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Abstract

Flexible GMRES (FGMRES) is a variant of preconditioned GMRES, which changes

preconditioners at every Arnoldi step. GMRES often has to be restarted in order to save

storage and reduce orthogonalization cost in the Arnoldi process. Like restarted GMRES,

FGMRES may also have to be restarted for the same reason. A major disadvantage

of restarting is the loss of convergence speed. In this paper, we present a heavy ball

flexible GMRES method, aiming to recoup some of the loss in convergence speed in the

restarted flexible GMRES while keep the benefit of limiting memory usage and controlling

orthogonalization cost. Numerical tests often demonstrate superior performance of the

proposed heavy ball FGMRES to the restarted FGMRES.
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1. Introduction

The Generalized Minimal Residual (GMRES) method [12] is a well-established Krylov sub-

space method for solving a large and sparse nonsymmetric linear system of equations

Ax = b, (1.1)

where A ∈ C
n×n, b ∈ C

n, and x ∈ C
n is the unknown. Given an initial approximation x0, the

k-th GMRES approximation xk is sought so that the k-th residual rk = b−Axk satisfies

‖rk‖2 = min
z∈Kk(A,r0)

‖b−A(x0 + z)‖2, (1.2)

where r0 = b−Ax0, ‖ · ‖2 is the Euclidian norm, and Kk(A, r0) is the k-th Krylov subspace of

A on r0 defined by

Kk(A, r0) = span
{

r0, Ar0, A
2r0, · · · , A

k−1r0
}

. (1.3)

Algorithmically, GMRES first builds an orthonormal basis of Kk(A, r0) via the Arnoldi process

and, along the way, A is projected onto the Krylov subspace to turn (1.2) into a much smaller

(k + 1)× k least squares problem.
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Ideally, it is hoped that for a modest k relative to n, ‖rk‖2 is sufficient tiny so that xk can

be regarded as a sufficiently accurate approximation to the exact solution of (1.1). But that

is not always the case. When that happens, GMRES can become very expensive because of

the heavy burden in memory for storing orthonormal basis vectors and for generating them

in the Arnoldi process. A popular and the simplest remedy is the so-called restarted GMRES

(REGMRES) [6] which sets an upper bound kmax on k and starts over as soon as k reaches the

upper bound kmax but ‖rkmax‖2 is not yet tiny enough, using the latest approximation xkmax as

the initial guess for the next GMRES run. Doing so effectively put the memory requirement and

orthogonalization cost under control, but not without tradeoff, which is slow convergence and

potentially increases overall computational time in solving (1.1). In recognizing this tradeoff,

researchers have made efforts address the issue.

The loss in convergence speed by REGMRES is due to its control on the largest possible

number of Arnoldi steps that one GMRES run can use. Besides the use of the latest approxi-

mation as the initial guess for the next GMRES run, REGMRES completely throws away the

Krylov subspaces built thus far. To partially compensate the throw-away, two main types of im-

provements are discussed, which include hybrid iterative methods and acceleration techniques.

Our discussion mainly focuses on acceleration techniques. One natural idea to accelerate GM-

RES is to augment the Krylov subspace of REGMRES according to spectral information at the

restart, named augmented Krylov subspace techniques, such as GMRES-E [8] , GMRES-IR [9]

and GMRES-DR [10]. This kind of methods keeps the form of Krylov subspace. Another tech-

nique is to approximate the search space with non-Krylov subspace, i.e., approximation space.

In [1], Baker, Jessup and Manteuffel presented the Loose GMRES (LGMRES) method. At the

ℓ-th restart of LGMRES, the Krylov subspace Kk(A, r
(ℓ)
0 ) is generated and augmented with the

t most recent error vectors, which are defined to be the differences between every two sequential

solutions.

In [7], from the optimization perspective, Imakura, Li and Zhang proposed two comparable

methods, the locally optimal GMRES (LOGMRES) and the heavy ball GMRES methods (H-

BGMRES). LOGMRES augments the search space by adding the most previous solution vector.

The latter one incorporates the idea in the heavy ball method from optimization [11, p.65] into

REGMRES by adding a new vector – the difference of approximations from the previous two

cycles of HBGMRES, i.e., the most previous error vector in LGMRES, to the next searching

space. Numerical experiments show that HBGMRES often converges significantly faster than

REGRMES. However, there are cases where the gain of HBGMRES over REGMRES is not so

significant.

The preconditioning technique is often very effective in enhancing the performance and

reliability of Krylov subspace methods, provided a reasonably good preconditioner can be found.

Instead of (1.1), its right preconditioned linear system takes the form

(AM−1)y = b, Mx = y. (1.4)

The matrix M is called a preconditioner and it may exist in form in such a way that linear

system Mz = c is cheap to solve. However, it is usually hard to find a suitable preconditionerM

for the problem at hand. Saad [13] proposed an inner-outer iteration method called the flexible

GMRES method (FGMRES), in which GMRES is used as the outer iteration. In the inner

iteration some linear system Az = c is approximately solved and thus each inner iteration can

be viewed as applying some preconditioner M , not known explicitly but implicitly in the action

M−1c ≈ A−1c. GMRESR [15], another similar inner-outer iteration, uses GCR [3] instead
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of GMRES as its outer iteration. If using the same solver for the inner iteration, FGMRES

and GMRESR often yield solutions of comparable accuracy [16]. As it’s pointed by Fokkema,

Sleigpen, and van der Vorst in [4] that the distinction between preconditioning and acceleration

is not so clear. Both FGMRES and GMRESR can also be seen as the approximation space

technique mentioned before.

As k increases, orthogonalization cost and memory for FGMRES usage also increase for

computing and storing basis vectors. For that reason, FGMRES may also need to be restarted

for difficult linear systems, too. Just like REGMRES, restarting FGMRESS can cause loss

in convergence speed. In this paper, we design a heavy ball FGMRES which introduces the

idea of the heavy ball method to the restarted FGMRES. Numerical tests show that it’s able

to salvage the lost convergence speed while still keep the benefit of the restarted FGMRES in

limiting memory usage and controlling orthogonalization cost.

The rest of this paper is organized as follows. Section 2 outlines GMRES, flexible GMRES

and the heavy ball GMRES method. Section 3 presents the framework of the heavy ball

FGMRES method and its implementation details. Section 4 presents numerical results on eight

test problems from the SuiteSparse Matrix Collection and Matrix Market. Finally, we give our

concluding remarks in Section 5.

Notation. Cn×m is the set of all n×m complex matrices, Cn = Cn×1. In or I (if its size is

clear from the context) is the n× n identity matrix, and ej is its j-th column. The superscript

“H” takes the conjugate transpose of a matrix or vector. Denote by i : j the set of integers

from i to j inclusive. For a vector u and a matrix X , u(i) is u’s i-th entry, X(i,j) is X ’s (i, j)-th

entry; X ’s submatrices X(k:ℓ,i:j), X(k:ℓ,:) and X(:,i:j) consist of intersections of row k to row ℓ

and column i to column j, row k to row ℓ, and column i to column j, respectively, and

‖u‖2 =

√

∑

i

|u(i)|2, ‖X‖2 := max
u6=0

‖Xu‖2
‖u‖2

.

2. Preliminaries

2.1. GMRES

Given an initial guess x0, the corresponding residual is r0 = b − Ax0. The k-step GMRES

method first builds a basis matrix Vk+1 = [v1, v2, . . . , vk+1] of the Krylov subspace Kk+1(A, r0)

via the Arnoldi process, and then seeks the best solution xk that minimizes ‖b − Ax‖2 over

x0 +Kk(A, r0). Specifically,

xk = x0 + argmin
z∈Kk(A,r0)

‖r0 −Az‖2.

When with a right preconditioner M as in (1.4), the associated Arnoldi process is for AM−1

on r0, and the resulting preconditioned GMRES is outlined in Algorithm 2.1, which will reduce

to the plain GMRES upon simply setting M = I. In the generic situation, i.e., break at Line 12

is not invoked, the Arnoldi process in Algorithm 2.1 can be compactly written as

AZk = AM−1Vk = Vk+1Ȟk,

where Ȟk is the matrix Ȟ defined in Algorithm 2.1 and Zk = [z1, z2, . . . , zk] also defined there.

The approximate solution xk returned by the algorithm is the best one from x0 + span{Zk} =
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x0 +Kk(AM
−1, r0) in the sense that

xk = x0 + argmin
z∈span{Zk}

‖r0 −Az‖2. (2.1)

Any z ∈ span{M−1Vk} can be written as z = M−1Vky = Zky. Therefore,

r0 −Az = r0 −AZky = βVk+1e1 − Vk+1Ȟky = Vk+1(βe1 − Ȟky),

yielding ‖r0 −Az‖2 = ‖βe1 − Ȟky‖2, which combined with (2.1) lead to

xk = x0 + Zkyk with yk = argmin
y∈Ck

‖βe1 − Ȟky‖2. (2.2)

That explains Lines 17 and 18 of Algorithm 2.1. In what follows, by the k-step GMRES we

mean Algorithm 2.1 with M = I. REGMRES(k) is the algorithm of repeatedly running the

k-step GMRES with the initial guess of the current k-step GMRES being the computed solution

of the very previous k-step GMRES, assuming the initial guess for the first k-step GMRES run

is given. Each k-step GMRES run is termed a cycle.

Algorithm 2.1. k-step Preconditioned GMRES for Ax = b

Input: A ∈ Cn×n, preconditioner M ∈ Cn×n, x0 ∈ Cn, integer k;

Output: An approximate solution xk to Ax = b.

1: r0 = b−Ax0 ∈ Cn, β = ‖r0‖2 and v1 = r0/β;

2: V(:,1) = v1, Ȟ = 0(k+1)×k (the (k + 1)× k zero matrix);

3: for j = 1, 2, . . . , k do

4: zj = M−1V(:,j);

5: f = Azj ;

6: for i = 1, 2, . . . , j do

7: Ȟ(i,j) = V H
(:,i)f, f = f − V(:,i)Ȟ(i,j)

8: end for

9: Ȟ(j+1,j) = ‖f‖2;

10: if Ȟ(j+1,j) > 0 then

11: V(:,j+1) = f/Ȟ(j+1,j);

12: else

13: reset k = j, Ȟ = Ȟ(1:j,1:j);

14: break;

15: end if

16: end for

17: compute yk = argmin
y

‖βe1 − Ȟy‖2;

18: return xk = x0 + Zkyk, where Zk = [z1, . . . , zk].

2.2. Flexible GMRES

Let us now focus on Line 4 of Algorithm 2.1 on the preconditioner M . In practice, it may

be possible that M−1 is explicitly constructed but more often M−1 is implicitly constructed,

e.g., an incomplete LU decomposition [14], in such a way, that any linear system

Mz = c (2.3)
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takes little effort to solve. Even more generally, it can be some iterative linear system solver,

where M implicitly exists to resemble A in some way and varies with the right-hand side c.

This is exactly what the flexible GMRES (FGMRES) [13] does: iteratively solve Azj = V(:,j)

for zj approximately. So effectively, FGMRES is an inner-outer iterative scheme.

With the goal of developing a general purpose linear system solver, we will further restrict

ourselves to the use of the m-step plain GMRES for Azj = V(:,j). In other words, in the rest of

this paper, the inner iteration of our FGMRES is always the m-step plain GMRES. In doing

so, we actually use a degree (m− 1) polynomial Pm(A) [5] to approximate A−1.

Consequently, each solving implicitly determines a preconditioner M that differs from one

solving to another. To distinguish them, we add the loop-index to each preconditioner, namely,

Mj . Different from what we had in the previous subsection, now Zk = [M−1
1 v1, · · · ,M

−1
k vk],

where vj = V(:,j) and M−1
j is unknown but M−1

j vj is known. We still have (2.1) and (2.2). We

outline FGMRES as in Algorithm 2.2.

Algorithm 2.2. FGMRES(m, k): k-step Flexible GMRES(m)

Input: A ∈ Cn×n, x0 ∈ Cn, integers k and m;

Output: An approximate solution xk to Ax = b.

1: Replace Line 4 of Algorithm 2.1 by: solve Azj = V(:,j) approximately by the m-step

GMRES.

Numerical tests show that FGMRES often improves GMRES and sometimes the improve-

ment can be rather significant. But it is still a possibility that FGMRES may need a large k

to deliver a sufficiently accurate approximate solution xk. When that’s the case, it will need

a lot of memory space to store V(:,j) and zj and require heavy costs to orthogonalize V(:,j). In

order to deal with this problem, one can also restart FGMRES as in the restarted GMRES, i.e.,

repeat the k-step FGMRES(m) with the current initial guess being the solution of the previous

k-step FGMRES(m). We denote it by REFGMRES(m, k) and call each k-step FGMRES(m)

a cycle. The framework of REFGMRES(m, k) is presented in Algorithm 2.3.

Algorithm 2.3. REFGMRES(m, k)

Input: A ∈ Cn×n, x0 ∈ Cn, integers k and m;

Output: An approximate solution x
(ℓ)
k to Ax = b.

1: x
(1)
0 = x0, r

(1)
0 = b−Ax

(1)
0 ;

2: for ℓ = 1, 2, . . . , do

3: if ‖r
(ℓ)
0 ‖2 ≤ tol× (‖A‖1‖x

(ℓ)
0 ‖2 + ‖b‖2) then

4: break;

5: else

6: call Algorithm 2.2 with input x
(ℓ)
0 , k and m, and let x

(ℓ)
k be the returned

approximation;

7: x
(ℓ+1)
0 = x

(ℓ)
k ;

8: r
(ℓ+1)
0 = b−Ax

(ℓ+1)
0 ;

9: end if

10: end for

11: return x
(ℓ)
k as the computed solution to Ax = b.
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2.3. Heavy Ball GMRES

It is well known that REGMRES may encounter slow convergence, partly because at every

restart, REGMRES completely ignores all the Krylov subspaces built in the previous cycles

for the purpose of cost control in memory and flops. Imakura, Li, and Zhang [7] proposed

the locally optimal GMRES (LOGMRES) and the heavy ball GMRES (HBGMRES) methods,

designed to recoup some information from previous cycles back for the purpose of accelerating

the convergence of REGMRES(k). As mentioned in the introduction, HBGMRES is motivated

by the optimization method, i.e., the heavy ball method, and it is a special case of Loose

GMRES [1]. In this part, we focus on the work by Imakura, Li, and Zhang.

The so-called heavy ball method [11, p. 65] is an optimization method

x(ℓ+1) = argmin
s,t

f
(

x(ℓ) + t∇f
(

x(ℓ)
)

+ s
(

x(ℓ) − x(ℓ−1)
)

)

for minimizing a differentiable function f(x). Its name is drawn from the motion of a “heavy

ball” in a potential field under the force of friction. The heavy ball method is a multi-step

method. It brings in information of the previous cycles by just including the difference of last

two approximate solutions. The heavy ball GMRES is an application of the heavy ball method

to the linear system solving. In every HBGMRES cycle, the search space is expanded to

Kk(A, r
(ℓ)
0 )+ span{x

(ℓ)
0 −x

(ℓ−1)
0 }. In [7], numerical experiments demonstrated that HBGMRES

often converges much faster than REGMRES. More detailed efficiency discussion of HBGMRES

can be found in [7] and [1].

2.4. A Brief Comparison among Variants of GMRES

In what follows, we will conduct a brief comparison among the methods we have mentioned

so far in an effort to justify our focus on improving the restarted FGMRES in the next section.

In Table 2.1, we estimate the numbers of flops for GMRES and its variants. MV represents

the number of flops by one matrix-vector multiplication with A ∈ C
n×n, which is taken to be

twice the number of nonzero entries in A. GMRESR and FGMRES use the same space infor-

mation both in their inner and outer iterations except that they are implemented differently

in their respective outer iterations. Because our focus is on Krylov subspace methods that

are easy to implement and use, as easy as GMRES itself, GMRES variants like GMRES-E,

GMRES-IR, and GMRES-DR are, as a result, excluded in our comparison. In the table, only

three major actions are considered in the total flops: matrix-vector multiplications, orthogo-

nalization, and solutions of the reduced least squares problems. In the table and in the rest

of this paper, REGMRES(k) stands for the restart of the k-step GMRES. The parameter k in

HBGMRES(k) indicates the order of Krylov subspace in each cycle of HBGMRES(k), while m

in GMRESR(m) and FGMRES(m) is the Arnoldi steps in each inner iteration, i.e., indicating

Line 4 of Algorithm 2.1 is done by solving Azj = V(:,j) approximately by the m-step GMRES.

Table 2.1: Total Flops of GMRES Variants.

ℓ-step GMRES (ℓ+ 1)(MV)+2ℓ2n+ 4ℓ2

ℓ-cycle REGMRES(k) ℓ((k + 1))(MV)+ℓ(2k2
n+ 4k2)

ℓ-cycle HBGMRES(k) ℓ(k + 2)(MV)+ℓ(2(k + 2)2n+ 4(k + 1)2)

ℓ-step GMRESR(m) ℓ(m+ 2)(MV)+2(ℓ2 + ℓm
2)n+ 4(ℓn+ ℓm

2)

ℓ-step FGMRES(m) ℓ(m+ 2)(MV)+2(ℓ2 + ℓm
2)n+ 4(ℓ2 + ℓm

2)
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Fig. 2.1. Numerical Tests on cavity16 and chipcool0. Top-row: REGMRES and HBGMRES; Bottom-

row: GMRESR and FGMRES.

Next we present the numerical results by the last four methods in Table 2.1 on two notorious

difficult testing examples cavity16 and chipcool0 from SuiteSparse Matrix Collection1) . Both

of them have bad condition number over 107. More detailed information on the examples can

be found in Section 4. In choosing the number m of GMRES steps for each inner iteration

of GMRESR and FGMRES, we decide to make the cost be about the same as one cycle in

REGMRES and HBGMRES. We point out that one outer iteration in GMRESR and FGMRES

is like one cycle in REGMRES and HBGMRES. Therefore, we choose the parameter m in

the inner iteration of FGMRES and GMRESR is to be m = k + 1. As a result, each cycle

of REGMRES(k + 1) and HBGMRES(k) and each outer iterative step of GMRESR(m) and

FGMRES(m) have about the same cost. We terminate each method by either the maximal

number of cycles or outer iterative steps exceeds 700, or the normalized residual moves below

10−12. Table 2.2 shows the numbers of cycles/iterations and CPU times needed by the four

methods and Fig. 2.1 displays the convergence histories in terms of the normalized residual.

Table 2.2: Cycles and CPU Time (s).

matrix k m
REGMRES(k + 1) HBGMRES(k) GMRESR(m) FGMRES(m)

cycle CPU cycle CPU iteration CPU iteration CPU

cavity16 30 31 − − 206 2.25 65 0.78 55 0.57

chipcool0 20 21 − − − − 364 8.21 332 7.54

1) Available at https://sparse.tamu.edu/
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We observed the following:

• REGMRES didn’t take the normalized residual down to 10−12 in 700 cycles for both

examples. In fact, for cavity16with parameter k = 31, REGMRES takes 31193 iterations

and 343.01 seconds, which are way too large, to make the normalized residual down to

the tolerance. For chipcool0 with parameter k = 21, the normalized residual is as much

as 10−9 after 40000 iterations.

• HBGMRES didn’t take the normalized residual down to 10−12 in 700 cycles for chipcool0,

although it did manage to take it to about 10−11 in 700 cycles.

• While both FGMRES and GMRESR perform much better than HBGMRES, FGMRES

comes out as the best among all.

Basing on these preliminary results, in what follows we will focus on improving the restarted

FGMRES in the rest of this paper.

3. Heavy Ball Flexible GMRES Method

3.1. HBFGMRES

As mentioned before, it is possible for FGMRES to require a large number of outer iter-

ative steps to converge, although less frequently than GMRES. Hence sometimes FGMRES

has to be restarted in order to control the memory usage and reorthogonalization cost of Vk

(see Algorithms 2.1 and 2.2). Meanwhile, in order to make up the possibly slow convergence

due to restart, in this section we borrow the heavy-ball idea to devise the heavy ball FGM-

RES (HBFGMRES). The purpose is to include some Krylov subspace information of previous

cycles for the benefit of faster convergence. The framework of HBFGMRES is presented in

Algorithm 3.1.

The main difference between HBFGMRES and REFGMRES lies in its outer iterative cy-

cles in that after building the Krylov subspace, HBFGMRES further expands the subspace

by adding a new direction, the difference between two approximations of previous cycles. Ac-

cording to the analysis in [1], since FGMRES may be viewed as an accelerated GMRES via

variable preconditioning technique, HBGMRES is also an accelerated GMRES, that improves

the approximation space besides the preconditioning technique.

We remark that similarly to LGMRES [1], we include more than one previous difference

vectors to the search space, i.e., modify the update at Line 7 in Algorithm 3.1 to

x
(ℓ)
k = x

(ℓ)
0 + argmin

z∈span{Zk}+
∑

q=ℓ−p
q=p

span{x
(q)
d }

∥

∥r
(ℓ)
0 −Az

∥

∥

2
, (3.1)

where x
(q)
d = x

(ℓ)
k − x

(ℓ−1)
k . Here, instead of one previous difference vectors, ℓ − p previous

difference vectors are used to expand the search space.

In the next subsection, we will explain how HBFGMRES(m, k) is implemented. With mod-

ifications, updating scheme (3.1) can be implemented in a similar way. Later, we will provide

some numerical evidence to demonstrate that including more than one previous difference vec-

tors does not yield much reward, if any.
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Algorithm 3.1. HBFGMRES(m, k)

Input: A ∈ Cn×n, x
(1)
0 ∈ Cn, integers k and m;

Output: An approximate solution x
(ℓ)
k to Ax = b.

1: r
(1)
0 = b−Ax

(1)
0 (and x

(0)
0 = 0 for convenience);

2: for ℓ = 1, 2, . . . ,

3: if ‖r
(ℓ)
0 ‖2 ≤ tol× (‖A‖1‖x

(ℓ)
0 ‖+ ‖b‖2) then

4: break;

5: else

6: build Zk = [z1, z2, . . . , zk] with r
(ℓ)
0 , k and m as in Algorithm 2.2;

7: compute

x
(ℓ)
k = x

(ℓ)
0 + argmin

z∈span{Zk}+span{x
(ℓ)
0 −x

(ℓ−1)
0 }

∥

∥r
(ℓ)
0 −Az

∥

∥

2
;

8: x
(ℓ+1)
0 = x

(ℓ)
k ;

9: r
(ℓ+1)
0 = b−Ax

(ℓ+1)
0 ;

10: end if

11: end for

12: return x
(ℓ)
k as the computed solution to Ax = b.

3.2. Implementation of HBFGMRES

The approximate solution of the ℓ-th cycle of REFGMRES(m, k) can be expressed as

x
(ℓ)
k = x

(ℓ)
0 + Zkyk ∈ x

(ℓ)
0 + span{Zk}.

Our proposed HBFGMRES improves REFGMRES by expanding the search space span{Zk} to

include a new direction xd = x
(ℓ)
0 − x

(ℓ−1)
0 , and then a new approximate solution, denoted by

the same notation x
(ℓ)
k without confusion, can be written as

x
(ℓ)
k = x

(ℓ)
0 + Zkyk + αxd. (3.2)

Correspondingly, the ℓ-th residual becomes

r
(ℓ)
k = b−Ax

(ℓ)
k = r

(ℓ)
0 − Vk+1Ȟyk − αAxd, (3.3)

which has the smallest norm ‖b− Ax‖2 among all x ∈ x0 + span{Zk, xd}. In what follows, we

explain how to numerically compute x
(ℓ)
k efficiently. Recall that we have AZk = Vk+1Ȟ by the

Arnoldi process before the new direction xd is added, and that is why we have (3.3).

Denote by p = Axd. If p = 0, this case is exactly the restarted FGMRES. We assume p 6= 0.

Now we orthogonalize p against Vk+1 , and define

d = V H
k+1p, h = p− Vk+1d.

Case 1. h 6= 0. This is the most generic and common case. Define

v̌k+2 = h/‖h‖2, V̌k+2 = [Vk+1 v̌k+2].
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We have

r
(ℓ)
k = r

(ℓ)
0 − Vk+1Ȟyk − αAxd

= r
(ℓ)
0 − Vk+1Ȟyk − α(v̌k+2‖h‖2 + Vk+1d)

= r
(ℓ)
0 − V̌k+2

[

Ȟ d

0 ‖h‖2

] [

yk
α

]

.

Therefore in order for ‖r
(ℓ)
k ‖ = min ‖b−Ax‖2 among all x ∈ x0 + span{Zk, xd}, yk and α must

be given by
[

yk
α

]

= argmin
y,α

∥

∥

∥

∥

βe1 −

[

Ȟ d

0 ‖h‖2

] [

y

α

]∥

∥

∥

∥

2

, (3.4)

where β = ‖r
(ℓ)
0 ‖2. Finally, the approximate solution of the ℓ-th cycle of HBFGMRES(k) is

given by (3.2), satisfying

x
(ℓ)
k − x

(ℓ)
0 ∈ span{Zk}+ span{xd}.

Case 2. h = 0. In this case, we have ‖h‖2 = 0 and Axd = Vk+1d. Then

r
(ℓ)
k = r

(ℓ)
0 − Vk+1Ȟyk − αAxd

= r
(ℓ)
0 − Vk+1Ȟyk − α(Vk+1d)

= r
(ℓ)
0 − Vk+1

[

Ȟ d
]

[

yk
α

]

.

Therefore
[

yk
α

]

= argmin
y,α

∥

∥

∥

∥

βe1 −
[

Ȟ d
]

[

y

α

]∥

∥

∥

∥

2

. (3.5)

The details of our HBFGMRES(m, k) is summarized in Algorithm 3.2.

Algorithm 3.2. HBFGMRES(m, k) with implementation details

Input: A ∈ Cn×n, x
(1)
0 ∈ Cn, integers k and m;

Output: An approximate solution x
(ℓ)
k to Ax = b.

1: r
(1)
0 = b−Ax

(1)
0 (and x

(0)
0 = 0 for convenience);

2: for ℓ = 1, 2, . . . , do

3: if ‖r
(ℓ)
0 ‖2 ≤ tol× (‖A‖1‖x

(ℓ)
0 ‖2 + ‖b‖2) then

4: break;

5: else

6: build Zk = [z1, z2, . . . , zk] with A and r
(ℓ)
0 as in Algorithm 2.2;

7: set xd = x
(ℓ)
0 − x

(ℓ−1)
0 , and orthogonalize Axd against Vk+1;

8: solve (3.4) or (3.5) for (yk, α);

9: x
(ℓ)
k = x

(ℓ)
0 + Zkyk + αxd;

10: x
(ℓ+1)
0 = x

(ℓ)
k ;

11: r
(ℓ+1)
0 = b−Ax

(ℓ+1)
0 ;

12: end if

13: end for

14: return x
(ℓ)
k as a computed solution to Ax = b.
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4. Numerical Experiments

In general, in terms of the number of matrix-vector multiplications, GMRES uses fewer

than REGMRES for achieving the same solution accuracy. The latter gets used because when

GMRES needs a large number of Arnoldi steps to converge, the memory requirement to store

the orthonormal basis vectors and the orthogonalization cost are too great for a large scale

problem, not to mention the tendency in orthogonality loss among the basis vectors. For the

same reason, REFGMRES may have to be used in place of FGMRES, even though FGMRES

in general uses fewer matrix-vector multiplications.

In [7], it was reported that the heavy-ball idea in HBGMRES usually improves the plain

REGMRES and often significantly. We have showed in Section 2 that FGMRES is faster than

GMRESR. In what follows, we will numerically demonstrate how much the heavy ball idea in

HBFGMRES improves the plain REFGMRES. In order to fairly compare the two algorithms

and make it easy to understand, we use the following testing scenarios:

• In order to equalize the cost per cycle, we run REFGMRES(m, k + 1) and

HBFGMRES(m, k). There are two reasons for this choice. Firstly, all approximate solu-

tions at a cycle are computed from a subspace of dimension k+1: span{x0}+span{Zk+1}

for REFGMRES(m, k+1), and span{x0}+span{Zk}+span{xd} for HBFGMRES(m, k);

secondly, this will make the computational costs per cycle about the same for both meth-

ods. Note that for the first two cycles, there is no difference happened, both REFGMRES

and HBFGMRES have the same restart number k, which indicates the exactly same

relative residual obtained for both methods.

• Each Ax = b is tested on selective reorthogonalization and always reorthogonalization,

which takes place in the Arnoldi process and in the additional orthogonalizations in

HBFGMRES. REFGMRES and HBFGMRES involve two Arnoldi process. One occurs in

the inner iteration and the other one is the outer iteration of each cycle. Here, the choice

of using selective or always reorthogonalization is consistently applied regardless inner or

outer iterations. Selective reorthogonalization goes as follows. At Line 6-8 of Algorith-

m 2.1, it applies the modified Gram-Schmidt (MGS) orthogonalization to orthogonalize

Azj against already computed columns of V . Denote α0 = ‖f‖2 at Line 5 and α1 = ‖f‖2
obtained after Line 8. If α1 ≤ tol orth×α0 is true, where tol orth is a preset tolerance,

Table 4.1: Testing Matrices.

matrix n nnz sparsity application

cavity10 2597 76367 1.13× 10−2 computational fluid dynamics

garon2 13535 373235 2.00× 10−3 computational fluid dynamics

comsol 1500 97645 4.34× 10−2 structural problem

chipcool0 20082 281150 6.97× 10−4 model reduction problem

flowmeter5 9669 67391 7.21× 10−4 computational fluid dynamics

e20r0000 4241 131413 7.30× 10−3 computational fluid dynamics

e20r0100 4241 131413 7.30× 10−3 computational fluid dynamics

sherman3 5005 20033 7.99× 10−4 computational fluid dynamics

hcircuit 105676 513072 4.59× 10−4 circuit simulation problem

xenon2 157464 3866688 1.56× 10−4 materials problem
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Table 4.2: Number of Cycles.

matrix k m
always reorth selective reorth

REF HBF REF HBF

cavity10 20 10 95 38 106 38

garon2 50 10 725 107 593 102

comsol 10 20 53 16 60 14

chipcool0 30 20 55 21 66 21

flowmeter5 10 10 496 333 492 333

e20r0000 10 10 816 14 732 14

e20r0100 30 20 45 14 50 14

sherman3 30 10 211 41 232 41

hcircuit 10 10 − 735 − 849

xenon2 10 10 32 22 33 22

Table 4.3: CPU Time (s).

matrix k m
always reorth selective reorth

REF HBF REF HBF

cavity10 20 10 4.35 1.68 4.44 1.48

garon2 50 10 502.93 74.35 354.68 61.20

comsol 10 20 2.91 0.69 2.89 0.58

chipcool0 30 20 66.63 24.26 68.02 21.91

flowmeter5 10 10 29.32 18.45 22.65 14.45

e20r0000 10 10 40.36 0.64 32.32 0.51

e20r0100 30 20 15.49 4.48 13.71 3.58

sherman3 30 10 20.35 3.91 15.38 2.73

hcircuit 10 10 − 340.84 − 318.77

xenon2 10 10 41.08 24.59 37.08 24.41

we repeat MGS one more time, i.e., at the end of the for-loop at Line 6-8, we add

for i = 1, 2, . . . , j do

t = V H
(:,i)f, Ȟ(i,j) = Ȟ(i,j) + t, f = f − V(:,i) t. (4.1)

end for

For the always reorthogonalization, we repeat (4.1) immediately after Line 8 of Algorith-

m 2.1. In our numerical tests, we take tol orth = 10−2.

• The stopping criterion is set as 10−12 on NRes

NRes =
‖r‖2

‖A‖1 × ‖x‖2 + ‖b‖2
,

where using ‖A‖1 is for its easiness in computation. We also set a maximum number of

cycles to 1000.
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Fig. 4.1. NRes vs. cycle for cavity10, garon2 and comsol. Left: selective reorthogonalization; Right:

always reorthogonalization.

In what follows, we will report our numerical results on 10 testing problems which are

selected from the SuiteSparse Matrix Collection1) and Matrix Market2) .

Each comes with a right-hand side b except for garon2 and xenon2 whose right-hand sides

are randomly generated with rand in MATLAB. Table 4.1 lists some of their important char-

acteristics, including the size of matrix n, the number nnz of nonzero entries in A, and the

sparsity nnz/n2. These are representatives among many other problems from the collections

we have tested. The Matlab is of version 2018b and all the tests are done on a Mac PC with

2.7 GHz Intel Core i7 and 16GB memory.

Numerical results of testing examples are displayed in Tables 4.2 and 4.3, where the best

results appear in boldface. For each matrix, we ran different k and m. Table 4.2 lists the

1) Available at https://sparse.tamu.edu/
2) Available at https://math.nist.gov/MatrixMarket/
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Fig. 4.2. NRes vs. cycle for chipcool0, flowmeter5 and e20r0000. Left: selective reorthogonalization;

Right: always reorthogonalization.

number of cycles needed by the algorithms to achieve NRes less than or equal to 10−12. In the

table, REF and HBF stand for REFGMRES and HBFGMRES, respectively. The table clearly

demonstrates huge savings achieved by HBFGMRES over REFGMRES.

Figs. 4.1-4.4 show how NRes moves against the cycle index. Together with Tables 4.2 and

4.3, we make the following observations.

• HBFGMRES converges faster than REFGMRES, both in terms of the number of cycles

and CPU times.

• Except for hcircuit, there is little difference in the number of cycles with always re-

orthogonalization or selective reorthogonalization. But selective reorthogonalization cost

less in CPU time for all examples. Hence, selective reorthogonalziation seems to be a

better choice for cost consideration.

We point out in passing that flowmeter5 and sherman3 are two difficult problems for FGM-
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Fig. 4.3. NRes vs. cycle for e20r0100, sherman3 and hcircuit. Left: selective reorthogonalization;

Right: always reorthogonalization.

RES, needing a large number of outer iterative steps to converge. For example, with selec-

tive reorthogonalziation, m = 10, FGMRES took 708 outer steps and used 24.19 seconds on

flowmeter5, which is faster than REFGMRES but slower than HBFGMRES (see Table 4.3).

It also means that FGMRES will have to store 707 basis vectors at the end, whereas at any

moment HBFGMRES stores no more than k +m+ 1 = 21 basis vectors. On sherman3, FGM-

RES took 561 outer steps and used 8.17 seconds, also faster than REFGMRES but slower than

HBFGMRES.

Notice that for examples garon2 and e20r0000, HBFGMRES converges overwhelmingly

faster. According to the theoretical and numerical analysis in [2] and [1], consecutive angles, i.e.,

angles between the residuals r
(ℓ)
0 and r

(ℓ+1)
0 , determine the convergence rate for Krylov subspace

methods. The larger the angles are, the faster the convergence will be. Thus, for garon2
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Fig. 4.4. NRes vs. cycle for xenon2. Left: selective reorthogonalization; Right: always reorthogonal-

ization.

and e20r0000, we numerically test consecutive angles for REFGMRES and HBFGMRES,

respectively. We looked into the consecutive angles and found that the angles for HBFGMRES

are much larger than these for REFGMRES, which explains why HBFGMRES performs so

much superior to REFGMRES.

Lastly, we will present some numerical results to show that little will be gained when

HBFGMRES is extended to include more than one previous difference vectors. Here, we com-

pare HBFGMRES(m, k) with the next variant that includes two most recent difference vectors

in each cycle. For ease of reference, they are denoted by HBF1 and HBF2, respectively. For

a fair comparison, HBF2 will use k − 1 z-vectors in the outer iteration while HBF1 uses k

z-vectors (cf. Algorithm 3.1) so that the dimension of the search spaces for both HBF1 and

HBF2 are the same in their outer iterations. Table 4.4 displays the numbers of cycles needed by

HBF1 and HBF2 on the 10 testing problems when selective reorthogonalization is used. What

we can observe from the table is that HBF1 and HBF2 have comparable performance for most

of examples, except for hcircuit. Most importantly, the improvements, when HBF2 indeed

costs less, aren’t that significant over HBF1, comparing to HBFGMRES over REFGMRES, not

to mention there are cases HBF2 costs more. In view of this, we would recommend the use of

HBFGMRES.

Table 4.4: Number of Cycles.

matrix k m REF HBF1 HBF2

cavity10 20 10 106 38 31

garon2 50 10 593 102 89

comsol 10 20 60 14 10

chipcool0 30 20 66 21 22

flowmeter5 10 10 492 333 346

e20r0000 10 10 732 14 14

e20r0100 30 20 50 14 9

sherman3 30 10 232 41 37

hcircuit 10 10 − 849 433

xenon2 10 10 33 22 22
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5. Conclusion

In this paper, we proposed the heavy-ball flexible GMRES (HBFGMRES) method for non-

symmetric linear systems. This method accelerates the convergence of restarted FGMRES

(REFGMRES) by adding a new direction to recoup some of the Krylov subspace information

from previous search spaces. Numerical examples show that HBFGMRES converges much faster

than REFGMRES. Together in consideration of earlier work in [7], we may conclude that the

heavy-ball idea is a good way to accelerate convergence of restarted GMRES-related methods.
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