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Abstract—Recovering the state of unobservable power system
components due to cyber attacks or limited meter availability
is a crucial problem to address to enable efficient monitoring
and operation of power systems. The graph signal processing
(GSP) framework provides new opportunities to improve power
system data analysis by capturing the topological information of
the system. In this paper, the recovery of the unobservable states
in power systems is formulated as a graph signal reconstruction
problem in a GSP framework. Specifically, a novel reconstruction
technique based on the statistics of the local smoothness of the
graph signals along with the global smoothness of the graph
signals is casted into an optimization framework. In contrast
to many graph signal reconstruction techniques, which assume
band-limited signals to be recovered, the proposed technique
is applicable to general graph signals irrespective of their
bandwidth. The performance evaluation of the proposed method
using simulated graph signals for the IEEE 118 bus system show
promising reconstruction accuracy.

Index Terms—Graph Signal Processing, cyber attack, smart
grid, local smoothness, graph signal reconstruction.

I. INTRODUCTION

The state estimation in smart grids [1] is an essential

function, which enables their secure and reliable monitoring

and operation. However, this critical function is vulnerable to

various forms of cyber attacks (e.g., Denial of Service-DoS

and false data injection attacks). These attacks can hamper

the availability and integrity of the system state information.

Once a cyber attack is detected and located in the system,

the recovery of the state information at the attacked locations

becomes crucial to mitigate their effects.

The state recovery problem in smart grids can be modeled

through a graph signal reconstruction framework [2], [3].

Graph signal reconstruction has been an active research area in

the graph signal processing (GSP) [4] domain with vast poten-

tial applications. The goal of the graph signal reconstruction

is to estimate the signal values corresponding to a subset of

the vertices, which are unavailable due to down-sampling of

the original signal or missing measurements (for instance, due

to cyber attacks). In this paper, the power system states are

considered as graph signals and a state recovery technique

based on the local smoothness of the graph signals has been

proposed to recover the state of the attacked components.

Many of the existing graph signal reconstruction techniques

are built analogous to those in classical signal processing and

sampling theory with the assumption of the band-limited graph

signals [5], [6]. In our previous work [7], a graph signal

sampling-reconstruction framework for band-limited power

system graph signals was proposed to identify an efficient set

of samples (representing the locations to mount the phasor

measurement units-PMUs) for tracking the power system’s

state. However, the proposed method has limitations when the

sampling-set is not chosen beforehand as in the case of cyber

attacks. Moreover, the matrix operation-based reconstruction

method used in [7] is applicable strictly to band-limited graph

signals within the frequency equal to the number of sampling

vertices.

Some reconstruction techniques are also formulated in op-

timization frameworks with the goal of minimizing the global

smoothness of the recovered graph signals [8]–[10]. However,

the global smoothness and bandwidth of a graph signal are

global measures and cannot capture the localized dynamics of

measurements. Due to the structural topology and the physics

of the electricity, the electrical attributes of the power system’s

components (e.g., voltage angle) vary over the system, and as

a result, the vertices have notable differences in their local

smoothness values even during normal operations. In our

previous work [11], the statistics of the local smoothness of

the power system graph signals has been utilized to detect and

locate stresses in the grid.

In this work, a novel graph signal reconstruction technique

is proposed, which allows capturing the local dynamics by

considering the local smoothness of the graph signal. Partic-

ularly, the probability distributions of the local smoothness

values are exploited to identify the values for the missing

signal measurements that maximize the likelihood of the local

smoothness values. By utilizing the local smoothness of the

graph signal, the localized information about the dynamics of

component interactions is incorporated into the estimation of

the missing states information, which improves the state es-

timation performance. The proposed reconstruction technique

is also bandwidth-agnostic in the sense that the applicability

of the technique is not restricted to band-limited graph signal.

II. RELATED WORK

Over the last decade, with the emergence of graph signal

processing as promising field of research, the reconstruction of

graph signal is getting attention by the researchers. The topic is

often studied in the context of the non-uniform sampling of the

graph signal, [5], [10], and the reconstruction method involves

the eigen-vector decomposition of the graph shift operators. In

this connection, a large number of works on the graph signal

reconstruction are dependent on the band-limited assumption
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of the graph signal. For example, Tanaka et al. [6] provides

a detailed discussion on the theory and application of graph

signal sampling from graph-frequency domain perspective in

which the reconstruction process relies on the bandwidth of

the graph signals. The concept of band-limited assumption is

related to the global smoothness of the graph signal, and in

the reconstruction literature minimizing the global smoothness

to recover the missing signal values is widely known [8]–[10].

Among the other methods Isufi et al. [12] proposed re-

construction of the missing graph signal values using graph

Wiener filter while the frequency response of the graph Wiener

filter is approximated by ARMA graph filter and implemented

distributively. Wang et al. [3] introduces the concepts of local

set in connection with the frame theory and proposed two

local set-based iterative graph signal reconstruction techniques.

Mao and Gu [13] proposed a band-limited graph signal joint

detection and reconstruction technique by using mixed integer

linear programming. Romero et al. [14] proposes a kernel

based method for band-limited graph signal reconstruction.

In our previous work [7], it has been shown that power

system graph signals are approximately band-limited in normal

conditions. We proposed a sampling-set selection method

based on the error introduced in each vertex (bus) during the

band-limitation process by an anti-aliasing filter. Although the

proposed method was effective in enhancing the reconstruction

performance of the graph-signal sampling and reconstruction

process and applicable to certain power system applications

such as optimum PMU placement, this method has some

limitations in the context of a few other power grid appli-

cations. Firstly, during the cyber attacks, the grid operator

does not have the opportunity to select the sampling-set i.

e. compromised buses. Moreover, in some cases, removing

the high-frequency components from a graph signal deters

the quality of the signal for specific smart grid applications

related to monitoring and operation. Since the reconstruction

technique applied in the previous paper is strictly limited to the

band-limitation assumption of graph signals, certain not-band-

limited signals cannot be reconstructed using that technique.

For overcoming these limitations, in this article, we propose a

reconstruction technique that is not directly dependent on the

band-limited graph signal assumption.

III. GRAPH SIGNAL RECOVERY

A. Power system graph signal

In this work, the power grid is modeled as a weighted

undirected graph G = (V , E), where, V = {v1, v2, ..., vN}
and E = {eij : (i, j) ∈ V × V} are, respectively, the set of all

vertices (buses) and the set of all edges (transmission lines).

If there are N buses connected by M transmission lines in

the grid, then |V| = N and |E| = M , where |.| denotes the

cardinality of a set. The weight, wij of the edge ei,j is defined

as the reciprocal of the geographic distance between the buses

i and j, denoted by dij , if there exists a link between vertices

i and j, otherwise wij = 0. The graph Laplacian matrix L

containing the topological information of the graph G, with

elements lij is defined as: lij =
∑N

j=1 wij if i = j and

lij = −wij , otherwise. The graph signal x(n) representing the

bus voltage angle at bus n, can be considered as a mapping

of the vertices of the graph to real-number space, x : V → R.

All the values of x(n) arranged in a vector form is denoted

by x.

B. Problem Formulation

Let A be the set of all the buses for which the measurements

and the state are unobservable either due to a cyber attack

or the unavailability of the measurement devices or meters.

The power system state recovery involves estimating the graph

signal values in the unobservable buses, i.e., x(nA), nA ∈ A
using the graph signal values in the observable buses, i.e.,

x(n), n ∈ V \ A.

C. Reconstruction Method

In this paper, a graph signal reconstruction technique based

on the smoothness property of the power systems’ graph

signals has been proposed. The global smoothness [15] of

the graph signal x(n) is defined as sGlobal = x
T
Lx

xTx
and

quantifies the overall amount of fluctuations form vertices to

vertices (which also relates to the bandwidth or the amount of

high-frequency components in the signals). Note that smaller

values of global smoothness represent smoother signals. Under

the assumptions of a smooth graph signal, the reconstruction

of the graph signal can be formulated with the goal of

identifying values that minimize the global smoothness of the

recovered graph signal. Since the power system graph signals

are generally smooth [11], [16], the global smoothness can be

one of the criteria for power system’s graph signal recovery.

However, the global smoothness of a graph signal is a global

parameter and therefore lacks the local information about how

signal values vary within local neighborhoods of vertices.

The local smoothness of a graph signal is described for each

vertex of the graph signal by s(n) = lx(n)
x(n) , x(n) 6= 0,

where lx(n) is the n−th element of the vector, Lx and L

is the Laplacian matrix. The local smoothness specifies the

amount of fluctuation of the signal values from one vertex to

its neighboring vertices. The concept of the local smoothness

of a graph signal is an analogous concept to instantaneous

frequency, which quantifies the rate of change in signals at

each time instant [15]. By incorporating the local smoothness

of the graph signal in the recovery process, the knowledge

about the local dynamics in the grid can be utilized in addition

to the global dynamics to achieve better recovery performance

and a more robust estimation.

Our extensive simulations of power systems have shown that

the local smoothness values of the power system’s graph signal

varies notably over vertices. By collecting and analyzing the

measurement data for each vertex in the system, the probability

distribution of the local smoothness values at each vertex,

psn(ζ), can be obtained. In this work, psn(ζ) is characterized

for bus voltage angle graph signals using data collected from

our simulations.

To this end, the state information recovery technique for

power system’s graph signal is formulated as an optimization
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framework for maximizing the likelihood of the local smooth-

ness values at all the vertices while minimizing the global

smoothness of the graph signal. This optimization problem

can be casted into the following formulation:

max
x(nA),nA∈A

ps1,s2,...sN (s(n1), s(n2), . . . s(nN ))− λsGlobal,

(1)

where λ is the Lagrange multiplier. The joint distribution of the

local smoothness for all the buses, ps1,s2,...sN (ζ1, ζ2, . . . ζN )
is computationally infeasible to compute from the marginal

distributions, psn(ζ). However, maximizing the likelihood of

the local smoothness values at each bus would serve similar

purpose. Therefore, we propose an alternative objective func-

tion by maximizing the minimum likelihood value of local

smoothness from all the buses along with the minimizing the

global smoothness.

max
x(nA),nA∈A

[min
n

psn(s(n))]− λsGlobal, (2)

Our simulation data analyses have shown that the proba-

bility distribution of the local smoothness values at each bus

does not follow any standard distribution. However, to simplify

and solve this optimization problem, in this work the local

smoothness values at bus n is assumed to follow a normal

distribution with mean value µn and standard deviation σn.

Due to this assumption, maximizing the likelihood of local

smoothness values psn(s(n)) at each bus in equation (2) takes

the form of minimizing the absolute value of the normalized

local smoothness, zn = s(n)−µn

σn

and the optimization problem

can be expressed as:

min
x(nA),nA∈A

[max
n

|
s(n)− µn

σn

|] + λsGlobal. (3)

The optimization in equation (3) is non-linear. We propose

to solve this optimization problem using the surrogate opti-

mization method [17] to obtain the global minimum.

IV. SIMULATION AND RESULTS

A. Experimental Setup

For validation of the proposed method and evaluating the

state recovery performance, simulations have been done on the

IEEE 118 bus system [18]. The power system graph signals,

i.e., the bus voltage angle of each bus, have been obtained

by simulating the power flow using MATPOWER [19]. A

load pattern collected from the NYISO [20] is added to the

default MATPOWER load to create variation of load in the

system as described in [21]. For evaluating the state recovery

performance, fifty random scenarios are considered for each

fixed number of unobservable buses, which can represent the

buses under the cyber attack. The unobservable buses are

chosen randomly with a uniform distribution from all the buses

of the system except the reference bus.

B. Estimating the Probability Distributions of the Local

Smoothness

The local smoothness values of the buses, i.e., s(n) values,

associated with the voltage angle graph signals are calculated

for a large number of simulated graph signals for the IEEE 118

bus system. Once the local smoothness values are calculated

using simulated graph signals, the probability distribution of

the local smoothness values at each bus, psn(ζ), are estimated

empirically from the calculated local smoothness values. The

actual distribution of the local smoothness values is intractable;

however, our experiments have shown that assuming normal

distribution for local smoothness values at bus n with mean µn

and standard deviation σn provides reasonable accuracy for the

state recovery. Nonetheless, the parameters of the distributions

need to be updated regularly to avoid the effect of data-drift

[22] that can deteriorate the reconstruction performance.

C. Solving the Optimization Problem

In this work, the optimization problem in equation (3) has

been solved by surrogate optimization method using MATLAB

optimization toolbox [23]. The lower bounds and upper bounds

of the values of x(nA) are considered as µxnA
− 3σxnA

and

µxnA
+ 3σxnA

, respectively, where µxnA
and σxnA

are the

mean value and the standard deviation of the graph signal

values at vertices nA, estimated from the past measurement

data (in this paper, simulated data). The value of the Lagrange

polynomial, λ decides the relative importance of the global

smoothness and the local dynamics to reconstruct graph sig-

nals values. For all the simulations in this work, the value of

λ is considered to be 5, 000. Depending on the system, the

value of λ can be tuned to obtain the desirable performance.

D. State Recovery Performance Analysis

The performance of the proposed method has been illus-

trated in Fig. 1 in terms of the absolute error against the total

number of unobservable buses (i.e., number of buses under

cyber attack). The mean absolute error and the maximum

absolute error are the average value and the maximum value

of recovery error over all the unobservable buses, respectively.

The first metric is important for evaluating the general perfor-

mance of the recovery method and the second one is important

for evaluating the suitability of the proposed recovery method

in certain power system applications demanding a standard

state estimation accuracy at each bus. As can be observed

from the figure, the proposed method provides promising

performance for recovering the missing states. The results also

confirm that the error in recovery grows with the number of

unobservable buses in the system.

E. Comparison with Other Reconstruction Methods

As discussed earlier, the reconstruction method applied in

our previous work [7], which is based on matrix operation

(including matrix inversion), is only applicable for graph

signals that are perfectly band-limited to Ns frequency com-

ponents, where Ns is the cardinality of the sampling set. For

this reason, in [7], an anti-aliasing filter is applied to the
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Fig. 1. State recovery error using the proposed method for different number
of unobservable buses in the system.

originally approximately band-limited graph signals to discard

the insignificant frequency components beyond Ns frequency

components to make perfectly band-limited signals. The pres-

ence of components beyond Ns frequency components (even

very small) leads to computation of ill-conditioned matrices

resulting in total failure to estimate the missing states. Fig.

2(a) illustrates an example of a voltage angle graph signal,

which is not band-limited (as ground truth for the experiment).

In this example, the buses 59 to 64 in the IEEE 118 bus

system are considered unobservable buses. In Fig. 2(b) the

missing signal values at unobservable buses are recovered

using the direct matrix operation method discussed in [7],

which fails to estimate the missing states in comparison to

ground-truth states in Fig. 2(a). However, the proposed method

in the current paper, which incorporates the global and local

dynamics of the grid, is capable of estimating the missing

signal values with notable accuracy as illustrated in 2(c). This

example confirms that the applicability of the proposed method

does not rely on the band-limited assumption of the graph

signal to be recovered. The relaxation of the band-limited

assumption makes this method applicable to many scenarios

in power grids; particularly in cases where the resulted graph

signals are not band-limited.

In [7], it has been shown that the major part of the error in

the sampling-reconstruction process is introduced in the band-

limiting process by the anti-aliasing graph filter. By avoiding

the anti-aliasing filter error, the reconstruction error can be

further reduced by the proposed method.
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V. CONCLUSION

In this paper, a novel technique for reconstructing graph sig-

nals has been proposed for the power system’s state recovery

problem. The proposed technique specifically utilizes the local

dynamics of the system through the local smoothness of the

system’s graph signals. The statistics of the local smoothness

measures along with the assumption of globally smooth graph

signals are used to formulate an optimization problem for the

state recovery problem. One of the key advantages of the

(a)

(b)

(c)

Fig. 2. An example of missing voltage angle graph signal recovery by graph
signal reconstruction: (a) the actual voltage angles measurements which is not
band-limited, (b) recovered signal by the matrix operation based method in
[7], (c) recovered signal using proposed method.

proposed technique is that it relaxes the band-limited signal

assumption for reconstructing graph signals. Simulation results

for the IEEE 118 bus system and various number of cyber

attack scenarios show promising accuracy and performance in

recovering the unobservable states.
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