
Training Quantum Boltzmann Machines with

Coresets

Joshua Viszlai∗, Teague Tomesh†‡, Pranav Gokhale‡, Eric Anschuetz§‡, Frederic T. Chong∗

∗University of Chicago
†Princeton University

‡Super.tech, a division of ColdQuanta Inc.
§MIT

Abstract—Recent work has proposed and explored using core-
set techniques for quantum algorithms that operate on classical
data sets to accelerate the applicability of these algorithms on
near-term quantum devices. We apply these ideas to Quantum
Boltzmann Machines (QBM) where gradient-based steps which
require Gibbs state sampling are the main computational bottle-
neck during training. By using a coreset in place of the full data
set, we try to minimize the number of steps needed and accelerate
the overall training time. In a regime where computational time
on quantum computers is a precious resource, we propose this
might lead to substantial practical savings. We evaluate this
approach on 6x6 binary images from an augmented bars and
stripes data set using a QBM with 36 visible units and 8 hidden
units. Using an Inception score inspired metric, we compare QBM
training times with and without using coresets.

I. INTRODUCTION

Recent years have seen a slowdown in the exponential

improvements due to Moore’s Law and Dennard scaling.

This slowdown has been accompanied by a corresponding

increase in attention paid to non-traditional, post-Moore’s Law

computer architectures including analog and neuromorphic

computing. Quantum computing is another such architecture

which exploits quantum mechanical properties such as entan-

glement and superposition to perform computations. For cer-

tain tasks, quantum computers are conjectured to outperform

their classical counterparts precisely because they have access

to purely quantum phenomena [1].

The magnitude of these speedups vary from exponential —

for example the factorization of large primes [2], simulating

the physics of entangled systems [3], and solving linear

systems of equations [4] — to quadratic improvements for

unstructured search [5]. Additionally, an area that has exploded

with recent research [6, 7, 8] is quantum machine learning

(QML). There are many different types of quantum neural

networks, and while the exact nature of the quantum speedup

(if it exists) for some QML algorithms is unknown, recent

work suggests that applications targeting quantum data are a

promising direction [9, 10].

Current quantum computers (QCs) are built from a variety

of different technologies, enabling research in the early steps

of realizing quantum algorithms and evaluating QCs [11,

12, 13]. Unfortunately there is a gap that currently exists

between the capabilities of these machines and the resource

requirements for many quantum algorithms. Current QCs

are known as Noisy Intermediate-Scale Quantum (NISQ)

devices [14]. Their limited size and gate fidelities render them

unable to implement the error correcting codes that are needed

to implement most known quantum algorithms. Prior work

has found that a co-design approach to QC system design,

characterized by the breaking of abstraction layers and the

sharing of information up and down the stack, can result in

significantly improved performance [15, 16].

QML applications are especially hindered by the need to

load large data sets onto small quantum devices. Access to

a quantum random access memory would allow a QC to

coherently load quantum states representing classical data.

However, it is likely that the construction of a quantum RAM

is equally or more difficult than building a fault tolerant

QC [17]. Instead, prior work has investigated the use of

coresets, a succinct summarization of a larger data set [18],

to apply QML models to large data sets using small quantum

computers [19, 20].

The Quantum Boltzmann Machine (QBM) is a physically

motivated quantum neural network that can be used for gen-

erative or discriminative learning [21]. Prior work has studied

the application of QBMs to tasks such as image generation

[22], and they have been shown to outperform classical

Boltzmann machines for certain tasks such as quantum state

generation [9].

The downside of such a powerful and versatile QML model

is the overhead costs associated with the training process.

The gradient updates that are needed to tune the model’s

parameters require samples taken from a thermal (Gibbs) state

ρ(β) =
e−βH

Tr(e−βH)
(1)

where β = 1/T is the inverse temperature and H is the system

Hamiltonian describing the QBM. This is an NP-Hard problem

[9, 23] and to successfully train a QBM many such states will

need to be prepared and sampled from.

To circumvent the difficulties of training a QBM many

different techniques have been suggested. For example, rather

than training on the exact loss function it can be simpler and

more efficient to train on an upper bound of the loss or restrict

the connectivity of the QBM model [21]. Similarly, a variety

of different quantum algorithms have been proposed for the

specific task of thermal state preparation including quantum

292

2022 IEEE International Conference on Quantum Computing and Engineering (QCE)

978-1-6654-9113-6/22/$31.00 ©2022 IEEE
DOI 10.1109/QCE53715.2022.00049

2
0
2
2
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 Q

u
an

tu
m

 C
o
m

p
u
ti

n
g
 a

n
d
 E

n
g
in

ee
ri

n
g
 (

Q
C

E
)

| 9
7
8
-1

-6
6
5
4
-9

1
1
3
-6

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/Q

C
E

5
3
7
1
5
.2

0
2
2
.0

0
0
4
9

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on August 08,2023 at 15:54:46 UTC from IEEE Xplore. Restrictions apply.

walks [24], quenches [23], semi-definite programming [25],

and hybrid variational algorithms [26].

This work presents a complementary method for potentially

reducing the training overhead of QBMs. We propose building

coresets of the training data set to reduce the overall number

of Gibbs state preparations needed during the training process.

We run initial numerical simulations with QBMs needing 44

qubits and present an augmented bars and stripes data set

and corresponding Inception score inspired metric to compare

training with and without coresets.

Our contributions include

1) A numerical study motivating the potential of coresets

for QBM training.

2) An augmented bars and stripes data set to evaluate

generative machine learning models of moderate dimen-

sionality.

3) Numerical experiments verifying successful training of

QBMs on this data set.

4) Initial numerical experiments exploring the effectiveness

of coresets for QBMs of moderate size.

II. BACKGROUND

A. Coresets

A coreset of dataset X = {x1, ...,xn} is a subset X ′ with

weights w such that (X ′, w) can be used as a proxy for X

when solving some problem of interest on X , (e.g. clustering).

Classically, coresets have been proposed as a tool for solving

optimization problems in settings where using the whole

dataset is prohibitive or computationally intractable [27]. In

classical machine learning, coreset techniques have been suc-

cessfully used to reduce training times by creating coresets

with gradients that closely approximate that of the full dataset

[18, 28].

A variety of algorithms exist for constructing coresets [29,

30, 31]. Although recent work has proposed and explored

using coresets for quantum algorithms where encoding the

whole dataset is costly or infeasible [19, 20]. This can be

done statically, where a classical computer generates the

coreset which is then fed to the quantum algorithm and

remains unchanged [20]. It’s also been proposed to do coreset

construction adaptively where an iterative classical coreset

algorithm queries a quantum computer to sample solutions to

the problem on a coreset that is built up each iteration [19].

B. Boltzmann Machines

One of the first machine learning models for the generative

task of learning and sampling arbitrary probability distribu-

tions [32], Boltzmann Machines form the basis of other models

such as deep belief networks [33], and have been used for

speech recognition [34], image generation [33], and detecting

network anomalies [35].

A Boltzmann Machine is defined by a graph of binary units

za with biases ba connected by weighted edges uab. As shown

in Figure 1, units can either be visible, representing the input

and output data, or hidden, representing the model’s internals.

A corresponding energy function to the graph is defined:

E(z) = −
∑

a

baza −
∑

a,b

wabzazb (2)

where z = (z0, ..., za, ..) is a specific state of all the model’s

units, and za ∈ {+1,−1}. For convenience we also define

z = (v,h) where v are the visible units and h are the hidden

units. Then, the Boltzmann Machine’s learned distribution is

the Boltzmann distribution for energy E(z) summed over the

possible states of the hidden units:

P (v) =
1

Z

∑

h

eE(v,h), Z =
∑

v

∑

h

E(v,h) (3)

The goal of training is to adjust parameters ba and uab so

that P (v) approximates our training data set Pdata(v). This is

equivalent to minimizing the negative log-likelihood

L = −
∑

v

Pdata(v) logP (v) (4)

This can be done using a gradient based technique where the

gradient with respect to the model parameters θ ∈ {ba, uab}
is

∂θL =
∑

v

Pdata(v)〈∂θE(v,h)〉v − 〈∂θE(v,h)〉 (5)

where 〈. . . 〉v , often called the positive phase, is the expecta-

tion where the visible units are clamped to be the visible state

v, and 〈. . . 〉, often called the negative phase, is the unclamped

expectation.

To minimize L the model parameters can then be updated

by taking a step in the direction of the negative gradient with

some step size η
δθ = −η∂θL (6)

Expressed for ba and uab we have

δba = −η
(

〈za〉v − 〈za〉
)

, (7)

δuab = −η
(

〈zazb〉v − 〈zazb〉
)

. (8)

where 〈. . . 〉v =
∑

v Pdata(v)〈. . . 〉v is the average expectation

for a multiset of data {v1, . . . ,vn}.

Calculating these gradient updates for general Boltzmann

Machines can be exponentially costly and so approximate

sampling-based methods are often employed. Additionally, a

popular technique is to restrict the model graph to be a bipartite

graph on the visible units and hidden units, called a Restricted

Boltzmann Machine, which allows efficient training through

approximate methods like Contrastive Divergence [33].

C. Quantum Boltzmann Machines

A Quantum Boltzmann Machine (QBM) is a Boltzmann

Machine where units are replaced by qubits and the energy

function E(z) is now a corresponding Transverse-field Ising

model Hamiltonian [21]

H = −
∑

a

Γaσ
x
a −

∑

a

baσ
z
a −

∑

a,b

uabσ
z
aσ

z
b (9)

293

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on August 08,2023 at 15:54:46 UTC from IEEE Xplore. Restrictions apply.

where σi
a is the Pauli matrix σi acting on qubit a.

Defining Λv as the projector to the subspace with visible

units equal to v, our learned distribution is now:

P (v) = Tr[Λvρ] (10)

where ρ is the Gibbs state with partition function Z

ρ =
e−H

Z
,Z = Tr[e−H] (11)

Like the classical Boltzmann Machine case, our goal is

to find model parameters θ = (Γ, b,u) such that P (v)
approximates the data distribution Pdata(v). Often an upper

bound of the negative log-likelihood is optimized on to make

training more tractable, however, doing so forces Γ → 0 and

so Γa = Γ becomes a hyperparameter fixed for all units.

Similar to the classical case, gradient updates can then be

calculated as

δba = −η
(

〈σz
a〉v − 〈σz

a〉
)

, (12)

δuab = −η
(

〈σz
aσ

z
b 〉v − 〈σz

aσ
z
b 〉
)

. (13)

Additionally, if our model is restricted and has no connec-

tions between hidden units, then the positive phase for hidden

units can be calculated exactly as

〈σz
a〉v =

beff
a (v)

Da(v)
tanhDa(v), (14)

Da(v) =
√

Γ2
a + (beff

a (v))2 (15)

where beff
a (v) = ba+

∑

b uabvb is the effective bias on hidden

unit a based on the clamped state of each visible unit b for

visible data v. For more background on training QBMs, we

refer the reader to [21].

Although we can calculate the positive phase cheaply, cal-

culating the negative phase still requires Gibbs state sampling

of our model Hamiltonian, which is expensive. Prior work has

explored how to do this sampling variationally on near term

quantum computers [36] and proposed algorithms exist for

Gibbs state sampling [37, 38, 39], but finding the best way to

perform Gibbs state sampling that is also tractable on current

machines is still an active area of research.

III. MOTIVATION

Training a Boltzmann Machine requires a binary data set

X = {x1, . . . ,xn} of size n. The task is to learn the

probability distribution Pdata(v) corresponding to X where

x,v are bitstrings of length d. It’s typical to split X into

small, constant-sized mini-batches Bi = {b1, . . . , bk} of size

k where X = B1 ∪ · · · ∪ Bn [40]. The training procedure

then entails iterating over X while performing a gradient-

based update on our model parameters θ for each mini-batch

Bi. One iteration through all our mini-batches is an epoch and

training can continue for enough epochs until θ has sufficiently

converged.

For a QBM, calculating the negative phase is the com-

putational bottleneck since it requires Gibbs state sampling.

Fig. 1. In our experiments we use QBMs with 36 visible units and 8 hidden
units. Graphically, this is a fully connected bipartite graph where each node
is a qubit/unit in our QBM. In terms of the Hamiltonian H , each graph node
represents a σz

a term with bias ba and graph edges (a, b) represent σz
aσ

z

b

terms with weights uab.

For each mini-batch we need to calculate |θ| negative phases.

Conveniently since we only calculate σz expectations, we can

estimate all of these negative phases at once by just averag-

ing the measured bitstrings, assuming we can approximately

sample from the full Gibbs state. Therefore, we only need to

do Gibbs state sampling once per mini-batch. For one epoch

through the whole dataset X this equates to n
k

instances of

Gibbs state sampling. If we instead replace X with a coreset

X ′ of size m � n then we can substantially reduce the

amount of times we need to perform Gibbs state sampling

per iteration through the dataset. A high-level overview of this

QBM training loop is shown in Figure 2.

It’s important to note that this also means we perform

equally less parameter updates per epoch, and so it’s necessary

to choose X ′ such that it sufficiently summarizes X . However,

since constructing such X ′ has been done successfully for

classical machine learning models [18, 28], we suspect it is

also feasible for QBMs.

IV. METHODOLOGY

A. Bars × Stripes

To apply coresets, we need a data set with: 1) a high enough

dimensionality d such that a perfect coreset of size 2d cannot

be constructed, and 2) n data points where n is large enough

that we can create a coreset of size m � n.

In the past, work on smaller generative models, including

QBMs [41], has used the Bars and Stripes (BAS) data set. In

the normal definition of BAS, a data point is a binary p × q
image consisting of only vertical lines or only horizontal lines.

To use this with coresets, we can choose p, q such that d = pq
is sufficiently large to satisfy criteria 1, however, the number

of distinct BAS images is only O(2p + 2q), and so our data

set might be too small to satisify criteria 2. One option is

to just choose large enough p, q, however, we need d visible

units in our QBM and getting even O(103) distinct images

would require 81 visible units. This is too large to use with

current methods, and so instead we opt to define images as

only vertical lines and horizontal lines. To avoid confusion, we

294

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on August 08,2023 at 15:54:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A high-level overview of the QBM training loop. We propose using
a coreset in place of the full data set to minimize the number of iterations
needed to reach a target model quality. In our experiments we’re constrained
to doing Gibbs state sampling using classical approximation techniques rather
than using a quantum computer.

call this data set Bars × Stripes (BXS) as shown in Figure 3.

With this formulation the number of distinct BXS images is

O(2p+q) and so we can construct a data set of ≈ 4000 distinct

BXS images with only p = q = 6, needing 36 visible units.

Figure 1 depicts the QBMs we use to learn this data set.

B. Gibbs State Sampling

As described in Section III, training a QBM boils down to

Gibbs state sampling, a task quantum computers are suspected

to perform well at [39]. Unfortunately, given that we use

QBMs with 44 units corresponding to 44 qubits, and efficiently

performing Gibbs state sampling on current quantum comput-

ers is still an active area of research, it’s difficult for us to use

current quantum computers for Gibbs state sampling. Instead

we opt to emulate previous work and use classical approximate

methods [22].

To approximately sample from the Gibbs state we use

population annealing with path integral Monte Carlo updates.

Using the Trotter-Suzuki mapping, we approximate our quan-

tum system with a corresponding classical system that has

an additional imaginary time dimension discretized into M
slices [42]. As given in [22], the corresponding probability

distribution is then

pβ(z
m) ∝ exp (−β[Ecl(z

m) + Eqm(z
m;β)]), (16)

where

Ecl(z
m) =

1

M

M
∑

m=1

E(zm), (17)

Eqm(z
m;β) =

1

2β

∑

a,m

ln

(

tanh

(

βΓa

M

))

zma zm+1
a (18)

In the above equations, zm denotes the mth imaginary time

slice of the system, and zma is the state of the ath binary unit in

x

Fig. 3. The Bars × Stripes (BXS) data set we use contains images made of
only horizontal/vertical lines that span the full width/height of the 6x6 image.
This equates to ≈ 4000 distinct images in the data set.

the mth imaginary time slice. Additionally, periodic boundary

conditions are enforced so that m = M + 1 is m = 1.

In population annealing, we maintain K replicas of an initial

state of this classical system and iterate through increasing

values of β = 1
T

, the inverese temperature. Each iteration

the population of replicas is resampled based on their relative

Boltzmann weights and replicas are updated by a finite number

of Monte Carlo steps [43]. Afterwards, we can treat the first

imaginary time slice of each replica as an approximate sample

from our Gibbs state.

C. QBM Training

In our numerical experiments we take Γa = 2 and optimize

the biases and weights using the Adam method [44] with the

gradient calculations from Eq. 12 and Eq. 13. We split the

input data set into mini-batches Bi = {b1, . . . , bk} of size

k = 32. Negative phases are calculated using the procedure

described in Section IV-B with 128 replicas, 5 iterations from

β = 0 to β = 1, and M = 10 imaginary time slices. For the

295

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on August 08,2023 at 15:54:46 UTC from IEEE Xplore. Restrictions apply.

positive phases, since a coreset has weighted points the exact

calculation becomes

〈σz
a〉b =

1
∑

j wj

∑

j

wj〈σ
z
a〉bj

(19)

using Eq. 14 for 〈σz
a〉bj

.

We initialize our weights and biases using the recipe de-

scribed in [40]. Weights are sampled from a normal distribu-

tion centered at 0 with a standard deviation of 0.01, and biases

are calculated to be ba = log[pa/(1 − pa)], where pa is the

proportion of training data where bit a is on.

D. QBM Evaluation

Since our goal is for P (v) to approximate Pdata(v) we

might want to evaluate the KL divergence between the two

distributions to see how accurate the model is

KL =
∑

v

Pdata(v) log
Pdata(v)

P (v)
(20)

However, for high dimensionality data this is typically imprac-

tical to calculate, since we only know empirical distributions

for Pdata(v) and P (v) from the data set and our Gibbs state

sampling, respectively. Since the possible values of v scales

exponentially with the dimension it’s unlikely these empirical

distributions are large enough to have meaningful overlap

where we can calculate the KL divergence. Additionally, in our

experiments where we know the underlying data distribution

is the ≈ 4000 BXS images, we still only get 128 samples to

estimate our model distribution, and so the KL divergence will

always be ∞.

To avoid this issue and allow for a distinction between

”close” images (e.g. an image that is 1 pixel from a BXS

image) and other incorrect images, we adopt a strategy similar

to the inception score [45]. We train a classical feedforward

neural network with 3 layers to differentiate BXS images from

non-BXS images to > 99% validation accuracy. We then have

this predict our QBM samples and use the BXS classification

score as a proxy for the quality of our QBM samples.

It’s important to note that in our experiments we don’t

have multiple classifications for BXS images, and so we

can’t replicate the actual inception score which intuitively also

checks that generated images come from a diverse number of

classes to discount model overfitting. As a result, our metric

is susceptible to being fooled by a model which has overfit

to only a couple of images. However, we still find it to be a

useful metric to evaluate QBM training.

E. Coreset Construction

In our preliminary experiments we create two types of

coresets of size m = 128. The first is simply a uniform

sampling of m images from the data distribution. The second is

constructed by solving the minimax facility location problem

X
′ = argmin

X′

(

max
xi∈X

min
x′

j∈X′

d(xi,x
′

j)

)

(21)

Fig. 4. Results of our preliminary experiments training QBMs with and
without coresets using the BXS dataset described in Section 3. The model
score corresponds to the average BXS classification score from Section IV-D
over the 128 samples from Gibbs state sampling of the model distribution
P (v). A higher score means the samples are on average closer to the BXS
data set, reflecting the QBM’s learning progress. In this figure, each line is
the averaged scores over 10 experiments.

similarly to [28]. Intuitively, solving this problem entails

choosing a coreset X ′ such that we minimize the maximum

distance for a point in the full dataset X to its closest point in

the coreset. In this formulation d(xi,x
′

j) is some distance

function between data set point xi and coreset point x
′

j .

Solving this problem is NP-Hard [46] and so we solve it

greedily using Algorithm 1 from [28].

Like [28], we don’t use the Euclidean distance between two

data points in the d = pq dimensional space for d(xi,x
′

j),
which is often not meaningful for images or useful in high-

dimensional spaces. Instead, we reduce each data point to 8

dimensions using the output of the second to last layer of

the classical neural network from Section IV-D and calculate

Euclidean distances in this 8 dimensional space. We refer to

this as the Inception Distance (ID), with the intuition that this

projection will exploit more semantic information and be of a

small enough dimensionality to get useful values for d(xi,x
′

j).

V. RESULTS

We ran initial numerical experiments comparing uniform

coresets, inception distance minimax coresets, and no coresets

for a QBM with 36 visible units and 8 hidden units learning

the BXS data set. The coresets were of size m = 128 and

the full data set is of size n = 4096. We designed our

experiments with the idea that the user has some budget

number of times to perform Gibbs state sampling, and so we

run all experiments for 40 gradient-based updates, equalling 40

Gibbs state samplings. We use mini-batches of size k = 32,

meaning with 40 iterations we go through 10 epochs with

coresets and less than half an epoch with the full data set.

Training was scored at each update step by averaging the

BXS classification score for each of the 128 samples obtained

from Gibbs state sampling. Figure 4 shows the results of the

experiments averaged over 10 runs for each approach. In the

296

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on August 08,2023 at 15:54:46 UTC from IEEE Xplore. Restrictions apply.

plots we can see that all three approaches are able to learn

the data set successfully, validating our training methodology.

However, using coresets did not improve the training time. We

discuss hypotheses for why this occurs and resulting ideas for

future work in Section VI.

VI. DISCUSSION

In this work we proposed using coreset techniques to reduce

training times of Quantum Boltzmann Machines (QBMs).

Coresets have already been used to reduce training times

of classical machine learning models [18, 28]. In the case

of QBMs, however, training is bottlenecked by Gibbs state

sampling and so training time is equivalent to how often this

sampling is performed. Since Gibbs state sampling is believed

to be a promising use case for quantum computers [39],

reducing the amount of times this sampling is needed equates

to reducing the runs of the quantum hardware. In a scenario

where computational time on a quantum computer is a pre-

cious resource, we propose that this might lead to substantial

practical savings. Additionally, in a regime of noisy quantum

computers with imperfect Gibbs state sampling algorithms,

this reduction might also lead to less noisy results and better

trained QBMs.

We performed initial numerical experiments exploring this

direction. Although we expected to see similar results as work

that used coresets for classical machine learning models [18,

28], we find that, as shown in Figure 4, all approaches learn

at the same rate. One possible explanation is that although we

tried to maximize the problem size we could work with given

our resources, the problem dimensionality and data set size are

still too small, and the QBM trivially fits to the first couple

mini-batches regardless of data set size. Another possibility is

the BXS data set isn’t diverse enough to have substantially

differing positive phases for batches of size k = 32, meaning

all mini-batches from the data set elicit roughly the same

gradient update of the QBM parameters. Additionally we only

look at two unweighted coreset constructions. It’s possible they

aren’t able to coherently summarize the full dataset and enable

more effective gradient updates.

Despite these results, we still think coresets present a

promising direction for practically training QBMs, and leave

further experiments using weighted coreset constructions with

larger models and data sets to future work.

ACKNOWLEDGMENT

This work is funded in part by EPiQC, an NSF Expedi-

tion in Computing, under award CCF-1730449; in part by

STAQ under award NSF Phy-1818914; in part by NSF award

2110860; in part by the US Department of Energy Office

of Advanced Scientific Computing Research, Accelerated Re-

search for Quantum Computing Program; and in part by the

NSF Quantum Leap Challenge Institute for Hybrid Quantum

Architectures and Networks (NSF Award 2016136) and in

part based upon work supported by the U.S. Department

of Energy, Office of Science, National Quantum Information

Science Research Centers. E.R.A. is supported by the National

Science Foundation Graduate Research Fellowship Program

under Grant No. 4000063445, and a Lester Wolfe Fellowship

and the Henry W. Kendall Fellowship Fund from M.I.T.

FTC is Chief Scientist for Quantum Software at ColdQuanta

and an advisor to Quantum Circuits, Inc.

REFERENCES

[1] Richard P Feynman et al. “Simulating physics with

computers”. In: Int. j. Theor. phys 21.6/7 (1982).

[2] Peter W Shor. “Polynomial-time algorithms for prime

factorization and discrete logarithms on a quantum

computer”. In: SIAM review 41.2 (1999), pp. 303–332.

[3] Seth Lloyd. “Universal quantum simulators”. In: Sci-

ence 273.5278 (1996), pp. 1073–1078.

[4] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd.

“Quantum algorithm for linear systems of equations”.

In: Physical review letters 103.15 (2009), p. 150502.

[5] Lov K Grover. “A fast quantum mechanical algorithm

for database search”. In: Proceedings of the twenty-

eighth annual ACM symposium on Theory of computing.

1996, pp. 212–219.

[6] Jacob Biamonte et al. “Quantum machine learning”. In:

Nature 549.7671 (2017), pp. 195–202.

[7] Michael Broughton et al. “Tensorflow quantum: A soft-

ware framework for quantum machine learning”. In:

arXiv preprint arXiv:2003.02989 (2020).

[8] Manuel S Rudolph et al. “Generation of high-resolution

handwritten digits with an ion-trap quantum computer”.

In: arXiv preprint arXiv:2012.03924 (2020).

[9] Mária Kieferová and Nathan Wiebe. “Tomography and

generative training with quantum Boltzmann machines”.

In: Physical Review A 96.6 (2017), p. 062327.

[10] Hsin-Yuan Huang et al. “Quantum advantage in

learning from experiments”. In: arXiv preprint

arXiv:2112.00778 (2021).

[11] Frank Arute et al. “Quantum supremacy using a

programmable superconducting processor”. In: Nature

574.7779 (2019), pp. 505–510.

[12] Yunseong Nam et al. “Ground-state energy estima-

tion of the water molecule on a trapped-ion quantum

computer”. In: npj Quantum Information 6.1 (2020),

pp. 1–6.

[13] Teague Tomesh et al. “Supermarq: A scalable quantum

benchmark suite”. In: 2022 IEEE International Sym-

posium on High-Performance Computer Architecture

(HPCA). IEEE. 2022, pp. 587–603.

[14] John Preskill. “Quantum computing in the NISQ era

and beyond”. In: Quantum 2 (2018), p. 79.

[15] Yunong Shi et al. “Resource-efficient quantum comput-

ing by breaking abstractions”. In: Proceedings of the

IEEE 108.8 (2020), pp. 1353–1370.

[16] Teague Tomesh and Margaret Martonosi. “Quantum

Codesign”. In: IEEE Micro 41.5 (2021), pp. 33–40.

[17] Srinivasan Arunachalam et al. “On the robustness of

bucket brigade quantum RAM”. In: New Journal of

Physics 17.12 (2015), p. 123010.

297

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on August 08,2023 at 15:54:46 UTC from IEEE Xplore. Restrictions apply.

[18] Baharan Mirzasoleiman, Jeff Bilmes, and

Jure Leskovec. “Coresets for data-efficient training of

machine learning models”. In: International Conference

on Machine Learning. PMLR. 2020, pp. 6950–6960.

[19] Aram W Harrow. “Small quantum computers and large

classical data sets”. In: arXiv preprint arXiv:2004.00026

(2020).

[20] Teague Tomesh et al. “Coreset clustering on small quan-

tum computers”. In: Electronics 10.14 (2021), p. 1690.

[21] Mohammad H Amin et al. “Quantum boltzmann ma-

chine”. In: Physical Review X 8.2 (2018), p. 021050.

[22] Eric R Anschuetz and Cristian Zanoci. “Near-term

quantum-classical associative adversarial networks”. In:

Physical Review A 100.5 (2019), p. 052327.

[23] Eric R Anschuetz and Yudong Cao. “Realizing quan-

tum Boltzmann machines through eigenstate thermal-

ization”. In: arXiv preprint arXiv:1903.01359 (2019).

[24] Kristan Temme et al. “Quantum metropolis sampling”.

In: Nature 471.7336 (2011), pp. 87–90.

[25] Fernando GSL Brandão et al. “Quantum SDP solvers:

Large speed-ups, optimality, and applications to quan-

tum learning”. In: arXiv preprint arXiv:1710.02581

(2017).

[26] Guillaume Verdon, Michael Broughton, and Jacob Bi-

amonte. “A quantum algorithm to train neural net-

works using low-depth circuits”. In: arXiv preprint

arXiv:1712.05304 (2017).

[27] Pankaj K Agarwal, Sariel Har-Peled, Kasturi R

Varadarajan, et al. “Geometric approximation via core-

sets”. In: Combinatorial and computational geometry

52.1 (2005).

[28] Samarth Sinha et al. “Small-gan: Speeding up gan

training using core-sets”. In: International Conference

on Machine Learning. PMLR. 2020, pp. 9005–9015.

[29] Jeff M Phillips. “Coresets and sketches”. In: arXiv

preprint arXiv:1601.00617 (2016).

[30] Trevor Campbell and Tamara Broderick. “Bayesian

coreset construction via greedy iterative geodesic as-

cent”. In: International Conference on Machine Learn-

ing. PMLR. 2018, pp. 698–706.

[31] Trevor Campbell and Boyan Beronov. “Sparse varia-

tional inference: Bayesian coresets from scratch”. In:

Advances in Neural Information Processing Systems 32

(2019).

[32] Geoffrey E Hinton, Terrence J Sejnowski, et al. “Learn-

ing and relearning in Boltzmann machines”. In: Parallel

distributed processing: Explorations in the microstruc-

ture of cognition 1.282-317 (1986), p. 2.

[33] Geoffrey E Hinton, Simon Osindero, and Yee-Whye

Teh. “A fast learning algorithm for deep belief nets”.

In: Neural computation 18.7 (2006), pp. 1527–1554.

[34] Abdel-rahman Mohamed, George E Dahl, and Ge-

offrey Hinton. “Acoustic modeling using deep belief

networks”. In: IEEE transactions on audio, speech, and

language processing 20.1 (2011), pp. 14–22.

[35] Ugo Fiore et al. “Network anomaly detection with

the restricted Boltzmann machine”. In: Neurocomputing

122 (2013), pp. 13–23.

[36] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner.

“Variational quantum Boltzmann machines”. In: Quan-

tum Machine Intelligence 3.1 (2021), pp. 1–15.

[37] Anirban Narayan Chowdhury and Rolando D Somma.

“Quantum algorithms for Gibbs sampling and hitting-

time estimation”. In: arXiv preprint arXiv:1603.02940

(2016).

[38] Man-Hong Yung and Alán Aspuru-Guzik. “A quantum–

quantum Metropolis algorithm”. In: Proceedings of the

National Academy of Sciences 109.3 (2012), pp. 754–

759.

[39] David Poulin and Pawel Wocjan. “Sampling from the

thermal quantum Gibbs state and evaluating partition

functions with a quantum computer”. In: Physical re-

view letters 103.22 (2009), p. 220502.

[40] Geoffrey E Hinton. “A practical guide to training re-

stricted Boltzmann machines”. In: Neural networks:

Tricks of the trade. Springer, 2012, pp. 599–619.

[41] Marcello Benedetti et al. “A generative modeling ap-

proach for benchmarking and training shallow quantum

circuits”. In: npj Quantum Information 5.1 (2019),

pp. 1–9.

[42] Masuo Suzuki. “Relationship between d-dimensional

quantal spin systems and (d+ 1)-dimensional ising sys-

tems: Equivalence, critical exponents and systematic

approximants of the partition function and spin correla-

tions”. In: Progress of theoretical physics 56.5 (1976),

pp. 1454–1469.

[43] Koji Hukushima and Yukito Iba. “Population annealing

and its application to a spin glass”. In: AIP Conference

Proceedings. Vol. 690. 1. American Institute of Physics.

2003, pp. 200–206.

[44] Diederik P Kingma and Jimmy Ba. “Adam: A

method for stochastic optimization”. In: arXiv preprint

arXiv:1412.6980 (2014).

[45] Tim Salimans et al. “Improved techniques for training

gans”. In: Advances in neural information processing

systems 29 (2016).

[46] Robert J Fowler, Michael S Paterson, and Steven L

Tanimoto. “Optimal packing and covering in the plane

are NP-complete”. In: Information processing letters

12.3 (1981), pp. 133–137.

298

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on August 08,2023 at 15:54:46 UTC from IEEE Xplore. Restrictions apply.

