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Abstract—Recovering the state of unobservable power system
components due to cyber attacks or limited meter availability
is a crucial problem to address to enable efficient monitoring
and operation of power systems. The graph signal processing
(GSP) framework provides new opportunities to improve power
system data analysis by capturing the topological information of
the system. In this paper, the recovery of the unobservable states
in power systems is formulated as a graph signal reconstruction
problem in a GSP framework. Specifically, a novel reconstruction
technique based on the statistics of the local smoothness of the
graph signals along with the global smoothness of the graph
signals is casted into an optimization framework. In contrast
to many graph signal reconstruction techniques, which assume
band-limited signals to be recovered, the proposed technique
is applicable to general graph signals irrespective of their
bandwidth. The performance evaluation of the proposed method
using simulated graph signals for the IEEE 118 bus system show
promising reconstruction accuracy.

Index Terms—Graph Signal Processing, cyber attack, smart
grid, local smoothness, graph signal reconstruction.

I. INTRODUCTION

The state estimation in smart grids [1] is an essential
function, which enables their secure and reliable monitoring
and operation. However, this critical function is vulnerable to
various forms of cyber attacks (e.g., Denial of Service-DoS
and false data injection attacks). These attacks can hamper
the availability and integrity of the system state information.
Once a cyber attack is detected and located in the system,
the recovery of the state information at the attacked locations
becomes crucial to mitigate their effects.

The state recovery problem in smart grids can be modeled
through a graph signal reconstruction framework [2], [3].
Graph signal reconstruction has been an active research area in
the graph signal processing (GSP) [4] domain with vast poten-
tial applications. The goal of the graph signal reconstruction
is to estimate the signal values corresponding to a subset of
the vertices, which are unavailable due to down-sampling of
the original signal or missing measurements (for instance, due
to cyber attacks). In this paper, the power system states are
considered as graph signals and a state recovery technique
based on the local smoothness of the graph signals has been
proposed to recover the state of the attacked components.

Many of the existing graph signal reconstruction techniques
are built analogous to those in classical signal processing and
sampling theory with the assumption of the band-limited graph
signals [5], [6]. In our previous work [7], a graph signal
sampling-reconstruction framework for band-limited power
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system graph signals was proposed to identify an efficient set
of samples (representing the locations to mount the phasor
measurement units-PMUs) for tracking the power system’s
state. However, the proposed method has limitations when the
sampling-set is not chosen beforehand as in the case of cyber
attacks. Moreover, the matrix operation-based reconstruction
method used in [7] is applicable strictly to band-limited graph
signals within the frequency equal to the number of sampling
vertices.

Some reconstruction techniques are also formulated in op-
timization frameworks with the goal of minimizing the global
smoothness of the recovered graph signals [8]-[10]. However,
the global smoothness and bandwidth of a graph signal are
global measures and cannot capture the localized dynamics of
measurements. Due to the structural topology and the physics
of the electricity, the electrical attributes of the power system’s
components (e.g., voltage angle) vary over the system, and as
a result, the vertices have notable differences in their local
smoothness values even during normal operations. In our
previous work [11], the statistics of the local smoothness of
the power system graph signals has been utilized to detect and
locate stresses in the grid.

In this work, a novel graph signal reconstruction technique
is proposed, which allows capturing the local dynamics by
considering the local smoothness of the graph signal. Partic-
ularly, the probability distributions of the local smoothness
values are exploited to identify the values for the missing
signal measurements that maximize the likelihood of the local
smoothness values. By utilizing the local smoothness of the
graph signal, the localized information about the dynamics of
component interactions is incorporated into the estimation of
the missing states information, which improves the state es-
timation performance. The proposed reconstruction technique
is also bandwidth-agnostic in the sense that the applicability
of the technique is not restricted to band-limited graph signal.

II. RELATED WORK

Over the last decade, with the emergence of graph signal
processing as promising field of research, the reconstruction of
graph signal is getting attention by the researchers. The topic is
often studied in the context of the non-uniform sampling of the
graph signal, [5], [10], and the reconstruction method involves
the eigen-vector decomposition of the graph shift operators. In
this connection, a large number of works on the graph signal
reconstruction are dependent on the band-limited assumption
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of the graph signal. For example, Tanaka et al. [6] provides
a detailed discussion on the theory and application of graph
signal sampling from graph-frequency domain perspective in
which the reconstruction process relies on the bandwidth of
the graph signals. The concept of band-limited assumption is
related to the global smoothness of the graph signal, and in
the reconstruction literature minimizing the global smoothness
to recover the missing signal values is widely known [8]-[10].

Among the other methods Isufi et al. [12] proposed re-
construction of the missing graph signal values using graph
Wiener filter while the frequency response of the graph Wiener
filter is approximated by ARMA graph filter and implemented
distributively. Wang et al. [3] introduces the concepts of local
set in connection with the frame theory and proposed two
local set-based iterative graph signal reconstruction techniques.
Mao and Gu [13] proposed a band-limited graph signal joint
detection and reconstruction technique by using mixed integer
linear programming. Romero et al. [14] proposes a kernel
based method for band-limited graph signal reconstruction.

In our previous work [7], it has been shown that power
system graph signals are approximately band-limited in normal
conditions. We proposed a sampling-set selection method
based on the error introduced in each vertex (bus) during the
band-limitation process by an anti-aliasing filter. Although the
proposed method was effective in enhancing the reconstruction
performance of the graph-signal sampling and reconstruction
process and applicable to certain power system applications
such as optimum PMU placement, this method has some
limitations in the context of a few other power grid appli-
cations. Firstly, during the cyber attacks, the grid operator
does not have the opportunity to select the sampling-set i.
e. compromised buses. Moreover, in some cases, removing
the high-frequency components from a graph signal deters
the quality of the signal for specific smart grid applications
related to monitoring and operation. Since the reconstruction
technique applied in the previous paper is strictly limited to the
band-limitation assumption of graph signals, certain not-band-
limited signals cannot be reconstructed using that technique.
For overcoming these limitations, in this article, we propose a
reconstruction technique that is not directly dependent on the
band-limited graph signal assumption.

III. GRAPH SIGNAL RECOVERY
A. Power system graph signal

In this work, the power grid is modeled as a weighted
undirected graph G = (V,€), where, V = {v1,v2,...,un}
and € = {e;; : (1,5) € V x V} are, respectively, the set of all
vertices (buses) and the set of all edges (transmission lines).
If there are N buses connected by M transmission lines in
the grid, then |V| = N and || = M, where |.| denotes the
cardinality of a set. The weight, w;; of the edge e; ; is defined
as the reciprocal of the geographic distance between the buses
i and j, denoted by d;;, if there exists a link between vertices
¢ and j, otherwise w;; = 0. The graph Laplacian matrix L
containing the topological information of the graph G, with
elements [;; is defined as: l;; = Z;.Vzlwij if i = j and

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

l;j = —w;;, otherwise. The graph signal z(n) representing the
bus voltage angle at bus n, can be considered as a mapping
of the vertices of the graph to real-number space, x : V — R.
All the values of xz(n) arranged in a vector form is denoted
by x.

B. Problem Formulation

Let A be the set of all the buses for which the measurements
and the state are unobservable either due to a cyber attack
or the unavailability of the measurement devices or meters.
The power system state recovery involves estimating the graph
signal values in the unobservable buses, i.e., z(n4),n4 € A
using the graph signal values in the observable buses, i.e.,
z(n),n € V\ A

C. Reconstruction Method

In this paper, a graph signal reconstruction technique based
on the smoothness property of the power systems’ graph
signals has been proposed. The global smoothnessT[IS] of
the graph signal x(n) is defined as sgiopar = Elef nd
quantifies the overall amount of fluctuations form vertices to
vertices (which also relates to the bandwidth or the amount of
high-frequency components in the signals). Note that smaller
values of global smoothness represent smoother signals. Under
the assumptions of a smooth graph signal, the reconstruction
of the graph signal can be formulated with the goal of
identifying values that minimize the global smoothness of the
recovered graph signal. Since the power system graph signals
are generally smooth [11], [16], the global smoothness can be
one of the criteria for power system’s graph signal recovery.
However, the global smoothness of a graph signal is a global
parameter and therefore lacks the local information about how
signal values vary within local neighborhoods of vertices.
The local smoothness of a graph signal is described for each
vertex of the graph signal by s(n) = l;((:)), z(n) # 0,
where [,(n) is the n—th element of the vector, Lx and L
is the Laplacian matrix. The local smoothness specifies the
amount of fluctuation of the signal values from one vertex to
its neighboring vertices. The concept of the local smoothness
of a graph signal is an analogous concept to instantaneous
frequency, which quantifies the rate of change in signals at
each time instant [15]. By incorporating the local smoothness
of the graph signal in the recovery process, the knowledge
about the local dynamics in the grid can be utilized in addition
to the global dynamics to achieve better recovery performance
and a more robust estimation.

Our extensive simulations of power systems have shown that
the local smoothness values of the power system’s graph signal
varies notably over vertices. By collecting and analyzing the
measurement data for each vertex in the system, the probability
distribution of the local smoothness values at each vertex,
ps,, (€), can be obtained. In this work, ps, (¢) is characterized
for bus voltage angle graph signals using data collected from
our simulations.

To this end, the state information recovery technique for
power system’s graph signal is formulated as an optimization
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framework for maximizing the likelihood of the local smooth-
ness values at all the vertices while minimizing the global
smoothness of the graph signal. This optimization problem
can be casted into the following formulation:

max

Psy,s0,sn (8(11),8(n2), ... 8(nN)) — AsGiobat,
z(na)na€A

(1
where ) is the Lagrange multiplier. The joint distribution of the
local smoothness for all the buses, ps, s,...sx (C15C2,---CN)
is computationally infeasible to compute from the marginal
distributions, ps, (¢). However, maximizing the likelihood of
the local smoothness values at each bus would serve similar
purpose. Therefore, we propose an alternative objective func-
tion by maximizing the minimum likelihood value of local
smoothness from all the buses along with the minimizing the
global smoothness.

max  [minps, (s(n))] — AsGiobal, 2)
z(na)na€A N

Our simulation data analyses have shown that the proba-
bility distribution of the local smoothness values at each bus
does not follow any standard distribution. However, to simplify
and solve this optimization problem, in this work the local
smoothness values at bus 7 is assumed to follow a normal
distribution with mean value u, and standard deviation o,.
Due to this assumption, maximizing the likelihood of local
smoothness values ps_ (s(n)) at each bus in equation (2) takes
the form of minimizing the absolute value of the normalized

local smoothness, z,, = @ and the optimization problem
can be expressed as:
. s(n) — p
min  [max | ——""] + AsGiobai- 3)
z(na)ma€A N On

The optimization in equation (3) is non-linear. We propose
to solve this optimization problem using the surrogate opti-
mization method [17] to obtain the global minimum.

IV. SIMULATION AND RESULTS

A. Experimental Setup

For validation of the proposed method and evaluating the
state recovery performance, simulations have been done on the
IEEE 118 bus system [18]. The power system graph signals,
i.e., the bus voltage angle of each bus, have been obtained
by simulating the power flow using MATPOWER [19]. A
load pattern collected from the NYISO [20] is added to the
default MATPOWER load to create variation of load in the
system as described in [21]. For evaluating the state recovery
performance, fifty random scenarios are considered for each
fixed number of unobservable buses, which can represent the
buses under the cyber attack. The unobservable buses are
chosen randomly with a uniform distribution from all the buses
of the system except the reference bus.
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B. Estimating the Probability Distributions of the Local
Smoothness

The local smoothness values of the buses, i.e., s(n) values,
associated with the voltage angle graph signals are calculated
for a large number of simulated graph signals for the IEEE 118
bus system. Once the local smoothness values are calculated
using simulated graph signals, the probability distribution of
the local smoothness values at each bus, p;, ({), are estimated
empirically from the calculated local smoothness values. The
actual distribution of the local smoothness values is intractable;
however, our experiments have shown that assuming normal
distribution for local smoothness values at bus n with mean .,
and standard deviation o,, provides reasonable accuracy for the
state recovery. Nonetheless, the parameters of the distributions
need to be updated regularly to avoid the effect of data-drift
[22] that can deteriorate the reconstruction performance.

C. Solving the Optimization Problem

In this work, the optimization problem in equation (3) has
been solved by surrogate optimization method using MATLAB
optimization toolbox [23]. The lower bounds and upper bounds
of the values of z(n4) are considered as p, , — 304, , and
Pa, , + 30s, . respectively, where pg, ~and oy, are the
mean value and the standard deviation of the graph signal
values at vertices n 4, estimated from the past measurement
data (in this paper, simulated data). The value of the Lagrange
polynomial, A decides the relative importance of the global
smoothness and the local dynamics to reconstruct graph sig-
nals values. For all the simulations in this work, the value of
A is considered to be 5,000. Depending on the system, the
value of A can be tuned to obtain the desirable performance.

D. State Recovery Performance Analysis

The performance of the proposed method has been illus-
trated in Fig. 1 in terms of the absolute error against the total
number of unobservable buses (i.e., number of buses under
cyber attack). The mean absolute error and the maximum
absolute error are the average value and the maximum value
of recovery error over all the unobservable buses, respectively.
The first metric is important for evaluating the general perfor-
mance of the recovery method and the second one is important
for evaluating the suitability of the proposed recovery method
in certain power system applications demanding a standard
state estimation accuracy at each bus. As can be observed
from the figure, the proposed method provides promising
performance for recovering the missing states. The results also
confirm that the error in recovery grows with the number of
unobservable buses in the system.

E. Comparison with Other Reconstruction Methods

As discussed earlier, the reconstruction method applied in
our previous work [7], which is based on matrix operation
(including matrix inversion), is only applicable for graph
signals that are perfectly band-limited to N, frequency com-
ponents, where N is the cardinality of the sampling set. For
this reason, in [7], an anti-aliasing filter is applied to the
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Fig. 1. State recovery error using the proposed method for different number
of unobservable buses in the system.

originally approximately band-limited graph signals to discard
the insignificant frequency components beyond Ny frequency
components to make perfectly band-limited signals. The pres-
ence of components beyond N frequency components (even
very small) leads to computation of ill-conditioned matrices
resulting in total failure to estimate the missing states. Fig.
2(a) illustrates an example of a voltage angle graph signal,
which is not band-limited (as ground truth for the experiment).
In this example, the buses 59 to 64 in the IEEE 118 bus
system are considered unobservable buses. In Fig. 2(b) the
missing signal values at unobservable buses are recovered
using the direct matrix operation method discussed in [7],
which fails to estimate the missing states in comparison to
ground-truth states in Fig. 2(a). However, the proposed method
in the current paper, which incorporates the global and local
dynamics of the grid, is capable of estimating the missing
signal values with notable accuracy as illustrated in 2(c). This
example confirms that the applicability of the proposed method
does not rely on the band-limited assumption of the graph
signal to be recovered. The relaxation of the band-limited
assumption makes this method applicable to many scenarios
in power grids; particularly in cases where the resulted graph
signals are not band-limited.

In [7], it has been shown that the major part of the error in
the sampling-reconstruction process is introduced in the band-
limiting process by the anti-aliasing graph filter. By avoiding
the anti-aliasing filter error, the reconstruction error can be
further reduced by the proposed method.
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V. CONCLUSION

In this paper, a novel technique for reconstructing graph sig-
nals has been proposed for the power system’s state recovery
problem. The proposed technique specifically utilizes the local
dynamics of the system through the local smoothness of the
system’s graph signals. The statistics of the local smoothness
measures along with the assumption of globally smooth graph
signals are used to formulate an optimization problem for the
state recovery problem. One of the key advantages of the
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Fig. 2. An example of missing voltage angle graph signal recovery by graph
signal reconstruction: (a) the actual voltage angles measurements which is not
band-limited, (b) recovered signal by the matrix operation based method in
[7], (c) recovered signal using proposed method.

proposed technique is that it relaxes the band-limited signal
assumption for reconstructing graph signals. Simulation results
for the IEEE 118 bus system and various number of cyber
attack scenarios show promising accuracy and performance in
recovering the unobservable states.
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