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Abstract—This paper presents a Temporal Graph Neural
Network (TGNN) framework for detection and localization of
false data injection and ramp attacks on the system state in
smart grids. Capturing the topological information of the system
through the GNN framework along with the state measurements
can improve the performance of the detection mechanism. The
problem is formulated as a classification problem through a
GNN with message passing mechanism to identify abnormal
measurements. The residual block used in the aggregation process
of message passing and the gated recurrent unit can lead to
improved computational time and performance. The performance
of the proposed model has been evaluated through extensive
simulations of power system states and attack scenarios showing
promising performance. The sensitivity of the model to intensity
and location of the attacks and model’s detection delay versus
detection accuracy have also been evaluated.

I. INTRODUCTION

Smart grids are being extensively equipped with sensing
and monitoring devices to improve their performance and
reliability. For instance, phasor measurement units (PMUs)
are deployed in smart grids and designed to acquire the
physical measurements of the system. The measurements will
be relayed over communication networks to enhance situa-
tional awareness and the operation of the system [1]. The
cyber elements of smart grids provide new opportunities for
improving the operation and control of these systems; however,
they also introduce vulnerabilities to cyber attacks.

The measurement data in the smart grid that are collected
through the sensors and communicated over the communica-
tion networks, such as voltage, current, power injections, and
the status information of breakers and switches are vulnerable
to cyber attacks. These data are utilized to obtain the states
of the power system, which is crucial for the proper operation
and maintenance of the smart grid to ensure a seamless supply
of electricity to the consumers. Cyber attacks, by disrupting
the availability and integrity of the measurement data, can
threaten the reliability and performance of smart grids, and
their timely detection and localization are important from the
grid operators’ perspective. In this work, two of the cyber
attacks related to the integrity of the smart grid data, namely
False Data Injection Attacks (FDIAs) [2]-[4] and a special
form of FDIA, namely, Ramp attacks [4]-[6] are considered.
Both attacks aim to stealthily change data in the system
measurements such that it affects functions that rely on them.
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To capture the topological structure and the connectivity
information of the smart grid along with the temporal mea-
surement data, power system measurements can be modeled as
time-varying graph signals [4], [7] so that they can be analyzed
by graph signal processing tools which extends the concepts
and tools of classical signal processing to irregular graph do-
main data in non-euclidean space [8]. Moreover, graph neural
network (GNN)-based analyses can also be applied to the data
modeled as time-varying power system graph signals [9]-[11].
In this work, a temporal GNN (TGNN) framework is presented
to consider both the temporal measurements at each bus of the
system and the topological connectivity (by considering the
buses as the vertices/nodes, and transmission lines as the edges
of the graph) to detect and locate the attacks. Specifically,
the detection and localization problem is formulated as a
classification problem through a GNN with a message passing
mechanism to identify abnormal measurements at buses. A
Gated Recurrent Unit (GRU) is implemented in the model
to capture the temporal features from the time-series data on
each bus in the power system. Additionally, a residual block
is designed to address the vanishing gradient problem and
optimized the spatio-temporal features acquired by the GNN.

The performance of the proposed model has been evaluated
through the training and testing of the proposed TGNN method
with FDIA and ramp attack data specially designed for time-
series data from the power system [4] that does not contain
abrupt changes of values at the onset making them challenging
to detect. The results show a promising performance with
high accuracy in detecting and locating both the FDIA and
ramp attacks. The sensitivity of the model to the intensity
of the attacks and the topological location of the attacks have
also been evaluated suggesting that detecting attacks at certain
locations are more challenging than the other locations.

II. RELATED WORK

Smart grid’s security have gained considerable attention
from researchers and practitioners in the past few decades.
Both model-based and data-driven techniques for the detection
and localization of cyber attacks are proposed and studied
in the literature [3]. While model-based approaches [2], [3]
require the knowledge of the system and information on its
structure and dynamics, the data-driven approaches utilize
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the large volume of available measurement data to detect
cyber attacks. The majority of the data-driven detecting and
locating techniques are signal processing-based [5], machine
learning-based [12], and their combinations [6]. However, one
of the limitations of these techniques is that they do not
explicitly capture and utilize the underlying structure of the
system in their analyses. As smart grids have a graph structure
that reflects the connectivity of their components and can
affect the dynamics and interactions of the components, the
data from these systems naturally have embedded structures.
Therefore, by modeling the structure of the power grid as
a graph and the data associated with it as graph signals,
one can capture the information related to the connectivity
and interdependence among the components of the grid. The
power system measurement data modeled as graph signals
can be utilized in two ways for detecting cyber attacks:
1) by applying graph signal processing tools to the power
system graph signal [4], [7], [13], or 2) using graph neural
networks [10], [11] to the graph-structured data. A common
GSP-based approach is to utilize the graph Fourier transform
(GFT) to analyze the presence of a high-graph frequency
component as the indicator of falsified measurements [4], [7],
[13]. However, the local smoothness second time-derivative
(LSSTD)-based method [4], by capturing both the temporal
and vertex-to-vertex evolution of the graph signal is effective
for detecting and locating sophisticated designed cyber attack
with no sharp changes of signal values at the onset of the
attack. The main limitation of the GSP-based method is the
requirement of decision thresholds to be applied to the graph-
spectral measures, which can be challenging to fix empirically.
On the other hand, GNN-based methods automatically adjust
the model parameters to utilize graph-structured data along
with the topology. Detection and localization of cyber attacks
in smart grids can be cast into a node classification problem
within the GNN framework. For instance, in [10], [11], GCN
frameworks have been used for FDIA detection to classify
normal buses in the system from the ones with malicious data.
The current paper presents a spatio-temporal-GNN framework
for cyber attack detection and location identification in smart
grids, which also models the task as a node classification
problem. Compared to the work presented in [10] based
on GNN, the model presented in the current paper uses a
combination of message passing process and GRUs in residual
blocks in the places of graph convolutional layers and auto-
regressive moving average (ARMA) filter, respectively, which
can improve the computational time and performance.

III. METHODOLOGY
A. Power System Model

In this paper, the physical topology of the power system is
represented as a graph G := {V, £} with adjacency matrix,
A = Ja;;], where V is the set of vertices of the graph
representing the buses, and £ = {e;; : (4,5) € VxV,a;; = 1}
is the set of all edges representing the transmission lines of the
power grid. Various attributes can be associated with each bus
n € V, for instance, the real and reactive power injections, bus
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voltage magnitude and angle, injected bus current magnitude
and angle, frequency, etc. This work considers the real power
injection at each bus as a time-varying graph signal, z(n,t).
Specifically, the signal value of x(n,t) represents the injected
real power at bus n. It is also assumed that the measurements
are available at all the buses of the system (for instance through
PMUs or state estimation mechanisms).

B. Cyber Attack Model

Cyber attacks on the power system measurements (e.g.
SCADA or PMUs) have been modeled in different ways
depending on the diversity of the scenarios, research problems,
and perspectives of the research. In this work, the cyber attacks
are modeled on the time-varying real power injection in each
bus. The cyber attacks considered in this work are designed in
such a way that they do not contain abrupt changes in signal
values at the onset of the attack making them challenging to
detect. For modeling the cyber attacks, i.e., FDIA and ramp
attack, we endorse the generalized approach presented in [4].
Specifically, let V4 C V denotes the set of all buses under
cyber attack at time interval [ts¢qrt,tend]. The cyber attacks
on the bus real power injection time series in the generalized
form can be expressed by the following equation:

x(na,t) =c(t), for tsare <t <tend, and ng € V4 (1)

The cyber attacks considered in this paper can be modeled
as special cases of equation (1) as discussed next.

1) False Data Injection Attack: There are various work on
modeling FDIA in smart grids and the goal of such models are
to characterize FDIA that can bypass the bad data detectors
and affect the state estimation function [7]. Considering the
state estimation framework in power systems with z = h(y),
where z and y are the measurements and the states of the
power system and h is a non-linear function, which relates
measurements and states, the goal of the FDIA is generally to
inject bad data to the set of measurements to compromise the
performance of the estimator. If the residue of state estimation
r = ||z —"h(¥)||, error is larger than a defined threshold,
where ¥ is the estimated states then a bad data can be
detected. If the attack is designed in a way that passes the
aforementioned test then the bad data detector cannot detect
the attack. Following the work in [4], in this work, FDIA
with no sharp change at the onset of the attack is modeled by
considering c(t) = xz(n4,t) + (—1)%2’, in equation (1) where
b € {0,1}, |2'| is considered to be a very small value, which
does not result in sharp changes in the onset of the attack and
bypasses the bad data detector as discussed earlier.

2) Ramp Attack: Ramp attack is a special form of FDIA.
In ramp attack, to ensure the smooth changes of values at
the attack onset, falsified measurements are inserted gradu-
ally into the bus(es) under cyber attack, which makes them
challenging to detect. Ramp attack can be modeled as c(t) =
x(na,tstart) +mx (t—tstart) +q(na, t), where m is the slope
and q(na,t) is the additive white Gaussian noise associated
with the measurement devices at the bus n4.
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Fig. 1. Architecture of the proposed TGNN for real-time cyber attack detection and localization.

C. Model Architecture

In this section, the TGNN model used in this paper is intro-
duced. Given the adjacency matrix A := {0,1} € RIV*N}
and feature matrix X, a GNN layer can be expressed as
H'*' = g(D~Y2AD~Y/2H'W)). Here, A := A+ Iy (where
Iy is the identity matrix of size N) and D is the degree
matrix. o(.) is the sigmoid activation function, [ is the layer
number, W; holds the weights of layer [ and H' is the
output of layer [. To create a multi-layer GNN, multiple of
such layers can adopted. Fig.1 demonstrates the architecture
of the proposed TGNN model in this paper. This model is
following the message passing method of general GNNs [14].
The proposed architecture consists of three sequential layers
aiming to extract and optimize the spatio-temporal features
of the data following by a dropout and a dense layer. Each
of the three layers contains; 1) A message passing block to
acquire the structural and topological features of the data, 2)
A GRU block to obtain the temporal features of the data, 3) A
residual block in which Batch Normalization and a Rectified
Linear Unit (ReLu) activation function is applied to the data
and 4) A skip connection that feeds the output of one layer as
the input to the next layer.

The message passing process can be describe as following.
At node-level, the embedding of node ¢ will be updated based
on the aggregated feature of the node itself along with its one-
hop neighbors as f(x;) = ¢(xs, Bjen,¥(xi, z;)), where N;
is the set of one-hop distance neighbors of node ¢, & is the
permutation invariant aggregation function and ¢ and v are
learnable functions to be characterized using neural network.
The three sequential GNN layers allow message passing up
to three-hop distance neighbors. Afterwards, the GRUs are
implemented in our architecture. GRUs are improved version
of standard recurrent neural network. They aim to solve the
vanishing gradient problem [15]. Additionally, due to their
update gate and reset gate feature, they can keep information
from long ago, without washing it through time.

Every GRU has four gates. 1) Update gate(z;): for time step
t using the z; = O'(W(Z){th + U(Z)ht_l). When z; is fed
into the unit, it is multiplied by its weight W (%), The same
applies to h,_; that contains the information of the previous
t — 1 units and is multiplied by its own weight of U(*). Then
a Sigmoid activation function is applied to squash the results
between 0 and 1. The update gate determines how much of the
past information(from previous time steps) needs to be passed
along to the next unit. 2) Reset gate(r,): this gate decides how
much of the past information to forget. It follows the formula
similar to the previous one, 7, = o(WMxz, + UM h,_)
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with a difference in the weights and the gate’s usage in the
next gates. 3) Current memory content (h}): it will use the
output of the reset gate to store the relevant information from
the past. The formula is h} = tanh (Wx; +r; @ Uhyi_1),
where the input z; and information from the previous unit
are multiplied by their weights, W and U, respectively, and
the reset gate is applied to the previous unit information by
Hadamard (element-wise) product (®). This helps the unit to
determine what to remove from the previous time steps. At
the end, these two calculated results are summed up and a
non-linear activation function of tanh is applied to them. 4)
Final memory at current time step (h:): hy is the vector that
holds information for the current unit and passes it down to
the network. To calculate the current time step memory, the
update gate is needed since hy = z; @ hy—1 + (1 — z¢) ® hj.
Based on the formula, the unit can learn to set the z; close to
1 and keep a majority of the previous information. z; being
close to 1 causes the (1 — z;) being close to 0 that ignores big
portion of the current information. The sequence of mentioned
four gates in GRU allows it to store and filter the information
using the update and reset gates. Therefore, the GRU is able
to eliminate the vanishing gradient problem.

Once the spatial and temporal features extracted, residual
blocks and skip connections are applied. They aim to address
the degradation problem and feature reusability. The results
are then fed to a dropout and a dense layer which produces
softmax values to the output layer. The model produces either
0 or 1 labels for the nodes of the system at each time instance
specifying if the measurement is normal or abnormal, respec-
tively. Therefore, the TGNN output specifies the beginning
and ending time of the detected abnormal data as well.

D. Model Parameters

In this work, Stochastic Gradient Descent (SGD) optimizer
is used in our TGNN model. The learning rate of 0.001,
the exponential decay rate of (=%, momentum of 0.9 that
accelerates gradient descent in the relevant direction and
dampens oscillations, and Nesterov momentum are considered.
Nesterov momentum calculates the decaying moving average
of the gradients of projected positions in the search space as a
substitute to the actual positions [19], [20]. The size of hidden
layers in the dense output layer is set to 64 and the dropout rate
is set as 0.3. Threshold value of 0.5 is used in the output layer
for deciding the binary labels. In this work, simialar to [10],
[11], the real power injections at the buses are considered as
state representors of the buses or features associated with each
bus. While other measurements including voltage magnitude
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V; and voltage angle 6; can also be considered and have been
considered in the literature, our experiments have shown strong
correlation among these features. The model takes input batch
size of 256 representing the number of samples processed
before the model is updated. The binary cross entropy is used
as the loss function. The network monitors the binary accuracy,
which determines the ratio of correct predictions of labels.

IV. RESULTS
A. Data Generation and Data Processing

In this study, the time-series power system measurements
are obtained by running power flow in MATPOWER 7.0
[17] on IEEE 118 bus system [16] by varying the load
demands in time according to the load pattern obtained from
the New York Independent System Operator (NYISO) [18] as
described in [4]. The system state = (V; and 6; at each bus) is
estimated using the PSSE module [10], [11]. PSSE solves the
optimization problem in Z = min, (z—h(z))T R~ (z — h(z)),
as a weighted least squares estimation using complex power
measurements z collected by PMUs. In the optimization
equation, R represents measurements’ error covariance matrix
and z includes F;, Q;, P;; and Q;;. We consider the bus real
power injections as the measurement data with 52,500 time
instances for training and 17,500 time instances for testing.
For half of the instances, cyber attacks (FDIA, and ramp) are
launched according to the model described in Section III.B.
15% of training data have been used for cross-validation. The
measurement data sampling frequency is 30Hz. As mentioned
earlier, the maximum number of epochs for training considered
is set to be 100 with early stopping criteria, where 75 epochs
are tolerated without any enhancement in the accuracy and
loss of validation set. All the implementations are executed in
Python3.6 using Sklearn, Tensorflow, Keras, and Networkx on
an Intel Core i7-7700 CPU 3.60GHz.

B. Detection Performance of TGNN Framework

The performance of the proposed TGNN Framework is eval-
uated in terms of detection accuracy and detection delay. The
latter metric is important for the suitability of implementing
the technique in real-time scenarios. The TGNN model detects
FDIA and ramp attacks with an overall accuracy of 99.50%
and 88.85%, respectively. A sensitivity analysis has been
conducted to evaluate the role of the intensity of the FDIA
attack on the performance of the TGNN model. Specifically,
the intensity of the FDIA has been varied by considering
various |2’| values in the range of [—0.002, 0.002] per unit as
discussed in Section III. The results of this sensitivity analysis
in terms of the acquired accuracy are presented in Fig. 2. When
|#’| = 0, which represents no attack, the model performance is
high in labeling no attacks in the system. When |2’| = 0.0001
then the TGNN model accuracy drops to 62.51%, which is
the point where the model fails to detect the attack.

The results indicate that TGNN can detect and locate the
FDIAs exactly at the instances in which that attacks are
introduced. However, for the ramp attacks, the detection delays
are in the range of 0 to 20 time instances, where most of the
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Fig. 2. Sensitivity analyses of TGNN model for FDIA detection in terms of
accuracy for various intensities of attack, |z’|.

attacks are detected within 9 time instances while for only a
few cases the delay is large (around 20 time instance). For this
reason, the median detection delay is chosen as the metric for
the real-time applicability of the TGNN model.

In order to evaluate the impact of FDIA in different buses,
1000 FDIA has been simulated and considered separately on
each node with 2/ = 0.02 on a one-day, i.e., 2,500 instance
dataset. The accuracy of the FDIA detection in each of the
buses are shown in Fig. 3. It can be observed that some of the
buses of the system are more sensitive to attacks than others
by reflecting the lower performance of detection. This suggests
that the proposed model can be sensitive to the location of
the FDIA. Similar analysis have been performed for the ramp
attack as illustrated in Fig. 4. The accuracy in some of the
buses drops to 88.1% while in others it is up to 89.91%.
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Fig. 3. Sensitivity analyses of TGNN model for FDIA detection in terms of
accuracy for various locations (i.e., bus index) of the attack.
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Fig. 4. Sensitivity analyses of TGNN model for ramp attack detection in
terms of accuracy for various locations (i.e., bus index) of the attack.

C. Comparison with baseline GNN model

We have also developed a baseline GNN model, which does
not consider the temporal information and therefore, is mainly
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Fig. 5. Sensitivity analyses of TGNN model for ramp attack detection in
terms of median of detection delay for various locations.

suitable for detecting and locating attacks from snap-shot data.
It comprises a message passing block similar to the message
passing module introduced in the TGNN model and a Feed-
Forward Network (FFN) block that prepares and updates the
spatial features at each bus of the power system. Applying
this baseline GNN model to the FDIA data, high accuracy of
99.97% can be achieved. A similar sensitivity analysis for the
intensity of the attack |’| for this model has been illustrated
in Fig. 6 in the range of [—0.02, 0.02]. This baseline GNN
model fails to detect FDIAs at |2’| = 0.001, which is 10 times
larger than the failure point of the proposed TGNN model.
The improved performance of TGNN is due to exploiting
the temporal information and the residual blocks that allow
dynamic tuning of the parameters during training. Finally, the
F1 score and the false alarm rate for the proposed TGNN
model is 100% and 0.00% for FDIA and 99.98% and 0.02%
for ramp attacks, respectively. The F1 score and FA of GNN
model for FDIAs is 100% and 0.00%, subsequently. However,
TGNN can facilitate the detection and locating of ramp attacks
that cannot be detected by the baseline GNN model.
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Fig. 6. Sensitivity analyses of GNN model for FDIA detection in terms of
accuracy for various intensities of attack, |z’|.

V. CONCLUSION

In this work, a TGNN framework has been proposed that
uses both the temporal and topological information from the
system to detect and localize the cyber attacks. Adopting
the message passing method, GRU, and residual blocks in
the model, the proposed TGNN is capable of producing and
processing messages and updating the node embeddings by
aggregating and summing node representations in each node’s
neighborhood. The model can detect and localize FDIAs
and ramp attacks with high accuracy, which was verified
experimentally using simulation data on the IEEE 118 bus
system. Moreover, sensitivity analyses of the model based on
different magnitudes of attack and the location of the attack
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were performed and compared to our baseline GNN model
that is developed to only take the topological structures of the

power system along each snap-shot of the states.
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