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Can large inhomogeneities generate target patterns?
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Abstract. We study the existence of target patterns in oscillatory media with weak local coupling

and in the presence of an impurity, or defect. We model these systems using a viscous eikonal

equation posed on the plane, and represent the defect as a perturbation. In contrast to previous

results we consider large defects, which we describe using a function with slow algebraic decay, i.e.

g ∼ O(1/|x|m) for m ∈ (1, 2]. We prove that these defects are able to generate target patterns and

that, just as in the case of strongly localized impurities, their frequency is small beyond all orders of

the small parameter describing their strength. Our analysis consists of finding two approximations

to target pattern solutions, one which is valid at intermediate scales and a second one which

is valid in the far field. This is done using weighted Sobolev spaces, which allow us to recover

Fredholm properties of the relevant linear operators, as well as the implicit function theorem,

which is then used to prove existence. By matching the intermediate and far field approximations

we then determine the frequency of the pattern that is selected by the system.
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1. Introduction

Target patterns are coherent structures that emerge in excitable and in oscillatory media. They are

characterized by concentric waves that expand away from a center, or core region, creating a ‘bull’s-

eye’ pattern. Although often associated with the Belousov-Zhabotinsky reaction [27], they also appear

in colonies of slime mold [3, 5], in the oxidation of carbon monoxide on platinum [26], and in brain

tissue [24].

In this paper we will focus on target patterns that arise in oscillatory media, where three key

mechanisms, or processes, contribute to their formation. The first mechanism is associated with the

intrinsic dynamics of the system, which must support a limit cycle that results in uniform time

oscillations. The second is a transport process that allows for different spatial regions to interact,

such as diffusion in chemical reactions, or coupling between neurons in brain tissue. While these two

processes are enough to generate traveling and spiral waves, to obtain target patterns one needs a

third ingredient, a defect. Indeed, it is believed that the role of defects, or impurities, is to alter

the dynamics of the system in a localized area resulting in a change in the frequency of the time

oscillations. As a consequence, these defects act as pacemakers entraining the rest of the medium and

forming target patterns.
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While experiments and previous analytical results confirm that small localized defects give rise

to these patterns, [25, 17, 7, 18, 8, 22, 26, 15, 11, 13], in this paper we want to determine the exact

level of localization that is needed to generate them. In particular, assuming the inhomogeneity is

modeled as a function with algebraic decay of order O(1/|x|m), we want to determine how small we

can take m > 0 and still obtain a well defined target pattern.

To simplify the analysis we concentrate only on systems which involve weak local coupling.

Because it is well known that under this assumption the amplitude of oscillations is tied, or enslaved,

to the dynamics of the phase, this allows us to focus our analysis on this last variable. Indeed, the

results presented in [4] show that coherent structures in these systems are well described by the

following viscous eikonal equation

φt = ∆φ− b|∇φ|2 − εg(x), x ∈ R2, (1)

where the perturbation, εg, represents the defect. The above expression is derived using a multiple

scale analysis and it therefore models phase changes that occur over long spatial and time scales. In

this context, target patterns then correspond to solutions of the form φ(x, t) = φ̃(x) − Ωt, satisfying

the boundary condition ∇φ → k as |x| → ∞, where the constant k then represents the pattern’s

wavenumber.

Our motivation for considering large inhomogeneities is three fold. First, in all previous work the

level of localization imposed on the inhomogeneity was tied to the tools used to prove the existence

of these patterns. Yet, numerical simulation like the ones presented here in Section 6, show that

these assumptions can be relaxed. For example, in [23] defects are modeled as functions with compact

support and target pattern solutions are found using separation of variables. In contrast, in [15]

the authors use spatial dynamics to prove the existence of these patterns. This then allows them

to model the impurities as radially symmetric functions with exponential decay. In [13], thanks to

the use of weighted Sobolev spaces, this assumption is relaxed and general (non-radially symmetric)

inhomogeneities with decay of order O(1/|x|m), m > 2, are considered.

Although using different approaches, the references mentioned above show that target patterns

can only be generated by inhomogeneities with a postive and finite mass M =
∫
R2 g. This obviously

restricts the level of decay of g to be of order o(1/|x|2). However, our numerical simulations show that

one can obtain target patterns even in the case when the defect is assumed to decay only at order

O(1/|x|m), for m ∈ (1, 2]. We are therefore interested in proving the existence of target patterns for

these ‘large’ inhomogeneities of infinite mass.

Our second reason for considering this problem is tied to the existence of spiral waves in oscillatory

media with nonlocal coupling. In [10] it was shown that the dynamics of these patterns are well

described by the following amplitude equation

0 = K ∗ w + λw + α|w|2w + O(ε), w ∈ C, 0 < ε << 1

where w is a radially symmetric complex-valued function, and K is a symmetric convolution kernel

of diffusive type. Additional assumptions on K imply that formally one can write this operator as

(1− ε∆1)−1σ∆1, and suggest preconditioning the above equation with (1 − ε∆1), where ∆1 = ∂rr +
1
r∂r −

1
r2 . This then results in the following expression, which perhaps not surprisingly resembles the

complex Ginzburg-Landau equation,

0 = β∆1w + λw + α|w|2w + O(ε), β = (σ − ελ), r ∈ [0,∞).

From there, a similar multiple-scale analysis as the one carried out in [4] and that we also

summarize in Appendix, gives a hierarchy of equations at different powers of a small parameter
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δ = δ(ε). In particular, at order δ2 one finds the steady state viscous eikonal equation,

−Ω = ∆1φ− b|∇φ|2 − δ2g, (2)

as a description of the phase dynamics of spiral waves. However, in contrast to the case of target

patterns, here the inhomogeneity does not represent a defect, but is instead related to the small

variations, ρ, of the amplitude of the pattern. More precisely, g ∼ (1− ρ2). Although not immediately

obvious, one can check using numerical simulations that the perturbation (1 − ρ2) decays at infinity

at order O(1/|x|2) (see the Appendix A). Therefore, the particular viscous eikonal equation that is

connected to the phase dynamics of spiral waves in these systems is the same equation that we are

trying to solve.

Finally, our third motivation comes from the following change of variables, φ = − 1
b log(Ψ), which

transforms the steady state viscous eikonal equation, (2), into a Schrödinger eigenvalue problem with

potential εg,

ΩΨ = ∆Ψ + εg(x)Ψ.

The transformation also shows that our target pattern solutions correspond to bound states of this

operator. The only result solving the above eigenvalue problem that we are aware of is that of Simon

[21], who proved that in the two dimensional case and under the assumption of localized potentials,

i.e.
∫
R2 g(x)(1 + x2) dx <∞, bound states exists if and only if the mass

∫
R2 g(x) dx > 0.

Notice that in the context of the Schrödinger operator, our problem corresponds to the ‘super-

critical’ case, in the sense that the potential, g, no longer corresponds to a bounded perturbation of

the Laplacian. To see this, fix g(x) = 1/(1 + |x|)m with 1 < m ≤ 2, and consider the rescaling y = γx.

The Schrödinger operator then reads γ2∆yΨ + ε γm

(γ+|y|)mΨ, and it is then clear that if we choose γ

small, the potential is actually ‘large’ in the far field. Consequently, the results from [21] no longer

apply for the case considered here.

In this paper we show that target pattern solutions to the viscous eikonal equation, or equiva-

lently, bound states to the above Schrödinger operator, exists even for these large inhomogeneities. As

with small defects, we prove that target pattern solutions have frequencies, Ω, that are small beyond

all orders of the parameter ε. Consequently one cannot use a regular perturbation expansion to justify

existence. To resolve this issue we first find two approximations to target patterns, one which is valid

at intermediate scales and second one that accounts for the far field behavior of the solution. By

matching these two approximations we are then able to determine the unique value of the frequency

selected by the system.

It is in the course of this analysis that one sees that the slow decay rate of the inhomogeneity

plays a major role in shaping the solution at intermediate scales. This is the main difference between

the analysis presented here and that of [13], where inhomogeneities of finite mass are considered. It is

also why we will split defects into a core region and a far field region, reflecting the fact that the defects

we work with are still too small to alter the shape of the pattern at large scales, but do contribute to

the form of the equation at intermediate scales. In particular, we write the impurity as the sum two

functions, defined as

gc = (1− χD)g gf = χDg, (3)

where χD is a C∞ radial cut-off function, with χD(|x|) = 0 for |x| < D and χD(|x|) = 1 for |x| > 2D.

To prove the existence of target patterns, the value of the parameter D can remain arbitrary, so long

as it is a finite number. This follows because even though in the above definition the function gc has

compact support, our results hold for more general ‘core’ functions. The only requirement being that

this core defect has finite mass. We therefore make the following assumption.
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Hypothesis 1.1. The inhomogeneity, g, lives in Hk
σ(R2), with k ≥ 2 and σ ∈ (0, 1), is radially sym-

metric, and positive. In addition, the defect can be split into the sum of two positive functions, gc, gf ,

satisfying

• The function gf is in Hk
σ(R2) for 0 < σ < 1. In particular, gf ∼ O(1/rm) as r → ∞, with

1 < m ≤ 2, while near the origin gf (|x|) = 0 for |x| < 1.

• The function gc is in Hk
γ (R2) for γ > 1. In particular, gc ∼ O(1/rd) with d > 2 as r →∞.

Remark 1.2. The spaces Hk
σ(R2), with σ ∈ R, are weighted Sobolev spaces with norm

‖u‖Hkσ(R2) =
∑
|α|≤s

‖(1 + |x|2)σ/2Dαu(x)‖L2(R2).

Notice that for positive values of σ, they impose a level of decay on functions. For a precise definition

of these spaces see Section 2.

With the above hypothesis and the approach just described, we prove the following result.

Theorem 1. Let k ≥ 2 and σ ∈ (0, 1) and consider a function g ∈ Hk
r,σ(R2) satisfying Hypothesis

1.1. Then, there exists a constant ε0 > 0 and a C1([0, ε0)) family of eigenfunctions φ = φ(r; ε) and

eigenvalues Ω = Ω(ε) that bifurcate from zero and solve the equation

∆0φ− b(∂rφ)2 − εg(r) + Ω = 0 r = |x| ∈ [0,∞).

Moreover, this family has the form

φ(r; ε) = −1

b
χ1(Λr) log(K0(Λr)) + φ1(r; ε) + εc, Λ2 = bΩ(ε)

where

i) c is a constant that depends on the initial conditions of the problem,

ii) K0(z) represents the zeroth-order Modified Bessel function of the second kind,

iii) ∂rφ1 ∈ Hk
r,σ(R2), and

iv) Ω = Ω(ε) = C(ε)4e−2γε exp[2/a], with

a = −εb
∫ ∞

0

gc(r) r dr,

and C(ε) a C1 constant that depends on ε.

Remark 1.3. Notice that under Hypothesis 1.1 the viscous eikonal equation, (1), is invariant under

rotations. As a result we can look for solutions that are radially symmetric. This assumption is made

mainly for convenience, and one can follow the steps in [13] to tackle the more general case of non-

symmetric inhomogeneties.

Remark 1.4. If the inhomogeneity g has strong algebraic decay, i.e. g(r) ∼ 1/rm with m > 2, then we

are back in the regime considered in [13]. In this case, the impurity has finite mass and there is no need

to split this function into the sum of its core and far field functions. In fact, one can set g = gc = gf
and the above theorem is equivalent to Theorem 1 in [13] with a = −εb

∫∞
0
g(r)r dr <∞.

Remark 1.5. While the exact form of the cut-off function χD appearing in the definition of gc is not

important for the proof of existence, it does play a role when approximating the pattern’s frequency, Ω.

As our numerical simulations show, there is an optimal way of picking the parameter D that allows

one to obtain better estimates for the frequency, see Section 6. If a non-optimal choice is made, one

can improve the estimates for Ω by using higher order approximations for the intermediate and far

field solutions when carrying out the matched asymptotics, see Section 5.
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We close this section with some comments regarding the mathematical tools used in this paper.

As in reference [13], the proof of existence of solutions is based on the implicit function theorem. This

requires that the linearization about our first order approximation, φ = φ0, be an invertible, or at least

Fredholm operator with closed range and finite dimensional kernel and cokernel. However, because

the equations are posed on the plane, we obtain linear operators that are second order differential

operator with essential spectrum near the origin. In addition, the translational symmetry of the

system implies that these maps have a zero eigenvalue at the origin. Consequently, these operators

are not invertible and they do not have a closed range when posed as maps between standard Sobolev

spaces. To overcome this difficulty and recover Fredholm properties for these maps, we work instead

with weighted Sobolev spaces. In particular, we make use of the results from [19], where Fredholm

properties for the Laplace operator are derived. For other instances where this approach is used to

prove existence of patterns see references [9, 11, 13, 12].

1.1. Outline:

The paper is organized as follows. In Section 2 we introduce a special class of weighted Sobolev spaces

and summarize Fredholm properties for the Laplacian and related operators. In Section 3 we work

with our model (1) and derive from it an equation that is valid at intermediate scales. We then prove

existence of solutions to this equation that are bounded near the origin and that have appropriate

growth conditions. Next, in Section 4 we work with the full model (1) and, treating the frequency as

a parameter, find a first order approximation to target pattern solutions. Then, in Subsection 5.1 we

use matched asymptotics to determine the value of the frequency, Ω, selected by the system. More

precisely, we show that Ω is a C1 function of the parameter ε. This then allows us to prove existence of

solutions using the implicit function theorem. The analysis is complemented by numerical simulations

presented in Section 6, and a discussion in Section 7.

2. Preliminaries

In this section two different classes of Sobolev spaces are introduced, weighted Sobolev spaces and

Kondratiev spaces. We also look at Fredholm properties for the specific operators that will appear

in later sections. We will see how these properties depend on the weighted spaces used to define the

domain and range of these operators. Throughout this section we use the symbol 〈x〉 = (1 + |x|2)1/2,

which appears in the definition of the norms for the weighted Sobolev spaces introduced.

2.1. Weighted Sobolev Spaces

Let s be a nonnegative integer, p ∈ (1,∞), and γ a real number. We denote by W s,p
γ (Rd) the space of

functions formed by taking the completion of C∞0 (Rd,C) under the norm

‖u‖W s,p
γ (Rd) =

∑
|α|≤s

‖〈x〉γDαu(x)‖Lp(Rd).

When p = 2 we let W s,2
γ (Rd) = Hs

γ(Rd). In this case these spaces are also Hilbert spaces, with inner

product defined in the natural way by

〈f, g〉 =
∑
|α|≤s

∫
Rd
f(x)ḡ(x) 〈x〉2γ dx

where the overbar denotes the complex conjugate.

Notice in particular that depending on the sign of the weight γ, the functions in these spaces are

either allowed to grow (γ < 0 ), or forced to decay (γ > 0). We also have natural embeddings, with
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W s,p
γ (Rd) ⊂W s,p

σ (Rd) provided γ > σ, and W s,p
γ (Rd) ⊂W k,p

γ (Rd) whenever s > k. For 1 < p <∞ we

can also identify the dual, (W s,p
γ (Rd))∗, with the space W−s,q−γ (Rd), where p and q conjugate exponents.

Kondratiev Spaces: With s, p and γ as in the previous section, we define Kondratiev spaces as

the completion of C∞0 (Rd,C) functions under the norm

‖u‖Ms,p
γ (Rd) =

∑
|α|≤s

‖〈x〉γ+|α|Dαu(x)‖Lp(Rd)

and denote them by the symbol Ms,p
γ (Rd).

Again we see that these spaces are Hilbert spaces when p = 2, with inner product given by

〈f, g〉 =
∑
|α|≤s

∫
Rd
f(x)ḡ(x) 〈x〉2(γ+|α|) dx.

We also have the following natural embeddings. One can check that Ms,p
γ (Rd) ⊂Mk,p

γ (Rd) whenever

s > k, and Ms,p
γ (Rd) ⊂ Ms,p

σ (Rd) provided γ > σ. In addition, as in the case of standard Sobolev

spaces, one can identify the dual space (Ms,p
γ (Rd))∗ with M−s,q−γ (Rd), where p and q are conjugate

exponents.

As was the case with the weighted Sobolev spaces defined above, Kondratiev spaces encode

growth or decay depending on the sign of γ. However, in contrast to W s,p
γ (Rd), Kondratiev spaces

enforce a specific algebraic growth or algebraic decay depending on the value of γ. In addition, we have

the following result which summarizes decay properties for functions in Ms,p
γ (Rd) in terms of γ.

Lemma 2.1. Let d,m ∈ N with m > (d− 1)/2. Then, for γ > −d/2, and for all f ∈Mm+1,2
γ (Rd) there

is a constant C > 0 such that

|f(x)| ≤ C‖∇f‖δL2
γ+1(Rd)‖f‖

1−δ
Mm+1,2
γ (Rd)

|x|−γ−d/2,

whenever |x| is large and where δ = (d− 1)/2m.

Proof. Let (θ, r) represent spherical coordinates in Rd, with r being the radial direction and θ repre-

senting the coordinates in the unit sphere, Σ. Then,∫
Σ

|f(θ,R)|2 dθ ≤
∫

Σ

(∫ R

∞
|∂rf(θ, s)| ds

)2

dθ

‖f(·, R)‖L2(Σ) ≤

[∫
Σ

(∫ ∞
R

sαsγ+1|∂rf(θ, s)|s(d−1)/2 ds

)2

dθ

]1/2

,

where α = −(γ+1)+(1−d)/2 and R is fixed. Since the inner integral is squared, we also switched the

bounds of integration. Then, applying Minkowski’s inequality for integrals [6, Theorem 6.19] followed

by Cauchy Schwartz,

‖f(·, R)‖L2(Σ) ≤
∫ ∞
R

sα
[∫

Σ

s2(γ+1)|∂rf(θ, s)|2s(d−1) dθ

]1/2

ds

≤
[∫ ∞

R

s2α

]1/2
[∫ R

∞

∫
Σ

s2(γ+1)|∂rf(θ, s)|2s(d−1) dθ ds

]1/2

≤ C(γ, d)Rα+1/2‖∇f‖L2
γ+1(Rd)
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where the last line holds provided 2α+ 1 < 0. We therefore have the following inequality

‖f(·, R)‖L2(Σ) ≤ C(γ, d)R−γ−d/2‖∇f‖L2
γ+1(Rd), γ > −d/2.

Suppose now that f ∈Mm+1,2
γ (Rd). Using the chain rule we find that |∂rDk

Σf(·, R)| ≤ |Dk+1f |Rk,

where by Dk
Σ we mean derivatives with respect to unit sphere variables. As a result, similar calculations

as the one above show that for integer values of k ∈ [1,m] we have that

‖Dk
Σf(·, R)‖L2(Σ) ≤ R−γ−d/2‖Dk+1f‖L2

γ+k+1(Rd), γ > −d/2.

Next we use a result from Adams and Fournier [2, Theorem, 5.9], which states that given a

domain Σ of dimension n, and conjugate exponents, p, q, satisfying p > 1 and mp > n, 1 ≤ q ≤ p,

there exist a constant C such that for all u ∈Wm,p(Σ)

‖u‖L∞(Σ) ≤ C‖u‖δWm,p(Σ)‖u‖
(1−δ)
Lq(Σ),

where δ = np/(np+(mp−n)q). Choosing p = q = 2, n = d−1, m > (d−1)/2, we obtain δ = (d−1)/2m

and

‖f(·, R)‖∞ ≤ C(m)R−γ−d/2‖f‖δ
Mm+1,2
γ (Rd)

‖∇f‖1−δ
L2
γ+1(Rd)

,

provided f ∈Mm+1,2
γ (Rd).

�

Remark 2.2. Although in the definitions presented above, the spaces Ms,p
γ (Rd) and W s,p

γ (Rd) consist

of complex-valued functions, in what follows we will assume that all functions are real-valued.

2.2. Fredholm operators

In this section and throughout the paper, we use the notation Ms,p
r,γ (Rd) and Hs

r,γ(Rd) to denote the

subspaces of radially symmetric functions in Ms,p
γ (Rd) and Hs

γ(Rd), respectively.

The next Lemma shows that for λ > 0, the operator ∂r+ 1
r +λ is invertible in appropriate spaces.

Lemma 2.3. Let γ ∈ R, λ > 0, and k ∈ N. Then, the operator (∂r + 1
r + λ) : Hk

r,γ(R2) −→ Hk−1
r,γ (R2)

has a bounded inverse.

Proof. A short calculation shows that the kernel of this operator is spanned by the function e−λr/r,

which is singular near the origin and is therefore not in L2
r,γ(R2). At the same time, the adjoint of

this operator is given by −∂r +λ : L2
r,−γ(R2) −→ H−1

r,−γ(R2), and we find that the cokernel is spanned

by the function eλr, which again is not in the space L2
r,−γ(R2) no matter what the value of γ is. As a

result, the kernel and co-kernel of this operator are trivial.

To prove the result, we are left with showing that that the inverse operator

L2
r,γ(R2) −→ H1

r,γ(R2)

f(r) 7→ u(r) = 1
r

∫ r
0

eλ(s−r)f(s)s ds

is bounded. To show that ‖u‖L2
r,γ(R2) ≤ ‖f‖L2

r,γ(R2), we use the inequality

‖u‖L2
r,γ(R2) ≤ ‖u‖L2

r,γ(B1) + ‖u‖L2
r,γ(R2\B1),
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where B1 is the unit ball in R2. Then

‖u‖L2
r,γ(R2\B1) =

[∫ ∞
1

∣∣∣∣∫ r

0

f(s)eλ(s−r) s

r
ds

∣∣∣∣2 〈r〉2γr dr
]1/2

≤2|γ+1/2|

[∫ ∞
1

∣∣∣∣∫ r

0

f(s)〈s〉γ+1/2 e−λ(r−s)〈r − s〉|γ+ 1
2 | ds

∣∣∣∣2 dr

]1/2

,

≤2|γ+1/2|

[∫ ∞
0

∣∣∣∣∫ r

0

|f(r − z)|〈r − z〉γ+1/2e−λz〈z〉|γ+1/2| dz

∣∣∣∣2 dr

]1/2

≤2|γ+1/2|
∫ ∞

0

e−λz〈z〉|γ+1/2|
(∫ ∞

z

|f(r − z)|2〈r − z〉2γz dz
)1/2

dz

≤C1(γ, λ)‖f‖L2
r,γ(R2)

where the second line follows from the fact that s/r < 1 and the relation 〈s〉−σ〈r〉σ ≤ 2|σ|〈r − s〉|σ|.
The inequality on the third line comes from using the change of coordinates z = r − s and ex-

tending the outer limits of integration to zero, while the fourth line follows from an application

of Minkowski’s inequality for integrals, [6, Theorem 6.19]. In the final result we let C1(γ, λ) =

2|γ+1/2| ∫∞
0
e−λz〈z〉|γ+1/2| dz.

To prove the relation ‖u‖L2
r,γ(B1) ≤ C‖f‖L2

r,γ(R2), we bound

|u(r)| ≤ 1

r

∫ r

0

∣∣∣f(s)e−λ(r−s)s
∣∣∣ ds

≤ 1

r

∫ r

0

|f(s)| s ds

≤ 1

r

(∫ r

0

|f(s)|2s ds
)1/2(∫ r

0

s ds

)1/2

≤ 1

r

(∫ ∞
0

|f(s)|2〈s〉2γs ds
)1/2(

r√
2

)
≤ 1√

2
‖f‖L2

r,γ(R2)

where the third line follows from Hölder’s inequality. We then obtain that ‖u(r)‖L2
r,γ(B1) ≤ C2(γ) ‖f‖L2

r,γ(R2)

with C2(γ) = 1√
2

(∫ 1

0
〈r〉2γr dr

)1/2

, and consequently

‖u(r)‖L2
r,γ(R2) ≤ (C1(γ, λ) + C2(γ))‖f‖L2

r,γ(R2).

Next, to show that the derivative ∂ru ∈ L2
r,γ(R2), we use the equation to write ∂ru = f−λu− u

r ,

and thus obtain

‖∂ru‖L2
r,γ(R2\B1) ≤ (1 + (1 + λ)C1(γ, λ)) ‖f‖L2

r,γ(R2).

To bound ‖∂ru‖L2
r,γ(B1), notice first that

|u(r)|
r
≤ 1

r2

∫ r

0

|f(s)|s ds ≤ 1

r2

∫ r

0

|f(s)− f(y)|s ds+
1

2
|f(y)|,

where we pick y ∈ [0, r]. Letting B̃(y, 2r) = B(y, 2r)∩B(0, r) ⊂ R2 , where B(y, 2r) is the ball centered

at y of radius 2r, the inequality becomes

|u(r)|
r
≤ |B̃(y, 2r)|

2πr2

(
1

|B̃(y, 2r)|

∫
B̃(y,2r)

|f(s)− f(y)|s ds dθ

)
+

1

2
|f(y)|.
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Here, |B̃(y, 2r)| denotes the measure of the set B̃(y, 2r). Since L2(B(0,M)) ⊂ L1(B(0,M)) for any

ball B(0,M) ⊂ R2, with finite radius M , we have that f is in L1
loc(B(0,M)). By the Lebesgue

Differentiation Theorem [6, Theorem 3.21], the expression in parenthesis approaches zero as r → 0,

while the fraction in front remains bounded since |B̃(y, 2r)| > 2πr2. Therefore, close to the origin, the

function |u(r)|/r is bounded by f(r) and, using again the equation ∂ru = f − λu− u/r, we find that

‖∂ru‖L2
r,γ(B1) ≤ (2 + (1 + λ)C2(γ)) ‖f‖L2

r,γ(R2).

It then follows that

‖∂ru‖L2
r,γ(R2) ≤ (3 + (1 + λ)(C1(γ, λ) + C2(γ)))‖f‖L2

r,γ(R2).

The above calculations then show that the map Lλ = ∂r + 1
r + λ : H1

r,γ(R2) −→ L2
r,γ(R2) is

invertible. Moreover, we also obtain that the operator norm of its inverse satisfies,

‖L−1
λ ‖ ≤ 3 + (2 + λ)(C1(γ, λ) + C2(γ)).

To extend the result to the more general operator ∂r + 1
r + λ : Hk

r,γ(R2) −→ Hk−1
r,γ (R2) one can

proceed by induction: Assuming that f and u are in Hk−1
r,γ (R2) one shows that ∂kr u is in L2

r,γ(R2)

using the relation ∂kr u = ∂k−1
r (f − u− u

r ). The fact that ∂k−1
r

(u
r

)
is in the correct space follows by

a similar argument as the one done above to prove u/r ∈ L2
r,γ(R2).

�

To simplify notation, we define L(λ) = ∂r + 1
r +λ and prove in the next Lemma that its inverse,

defined over appropriate weighted spaces, is continuously differentiable with respect to the parameter

λ.

Lemma 2.4. Let λ > 0 and k ∈ N ∪ {0} and consider the operator defined by L(λ)u = ∂ru+ 1
ru+ λu.

Then, its inverse,

L−1(λ) : Hk
r,γ(R2) −→ Hk+1

r,γ (R2)

is C1 with respect to the parameter λ.

Proof. Lemma 2.3 shows that L−1(λ), with the specified domain and range, is a bounded operator

for all λ ∈ (0,∞). To prove the continuity of this operator with respect to λ we must show that given

f ∈ Hk
r,γ(R2),

sup
‖f‖

Hkr,γ
=1

‖(L−1(λ+ h)− L−1(λ))f‖Hk+1
r,γ
≤ Ch.

Using the notation φ(λ) = L−1(λ)f , we notice that

(L−1(λ+ h)− L−1(λ))f =φ(λ+ h)− φ(λ)

=− L−1(λ) [(L(λ+ h)− L(λ))]φ(λ+ h)

=− hL−1(λ)L−1(λ+ h)f,

from which the desired result follows. This last expression also shows that for λ > 0, the derivative of

L−1(λ) with respect to this parameter is given by

∂λL−1(λ) : Hk
r,γ(R2) −→ Hk+1

r,γ (R2)

f 7→ −L−1(λ)L−1(λ)f

Since the derivative ∂λL−1(λ) is the composition of two continuous operators, it follows that it is itself

continuous with respect to λ. �
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Finally, the next proposition establishes Fredholm properties for the radial operators ∆n :

M2,2
r,γ−2(R2)→ L2

r,γ(R2) ,

∆n = ∂rr +
1

r
∂r −

n2

r2
, n ∈ N ∪ {0}.

The results follows from [19], where it is shown that the Laplace operator ∆ : M2,p
γ−2(R2)→ Lpγ(R2) is

Fredholm, and the fact that when p = 2, one can decompose the space M2,2
γ−2(R2) into a direct sum

⊕m2
n,γ−2 where

m2
n,γ−2 = {u ∈M2,2

γ−2(R2) : u(r, θ) = vn(r)einθ, vn ∈M2,2
r,γ−2(R2)}, n ∈ Z.

Notice that because the functions in M2,2
γ−2(R2) are real valued we have that v−n = v̄n. For a detailed

proof of this next result, see [13, Lemma 3.1].

Proposition 2.5. Let γ ∈ R\Z, and n ∈ Z. Then, the operator ∆n : M2,2
r,γ−2(R2)→ L2

r,γ(R2) given by

∆nφ = ∂rrφ+
1

r
∂rφ−

n2

r2
φ

is a Fredholm operator and,

1. for 1− |n| < γ < |n|+ 1, the map is invertible;

2. for γ > |n|+ 1, the map is injective with cokernel spanned by r|n|;

3. for γ < 1− |n|, the map is surjective with kernel spanned by r|n|.

On the other hand, the operator is not Fredholm for integer values of γ.

3. Intermediate Approximations to the Viscous Eikonal Equation

As mentioned in the introduction, our interest in the viscous eikonal equation

φ̃t = ∆φ̃− b|∇φ̃|2 − εg(x), x ∈ R2,

stems from its role as a model equation for the phase dynamics of target patterns and spiral waves

in oscillatory systems. We are therefore interested in solutions of the form φ̃(x, t) = φ(x)−Ωt, which

then satisfy the steady state equation,

∆φ− b|∇φ|2 − εg(x) + Ω = 0 x ∈ R2. (4)

Because the gradient, ∇φ, then approximates the pattern’s wavenumber, target patterns then corre-

spond to those φ which in addition fulfill the boundary conditions, ∇φ→ k as |x| → ∞. Consequently,

we look for solutions to equation (4) that bifurcate from zero when ε > 0, and whose gradients are

bounded at infinity.

Notice that the condition on the gradient, ∇φ, provides enough information to derive an equation

that is valid at intermediate scales. Indeed, assuming a regular perturbation for both φ and Ω, one

obtains at order O(ε) the equation,

∂rrφ1 +
1

r
∂rφ1 − g = −Ω1.

A short calculation then shows that in order to obtain solutions with bounded derivatives, the param-

eter Ω1 must be zero. Continuing this perturbation analysis one checks that this condition must be

satisfied at all orders of ε . In other words, the frequency, Ω, must be small beyond all orders of this

parameter. Consequently, at intermediate scales the system is well approximated by the intermediate

equation

∆0φ− b(∂rφ)2 − εgc − εgf = 0. (5)
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Notice that we have explicitly written the inhomogeneity as the sum of two functions satisfying

Hypothesis 1.1. This choice of notation will be used next in Subsection 3.1, where we construct a

first order approximation for the above equation. We then use this information to prove existence of

solutions to equation (5) in Subsection 3.2.

Notation: Throughout this section, and in the rest of the paper, we use γε to denote the Euler

Mascheroni constant, and the symbols χ, χM ∈ C∞(R2) to denote smooth radial cut-off functions

satisfying

χ(x) =

{
0 if |x| < 1

1 if |x| > 2
, χM (x) =


0 if |x| < 1

1 if 2 < |x| < M

0 if 2M < |x|
,

where M is a positive constant. Notice in particular, that χM has compact support.

3.1. First Order Approximation

We construct a first order approximation, φ, which is the sum of two functions, φ0 and φ1. We take

φ0 = −1

b
χM log(1 + a log r + εK(r)), (6)

a choice that is motivated by the Hopf-Cole transform, φ = − 1
b log Ψ, which turns the eikonal equation

(5) into the steady state Schrödinger equation with potential εg. The value of the constant M appearing

in the definition of the cut-off function χM is taken so that the expression log(1 + a log r + εK(r)),

always remains bounded. The constant a is a parameter that is determined when constructing the

second part to the approximation, while the function K(r) satisfies

∆0K + bgf = 0. (7)

The fact that we can solve this last equation follows from our assumptions on the inhomogeneity.

Recall that gf ∈ Hk
σ(R2) for 0 < σ < 1. Proposition 2.5 then shows that the radial Laplacian, ∆0, is

a surjective operator with a one dimensional kernel spanned by {1}. We can therefore use Lyapunov-

Schmidt reduction to solve this equation and find a family of solutions

K(r) = Kp(r) + c, c ∈ R.

Since c is arbitrary, without loss of generality we pick c = 0. We also find that the solution, K, belongs

to the space M2,2
r,σ−2(R2). In fact, one can check that K has more regularity and is in the space

Rkσ = {u ∈M2,2
r,σ−2(R2) : D2u ∈ Hk

σ(R2)}. (8)

Remark 3.1. Notice that the function φ0 is as regular as the function K, and that as a result the

derivative ∂rφ0 is in the space Hk+1
σ (R2). In addition, this function is bounded and has compact

support.

Remark 3.2. Because gf is in Hk
σ(R2) with σ ∈ (0, 1) and k ≥ 2, we then have the following decay

properties for the solution to equation (7):

• if gf decays like 1/rm in the far field, with 1 < m < 2, then K ∼ O(r2−m) at infinity, while

• if gf decays like 1/r2 in the far field, then K ∼ O((log r)2) at infinity.

Next, we define the second function, φ1, as the solution to the equation

∆0φ1 −
a

b
∆0(χ log r)− εgc = 0.

Here, the constant a is the same as the one appearing in the definition of φ0, and the function gc is

in the space Hk
γ (R2) with 1 < γ, by assumption.
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To justify the existence of φ1, we use again Proposition 2.5 which shows that for values of γ > 1,

the operator ∆0 : M2,2
r,γ−2(R2) −→ L2

r,γ(R2) is Fredholm with index -1, and cokernel spanned by {1}.
Because the projection of ∆0(χ log r) onto the cokernel is non-trivial, i.e.∫

R2

∆0(χ log r) dx = 2π,

the Bordering Lemma stated at the end of this subsection then shows that the operator

M2,2
r,γ−2(R2)× R −→ L2

r,γ(R2)

(φ, a) 7−→ ∆0φ1 −
a

b
∆0(χ log r)

is invertible. Therefore, the equation for φ1 is indeed solvable. In addition, projecting onto the constant

functions we also find that

a = −εb
∫ ∞

0

gc(r) r dr. (9)

Finally, since gc ∈ Hk
γ (R2), it follows that our solution φ1 is in the space Rkγ , defined as in (8).

Lemma 3.3. [Bordering Lemma] Let X and Y be Banach spaces, and consider the operator

S =

[
A B

C D

]
: X × Rp −→ Y × Rq,

with bounded linear operators A : X −→ Y , B : Rp −→ Y , C : X −→ Rq, D : Rp −→ Rq. If A is

Fredholm of index i, then S is Fredholm of index i+ p− q.

Proof. One can write S as the sum of a block diagonal operator with the indicated index, i + p − q,
and a compact operator consisting of the off-diagonal elements. Since compact perturbations do not

alter the index of a Fredholm operator, the result then follows. �

3.2. Existence of Solutions to Intermediate Approximation

Using the first order approximation, φ0 + φ1, defined in the previous subsection we now prove the

existence of solutions to equation (5) using the implicit function theorem.

Inserting the ansatz

φ = φ0 + φ1 + φ2

into equation (5), one obtains the following expression for φ2,

∆0φ2 − b
(

2∂rφ0(∂rφ1 + ∂rφ2) + (∂rφ1 + ∂rφ2)2
)

+G1 = 0, (10)

where the term G1 is given by

G1 = ∆0φ0 − b(∂rφ0)2 − εgf +
a

b
∆0(χ log r)

To continue the analysis, we let ψ = ∂rφ2 in equation (10), and add and subtract the term λψ.

We assume that the parameter λ is sufficiently small, positive, and fixed. The result is,

∂rψ +
1

r
ψ + λψ − b

(
2∂rφ0(∂rφ1 + ψ) + (∂rφ1 + ψ)2

)
+G1 − λψ = 0.

Letting Lλ = ∂r + 1
r + λ, we may precondition this last equation with L−1

λ and write

ψ + L−1
λ

[
−b
(

2∂rφ0(∂rφ1 + ψ) + (∂rφ1 + ψ)2
)

+G1 − λψ
]

= 0. (11)

Because the above expression is equivalent to the intermediate equation (5), if we find a solution ψ to

(11), we immediately obtain a corresponding solution to (5) of the form

φ(r; ε) = φ0(r; ε) + φ1(r; ε) + φ2(r; ε) + εc,
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where ∂rφ2 = ψ and c is a constant of integration.

To use the implicit function theorem, we view the left hand side of (11) as an operator F :

Hk
δ (R2)× R+ −→ Hk

δ (R2) for some appropriate δ ∈ R, and show that it is well defined, smooth with

respect to ε, and that its Fréchet derivative DψF (0; 0) : Hk
δ (R2) −→ Hk

δ (R2) is invertible. The result

is the following theorem.

Theorem 2. Let k ≥ 2, σ ∈ (0, 1) and consider functions g ∈ Hk
r,σ(R2) satisfying Hypothesis 1.1.

Then, the intermediate equation

∆0φ− b(∂rφ)2 − εg = 0,

has a family of solutions

φ(r; ε) = −1

b
χM log

(
1 + a log r + εK

)
+ φ1(r; ε) + φ2(r; ε) + εc, c ∈ R,

that bifurcates from zero at ε = 0 and is C1 in ε ∈ [0,∞). Moreover, letting γ ∈ (1,∞), and σ ∈ (0, 1)

be defined as in Hypothesis 1.1, the family of solutions satisfies:

• φ1 ∈ {u ∈M2,2
r,γ−2(R2) : D2u ∈ Hk

γ (R2)},

• ∂rφ2 ∈ Hk
δ (R2), where δ = min(γ − 1, σ).

• ∆0K = gf , with K ∈ Rkγ , and

• a = −εb
∫∞

0
gc(r) r dr.

Proof. As already mentioned, the result follows from finding solutions to equation (11) using the

implicit function theorem. We therefore consider the left hand side of this equation as an operator

F : Hk
δ (R2)× R+ −→ Hk

δ (R2), with δ = min(γ − 1, σ) > 0.

Since the operator’s dependence on ε comes from the three functions ∂rφ0, ∂rφ1, and G1, and

since these functions are all smooth with respect to ε on the interval [0,∞), then the same result holds

for the operator F .

To show that the Fréchet derivative DψF (0; 0) = Id−λL−1
λ is invertible, we recall the results from

Section 2. In particular, Lemma 2.3 shows that L−1
λ : Hk

δ (R2) −→ Hk+1
δ (R2) is bounded. Since the

embedding Hk+1
δ (R2) ⊂ Hk

δ (R2) is continuous, it then follows that DψF (0; 0) : Hk
δ (R2) −→ Hk

δ (R2)

is a small perturbation of the identity operator, and is thus invertible for a sufficiently small λ.

To complete the proof we need to show that the operator F is well defined. Taking into account

the results of Lemma 2.3, this is equivalent to showing that the expression

N(ψ, ε) = −b
(

2∂rφ0(∂rφ1 + ψ) + (∂rφ1 + ψ)2
)

+G1 − λψ,

defines a bounded operator N : Hk
δ (R2)× R+ −→ Hk−1

δ (R2).

We start with the term ∂rφ0(∂rφ1 +ψ). From the definition of φ1 we know that this is a function

in Rkγ with γ > 1. In particular,

∂rφ1 ∈ {u ∈M1,2
r,γ−1(R2) : Du ∈ Hk

γ (R2)} ⊂ Hk+1
γ−1(R2).

Because ψ ∈ Hk
δ (R2) and δ = min(γ − 1, σ) > 0 , it then follows that the sum (∂rφ1 + ψ) is also in

this space. Since ∂rφ0 has compact support and k+ 1 bounded derivatives (see Remark 3.1), then the

product ∂rφ0(∂rφ1 + ψ) is also well defined in Hk
δ (R2).

Next, since (∂rφ1 + ψ) is in Hk
δ (R2), with δ > 0 and k ≥ 2, Lemma 3.4 below shows that

(∂rφ1 + ψ)2 is in Hk−1
δ (R2). Finally, Lemma 3.5 at the end of this section shows that G1 ∈ Hk

σ(R2),

and because δ = min(γ − 1, σ) > 0, this term is also well defined.
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Since the operator F satisfies the assumptions of the implicit function theorem we obtain a family

of solutions ψ(r; ε) that bifurcates from zero and is smooth with respect to ε. Because ψ = ∂rφ2, we

arrive at the family

φ(r; ε) = φ0(r; ε) + φ1(r; ε) + φ2(r; ε) + εc, c ∈ R.

This finishes the proof of the Theorem.

�

Lemma 3.4. Let ψ ∈ Hk
γ (R2) with γ > 0 and k ≥ 2. Then, ψ2 ∈ Hk−1

γ (R2).

Proof. To simplify the analysis we let Dj denote any j-th order derivative, and we only prove that

Dk−1(ψ2) is in L2
r,γ(R2), since a similar analysis shows that lower derivatives are in this same space.

Because k ≥ 2 and γ > 0, it follows by Sobolev embeddings that Djψ ∈ H2
r,γ(R2) ⊂ H2(R2) ⊂ CB(R2)

for 0 ≤ j ≤ k − 2. Then, writing

Dk−1(ψ2) =
k−1∑
j=0

(
k − 1

j

)
Dk−1−jψDjψ

we see that this derivate can be written as a product of a bounded function and a function that is in

L2
r,γ(R2). Hence ψ2 ∈ Hk−1

r,γ (R2). �

The next Lemma shows that G1 is in Hk
σ(R2) with σ ∈ (0, 1).

Lemma 3.5. Let k ≥ 2, σ ∈ (0, 1) and take gf ∈ Hk
σ(R2). Consider the function φ0 constructed from

gf and described above in (6). Then the expression

G1 = ∆0φ0 − b(∂rφ0)2 − εgf +
a

b
∆0(χ log r)

is also in Hk
σ(R2).

Proof. Using the notation φ0 = χM φ̃0, we first expand G1

G1 =∆0φ0 − b(∂rφ0)2 − εgf +
a

b
∆0(χ log r)

G1 =
(
φ̃0∆0χM + 2χ′M φ̃0 − b(χ′M φ̃0)2 − 2bχ′MχM φ̃0∂rφ̃0 + b(∂rφ̃0)2(χM − χ2

M )
)

− 1

b
χM

[
∆0(a log r + εK)

1 + a log r + εK

]
− εgf +

a

b
∆0(χ log r)

G1 =
(
φ̃0∆0χM + 2χ′M φ̃0 − b(χ′M φ̃0)2 − 2bχ′MχM φ̃0∂rφ̃0 + b(∂rφ̃0)2(χM − χ2

M )
)

− 1

b
χM

[
∆0a log r

1 + a log r + εK

]
− 1

b
χM

[
ε∆0K

1 + a log r + εK

]
− εgf +

a

b
∆0(χ log r).

Because the log r is a fundamental solution of the Laplacian and since χM is zero near the origin,

then the term

χM

[
∆0a log r

1 + a log r + εK

]
= 0.

Similarly, because the function K is a solution to ∆0K + bgf = 0, then we may write

−1

b
χM

[
ε∆0K

1 + a log r + εK

]
− εgf =− εgf (1− χM )− εgfχM

[
(a log r + εK)

1 + a log r + εK

]
.
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Therefore,

G1 =
(
φ̃0∆0χM + 2χ′M φ̃0 − b(χ′M φ̃0)2 − 2bχ′MχM φ̃0∂rφ̃0 + b(∂rφ̃0)2(χM − χ2

M )
)

− εgf (1− χM )− εgfχM
[

(a log r + εK)

1 + a log r + εK

]
+
a

b
∆0(χ log r)

From the definition of χM it is clear that all terms involving a derivative of this function are

localized and have compact support. Because the value of M in the definition of χM was chosen to

vanish whenever the expression 1+a log r+εK is ≤ 0, we see that the term in brackets is also bounded

and with compact support. In addition, this term is as regular as the function K ∈ Rkσ, and is therefore

in Hk+2(R2). On the other hand, the function (1− χM )εgf behaves like gf at infinity and as a result

it is in the same space as the inhomogeneity. Finally, because ∆0 log r = 0 on R2 \ {0}, the function

∆0(χ log r) is localized and smooth. Taking all this into account, we may conclude that G1 is in the

space Hk
σ(R2).

�

4. Far Field Approximation to the Viscous Eikonal Equation

In this section we consider again the full equation

∆0φ− b(∂rφ)2 − εg(r) + Ω = 0 r = |x| ∈ [0,∞), (12)

but assume that the value of Ω is fixed and different from zero. As in Section 3, we first find an

appropriate expression for the far field behavior of the solution and a first order approximation for

this new equation. We then use this result to prove existence of solutions using the implicit function

theorem.

Because the inhomogeneity is algebraically decaying, for large values of r the relevant terms in

the equation are

∆0φ− b(∂rφ)2 + Ω = 0

To find a first order approximation, we can again use the Hopf-Cole transform, φ(r) = −(1/b) log(K),

rewriting the equation as

∂rrK +
1

r
∂rK − Λ2K = 0 Λ2 = bΩ.

Notice that this is either a Bessel, or the Modified Bessel equation, depending on the sign of bΩ.

Because we are interested in solutions, φ(r), that are real, we pick bΩ > 0 so that the solution to

this last equation is K = K0, the Modified Bessel function of the second kind. In particular, because

K0(z) ∼ O(e−z) as z → ∞ ( see Table 1 below), this implies that ∂rφ(r) is bounded in the far field,

as desired.

We therefore consider the ansatz

φ(r) = φ0(r) + φ1(r)

where φ0 is given by

φ0(r) = −1

b
χ(Λr) log(K0(Λr)), Λ2 = bΩ > 0.

Here, again χ represents a cut-off function that removes the singular behavior of the log function near

the origin. Inserting this expression into equation (12) gives

∆0φ1 − 2b∂rφ0∂rφ1 − b(∂rφ1)2 + (∆0φ0 − b(∂rφ0)2 + Ω)− εg = 0.
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Since the terms appearing in the parenthesis represent a localized function with compact support,

they do not contribute to the behavior of the solution for large values of r. Thus, the far field behavior

of the solution is determined by

∆0φ1 − 2b∂rφ0∂rφ1 − b(∂rφ1)2 − εg = 0. (13)

Letting ψ = ∂rφ1 and adding and subtracting the term 2Λψ gives us

∂rψ +
1

r
ψ + 2Λψ +

[
−2b∂rφ0ψ − bψ2 − εg − 2Λψ

]
= 0.

We can then precondition this equation by L−1
2Λ , since by Lemma 2.3 we know that this operator

is bounded for all values of Λ > 0, if its domain is Hk
r,σ(R2). Thus, the equation can be written as

F (ψ; ε) = Id + L−1
2Λ

[
− 2b∂rφ0ψ − bψ2 − εg − 2Λψ

]
= 0. (14)

In what follows we will show that the operator F : Hk
r,σ(R2) × R → Hk

r,σ(R2) satisfies the

conditions of the implicit function theorem and prove the following theorem.

Theorem 3. Take g ∈ Hk
r,σ with k ≥ 2 and let σ ∈ (0, 1). Then there exist a positive constant Λ0 such

that for any fixed Λ ∈ (0,Λ0), there is an ε0 > 0, and C1 family of solutions, φ = φ(r; ε), to equation

(13) that bifurcates from zero at ε = 0 and is valid for ε ∈ (−ε0, ε0). Moreover, this family has the

form

φ(r; ε) = −1

b
χ(Λr) log(K0(Λr)) + φ1(r; ε) + εc

where

i) K0(z) represents the zeroth-order Modified Bessel function of the second kind,

ii) ∂rφ1 ∈ Hk+1
r,σ (R2),

iii) and c ∈ R is an arbitrary constant.

Proof. Because finding solutions to equation (13) is equivalent to finding the zeros of the operator

F : Hk
r,σ(R2)×R→ Hk

r,σ(R2) defined in (14), we check that F satisfies the assumptions of the implicit

function theorem.

It is clear that F (0; 0) = 0 and that this operator is smooth with respect to the parameter ε. To

check that the Fréchet derivative, DψF (0; 0) : Hk
r,σ(R2)→ Hk

r,σ(R2), given by

DψF (0; 0) = Id+ L−1
2Λ [−2b∂rφ0 − 2Λ],

is invertible, notice that the term in the brackets can be written as the product of a bounded function

times the constant 2Λ. Indeed, this can be checked by expanding this term,

−2b∂rφ0 − 2Λ = −2b∂r[ −
1

b
χ(Λr) log[K0(Λr)]]− 2Λ

= 2Λ
[
χ′(Λr) log[K0(Λr)] + χ(Λr)

K ′0(Λr)

K0(Λr)
− 1
]

and using the fact that the ratio
K′

0(z)
K0(z) = −1 as r →∞, and that χ′ has compact support. Since the

operator L−1
2Λ : Hk

r,σ(R2) −→ Hk+1
r,σ (R2) is bounded, it follows that there is a small number Λ0 > 0 such

that if Λ ∈ (0,Λ0), the derivative DψF (0; 0) is a small perturbation of the identity and is therefore

invertible.

We are left with showing that the operator F is well defined. Taking into account again that the

map L−1
2Λ : Hk−1

r,σ (R2) −→ Hk
r,σ(R2) is bounded, this is equivalent to showing that the terms

−2b∂rφ0ψ − bψ2 − εg − 2Λψ

define a bounded operator N : Hk
r,σ(R2)× R→ Hk−1

r,σ (R2).
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z → 0 z →∞
K0(z) − log(z/2)− γe + O(z2)

√
π
2z e−z

(
1 + O(1/z)

)
K1(z) 1

z + O(z)
√

π
2z e−z

(
1 + O(1/z)

)
Table 1. Asymptotic behavior for the Modified Bessel functions of the second kind

of zeroth and first-order, taken from [1, (9.6.8), (9.6.9), (9.7.2)]

First, notice that by assumption, the impurity g is in the desired space. As for the elements

involving the variable ψ ∈ Hk
r,σ(R2), because the derivative ∂rφ0 is a bounded function, we can easily

check that they are both in the space Hk−1
r,σ (R2). Finally, since σ > 0, Lemma 3.4 shows that the

product ψ2 is in Hk−1
r,σ (R2).

This proves that the operator F satisfies the conditions of the implicit function theorem and

proves the existence of a family of solutions solving F (ψ; ε) = 0 . Going back to the definition of

ψ = ∂rφ1, we see that the above result also gives us a family of solutions φ(r; ε) = φ0(r)+φ1(r; ε)+εc

solving the far field equation (12), where φ1 ∈ Hk+1
r,σ (R2) and c is for now an arbitrary constant which

is the result of integrating ψ. This proves the result of the theorem. �

5. Existence of Target Patterns

5.1. Matching

To determine an expression for the eigenvalue Ω, we must match the intermediate and far field ap-

proximations of the wavenumber, ∂rφ. For convenience we recall their expressions,

φfar(r; ε,Λ) =− 1

b
χ(Λr) log(K0(Λr)) + φ1(r; ε) + εc

φint(r; ε) =− 1

b
χM log

(
1 + a log r + εK(r)

)
+ φ̄1(r; ε) + φ̄2(r; ε) + εc,

As before, K0 denotes the Modified Bessel function of the first kind, while the function K satisfies

∆0K + bgf = 0.

Notice that the remaining terms, φ1, φ̄1, and φ̄2, all have derivatives that decay algebraically at infinity.

In particular,

1. The function φ̄1 defined in Subsection 3.1 is in the space Rkγ ⊂M
2,2
r,γ−2, with γ > 1. From Lemma

2.1 it follows that |φ̄1| < |x|−γ+1. In particular, if the inhomogeneity gc ∼ O(r−(d+2)), with

d > 0, we have that ∂rφ̄1 ∼ O(r−(d+1)).

2. From Theorems 2 and 3 we know that the functions ∂rφ1 and ∂rφ̄2 are in the space Hk
δ (R2),

where δ ∈ (0, 1). It then follows from Sobolev embeddings that these functions are bounded. In

addition, because δ > 0, they must decay algebraically.

To do the matching, recall from the analysis in Subsection 3 that the parameter Λ2 = bΩ is

assumed to be small beyond all orders of ε. This justifies the scaling r = η(ε)rη, where rη is a constant

and η(ε) = ε/Λ. As a result, Λr → 0 as ε→ 0, while r →∞, and we find that for small value of η we

are in the region where both approximations are valid. Moreover, since ε ∼ o(η(ε)) there is always an

open interval where the two approximations can be matched, even as ε → 0. Because in this region
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the functions χM = χ = 1, we obtain

∂rφfar(r; ε,Λ) ∼ −1

b

[
Λ
K ′0(Λr)

K0(Λr)

]
+ ∂rφ1

∂rφint(r; ε) ∼ −
1

b

[
a/r + ε∂rK(r)

1 + a log r + εK(r)

]
+ ∂rφ̄1 + ∂rφ̄2.

Setting the derivatives equal to each other, ∂rφfar = ∂rφint, we find that(
ΛK ′0(Λr)− bK0(Λr)∂rφ1

)
(1 + a log r + εK(r))

= K0(Λr)
[
(a/r + ε∂rK(r))− b(∂rφ̄1 + ∂rφ̄2)(1 + a log r + εK(r))

]
(
− Λ

(
1

Λr
+ O(Λr)

)
− bK0(Λr)∂rφ1

)
(1 + a log r + εK(r))

=
(
− log(Λ/2)− γe − log(r) + O((Λr)2)

)
×
[
(a/r + ε∂rK(r))− b(∂rφ̄1 + ∂rφ̄2)(1 + a log r + εK(r))

]
,

where in the second line we use the fact that K ′0(z) = −K1(z) and the expansions from Table 1.

We now proceed with the matched asymptotic analysis to determine the value of Λ. Notice that

due to the relation Ωb = Λ2, this will also allow us to obtain an expression for the frequency. The

method is as follows: We first divide the above expression by different gage functions in order to select

terms of similar order in ε. We then cancel any duplicate terms, let ε go to zero, and select the value

of any undefined constant so that the remaining terms add up to zero.

Because we are interested only in finding the value of the constant Λ, we can simplify these

computations by noticing that terms of the form O(Λr)∂rφ1 will go to zero, as ε→ 0, faster than any

other term. Thus, they are not of the same order in ε as elements that involve Λ. This follows from

the scalings picked and the algebraic decay rate of the the function ∂rφ1. We may therefore consider

instead the expression

−1

r
(1 + a log r + εK(r)) =(− log(Λ/2)− γe − log(r)) (15)

× [(a/r + ε∂rK(r))− b(∂rφ̄1 + ∂rφ̄2)(1 + a log r + εK(r))].

It is worth pointing out here that, in contrast to more standard matched asymptotic analyses, the

elements in equation (15) are not of order O(εn), n ∈ N. Moreover, we find that dominants terms

depend on the yet to be determined approximations φ̄i, i = 1, 2. Thus, we will not be able to match

them exactly, but we can justify that the process can be done.

First, looking at the right hand side, one notices that the dominant term is −ε log(r)∂rK. Because

r depends on ε, we may use this function as a gage function. Dividing by −ε log(r)∂rK and letting

ε→ 0, or equivalently r →∞, we are left with matching,

0 = 1− b∂rφ̄1 + ∂rφ̄2

ε∂rK
(1 + a log r + εK).

By picking the value of δ ∈ (0, 1) so that the higher order correction term, φ̄2 ∈ L2
δ(R2), is in the

same space as both, K and ∂rK, we see that it is possible to match these terms. Expression (15) then
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becomes

−1

r
(1 + a log r + εK(r)) =(− log(Λ/2)− γe)

× [(a/r + ε∂rK(r))− b(∂rφ̄1 + ∂rφ̄2)(1 + a log r + εK(r))]

− a

r
log r.

Second, cancelling the term a
r log r, using εK/r as a gage function, and letting r →∞, we obtain

−1 = (− log(Λ/2)− γe)
[
∂rK

rK
− br

εK
(∂rφ̄1 + ∂rφ̄2)(1 + a log r + εK(r))

]
.

Since φ̄i, i = 1, 2 represent all higher order terms, and not just one function, one can again justify that

these terms can be matched. As a result, equation (15) now reads

−1

r
= (− log Λ/2− γ3)

a

r
.

Finally, solving for Λ, we see that Λ = 2e−γe exp(1/a). Using the relation Λ2 = bΩ, we also obtain

that

Ω =
4

b
e−2γe exp

(
1

a

)
.

In particular, from the definition of a, i.e. a = −bε
∫∞

0
gc(r) r dr, we may conclude that both Λ and

Ω are smooth functions of ε, for all ε ∈ (0, εM ), with εM a positive constant. In addition, notice that

as ε approaches zero, the value of Λ and Ω also goes to zero.

Remark 5.1. Notice that:

1. We need the constant a < 0 in order for Λ = bΩ to satisfy our initial assumption of being small

beyond all orders of ε. If ε > 0, this condition is guaranteed from formula (9) and the assumption

that g is a positive function.

2. Notice also that if ε
∫
g < 0, the gradient ∂rφint would also be negative and we would not be able

to match the two approximations. This is in line with previous results which show that target

pattern solutions (or thanks to the Hopf-Cole transform, φ = − 1
b log(Ψ), ground states of the

Schrödinger eigenvalue problem, ∆Ψ + εgΨ) do not exist when the inhomogeneity (potential)

satisfies ε
∫
g < 0. See [21] for a proof of this result.

3. Because we rigorously proved the existence of solutions to the intermediate and far field approx-

imations, we know that we can obtain approximations for φfar and φinter to any desired order.

Thus, by matching these higher order approximations, we can obtain better estimates for the

parameter Λ. In particular, if we consider a = εa1 + ε2a2, and find the corresponding expres-

sions for φfar, φinter and a2, the above matching process leads to Λ = C(ε)2e−γe exp(1/εa1),

with C(ε) = exp(1/a − 1/εa1). In addition, by defining Λ(0) = ∂εΛ(0) = 0, we obtain that this

estimate is also C1 with respect to ε on [0, εM ), for some εM > 0.

5.2. Existence of Solutions

In this subsection we combine the results of the previous subsections and prove Theorem 1, which is

stated in the introduction and reproduced below for convenience.

Theorem. Let k ≥ 2 and σ ∈ (0, 1) and consider a function g ∈ Hk
r,σ(R2) satisfying Hypothesis

1.1. Then, there exists a constant ε0 > 0 and a C1([0, ε0)) family of eigenfunctions φ = φ(r; ε) and

eigenvalues Ω = Ω(ε) that bifurcate from zero and solve the equation

∆0φ− b(∂rφ)2 − εg(r) + Ω = 0 r = |x| ∈ [0,∞). (16)
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Moreover, this family has the form

φ(r; ε) = −1

b
χ(Λr) log(K0(Λr)) + φ1(r; ε) + εc, Λ2 = bΩ(ε)

where

i) c is a constant that depends on the initial conditions of the problem,

ii) K0(z) represents the zeroth-order Modified Bessel function of the second kind,

iii) ∂rφ1 ∈ Hk
r,σ(R2), and

iv) Ω = Ω(ε) = C(ε)4e−2γε exp[2/a], with

a = −εb
∫ ∞

0

gc(r) r dr,

and C(ε) a C1 constant that depends on ε.

Proof. The proof mimics the analysis done for the far field approximation, except that now we consider

the full equation (16). As above, we use the ansatz φ(r) = φ0(r) + φ1(r), with φ0 given by

φ0(r) = −1

b
χ(Λr) log(K0(Λr)), Λ2 = bΩ > 0.

In contrast to the analysis from Section 4, here we treat the parameter Λ as a C1 function of ε, a

result that follows from the matched asymptotic analysis of Subsection 5.1. Thus, given any ε > 0

there is a corresponding value of Λ that defines an approximation, φ0, and a frequency, Ω = Λ2/b,

both of which satisfy the equation (∆0φ0 − b(∂rφ0)2 + Ω) = 0 in the far field.

Inserting this ansatz into equation (16) gives

∆0φ1 − 2b∂rφ0∂rφ1 − b(∂rφ1)2 + (∆0φ0 − b(∂rφ0)2 + Ω)− εg = 0.

Letting ψ = ∂rφ1, adding and subtracting the term 2Λψ, and precondition the result by L−1
2Λ , gives

the following equivalent formulation of equation (16),

F (ψ; ε) = Id + L−1
2Λ

[
− 2b∂rφ0ψ − bψ2 + (∆0φ0 − b(∂rφ0)2 + Ω)− εg − 2Λψ

]
= 0. (17)

Our goal is to show that the operator F : Hk
r,σ(R2) × R → Hk

r,σ(R2) satisfies the conditions of the

implicit function theorem.

By Remark 5.1, Λ(0) = ∂εΛ(0) = 0, so that the operator F is C1([0, εM )) with respect to ε, for

some εM > 0. Moreover, thanks to the cut-off function in the definition of φ0, i.e. χ = χ(Λr), we find

that the terms (∆0φ0−b(∂rφ0)2+Ω) tend to zero as ε goes to zero. Therefore, F (0; 0) = 0. In addition,

because the elements in the parenthesis are smooth and have compact support, they belong to the

space Hk−1
r,σ (R2), for any natural number k and any real number σ. A similar analysis as in the proof

of Theorem 3 then shows that the rest of the terms in F belong to the space Hk
r,σ(R2), with k ≥ 2,

and σ ∈ (0, 1). As a result, the operator F is also well defined. Since its Fréchet derivative, DψF (0; 0),

is now the identity map on Hk
r,σ(R2), we may apply the implicit function theorem to conclude the

existence of solutions ψ = ∂rφ ∈ Hk
r,σ(R2). The results of Theorem 1 then follow in a similar way as

those done in Section 4. �

6. Simulations

In this section we numerically explore the effects of adding large inhomogeneities, εg, as perturbations

to the eikonal equation, i.e.

φt = ∆φ− |∇φ|2 − εg. (18)

To run the simulations we model the equation on a square domain with periodic boundary conditions

and employ a spectral RK4 method based on [14], using a mesh size h = 100/512 and a time step
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(a) (b)

Figure 1. Numerical simulation of the time dependent eikonal equation (18) with g

as in (19), p = 0.8, initial condition φ = 0, and various values of ε ∼ a = 0.15 ∗ (3 :

2 : 20), where a = ε
∫ 3

0
g(r)r dr. A) Plots of the gradient of the steady state solution.

Top most curve corresponds to maximum value of ε used. B) Plot of 1
log(k(a))−1 vs.

a, where for large |x| the gradient ∇φ approximates the wavenumber, k(a).Circles

represent data from the simulation while dotted line is the linear fit.

dt = 0.5. The numerical scheme is continued until a steady state is reached. Different domain lengths

were tested, (L = {100, 120, 140, 160, 180, 200}), resulting in the same approximations for φ. Thus, a

domain of length L = 100 was chosen to run all numerical experiments for computational efficiency.

Simulations confirm our analytical results, finding that for inhomogeneities that take the form

g =

(
A

(1 + r2)p

)
, p ∈ (1/2, 1], A ∈ R, (19)

the solutions to the eikonal equation grow linearly at infinity. This is depicted in Figure 1a where

the gradient, ∇φ, is plotted for different values of the parameter ε. Notice that because we are using

periodic boundary conditions, the value of ∇φ goes to zero at the boundary of the domain. As predicted

by the analysis of the previous sections, we find that the wavenumber, k = lim|x|→∞∇φ ∼ Λ/b, and as

a result the frequency, Ω = Λ2/b, is small beyond all orders of ε. To confirm this result we approximate

the wavenumber by evaluating the gradient ∇φ at large values of |x|. In Figure 1b we plot the relation
−1

log(k)−1 vs. a, where a represents the mass of gc = (1−χ)g, which we take as a substitute for ε, since

a = −bε
∫
gc(r)r dr. Notice how in the figure the data points taken from the simulations follow a

straight line, confirming that Λ ∼ exp(1/a).

Finally, to determine how the the decay rate, p, affects the wavenumber, we ran simulations for

values of p ∈ (0.5, 3]. Notice that using the notation from Hypothesis 1.1, where g ∼ 1/rm, this is

equivalent to considering values of m ∈ (1, 6). These results are summarized in Figure 2a. They show

that the wavenumber decreases as the decay rate of the inhomogeneity, p, increases. The figure also

compares the numerical approximation to the wavenumber, k, which we plot using stars, with the

analytical result k ∼ exp(1/a). In particular, following Theorem 1 we use

a =

{
−εb

∫ 3

0
g(r) r dr for p ∈ (1/2, 1)

−εb
∫∞

0
g(r) r dr for p ∈ (1, 3).

For values of p ∈ (0.5, 1) ∼ m ∈ (1, 2), we are in the regime considered in this paper, where the

impurity g does not have finite mass and is thus a large inhomogeneity. In this case, we assume a

value of D ∼ 3 in the definition of gc specified in the introduction, see equation (3). We then calculate
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(a) (b)

Figure 2. A) Plot of wavenumber k vs. p for steady state solutions of the eikonal equa-

tion using g =
A

(1 + r2)p
with A = 1.5 and for p ∈ (0.5, 3). Stars represents results from

simulation, while solid and dashed lines represents approximation with k ∼ exp(−1/a), with

a = −A/(2 − 2p) for solid line, a = A
∫ 3

0
g(r) rdr for dashed line. B) Plot of ∇φ vs. r, for

values of p = 0.3, 0.8, 1.5.

the mass of this function by integrating from 0 to 3, since this provided the best fit to the data (see

Remark 1.5). This approximation is plotted using a dashed line. On the other hand, when p ∈ (1, 3)

we are in the regime where the impurity, g, has finite mass and the results from [13] apply (see also

Theorem 1 and Remark 1.4). In this case, the value of a = −εb
∫∞

0
g(r) r dr. This approximation is

plotted using a solid line.

Notice that both approximations for the wavenumberm, k, do a good job of following the data

in the respective regions of the p-axis where they are valid, i.e. 0.5 < p < 1 for the dashed line,

p > 2 for the solid line. However, the estimates for p ∈ (1, 2) using the mass of g (solid line) are

not accurate, even though they follow the results from Theorem 1 in [13], or equivalently, Theorem 1

together with Remark 1.4 stated in this paper. This is not unreasonable given that the frequency of the

pattern, Ω, and as a result its wavenumber, k, are both small beyond all orders of the parameter ε. In

particular, when p→ 1 we have that a = −εb
∫
g(r)r dr → −∞. Because a ∼ O(ε), the estimates for

Ω ∼ exp(1/a) become worse and worse, and in this case one needs to approximate a to higher orders

in ε to obtain better estimates. Figure 2a then suggests that the interval 1 < p < 2 is a transitional

regime, where one can numerically obtain a better fit to the data by using a cut-off function to better

approximate the value of a.

Finally, we also confirm numerically that for values of p ≤ 0.5 the inhomogeneity no longer

produces target patterns, but rather solutions with ∇φ ∼ O(r) at infinity, see Figure 2b. This is not

a tight bound on the growth rate of ∇φ and is just a very rough estimate based on our numerical

experiments.

7. Discussion

In this paper we showed that large defects can generate target patterns in oscillatory media. Under

the assumption of weak coupling, we modeled such systems using a viscous eikonal equation, and

represented the defect as a localized inhomogeneity. In contrast to previous results, which assume

that the inhomogeneity is strongly localized, in this paper we relaxed this assumption and described

impurities as functions with algebraic decay of order O(1/|x|m), 1 < m ≤ 2.



Can large inhomogeneities generate target patterns? 23

Our main motivation for studying this problem came from the universality of the viscous eikonal

equation as a model for the phase dynamics of coherent structures in oscillatory media. In particular,

our interest stems from the fact that this same equation can be used to describe the phase dynamics

of spiral waves in oscillatory media with nonlocal coupling. In this context, the large inhomogeneity

no longer represents a defect, but instead encodes information about variations in the amplitude of

the pattern.

A second motivation came from the fact that the steady state viscous eikonal equation is conju-

gate to a Schrödinger eigenvalue problem. Indeed, it is well known that the Hopf-Cole transformation

maps target pattern solutions to bound states of the corresponding Schrödinger operator, and that the

frequency of target pattern solutions then corresponds to the energy of these states. In this context,

the results presented here expand the conditions on the Schrödinger potential that allow for such

bound states to exist. In particular, we show that Schrödinger operators with potentials that decay

sufficiently fast at infinity can have bound states even when the mass of the potential
∫
R2 g(r) r dr is

not finite.

In particular, our analysis provides a first order approximation for target pattern solutions and

for their frequency. In agreement with simulations we show that, just as in the case of small defects,

the frequency is small beyond all orders of the small parameter used to describe the strength of the

impurity. As a result, solutions do not follow a regular expansion. Therefore, to obtain our results

we first found intermediate and far field approximations to the steady state viscous eikonal equation.

Then using a matched asymptotic analysis we were able to determine the value of the frequency

selected by the system. This approach is similar in spirit to the one used to prove existence of target

patterns and spiral waves in reaction-diffusion equations using spatial dynamics, [20, 15]. There, the

modeling equations are viewed as a system of ordinary differential equation in the radial variable, and

a center manifold reduction is used to obtain a vector field describing the amplitude of these patterns.

Coherent structures then correspond to heteroclinic solutions, connecting a fixed point at infinity with

solutions that are bounded near the origin. Our matching process is then equivalent to showing that

the center-stable manifold of the fixed point intersects transversely the solution curve that lives in the

center manifold.

Finally, the analysis presented in this paper is complemented by simulations of the viscous eikonal

equation. Our numerical experiments are in good agreement with simulations. They confirm that the

wavenumber, and therefore the frequency of target patterns, do not follow a regular expansion on the

small parameter ε representing the strength of the impurity g. They also confirm that when m ≤ 1,

the solutions to the viscous eikonal equation no longer represent target patterns, since in this case the

gradient ∇φ does not approach a constant as |x| → ∞.

8. Appendix

In [10] it was shown that the following amplitude equation governs the dynamics of one-armed spiral

waves in nonlocal oscillatory media,

0 = β∆1w + λw + α|w|2w +N(w, ε), r ∈ [0,∞).

Here w is a radial and complex-valued function, and

β = (σ − ελ), λ, α ∈ C, N ∼ O(|ε||w|4).

It was also established in [10] that the constant λI is an unknown parameter that needs to be deter-

mined when solving the equation.
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In this section a multiple-scale analysis is used to derive a steady state viscous eikonal equation

from the above expression. We will see that this eikonal equation is of the form considered in this

paper and that it involves an inhomogeneity that decays at order O(1/|x|2).

To accomplish this task we first let w = Aw̃, with A2 = −λR/αR. This change of variables is

done for convenience and leads to the following equation,

0 = β∆1w̃ + λw̃ + (−λR + iα̃I)|w̃|2w̃ +N(w̃, ε), α̃I = −αλR/αR.

Letting w̃ = ρeiφ and separating the real and imaginary parts of the above expression, one finally

obtains the system

0 = βR
[
∆1ρ− (∂rφ)2ρ

]
− βI [∆0φρ+ 2∂rφ∂rρ] + λRρ− λRρ3 + Re

[
N(w̃; ε)e−iφ

]
(20)

0 = βR [∆0φρ+ 2∂rφ∂rρ] + βI
[
∆1ρ− (∂φ)2ρ

]
+ λIρ+ α̃Iρ

3 + Im
[
N(w̃; ε)e−iφ

]
. (21)

Next, we proceed with a perturbation analysis following [4]. We rescale the variable r by defining

S = δr, where δ is assumed to be a small positive parameter. We also use the following expressions

for the unknown functions:

ρ = ρ0 + δ2(R0 + δR1), ρ0 = ρ0(r), Ri = Ri(δr) i = 0, 1

φ = φ0 + δφ1, φi = φi(δr) i = 0, 1.

And for the parameter we choose λI = −α̃I + δ2λ̃I , with α̃ as above and λ̃I a free parameter.

Inserting the above ansatz into the equations (20) and (21) we obtain a set of equations in powers

of δ. To write this equations more compactly, we use the subscript S to distinguish operators that are

applied to functions that depend on this variable, i.e. ∆0,S . The absence of this subscript indicates

that the operator is applied to a function of the original variable r.

At order O(1) we find that ρ0 must satisfy,

0 =βR∆1ρ0 + λRρ0 − λRρ3
0,

0 =βI∆1ρ0 − α̃Iρ0 + α̃Iρ
3
0.

At the next order, O(δ2), we find two equations involving R0 and φ0,

0 =− βIρ0∆0,Sφ0 − 2βI∂Sφ0∂Sρ0 − βRρ0(∂Sφ0)2 + λRR0(1− 3ρ2
0),

0 =βRρ0∆0,Sφ0 + 2βR∂Sφ0∂Sρ0 − βIρ0(∂Sφ0)2 + α̃IR0(3ρ2
0 − 1) + λ̃Iρ0.

For our purposes, it is enough to stop at this stage and not list higher order terms.

We first focus on the order O(1) system. The first equation can be solved, provided βR, λR > 0.

This equation falls into a broader family of o.d.e. which were solved in [16]. In this reference, the

authors showed that such equations posses a unique solution ρ∗ satisfying

ρ∗ → 1 as r →∞, ρ∗(r) ∼ br when r ∼ 0

Of course, the solution ρ∗ would not satisfy the second equation in the system. So we let

G = βI∆1ρ∗ − α̃Iρ∗ + α̃Iρ
3
∗ =

(
βI
βR

λR + α̃I

)
ρ∗(ρ

2
∗ − 1),

and add these terms to the order O(δ2) system.

Going back to the order O(δ2) system, we first notice that because ρ0 = ρ∗ ∼ br = bS/δ near

the origin, then the terms that involve this variable are in fact ’large’ when compared to the terms

that do not. Concentrating only on these large terms, we find that in the first equation we can solve

for R0 in terms of the variable φ0. Inserting this result into the second equation gives us the viscous

eikonal equation,

∆0,Sφ0 − b(∂Sφ0)2 + Ω− cg = 0
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Figure 3. Solution to the boundary value problem (22)

as expected, where

b =
βIλR − βRα̃I
α̃IβI + λRβR

, Ω =
λ̃IλR

α̃IβI + λRβR
, c = − βIλR + α̃IβR

βR(α̃IβI + λRβR)
, g = (1− ρ2

∗).

Numerical simulations show that the perturbation g decays at order O(1/r2) as r goes to infinity,

see Figure 3. To obtain these results, we solved the boundary value problem

0 = ∂rrρ+
1

r
∂rρ−

1

r2
ρ+ ρ− ρ3, ρ(∞) = 1, ρ(0) = 0, (22)

treating the equation as a system of o.d.e. and using a shooting method with condition

ρ(r) ∼ br when r ∼ 0.
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