/middle matrices show

the error maps between noise-free and noisy outcomes before/after

quantization. Most errors can be corrected back to zero with few ex-

ceptions of being quantized to a wrong centroid. The MSE is reduced

from 0.235 to 0.167, and the SNR is increased from 4.256 to 6.455. We

also add a loss term | |� −� (�) | |2
2
to the training loss, as shown on

the right side, to encourage outcomes to be near to the quantization

centroids to improve error tolerance and reduce the chance of be-

ing quantized to a wrong centroid. Besides improving robustness,

quantization also reduces the control complexity of rotation gates.

4 EXPERIMENTS

4.1 Experiment Setups

Datasets.We conduct experiments on 8 classification tasks including

MNIST [10] 10-class, 4-class (0, 1, 2, 3). and 2-class (3, 6);

Vowel 4-class (hid, hId, had, hOd); Fashion [22] 10-class, 4-class

(t-shirt/top, trouser, pullover, dress), and 2-class (dress,

shirt), and CIFAR [9] 2-class (frog, ship). MNIST, Fashion, and

CIFAR use 95% images in ‘train’ split as training set and 5% as the

validation set. Due to the limited real QC resources, we use the first

300 images of ‘test’ split as test set. Vowel-4 dataset (990 samples) is

separated to train:validation:test = 6:1:3 and test with the whole test

set. MNIST and Fashion images are center-cropped to 24 × 24; and

then down-sample to 4×4 for 2- and 4-class, and 6×6 for 10-class;
CIFAR images are converted to grayscale, center-cropped to 28×
28, and down-sampled to 4× 4. All down-samplings are performed

with average pooling. For vowel-4, we perform feature principal

component analysis (PCA) and take 10 most significant dimensions.

QNN models. QNN models for 2 and 4-class use 4 qubits; 10-class

uses 10. The first quantum block’s encoder embeds images and vowel

features. For 4 × 4 images, we use 4 qubits and 4 layers with 4 RY, 4

RX, 4 RZ, and 4 RY gates in each layer, respectively. There are in total

16 gates to encode the 16 classical values as the rotation angles. For

6× 6 images, 10 qubits and 4 layers are used with 10 RY, 10 RX, 10 RZ,

and 6 RY gates in each layer, respectively. 10 vowel features, uses 4

qubits and 3 layers with 4 RY, 4 RX, and 2 RZ gates on each layer for

encoding. For trainable quantum layers, we use U3 and CU3 layers

interleaved as in Figure 2 except for Table 2. For measurement, we

measure the expectation values on Pauli-Z basis and obtain a value

[-1, 1] from each qubit. The measurement outcome goes through post-

measurement normalization and quantization and is used as rotation

angles for RY gates in the next block’s encoder. After the last block, for

two-classifications, we sum the qubit 0 and 1, 2 and 3 measurement

outcomes, respectively, and use Softmax to get probabilities. For 4

and 10-class, Softmax is directly applied to measurement outcomes.

Quantumhardware and compiler configurations.. We use IBMQ

quantum computers via Qiskit [6] APIs. We study 6 devices, with

#qubits from 5 to 15 and Quantum Volume from 8 to 32. We also

employ Qiskit for compilation. The optimization level is set to 2 for

all experiments. All experiments run 8192 shots. The noise models

we used are off-the-shelf ones updated by IBMQ team.

4.2 Main Results

QNN results.We experiment with four different QNN architectures

on 8 tasks running on 5 quantum devices to demonstrate Quantum-

NAT’s effectiveness. For each benchmark, we experiment with noise

factor � = {0.1, 0.5, 1, 1.5} and quantization level among {3, 4, 5, 6}

and select one out of 16 combinations with the lowest loss on the

validation set and test on the test set. Normalization and quantization

are not applied to the last block’s measurement outcomes as they

are directly used for classification. As in Table 1, QuantumNAT con-

sistently achieves the highest accuracy on 26 benchmarks. The third

bars of Athens are unavailable due to its retirement. On average,

normalization, noise injection and quantization improve accuracy

by 10%, 9%, and 3%, respectively. A larger model does not necessarily

have higher accuracy. For example, Athens’ model is 7.5× larger than

Yorktown with higher noise-free accuracy. However, due to more

errors introduced by the larger model, the real accuracy is lower.

Performance on different design spaces. In Table 2, we evaluate

QuantumNAT on different QNN design spaces. Specifically, the train-

able quantum layers in one block of ‘ZZ+RY’ [13] space contains one

layer of ZZ gate, with ring connections, and one RY layer. ‘RXYZ’ [15]

space has five layers:
√
H, RX, RY, RZ, and CZ. ‘ZX+XX’ [3] space has

two layers: ZX and XX. ‘RXYZ+U1+CU3’ [5] space, according to their

random circuit basis gate set, has 11 layers in the order of RX, S,

CNOT, RY, T, SWAP, RZ, H,
√
SWAP, U1 and CU3. We conduct experiments

on MNIST-4 and Fashion-2 on 2 devices. In 13 settings out of 16,

QuantumNAT achieves better accuracy. Thus, QuantumNAT is a

general technique agnostic to QNN model size and design space.

Scalability. When classical simulation is infeasible, we can move

the the noise-injected training to real QC using techniques such as

parameter shift [2]. In this case, the training cost is linearly scaled

with qubit number. Post-measurement normalization and quantiza-

tion are also linearly scalable because they are performed on the
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Table 1: QuantumNAT consistently achieves the highest accu-

racy, with on average 22% better. ‘B’ for Block, ‘L’ for Layer.

Model Method MNIST-4 Fash.-4 Vow.-4 MNIST-2 Fash.-2 Cifar-2

2B×12L
Santiago

Baseline 0.30 0.32 0.28 0.84 0.78 0.51
+ Post Norm. 0.41 0.61 0.29 0.87 0.68 0.56
+ Gate Insert. 0.61 0.70 0.44 0.93 0.86 0.57
+ Post Quant. 0.68 0.75 0.48 0.94 0.88 0.59

2B×2L
Yorktown

Baseline 0.43 0.56 0.25 0.68 0.70 0.52
+ Post Norm. 0.57 0.60 0.38 0.86 0.72 0.56
+ Gate Insert. 0.58 0.60 0.45 0.91 0.85 0.57
+ Post Quant. 0.62 0.65 0.44 0.93 0.86 0.60

2B×6L
Belem

Baseline 0.28 0.26 0.20 0.46 0.52 0.50
+ Post Norm. 0.52 0.57 0.33 0.81 0.62 0.51
+ Gate Insert. 0.52 0.60 0.37 0.84 0.82 0.57
+ Post Quant. 0.58 0.62 0.41 0.88 0.80 0.61

3B×10L
Athens

Baseline 0.29 0.36 0.21 0.54 0.46 0.49
+ Post Norm. 0.44 0.46 0.37 0.51 0.51 0.50
+ Gate Insert. - - - - - -
+ Post Quant. 0.56 0.64 0.41 0.87 0.64 0.53

Model Method MNIST-10 Fash.-10 Avg.-All

2B×2L
Melbo.

Baseline 0.11 0.09 0.42
+ Post Norm. 0.08 0.12 0.52
+ Gate Insert. 0.25 0.24 0.61
+ Post Quant. 0.34 0.31 0.64

Table 2: Accuracy on different design spaces.

Design Space
MNIST-4 Fashion-2

Yorktown Santiago Yorktown Santiago

‘ZZ+RY’ 0.43 0.57 0.80 0.91
+QuantumNAT 0.34 0.60 0.83 0.86

‘RXYZ’ 0.57 0.61 0.88 0.89
+QuantumNAT 0.61 0.70 0.92 0.91

‘ZX+XX’ 0.29 0.51 0.52 0.61
+QuantumNAT 0.38 0.64 0.52 0.89

‘RXYZ+U1+CU3’ 0.28 0.25 0.48 0.50
+QuantumNAT 0.33 0.21 0.53 0.52

Table 3: Scalable noise-aware training.

Machine Bogota Santiago Lima

Noise-unaware 0.74 0.97 0.87
QuantumNAT 0.79 0.99 0.90

Table 4: Compatible with existing noise mitigation.

Method MNIST-4 Fashion-4

Normalization only 0.78 0.81
Normalization + Extrapolation 0.81 0.83

measurement outcomes. Gradients obtained with real QC are natu-

rally noise-aware because they are directly influenced by quantum

noise. To demonstrate the practicality, we train a 2-class task with

two numbers as input features [8] (Table 3). The QNN has 2 blocks;

each with 2 RY and a CNOT gates. The noise-unaware baseline trains

the model on classical part and test on real QC. In QuantumNAT, we

train the model with parameter shift and test, both on real QC. We

consistently outperform noise-unaware baselines.

Compatibility with existing noise mitigation. QuantumNAT is

orthogonal to existing noise mitigation such as extrapolation method.

It can be combined with post-measurement normalization (Table 4).

The QNN model has 2 blocks, each with three U3+CU3 layers. For

łNormalization only", the measurement outcomes of the 3-layer block

Table 5: Post-measurement norm. improves acc. & SNR.

Quantum
Devices

↓

QNN

Models
→

2 Blocks 4 Blocks

×2 Layers ×8 Layers ×2 Layers ×4 Layers

Acc. SNR Acc. SNR Acc. SNR Acc. SNR

Santiago
Baseline 0.61 6.15 0.52 1.79 0.57 6.96 0.62 4.20
+Norm 0.66 15.69 0.79 4.85 0.70 11.36 0.68 6.55

Quito
Baseline 0.58 6.64 0.35 1.43 0.60 3.98 0.29 1.73
+Norm 0.66 13.92 0.71 2.98 0.74 12.26 0.72 4.54

Athens
Baseline 0.59 8.91 0.60 2.14 0.63 9.52 0.55 3.54
+Norm 0.64 20.27 0.78 3.47 0.74 14.07 0.69 6.09

are normalized across the batch dimension. For łExtrapolation + Nor-

malization", we use extrapolation to estimate the standard deviation

of noise-free measurement outcomes. We firstly train the QNNmodel

to convergence and then repeat the 3 layers to 6, 9, 12 layers and

obtain four standard deviations of measurement outcomes. Then we

linearly extrapolate them to obtain noise-free std. We normalize the

measurement outcomes of the 3-layer block to make their std the

same as noise-free and then apply the proposed post-measurement

norm. Results show that the extrapolation can further improve the

QNN accuracy thus being orthogonal.

4.3 Ablation Studies

Ablation on post-measurement normalization. Table 5 com-

pares the accuracy and signal-to-noise ratio (SNR) before and after

post-measurement normalization on MNIST-4. We study 4 different

QNN architectures and evaluate on 3 devices. The normalization can

significantly and consistently increase SNR.

Ablation on different noise injection methods. Figure 7 com-

pares different noise injection methods. Gaussian noise statistics for

perturbations are obtained from error benchmarking. The left side

shows accuracy without quantization. With different noise factors

𝑇 , the gate insertion and measurement outcome perturbation have

similar accuracy, both better than rotation angle perturbation. A

possible explanation is that the rotation angle perturbation does not

consider non-rotation gates such as X and SX. The right side further

investigates the first two methods’ performance with quantization.

We set noise factor 𝑇 = 0.5 and alter quantization levels. Gate in-

sertion outperforms perturbation by 11% on average on 3 different

devices and QNN models. The reason is: directly added perturbation

on measurement outcomes can be easily canceled by quantization,

and thus it is harder for noise injection to take effect.

Noise factor and post-measurement quantization level anal-

ysis. We visualize the QNN accuracy contours on Fashion-4 on

IBMQ-Athens with different noise factors and quantization levels

in Figure 8 left. The best accuracy occurs for factor 0.2 and 5 levels.

Horizontal-wise, the accuracy first goes up and then goes down.

This is because too few quantization levels hurt the QNN model

capacity; too many levels cannot bring sufficient denoising effect.

Vertical-wise, the accuracy also goes up and then down. Reason:

when the noise is too small, the noise-injection effect is weak, thus

cannot improve the model robustness; while too large noise makes

the training process unstable and hurts accuracy.

Visualization of QNN extracted features. MNIST-2 classification

result is determined by which feature is larger between the two:

feature one is the sum of measurement outcomes of qubit 0 and 1;

feature 2 is that of qubit 2 and 3. We visualize the two features ob-

tained from experiments on Belem in a 2-D plane as in Figure 8 right.

The blue dash line is the classification boundary. The circles/stars are

samples of digit ‘3’ and ‘6’. All the baseline points (yellow) huddled
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Figure 9: Ablation of applying noise injection and quantization

individually or jointly.

together, and all digit ‘3’ samples are misclassified. With normal-

ization (green), the distribution is significantly expanded, and the

majority of ‘3’ is correctly classified. Finally, after noise injection

(red), the margin between the two classes is further enlarged, and

the samples are farther away from the classification boundary, thus

becoming more robust.

Breakdown of accuracy gain. Figure 9 shows the performance of

only applying noise-injection, only applying quantization, and both.

Using two techniques individually can both improve accuracy by 9%.

Combining two techniques delivers better performance with a 17%

accuracy gain. This indicates the benefits of synergistically applying

three techniques in QuantumNAT.

5 CONCLUSION

PQC is a promising candidate to demonstrate practical quantum

advantages over classical approaches. The road to such advantage

relies on: (1) the discovery of novel feature embedding that encodes

classical data non-linearly, and (2) overcome the impact of quantum

noise. This work focuses on the latter and show that a noise-aware

training pipeline with post-measurement normalization, noise in-

jection, and post-measurement quantization can elevate the PQC

robustness against arbitrary, realistic quantum noises. We anticipate

such robust PQC being useful in exploring practical QC applications.
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