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Tropical mathematics arises from the max-plus
semifield. The max-plus algebra, especially max-plus
linear algebra and applications to computer science,
combinatorics, and optimization, have been studied
since 1970’s by Cuninghame-Green, Kleene, Zimmer-
mann, and others. However, much of the develop-
ment in tropical geometry in the last 20 years is due
to the tropicalization process, which turns algebro-
geometric objects into combinatorial ones.

Tropicalization of algebraic sets, also known as
Maslov dequantization or logarithmic limit sets, was
introduced by Bergman to study the “exponential be-
havior at infinity” of algebraic varieties, by Viro to
construct real plane curves with prescribed degree
and topology, by Mikhalkin to count algebraic curves,
and by Sturmfels for solving systems of polynomial
equations.

Tropicalization has led to numerous recent break-
throughs in diverse areas of mathematics such as
topology of moduli spaces of curves [Cha21] and opti-
mization [ABGJ21]. Moreover, tropicalization gives
us constructions, intuition, and analogies for study-
ing purely combinatorial objects as well, even if they
do not arise as shadows of algebraic geometry. This
is the case, for example, in the development of com-
binatorial Hodge theory, which contributed in great
part to the recent Fields medal award given to June
Huh.
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In this article we introduce some of the basic con-
structions in tropical geometry, focusing on linear
spaces and Grassmannians for their combinatorial
significance. We give pointers to some recent research
frontiers and discuss applications in matroid theory,
phylogenetic trees, and auction theory.

In Section 1 we provide background on tropical-
ization of algebraic sets. In Section 2 we discuss
tropicalizations of linear subspaces, their connection
to matroids, and tropicalizations of Grassmannians,
which are parameter spaces for the set of all linear
subspaces of a fixed dimension in an ambient vec-
tor space. In Section 3, we look beyond the tropical
Grassmannian and study the Dressian as a parameter
space of all valuated matroids, not just those arising
from linear subspaces. The Dressian provides a uni-
fying language for applications in economics, which
we discuss in Section 4.

1 Tropical foundations
In this section we explain how tropicalization uncov-
ers combinatorial structure of algebraic objects, such
as Newton polytopes of polynomials and their sub-
divisions. More generally, we discuss how tropical-
izations of algebraic sets are piecewise linear objects
with rich combinatorial structure. We refer to the
book [MS15] for proofs and more details.

Tropical or max-plus algebra is algebra over the
real numbers R with tropical addition

a� b = max(a, b)

and tropical multiplication

a� b = a+ b.
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The operations satisfy associative, commutative, and
distributive laws. The multiplicative identity is 0.
We may optionally adjoin �1 if we desire an additive
identity, but there are no additive inverses.

Tropical operations arise from limits of logarithms.
To build intuition, consider two monic polynomials
F,G 2 R[x]. If x is very large, then F,G are each
dominated by the monomial of highest degree, so
F (x) ⇠ xa, G(x) ⇠ xb for some a, b > 0. Then,
(F · G)(x) ⇠ xa+b, and if a 6= b, then (F + G)(x) ⇠
xmax(a,b). In other words, if we work with large values
of x, then multiplication and addition of polynomials
corresponds to addition and taking maxima of expo-
nents.

Let us now consider a richer variant of the above.
A non-Archimedean valuation on a field K is a map
⌫ : K \ {0} ! R satisfying

1. ⌫(ab) = ⌫(a)� ⌫(b)

2. �⌫(a+ b)  �⌫(a)��⌫(b).

For example, K can be the field C((t)) of Laurent se-
ries with complex coefficients, which are formal power
series where exponents can start at a negative inte-
ger, or its algebraic closure, the field of Puiseux seriesS

n�1 C((t
1
n )). Then a valuation could be the lowest

exponent of a term with nonzero coefficient.
We now have two different ways to tropicalize. We

can tropicalize a polynomial over K by replacing the
algebraic operations with tropical operations, and re-
placing the coefficients with (negative of) their valu-
ations. On the other hand, we can tropicalize a sub-
set of (K \ {0})n by taking (negative of) valuations
coordinate-wise. For example, consider the univari-
ate polynomial

F (x) = x3 � (t�4 + t�3 + t�2)x+ (t�5 + t�4)

with coefficients in the field of Laurent series C((t)).
The three roots of F are the Laurent series t�2,
�t�2 � t�1, and t�1. We can tropicalize F (x) to
obtain the polynomial

f(x) = trop(F (x)) = 0� x�3 � 4� x � 5. (1)

We can also take (negative of) valuations of the three
roots, obtaining the real numbers 2, 2, and 1. These

two ways of tropicalizing are compatible, if we define
roots of tropical polynomials appropriately. This is
the content of the Fundamental Theorem of Tropi-
cal Algebraic Geometry, which we will now work to-
wards.

Defining the roots of a tropical polynomial f by
‘solving’ for f = 0 or f = �1 is not a very useful
notion, due to the fact that tropical algebra has no
additive inverses. However, there are still good ways
to define tropical roots, and more generally, tropical
hypersurfaces, varieties, and their algebraic compan-
ions, ideals.

To motivate the definitions, consider the tropical
polynomial f from Equation (1) above. We could try

y = x�x�x
y = 4�x

y = 5(1, 5)

(2, 6)

Figure 1: The graph of the tropical polynomial f
defined in (1). Each tropical monomial is a usual
affine function, and the tropical polynomial is the
maximum of affine functions. The tropical roots of
f are 1 and 2, which are the values of x where the
graph bends.

to factor f into linear factors to define its roots. This
is not possible, though, as the degree-2 terms cannot
be canceled out in a tropical product of lower degree
polynomials. Nonetheless, as real functions, we have
the equality

f(x) ⌘ (x� 2)� (x� 2)� (x� 1). (2)

Tropically multiplying a function by the linear poly-
nomial (x � a) translates its graph vertically by a
units and then bends the graph up by slope one for
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x � a. This means that the factorization is deter-
mined by where the slopes change in the graph of f .
Thus (2) is the unique factorization of f into monic
linear factors, which motivates us to say that the trop-
ical roots of f are 2 and 1, with 2 being a root of
multiplicity two. These are exactly the values of x
where the maximum (tropical sum) is attained by at
least two of the three tropical monomial terms that
make up the tropical polynomial f in the expression
(1). The three tropical monomials are usual linear
functions, shown by the lines in Figure 1. Note that
the three tropical roots are also the valuations of the
three roots of the original polynomial F (x). More
generally, we have the following.

Definition 1.1. The tropical hypersurface Vtrop(f)
of a tropical polynomial f in n variables is defined as
the locus of points x 2 Rn for which the maximum is
attained at least twice among the tropical monomial
terms of f(x). Equivalently, it is the corner locus of
the piecewise linear function f .

Let K be a field with a nontrivial non-Archimedean
valuation ⌫. The tropicalization of a polynomial over
K is obtained by replacing addition and multiplica-
tion with their tropical counterparts and replacing
the coefficients with minus their valuations. The
tropicalization of a point x = (x1, . . . , xn) 2 Kn is

trop(x) = (�⌫(x1), . . . ,�⌫(xn)).

For a subset S ⇢ Kn, we can define its tropicalization
as

trop(S) = {trop(x) | x 2 S},

where the bar on the right hand side denotes the clo-
sure in the Euclidean topology.

Thus, from a polynomial F 2 K[x] we get two trop-
ical objects: the tropicalization of F , and the tropi-
calization of its zero locus in Kn. The following theo-
rem of Kapranov says that this latter set is precisely
the set of tropical roots of trop(F ).

Theorem 1.2 (Kapranov, 1990s). For any polyno-
mial F we have

Vtrop(trop(F )) = {trop(x) | x 2 Kn, F (x) = 0}

where K is an algebraically closed extension of
the field of definition of F with a nontrivial non-
Archimedean valuation, and the closure is taken in
the Euclidean topology of Rn.

What information about the tropical polynomial f
does the tropical hypersurface Vtrop(f) retain? Writ-
ten using regular arithmetic, a tropical polynomial f
in n variables x1, . . . , xn is a function of the form

f = max
a2A

(ca + x · a) = max
a2A

((x, 1) · (a, ca))

where x = (x1, . . . , xn). The set A ⇢ Zn consists
of the exponents of monomials appearing in f and is
called the support of f . The coefficients ca are real
numbers.

We can think of the point (a, ca) 2 Rn+1 as the
point a 2 Rn lifted to height ca in a new dimension.
Then f is the function that sends x 2 Rn to the
maximum dot product of (x, 1) with the lifted points
(a, ca) for a 2 A. The tropical hypersurface Vtrop(f)
consists of all the points x where this maximum is
attained at least twice.

Convex geometry tells us that, when maximizing
a linear function on a set, the possible locations of
the points achieving the maxima are the faces of the
convex hull of the set. When maximizing the dot
product with vectors of the form (x, 1) on the lifted
points (a, ca), the maxima can only occur on the faces
on the upper part of the convex hull, since these faces
have an upward-pointing normal vector, i.e., an outer
normal vector with positive last coordinate. See Fig-
ure 2 for an example of lifted points and their upper
convex hulls.

This means that the tropical hypersurface Vtrop(f)
is determined by the faces in the upper convex hull of
the lifted points (a, ca) with a 2 A. More concretely,
if we take the upper convex hull of the lifted points
and project its faces back down to Rn, we obtain a
decomposition of the Newton polytope of f , which is
the convex hull of the support of f , as a union of
smaller polytopes. This decomposition is called the
regular subdivision of the Newton polytope of f in-
duced by the lift to heights given by the coefficients
of f . The tropical hypersurface Vtrop(f) is a poly-
hedral complex whose faces or cells are in (inclusion-
reversing) bijection with non-singleton faces of this
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regular subdivision. This statement is often referred
to as the duality between tropical hypersurfaces and
regular subdivisions. Compare Figures 2 and 3.
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Figure 2: Regular subdivisions of the unit square cor-
responding to the tropical polynomials 0� (1� x)�
(1�y)� (1�x�y) and 0� (1�x)� (1�y)� (3�x�
y). The gray dashed line shows the linear function
u(x, y) = x+ y, for reference.

(0,0)
(-1,-1)

(-2,-1)
(-1,-2)

Figure 3: Tropical hypersurfaces of the tropical poly-
nomials in Example 1.3. Compare the vertices in
these figures with the normal vectors to the faces in
the upper convex hulls in Figure 2.

Example 1.3. Consider a tropical polynomial in two
variables x and y of the form

f(x, y) = (u00�0)�(u10�x)�(u01�y)�(u11�x�y).

Its support is {(0, 0), (1, 0), (0, 1), (1, 1)} ⇢ Z2, and
thus its Newton polytope is the unit square [0, 1]2.
Its regular subdivision is obtained by lifting up the
four corners of the square to the heights uij , taking
the upper convex hull, and projecting back down to
the square. If u00 + u11 < u01 + u10, then we obtain
the subdivision of the square into two triangles as
shown on the left in Figure 2. If the inequality goes

the other way, then we obtain the subdivision shown
on the right. If there is equality, we obtain the full
square unsubdivided.

These subdivisions turn up in auction theory of
indivisible distinct goods. Here, the coefficient map
u : {0, 1}2 ! R is called a bid function, with uij

representing how much a bidder is willing to pay
for the goods bundle consisting of i copies of goods
1 and j copies of goods 2. The regular subdivision
�u represents the relationship between the two
items: on the right of Figure 2, the two items
are complements (such as milk and coffee), since
together they are worth more to the bidder than the
sum of their individual values. In other words, the
bidder would strongly prefer having both milk and
coffee, over having milk alone or coffee alone. In
the other case, on the left, the two items are called
substitutes (such as coffee and tea). Some open ques-
tions in auction theory were resolved using tropical
geometry, by studying the combinatorial types of
the bidders’ functions. We discuss this in Section 4. ⇧

We now consider the case of multiple polynomi-
als. For a single polynomial, its Newton polytope
is a natural polyhedral object carrying some discrete
invariants such as the degree and the asymptotic be-
havior of the corresponding hypersurface. When we
have a polynomial ideal instead of a single polyno-
mial, what could an analogous polyhedral object be?
Tropical geometry provides an answer.

If I ⇢ K[x1, . . . , xn] is an ideal with variety V (I) =
{x 2 Kn | F (x) = 0 for all F 2 I}, we define its
tropical variety as the tropicalization of V (I):

trop(V (I)) = {trop(x) | x 2 V (I)}.

The Fundamental Theorem of Tropical Algebraic Ge-
ometry generalizes Kapranov’s theorem to any ideal.

Theorem 1.4 (Fundamental Theorem of Tropical
Algebraic Geometry). Suppose K is an algebraically
closed field with a nontrivial non-Archimedean valu-
ation, and I ⇢ K[x1, . . . , xn] is an ideal. Then

trop(V (I)) =
\

F2I

Vtrop (trop(F )).
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That is, the two ways of tropicalizing are compat-
ible — taking (minus) the valuations of points in the
variety V (I), and intersecting the tropical hypersur-
faces of the tropicalizations of all polynomials in the
ideal I. This intersection can in fact be taken to be
finite, and a finite subset of I that suffices is called
a tropical basis — every ideal in a polynomial ring
has a tropical basis. There are other ways of describ-
ing the tropicalization of an algebraic variety, using
logarithmic limits, Gröbner theory, or Berkovich an-
alytifications.

What kind of objects are tropical varieties? Al-
though not immediate from the definition, tropical-
izations of algebraic varieties are polyhedral or piece-
wise linear objects. This was known since Bergman’s
work and is equivalent to the existence of tropical
bases. Bieri and Groves showed in 1984 that the
tropicalization has the same dimension as the original
variety. Moreover, the Structure Theorem of Tropi-
cal Geometry says that the tropicalization of an ir-
reducible variety is connected through codimension-
one faces and that it satisfies a balancing condi-
tion. In Figure 3, the balancing condition means
that, locally around every vertex, the outgoing di-
rection vectors sum to zero, if weighted appropri-
ately. The balancing condition is a generalization of
this statement to higher dimensions. Connectedness
through codimension-one faces means that the poly-
hedral object remains connected even after removing
all codimension-two faces.

The connectedness part of the Structure Theo-
rem was recently strengthened — the tropicalization
of a d-dimensional irreducible variety is connected
through codimension-one faces even after removing
any d� 1 pointed maximal faces from it [GHM+21].
This provides a new tool for the realizability prob-
lem of determining whether a given polyhedral object
arises as the tropicalization of an irreducible algebraic
variety.

2 Tropicalized linear spaces and
Grassmannians

Linear subspaces are some of the simplest algebraic
varieties. It turns out that their tropicalizations are
quite rich, with an interesting connection to phylo-
genetic trees. We now take a quick tour into this
world.

A tropical hyperplane in Rd is the tropical variety
of a tropical linear function f =

Ld
i=1 ai � xi. How-

ever, it is not so obvious what the notion of a more
general tropical linear space should be. Classically,
there are many equivalent characterizations of linear
subspaces: as the linear span of a set of vectors, as
an intersection of hyperplanes, and as a nonempty
subset that is closed under linear combinations, to
name a few. However, the absence of additive in-
verses makes these notions quite different in tropical
geometry. As it turns out, the right notion of tropi-
cal linear space arises when considering the Plücker
embedding of Grassmann variety.

In the 19th century, Julius Plücker realized that the
set of planes in 4-dimensional affine space K4 can be
nicely parametrized by a quadratic subvariety of P5.
His work was later generalized by Hermann Grass-
mann, who found a way of parametrizing all sub-
spaces of Kn of a fixed dimension d by a projective
variety that we now know as the Grassmannian.

Concretely, any d-dimensional subspace L of Kn

can be written as the row space of a d⇥ n matrix A.
The Plücker coordinates of L are the

�n
d

�
maximal

minors of A, and they form a point in P(
n
d)�1. These

Plücker coordinates depend only on the subspace L
and not on the chosen matrix A, since row operations
on the matrix A only change its maximal minors by a
global scalar multiple. The Grassmannian Gr(d, n) is
the subvariety of P(

n
d)�1 consisting of the Plücker co-

ordinates of all d-dimensional subspaces of Kn. Any
linear subspace L is completely determined by its vec-
tor of Plücker coordinates, and thus the Grassmann
variety Gr(d, n) serves as the parameter space for all
d-dimensional subspaces of Kn.

The Grassmannian Gr(d, n) is a variety of dimen-
sion d(n� d) — much lower than that of its ambient
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projective space, P(
n
d)�1. This variety is defined by

polynomials known as the Plücker relations. For ex-
ample, Gr(2, 4) is defined by the unique quadratic
relation satisfied among the six maximal minors of a
2⇥ 4 matrix:

p12p34 � p13p24 + p14p23 = 0, (3)

where pij denotes the maximal minor corresponding
to the submatrix consisting of columns i and j.

This correspondence between linear subspaces and
points in the Grassmannian turns out to carry on
into the tropical world. For simplicity, let us fix a
valued field with a surjective non-Archimedean val-
uation onto R. Under this setup, tropicalizing the
Grassmann variety Gr(d, n) under its Plücker em-
bedding in P(

n
d)�1 produces a tropical variety whose

points parametrize the set of tropicalizations of all
d-dimensional subspaces of Kn. In other words, the
tropicalization of a linear subspace of Kn is deter-
mined by — and also determines — the valuations of
all its Plücker coordinates.

Theorem 2.1 (Speyer and Sturmfels, 2004). The
following diagram commutes, with the horizontal
maps being one-to-one correspondences:

Gr(d, n) oo //

trop

✏✏✏✏

{d-dim subspaces of Kn}

trop✏✏✏✏

trop(Gr(d, n)) oo //
⇢

d-dim tropicalized
linear spaces in Rn

�
.

The tropicalization of any d-dimensional linear
subspace is a pure d-dimensional polyhedral complex
that is balanced when assigned multiplicities equal
to 1 to all its maximal cones. Furthermore, these
polyhedral complexes are tropical varieties of degree
1: the number of points (counted with multiplicity)
in their intersection with a generic tropical linear
subspace of the complementary dimension is always
equal to 1. However, as we will discuss in Section 3,
the class of tropical varieties of degree 1 consists of
more than just tropicalizations of linear subspaces,
and it is tightly connected to the study of (valuated)
matroids.

Tropical Grassmannians and phyloge-

netics trees

A phylogenetic tree T is a tree on n labelled leaves
{1, 2, . . . , n} where the internal (non-leaf) edges are
weighted by positive numbers and the leaf edges are
weighted by real numbers. Such a tree T produces a
pairwise dissimilarity vector d(2, T ) = {dij(T ) : 1 
i < j  n} 2 R(

n
2) where dij(T ) is the sum of edge

weights along the unique path from leaf i to leaf j

in T . An arbitrary vector d 2 R(
n
2) equals d(2, T )

for some tree T if and only if it satisfies the four-
point condition: for each set of four distinct points
{i, j, k, `} ✓ [n], the tuple (dij , dik, di`, djk, dj`, dk`) 2
R6 lies on the tropical variety cut out by the polyno-
mial

(dij � dk`)� (dik � dj`)� (di` � djk). (4)

That is, the maximum among the above three terms
is achieved at least twice. Note that (4) is the trop-
icalization of the quadratic Plücker relation (3)! In
general, we have the following theorem.

Theorem 2.2 (Pachter and Sturmfels, 2005; Speyer
and Sturmfels, 2004). The space of pairwise dissimi-
larity vectors of phylogenetic trees with n leaves equals
the tropical Grassmannian trop(Gr(2, n)).

Theorem 2.2 is at the heart of the tropical approach
to phylogenetics. An important problem in phyloge-
netics is to infer the tree T given noisy measurements
of the dissimilarity vector d(2, T ). For example, sup-
pose that from different data sets one can obtain dis-
similarity vectors d1, . . . , dk, each corresponding to a
different phylogenetic tree T1, . . . , Tk on the same [n]
leaves. One would like to aggregate the information
across these trees, and output a single “best estima-
tor” T̂ . Unfortunately, the mean of the dissimilarity
vectors d̄ = 1

k

Pk
j=1 dj may not be a dissimilarity vec-

tor itself. Instead, one could formulate an optimiza-
tion problem over the space of trees to find a tree T̂
that minimizes the “average distance” to the observed
trees d1, . . . , dk. Solving this optimization problem is
an active research area, and the choice of metric on
the tree space plays an important role. Here, the
geometry of trop(Gr(2, n)) suggests that the tropical
Hilbert metric is a natural choice [MLYK18].
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One major quest in theoretical applications of trop-
ical geometry to phylogenetics was to generalize the
Pachter–Sturmfels theorem to higher order dissimi-
larity vectors, which assign a number to each r-subset
of leaves of a phylogenetic tree T . Recently, it was
shown in [CGMS21] that for 2  r  n � 2, the
set of weighted r-order dissimilarity vectors of phy-
logenetic trees on n leaves is the tropicalization of a
natural subvariety of trop(Gr(r, n)), whose tropical
basis generalizes the four-point condition (4).

3 Tropical linear spaces and ma-
troids

The tropicalization of the Grassmannian Gr(d, n) de-
pends in general on the ground field. However, we
still get a combinatorially meaningful space if we con-
sider the set of points in R(

n
d) satisfying just the trop-

ical quadratic Plücker relations, and not necessarily
higher-degree relations among Plücker coordinates.

Definition 3.1. The Dressian Dr(d, n) is the
space of real-valued functions p on d-element sub-
sets of {1, 2, . . . , n} satisfying the following tropi-
cal quadratic Plücker relations: for any A,B ⇢
{1, 2, . . . , n} with |A| = d � 1 and |B| = d + 1, the
maximum

max
i2B\A

p(A [ i) + p(B \ i) is achieved twice. (5)

For example, if d = 2 and n = 4, then (5) is ex-
actly the four-point condition (4), and the Dressian
and the tropical Grassmannian coincide. However, in
general the tropical Grassmannian is a proper lower-
dimensional subset of the Dressian, as it is cut out by
the tropicalizations of all relations among the maxi-
mal minors of a d⇥ n matrix, not just the quadratic
ones.

The tropical quadratic Plücker relations (5) encode
the basis exchange axiom that defines valuated ma-
troids, and thus the Dressian Dr(d, n) turns out to be
exactly the space of valuated matroids of rank d on
the ground set {1, . . . , n}. This section elaborates on
this fundamental connection.

Matroids are combinatorial objects that abstract
and generalize several notions of independence in
mathematics such as linear independence among vec-
tors in a vector space or algebraic independence
among elements of field extension. If a d-dimensional
linear space L is the row span of a d ⇥ n matrix A,
then a collection of d columns of A are linearly in-
dependent if and only if the corresponding Plücker
coordinate of L is nonzero. In other words, the ma-
troid recording the linear dependencies among the
coordinate functions on L encodes the zero-pattern
of the vector of Plücker coordinates of L.

Matroids have been studied extensively since their
introduction by Whitney and Nakasawa in the 1930s,
and have found tight connections to several areas
such as graph theory, optimization, and coding the-
ory. Valuated matroids are an elegant generalization
of matroids introduced by Dress and Wenzel in 1992,
in which every maximal independent set B is assigned
a valuation p(B) 2 R. For example, a d⇥n matrix of
rank d over a valued field K gives rise to a valuated
matroid where for any linearly independent d-subset
of columns B ⇢ {1, 2, . . . , n}, the value of p(B) is the
valuation of the corresponding d⇥ d maximal minor.

Importantly for tropical geometry, the recipe that
recovers the tropicalization of a linear subspace from
the valuation of its Plücker coordinates directly gen-
eralizes to all valuated matroids, allowing us to as-
sociate a tropical linear space to every valuated ma-
troid, not just those represented by a matrix over
a field. In fact, the combinatorics of valuated ma-
troids is perfectly compatible with that of tropical
geometry, in such a way that the set of tropical lin-
ear spaces turns out to be exactly the set of tropical
varieties of degree 1, as shown by Fink in 2013. In
this sense, (valuated) matroids are the mathematical
object that provides the answer to what a tropical
linear space should be.

A perspective on matroids that has recently gained
prominence in great part due to tropical geometry is
that of their associated polytopes. Given a matroid
M on the ground set {1, . . . , n}, its associated ma-
troid polytope is the polytope in Rn whose vertices are
the 0/1 indicator vectors of the bases (i.e., maximal
independent sets) of M . For example, the matroid
polytope of the uniform matroid Ud,n in which any
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Figure 4: A tropical line (in red) dual to a ma-
troid subdivision of the regular octahedron �2,4. The
Dressian, which is a parameter space for tropical lin-
ear spaces or valuated matroids, consists of regular
subdivisions that do not introduce a new edge. It
also occurs naturally in auction theory.

d-subset of {1, . . . , n} is a basis is the hypersimplex
�d,n, whose vertices are the

�n
d

�
vectors with d coor-

dinates equal to 1 and all other coordinates equal to
0. From this polyhedral point of view, matroids can
be elegantly axiomatized as follows.

Theorem 3.2 (Gelfand, Goresky, MacPherson,
Serganova, 1987). A polytope in Rn with vertices in
{0, 1}n is a matroid polytope if and only if all its edges
have the form ei � ej for i, j 2 {1, . . . , n}.

Vectors in the Dressian Dr(d, n) ⇢ R(
n
d) can be

characterized in polyhedral terms as well. They are
exactly the height vectors that induce a regular sub-
division of the hypersimplex �d,n into matroid poly-
topes; in other words, a subdivision of �d,n that does
not introduce any new edges. Furthermore, the trop-
ical linear space associated to a vector p 2 Dr(d, n)
turns out to be a polyhedral complex that is dual to a
particular subcomplex of this regular subdivision; see
Figure 4. In this way, the combinatorial properties
of tropical linear spaces are tightly linked to those of
matroid polytope subdivisions.

It is sometimes said that tropical geometry pro-
vides a tool for degenerating algebraic varieties into
simpler polyhedral objects. However, already in the
case of linear subspaces, we see that, while all sub-
spaces of a vector space are quite “simple” geometri-

cally, their tropicalizations carry somewhat intricate
information about their intersections with the coordi-
nate subspaces, in the form of valuated matroids. In
fact, very natural questions about the combinatorics
of tropical linear spaces — or dually, matroid poly-
tope subdivisions — remain unanswered, such as the
maximal number of faces that a tropical linear space
can have. This particular question is known as the
f -vector conjecture, stated below in terms of matroid
polytope subdivisions.

Conjecture 3.3 (Speyer, 2008). Any regular sub-
division of the hypersimplex �d,n into matroid poly-
topes has at most (i�1)!

(n�i�1)!(d+i�n)!(i�d)! interior faces
of dimension i.

The f -vector conjecture has been proven to hold
in particular cases, such as regular subdivisions cor-
responding to valuated matroids that lie in the tropi-
cal Grassmannian (over C), or in the case of maximal
faces, when i = n�1. However, the general statement
remains open.

Combinatorial Hodge theory

This tropical point of view on matroids that we have
discussed has been extremely fruitful in the last few
years. The local building blocks of tropical linear
spaces, i.e., those subcomplexes consisting of cells
containing a single fixed cell, are called Bergman fans
of matroids. Combinatorially, a Bergman fan has the
structure of a geometric lattice, which is a partially
order set with special properties. Topologically, it is a
cone over a bouquet of spheres. However, the partic-
ular embedding in Rn arising from tropical geometry
makes Bergman fans very potent tools.

Inspired by toric geometry, Feichtner and Yuzvin-
sky in 2004 used this embedding to associate a certain
commutative Artinian ring, called the Chow ring, to
every matroid. More recently, Adiprasito, Huh, and
Katz studied this ring more in depth [AHK18], and
showed that in fact it has a very rigid “Hodge struc-
ture,” in the sense that it resembles the cohomology
ring of a smooth projective variety.

Using this powerful algebraic theory, they were
able to prove long-standing conjectures about the log-
concavity of certain integer sequences associated to
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a matroid, like the coefficients of the characteristic
polynomial and the number of independent sets of a
given size. Similar approaches that use other tropical
spaces associated to matroids have succeeded more
recently in settling other long-standing log-concavity
questions in matroid theory [Ard18].

Algebraic foundations of tropical geom-

etry

Over the last few years there has been an effort to
develop the algebraic foundations of tropical geome-
try analogous to scheme theory in algebraic geometry.
Contrary to classical algebraic geometry, where infor-
mation about algebraic varieties is thought of in both
geometric and algebraic terms, tropical varieties have
traditionally been considered as purely geometric ob-
jects. In their foundational paper [GG16], Giansir-
acusa and Giansiracusa introduced a novel algebraic
structure attached to the tropicalization of an alge-
braic variety, which plays the role of a “coordinate
semiring” for tropical varieties. It was later under-
stood that this algebraic information is equivalently
encoded by the tropicalization of the polynomials in
the ideal defining the algebraic variety, as defined in
Section 1.

Given these developments, it is natural to aim to
develop algebraic foundations for tropical geometry
purely on the tropical side, without having to rely on
the process of tropicalization of classical varieties or
ideals. One possibility would be to study the class
of all ideals in the semiring T[x1, . . . , xn] of tropical
polynomials, where the coefficients are taken from
the set of tropical numbers T = R[{�1}. However,
it turns out this semiring is not Noetherian, general
ideals in it are not finitely generated, and their associ-
ated varieties are not necessarily polyhedral objects.
This class thus extends beyond the realm of tropical
geometry.

The problem with general ideals of T[x1, . . . , xn]
stems from the fact that arbitrary modules over T
do not necessarily behave like tropical linear spaces.
Maclagan and Rincón have thus proposed in [MR18]
the following notion as a sensible class of ideals for
the study of tropical geometry.

Definition 3.4. An ideal I ⇢ T[x1, . . . , xn] is a trop-
ical ideal if for every degree d � 0, the T-module
Id := {f 2 I : deg(f)  d} is a tropical linear space
in the space T[x1, . . . , xn]d of tropical polynomials
of degree at most d.

The class of tropical ideals still contains the trop-
icalizations of all classical ideals, but it is in general
much larger. This phenomenon is analogous to the
fact that the class of all matroids is in general much
larger than just the matroids arising from classical
linear subspaces.

As shown in [MR18], tropical ideals have in-
deed more desirable properties than general ideals of
T[x1, . . . , xn]. The fact that tropical linear spaces,
which make up each graded piece of a tropical ideal,
have a well-behaved notion of dimension means that
tropical ideals have a natural notion of Hilbert func-
tion. Just as for classical ideals, this Hilbert function
eventually agrees with a polynomial, and thus, for in-
stance, tropical ideals have a natural notion of dimen-
sion, given by the degree of this Hilbert polynomial.
In addition, the varieties they define are always finite
polyhedral complexes. In fact, it was proved recently
in [MR20] that the variety of a tropical ideal is always
a polyhedral complex of dimension equal to the di-
mension of the tropical ideal, and furthermore, these
varieties are always balanced polyhedral complexes,
which generalizes part of the Structure Theorem on
tropicalizations of algebraic varieties.

The algebraic foundation for tropical geometry in
this direction is inherently combinatorial, as it is
closely tied to tropical linear spaces and thus to ma-
troids. Even though the theory is only in its begin-
nings, tropical ideals provide a strong bridge between
combinatorics, algebra, and geometry, and they equip
tropical varieties with richer structures beyond purely
polyhedral ones.

4 Tropical geometry, matroids
and auctions

Auctions with indivisible goods have a strong connec-
tion to tropical geometry. Fundamental economics
concepts such as utility, demand set, and competitive
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equilibrium can be translated into questions about
tropical hypersurfaces and their corresponding reg-
ular subdivisions. With this bridge, some authors
have used tropical geometry, matroid theory, and
convex geometry to answer open problems in eco-
nomics [JKS21, Tra21, HLSV21]. This section gives
a flavor of these connections.

The simplest auction is a sealed bid auction for one
good, such as an art work or a house. By the dead-
line, each potential buyer (agent) submits their bid.
The seller announces a price p and assigns the good to
a bidder, who would then pay this price. The seller
could offer a discount, so p could be less than the
highest bid, but it is expected that the highest bid-
der will be assigned the goods; otherwise the highest
bidder will perceive the game as unfair for them.

Multi-unit combinatorial auction or product-mix
auction are versions of this where there are multiple
types of indivisible goods on sales. A bundle of n
types of goods is represented as a point in Zn. Each
agent’s bid is no longer a single number, but a so-
called valuation function u : A ! R, where A ⇢ Zn is
the set of available bundles and u(a) is how much this
agent is willing to pay for bundle a 2 A or how much
the bundle a is worth to the agent. The goal for the
seller is to partition the goods bundle for sale a⇤ 2 Zn

into a sum of goods bundles a⇤ = a1+ · · ·+aJ , where
bundle aj is assigned to agent j, and to find the price
pi per unit of good i to charge the agents, so that the
game is fair for all. That is, at the announced prices
p 2 Rn, there is no agent who would prefer a different
bundle from what they were assigned.

Economists have long known that already for two
good types and two agents, there are combinations
of valuations {u1, u2} where no fair pricing exists for
some goods bundle a⇤ (cf. Example 4.1). A central
problem is thus to find reasonable rules on the auc-
tions that restrict the set of valuations u that the
agents can submit, so that a fair pricing is always
guaranteed, and that the allowed set of valuations is
still large enough to model different types of prefer-
ences.

Recently, economists Baldwin and Klemperer
[BK19] made three important observations. First,
the utility or profit function of an agent, which is
the maximum over all available bundles of the differ-

ence between the valuation and the price, is a tropi-
cal polynomial in the (negative of) prices p. Second,
the regular subdivision that this tropical polynomial
induces on its Newton polytope tells us which goods
bundles an agent would ever want to consider buying.
That is, this tropical polynomial and its combina-
torics store important information on demanded bun-
dles and fair pricing. Third, when there are multiple
agents, their aggregated or total utility is the trop-
ical product of the agents’ individual tropical poly-
nomials. The regular subdivision corresponding to
the product of the tropical polynomials is called a
regular mixed subdivision. It stores the combinato-
rial information we need to know about existence of
fair pricing for all goods bundles we might want to
consider in Zn. These observations allow us to trans-
late economics questions into combinatorial questions
about regular mixed subdivisions.

Example 4.1. Let us construct an example of a no-
fair-pricing auction based on a simplified version of
Figure 2. For simplicity, suppose we have only two
types of goods, tea and coffee, and two agents, Left
and Right. Left wants to buy either tea or coffee, will
not settle for nothing, and does not want to buy both.
Right wants to buy either nothing or both coffee and
tea. Left bids $3 for a 1kg pack of coffee only and $2
for a 1kg pack of tea only. Right bids $3 for both and
$0 for nothing. Their utility functions are tropical
polynomials in the negatives of prices:

fL = (3� (�pc)) � (2� (�pt))

fR = 0 � (3� (�pc)� (�pt))

where pc and pt are the prices for a 1kg package of
coffee and tea, respectively. The Newton polytopes of
these tropical polynomials are the two line segments
in Figure 5, and the Newton polytope of the aggre-
gate utility function fL�fR is the square on the right.
The point (1, 1) is not in the support of the aggregate
utility function. This implies that if we want to sell
exactly 1kg of coffee and 1kg of tea, then there is no
way we can assign something to both Left and Right
such that each of them gets the product bundle that
maximizes their utility, at any price.

On the other hand, the point (1, 1) belongs
to the Newton polytope of the aggregate utility
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Figure 5: Newton polytopes of utility functions for
an auction of two agents with two items. See Exam-
ple 4.1.

function. This implies that, if the amount of coffee
and tea we sell to an agent is not a discrete but a
continuous quantity, and if our agents are willing to
buy a convex combination of what they demanded,
then there is a solution: we can set the price of
coffee at pc = $2 per kg and of tea at pt = $1
per kg, and assign 500g of tea and 500g of coffee
to each buyer. Then each of them gets a convex
combination of the product bundles that maximize
their utility: Left makes a profit of $1 and Right
makes a profit of $0, which is the most each of them
can make under such pricing. The price vector (2, 1)
is precisely the intersection of the tropical hyper-
surfaces of the two tropical polynomials fL and fR. ⇧

Connections to matroids

Economists are interested in conditions on the val-
uations uj and the pricing function p (for example,
beyond linear pricing) that ensure fair pricing (tech-
nically known as competitive equilibrium) is guaran-
teed to exist for all admissible goods bundles a⇤. The
ideal theorem has the format: if the valuations uj

belong to some function class V and if the pricing
functions p belong to some function class P, then
competitive equilibrium always exists at any admis-
sible goods bundle a⇤. An early and influential result
is due to Walras, which says that if V has the gross
substitutes property and P is linear, then competitive
equilibrium always exists. Figure 2, left, is an exam-
ple of a function with the gross substitutes property.
Interestingly, gross substitutes are certain generaliza-

tions of rank functions associated to matroids. They
are called M -concave functions in Murota’s work on
discrete convex analysis. They have several equiva-
lent characterizations, but for our purposes, the fol-
lowing is the most relevant. Compare this to Theo-
rem 3.2.

Definition 4.2. A function u : Zn ! R has the gross
substitutes property if each edge of the corresponding
regular subdivision is parallel to one of the vectors in
the set {ei � ej : 1  i, j  n and i 6= j} [ {ei : 1 
i  n}.

In particular, functions with the gross substitutes
property on certain subsets of the 0/1 cubes are
dehomogenized version of points on the Dressian.
This rich connection between Dressians and gross
substitutes was instrumental in the solution of the
matroid-based valuation conjecture in auction theory
[Tra21,HLSV21].

Recent work concerning competitive equilibria ex-
tends the tropical framework to go beyond linear pric-
ing, by considering embeddings of the lifted New-
ton polytope in higher dimensions. With this tech-
nique, [BHT21] showed that for combinatorial auc-
tions, competitive equilibrium always exists when
both the pricing function and the agents’ valua-
tions are quadratic instead of linear; that is, p(a) =P

i2a pi+
P

i,j2a pij where pi is the price for one unit
of item i, and pij is the ‘discount’ for buying the pair
(i, j) together. In a different direction, [JKS21] sig-
nificantly extended the results on the straight jacket
auction by translating revenue optimizations in com-
binatorial auctions into questions about generalized
permutohedra and finding roots of a system of poly-
nomials. The connections between convex geometry
and economics also go two ways: the Oda Conjecture
in toric geometry can be restated in terms of product-
mix auctions [TY19]. These results attest to the rich
connections between these areas.
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