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Can large inhomogeneities generate target patterns?
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Abstract. We study the existence of target patterns in oscillatory media with weak local coupling
and in the presence of an impurity, or defect. We model these systems using a viscous eikonal
equation posed on the plane, and represent the defect as a perturbation. In contrast to previous
results we consider large defects, which we describe using a function with slow algebraic decay, i.e.
g~ O(1/|z|™) for m € (1,2]. We prove that these defects are able to generate target patterns and
that, just as in the case of strongly localized impurities, their frequency is small beyond all orders of
the small parameter describing their strength. Our analysis consists of finding two approximations
to target pattern solutions, one which is valid at intermediate scales and a second one which
is valid in the far field. This is done using weighted Sobolev spaces, which allow us to recover
Fredholm properties of the relevant linear operators, as well as the implicit function theorem,
which is then used to prove existence. By matching the intermediate and far field approximations
we then determine the frequency of the pattern that is selected by the system.

AMS subject classification: 35B36, 35B40, 35Q56, 35Q92
Keywords: Target pattern, spiral waves, bound states of Schrodinger equation.

1. Introduction

Target patterns are coherent structures that emerge in excitable and in oscillatory media. They are
characterized by concentric waves that expand away from a center, or core region, creating a ‘bull’s-
eye’ pattern. Although often associated with the Belousov-Zhabotinsky reaction [27], they also appear
in colonies of slime mold [3, 5], in the oxidation of carbon monoxide on platinum [26], and in brain
tissue [24].

In this paper we will focus on target patterns that arise in oscillatory media, where three key
mechanisms, or processes, contribute to their formation. The first mechanism is associated with the
intrinsic dynamics of the system, which must support a limit cycle that results in uniform time
oscillations. The second is a transport process that allows for different spatial regions to interact,
such as diffusion in chemical reactions, or coupling between neurons in brain tissue. While these two
processes are enough to generate traveling and spiral waves, to obtain target patterns one needs a
third ingredient, a defect. Indeed, it is believed that the role of defects, or impurities, is to alter
the dynamics of the system in a localized area resulting in a change in the frequency of the time
oscillations. As a consequence, these defects act as pacemakers entraining the rest of the medium and
forming target patterns.
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While experiments and previous analytical results confirm that small localized defects give rise
to these patterns, [25, 17, 7, 18, 8, 22, 26, 15, 11, 13], in this paper we want to determine the exact
level of localization that is needed to generate them. In particular, assuming the inhomogeneity is
modeled as a function with algebraic decay of order O(1/|z|™), we want to determine how small we
can take m > 0 and still obtain a well defined target pattern.

To simplify the analysis we concentrate only on systems which involve weak local coupling.
Because it is well known that under this assumption the amplitude of oscillations is tied, or enslaved,
to the dynamics of the phase, this allows us to focus our analysis on this last variable. Indeed, the
results presented in [4] show that coherent structures in these systems are well described by the
following viscous eikonal equation

¢ = A¢ —b|Ve|* —eg(z), z€R? (1)

where the perturbation, £g, represents the defect. The above expression is derived using a multiple
scale analysis and it therefore models phase changes that occur over long spatial and time scales. In
this context, target patterns then correspond to solutions of the form ¢(z,t) = (Z)(:c) — O, satisfying
the boundary condition V¢ — k as |z| — oo, where the constant k then represents the pattern’s
wavenumber.

Our motivation for considering large inhomogeneities is three fold. First, in all previous work the
level of localization imposed on the inhomogeneity was tied to the tools used to prove the existence
of these patterns. Yet, numerical simulation like the ones presented here in Section 6, show that
these assumptions can be relaxed. For example, in [23] defects are modeled as functions with compact
support and target pattern solutions are found using separation of variables. In contrast, in [15]
the authors use spatial dynamics to prove the existence of these patterns. This then allows them
to model the impurities as radially symmetric functions with exponential decay. In [13], thanks to
the use of weighted Sobolev spaces, this assumption is relaxed and general (non-radially symmetric)
inhomogeneities with decay of order O(1/|z|™), m > 2, are considered.

Although using different approaches, the references mentioned above show that target patterns
can only be generated by inhomogeneities with a postive and finite mass M = [p, g. This obviously
restricts the level of decay of g to be of order o(1/|x|?). However, our numerical simulations show that
one can obtain target patterns even in the case when the defect is assumed to decay only at order
O(1/]z|™), for m € (1,2]. We are therefore interested in proving the existence of target patterns for
these ‘large’ inhomogeneities of infinite mass.

Our second reason for considering this problem is tied to the existence of spiral waves in oscillatory
media with nonlocal coupling. In [10] it was shown that the dynamics of these patterns are well
described by the following amplitude equation

0=K*w+ w+alwfw+0(E), weC, 0<e<<l

where w is a radially symmetric complex-valued function, and K is a symmetric convolution kernel
of diffusive type. Additional assumptions on K imply that formally one can write this operator as
(1 —eA;)~toA, and suggest preconditioning the above equation with (1 —eA;), where Ay = 0, +
%éh — %2 This then results in the following expression, which perhaps not surprisingly resembles the
complex Ginzburg-Landau equation,

0 = BA1w + Mw + aw]*w + O(e), B=(0c—¢e)), recl0,0).

From there, a similar multiple-scale analysis as the one carried out in [4] and that we also
summarize in Appendix, gives a hierarchy of equations at different powers of a small parameter
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§ = §(¢). In particular, at order §2 one finds the steady state viscous eikonal equation,
—Q = A9 - 0|V — 57, (2)

as a description of the phase dynamics of spiral waves. However, in contrast to the case of target
patterns, here the inhomogeneity does not represent a defect, but is instead related to the small
variations, p, of the amplitude of the pattern. More precisely, g ~ (1 — p?). Although not immediately
obvious, one can check using numerical simulations that the perturbation (1 — p?) decays at infinity
at order O(1/|z|?) (see the Appendix A). Therefore, the particular viscous eikonal equation that is
connected to the phase dynamics of spiral waves in these systems is the same equation that we are
trying to solve.

Finally, our third motivation comes from the following change of variables, ¢ = —% log (W), which
transforms the steady state viscous eikonal equation, (2), into a Schrodinger eigenvalue problem with
potential g,

QU = AV 4 eg(z)¥.

The transformation also shows that our target pattern solutions correspond to bound states of this
operator. The only result solving the above eigenvalue problem that we are aware of is that of Simon
[21], who proved that in the two dimensional case and under the assumption of localized potentials,
Le. [og(x)(14 2?) dz < oo, bound states exists if and only if the mass [, g(z) dz > 0.

Notice that in the context of the Schrodinger operator, our problem corresponds to the ‘super-
critical’ case, in the sense that the potential, g, no longer corresponds to a bounded perturbation of
the Laplacian. To see this, fix g(x) = 1/(1+ |z|)™ with 1 < m < 2, and consider the rescaling y = yz.
The Schrédinger operator then reads v2A, ¥ + EWZI)’"\I]’ and it is then clear that if we choose 7
small, the potential is actually ‘large’ in the far field. Consequently, the results from [21] no longer
apply for the case considered here.

In this paper we show that target pattern solutions to the viscous eikonal equation, or equiva-
lently, bound states to the above Schrodinger operator, exists even for these large inhomogeneities. As
with small defects, we prove that target pattern solutions have frequencies, 2, that are small beyond
all orders of the parameter . Consequently one cannot use a regular perturbation expansion to justify
existence. To resolve this issue we first find two approximations to target patterns, one which is valid
at intermediate scales and second one that accounts for the far field behavior of the solution. By
matching these two approximations we are then able to determine the unique value of the frequency
selected by the system.

It is in the course of this analysis that one sees that the slow decay rate of the inhomogeneity
plays a major role in shaping the solution at intermediate scales. This is the main difference between
the analysis presented here and that of [13], where inhomogeneities of finite mass are considered. It is
also why we will split defects into a core region and a far field region, reflecting the fact that the defects
we work with are still too small to alter the shape of the pattern at large scales, but do contribute to
the form of the equation at intermediate scales. In particular, we write the impurity as the sum two
functions, defined as

g9e=0-x")g  gr=x"9 (3)
where P is a C* radial cut-off function, with x”(|z|) = 0 for |z| < D and xP(|z|) = 1 for |z| > 2D.
To prove the existence of target patterns, the value of the parameter D can remain arbitrary, so long
as it is a finite number. This follows because even though in the above definition the function g. has
compact support, our results hold for more general ‘core’ functions. The only requirement being that
this core defect has finite mass. We therefore make the following assumption.
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Hypothesis 1.1. The inhomogeneity, g, lives in HF(R?), with k > 2 and o € (0,1), is radially sym-
metric, and positive. In addition, the defect can be split into the sum of two positive functions, g., gy,
satisfying
e The function gy is in HE(R?) for 0 < o < 1. In particular, g; ~ O(1/r™) as r — oo, with
1 <m < 2, while near the origin g¢(|z|) =0 for |z|] < 1.

e The function g. is in HA’f(R2) for v > 1. In particular, g. ~ O(1/r%) with d > 2 as r — oco.
Remark 1.2. The spaces HE(R?), with o € R, are weighted Sobolev spaces with norm
lullegey = > 11+ [2[*)72D*u()|| 12 (z2).-
lee|<s

Notice that for positive values of o, they impose a level of decay on functions. For a precise definition
of these spaces see Section 2.

With the above hypothesis and the approach just described, we prove the following result.

Theorem 1. Let k > 2 and o € (0,1) and consider a function g € Hf,a(R2) satisfying Hypothesis
1.1. Then, there exists a constant ¢g > 0 and a C*([0,2¢)) family of eigenfunctions ¢ = ¢(r;e) and
eigenvalues 2 = Q(e) that bifurcate from zero and solve the equation

Ao — b(0,0)* —eg(r) + Q=0 r = |z| € [0, 00).

Moreover, this family has the form

b(rie) = —%Xl(Ar) log(Ko(Ar)) + d1(rie) +ec, A% = bO)(e)
where

i) ¢ is a constant that depends on the initial conditions of the problem,

i1) Ko(z) represents the zeroth-order Modified Bessel function of the second kind,
iii) Or¢y € HE (R?), and
i) Q= Q(e) = C(e)de2= exp|2/a], with

a= —6b/ ge(r) r dr,
0

and C(g) a C' constant that depends on «.

Remark 1.3. Notice that under Hypothesis 1.1 the viscous eikonal equation, (1), is invariant under
rotations. As a result we can look for solutions that are radially symmetric. This assumption is made
mainly for convenience, and one can follow the steps in [13] to tackle the more general case of non-
symmetric inhomogeneties.

Remark 1.4. If the inhomogeneity g has strong algebraic decay, i.e. g(r) ~ 1/r™ with m > 2, then we
are back in the regime considered in [13]. In this case, the impurity has finite mass and there is no need
to split this function into the sum of its core and far field functions. In fact, one can set g = g. = g5
and the above theorem is equivalent to Theorem 1 in [13] with a = —eb [;° g(r)r dr < co.

Remark 1.5. While the exact form of the cut-off function x appearing in the definition of g. is not
important for the proof of existence, it does play a role when approximating the pattern’s frequency, €.
As our numerical simulations show, there is an optimal way of picking the parameter D that allows
one to obtain better estimates for the frequency, see Section 6. If a non-optimal choice is made, one
can improve the estimates for € by using higher order approximations for the intermediate and far
field solutions when carrying out the matched asymptotics, see Section 5.



Can large inhomogeneities generate target patterns? 5

We close this section with some comments regarding the mathematical tools used in this paper.
As in reference [13], the proof of existence of solutions is based on the implicit function theorem. This
requires that the linearization about our first order approximation, ¢ = ¢g, be an invertible, or at least
Fredholm operator with closed range and finite dimensional kernel and cokernel. However, because
the equations are posed on the plane, we obtain linear operators that are second order differential
operator with essential spectrum near the origin. In addition, the translational symmetry of the
system implies that these maps have a zero eigenvalue at the origin. Consequently, these operators
are not invertible and they do not have a closed range when posed as maps between standard Sobolev
spaces. To overcome this difficulty and recover Fredholm properties for these maps, we work instead
with weighted Sobolev spaces. In particular, we make use of the results from [19], where Fredholm
properties for the Laplace operator are derived. For other instances where this approach is used to
prove existence of patterns see references [9, 11, 13, 12].

1.1. Outline:

The paper is organized as follows. In Section 2 we introduce a special class of weighted Sobolev spaces
and summarize Fredholm properties for the Laplacian and related operators. In Section 3 we work
with our model (1) and derive from it an equation that is valid at intermediate scales. We then prove
existence of solutions to this equation that are bounded near the origin and that have appropriate
growth conditions. Next, in Section 4 we work with the full model (1) and, treating the frequency as
a parameter, find a first order approximation to target pattern solutions. Then, in Subsection 5.1 we
use matched asymptotics to determine the value of the frequency, (2, selected by the system. More
precisely, we show that Q is a C! function of the parameter . This then allows us to prove existence of
solutions using the implicit function theorem. The analysis is complemented by numerical simulations
presented in Section 6, and a discussion in Section 7.

2. Preliminaries

In this section two different classes of Sobolev spaces are introduced, weighted Sobolev spaces and
Kondratiev spaces. We also look at Fredholm properties for the specific operators that will appear
in later sections. We will see how these properties depend on the weighted spaces used to define the
domain and range of these operators. Throughout this section we use the symbol (z) = (1 + |z|>)'/2,
which appears in the definition of the norms for the weighted Sobolev spaces introduced.

2.1. Weighted Sobolev Spaces

Let s be a nonnegative integer, p € (1,00), and v a real number. We denote by W;j’p(Rd) the space of
functions formed by taking the completion of C§°(R?, C) under the norm

lullws @y = D 1) D (@) 1o me)-
loe|<s

When p = 2 we let W$’2(Rd) = Hf/(Rd). In this case these spaces are also Hilbert spaces, with inner
product defined in the natural way by

(f.o)=> | fl@)glz) (z)* du
a|§s/Rd

where the overbar denotes the complex conjugate.
Notice in particular that depending on the sign of the weight v, the functions in these spaces are
either allowed to grow (v < 0 ), or forced to decay (y > 0). We also have natural embeddings, with
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WsP(RY) ¢ WP(R?) provided v > o, and W3P(R?) € WHP(R?) whenever s > k. For 1 < p < oo we
can also identify the dual, (Wiﬂ’(Rd)) with the space W_* q(Rd) where p and ¢ conjugate exponents.

Kondratiev Spaces: With s,p and « as in the previous section, we define Kondratiev spaces as
the completion of C§°(R?, C) functions under the norm

lullazs e ey = Z (@)1 D ()| 1o e
la|<s

and denote them by the symbol Mj’p(Rd).
Again we see that these spaces are Hilbert spaces when p = 2, with inner product given by

Z/ F@)5(z) ()20 gy
|| <s

We also have the following natural embeddings. One can check that M3P (RY) C M,’YW (R4) whenever
s > k, and Mf;vp(]Rd) C M2P(RY) provided v > 0. In addition, as in the case of standard Sobolev
spaces, one can identify the dual space (M:P(R?))* with M__j’q(]Rd), where p and ¢ are conjugate
exponents.

As was the case with the weighted Sobolev spaces defined above, Kondratiev spaces encode
growth or decay depending on the sign of 7. However, in contrast to W3 (R?), Kondratiev spaces
enforce a specific algebraic growth or algebraic decay depending on the value of +. In addition, we have
the following result which summarizes decay properties for functions in M3? (R9) in terms of ~.

Lemma 2.1. Let d,m € N with m > (d—1)/2. Then, for v > —d/2, and for all f € M"*12(R?) there
is a constant C > 0 such that

5@ < UV, ey 12 gy 72,
whenever |z| is large and where § = (d — 1)/2m.

Proof. Let (0,r) represent spherical coordinates in RY, with r being the radial direction and 6 repre-
senting the coordinates in the unit sphere, 3. Then,

R 2
2
/Z|f(9aR)| d9§/2</oo 3rf(9,s)|ds> de
00 2
/ (/ Sas’y+1|arf(9,8)|8(d—1)/2 dS) do
b R

where & = —(y+1)+(1—d)/2 and R is fixed. Since the inner integral is squared, we also switched the

1/2

1£C B2z <

bounds of integration. Then, applying Minkowski’s inequality for integrals [6, Theorem 6.19] followed
by Cauchy Schwartz,

o 1/2
1£(Cs B2 sy S/ 5 U 52019, £(0, 5) sV dﬁ} ds
R >

0o 1/2 R
< {/ 32"‘} l/ / s20+ D19, £(0,5) s ) do ds]
R oo JX

< Cy, )RV 2| (g

1/2
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where the last line holds provided 2a + 1 < 0. We therefore have the following inequality
IFCR)llzzey < COv RV Iz @y, 7 > —d/2.

Suppose now that f € M7"12(R?). Using the chain rule we find that [0, D& f (-, R)| < |D¥*! f|R¥,
where by D’{; we mean derivatives with respect to unit sphere variables. As a result, similar calculations
as the one above show that for integer values of k € [1,m] we have that

HDgf( )||L2 (=) <R d/2||Dk+1fHL2+k+1(R’i) v > _d/2'

Next we use a result from Adams and Fournier [2, Theorem, 5.9], which states that given a
domain ¥ of dimension n, and conjugate exponents, p, q, satisfying p > 1 and mp > n, 1 < ¢ < p,
there exist a constant C' such that for all u € W™P(X)

lull o sy < Cllullfym s lullas),

where 6 = np/(np+(mp—n)q). Choosingp = q=2,n=d—1, m > (d—1)/2, we obtain 6 = (d—1)/2m
and

17CR)loe < COMRTT V27 s o IV

provided f € M"t12(RY).
(]

Remark 2.2. Although in the definitions presented above, the spaces Mj’p(]Rd) and W,f’p(Rd) consist
of complex-valued functions, in what follows we will assume that all functions are real-valued.

2.2. Fredholm operators
In this section and throughout the paper, we use the notation M2 (R9) and Hy (R9) to denote the
subspaces of radially symmetric functions in M3? (R?) and H,j(]Rd)7 respectively.

The next Lemma shows that for A > 0, the operator 0, + % + A is invertible in appropriate spaces.

Lemma 2.3. Let vy € R, A >0, and k € N. Then, the operator (0, + + + X) : HF (R?) — H} ' (R?)
has a bounded inverse.

Proof. A short calculation shows that the kernel of this operator is spanned by the function e =" /r,
which is singular near the origin and is therefore not in wa (R?). At the same time, the adjoint of
this operator is given by =0, +A: L2 (Rz) — H71 (R2), and we find that the cokernel is spanned
by the function e*", which again is not in the space L2 (RQ) no matter what the value of v is. As a
result, the kernel and co-kernel of this operator are tr1V1a1

To prove the result, we are left with showing that that the inverse operator

L%W(R?) — H1 (RQ)
f(r) — _1fr A " f(s)s ds

is bounded. To show that [lullrz (r2) < [|fl[z2_ (r2), We use the inequality

lullrz_ w2y < llullrz_ () + llullrz_ @2\5)),
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where Bj is the unit ball in R2. Then

(oo}
lullez ®2\By) = [/1

1/2

)e/\(s—r) f ds
r

2
<r>2'yr dr}
) 1/2
’y+1/2 e—A(T—S) <r — 3>|7+%‘ ds d’l"‘| )

<ol +1/2| [/
o 2 1/2
<gh+1/2 / dr

0
1/2

<obt172) /OO e () 4172 </Oo = 220 — 222 dz> dz
0 z

<C1(v, Mfllzz_ w2

where the second line follows from the fact that s/r < 1 and the relation (s)=7(r)® < 2lol(y — s)lol.
The inequality on the third line comes from using the change of coordinates z = r — s and ex-
tending the outer limits of integration to zero, while the fourth line follows from an application
of Minkowski’s inequality for integrals, [6, Theorem 6.19]. In the final result we let Ci(vy,\) =
2|'y+1/2|f ez >|'y+1/2\ dz.

To prove the relation ||ullz2 _(p,) < Cl|fllr2_(z2), we bound

/r |f(r,« _ Z)|<7” _ Z>'y+1/2€—)\z<z>\7+1/2| dx
0

lu(r)| < 1/7" ‘f(s)e‘“"_s)s’ ds
™ Jo

1 T
- s)| s ds
<2 [ )

<

< ([ s ds)m (f dS)m
< ( / TR ds)m (\/5)
1

< ﬁ”fHL?W(]R )

where the third line follows from Hélder’s inequality. We then obtain that [[u(r)||rz_(5,) < C2(7) [|fllz2_, ®2)
1/2
with Co(y ( fo )y dr) , and consequently

lu(r)lizz  @2) < (CL(v;A) + C2(VI Iz, m2)
Next, to show that the derivative d,u € L72w (R?), we use the equation to write d,u = f —Au— %

T 7
and thus obtain

10rull 2z @2\Byy < (14 (1+NCL(, A) £l @2)-
To bound [|9yul|rz_ Bl)’ notice ﬁrst that

PO < S [ is@lsas < 5 [ 176 = sl ds + 510001

where we pick y € [0, r]. Letting B(y, 2r) = B(y, 2r)NB(0,7) C R? , where B(y, 2r) is the ball centered
at y of radius 2r, the inequality becomes

u(r)| < |B(y, 2r)| <|B( 1 |f(s) — f(y)|s ds d9> + %|f(3/)|

r 2mr? Y, 2r)| JB(y,2r)
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Here, | B(y, 2r)| denotes the measure of the set B(y,2r). Since L2(B(0, M)) ¢ L'(B(0, M)) for any
ball B(0, M) C R?, with finite radius M, we have that f is in L}, .(B(0,M)). By the Lebesgue
Differentiation Theorem [6, Theorem 3.21], the expression in parenthesis approaches zero as r — 0,
while the fraction in front remains bounded since | B(y, 2r)| > 2772, Therefore, close to the origin, the
function |u(r)|/r is bounded by f(r) and, using again the equation d,u = f — Au — u/r, we find that

[0rullrz_(B) < 2+ (L+N)C2(7) 1 fllz_ re2)-
It then follows that

[0rullrz w2y < B+ (1 4+ A)(C1(v, A) + C2(M)fllz_ r2)-

The above calculations then show that the map £y = 9, + + + X : H} (R?) — L2_(R?) is
invertible. Moreover, we also obtain that the operator norm of its inverse satisfies,

L3 < 3+ 2+ M) (Cily, A) + Ca (7))

To extend the result to the more general operator 9, + 1 + A : Hf (R?) — H}F>'(R?) one can
proceed by induction: Assuming that f and u are in HF>!(R?) one shows that du is in L2 (R?)
using the relation 9Fu = 9F~*(f — u — %). The fact that 9F~* (E> is in the correct space follows by

T

a similar argument as the one done above to prove u/r € LEW(RQ).
O

To simplify notation, we define L(\) = 0, + % + A and prove in the next Lemma that its inverse,

defined over appropriate weighted spaces, is continuously differentiable with respect to the parameter
A

Lemma 2.4. Let A > 0 and k € NU {0} and consider the operator defined by L(A\)u = dpu+ +u + Au.
Then, its inverse,

L7\ : Hf?ﬁ(]RQ) — Hﬁifrl(Rz)
is C1 with respect to the parameter .
Proof. Lemma 2.3 shows that £7(\), with the specified domain and range, is a bounded operator
for all A € (0,00). To prove the continuity of this operator with respect to A we must show that given
f € H (R?),
sup (£ A+ h) = £ ) S < Ch.

£l =1
Using the notation ¢(\) = £L71()\) f, we notice that
(LTHA+R) = L7HN)f =o(A + h) = ¢(N)
== LTX N LA+ h) = L] oA+ h)
=—hLTTNLTTN+R) S,

from which the desired result follows. This last expression also shows that for A > 0, the derivative of
L71(\) with respect to this parameter is given by

LTI\ : HE (R?) —  HFY(R?)
f = LT LTINS

Since the derivative 9L~ 1()) is the composition of two continuous operators, it follows that it is itself
continuous with respect to . O
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Finally, the next proposition establishes Fredholm properties for the radial operators A, :

M7 5(R?) = L7 (R?)

TL2

1
An:&«r—k;&«—ﬁ, TLENU{O}

The results follows from [19], where it is shown that the Laplace operator A : Mﬂ?fg (R?) — LP(R?) is
Fredholm, and the fact that when p = 2, one can decompose the space Mii (R?) into a direct sum
@mfmfg where

mfm_z ={uce M,?’_QQ(RQ) s u(r,0) = v, (r)e™, v, € Mif_g(RQ)}, n € Z.

Notice that because the functions in M,?_QZ (R?) are real valued we have that v_, = ©,,. For a detailed
proof of this next result, see [13, Lemma 3.1].

Proposition 2.5. Let v € R\Z, and n € Z. Then, the operator A,, : Mf”,?d(RQ) — L2 (R?) given by

1 n?
An¢ = 8rr¢ + 76T¢ - T‘72¢

r
18 a Fredholm operator and,
1. for 1 —|n| < < |n|+ 1, the map is invertible;
2. for vy > |n|+ 1, the map is injective with cokernel spanned by rinl
3. for v < 1—|n|, the map is surjective with kernel spanned by rinl,

On the other hand, the operator is not Fredholm for integer values of .

3. Intermediate Approximations to the Viscous Eikonal Equation
As mentioned in the introduction, our interest in the viscous eikonal equation
¢ = Ap —b|VP|* —eg(x), =R,

stems from its role as a model equation for the phase dynamics of target patterns and spiral waves
in oscillatory systems. We are therefore interested in solutions of the form ¢(x,t) = ¢(x) — Qt, which
then satisfy the steady state equation,

Ap—bVo]? —eg(z) + Q=0 z € R% (4)

Because the gradient, V¢, then approximates the pattern’s wavenumber, target patterns then corre-
spond to those ¢ which in addition fulfill the boundary conditions, V¢ — k as |z| — co. Consequently,
we look for solutions to equation (4) that bifurcate from zero when ¢ > 0, and whose gradients are
bounded at infinity.

Notice that the condition on the gradient, V¢, provides enough information to derive an equation
that is valid at intermediate scales. Indeed, assuming a regular perturbation for both ¢ and 2, one
obtains at order O(e) the equation,

Orrr + 101 —g = .
A short calculation then shows that in order to obtain solutions with bounded derivatives, the param-
eter €7 must be zero. Continuing this perturbation analysis one checks that this condition must be
satisfied at all orders of € . In other words, the frequency, 2, must be small beyond all orders of this
parameter. Consequently, at intermediate scales the system is well approximated by the intermediate
equation

Do — b(0r¢)* — egc — egy = 0. (5)
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Notice that we have explicitly written the inhomogeneity as the sum of two functions satisfying
Hypothesis 1.1. This choice of notation will be used next in Subsection 3.1, where we construct a
first order approximation for the above equation. We then use this information to prove existence of
solutions to equation (5) in Subsection 3.2.

Notation: Throughout this section, and in the rest of the paper, we use v, to denote the Euler
Mascheroni constant, and the symbols x, xar € C*°(R?) to denote smooth radial cut-off functions
satisfying

. 0 if lz] <1
x(m)={(1) ﬁ Ii:i; @) =< 1 if 2<|z|<M ,
0 if 2M <|z|

where M is a positive constant. Notice in particular, that x s has compact support.

3.1. First Order Approximation

We construct a first order approximation, ¢, which is the sum of two functions, ¢¢ and ¢;. We take
1
do = —EXMlog(1+alogr+6K(r)), (6)

a choice that is motivated by the Hopf-Cole transform, ¢ = —% log ¥, which turns the eikonal equation
(5) into the steady state Schrodinger equation with potential eg. The value of the constant M appearing
in the definition of the cut-off function xjs is taken so that the expression log(1 + alogr + eK(r)),
always remains bounded. The constant a is a parameter that is determined when constructing the
second part to the approximation, while the function K(r) satisfies

AoK +bgy = 0. (7)

The fact that we can solve this last equation follows from our assumptions on the inhomogeneity.
Recall that g; € HE(R?) for 0 < o < 1. Proposition 2.5 then shows that the radial Laplacian, Ay, is
a surjective operator with a one dimensional kernel spanned by {1}. We can therefore use Lyapunov-
Schmidt reduction to solve this equation and find a family of solutions

K(r) = Ky(r)+c, ceR.

Since c¢ is arbitrary, without loss of generality we pick ¢ = 0. We also find that the solution, K, belongs
to the space Mf f_Q(RQ). In fact, one can check that K has more regularity and is in the space

RF = {ue M*?_,(R?) : D*u e H(R?)). (8)

r,o—2

Remark 3.1. Notice that the function ¢g is as regular as the function K, and that as a result the
derivative O,¢o is in the space HETY(R?). In addition, this function is bounded and has compact
support.

Remark 3.2. Because gy is in HE(R?) with o € (0,1) and k > 2, we then have the following decay
properties for the solution to equation (7):

e if g; decays like 1/r™ in the far field, with 1 < m < 2, then K ~ O(r?=™) at infinity, while
e if g; decays like 1/r? in the far field, then K ~ O((logr)?) at infinity.

Next, we define the second function, ¢, as the solution to the equation
a
Ro¢1 — 3 Dolxlogr) —ege = 0.

Here, the constant a is the same as the one appearing in the definition of ¢y, and the function g, is
in the space H,’Y“(RQ) with 1 < v, by assumption.
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To justify the existence of ¢1, we use again Proposition 2.5 which shows that for values of v > 1,
the operator Ay : Mi’j_g(Rz) — Lzﬂ(RQ) is Fredholm with index -1, and cokernel spanned by {1}.
Because the projection of Ag(xlogr) onto the cokernel is non-trivial, i.e.

Ag(xlogr) dz = 2,
R2
the Bordering Lemma stated at the end of this subsection then shows that the operator

M2 ,(R?) xR — L% (R?)

(60)  — Dods— ZAo(xlogr)

is invertible. Therefore, the equation for ¢ is indeed solvable. In addition, projecting onto the constant
functions we also find that

a= —eb/ ge(r) r dr. (9)
0
Finally, since g. € HY(R?), it follows that our solution ¢, is in the space R¥, defined as in (8).

Lemma 3.3. [Bordering Lemma] Let X and Y be Banach spaces, and consider the operator

S = {é g] X xR — Y x RY,
with bounded linear operators A: X — Y, B:RP — Y C: X — RI D:RP — R4 If A is
Fredholm of index i, then S is Fredholm of index i + p — q.

Proof. One can write S as the sum of a block diagonal operator with the indicated index, ¢ + p — g,
and a compact operator consisting of the off-diagonal elements. Since compact perturbations do not
alter the index of a Fredholm operator, the result then follows. O

3.2. Existence of Solutions to Intermediate Approximation
Using the first order approximation, ¢g + ¢1, defined in the previous subsection we now prove the
existence of solutions to equation (5) using the implicit function theorem.

Inserting the ansatz

¢ =¢o+ d1+ ¢2
into equation (5), one obtains the following expression for ¢s,
Doz = b(20,60(0,61 + 0,62) + (D + 0,62)?) + G1 = 0, (10)

where the term G is given by
a
G1 = Dogo — b(Dr)* — gy + ng(X logr)

To continue the analysis, we let ¢ = 0,¢2 in equation (10), and add and subtract the term Ai).
We assume that the parameter A is sufficiently small, positive, and fixed. The result is,

1
Ot + 1+ N = b(20,60(0, 61 + ) + (9,61 +1)?) + G1 = M =0,
Letting £\ = 0, + } + A, we may precondition this last equation with L’;l and write

b+ L350 [<0(20060(0rn + ) + (B + 1)) + Gr = x| = 0. (11)

Because the above expression is equivalent to the intermediate equation (5), if we find a solution % to
(11), we immediately obtain a corresponding solution to (5) of the form

o(r;e) = go(r;e) + o1(r;e) + da(r;€) +ec,
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where 9,¢2 = 1 and c is a constant of integration.

To use the implicit function theorem, we view the left hand side of (11) as an operator F :
HE(R?) x Ry — HEF(R?) for some appropriate § € R, and show that it is well defined, smooth with
respect to &, and that its Fréchet derivative Dy F(0;0) : HF(R?) — HF(R?) is invertible. The result
is the following theorem.

Theorem 2. Let k > 2, 0 € (0,1) and consider functions g € Hﬁg(Rz) satisfying Hypothesis 1.1.
Then, the intermediate equation

AO¢ - b(ar¢)2 —eg =0,

has a family of solutions
1
o(r;e) = —y XM log (1 +alogr + eK) + ¢1(r;8) + Pa(r;e) + ec, c€eR,

that bifurcates from zero at e = 0 and is C' in e € [0,00). Moreover, letting v € (1,00), and o € (0,1)
be defined as in Hypothesis 1.1, the family of solutions satisfies:

o ¢1 € {ueM?? ,(R?): D> e HFR?)Y,

rY—2
e 0.¢2 € HE(R?), where § = min(y — 1,0).
o AgK =gy, with K € Rfj, and
o a=—eb ;" ge(r)rdr.

Proof. As already mentioned, the result follows from finding solutions to equation (11) using the
implicit function theorem. We therefore consider the left hand side of this equation as an operator
F: HF(R?) x Ry — HF(R?), with § = min(y — 1,0) > 0.

Since the operator’s dependence on ¢ comes from the three functions 0,.¢¢, 0,¢1, and G1, and
since these functions are all smooth with respect to € on the interval [0, 00), then the same result holds
for the operator F'.

To show that the Fréchet derivative Dy F'(0;0) = Id— AL} " is invertible, we recall the results from
Section 2. In particular, Lemma 2.3 shows that £' : H¥(R?) — HET'(R?) is bounded. Since the
embedding Hy ' (R?) ¢ HF(R?) is continuous, it then follows that D, F(0;0) : HF(R?) — HE(R?)
is a small perturbation of the identity operator, and is thus invertible for a sufficiently small .

To complete the proof we need to show that the operator F' is well defined. Taking into account
the results of Lemma 2.3, this is equivalent to showing that the expression

N(w.2) = =b(20,60(0,61 + ) + (9,01 +¥)*) +G1 = M,

defines a bounded operator N : HF(R?) x R — Hy*(R?).
We start with the term 9,.¢q(9,¢1 + ). From the definition of ¢; we know that this is a function
in Rﬁ with v > 1. In particular,
Or1 € {u € M2} (R?): Du € HE(R?)} C HEFH(R?).

r,y—1

Because ¢ € HF(R?) and § = min(y — 1,0) > 0, it then follows that the sum (8,¢1 + ¢) is also in
this space. Since 9,-¢p has compact support and k + 1 bounded derivatives (see Remark 3.1), then the
product 0,¢o(dr¢1 + 1) is also well defined in H¥(R?).

Next, since (9,¢1 + ) is in H¥(R?), with § > 0 and k& > 2, Lemma 3.4 below shows that
(0y¢1 + )2 is in Hy~'(R?). Finally, Lemma 3.5 at the end of this section shows that G, € H¥(R?),
and because 6 = min(y — 1,0) > 0, this term is also well defined.



14 Can large inhomogeneities generate target patterns?

Since the operator F satisfies the assumptions of the implicit function theorem we obtain a family
of solutions ¢ (r; ) that bifurcates from zero and is smooth with respect to e. Because ¢ = 9,¢2, we
arrive at the family

d(r;e) = do(r;e) + d1(r;e) + pa(r;e) +ec, c€R.
This finishes the proof of the Theorem.

Lemma 3.4. Let ¢ € H¥(R?) with v > 0 and k > 2. Then, ¢¥* € HE1(R?).

Proof. To simplify the analysis we let D’ denote any j-th order derivative, and we only prove that
DF=1(4?) is in L?_ (R?), since a similar analysis shows that lower derivatives are in this same space.
Because k > 2 and y > 0, it follows by Sobolev embeddings that D7y € H? (R?) C H*(R*) C Cp(R?)
for 0 < j <k — 2. Then, writing

k—1
DM = <k i 1) DM1IypDTy

j=0
we see that this derivate can be written as a product of a bounded function and a function that is in
L2 _(R?). Hence ¢* € H}'(R?). O

The next Lemma shows that G is in H¥(R?) with o € (0,1).

Lemma 3.5. Let k > 2, o € (0,1) and take gy € HE(R?). Consider the function ¢o constructed from
gy and described above in (6). Then the expression

a
G1 = Dodo — b(Dr0)” — gy + gAO(Xlog r)
is also in H*(R?).
Proof. Using the notation ¢o = yar¢o, we first expand Gy

G1 =Aado — b(0,¢0)? — g5 + 3 Bolxlog)

G1= (QEOAOXM +2Xb0 — b(Xhrb0)? — 26X X2 P00y b0 + b(0rd0)* (Xar — X%w))

1 Ap(alogr +cK)
- TXM
b 1+alogr+eK

a
] —egy + 5Ao(x logr)

G1= (QBOAOXM +2Xb0 — b(Xhrb0)? — 26X X0 P00y b0 + b(0rd0)* (Xar — X?\/I))

1 { Apalogr ] 1 { eNgK

a
b 1+alocr ek | b T | —Ao(x1 )
p M 1+alogr+eK b M 1+a10g7“—|—€K] gy + 7 Ao(xlogr)

b

Because the log r is a fundamental solution of the Laplacian and since s is zero near the origin,

then the term
Apalogr ] B

14+alogr+eK

Similarly, because the function K is a solution to AgK + bgy = 0, then we may write
1 EAoK
bXM 1+alogr+eK

ol

(alogr +eK)

} —egy =—egp(1—xar) — g [w '
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Therefore,

Gy = (évoXM + 2xrd0 — b(Xhrb0)? — 26X X a1 B0y b0 + b(0rd0)* (X s — X?w))
(alogr +eK)

a
—Ag(x1
1+alogr+€K}+b o(xlogr)

—egr(1 = Xxnm) — €gsXm [
From the definition of x,; it is clear that all terms involving a derivative of this function are
localized and have compact support. Because the value of M in the definition of y,; was chosen to
vanish whenever the expression 1+alogr+eK is < 0, we see that the term in brackets is also bounded
and with compact support. In addition, this term is as regular as the function K € R and is therefore
in H**2(R?). On the other hand, the function (1 — xas)egy behaves like g; at infinity and as a result
it is in the same space as the inhomogeneity. Finally, because Aglogr = 0 on R? \ {0}, the function
Ag(xlogr) is localized and smooth. Taking all this into account, we may conclude that G; is in the
space HY(R?).

([l
4. Far Field Approximation to the Viscous Eikonal Equation
In this section we consider again the full equation
Do¢p = b(8:0)* —eg(r) + Q=0 r=lz] €[0,00), (12)

but assume that the value of Q is fixed and different from zero. As in Section 3, we first find an
appropriate expression for the far field behavior of the solution and a first order approximation for
this new equation. We then use this result to prove existence of solutions using the implicit function
theorem.

Because the inhomogeneity is algebraically decaying, for large values of r the relevant terms in
the equation are

Ao — b(0,9)* + Q2 =0
To find a first order approximation, we can again use the Hopf-Cole transform, ¢(r) = —(1/b) log(K),
rewriting the equation as

1
O K + -0, K — A2K =0 A2 =bQ.
T

Notice that this is either a Bessel, or the Modified Bessel equation, depending on the sign of b2.
Because we are interested in solutions, ¢(r), that are real, we pick bQ) > 0 so that the solution to
this last equation is K = K, the Modified Bessel function of the second kind. In particular, because
Ky(z) ~ O(e™*) as z — oo ( see Table 1 below), this implies that 9,¢(r) is bounded in the far field,
as desired.

We therefore consider the ansatz

o(r) = ¢o(r) + ¢1(r)
where ¢q is given by
do(r) = f%x(Ar) log(Ko(Ar)), A% =60 > 0.

Here, again x represents a cut-off function that removes the singular behavior of the log function near
the origin. Inserting this expression into equation (12) gives

Aodr — 260,00, d1 — b(0r 1) + (Dodo — b(0rd0)* + Q) —eg = 0.
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Since the terms appearing in the parenthesis represent a localized function with compact support,
they do not contribute to the behavior of the solution for large values of r. Thus, the far field behavior
of the solution is determined by

No¢1 — 208, $00;¢1 — b(Dr1)? — g = 0. (13)
Letting 1 = 0,¢1 and adding and subtracting the term 2Ay gives us

0 + %w + 200 + [~208, pot) — by® — eg — 2A9] = 0.

We can then precondition this equation by £, Al, since by Lemma 2.3 we know that this operator
is bounded for all values of A > 0, if its domain is HﬁU(RQ). Thus, the equation can be written as

P(ie) =T+ £33 | = 260,01 — b — 29 — 28| = 0. (14)

In what follows we will show that the operator F : HF (R*) x R — H} (R?) satisfies the
conditions of the implicit function theorem and prove the following theorem.

Theorem 3. Take g € Hfﬁ with k > 2 and let o € (0,1). Then there exist a positive constant Ay such
that for any fived A € (0,Ag), there is an g9 > 0, and C* family of solutions, ¢ = ¢(r;¢), to equation
(13) that bifurcates from zero at € = 0 and is valid for e € (—eg,e0). Moreover, this family has the

form
o(r;e) = féx(Ar) log(Ko(Ar)) + ¢1(r;e) + ec
where
i) Ko(z) represents the zeroth-order Modified Bessel function of the second kind,
i) Ordn € HYH(R?),
iii) and ¢ € R is an arbitrary constant.

Proof. Because finding solutions to equation (13) is equivalent to finding the zeros of the operator
F:HF, (R?)xR — HF (R?) defined in (14), we check that F satisfies the assumptions of the implicit
function theorem.

It is clear that F'(0;0) = 0 and that this operator is smooth with respect to the parameter . To
check that the Fréchet derivative, Dy F(0;0) : Hf ,(R?) — HF (R?), given by

Dy F(0;0) = Id + L5, [~2b0,¢o — 24],

is invertible, notice that the term in the brackets can be written as the product of a bounded function
times the constant 2A. Indeed, this can be checked by expanding this term,

—2b0, g — 2A = —2b0,.| —%X(Ar) log[Ko(Ar)]] — 2A

/

— 2 [V (Ar) ogl o (Ar)] + x(4n) 22T ~ 1]

gég; = —1 as r — oo, and that x’ has compact support. Since the
operator £, : H} ,(R?) — HFF(R?) is bounded, it follows that there is a small number Ag > 0 such
that if A € (0,Ag), the derivative Dy F'(0;0) is a small perturbation of the identity and is therefore

invertible.

and using the fact that the ratio

We are left with showing that the operator F' is well defined. Taking into account again that the
map L5 : H} Y (R?) — Hf ,(R?) is bounded, this is equivalent to showing that the terms

—2b0,dot) — bip? — g — 2A¢
define a bounded operator N : Hf ,(R?) x R — HF ! (R?).
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z—0 zZ — 00

Ko(2) —log(2/2) — 7e + O(2?) Ve (1+0(1/2)

K1 (2) L4 0(2) JEe (1 +o(1 /z))

TABLE 1. Asymptotic behavior for the Modified Bessel functions of the second kind
of zeroth and first-order, taken from [1, (9.6.8), (9.6.9), (9.7.2)]

First, notice that by assumption, the impurity ¢ is in the desired space. As for the elements
involving the variable ¢ € H,’f »(R?), because the derivative 0,¢p is a bounded function, we can easily
check that they are both in the space H};'(R?). Finally, since 0 > 0, Lemma 3.4 shows that the
product 1? is in HF 1 (R?).

This proves that the operator F' satisfies the conditions of the implicit function theorem and
proves the existence of a family of solutions solving F(i;e) = 0 . Going back to the definition of
¥ = Or¢p1, we see that the above result also gives us a family of solutions ¢(r; &) = ¢o(r) + ¢1(r;€) +ec
solving the far field equation (12), where ¢1 € HFF'(R?) and ¢ is for now an arbitrary constant which
is the result of integrating 1. This proves the result of the theorem. O

5. Existence of Target Patterns

5.1. Matching

To determine an expression for the eigenvalue {2, we must match the intermediate and far field ap-
proximations of the wavenumber, 0,.¢. For convenience we recall their expressions,

Brar(ri, ) = = Tx(Ar) log(Ko(Ar)) + 1 (rs<) +<c

Gint(r;) = — %XM log (1 +alogr + EK(T)) + ¢1(r;€) + da(r;e) + ec,

As before, Ky denotes the Modified Bessel function of the first kind, while the function K satisfies

Notice that the remaining terms, ¢1, ¢1, and ¢, all have derivatives that decay algebraically at infinity.
In particular,

1. The function ¢, defined in Subsection 3.1 is in the space R,lj - Mf,’,fq, with v > 1. From Lemma
2.1 it follows that |p1| < |#|~7*!. In particular, if the inhomogeneity g. ~ O(r~(4+2))  with
d > 0, we have that 9,¢; ~ O(r—(@+1),

2. From Theorems 2 and 3 we know that the functions 0,4, and 0,¢, are in the space H f(RQ),
where § € (0,1). It then follows from Sobolev embeddings that these functions are bounded. In

addition, because d > 0, they must decay algebraically.

To do the matching, recall from the analysis in Subsection 3 that the parameter A? = b} is
assumed to be small beyond all orders of . This justifies the scaling r = n(e)r,,, where 7, is a constant
and n(e) = e/A. As a result, Ar — 0 as € — 0, while r — oo, and we find that for small value of n we
are in the region where both approximations are valid. Moreover, since € ~ o(n(e)) there is always an
open interval where the two approximations can be matched, even as ¢ — 0. Because in this region
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the functions xps = x = 1, we obtain

. Kq(Ar)
ar(bfar(r,EvA) ~ = |:AK0(AT):| + a7‘(151

1
b
1 a/r+ €0, K(r)
b {1 +alogr +eK(r)

ar¢int (T; 5) ~ -

} + Oy 1 + Orho.
Setting the derivatives equal to each other, 0,¢fqr = Or@ins, we find that

(AK(’)(AT) - bKo(Ar)&n(bl) (1+ alogr + K (r))
= Ko(Ar)[(a/r + €0, (r)) = b(0,61 + 0,65)(1 + alogr + K ()|

( “A (Alr + O(Ar)) - bKO(Ar)é)T(z)l) 1+ alogr + K (r))

- ( —log(A/2) — e —log(r) + O((AT)Q))

X [(a/r—&-E@TK(r)) —b(rbr + 8rda)(1 + alogr + K (r))],

where in the second line we use the fact that K{)(z) = —K;(z) and the expansions from Table 1.

We now proceed with the matched asymptotic analysis to determine the value of A. Notice that
due to the relation b = A2, this will also allow us to obtain an expression for the frequency. The
method is as follows: We first divide the above expression by different gage functions in order to select
terms of similar order in €. We then cancel any duplicate terms, let € go to zero, and select the value
of any undefined constant so that the remaining terms add up to zero.

Because we are interested only in finding the value of the constant A, we can simplify these
computations by noticing that terms of the form O(Ar)d,¢, will go to zero, as e — 0, faster than any
other term. Thus, they are not of the same order in ¢ as elements that involve A. This follows from
the scalings picked and the algebraic decay rate of the the function 0,.¢;. We may therefore consider
instead the expression

(14 alogr + <K (r)) =(~ log(A/2) ~ . — log(r)) (15)
x [(a/r + €0, K(r)) — b(0r¢1 + Ord2)(1 + alogr + €K (r))].

It is worth pointing out here that, in contrast to more standard matched asymptotic analyses, the
elements in equation (15) are not of order O(¢"),n € N. Moreover, we find that dominants terms
depend on the yet to be determined approximations ¢;,7 = 1,2. Thus, we will not be able to match
them exactly, but we can justify that the process can be done.

First, looking at the right hand side, one notices that the dominant term is —e log(r)9, K. Because
r depends on ¢, we may use this function as a gage function. Dividing by —elog(r)9,. K and letting
e — 0, or equivalently r — oo, we are left with matching,

ardgl + 67‘ (;32

0=1-9b
c0. K

(I+alogr +eK).

By picking the value of § € (0,1) so that the higher order correction term, ¢ € L3(R?), is in the
same space as both, K and 9, K, we see that it is possible to match these terms. Expression (15) then
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becomes
1
- (I+alogr+eK(r)) =(—log(A/2) — 7e)

x [(a/r + 0. K(r)) — b(0r¢1 + Orha)(1 + alogr + e K (r))]
a

— —logr.
r

Second, cancelling the term 7 logr, using e K /7 as a gage function, and letting » — 0o, we obtain

oK _ br
riK eK

—1=(-1log(A/2) = 7e) (0761 + Orp2) (1 + alogr +eK (1)) | .
Since ¢, = 1,2 represent all higher order terms, and not just one function, one can again justify that
these terms can be matched. As a result, equation (15) now reads

1 a
—— =(=logA/2 — —.
~ = (~logA/2— )"

Finally, solving for A, we see that A = 2e~7¢ exp(1/a). Using the relation A2 = b2, we also obtain

that
4 1
Q= —e Pexp () .
b a

In particular, from the definition of a, i.e. a = —be fooo gc(r) r dr, we may conclude that both A and
Q are smooth functions of ¢, for all € € (0,e,7), with )7 a positive constant. In addition, notice that
as € approaches zero, the value of A and §2 also goes to zero.

Remark 5.1. Notice that:

1. We need the constant a < 0 in order for A = bQ) to satisfy our initial assumption of being small
beyond all orders of €. If € > 0, this condition is guaranteed from formula (9) and the assumption
that g is a positive function.

2. Notice also that if e [ g <0, the gradient O, ¢iny would also be negative and we would not be able
to match the two approximations. This is in line with previous results which show that target
pattern solutions (or thanks to the Hopf-Cole transform, ¢ = —% log(¥), ground states of the
Schrddinger eigenvalue problem, AV + egW¥) do not exist when the inhomogeneity (potential)
satisfies € [ g < 0. See [21] for a proof of this result.

3. Because we rigorously proved the existence of solutions to the intermediate and far field approz-
imations, we know that we can obtain approzimations for ¢tqr and Pinter to any desired order.
Thus, by matching these higher order approximations, we can obtain better estimates for the
parameter A. In particular, if we consider a = ca; + €2ay, and find the corresponding expres-
sions for @tar, Pinter and az, the above matching process leads to A = C(e)2e™ 7" exp(1l/eai),
with C(e) = exp(1l/a — 1/eaq). In addition, by defining A(0) = 0-A(0) = 0, we obtain that this
estimate is also C' with respect to ¢ on [0,en), for some epr > 0.

5.2. Existence of Solutions
In this subsection we combine the results of the previous subsections and prove Theorem 1, which is

stated in the introduction and reproduced below for convenience.

Theorem. Let k > 2 and o € (0,1) and consider a function g € HﬁU(RQ) satisfying Hypothesis
1.1. Then, there exists a constant eg > 0 and a C*([0,2¢)) family of eigenfunctions ¢ = ¢(r;e) and
eigenvalues 2 = Q(e) that bifurcate from zero and solve the equation

Aot — b(9,¢)* —eg(r) + Q=0 r=|z| € [0,00). (16)
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Moreover, this family has the form
1
B(rsz) = —pxX(Ar) log(Ko(Ar)) + 61(rs) +ec, A2 =bO(e)
where
i) ¢ is a constant that depends on the initial conditions of the problem,

i1) Ko(z) represents the zeroth-order Modified Bessel function of the second kind,
iii) Or¢y € HE (R?), and

i) Q= Q(e) = C(e)de2= exp|2/al, with

a= feb/ ge(r) rdr,
0

and C(g) a C constant that depends on ¢.

Proof. The proof mimics the analysis done for the far field approximation, except that now we consider
the full equation (16). As above, we use the ansatz ¢(r) = ¢o(r) + ¢1(r), with ¢g given by

6olr) = —x(Ar)log(Ko(Ar)),  A? = b0 >0

In contrast to the analysis from Section 4, here we treat the parameter A as a C' function of ¢, a
result that follows from the matched asymptotic analysis of Subsection 5.1. Thus, given any ¢ > 0
there is a corresponding value of A that defines an approximation, ¢g, and a frequency, Q = A?/b,
both of which satisfy the equation (Agpg — b(dr-dp)? + ) = 0 in the far field.

Inserting this ansatz into equation (16) gives

AOQZSI - 2b8r¢08r¢1 - b(ar¢1)2 + (A0¢0 - b(ar¢0)2 + Q) —&g9= 0.

Letting ¢ = 0,¢1, adding and subtracting the term 2A1), and precondition the result by L3, Al, gives
the following equivalent formulation of equation (16),

F(pye) =1d + L) [ — 268, ot — bib? + (Ao — b(Dr0)? + Q) — eg — zAw} —0. (17

Our goal is to show that the operator F : HF (R?*) x R — Hf ,(R?) satisfies the conditions of the
implicit function theorem.

By Remark 5.1, A(0) = 9.A(0) = 0, so that the operator F' is C*([0,e57)) with respect to e, for
some £ > 0. Moreover, thanks to the cut-off function in the definition of ¢g, i.e. x = x(Ar), we find
that the terms (Agpo—b(dr¢0)%+) tend to zero as € goes to zero. Therefore, F(0;0) = 0. In addition,
because the elements in the parenthesis are smooth and have compact support, they belong to the
space Hff;l(]RQ), for any natural number k and any real number o. A similar analysis as in the proof
of Theorem 3 then shows that the rest of the terms in F' belong to the space Hff,o(]R2), with k > 2,
and o € (0,1). As a result, the operator F is also well defined. Since its Fréchet derivative, Dy, F'(0;0),
is now the identity map on Hff’g(Rz), we may apply the implicit function theorem to conclude the
existence of solutions ¥ = 0,¢ € Hﬁg (R?). The results of Theorem 1 then follow in a similar way as
those done in Section 4. (]

6. Simulations

In this section we numerically explore the effects of adding large inhomogeneities, g, as perturbations
to the eikonal equation, i.e.

¢ = A¢ — [Vo|* —eg. (18)
To run the simulations we model the equation on a square domain with periodic boundary conditions
and employ a spectral RK4 method based on [14], using a mesh size h = 100/512 and a time step
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FIGURE 1. Numerical simulation of the time dependent eikonal equation (18) with ¢
as in (19), p = 0.8, initial condition ¢ = 0, and various values of € ~ a = 0.15 % (3 :
2:20), where a = ¢ f03 g(r)r dr. A) Plots of the gradient of the steady state solution.
Top most curve corresponds to maximum value of ¢ used. B) Plot of W VS.
a, where for large |z| the gradient V¢ approximates the wavenumber, k(a).Circles
represent data from the simulation while dotted line is the linear fit.

dt = 0.5. The numerical scheme is continued until a steady state is reached. Different domain lengths

were tested, (L = {100,120, 140, 160, 180, 200}), resulting in the same approximations for ¢. Thus, a

domain of length L = 100 was chosen to run all numerical experiments for computational efficiency.
Simulations confirm our analytical results, finding that for inhomogeneities that take the form

A
9<W>a pe(1/2,1, Ae€R, (19)

the solutions to the eikonal equation grow linearly at infinity. This is depicted in Figure la where
the gradient, V¢, is plotted for different values of the parameter €. Notice that because we are using
periodic boundary conditions, the value of V¢ goes to zero at the boundary of the domain. As predicted
by the analysis of the previous sections, we find that the wavenumber, k = lim ;|0 V¢ ~ A/b, and as
a result the frequency, @ = A%/b, is small beyond all orders of e. To confirm this result we approximate
the wavenumber by evaluating the gradient V¢ at large values of |z|. In Figure 1b we plot the relation
m vs. a, where a represents the mass of g. = (1 — x)g, which we take as a substitute for £, since
a = —be [ g(r)r dr. Notice how in the figure the data points taken from the simulations follow a
straight line, confirming that A ~ exp(1/a).

Finally, to determine how the the decay rate, p, affects the wavenumber, we ran simulations for
values of p € (0.5, 3]. Notice that using the notation from Hypothesis 1.1, where g ~ 1/r™, this is
equivalent to considering values of m € (1,6). These results are summarized in Figure 2a. They show
that the wavenumber decreases as the decay rate of the inhomogeneity, p, increases. The figure also
compares the numerical approximation to the wavenumber, k, which we plot using stars, with the
analytical result k& ~ exp(1/a). In particular, following Theorem 1 we use

B —Ebfogg(r) rdr for pe(1/2,1)

—eb [ g(r)rdr for pe(1,3).
For values of p € (0.5,1) ~ m € (1,2), we are in the regime considered in this paper, where the
impurity g does not have finite mass and is thus a large inhomogeneity. In this case, we assume a
value of D ~ 3 in the definition of g. specified in the introduction, see equation (3). We then calculate
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FIGURE 2. A) Plot of wavenumber k vs. p for steady state solutions of the eikonal equa-

tion using g = with A = 1.5 and for p € (0.5,3). Stars represents results from

A
(1+r2)p
simulation, while solid and dashed lines represents approximation with k ~ exp(—1/a), with
a=—A/(2 —2p) for solid line, a = Af03 g(r) rdr for dashed line. B) Plot of V¢ vs. r, for

values of p = 0.3,0.8,1.5.

the mass of this function by integrating from 0 to 3, since this provided the best fit to the data (see
Remark 1.5). This approximation is plotted using a dashed line. On the other hand, when p € (1, 3)
we are in the regime where the impurity, g, has finite mass and the results from [13] apply (see also
Theorem 1 and Remark 1.4). In this case, the value of a = —¢b fooog(r) r dr. This approximation is
plotted using a solid line.

Notice that both approximations for the wavenumberm, &, do a good job of following the data
in the respective regions of the p-axis where they are valid, i.e. 0.5 < p < 1 for the dashed line,
p > 2 for the solid line. However, the estimates for p € (1,2) using the mass of g (solid line) are
not accurate, even though they follow the results from Theorem 1 in [13], or equivalently, Theorem 1
together with Remark 1.4 stated in this paper. This is not unreasonable given that the frequency of the
pattern, €2, and as a result its wavenumber, k, are both small beyond all orders of the parameter . In
particular, when p — 1 we have that a = —eb [ g(r)r dr — —oco. Because a ~ O(e), the estimates for
Q ~ exp(1/a) become worse and worse, and in this case one needs to approximate a to higher orders
in € to obtain better estimates. Figure 2a then suggests that the interval 1 < p < 2 is a transitional
regime, where one can numerically obtain a better fit to the data by using a cut-off function to better
approximate the value of a.

Finally, we also confirm numerically that for values of p < 0.5 the inhomogeneity no longer
produces target patterns, but rather solutions with V¢ ~ O(r) at infinity, see Figure 2b. This is not
a tight bound on the growth rate of V¢ and is just a very rough estimate based on our numerical
experiments.

7. Discussion

In this paper we showed that large defects can generate target patterns in oscillatory media. Under
the assumption of weak coupling, we modeled such systems using a viscous eikonal equation, and
represented the defect as a localized inhomogeneity. In contrast to previous results, which assume
that the inhomogeneity is strongly localized, in this paper we relaxed this assumption and described
impurities as functions with algebraic decay of order O(1/]z|™), 1 <m < 2.
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Our main motivation for studying this problem came from the universality of the viscous eikonal
equation as a model for the phase dynamics of coherent structures in oscillatory media. In particular,
our interest stems from the fact that this same equation can be used to describe the phase dynamics
of spiral waves in oscillatory media with nonlocal coupling. In this context, the large inhomogeneity
no longer represents a defect, but instead encodes information about variations in the amplitude of
the pattern.

A second motivation came from the fact that the steady state viscous eikonal equation is conju-
gate to a Schrodinger eigenvalue problem. Indeed, it is well known that the Hopf-Cole transformation
maps target pattern solutions to bound states of the corresponding Schrodinger operator, and that the
frequency of target pattern solutions then corresponds to the energy of these states. In this context,
the results presented here expand the conditions on the Schrédinger potential that allow for such
bound states to exist. In particular, we show that Schrodinger operators with potentials that decay
sufficiently fast at infinity can have bound states even when the mass of the potential fR? g(r) rdris
not finite.

In particular, our analysis provides a first order approximation for target pattern solutions and
for their frequency. In agreement with simulations we show that, just as in the case of small defects,
the frequency is small beyond all orders of the small parameter used to describe the strength of the
impurity. As a result, solutions do not follow a regular expansion. Therefore, to obtain our results
we first found intermediate and far field approximations to the steady state viscous eikonal equation.
Then using a matched asymptotic analysis we were able to determine the value of the frequency
selected by the system. This approach is similar in spirit to the one used to prove existence of target
patterns and spiral waves in reaction-diffusion equations using spatial dynamics, [20, 15]. There, the
modeling equations are viewed as a system of ordinary differential equation in the radial variable, and
a center manifold reduction is used to obtain a vector field describing the amplitude of these patterns.
Coherent structures then correspond to heteroclinic solutions, connecting a fixed point at infinity with
solutions that are bounded near the origin. Our matching process is then equivalent to showing that
the center-stable manifold of the fixed point intersects transversely the solution curve that lives in the
center manifold.

Finally, the analysis presented in this paper is complemented by simulations of the viscous eikonal
equation. Our numerical experiments are in good agreement with simulations. They confirm that the
wavenumber, and therefore the frequency of target patterns, do not follow a regular expansion on the
small parameter ¢ representing the strength of the impurity g. They also confirm that when m < 1,
the solutions to the viscous eikonal equation no longer represent target patterns, since in this case the
gradient V¢ does not approach a constant as |x| — oc.

8. Appendix

In [10] it was shown that the following amplitude equation governs the dynamics of one-armed spiral
waves in nonlocal oscillatory media,

0 = AW+ v + a|w|?*w + N(w,e), r € [0,00).
Here w is a radial and complex-valued function, and
B=(0—eX), A\a€C, N~O(e|w).

It was also established in [10] that the constant A; is an unknown parameter that needs to be deter-
mined when solving the equation.
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In this section a multiple-scale analysis is used to derive a steady state viscous eikonal equation
from the above expression. We will see that this eikonal equation is of the form considered in this
paper and that it involves an inhomogeneity that decays at order O(1/|z|?).

To accomplish this task we first let w = Aw, with A2 = —\r/agr. This change of variables is
done for convenience and leads to the following equation,

0 = AW + Mb + (= Ag + iar) @[> + N(,e), a5 = —alr/ag.

Letting @ = pe' and separating the real and imaginary parts of the above expression, one finally
obtains the system

0= Br[A1p—(0:0)%p] — B [Dodp + 20,00:p] + Arp — Arp® + Re [N (w;e)e 7] (20)
0= Br[Dodp+20,00,p] + B1 [A1p — (80)?p] + A1p + crp® + Im [N (w;¢)e ] . (21)

Next, we proceed with a perturbation analysis following [4]. We rescale the variable r by defining
S = 0r, where ¢ is assumed to be a small positive parameter. We also use the following expressions
for the unknown functions:
p= po+0*(Ro+0R1), po=po(r), Ri=Ri(ér) i=0,1
¢ = o+ 01, ¢; = ¢i(ér) i=0,1.

And for the parameter we choose \; = —ay + 52\ 1, with & as above and A\ a free parameter.
Inserting the above ansatz into the equations (20) and (21) we obtain a set of equations in powers
of 6. To write this equations more compactly, we use the subscript S to distinguish operators that are
applied to functions that depend on this variable, i.e. Ag . The absence of this subscript indicates
that the operator is applied to a function of the original variable r.
At order O(1) we find that pp must satisfy,

0 =BrA1po + Arpo — ArPH
0 =B1A1po — &zpo + arpp.
At the next order, O(42), we find two equations involving Ry and ¢y,
0= — Brpolo,sPo — 2819s$00spo — Brpo(spo)? + ArRo(1 — 3p7),
0 =Brpolo.sdo + 28rIsdodspo — Brpo(Dsdo)? + arRo(3p3 — 1) + Aipo-

For our purposes, it is enough to stop at this stage and not list higher order terms.

We first focus on the order O(1) system. The first equation can be solved, provided 8gr, Agr > 0.
This equation falls into a broader family of o.d.e. which were solved in [16]. In this reference, the
authors showed that such equations posses a unique solution p, satisfying

p« — 1 as r— oo, ps(r) ~br when r~0

Of course, the solution p, would not satisfy the second equation in the system. So we let
G = BrA1ps — Grps + arp? = (gIAR + 641) p(p2 — 1),
R

and add these terms to the order O(§?) system.

Going back to the order O(§?) system, we first notice that because py = ps ~ br = bS/J near
the origin, then the terms that involve this variable are in fact ’large’ when compared to the terms
that do not. Concentrating only on these large terms, we find that in the first equation we can solve
for Ry in terms of the variable ¢g. Inserting this result into the second equation gives us the viscous
eikonal equation,

ANo,s00 — b(0so)® + Q2 —cg =0
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FIGURE 3. Solution to the boundary value problem (22)

as expected, where
_ BrAr — Brar O- AR eo _ PrArt+aifr g=(1-p?)
arPr + ArfBr’ arPr + ArBr’ Br(a1Pr + ArBr)’ :
Numerical simulations show that the perturbation g decays at order O(1/72) as r goes to infinity,
see Figure 3. To obtain these results, we solved the boundary value problem

1 1
0=0mp+=0p——p+p—p’  ploo)=1, p(0)=0, (22)
treating the equation as a system of o.d.e. and using a shooting method with condition

p(r) ~br when r~0.
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