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Abstract 

Understanding the community ecology of vector-borne and zoonotic diseases, and how it may 
shift transmission risk as it responds to environmental change, has become a central focus in 
disease ecology. Yet, it has been challenging to link the ecology of disease with reported human 
incidence. Here, we bridge the gap between local-scale community ecology and large-scale 
disease epidemiology, drawing from a priori knowledge of tick-pathogen-host ecology to model 
spatially-explicit Lyme disease risk, and human Lyme disease incidence in California. We first use 
a species distribution modeling approach to model disease risk with variables capturing climate, 
vegetation, and ecology of key reservoir host species, and host species richness. We then use 
our modeled disease risk to predict human disease incidence at the zip code level across 
California. Our results suggest the ecology of key reservoir hosts—particularly dusky-footed 
woodrats—is central to disease risk posed by ticks, but that host community richness is not 
strongly associated with tick infection. Predicted disease risk, which is most strongly influenced 
by the ecology of dusky-footed woodrats, in turn is a strong predictor of human Lyme disease 
incidence. This relationship holds in the Wildland-Urban Interface, but not in open access public 
lands, and is stronger in northern California than in the state as a whole. This suggests 
peridomestic exposure to infected ticks may be more important to Lyme disease epidemiology in 
California than recreational exposure, and underlines the importance of the community ecology of 
Lyme disease in determining human transmission risk throughout this Lyme disease endemic 
region of far western North America. More targeted tick and pathogen surveillance, coupled with 
studies of human and tick behavior could improve understanding of key risk factors and inform 
public health interventions. Moreover, longitudinal surveillance data could further improve 
forecasts of disease risk in response to global environmental change. 
 
Main Text 
 
Introduction 
 

Vector-borne and zoonotic diseases represent a substantial and increasing threat to 
public health. Many such diseases are caused by pathogens maintained in complex natural 
transmission cycles by communities of interacting hosts and vectors, the composition of which 
can influence pathogen amplification and spillover transmission risk1–3. For example, targeted 
field and laboratory studies have identified key reservoir hosts of the Lyme disease (LD) agent, 
Borrelia burgdorferi sensu stricto (hereafter B. burgdorferi), in the eastern3,4 and western5–7 
United States (US). In California, there are multiple reservoir host species that are thought to be 
important in maintaining B. burgdorferi including the western gray squirrel (Sciurus griseus), 
dusky-footed woodrat (Neotoma fuscipes), and California kangaroo rat (Dipodomys 
californicus)5,7–9. As such, maintenance of B. burgdorferi in the western US may involve distinct 
combinations of vector and host species in different regions that may influence whether the 
pathogen is maintained locally, as well as varying prevalence in sylvatic cycles6. Moreover, the 
relative abundance of these hosts10,11, their interaction with predators and competitors12,13, and 
the rate at which vector ticks feed on these species14,15 may strongly influence rates of infection16, 
and abundance  of ticks—key metrics often used to quantify spillover transmission risk.   

While the community ecology of Lyme and other zoonotic diseases has important 
implications for human risk of infection, it is often difficult to link this ecology with actual human 
transmission or disease incidence. For example, it is a real challenge to replicate detailed 
investigations of tick-pathogen-host community ecology across large spatial or temporal scales. It 
is also difficult to link field-level ecological data with human case reporting data that is often 
aggregated at various geographic levels (e.g., counties) for the purpose of reporting. To bridge 
this gap in the spatial and temporal scales of field ecology and human case reporting, earlier 
studies have often relied on proxies of entomologic risk. For example, to capture host community 
composition and its purported relationship with entomologic risk factors like density of infected 
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nymphal (DIN) ticks, earlier studies have used measures of forest cover or fragmentation due to 
its effects on abundance of key reservoir host species17–19. While many studies in the eastern US 
have linked increased entomologic risk of LD with more highly fragmented forests17,18,20–22, 
evidence linking forest fragmentation to human disease incidence is mixed, with null or negative 
effects often reported18,19,23–28. For example, Brownstein and colleagues (2005) find lower rates of 
human LD in more highly fragmented forest habitats, but higher density and infection prevalence 
of ticks18. These contradictory findings suggest that entomologic risk itself—and its ecological 
proxies like forest fragmentation—may not reliably predict LD transmission in the eastern US19. 
These ambiguous results may also indicate that these proxies, meant to capture key differences 
in host communities or infection risk (e.g., changes in DIN across landscapes), are confounded 
by differences in how people are interacting with high risk landscapes19,29,30. In the eastern US, a 
region endemic for LD, it is conceivable that elevated awareness of LD and behavioral avoidance 
of high risk landscapes may decouple entomologic risk from human disease incidence19,30–32. In 
the far western US where LD is much less common—and public awareness likely much lower33—
the community ecology and entomologic risk of LD may more reliably predict human disease 
incidence. 

Here, we link the community ecology of reservoir hosts of B. burgdorferi in California—
uncovered through targeted, small-scale field studies—with tick infection and human disease 
incidence to bridge the gap between small-scale community ecology and large-scale LD 
epidemiology. To do so, we first model the environmental suitability for infected Ixodes pacificus 
ticks, the primary human vector of B. burgdorferi in California, using a flexible machine learning 
approach. Along with abiotic and habitat predictors, we use habitat suitability of key reservoir host 
species, and host community species richness, to both determine the contribution of host species 
to observed vector infection, and to predict spatially explicit entomologic risk. We then use this 
modeled distribution of entomologic risk to predict human Lyme disease incidence (LDI) at the zip 
code level in California. Through this approach, we find: 1) key reservoir host species have the 
strongest association with infection in ticks; 2) higher infection probability is associated with lower 
host species richness, but this variable itself is very weakly associated with infection probability; 
and 3) illustrate that our modeled distribution of entomologic risk is a strong predictor of human 
LDI in California.  
 
Results 
 
Infected tick suitability: predicted entomologic risk  

All species distribution models performed well, with AUC > 0.91 for all model combinations 
(Table S1). The final model of infected tick suitability selected for further analysis (Fig. S1; Table 
S2) included climate and vegetation variables, the competent host diversity layer, and individual 
host species habitat suitability layers for the dusky-footed woodrat, western gray squirrel, and 
California kangaroo rat (Figure 1). We chose this model with a more limited set of host predictor 
variables to limit complexity of the model and improve interpretation of variable relationships, and 
because one of our primary goals was to investigate the contribution of key reservoir host species 
to the predicted distribution of infectious ticks, and to epidemiological patterns of LD. The model 
yielded similar suitability predictions to other models with a larger number of host species and 
diversity layers, while having greater model fit and model parsimony. The fit of this model was high 
(AUC = 0.94) with the greatest percent contribution coming from the dusky-footed woodrat (27.3%), 
followed by vegetation cover (20.8%) and minimum temperature in the coldest quarter (11.1%) 
(Table S2). The variables with greatest permutation importance were climatic water deficit (29.4%), 
minimum temperature in the coldest quarter (28.8%), and precipitation in the coldest quarter 
(14.3%) (Table S2).  

Marginal and individual response curves indicate that as habitat suitability for dusky-footed 
woodrats increases, the probability of encountering an infected tick increases substantially (Fig. 
S2). While the percent contribution of western gray squirrels (8.8%) and California kangaroo rats 
(1.2%) was comparatively low, response curves show a similar relationship to that observed for 
dusky-footed woodrats; namely that as habitat suitability for these host species increases, suitability 
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for infected ticks increases (Fig. S2). Competent host diversity also had a relatively low percent 
contribution (6.8%), however, response curves indicate no clear relationship between competent 
host diversity and infected tick suitability. The individual response curves indicate low suitability for 
infected ticks when no competent hosts are present, but suitability does not differ systematically 
from low to high levels of diversity (Fig. S2). Finally, the response curves indicate that the highest 
probability of encountering an infected tick is in oak woodland (Fig. S2). 

 
Figure 1. Spatial layers depicting distribution and habitat suitability of hosts used in developing 
the final model. The individual competent host species distributions used were for the (a) western 
gray squirrel, (b) dusky-footed woodrat, and (c) California kangaroo rat, with 0 values indicating 
absence of the focal species and 3 indicating highest probability of focal species presence. The 
(d) competent host diversity metric was composed of all competent host species layers (defined 
in Table S1), with individual host presence defined as when the species was predicted to be 
present across all three host models. 
 

In alternative model specifications that included overall host community richness (Table 
S1, “Environmental Competent Host Layers & Competent & Small Mammal & Predator Diversity”), 
results suggest that higher probability of tick infection is associated with lower host community 
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richness, perhaps suggestive of a dilution effect (Figure 2). However, host richness is only very 
weakly associated with infection probability (percent contribution = 3.4%, permutation importance 
= 0.9%), suggesting host richness is not a key determinant of tick infection. Due to minimal 
improvements to overall model fit, and low contribution to model performance, this variable—
among other diversity metrics—was dropped from the final model. 

 
Figure 2. Map illustrating the spatial distribution of small mammal species richness (a); and 
marginal (b) and individual (c) response curves for small mammal species richness illustrating an 
association between lower levels of small mammal richness and higher suitability for tick infection 
– though richness was very weakly associated with tick infection overall (percent contribution = 
3.4%, permutation importance = 0.9%). Marginal response curves show how predicted suitability 
changes as the value of each variable changes, holding all other variables at their average 
sample value, while individual response curves show how predicted suitability changes when 
developed from only the focal variable. In the presence of multicollinearity, marginal response 
curves can be misleading and the individual response curves aid in interpretation of the functional 
form of the relationship between variables included in the model and suitability for infected ticks. 

Model predictions for infected tick suitability largely fall within the predicted distribution of 
I. pacificus (Figure 3a) from earlier studies34–37. Suitability is high in northwestern California, the 
western foothills of the Sierra Nevada Mountains, as well as (to a lesser extent) coastal central and 
southern California (Figure 3a, Fig. S1). There is some disagreement between overall predicted 
suitability for this tick species and infected tick suitability, with some regions of northern California 
predicted to be suitable for infected ticks, but not for the overall tick distribution model (Figure 3a). 
Moreover, predicted suitability for infected ticks is much more restricted in coastal central and 
southern California and the southern Sierra Nevada foothills than it is for the tick in general (Figure 
3a), whereas overall and infected tick suitability in northern California are comparatively more 
similar (Figure 3b).  
 
Contribution of entomologic risk to human disease incidence 

To investigate the relationship between entomologic risk for LD and human disease 
incidence in California, we summarize infected tick suitability by zip code (Figure 4) and, along with 
sociodemographic and environmental controls, use interval regression to predict zip code level LDI.  
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The results of our main analysis, investigating the effect of entomologic risk as defined by modeled 
infected tick suitability on human LDI across all of California (Table S3-S4, Figure 5a), indicate a 
significant positive effect of infected tick suitability on zip code level LDI (𝛽 = 2.38, P = 0.00048***). 
This estimate suggests that for a 10% increase in mean infected tick suitability in a given zip code, 
we would expect ~0.238 additional cases of LD per 100,000 population. 

 
Figure 3. Suitability map of binary overall tick suitability (light blue) with binary infected tick 
suitability (light red), with purple representing areas of overlap (a); Average suitability for I. 
pacificus (blue) and infected I. pacificus (red) by zip code, broken down by northern and southern 
California (b). 
 

 
 
Figure 4. Lyme disease incidence categories (left), mean infected tick suitability (middle) and 
percent of the population in the Wildland Urban Interface (WUI, right) by zip code for the full 
dataset used in models (Table S3). 
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Figure 5. Coefficient estimates for the (a) full dataset (Table 1), (b) northern zip codes (Table 
S5), (c) tick suitable zip codes (Table S6), each giving coefficient estimates (black) and the 90% 
(wide bar) and 95% (narrow bar) confidence interval of the estimate for the infected tick suitability 
(ITS) by zip code, Wildland Urban Interface (WUI), and public lands models. 
 

When considering infected tick suitability within lands designated as Wildland Urban 
Interface (WUI) (Fig. S3) within zip codes, we estimate a similar, though smaller, significant positive 
effect on human LDI (𝛽 = 1.93, P = 0.016**). When we instead consider infected tick suitability 
within public access lands (Fig. S3) within zip codes, we estimate a smaller, non-significant positive 
effect on human LDI (𝛽 = 1.00, P = 0.126).  

When we run the same models on just the northern sample of zip codes (Table S5, Figure 
5b), we estimate very similar effects, with the coefficient estimates slightly larger than in the full 
state model for the full zip code and WUI models, but smaller for the public lands model. Similarly, 
when we run the models on the sample of zip codes with at least some predicted suitability for I. 
pacificus (Table S6, Figure 5c), we find very consistent trends with the full zip code and WUI model 
estimates falling between those for the full state and northern zip code samples, and the public 
lands model estimate slightly larger than those from the full state and northern zip code samples, 
though still non-significant. Moreover, we see very similar patterns in model results when we drop 
zip codes with missing data for any of the covariates (Table S7–S9), and consistent, significant 
positive coefficient estimates on infected tick suitability in models that use alternative distributions 
(Table S10). 
 
Discussion  
 

The ecology of vector-borne and zoonotic diseases is rapidly changing as species 
communities and vector-pathogen-host interactions shift in response to climate and land use 
change2,38–40. Understanding how these ecological changes might influence disease transmission 
has become a central focus in disease ecology and epidemiology, especially as concerns of 
novel disease spillover events are elevated in response to the COVID-19 pandemic41. Many tick- 
and other vector-borne pathogens are zoonotic, meaning understanding their distribution, 
emergence, and human risk of transmission will depend on understanding the natural 
transmission cycles that maintain them42. Achieving such understanding requires both deep 
knowledge of the community ecology of disease, and an ability to quantitatively link that 
community ecology with human disease incidence. Drawing such a link has been complicated 
and hotly debated in the context of LD in North America3,43–46, where entomologic risk predicted 
by community ecology is itself often a poor predictor of variation in human LDI18,19,23–28,31,47. 
Human behavior and risk avoidance may confound this relationship in the eastern US, where LD 
awareness is high19,29–32. However, in contrast we found the community ecology of LD in the far 
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western US—namely the role of key reservoir host species like dusky-footed woodrats—is 
strongly associated with infection probability in vector ticks, and that this in turn is strongly 
associated with human disease incidence at the zip code level. Interestingly, our results suggest 
that while key reservoir host species appear to have an outsized role in determining tick infection, 
species richness plays, at best, an exceedingly small role in determining Lyme disease risk in this 
region. So, while the relationship between host community richness and tick infection is 
suggestive of a dilution effect—with lower species richness associated with higher infection 
probability—host richness itself does not meaningfully contribute to our models of entomologic 
risk of Lyme disease. 
 The results of our SDMs indicate that habitat suitability for dusky-footed woodrats was 
the variable most strongly associated with tick infection. Interestingly, the predictions from this 
model reasonably match those for overall suitability for I. pacificus presented in MacDonald et al. 
2019 and 202034,35 in northern California. In contrast, infected tick suitability is predicted to be 
much lower and geographically limited in southern California than overall tick suitability, 
suggesting lower rates of enzootic transmission in this region48,49. While these predictions could 
be influenced by spatial bias in tick-borne disease surveillance and reported infection locations 
(Fig. S4), the more limited suitability predicted for southern California maps onto the reported 
phylogeography of Borrelia48–50. Rose and colleagues (2019) screened ticks from surveillance 
efforts across the state of California, yielding B. burgdorferi infections in northern California, but 
other Borrelia infections in southern California50. Thus, the agreement between CDPH 
surveillance (e.g., dearth of B. burgdorferi-infected ticks in southern California despite robust tick 
populations) and our modeled tick population and infected tick suitability suggests we are 
capturing real differences in entomologic risk for LD that might be associated with the ecology of 
key reservoir host species. 
 An additional confounding factor that may also be associated with lower human LDI in 
southern California is observed differences in host-seeking behavior of juvenile I. pacificus48,51. 
Juvenile ticks, in contrast to northern California52, are very challenging to collect via dragging or 
flagging in southern California and may quest for hosts below the surface of the leaf litter48. This 
difference in host-seeking behavior could reduce human-vector encounter rates, particularly for 
the epidemiologically important nymphal stage52. Teasing the contribution of host-seeking 
behavior apart from predicted suitability for infected ticks in this study is a real challenge, and this 
could in part explain lower rates of LD transmission in southern California. However, the reported 
phylogeography of Borrelia in California50 and our modeled infected tick suitability suggest a low 
probability of transmission in this region, regardless of differences in juvenile tick host-seeking 
behavior. 
 We find our predicted suitability for infected ticks is a significant predictor of human LDI. 
While our coefficient estimate suggests a relatively small increase in LDI for a 10% increase in 
infected tick suitability (<1 additional case per 100,000 population), given the low rates of LD 
reported throughout California, this is not insubstantial53. With suitability for I. pacificus 
populations projected to increase in many regions of California under projected climate and land 
use change35,36,54, this could lead to meaningfully higher rates of LD transmission under some 
future scenarios. Interestingly, while infected tick suitability in the WUI had a similar positive and 
significant association with LDI—suggesting peridomestic exposure to infected ticks is important 
in California—suitability in public access lands and possible recreational exposure was not 
significantly associated with LDI. Recent community science surveillance55 suggests the opposite, 
that most exposure to host-seeking I. pacificus in California is in recreational settings. This 
discrepancy may be resolved with more information about rates of recreational use of these open 
access lands. For example, if recreation activity is high in low-risk public access lands and low in 
high-risk public access lands, this could explain our result. It may also be the case that those 
recreationally exposed to host-seeking ticks have higher LD awareness and are more likely to 
perform tick checks. This may lead to higher rates of transmission in peridomestic settings 
despite higher exposure to ticks in recreational settings. Finally, it may also be the case that 
populations living in high risk peridomestic settings also have high recreational exposure in those 
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same zip codes. Higher resolution (e.g., individual level) data on risk exposure would be 
necessary to tease these possible scenarios apart. 
 While our results outline a parsimonious path from host community ecology to spatially 
explicit entomologic risk and broad-scale human LD epidemiology, there are important limitations 
to our approach. Namely, we were limited by available data to producing a single prediction of 
infected tick suitability, which lags available LDI data, and to cross-sectional analyses of LDI. 
First, our model of entomologic risk relied on a relatively small number of spatially clustered 
observations of infected ticks—56 total (after dropping highly spatially clustered observations 
from a total of 90) across the years 2001-2015. Despite model validation suggesting that our 
model performed extremely well with very limited prediction of false positives or negatives (AUC > 
0.91 across all models), additional observations, particularly in regions with sparse data (e.g., 
southern California), would no doubt improve the model predictions and inference about 
important variables associated with entomologic risk. However, despite decades of statewide 
surveillance and testing of thousands of ticks by the California Department of Public Health50, 
only a single tick has tested positive for B. burgdorferi in southern California. This surveillance, 
and its agreement with patterns of human disease in the state50, suggest that our infected tick 
observations are accurately capturing the geographic distribution and spatial clustering of 
entomologic risk of Lyme disease in this region.  

Moreover, the finding that suitability for dusky-footed woodrats was the most important 
variable in predicting the distribution of entomologic risk aligns with decades of field- and 
laboratory-based investigations5,56, which have identified the dusky-footed woodrat as a key 
reservoir host in the western US. While other species have been shown to be competent hosts for 
B. burgdorferi6–9,57 in this region, many of them have more restricted geographic distributions, or 
behavior that may preclude interactions with questing ticks in southern California (e.g., the 
primarily arboreal western gray squirrel). Therefore, while some of these other species may play 
important roles in enzootic transmission cycles in specific regions of the western US (e.g., 
northwestern California)—which may be uncovered through more targeted regional analyses—
from our analysis it is plausible that the dusky-footed woodrat is playing an important role in 
limiting the geographic distribution of entomologic risk of Lyme disease broadly in California.  

Second, there were not sufficient infected tick observations from multiple distinct time 
periods to model changes in infected tick suitability over time. We were instead constrained to 
pooling our observations to produce a single model of entomologic risk. This model reasonably 
matches the temporal scale of the Wildland Urban Interface and human population data (2010), 
but lags our high resolution estimates of Lyme disease incidence at the zip code level (averaged 
across 1993-2005). This temporal mismatch between our measures of entomologic risk and 
distribution and sociodemographic characteristics of human population on the landscape on the 
one hand, and Lyme disease incidence on the other, may confound our results. However, from 
routine California Department of Public Health surveillance58, the distribution and burden of 
human Lyme disease at the county level has not changed meaningfully over time so LDI may 
also be reasonably consistent over time at the zip code level. Longitudinal, or “panel,” data when 
available is very powerful in that it would allow us to investigate how changes in entomologic risk 
over time are associated with changes in LDI over time. In this context, we would be able to 
compare zip codes to themselves over time—effectively controlling for confounding variation 
unique to zip codes, rather than comparing zip codes to each other—which no doubt differ in 
important unmeasured ways that could confound the relationship between entomologic risk and 
human disease59. Here we include socio-demographic control variables to capture some of this 
confounding variation, as well as county dummy variables to control for unobserved/unmeasured 
factors that vary regionally and might influence the relationship between infected tick suitability 
and LDI (e.g., tick host-seeking behavior). Additionally, spatial scale of analysis can also strongly 
influence the results of epidemiological analyses, for example highly spatially aggregated data 
may result in an ecological fallacy60,61. However, due to uncertainties surrounding where 
exposure to infected ticks led to LD transmission for reported cases, some aggregation (e.g., to 
zip codes) is necessary, as bias may also be a problem with individual level data in this context—
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for example, if location of infected tick exposure is unknown, yet the resulting case is reported at 
the individual household level.  
 
Conclusion 
 Linking the community ecology of vector-borne and zoonotic diseases with human 
disease incidence is fundamentally important as the ecology of infectious diseases shifts rapidly 
with ongoing global change12,38,62. Yet, doing so has been a real challenge in many systems, 
including LD23,25–27,31 due to challenges of scale and confounding by human behavior19,29–32,60, 
among others. Here we show, in a LD endemic but low incidence region of western North 
America, that entomologic risk is strongly influenced by key reservoir hosts, as identified through 
targeted field and laboratory studies of the community ecology of LD in California—but not host 
richness. Importantly, in contrast with the results of many studies from the eastern US, we show 
that this modeled spatially explicit entomologic risk is a strong predictor of human disease 
incidence in California at the spatially refined zip code level. This linking of the community 
ecology of LD with human disease incidence in this region holds promise for future prediction; as 
the distribution of the tick vector and vertebrate hosts shift in response to climate and land use 
change, these ecological changes may yield predictable changes in future LD transmission in 
California and western North America. With more targeted and standardized tick and pathogen 
surveillance, along with studies of human and tick behavior, particularly in low incidence regions 
of the western US, understanding of key risk factors could be improved to help target public 
health interventions. Moreover, this increasingly available longitudinal surveillance data—coupled 
with Earth observation data, climate forecasts and models of future vertebrate host distributions—
could further improve understanding and more rapid forecasts of changing risk and transmission 
in response to global environmental change. 
 
Materials and Methods 
 
Modeling suitability for infected ticks 

To model suitability for B. burgdorferi-infected I. pacificus in California, and capture 
spatially explicit entomologic risk, we employ a species distribution modeling (SDM) approach. 
We use the maximum entropy (MaxEnt) algorithm, as it handles presence only data well63–66. 
True absences of infection in tick populations are challenging to identify, as it takes many ticks to 
be screened for infection from a single location to rule out the possibility of local infection. This is 
especially true in California where infection rates tend to be low48,49,67,68, even where enzootic 
transmission is considered to be endemic7,69–71. SDMs for infected tick suitability were built by 
extending the models of I. pacificus suitability presented in34,35. In addition to climate and habitat 
layers used in those models34,35, we tested how inclusion of host distribution and diversity metrics 
influenced predicted suitability for infected I. pacificus ticks. 

Infected tick observations were primarily drawn from California Department of Public 
Health (CDPH) surveillance50. These data were supplemented with other published studies 
identified from a literature search to better capture the geographic breadth of I. pacificus in 
California48,57,68,69,72–76. While B. burgdorferi may be maintained in enzootic cycles involving other 
tick species5,49,77, we chose to model B. burgdorferi-infected I. pacificus to more directly capture 
human transmission risk. A total of 90 infected I. pacificus presence locations were identified (Fig. 
S4). 

Climate data layers were sourced from the California Basin Characterization Model 
(BCM)78. The environmental variables previously determined to be the most ecologically relevant 
for tick suitability34,35 were used in our analysis: actual evapotranspiration, climatic water deficit, 
precipitation, winter precipitation, maximum temperature, maximum temperature in the hottest 
quarter, and minimum temperature in the coldest quarter. Vegetation cover was derived from the 
California Department of Forestry and Fire Protection raster layer compiling vegetation data from 
1990-2014 (http://frap.fire.ca.gov/mapping/gis-data/). This vegetation data does not capture 
ecological disturbances, such as wildfires, but rather the long-term average conditions over this 
period, as does the climate data. All layers were resampled or aggregated to a 90m resolution.  
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To account for the role that host communities play in maintenance of B. burgdorferi, we 
included data on the range and predicted habitat of key host species in the SDMs. Geographic 
layers of species range and predicted habitat were retrieved from the USGS GAP Analysis 
(https://gapanalysis.usgs.gov/apps/species-data-download/). Additional habitat data was sourced 
from the California Wildlife Habitat Relationships (CWHR) database 
(https://wildlife.ca.gov/data/cwhr). Data was downloaded for potential hosts and other associated 
species (Table S11). The GAP and CWHR spatial files were processed for individual species and 
for various diversity metrics, using the resolution (90m) and dimensions of the environmental 
variables (SI Methods)34,35. Individual host distribution layers include the western gray squirrel (S. 
griseus), dusky-footed woodrat (N. fuscipes), California kangaroo rat (D. californicus), and other 
relevant species (SI Methods). In addition, three diversity layers were calculated from host 
species binary distribution layers: competent host diversity (competent hosts for B. burgdorferi in 
California), predator diversity (large and mesocarnivore species), and small mammal diversity 
(small mammal hosts). Individual species included in each diversity layer are listed in Table S11. 
We used our infected tick presence locations—56 in the final sample, obtained after subsetting 
the full dataset to include only one observation per 90m pixel to avoid biasing the model34—and 
17,710 randomly selected background points to extract all environmental and host spatial data.  
We constructed models for various combinations of the above variables (Table S1). Our species 
distribution modeling approach followed methodology reported in34,35, developing our infected tick 
SDMs using the “dismo” package79 to run MaxEnt in R version 3.6.3 (RStudio Team 2020) (SI 
Methods). The final model selected for further analysis included all climate and vegetation layers, 
the competent host diversity layer and individual species layers for the western gray squirrel, 
dusky-footed woodrat, and California kangaroo rat as categorical layers (Environmental 
Competent Host Layers Diversity model; Table S1). We selected this model based on model 
performance, including maximizing the area under the receiver operating characteristic curve 
(AUC)80, a combination of a priori ecological understanding of this system (SI Methods)5,8,7,49,81,56 
and minimizing the degree of autocorrelation in the set of environmental variables included for the 
sake of interpretation of model output82. 
  
Metrics of entomologic risk 

Binary suitability maps masked by land cover were created from the final model 
predictions to summarize average suitability for infected ticks by zip code and other spatial units 
(SI Methods). We calculated mean suitability within zip codes by subsetting these binary 
suitability layers (infected tick and overall tick suitability—SI Methods) by zip code boundaries for 
California in 201083. We used 2010 spatial boundaries to reasonably match our infected tick 
occurrence records (2001-2015) and LDI reported in Eisen et al. 2006b (mean annual incidence 
of endemic LD for the period 1993–2005, details below)53. We also calculated the total area of 
each zip code and the 2010 population size of each zip code as reported by the census. 

We were further interested in infected and overall tick suitability within the Wildland-
Urban Interface (WUI) areas of each zip code, where peridomestic exposure to ticks may be 
elevated19,29. The WUI represents a transitional area between wildland and human development 
defined as intermix, where wildlands are interspersed with human development, or interface, 
where human development is adjacent to large areas of wildland84. WUI polygon layers for 2010 
were downloaded from the Silvis lab at the University of Wisconsin 
(http://silvis.forest.wisc.edu/data/wui-change/). We used the binary suitability maps created above 
along with the zip code and WUI vector layers to calculate the average suitability within areas 
classified as WUI within each zip code, as well as area and population metrics (SI Methods). 

Finally, we were interested in infected tick suitability within areas designated as open 
access public lands within each zip code, as a measure of potential recreational exposure to 
infected ticks36,55. A recent community science project found that in California, ticks were most 
commonly encountered while recreating in natural areas, followed by peridomestic and then man-
made environments55. While participation among the public in this project may have been biased 
toward more affluent and educated communities, particularly in the San Francisco Bay Area, the 
results suggest recreational exposure may be at least as important as peridomestic exposure in 



 

 

12 

 

California55. We summarized infected and overall tick suitability in potential recreational settings 
defined as “open access” public lands in the 2020 California Protected Areas Database shapefile 
(https://www.calands.org/). We used the same approach to calculate risk in open access public 
lands as for WUI summarizations, above.  

Sociodemographic information for each California zip code was retrieved from the 
California Office of Environmental Health Hazard Assessment, CalEnviroscreen 3.0 data 
(https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30). This dataset includes 
demographic information (e.g., population by age and ethnic group) by census tract in California, 
as well as other relevant sociodemographic and health indicators (e.g., rates of cardiovascular 
disease, education, poverty).  

Zip code level LDI was calculated by Eisen et al. 2006b as the mean annual incidence of 
endemic LD for the period 1993–2005, dropping cases within that date range where the likely 
county of exposure did not match county of residence, or for which residential zip code 
information was missing. Eisen et al. 2006b reported LDI by zip code in the following categories: 
0, 0.01–1, 1.01–5, 5.01–10, 10.01–20, 20.01–50, and >50 per 100,000 population53. 

The final dataset, summarized by zip code, includes the following variables: 1) mean 
infected tick and overall tick suitability by zip code, by WUI interface and intermix areas within zip 
codes, and by California open access public lands within zip codes, 2) total zip code area and 
population, and the proportion of area and population within the WUI and within public access 
lands, 3) available sociodemographic information, and 4) categorical LDI. 

 
Statistical analysis of Lyme disease incidence 

Since our outcome variable of interest, zip code level LDI, is interval censored—where 
we know the ordered category into which each observation falls, but not the exact value—we 
chose to model LDI using interval regression. Interval regression is a generalization of censored 
regression that can handle various types of interval censoring (e.g., interval, left- or right-
censored) in the outcome variable85. 

We are interested in investigating the role of the community ecology of LD in California in 
determining human LDI. To do so, we use our modeled infected tick suitability variable—
encapsulating information about the habitat suitability of key reservoir host species, climate, and 
habitat conditions. In addition to these ecological factors, human activity, behavior, and 
settlement patterns are also key to potential exposure to infected ticks, so we include variables 
describing sociodemographic characteristics5,38,86–91, wildland-urban interface29,34, and open 
access public lands36,55 to capture these factors (SI methods). Finally, in the context of this cross-
sectional analysis, regional variation in long-term average climate conditions and tick host-
seeking behavior may also be important to tick abundance and activity, as well as vector-host 
contact, and thus potential human exposure to infected ticks51,69. As such, we include county 
dummy variables to capture this regional variation, and other roughly constant characteristics of 
counties that might influence LDI. We calculate robust standard errors clustered at the county 
level to account for heteroskedasticity and within-county correlation of the errors. All interval 
regression models were run using the survival package92 in R version 4.0.2 (RStudio Team 
2020), using a Gaussian distribution. We ran multiple models with different specifications (e.g., 
using different data subsets) to assess the robustness of our results (SI Methods). 

 
Acknowledgments 
 
We thank three anonymous reviewers and members of the Larsen lab at UCSB for their 
thoughtful feedback on this study, as well as the California Department of Public Health (CDPH) 
and CDPH biologists for the Ixodes pacificus, Borrelia burgdorferi and Lyme disease surveillance 
efforts on which this work relies.  
 
Funding 
 



 

 

13 

 

AJM was supported by the National Science Foundation and Fogarty International Center (DEB-
2011147). SM was supported in part by the Four Year Fellowship program at the University of 
British Columbia, Vancouver. SS was supported by the Training Grant Program of the Pacific 
Southwest Regional Center of Excellence for Vector-Borne Disease funded by the U.S. Centers 
for Disease Control and Prevention (Cooperative Agreement 1U01CK000516). 
 
Data Availability Statement 
 
The data that support the findings of this study are openly available, and sources described in the 
manuscript and supplementary text. 
 
References 

1. Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs 
community ecology. Science 349, 1259504–1259504 (2015). 

2. Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne 
zoonotic diseases. The Lancet 380, 1946–1955 (2012). 

3. LoGiudice, K., Ostfeld, R., Schmidt, K. & Keesing, F. The ecology of infectious disease: Effects 
of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. 
100, 567–571 (2003). 

4. Donahue, J. G., Piesman, J. & Spielman, A. Reservoir competence of white-footed mice for 
Lyme disease spirochetes. Am. J. Trop. Med. Hyg. 36, 92–96 (1987). 

5. Brown, R. & Lane, R. Lyme disease in California: a novel enzootic transmission cycle of 
Borrelia burgdorferi. Science 256, 1439–1442 (1992). 

6. Brown, R. N., Peot, M. A. & Lane, R. S. Sylvatic maintenance of Borrelia burgdorferi 
(Spirochaetales) in northern California: Untangling the web of transmission. J. Med. 
Entomol. 43, 743–751 (2006). 

7. Salkeld, D. J. et al. Identifying the reservoir hosts of the Lyme disease spirochete Borrelia 
burgdorferi in California: The role of the western gray squirrel (Sciurus griseus). Am. J. Trop. 
Med. Hyg. 79, 535–540 (2008). 

8. Lane, R. S., Mun, J., Eisen, R. J. & Eisen, L. Western Gray Squirrel (Rodentia: Sciuridae): A 
primary reservoir host of Borrelia burgdorferi in Californian oak woodlands? J. Med. 
Entomol. 42, 388–396 (2005). 

9. Lane, R. S. & Brown, R. N. Reservoir competence of four chaparral-dwelling rodents for 
Borrelia burgdorferi in California. Am. J. Trop. Med. Hyg. 54, 84–91 (1996). 

10. Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 
584, 398–402 (2020). 

11. Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J. & Keesing, F. Climate, deer, 
rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 4, 1058–
1068 (2006). 

12. Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence 
of Lyme disease. Proc. Natl. Acad. Sci. 109, 10942–10947 (2012). 

13. Salomon, J., Lawrence, A., Crews, A., Sambado, S. & Swei, A. Host infection and community 
composition predict vector burden. Oecologia 196, 305–316 (2021). 

14. Halsey, S. J., Allan, B. F. & Miller, J. R. The role of Ixodes scapularis, Borrelia burgdorferi and 
wildlife hosts in Lyme disease prevalence: A quantitative review. Ticks Tick-Borne Dis. 9, 
1103–1114 (2018). 



 

 

14 

 

15. Wolcott, K. A., Margos, G., Fingerle, V. & Becker, N. S. Host association of Borrelia 
burgdorferi sensu lato: A review. Ticks Tick-Borne Dis. 12, 101766 (2021). 

16. Levi, T., Keesing, F., Holt, R. D., Barfield, M. & Ostfeld, R. S. Quantifying dilution and 
amplification in a community of hosts for tick-borne pathogens. Ecol. Appl. 26, 484–498 
(2016). 

17. Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. 
Conserv. Biol. 17, 267–272 (2003). 

18. Brownstein, J. S., Skelly, D. K., Holford, T. R. & Fish, D. Forest fragmentation predicts local 
scale heterogeneity of Lyme disease risk. Oecologia 146, 469–475 (2005). 

19. MacDonald, A. J., Larsen, A. E. & Plantinga, A. J. Missing the people for the trees: Identifying 
coupled natural–human system feedbacks driving the ecology of Lyme disease. J. Appl. Ecol. 
56, 354–364 (2019). 

20. Guerra, M. Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the 
North Central United States. Emerg. Infect. Dis. 8, 289–297 (2002). 

21. Glass, G. E., Amerasinghe, F. P., Morgan, J. M. & Scott, T. W. Predicting Ixodes scapularis 
abundance on white-tailed deer using geographic information systems. Am. J. Trop. Med. 
Hyg. 51, 538–544 (1994). 

22. Lubelczyk, C. B. et al. Habitat Associations of Ixodes scapularis (Acari: Ixodidae) in Maine. 
Environ. Entomol. 33, 900–906 (2004). 

23. Cromley, E. K., Cartter, M. L., Mrozinski, R. D. & Ertel, S. H. Residential setting as a risk factor 
for Lyme disease in a hyperendemic region. Am. J. Epidemiol. 147, 472–477 (1998). 

24. Jackson, L. E., Hilborn, E. D. & Thomas, J. C. Towards landscape design guidelines for 
reducing Lyme disease risk. Int. J. Epidemiol. 35, 315–322 (2006). 

25. Killilea, M. E., Swei, A., Lane, R. S., Briggs, C. J. & Ostfeld, R. S. Spatial dynamics of Lyme 
disease: A review. EcoHealth 5, 167–195 (2008). 

26. Tran, P. M. & Waller, L. Effects of landscape fragmentation and climate on Lyme disease 
incidence in the northeastern United States. EcoHealth 10, 394–404 (2013). 

27. Robinson, S. J. et al. Disease risk in a dynamic environment: The spread of tick-borne 
pathogens in Minnesota, USA. EcoHealth 12, 152–163 (2015). 

28. Seukep, S. E. et al. An examination of the demographic and environmental variables 
correlated with Lyme disease emergence in Virginia. EcoHealth 12, 634–644 (2015). 

29. Larsen, A. E., MacDonald, A. J. & Plantinga, A. J. Lyme disease risk influences human 
settlement in the wildland-urban interface: Evidence from a longitudinal analysis of counties 
in the northeastern United States. Am. J. Trop. Med. Hyg. 91, 747–755 (2014). 

30. Berry, K., Bayham, J., Meyer, S. R. & Fenichel, E. P. The allocation of time and risk of Lyme: A 
case of ecosystem service income and substitution effects. Environ. Resour. Econ. 70, 631–
650 (2018). 

31. Elias, S. P. et al. Decoupling of blacklegged tick abundance and Lyme disease incidence in 
southern Maine, USA. J. Med. Entomol. 57, 755–765 (2020). 

32. Heaney, C. D. et al. Relations of peri-residential temperature and humidity in tick-life-cycle-
relevant time periods with human Lyme disease risk in Pennsylvania, USA. Sci. Total Environ. 
795, 148697 (2021). 

33. Ogden, N. et al. Surveillance for Lyme disease in Canada, 2009 to 2012. Can. Commun. Dis. 
Rep. 41, 132–145 (2015). 



 

 

15 

 

34. MacDonald, A. J., O’Neill, C., Yoshimizu, M. H., Padgett, K. A. & Larsen, A. E. Tracking 
seasonal activity of the western blacklegged tick across California. J. Appl. Ecol. 56, 2562–
2573 (2019). 

35. MacDonald, A. J., McComb, S., O’Neill, C., Padgett, K. A. & Larsen, A. E. Projected climate 
and land use change alter western blacklegged tick phenology, seasonal host‐seeking 
suitability and human encounter risk in California. Glob. Change Biol. 26, 5459–5474 (2020). 

36. Hahn, M. B. et al. Modeling future climate suitability for the western blacklegged tick, 
Ixodes pacificus, in California with an emphasis on land access and ownership. Ticks Tick-
Borne Dis. 12, 101789 (2021). 

37. Eisen, R. J. et al. Modeling climate suitability of the western blacklegged tick in California. J. 
Med. Entomol. 55, 1133–1142 (2018). 

38. Couper, L. I., MacDonald, A. J. & Mordecai, E. A. Impact of prior and projected climate 
change on US Lyme disease incidence. Glob. Change Biol. 27, 738–754 (2021). 

39. Patz, J. A., Graczyk, T. K., Geller, N. & Vittor, A. Y. Effects of environmental change on 
emerging parasitic diseases. Int. J. Parasitol. 30, 1395–1405 (2000). 

40. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008). 
41. Plowright, R. K. et al. Land use-induced spillover: a call to action to safeguard 

environmental, animal, and human health. Lancet Planet. Health 5, e237–e245 (2021). 
42. Lippi, C. A., Ryan, S. J., White, A. L., Gaff, H. D. & Carlson, C. J. Trends and opportunities in 

tick-borne disease geography. J. Med. Entomol. 58, 2021-2029 (2021) 
doi:10.1093/jme/tjab086. 

43. Wood, C. L. & Lafferty, K. D. Biodiversity and disease: A synthesis of ecological perspectives 
on Lyme disease transmission. Trends Ecol. Evol. 28, 239–247 (2013). 

44. Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. 
Biol. 14, 722–728 (2000). 

45. Randolph, S. E. & Dobson, A. D. M. Pangloss revisited: a critique of the dilution effect and 
the biodiversity-buffers-disease paradigm. Parasitology 139, 847–863 (2012). 

46. Ogden, N. H. & Tsao, J. I. Biodiversity and Lyme disease: Dilution or amplification? Epidemics 
1, 196–206 (2009). 

47. Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: consensus, uncertainty and 
critical gaps for improving control. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160117 (2017). 

48. Lane, R. S., Fedorova, N., Kleinjan, J. E. & Maxwell, M. Eco-epidemiological factors 
contributing to the low risk of human exposure to ixodid tick-borne borreliae in southern 
California, USA. Ticks Tick-Borne Dis. 4, 377–385 (2013). 

49. MacDonald, A. J., Weinstein, S. B., O’Connor, K. E. & Swei, A. Circulation of tick-borne 
spirochetes in tick and small mammal communities in Santa Barbara County, California, 
USA. J. Med. Entomol. 57, 1293-1300 (2020) doi:10.1093/jme/tjz253. 

50. Rose, I. et al. Phylogeography of Borrelia spirochetes in Ixodes pacificus and Ixodes 
spinipalpis ticks highlights differential acarological risk of tick-borne disease transmission in 
northern versus southern California. PLoS ONE 14, 1–17 (2019). 

51. MacDonald, A. J. & Briggs, C. J. Truncated seasonal activity patterns of the western 
blacklegged tick (Ixodes pacificus) in central and southern California. Ticks Tick-Borne Dis. 7, 
234–242 (2016). 

52. Eisen, R. J., Eisen, L. & Lane, R. S. Predicting density of Ixodes pacificus nymphs in dense 
woodlands in Mendocino County, California, based on geographic information systems and 
remote sensing versus field-derived data. Am. J. Trop. Med. Hyg. 74, 632–40 (2006). 



 

 

16 

 

53. Eisen, R. J., Lane, R. S., Fritz, C. L. & Eisen, L. Spatial patterns of Lyme disease risk in 
California based on disease incidence data and modeling of vector-tick exposure. Am. J. 
Trop. Med. Hyg. 75, 669–676 (2006). 

54. Porter, W. T. et al. Predicting the current and future distribution of the western black-legged 
tick, Ixodes pacificus, across the Western US using citizen science collections. PLOS ONE 16, 
e0244754 (2021). 

55. Salkeld, D. J., Porter, W. T., Loh, S. M. & Nieto, N. C. Time of year and outdoor recreation 
affect human exposure to ticks in California, United States. Ticks Tick-Borne Dis. 10, 1113–
1117 (2019). 

56. Swei, A., Briggs, C. J., Lane, R. S. & Ostfeld, R. S. Impacts of an introduced forest pathogen on 
the risk of Lyme disease in California. Vector Borne Zoonotic Dis. Larchmt. N 12, 623–632 
(2012). 

57. Hacker, G. M. et al. Spatial clustering of Borrelia burgdorferi sensu lato within populations of 
Allen’s chipmunks and dusky-footed woodrats in northwestern California. PLOS ONE 13, 
e0195586 (2018). 

58. California Department of Public Health. Vector-Borne Disease Section Annual Report, 2020. 
1–29 https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/VBDSAnnualReports.aspx#. 

59. Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies 
with observational data. Methods Ecol. Evol. 10, 924–934 (2019). 

60. Salkeld, D. J. & Antolin, M. F. Ecological fallacy and aggregated data: A case study of fried 
chicken restaurants, obesity and Lyme disease. EcoHealth 17, 4–12 (2020). 

61. Portnov, B. A., Dubnov, J. & Barchana, M. On ecological fallacy, assessment errors stemming 
from misguided variable selection, and the effect of aggregation on the outcome of 
epidemiological study. J. Expo. Sci. Environ. Epidemiol. 17, 106–121 (2007). 

62. MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and 
malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. 116, 22212–22218 (2019). 

63. Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 
(2011). 

64. Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions 
and a comprehensive evaluation. Ecography 31, 161–175 (2008). 

65. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: 
an open-source release of Maxent. Ecography 40, 887–893 (2017). 

66. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species 
geographic distributions. Ecol. Model. 190, 231–259 (2006). 

67. Padgett, K. et al. Large scale spatial risk and comparative prevalence of Borrelia miyamotoi  
and Borrelia burgdorferi  sensu lato in Ixodes pacificus . PLoS ONE 9, (2014). 

68. Salkeld, D. J. et al. Disease risk & landscape attributes of tick-borne Borrelia pathogens in 
the San Francisco Bay Area, California. PLoS ONE 10, e0134812 (2015). 

69. Eisen, R. J., Eisen, L., Castro, M. B. & Lane, R. S. Environmentally related variability in risk of 
exposure to Lyme disease spirochetes in Northern California: Effect of climatic conditions 
and habitat type. Environ. Entomol. 32, 1010–1018 (2003). 

70. Fedorova, N. et al. Remarkable diversity of tick or mammalian-associated Borreliae in the 
metropolitan San Francisco Bay Area, California. Ticks Tick-Borne Dis. 5, 951–961 (2014). 

71. Salkeld, D. J., Lagana, D. M., Wachara, J., Porter, W. T. & Nieto, N. C. Examining prevalence 
and diversity of tick-borne pathogens in questing Ixodes pacificus ticks in California. Appl. 
Environ. Microbiol. 87, (2021). 



 

 

17 

 

72. Swei, A., Ostfeld, R. S., Lane, R. S. & Briggs, C. J. Effects of an invasive forest pathogen on 
abundance of ticks and their vertebrate hosts in a California Lyme disease focus. Oecologia 
166, 91–100 (2011). 

73. Swei, A., Ostfeld, R. S., Lane, R. S. & Briggs, C. J. Impact of the experimental removal of 
lizards on Lyme disease risk. Proc. R. Soc. B Biol. Sci. 278, 2970–2978 (2011). 

74. Eshoo, M. W. et al. Survey of Ixodes pacificus ticks in California reveals a diversity of 
microorganisms and a novel and widespread Anaplasmataceae species. PLoS ONE 10, 
e0135828 (2015). 

75. Dingler, R. J., Wright, S. A., Donohue, A. M., Macedo, P. A. & Foley, J. E. Surveillance for 
Ixodes pacificus and the tick-borne pathogens Anaplasma phagocytophilum and Borrelia 
burgdorferi in birds from California’s Inner Coast Range. Ticks Tick-Borne Dis. 5, 436–445 
(2014). 

76. Eisen, L., Eisen, R. J., Mun, J., Salkeld, D. J. & Lane, R. S. Transmission cycles of Borrelia 
burgdorferi and B. bissettii in relation to habitat type in northwestern California. J. Vector 
Ecol. 34, 81–91 (2009). 

77. Eisen, L., Dolan, M. C., Piesman, J. & Lane, R. S. Vector competence of Ixodes pacificus and I. 
spinipalpis (Acari: Ixodidae), and reservoir competence of the dusky-footed woodrat 
(Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), for Borrelia bissettii. J. 
Med. Entomol. 40, 311–320 (2003). 

78. Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. California BCM (Basin Characterization 
Model) downscaled climate and hydrology – 30‐year summaries. (2014). 

79. Hijmans, R. J., Phillips, S. J., Leathwick, J. & Elith, J. dismo: Species distribution modelling. R 
package version 1.1‐4. (2017). 

80. Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–93 (1988). 
81. Sambado, S., Salomon, J., Crews, A. & Swei, A. Mixed transmission modes promote 

persistence of an emerging tick‐borne pathogen. Ecosphere 11, (2020). 
82. Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ 

distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 
(2013). 

83. U.S. Bureau of the Census. TIGER/Line Files: Census 2010. 
https://www.census.gov/geographies/mapping-files/t Preprint at (2010). 

84. Radeloff, V. C. et al. The wildland-urban interface in the United States. Ecol. Appl. 15, 799–
805 (2005). 

85. Long, J. S. Regression models for categorical and limited dependent variables. (Sage 
Publications, 1997). 

86. Mead, P. S. Epidemiology of Lyme disease. Infect. Dis. Clin. North Am. 29, 187–210 (2015). 
87. Schwartz, A. M., Hinckley, A. F., Mead, P. S., Hook, S. A. & Kugeler, K. J. Surveillance for Lyme 

disease - United States, 2008-2015. Morb. Mortal. Wkly. Rep. Surveill. Summ. Wash. DC 
2002 66, 1–12 (2017). 

88. Armstrong, P. M., Brunet, L. R., Spielman, A. & Telford, S. R. Risk of Lyme disease: 
perceptions of residents of a Lone Star tick-infested community. Bull. World Health Organ. 
79, 916–25 (2001). 

89. Johnson, L., Aylward, A. & Stricker, R. B. Healthcare access and burden of care for patients 
with Lyme disease: a large United States survey. Health Policy Amst. Neth. 102, 64–71 
(2011). 



 

 

18 

 

90. Wilking, H. & Stark, K. Trends in surveillance data of human Lyme borreliosis from six federal 
states in eastern Germany, 2009-2012. Ticks Tick-Borne Dis. 5, 219–24 (2014). 

91. Adrion, E. R., Aucott, J., Lemke, K. W. & Weiner, J. P. Health care costs, utilization and 
patterns of care following Lyme disease. PLOS ONE 10, e0116767 (2015). 

92. Therneau, T. A package for survival analysis in R. R package version 3.2-13. (2021). 
 


