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Abstract—Situational awareness towards various types of cy-
ber and physical stresses in power systems is critical for the
reliable operation of these critical infrastructures. Identifying
the type of stress that has occurred in the system is particularly
crucial for deciding the corrective measures for mitigating the
stress and also for future preventive planning. In this paper, a
two-stage stress classification framework based on the learning of
the power system’s graph signals has been proposed. Specifically,
graph signal processing (GSP) has been utilized to extract
features from the power system’s graph signals for building
the models. Using GSP allows for capturing information about
the interconnections and interactions among the components of
the grid along with its spatio-temporal dynamics. It has been
shown that this machine learning-based classification with GSP-
based features is effective for classifying between cyber and
physical stresses as well as further classifying among different
types of cyber and physical stresses. Abrupt changes in the load
demand and tripping of a transmission line are considered as
examples of physical stresses, while five types of cyber attacks
with no abrupt onset on the PMU time-series are considered
as cyber stresses. Various GSP-based features are evaluated and
a dimensionality reduction technique based on down-sampling
in the graph-frequency domain is proposed. The classification
performances have been evaluated across various classifiers using
data under different noise levels.

Index Terms—Graph signal learning, graph signal processing,
classification, phasor measurement unit, cyber attack, smart grid.

I. INTRODUCTION

Extensive integration of cyber elements into modern smart
grids has provided immense opportunities for improving their
reliability and performance; however, these systems can still
experience various kinds of stresses in their cyber and physical
layers. Situational awareness through detecting and locating
such stresses using the available measurement data in the
system is crucial for reliable and secure operation of the
system; and as such it has earned great attention from the
researchers and practitioners in this domain [1]-[3]. Once a
stress is detected and located in the system, the next step
would be to identify the type of the occurred stress in order to
implement effective, corrective measures to mitigate the stress
and also plan for preventive measures in future.
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In this work, the focus is on the latter step through the classi-
fication of stresses after they have been detected. Specifically,
a two-stage classification framework for cyber and physical
stresses in smart grids has been proposed, which consists of a
binary classifier to first classify between the cyber and physical
stresses and a classifier to further classify among different
types of cyber and physical stresses depending on the predicted
binary class in the first stage. The proposed framework is based
on learning power system’s measurement data in the form of
graph signals. Specifically, graph signal processing (GSP) has
been utilized to extract features from power system’s graph
signals for building the models. Using GSP allows for cap-
turing information about the interconnections and interactions
among the components of the grid in the form of a graph along
with its spatio-temporal dynamics. Various attributes related
to the power system graph signals and their graph-spectral
representations, such as, the Graph Fourier Transform (GFT)
and the global and local smoothness of graph signals, have
been shown to capture and encode the signatures of cyber
and physical stresses in the grid [1], [3]. In our earlier work
in [3], GSP-based techniques were developed for detecting
and locating the stresses in smart grids. Here, the GSP tools
are adopted to extract features in both vertex and frequency
domains of the system’s graph signals to train models that can
further classify the stresses after they have been detected.

Abrupt load changes in the buses and tripping of transmis-
sion lines are examples of common physical stresses that are
considered in this work and their signatures are reflected in
the graph signals of the system. The proposed models and
analysis can be applied to other types of physical stresses, such
as oscillatory events, and reactive power events depending
on the availability of measurement data. In addition, various
types of cyber attacks can disrupt the normal operation of the
power system by targeting the confidentiality, availability, and
integrity of the data [4].

In this paper, five types of cyber attacks including Denial of
Service (DoS) attack, False Data Injection Attack (FDIA), and
synchronization-based attacks including replay attack, ramp
attack, and delay attack, are considered and modeled on the
PMU time-series. Specifically, the bus voltage angle measure-
ment time-series of each bus are considered; describing the
state of the grid components. Following our previous work
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[3], the cyber attacks are defined in such a way that they do
not introduce any sharp changes in the values of the time-
series at their onset. As such, they are not easily detectable
by the existing residual-based or abrupt change detection
techniques. However, our experiments have revealed that in-
formation about dynamic interactions among the components
of the grid (e.g., the spatio-temporal correlations among the
states) embeds important information about these sophisticated
attacks [3], [5].
The key contributions of this work are summarized next:

o A two-stage classification framework for power system
stresses has been proposed based on learning power
system’s graph signals. The proposed framework involves
incorporating GSP-based features into machine learning
(ML) methods for leveraging the potential of GSP in
capturing the topological as well as interaction and in-
terdependency dynamics among the components of the
grid for improved classification accuracy.

o Various GSP-based features of time-varying voltage angle
graph signals at different stages of the classification are
evaluated.

o A technique for reducing the dimensionality of the GSP-
based features based on down-sampling in the graph-
frequency domain is proposed.

o The classification performances have been evaluated
across various ML classifiers using data under different
noise levels.

II. RELATED WORK

Over the past few decades, the reliability and security of
smart grids under various cyber and physical stresses have
been being studied [3], [4], [6]. With the availability of data
due to the extensive deployment of smart measuring devices
(e.g., PMUs) in the power systems, data-driven analyses for
the detection, characterization, and classification of stresses are
gaining more attention. Among the studies of stress classifi-
cation in the smart grid, the classification of physical stresses
(or events) using ML techniques has been extensively studied
[7]-[11]. For instance, Rafferty and Liu, [10], considered three
types of physical stresses: generation dip, loss of load, and line
tripping for classification at the PMU level using the quadratic
discriminant analysis (QDA) method that also facilitates the
identification of unknown events for further human interaction.
In [10], the frequency, phase angle, voltage magnitude, and
their time derivatives are considered as the features and their
relative importance is studied. Liu et al. [11] present a detailed
analysis of the classification of four types of power system
events including frequency events, line outage, transformer
outage, and oscillation events by applying various benchmark
classification techniques. The proposed three-step technique
involves pre-processing of real-world imperfect PMU data, ex-
traction of fine-grained event waveform data after the detection
of the event, and extraction of useful features for classification
from the waveform of multiple attributes. The analysis has
revealed that each event has signatures on the waveform of
different particular attributes (e.g., voltage magnitude) and

the signal similarity among different PMUs, under different
events, is different. In [12], along with the physical stresses
(e.g., line fault and generation loss), fake events created by
false data injection are also considered for classification.

Detection, locating, and characterization of cyber and phys-
ical stresses in the smart grids by modeling the grid data as
graph signals has become a topic of interest among researchers
in recent years. In [1], [13] the authors provided GSP-based
frameworks for FDIA detection in the power grid in which the
significant presence of high-graph frequency components has
been used as the indicator of falsified measurements. Shereen
et al. [2] proposed leveraging GFT along with machine
learning algorithms to detect and locate time-synchronization
attacks in the smart grid. In one of our previous works [3], we
introduced two GSP-based techniques, namely, local smooth-
ness second time-derivative (LSSTD) and vertex-frequency
energy distribution (VFED) for detecting and locating physical
stresses as well as sophisticatedly designed cyber attacks with
no sharp change of values at the attack onset. In another
work [14], we discussed the characterization of the cyber
attacks through a GSP framework which involved classifying
between the clustered cyber attacks and multiple random cyber
attacks, attack center, and attack radius estimation in the
case of clustered cyber attacks. In addition, techniques based
on graph neural networks (GNN) to capture the structured
interactions and dependencies in data have also been applied
to this problem. For instance, Boyaci et al. [15] proposed a
GNN model for detecting and locating FDIA in the grid. In
[16], the authors propose the infinite impulse response graph
neural network (IIR-GNN) model for locating cyber attacks in
the smart grid. Yuan et al. [17] also propose a GNN-based
event classification technique in which the latent interaction
graphs among different PMUs are learned from the PMU data.
In the current work, we propose to combine a GSP-based
analysis and feature extraction method with ML models for
the classification of different cyber and physical stresses in
two stages.

III. CLASSIFICATION PROBLEM FORMULATION

A. A Short Review of GSP Concepts

The power grid has been modeled by a dynamic weighted
graph, G(t) = (V,E(t), W(t)), representing the known topol-
ogy of the grid at time . The set of vertices, V, represents
the buses of the grid and is considered to remain unchanged
over time. The set of edges £(t) = {e;;(t) : (4,5) € V x V}
represents the transmission lines that are active at time ¢ and
thus may change over time in the event of a line outage, an
intentional line tripping, and restoration of a transmission line.
The set of edge weights, W(¢) includes w;; elements, which
represents the ¢-th row and j-th column of the weight matrix
at time ¢ denoted by W,. The weight matrix W is defined in
such a way that the Laplacian matrix L, = D, — W of the
graph represents the imaginary part of the admittance matrix
associated with the known topology of the grid at time, t,
where D, is the degree matrix of the graph, G(t).
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The time-varying graph signal, x(n,t) defined over the
graph, G(t), is a mapping of the graph vertices to real numbers,
z : V — R that, in this work, represents the value of the
voltage angle at bus n € V) at time ¢.

The graph spectral domain of the graph signal is character-
ized by the GFT. Let )\, and ug,(n) be the k—th eigenvalue
and k—th eigenvector of L, representing the graph-frequencies
and the basis graph signals for GFT, respectively. The GFT of
the graph signal, x(n,t) at time, ¢ is described as:

Z n, tyup, (n 1)

)\kt )
The local smoothness of the graph signal z(n,t) at time ¢ is
expressed as:
Ltzt
x(n,t)’

when z(n,t) # 0 and x, is the vector form of the graph
signal x(n,t) at time ¢. These are the GSP concepts used in
this paper. A more detailed discussion about the GSP basics,
especially in the power system context can be obtained in our
previous work [3].

B. Classification Model

In this paper, a two-stage stress classification framework has
been proposed. When a stress is detected in the grid at time ¢4,
the first step is to determine whether it is a cyber or physical
stress. This binary classification task is performed in the first
stage of the proposed two-stage classification scheme. The
second stage involves classification among different physical
stresses and different types of cyber attacks. In this paper,
abrupt load changes and transmission line outages as physical
stresses and five types of cyber attacks (DoS, FDIA, replay,
ramp, and delay attacks) are considered. These stresses are
modeled on the voltage angle time-series. A detailed descrip-
tion on the model of these stresses and their characteristics
can be found in [3].

For the classification tasks at both stages, first, a set of
features will be engineered from the associated graph signals,
z(n,t), starting from when the attack was detected, ¢4, for a
duration of At,,. The extracted features can then be fed to
any ML-based classifier. The features being extracted from
the time-varying graph signals contain temporal as well as
topological information to incorporate into the classification
framework. The binary classification (i.e., physical stress vs.
cyber attack) at the first stage can be formulated as:

y = f(¥(2(n,1)), ta<t<tq+ Aty, 3)

where y € {Physical stress, Cyber attack} and ¥(xz(n,t)) is
the graph signal feature matrix obtained from the time-varying
graph signal z(n, t) for the time interval At,,, starting from the
moment of the detection. For the stresses that are detected as
physical ones, the next stage classification involves classifying
them between abrupt load changes and transmission line
outages, which can be expressed as:

Zp = g(\Ilp(Jj(n’ t)))a td S t S td + Atwa (4)

2

s(n,t) =

where z, € {Abrupt load changes, Line failure} and
W, (z(n,t)) is the graph signal feature matrix obtained from
the time-varying graph signal x(n, t) for the time interval At,,,
starting from the moment of the detection. Similar formulation
can be shown for stresses that are classified as cyber attack in
the first stage:

Ze = h(P,

where z. € {DoS, FDIA, Replay attack, Ramp attack, Delay
attack} and W.(z(n,t)) is the graph signal feature matrix
obtained from the time-varying graph signal x(n,t) for the
time interval At,,, starting from the moment of the detection
of the cyber attack.

(.IZ(TL, t)))a LLd <t< td + Atwa (5)

IV. GSP-BASED FEATURE EXTRACTION
A. Different Types of GSP-based Features

For the classification using the proposed method, GSP-based
features are extracted from the time-varying graph signals
from the moment of detecting the stress, ¢4 to the end of
the stress data window, t4 + At,. In our previous works
[3], [14] and our extensive simulations on the IEEE 118
bus case [18], we have observed that in different cyber and
physical stresses different set of features are more suitable in
classifications. In this section, different types of GSP-based
features will be presented along with a discussion on their
suitability in different cyber and physical stress scenarios. A
general technique for reducing the number of features of the
same type has also been proposed.

1) Features extracted from the moment of detection, tg:
A number of features denoted by feature vector %1 are
proposed to be extracted from the graph signal just at the
moment of detecting the stress, i.e., z(n,ts). An example of
such features is the GFT values of the graph signal at the
moment of detection. In this case, the [—th element of the
%, can be expressed as: ¢1(l) = X(A;,,tq), where X is
derlved from equation (1). The local smoothness values of
the graph signal at the moment of the detection is another
set of features of this type; for which, the [—th element of
the 1, can be expressed as 1(l) = s(l,tq), where s can
be derlved from equation (2). The two aforementioned sets
of features capture information of structure, interdependency,
and interactions among the components of the grid; however,
being calculated on a single snapshot of the time-varying graph
signal (at t = t4), they do not contain the temporal evolution
information of the signal values. Our simulations have shown
that features of this type are effective for classification between
cyber and physical stresses as well as for the classification
between abrupt load changes and transmission line failures but
fail to classify among cyber attacks, since the cyber attacks are
distinguished mostly by their temporal signatures.

2) Features extracted using GFT of temporal statistics:
The next type of features considered in this work are cal-
culated by applying GSP techniques (e.g., GFT and local
smoothness) over the temporal statistics of x(n,t) during the
time window after the detection of stress. Let 7(.) be the
operator for determining any temporal statistics (e.g., mean,
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standard deviation, and range) of any time-varying graph
signal within a window of time. We denote this type of feature
vectors by %2‘ One example of such features can be derived
by taking the GFT of the graph signal, which is obtained
by computing the temporal standard deviation of the time
derivative of the original graph signal values at each bus within
the stress time window. This feature can be represented by
Uo(l) = S0 T(La(n,t))uf (n), for tg < t < tq + Aty
Here, 7(.) signifies temporal standard deviation of the signal
values at each bus. By containing the temporal information
along with the information and interdependency among the
components, these type of features are suitable for classifying
among cyber attacks with distinguishable temporal signature
on the time series data.

3) Features extracted taking temporal statistics of the time-
varying GFT values: The features of the third type involves
taking temporal statistics of the GFT values calculated at
every time instant within At,,. For these features, the [—th
element of the feature vector 1, can be expressed as Y3(l) =
T(X(\,,t), for tg < t < tq + Aty,. Similar, to the
previous type of features, features of this type also contain
both temporal and interconnection information and therefore
applicable to the classification among cyber attacks.

B. Dimensionality Reduction of the GFT-based Features

All the feature vectors discussed in the previous section, are
of dimensionality equal to the number of buses in the grid,
i.e., N. Moreover, the classification among different types of
cyber attacks requires the combination of different types of
features, which makes the dimensionality of the classification
problem large. The high dimensionality of the feature space
raises the computational cost of implementing the proposed
GSP-based learning classification technique. However, if the
feature set is GFT-based, the dimensionality can be reduced
by taking a smaller subset of the GFT samples, i.e., down-
sampling in the graph-frequency domain. In this work, instead
of taking all the GFT samples, K equally spaced GFT values
are considered, where K < N. The equally spaced samples
ensure the presence of GFT samples in all ranges of graph-
frequencies and serve as a good representative of the whole
spectral information. This concept is similar to the concept
of down-sampling the discrete Fourier transform in classical
signal processing; however, the analogy is not strictly perfect
due to the localized basis functions of GFT representation.

V. PERFORMANCE EVALUATION
A. Simulation Details

In this work, all the simulations have been performed on
the IEEE 118 bus systems, using MATPOWER [19]. The load
patterns are extracted from the actual daily load profile from
New York Independent Operator (NYISO) [20] and have been
added to the default MATPOWER load demands to create
time series data as described in [5]. In total 10,000 different
types of physical stresses and cyber attacks are generated using
MATPOWER at different times and different locations of the
grid, which are randomly selected with uniform probability
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Fig. 1: Classification accuracy for different ML methods for
the first-stage binary classification between physical and cyber
stresses. 45dB noise level is considered in all the cases.

distributions. For the generation of cyber attacks, the time-
series-based models in [3] have been used in which there is
no sharp change in the signal values at the attack onset. For the
classification among these cyber attacks presented in this work,
we consider, At,, = 10 samples; however, this parameter can
be tuned depending on the grid and the application. For all the
classifications, the models are trained with 80% of the data and
tested on the rest of the data.

Among different machine learning classifiers, decision tree,
discriminant analysis, ensemble method, support vector ma-
chine (SVM) with linear and radial basis function (RBF)
kernels, and neural network have been used. The neural
network classifier consists of two hidden layers with 25 and
10 neurons, respectively, with ReLu activation functions in
each layer. All the classifiers have been implemented using
MATLAB classifier functions.
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Fig. 2: Confusion matrix for cyber attack classification using
GSL method. Neural network classifier has been used as the
ML classifier.

B. Performance of the Classification

The simulation results show that, in both stages of the
classifications, the GSL technique outperforms direct machine
learning-based classification applied to the raw voltage an-
gle data. Fig. 1 illustrates the classification accuracy of the
different machine learning classification algorithms for the
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Fig. 3: Dependency of the classification performance on the
noise level of the data. Decision Tree classifier has been used
for all the cases.

first-stage binary classification between cyber and physical
stresses using raw voltage angle data and using GSP-based
features. Two different candidate feature vectors of the first
type (i.e., feature extracted at ¢4): GFT and local smoothness
features are considered. From the figure, it is observed that
both the GFT and local smoothness-based features outperform
the direct classification on raw voltage angle data for all
the machine learning methods for the signal-to-noise ratio of
45 dB. Similar results have been obtained for the abrupt
load change vs. line failure classification at the same noise
level. However, among the GSP-based features, the GFT-based
ones are preferable over the local smoothness-based features,
mostly because of two reasons: 1) the GFT-based provide
consistent performance at different noise level, while the
performance of the local smoothness-based ones deteriorates
significantly with increasing noise levels, 2) the dimensionality
reduction method discussed in Section IV(B) is only applicable
to the GFT-based features.

For the classification among the cyber attacks on noiseless
data, the GSL technique with the GFT-based sets of fea-
tures successfully classifies the five types of cyber attacks.
The accuracies of classification using the decision tree and
neural network classifiers are, respectively, 0.814 and 0.813.
However, for this classification, multiple sets of features of
different types are required. By observing the performance
of different combinations of the set of features the follow-
ing set of features are considered to be appropriate for the
classification among the cyber attacks: Firstly, the GFT of
the temporal standard deviation of the time-derivative signal,
SN T(La(n,t)ug, (n), for tg < ¢ < tq + Aty,. Here,
T(.) signifies the temporal standard deviation of the signal
values at each bus. Secondly, the GFT of the temporal standard
deviation of the original signal, 25:1 T (z(n,t))uy, (n), for
tqg <t < ty+ Aty. Thirdly, the GFT of the graph signal,
x(n,tq) — x(n,tq + t,) calculated as: Zgil[x(n,td) -
z(n,tg + to)uy, (n), for tg < t < tq + At,. Finally,
the temporal mean of X (\g,,t) for t4 < t < tg + Aty,.
Fig. 2 presents the confusion matrix for the classification
among cyber attacks. The GSL-based classification technique
classifies the cyber attacks with good accuracy except for the
relatively higher misclassification rates between the FDIA and

the delay attack.

C. Noise Sensitivity of Classification Performance

The classification accuracy for the first-stage classification
between the cyber and physical stresses and the second-stage
classification between the abrupt changes of loads and the line
failure (in the case of the prediction as physical stress at the
first stage) have been analyzed as a function of the signal-to-
noise ratio (SNR) of the additive noise present in the voltage
angle data. As illustrated in Fig. 3, for both classifications, the
GSL classification technique with GFT features outperforms
direct machine learning-based classification at all levels of
noise intensity. However, the classification among the cyber
attacks works only on noise-free data and achieves very limited
accuracy for noise levels below 100 dB SNR. This is due to the
fact that these sophisticatedly designed cyber attacks introduce
very small changes in signal values which are comparable to
noise as discussed in [3].

D. Classification Performance with Reduced Number of Fea-
tures

Fig. 4 illustrates the classification performance with the
reduced number of GFT-based features as suggested in Sec-
tion IV(B). From the figure, it is observed that for all the
classification tasks in both stages, it is possible to reduce the
number of features using the graph-frequency domain down-
sampling keeping the classification performances at reasonable
levels. As an example, for the first-stage binary classification
between cyber and physical stresses, a classification accuracy
of 0.95 is achievable with only 20 GFT features instead of all
the 118 GSP features for the IEEE 118 bus system. It is worth
mentioning that for the classification among cyber attacks, it is
required to apply the graph-frequency domain down-sampling
separately on the four types of GFT-based features mentioned
in Section V(B).

VI. CONCLUSION

In this work, a two-stage classification framework for
classifying cyber and physical stresses in the smart grid
has been proposed based on learning power system’s graph
signals features. This approach involves combining GSP-
based analysis and feature extraction and machine learning-
based classification methods. The first stage classifies between
cyber and physical stresses, while the second stage involves
classification among different physical stresses or among cyber
attacks depending on the predicted class at the first stage.
Various GSP-based features are designed to capture both the
topological and connectivity information of the system as
well as temporal information in the signals into machine
learning methods. The experimental results show that the
proposed GSP-based learning technique outperforms the ma-
chine learning-based classification techniques that are directly
applied to the measurement data, for different levels of signal
noise. A technique for reducing the number of GSP-based
features has also been proposed based on down-sampling the
graph frequency domain for efficient implementation of the
classification techniques.
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