Journal of Computational Mathematics http://www.global-sci.org/jem
Vol.40, No.5, 2022, 715-731. doi:10.4208/jcm.2101-m2019-0243

HEAVY BALL FLEXIBLE GMRES METHOD FOR
NONSYMMETRIC LINEAR SYSTEMS"

Mei Yang®
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Email: ymsjtu@sjtu.edu.cn
Ren-Cang Li
Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA
Email: rcli@uta.edu

Abstract

Flexible GMRES (FGMRES) is a variant of preconditioned GMRES, which changes
preconditioners at every Arnoldi step. GMRES often has to be restarted in order to save
storage and reduce orthogonalization cost in the Arnoldi process. Like restarted GMRES,
FGMRES may also have to be restarted for the same reason. A major disadvantage
of restarting is the loss of convergence speed. In this paper, we present a heavy ball
flexible GMRES method, aiming to recoup some of the loss in convergence speed in the
restarted flexible GMRES while keep the benefit of limiting memory usage and controlling
orthogonalization cost. Numerical tests often demonstrate superior performance of the
proposed heavy ball FGMRES to the restarted FGMRES.

Mathematics subject classification: 65F10.
Key words: GMRES, Flexible GMRES, Heavy ball GMRES, Preconditioner, Linear sys-
tem.

1. Introduction

The Generalized Minimal Residual (GMRES) method [12] is a well-established Krylov sub-
space method for solving a large and sparse nonsymmetric linear system of equations

Az =b, (1.1)

where A € C"*™ b € C", and = € C™ is the unknown. Given an initial approximation xg, the
k-th GMRES approximation xj is sought so that the k-th residual r, = b — Az, satisfies

k|l = min b— A(xg + 2)||2, 1.2
Iralle = _gmin b= Ao + 2] (12)

where g = b — Axg, || - ||2 is the Euclidian norm, and i (A, 7o) is the k-th Krylov subspace of
A on rq defined by
Kr(A, o) = span {To,ATo,AQTo, e ,Akilro} . (1.3)

Algorithmically, GMRES first builds an orthonormal basis of K (A, ro) via the Arnoldi process
and, along the way, A is projected onto the Krylov subspace to turn (1.2) into a much smaller
(k4 1) x k least squares problem.

* Received October 30, 2019 / Revised version received June 12, 2020 / Accepted January 19, 2021 /
Published online March 8, 2021 /
1) Corresponding author

716 M. YANG AND R.C. LI

Ideally, it is hoped that for a modest k relative to n, ||rg||2 is sufficient tiny so that xj can
be regarded as a sufficiently accurate approximation to the exact solution of (1.1). But that
is not always the case. When that happens, GMRES can become very expensive because of
the heavy burden in memory for storing orthonormal basis vectors and for generating them
in the Arnoldi process. A popular and the simplest remedy is the so-called restarted GMRES
(REGMRES) [6] which sets an upper bound kmax on k and starts over as soon as k reaches the
upper bound kpyax but ||rg,... ||2 is not yet tiny enough, using the latest approximation xy,_ . as
the initial guess for the next GMRES run. Doing so effectively put the memory requirement and
orthogonalization cost under control, but not without tradeoff, which is slow convergence and
potentially increases overall computational time in solving (1.1). In recognizing this tradeoft,
researchers have made efforts address the issue.

The loss in convergence speed by REGMRES is due to its control on the largest possible
number of Arnoldi steps that one GMRES run can use. Besides the use of the latest approxi-
mation as the initial guess for the next GMRES run, REGMRES completely throws away the
Krylov subspaces built thus far. To partially compensate the throw-away, two main types of im-
provements are discussed, which include hybrid iterative methods and acceleration techniques.
Our discussion mainly focuses on acceleration techniques. One natural idea to accelerate GM-
RES is to augment the Krylov subspace of REGMRES according to spectral information at the
restart, named augmented Krylov subspace techniques, such as GMRES-E [8] , GMRES-IR [9]
and GMRES-DR [10]. This kind of methods keeps the form of Krylov subspace. Another tech-
nique is to approximate the search space with non-Krylov subspace, i.e., approximation space.
In [1], Baker, Jessup and Manteuffel presented the Loose GMRES (LGMRES) method. At the
¢-th restart of LGMRES, the Krylov subspace i (A, r((f)) is generated and augmented with the
t most recent error vectors, which are defined to be the differences between every two sequential
solutions.

In [7], from the optimization perspective, Imakura, Li and Zhang proposed two comparable
methods, the locally optimal GMRES (LOGMRES) and the heavy ball GMRES methods (H-
BGMRES). LOGMRES augments the search space by adding the most previous solution vector.
The latter one incorporates the idea in the heavy ball method from optimization [11, p.65] into
REGMRES by adding a new vector — the difference of approximations from the previous two
cycles of HBGMRES, i.e., the most previous error vector in LGMRES, to the next searching
space. Numerical experiments show that HBGMRES often converges significantly faster than
REGRMES. However, there are cases where the gain of HBGMRES over REGMRES is not so
significant.

The preconditioning technique is often very effective in enhancing the performance and
reliability of Krylov subspace methods, provided a reasonably good preconditioner can be found.
Instead of (1.1), its right preconditioned linear system takes the form

(AM Yy =0b, Mzx=y. (1.4)

The matrix M is called a preconditioner and it may exist in form in such a way that linear
system M z = c is cheap to solve. However, it is usually hard to find a suitable preconditioner M
for the problem at hand. Saad [13] proposed an inner-outer iteration method called the flexible
GMRES method (FGMRES), in which GMRES is used as the outer iteration. In the inner
iteration some linear system Az = ¢ is approximately solved and thus each inner iteration can
be viewed as applying some preconditioner M, not known explicitly but implicitly in the action
M~'c¢ ~ A~lc. GMRESR [15], another similar inner-outer iteration, uses GCR [3] instead

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems v

of GMRES as its outer iteration. If using the same solver for the inner iteration, FGMRES
and GMRESR often yield solutions of comparable accuracy [16]. As it’s pointed by Fokkema,
Sleigpen, and van der Vorst in [4] that the distinction between preconditioning and acceleration
is not so clear. Both FGMRES and GMRESR can also be seen as the approximation space
technique mentioned before.

As k increases, orthogonalization cost and memory for FGMRES usage also increase for
computing and storing basis vectors. For that reason, FGMRES may also need to be restarted
for difficult linear systems, too. Just like REGMRES, restarting FGMRESS can cause loss
in convergence speed. In this paper, we design a heavy ball FGMRES which introduces the
idea of the heavy ball method to the restarted FGMRES. Numerical tests show that it’s able
to salvage the lost convergence speed while still keep the benefit of the restarted FGMRES in
limiting memory usage and controlling orthogonalization cost.

The rest of this paper is organized as follows. Section 2 outlines GMRES, flexible GMRES
and the heavy ball GMRES method. Section 3 presents the framework of the heavy ball
FGMRES method and its implementation details. Section 4 presents numerical results on eight
test problems from the SuiteSparse Matrix Collection and Matrix Market. Finally, we give our
concluding remarks in Section 5.

Notation. C"*™ is the set of all n x m complex matrices, C* = C"*!. I,, or I (if its size is
clear from the context) is the n x n identity matrix, and e; is its j-th column. The superscript
“H” takes the conjugate transpose of a matrix or vector. Denote by i : j the set of integers
from i to j inclusive. For a vector u and a matrix X, u(; is u’s i-th entry, X(; ;) is X’s (i,7)-th
entry; X'’s submatrices X(x.¢,i:5), X(k:¢,:) and X(. ;.5) consist of intersections of row k to row ¢
and column ¢ to column j, row k to row ¢, and column i to column j, respectively, and

qu”?
ullg = | E w2, X2 := max .

2. Preliminaries

2.1. GMRES

Given an initial guess x(, the corresponding residual is rg = b — Axy. The k-step GMRES
method first builds a basis matrix Vi1 = [v1,v9, ..., v5+1] of the Krylov subspace Kj41(A4, 7o)
via the Arnoldi process, and then seeks the best solution zj, that minimizes ||b — Ax||2 over
20 + Kr(A,19). Specifically,

Tk = o+ argmin |rg — Az||a.
z€K K (A,ro)

When with a right preconditioner M as in (1.4), the associated Arnoldi process is for AM ~!
on g, and the resulting preconditioned GMRES is outlined in Algorithm 2.1, which will reduce
to the plain GMRES upon simply setting M = I. In the generic situation, i.e., break at Line 12
is not invoked, the Arnoldi process in Algorithm 2.1 can be compactly written as

AZy, = AM ™'V, = Viep1 Hi,

where Hj, is the matrix H defined in Algorithm 2.1 and Z;, = [21, 22, .. ., zi] also defined there.
The approximate solution z;, returned by the algorithm is the best one from zy + span{Z;} =

718 M. YANG AND R.C. LI
20+ Kr(AM =1 7g) in the sense that

Tk = o+ argmin |jrg — Azls. (2.1)
z€span{Zy }

Any z € span{M 1V} } can be written as z = M ~1Vyy = Zy. Therefore,
ro — Az =19 — AZpy = BVir1e1 — Vip1 Hyy = Vir1 (Ber — Hyy),
yielding ||ro — Az|2 = ||Be1 — Hyyl|2, which combined with (2.1) lead to

x = x0 + Zpyr Wwith yp = argglgn |Ber — Hiyl|o- (2.2)
ye
That explains Lines 17 and 18 of Algorithm 2.1. In what follows, by the k-step GMRES we
mean Algorithm 2.1 with M = I. REGMRES(k) is the algorithm of repeatedly running the
k-step GMRES with the initial guess of the current k-step GMRES being the computed solution
of the very previous k-step GMRES, assuming the initial guess for the first k-step GMRES run
is given. Each k-step GMRES run is termed a cycle.

Algorithm 2.1. k-step Preconditioned GMRES for Az = b

Input: A € C"*", preconditioner M € C"*", xq € C", integer k;
Output: An approximate solution zj to Az = 0.

1 rg =b— Azg € C", B = [ro|2 and vy = ro/B;

2: Vi = v, H= O(k+1)xk (the (k+ 1) x k zero matrix);

3:for j=1,2,... .,k do

4z = MV

5. f= Az

6: fori=1,2,...,57do

T Hagy =Vinff=F-VenHuy
8: end for

9 Hyag) = 112

10: if H(j+1,j) > (0 then

e Vi = f/HG4p;

12: else

13: reset k= j, H = H(1;j,1;j);
14: break;

15: end if

16: end for

17: compute yx = argmin ||Be; — Hyl|2;
y

18: return xp = xg + Zxyk, where Zp = [21,. .., 2]

2.2. Flexible GMRES

Let us now focus on Line 4 of Algorithm 2.1 on the preconditioner M. In practice, it may
be possible that M ! is explicitly constructed but more often M~ is implicitly constructed,
e.g., an incomplete LU decomposition [14], in such a way, that any linear system

Mz=c (2.3)

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems 719

takes little effort to solve. Even more generally, it can be some iterative linear system solver,
where M implicitly exists to resemble A in some way and varies with the right-hand side c.
This is exactly what the flexible GMRES (FGMRES) [13] does: iteratively solve Az; = V. ;
for z; approximately. So effectively, FGMRES is an inner-outer iterative scheme.

With the goal of developing a general purpose linear system solver, we will further restrict
ourselves to the use of the m-step plain GMRES for Az; = V/. ;). In other words, in the rest of
this paper, the inner iteration of our FGMRES is always the m-step plain GMRES. In doing
so, we actually use a degree (m — 1) polynomial P,,(A) [5] to approximate A~1.

Consequently, each solving implicitly determines a preconditioner M that differs from one
solving to another. To distinguish them, we add the loop-index to each preconditioner, namely,
M;. Different from what we had in the previous subsection, now Z; = [Mflvl, e ,M,;lvk],
where v; = V. ;) and Mj_1 is unknown but Mj_lvj is known. We still have (2.1) and (2.2). We
outline FGMRES as in Algorithm 2.2.

Algorithm 2.2. FGMRES(m, k): k-step Flexible GMRES(m)

Input: A € C"*", zq € C", integers k and m;

Output: An approximate solution zj to Az = b.

1: Replace Line 4 of Algorithm 2.1 by: solve Az; = V/. ;) approximately by the m-step
GMRES.

Numerical tests show that FGMRES often improves GMRES and sometimes the improve-
ment can be rather significant. But it is still a possibility that FGMRES may need a large k
to deliver a sufficiently accurate approximate solution xp. When that’s the case, it will need
a lot of memory space to store V(. ;) and z; and require heavy costs to orthogonalize V(. ;). In
order to deal with this problem, one can also restart FGMRES as in the restarted GMRES, i.e.,
repeat the k-step FGMRES(m) with the current initial guess being the solution of the previous
k-step FGMRES(m). We denote it by REFGMRES(m, k) and call each k-step FGMRES(m)
a cycle. The framework of REFGMRES(m, k) is presented in Algorithm 2.3.

Algorithm 2.3. REFGMRES(m, k)

Input: A € C"*", zq € C", integers k and m;
Output: An approximate solution :v,(f) to Az =b.

1: :C((Jl) = 9, 7“((31) =b— A:v((Jl);

2: for /=1,2,...,do

30 if [|rd” 2 < tol x (|| Al ||z + [|b]2) then

4. break;

5: else

6: call Algorithm 2.2 with input :v((f), k and m, and let :v,(f) be the returned
approximation;

T xé“l) = a:,(f);

3: P 4l

9: end if

10: end for

11: return x,(f) as the computed solution to Az = b.

720 M. YANG AND R.C. LI

2.3. Heavy Ball GMRES

It is well known that REGMRES may encounter slow convergence, partly because at every
restart, REGMRES completely ignores all the Krylov subspaces built in the previous cycles
for the purpose of cost control in memory and flops. Imakura, Li, and Zhang [7] proposed
the locally optimal GMRES (LOGMRES) and the heavy ball GMRES (HBGMRES) methods,
designed to recoup some information from previous cycles back for the purpose of accelerating
the convergence of REGMRES(k). As mentioned in the introduction, HBGMRES is motivated
by the optimization method, i.e., the heavy ball method, and it is a special case of Loose
GMRES [1]. In this part, we focus on the work by Imakura, Li, and Zhang.

The so-called heavy ball method [11, p. 65] is an optimization method

2 = argmin f (x(g) + tVf(x(g)) + s(a:(é) — x“_l)))
s,t

for minimizing a differentiable function f(x). Its name is drawn from the motion of a “heavy
ball” in a potential field under the force of friction. The heavy ball method is a multi-step
method. It brings in information of the previous cycles by just including the difference of last
two approximate solutions. The heavy ball GMRES is an application of the heavy ball method
to the linear system solving. In every HBGMRES cycle, the search space is expanded to
Kr(A, r(()é)) + span{xé@ - a:(()é_l)}. In [7], numerical experiments demonstrated that HBGMRES
often converges much faster than REGMRES. More detailed efficiency discussion of HBGMRES
can be found in [7] and [1].

2.4. A Brief Comparison among Variants of GMRES

In what follows, we will conduct a brief comparison among the methods we have mentioned
so far in an effort to justify our focus on improving the restarted FGMRES in the next section.

In Table 2.1, we estimate the numbers of flops for GMRES and its variants. MV represents
the number of flops by one matrix-vector multiplication with A € C™*"™, which is taken to be
twice the number of nonzero entries in A. GMRESR and FGMRES use the same space infor-
mation both in their inner and outer iterations except that they are implemented differently
in their respective outer iterations. Because our focus is on Krylov subspace methods that
are easy to implement and use, as easy as GMRES itself, GMRES variants like GMRES-E,
GMRES-IR, and GMRES-DR are, as a result, excluded in our comparison. In the table, only
three major actions are considered in the total flops: matrix-vector multiplications, orthogo-
nalization, and solutions of the reduced least squares problems. In the table and in the rest
of this paper, REGMRES(k) stands for the restart of the k-step GMRES. The parameter k in
HBGMRES(k) indicates the order of Krylov subspace in each cycle of HBGMRES(k), while m
in GMRESR(m) and FGMRES(m) is the Arnoldi steps in each inner iteration, i.e., indicating
Line 4 of Algorithm 2.1 is done by solving Az; = V. ;) approximately by the m-step GMRES.

Table 2.1: Total Flops of GMRES Variants.

(-step GMRES (€4 1)(MV)+26%n + 402

l-cycle REGMRES(k) | £((k +1))(MV)4+£(2k*n + 4k?)

l-cycle HBGMRES (k) | £(k 4+ 2)(MV)+£(2(k + 2)*n + 4(k + 1))

(-step GMRESR(m) | £(Y(MV)+2(62 + tm?)n + 4(fn + m?)
()(

k+
m+
l-step FGMRES(m) L(em 4 2)(MV)42(6% + m®)n + 4(€% + tm?)

+2
+2

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems

cavity16
0 e
10° T T T
i —A— REGMRES k=31
i — O HBGMRES k=30
102!]
|
|
104
|
&
3 v
2 10°F k
z U
VA
N e e
> —r e — ke — — — %
10°® y
A
e
\
oo b e
1
R
1012 . Ny
100 200 300 400 500 600 700 800
cycle
cavity16
o
10 Frit T T T T
\ —¥— GMRESR m=31
— o FGMRES m=31
*
102F)]
)
L}
10 \
[
.
10° NS
é hRa
z S
T~
100 BN
N N
. ~
\ ~
. N
107 Na *
N, ~
~ \
~ ~
.
1072 o e
107

iteration

70

10°

chipcoold

721

T T

o7 AT

Il S

Bl e

—%— REGMRES k=21
— O~ - HBGMRES k=20

100 200 300 400 500
cycle

TN,

chipcoold

—%— GMRESR m=21
— O - FGMRES m=21

50 100 150 200 250
iteration

300 350 400

Fig. 2.1. Numerical Tests on cavity16 and chipcool0. Top-row: REGMRES and HBGMRES; Bottom-
row: GMRESR and FGMRES.

Next we present the numerical results by the last four methods in Table 2.1 on two notorious
difficult testing examples cavity16 and chipcool0 from SuiteSparse Matrix Collection!) . Both
of them have bad condition number over 107. More detailed information on the examples can
be found in Section 4. In choosing the number m of GMRES steps for each inner iteration
of GMRESR and FGMRES, we decide to make the cost be about the same as one cycle in
REGMRES and HBGMRES. We point out that one outer iteration in GMRESR and FGMRES
is like one cycle in REGMRES and HBGMRES. Therefore, we choose the parameter m in
the inner iteration of FGMRES and GMRESR is to be m = k + 1. As a result, each cycle
of REGMRES(k + 1) and HBGMRES(k) and each outer iterative step of GMRESR(m) and
FGMRES(m) have about the same cost. We terminate each method by either the maximal
number of cycles or outer iterative steps exceeds 700, or the normalized residual moves below

10-12.

Table 2.2 shows the numbers of cycles/iterations and CPU times needed by the four

methods and Fig. 2.1 displays the convergence histories in terms of the normalized residual.

Table 2.2: Cycles and CPU Time (s).

matrix e | m REGMRES(k + 1) | HBGMRES(k) GMRESR(m) FGMRES(m)
cycle CPU cycle CPU iteration | CPU | iteration | CPU
cavityl6 | 30 | 31 — — 206 2.25 65 0.78 55 0.57
chipcoolO | 20 | 21 — — — — 364 8.21 332 7.54

1) Available at https://sparse.tamu.edu/

722 M. YANG AND R.C. LI

We observed the following:

e REGMRES didn’t take the normalized residual down to 10~'2 in 700 cycles for both
examples. In fact, for cavity16 with parameter £ = 31, REGMRES takes 31193 iterations
and 343.01 seconds, which are way too large, to make the normalized residual down to
the tolerance. For chipcool0O with parameter £ = 21, the normalized residual is as much
as 1079 after 40000 iterations.

e HBGMRES didn’t take the normalized residual down to 10~2 in 700 cycles for chipcool0,
although it did manage to take it to about 107! in 700 cycles.

e While both FGMRES and GMRESR perform much better than HBGMRES, FGMRES
comes out as the best among all.

Basing on these preliminary results, in what follows we will focus on improving the restarted
FGMRES in the rest of this paper.

3. Heavy Ball Flexible GMRES Method

3.1. HBFGMRES

As mentioned before, it is possible for FGMRES to require a large number of outer iter-
ative steps to converge, although less frequently than GMRES. Hence sometimes FGMRES
has to be restarted in order to control the memory usage and reorthogonalization cost of Vj
(see Algorithms 2.1 and 2.2). Meanwhile, in order to make up the possibly slow convergence
due to restart, in this section we borrow the heavy-ball idea to devise the heavy ball FGM-
RES (HBFGMRES). The purpose is to include some Krylov subspace information of previous
cycles for the benefit of faster convergence. The framework of HBFGMRES is presented in
Algorithm 3.1.

The main difference between HBFGMRES and REFGMRES lies in its outer iterative cy-
cles in that after building the Krylov subspace, HBFGMRES further expands the subspace
by adding a new direction, the difference between two approximations of previous cycles. Ac-
cording to the analysis in [1], since FGMRES may be viewed as an accelerated GMRES via
variable preconditioning technique, HBGMRES is also an accelerated GMRES, that improves
the approximation space besides the preconditioning technique.

We remark that similarly to LGMRES [1], we include more than one previous difference
vectors to the search space, i.e., modify the update at Line 7 in Algorithm 3.1 to

xg) _ xéf) + argmin HT(()D - AZHQ, (3.1)
zEspan{Zk}-i-Zgiffp span{wéq)}

where ,T((iq) = :E,(f) - :E,(ffl).

Here, instead of one previous difference vectors, ¢ — p previous
difference vectors are used to expand the search space.

In the next subsection, we will explain how HBEGMRES(m, k) is implemented. With mod-
ifications, updating scheme (3.1) can be implemented in a similar way. Later, we will provide
some numerical evidence to demonstrate that including more than one previous difference vec-

tors does not yield much reward, if any.

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems 723

Algorithm 3.1. HBFGMRES(m, k)

Input: A € C"*", xél) € C™, integers k and m,;

Output: An approximate solution a:,(f) to Ax = b.

: rél) =b— Axél) (and :céo) = 0 for convenience);

cfor0=1,2,...,

if 1157]l2 < tol x (JAll1[lz5”]| + [[b]]2) then
break;

else

build Zx = [21, 22, . . ., 2x] with r((f), k and m as in Algorithm 2.2;

IR ANl e

compute

4 4 . 4
x,(c) :xé) + argmin Hré) —Az’
stpan{Zk}Jrspan{xgz)71(()871)}

2;

8: x((JHl) = a:,(f);

9: ré“l) =b-— A:vé“l);

10: end if

11: end for

12: return x,(f) as the computed solution to Az = b.

3.2. Implementation of HBFGMRES
The approximate solution of the ¢-th cycle of REFGMRES(m, k) can be expressed as

ng) = xég) + Zryr € :zrgé) + span{Z;}.

Our proposed HBFGMRES improves REFGMRES by expanding the search space span{Z} to

. — ¢ -1
include a new direction zq = xé) :v((J)

, and then a new approximate solution, denoted by
(6)
k

the same notation z;’ without confusion, can be written as

a:,(f) = a:gé) + Zryr + azq. (3.2)
Correspondingly, the /-th residual becomes
r,(f) =b— Ang) = T(()Z) — Vi1 Hyp — aAzq, (3.3)

which has the smallest norm ||b — Ax||s among all z € zg + span{Zy, za}. In what follows, we
explain how to numerically compute x,(f) efficiently. Recall that we have AZy = Vi1 H by the
Arnoldi process before the new direction x4 is added, and that is why we have (3.3).

Denote by p = Axq. If p = 0, this case is exactly the restarted FGMRES. We assume p # 0.
Now we orthogonalize p against Vi1 , and define

d=Viip, h=p—Vind
Case 1. h # 0. This is the most generic and common case. Define

Okt = h/||Bll2, Vigo = [Vigr Tkaal-

724 M. YANG AND R.C. LI

We have
r,(f) = r((f) — Vi1 Hyp — aAzg

= T(()é) — Vi1 Hyr, — o012 ||hl|2 + Vi1 d)

— O _v H d] [w
0 ’“*2{0 ||h||J M

Therefore in order for Hr,(f) | = min ||b — Az||2 among all z € x¢ + span{Zy, x4}, yr and o must

be given by
Yr| = argmin ||Be; — i d 4 ,
a 0 All2] [a]ll,

Yy,
where 3 = Hr((f)Hg. Finally, the approximate solution of the (-th cycle of HBFGMRES(k) is
given by (3.2), satisfying

(3.4)

a:,(f) - xég) € span{Z;} + span{zq}.

Case 2. h = 0. In this case, we have |||l = 0 and Azq = Vj41d. Then

T](f) = T(()Z) — Vk+1f{yk — aAxy

= 7‘(()2) — Vi1 Hye — a(Viy1d)
) Vi [d] m .
Therefore

[yk] = argmin
Q@

Y,

Ber— A d m 2

The details of our HBEGMRES(m, k) is summarized in Algorithm 3.2.

Algorithm 3.2. HBFGMRES(m, k) with implementation details

Input: A € C"*", xél) € C", integers k and m;
Output: An approximate solution :v,(f) to Az =b.
1: rél) =b- Axél) (and xéo) = 0 for convenience);
2: for /=1,2,...,do

30 if [|r{” 2 < tol x (|| Al ||z + [|b]2) then

4 break;

5 else

6 build Zj = [z1, 29, ..., 2;] with A and r((f) as in Algorithm 2.2;
7 set xq = x((f) - :C((Je*l), and orthogonalize Axq against Vi41;

8: solve (3.4) or (3.5) for (yx, a);

9: a:,(f) = a:gé) + Zryr + axq;

10: xé“l) = a:,(f);

11: r(()“_l) =b— Axé“_l);

12: end if

13: end for

14: return x,(f) as a computed solution to Ax = b.

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems 725
4. Numerical Experiments

In general, in terms of the number of matrix-vector multiplications, GMRES uses fewer
than REGMRES for achieving the same solution accuracy. The latter gets used because when
GMRES needs a large number of Arnoldi steps to converge, the memory requirement to store
the orthonormal basis vectors and the orthogonalization cost are too great for a large scale
problem, not to mention the tendency in orthogonality loss among the basis vectors. For the
same reason, REFGMRES may have to be used in place of FGMRES, even though FGMRES
in general uses fewer matrix-vector multiplications.

In [7], it was reported that the heavy-ball idea in HBGMRES usually improves the plain
REGMRES and often significantly. We have showed in Section 2 that FGMRES is faster than
GMRESR. In what follows, we will numerically demonstrate how much the heavy ball idea in
HBFGMRES improves the plain REFGMRES. In order to fairly compare the two algorithms
and make it easy to understand, we use the following testing scenarios:

e In order to equalize the cost per cycle, we run REFGMRES(m,k + 1) and
HBFGMRES(m, k). There are two reasons for this choice. Firstly, all approximate solu-
tions at a cycle are computed from a subspace of dimension k+1: span{zg}+span{Zyy1}
for REFGMRES(m, k+1), and span{zo} +span{Z; } + span{zq} for HBEGMRES(m, k);
secondly, this will make the computational costs per cycle about the same for both meth-
ods. Note that for the first two cycles, there is no difference happened, both REFGMRES
and HBFGMRES have the same restart number k, which indicates the exactly same
relative residual obtained for both methods.

e FEach Az = b is tested on selective reorthogonalization and always reorthogonalization,
which takes place in the Arnoldi process and in the additional orthogonalizations in
HBFGMRES. REFGMRES and HBFGMRES involve two Arnoldi process. One occurs in
the inner iteration and the other one is the outer iteration of each cycle. Here, the choice
of using selective or always reorthogonalization is consistently applied regardless inner or
outer iterations. Selective reorthogonalization goes as follows. At Line 6-8 of Algorith-
m 2.1, it applies the modified Gram-Schmidt (MGS) orthogonalization to orthogonalize
Az; against already computed columns of V. Denote ag = || f||2 at Line 5 and a1 = || f||2
obtained after Line 8. If ar; < tol_orth X qp is true, where tol_orth is a preset tolerance,

Table 4.1: Testing Matrices.

matrix n nnz sparsity application

cavityl0 2597 76367 | 1.13 x 1072 | computational fluid dynamics
garon?2 13535 | 373235 | 2.00 x 1072 | computational fluid dynamics
comsol 1500 97645 | 4.34 x 1072 | structural problem

chipcoolO 20082 | 281150 | 6.97 x 10~* | model reduction problem
flowmeter5 | 9669 67391 7.21 x 10~* | computational fluid dynamics

e20r0000 4241 131413 | 7.30 x 10~2 | computational fluid dynamics
e20r0100 4241 131413 | 7.30 x 10~2 | computational fluid dynamics
sherman3 5005 20033 | 7.99 x 10~* | computational fluid dynamics

hcircuit 105676 | 513072 | 4.59 x 10~* | circuit simulation problem
xenon?2 157464 | 3866688 | 1.56 x 10~* | materials problem

726 M. YANG AND R.C. LI

Table 4.2: Number of Cycles.

matrix i | m always reorth | selective reorth
REF | HBF | REF HBF
cavity10 20 | 10 95 38 106 38
garon?2 50 | 10 | 725 107 593 102
comsol 10 | 20 53 16 60 14
chipcool0 | 30 | 20 | 55 21 66 21
flowmeter5 | 10 | 10 | 496 333 492 333
e20r0000 10 | 10 | 816 14 732 14
e20r0100 30 | 20 45 14 50 14
sherman3 30 | 10 | 211 41 232 41
hcircuit 10 | 10 — 735 - 849
xenon2 10 | 10 32 22 33 22

Table 4.3: CPU Time (s).

always reorth selective reorth
REF HBF REF HBF
cavity10 20| 10 | 4.35 1.68 4.44 1.48
garon?2 50 | 10 | 502.93 | 74.35 | 354.68 | 61.20
comsol 10 | 20 | 291 0.69 2.89 0.58
chipcool0 | 30 | 20 | 66.63 | 24.26 | 68.02 21.91
flowmeter5 | 10 | 10 | 29.32 18.45 22.65 14.45
e20r0000 10 | 10 | 40.36 0.64 32.32 0.51
e20r0100 30 | 20 | 15.49 4.48 13.71 3.58
sherman3 30 | 10 | 20.35 3.91 15.38 2.73
hcircuit 10 | 10 — 340.84 — 318.77
xenon?2 10 | 10 | 41.08 | 24.59 | 37.08 24.41

matrix k| m

we repeat MGS one more time, i.e., at the end of the for-loop at Line 6-8, we add
for i=1,2,...,7 do
H - .
t=Viol Hijp=Hapy+t.f=Ff—Vipt (4.1)
end for

For the always reorthogonalization, we repeat (4.1) immediately after Line 8 of Algorith-
m 2.1. In our numerical tests, we take tol_orth = 1072

e The stopping criterion is set as 107 '? on NRes

e

NRes =)
Al x [[zll2 + [|b]]2

where using [|A||; is for its easiness in computation. We also set a maximum number of
cycles to 1000.

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems 727

cavity10 m=10 cavity10 m=10 with reorth

100 g T T T

10° ¥ T T

—&— REFGMRES k=21 —&— REFGMRES k=21
——— HBFGMRES k=20 —— HBFGMRES k=20

1 102F

ook] 100 b

w02 b] o2k

1o L 1o L
20 40 60 80 100 120 o 10 20 30 40 50 60 70 80 90 100
cycle cycle
garon2 m=10 garon2 m=10 with reorth

—&— REFGMRES k=51
—— HBFGMRES k=50

—8— REFGMRES k=51
——— HBFGMRES k=50

1070 1070

102 1012

ot L L L
100 200 300 400 500 600 0 100 200 300 400 500 600 700 800

cycle cycle

107

comsol m=20 comsol m=20 with reorth

—&— REFGMRES k=11 —&— REFGMRES k=11
—#— HBFGMRES k=10 —— HBFGMRES k=10

ey 100 b

102 b

w02 b

L L L 10
10 20 30 40 50 60 0 10 20 30 40 50 60

cycle cycle

101
0

Fig. 4.1. NRes vs. cycle for cavity10, garon2 and comsol. Left: selective reorthogonalization; Right:
always reorthogonalization.

In what follows, we will report our numerical results on 10 testing problems which are
selected from the SuiteSparse Matrix Collection') and Matrix Market? .

Each comes with a right-hand side b except for garon2 and xenon2 whose right-hand sides
are randomly generated with rand in MATLARB. Table 4.1 lists some of their important char-
acteristics, including the size of matrix n, the number nnz of nonzero entries in A, and the
sparsity nnz/n?. These are representatives among many other problems from the collections
we have tested. The Matlab is of version 2018b and all the tests are done on a Mac PC with
2.7 GHz Intel Core i7 and 16GB memory.

Numerical results of testing examples are displayed in Tables 4.2 and 4.3, where the best
results appear in boldface. For each matrix, we ran different k£ and m. Table 4.2 lists the

1 Available at https://sparse.tamu.edu/
2) Available at https://math.nist.gov/MatrixMarket/

728

Fig. 4.2. NRes vs. cycle for chipcool0, flowmeter5 and e20r0000. Left: selective reorthogonalization;

0 b

o2 b

chipcoold m=20

—e— REFGMRES k=31
—— HBFGMRES k=30

107

oF

cycle

flowmeter5 m=10

—e— REFGMRES k=11
—— HBFGMRES k=10

50

100

150

200 250 300
cycle

200000 m=10

350 400 450 500

1070

1072

—e— REFGMRES k=11
—#— HBFGMRES k=10

1o

100

200

300 400 500
cycle

600 700 800

Right: always reorthogonalization.

number of cycles needed by the algorithms to achieve NRes less than or equal to 107 !2. In the
table, REF and HBF stand for REFGMRES and HBFGMRES, respectively. The table clearly

M. YANG AND R.C. LI

chipcoold m=20 with reorth

—e— REFGMRES k=31
——— HBFGMRES k=30

cycle

flowmeter5 m=10 with reorth

—e— REFGMRES k=11
—— HBFGMRES k=10

50 100 150 200 250 300 350 400 450 500

cycle

200000 m=10 with reorth

107

102

—e— REFGMRES k=11
—#— HBFGMRES k=10

e

0

100 200 300 400 500 600
cycle

demonstrates huge savings achieved by HBFGMRES over REFGMRES.

4.3, we make the following observations.

We point out in passing that flowmeter5 and sherman3 are two difficult problems for FGM-

e HBFGMRES converges faster than REFGMRES, both in terms of the number of cycles

and CPU times.

e Except for hcircuit, there is little difference in the number of cycles with always re-
orthogonalization or selective reorthogonalization. But selective reorthogonalization cost
less in CPU time for all examples. Hence, selective reorthogonalziation seems to be a
better choice for cost consideration.

700 800

900

Figs. 4.1-4.4 show how NRes moves against the cycle index. Together with Tables 4.2 and

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems 729

20r0100 m=20 €20r0100 m=20 with reorth

—&— REFGMRES k=31 —8— REFGMRES k=31
——— HBFGMRES k=30 —— HBFGMRES k=30

e 100 b

1072 102 b

1o L 1o L
5 0 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45
cycle cycle

sherman3 m=10 with reorth

'sherman3 m=10 0
T T T 10! T

—&— REFGMRES k=31 —&— REFGMRES k=31
——— HBFGMRES k=30 —— HBFGMRES k=30

1010 b 100 b

1072 F 102 |

1o L 1o L . . .
50 100 150 200 250 o 50 100 150 200 250
cycle cycle

hciruit m=10 hircuit m=10 with reorth

—&— REFGMRES k=11 —&— REFGMRES k=11
—#— HBFGMRES k=10 —— HBFGMRES k=10

ey

100k

w02 b

L L L L L 102 L L L L L
200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

cycle cycle

101
0

Fig. 4.3. NRes vs. cycle for e20r0100, sherman3 and hcircuit. Left: selective reorthogonalization;

Right: always reorthogonalization.

RES, needing a large number of outer iterative steps to converge. For example, with selec-
tive reorthogonalziation, m = 10, FGMRES took 708 outer steps and used 24.19 seconds on
flowmeter5, which is faster than REFGMRES but slower than HBFGMRES (see Table 4.3).
It also means that FGMRES will have to store 707 basis vectors at the end, whereas at any
moment HBFGMRES stores no more than k + m + 1 = 21 basis vectors. On sherman3, FGM-
RES took 561 outer steps and used 8.17 seconds, also faster than REFGMRES but slower than
HBFGMRES.

Notice that for examples garon2 and e20r0000, HBFGMRES converges overwhelmingly
faster. According to the theoretical and numerical analysis in [2] and [1], consecutive angles, i.e.,
angles between the residuals r(()l) and r(()”l), determine the convergence rate for Krylov subspace

methods. The larger the angles are, the faster the convergence will be. Thus, for garon2

730 M. YANG AND R.C. LI

xenon2 m=10 xenon2 m=10 with reorth

—&— REFGMRES k=11 —&— REFGMRES k=11
——— HBFGMRES k=10 —— HBFGMRES k=10

5 10 15 20 2 30 35 0 5 10 15 20 2 30 35
cycle cycle

Fig. 4.4. NRes vs. cycle for xenon2. Left: selective reorthogonalization; Right: always reorthogonal-
ization.

and e20r0000, we numerically test consecutive angles for REFGMRES and HBFGMRES,
respectively. We looked into the consecutive angles and found that the angles for HBFGMRES
are much larger than these for REFGMRES, which explains why HBFGMRES performs so
much superior to REFGMRES.

Lastly, we will present some numerical results to show that little will be gained when
HBFGMRES is extended to include more than one previous difference vectors. Here, we com-
pare HBFGMRES(m, k) with the next variant that includes two most recent difference vectors
in each cycle. For ease of reference, they are denoted by HBF1 and HBF2, respectively. For
a fair comparison, HBF2 will use & — 1 z-vectors in the outer iteration while HBF1 uses k
z-vectors (cf. Algorithm 3.1) so that the dimension of the search spaces for both HBF1 and
HBF?2 are the same in their outer iterations. Table 4.4 displays the numbers of cycles needed by
HBF1 and HBF2 on the 10 testing problems when selective reorthogonalization is used. What
we can observe from the table is that HBF1 and HBF2 have comparable performance for most
of examples, except for hcircuit. Most importantly, the improvements, when HBF2 indeed
costs less, aren’t that significant over HBF'1, comparing to HBFGMRES over REFGMRES, not
to mention there are cases HBF2 costs more. In view of this, we would recommend the use of
HBFGMRES.

Table 4.4: Number of Cycles.

matrix k | m | REF | HBF1 | HBF2
cavityl10 20 | 10 | 106 38 31
garon2 50 | 10 | 593 102 89
comsol 10 | 20 60 14 10
chipcool0 30 | 20 66 21 22
flowmeter5 | 10 | 10 | 492 333 346
e20r0000 10 | 10 | 732 14 14
e20r0100 30 | 20 50 14 9
sherman3 30 | 10 232 41 37
hcircuit 10 | 10 - 849 433
xenon2 10 | 10 33 22 22

Heavy Ball Flexible GMRES Method for Nonsymmetric Linear Systems 731
5. Conclusion

In this paper, we proposed the heavy-ball flexible GMRES (HBFGMRES) method for non-
symmetric linear systems. This method accelerates the convergence of restarted FGMRES
(REFGMRES) by adding a new direction to recoup some of the Krylov subspace information
from previous search spaces. Numerical examples show that HBFGMRES converges much faster
than REFGMRES. Together in consideration of earlier work in [7], we may conclude that the
heavy-ball idea is a good way to accelerate convergence of restarted GMRES-related methods.

Acknowledgments. Ren-Cang Li was supported in part by NSF grants DMS-1719620 and
DMS-2009689. The authors wish to thank the two anonymous referees for their careful readings,
useful comments and suggestions that improve the presentation.

References

[1] A.H. Baker, E.R. Jessup and T. Manteuffel, A technique for accelerating the convergence of
restarted GMRES, SIAM J. Matriz Anal. Appl., 26:4 (2005), 962-984.
[2] M. Eiermann and O. Ernst, Geometri aspects of the theory of Krylov subspace methods, Acta
Numerica, 10 (2001), 251-312.
[3] S.C. Eisenstat and H.C. Elman and M. Schultz, Variational iterative methods for nonsymmetric
systems of linear equations, STAM J. Numer. Anal., 20:2 (1983), 345-357.
[4] D.R. Fokkema, G.L.G. Sleijpen and H.A. Van der Vorst, Accelerated inexact Newton schemes for
large systems of nonlinear equations, SIAM J. Sci. Comput., 19:2 (1998), 657-674.
[5] 1. Gohberg, P. Lancaster and L. Rodman, Matriz Polynomials, STAM, 20009.
[6] A. Greenbaum, Iterative Methods for Solving Linear Systems, STAM, 1997.
[7] A.Imakura and R.C. Li and S.L. Zhang, Locally optimal and heavy ball GMRES methods, Japan
J. Indust. Appl. Math., 33 (2016), 471-499.
[8] R.B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matriz Anal.
Appl., 16:4 (1995), 1154-1171.
[9] R.B. Morgan, Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of
equations, STAM J. Matriz Anal. Appl., 21:4 (2000), 1112-1135.
[10] R.B. Morgan, GMRES with deflated restarting, SIAM J. Matriz Anal. Appl., 24:1 (2002), 20-37.
[11] B.T. Polyak, Introduction to Optimization, Optimization Software, STAM, 1987.
[12] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp.,
37:155 (1981), 105-126.
[13] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14:2
(1993), 461-469.
[14] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, STAM, 2003
[15] H.A. Van der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods, Numer. Linear
Algebra Appl., 1:4 (1994), 369-386.
[16] C. Vuik, New insights in GMRES-like methods with variable preconditioners, J. Comput. Appl.
Math., 61:2 (1995), 189-204.

