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Rank correlations have found many innovative applications in the last
decade. In particular, suitable rank correlations have been used for consistent
tests of independence between pairs of random variables. Using ranks is espe-
cially appealing for continuous data as tests become distribution-free. How-
ever, the traditional concept of ranks relies on ordering data and is, thus, tied
to univariate observations. As a result, it has long remained unclear how one
may construct distribution-free yet consistent tests of independence between
random vectors. This is the problem addressed in this paper, in which we lay
out a general framework for designing dependence measures that give tests
of multivariate independence that are not only consistent and distribution-free
but which we also prove to be statistically efficient. Our framework leverages
the recently introduced concept of center-outward ranks and signs, a mul-
tivariate generalization of traditional ranks, and adopts a common standard
form for dependence measures that encompasses many popular examples.
In a unified study, we derive a general asymptotic representation of center-
outward rank-based test statistics under independence, extending to the mul-
tivariate setting the classical Hájek asymptotic representation results. This
representation permits direct calculation of limiting null distributions and fa-
cilitates a local power analysis that provides strong support for the center-
outward approach by establishing, for the first time, the nontrivial power of
center-outward rank-based tests over root-n neighborhoods within the class
of quadratic mean differentiable alternatives.

1. Introduction. Quantifying the dependence between two variables and testing for their
independence are among the oldest and most fundamental problems of statistical inference.
The (marginal) distributions of the two variables under study, in that context, typically play
the role of nuisances, and the need for a nonparametric approach naturally leads, when they
are univariate, to distribution-free methods based on their ranks. This paper is dealing with
the multivariate extension of that approach.

1.1. Measuring vector dependence and testing independence. Consider two absolutely
continuous random vectors X1 and X2, with values in Rd1 and Rd2 , respectively. The prob-
lems of measuring the dependence between X1 and X2 and testing their independence
when d1 = d2 = 1 (call this the univariate case) have a long history that goes back more
than a century (Pearson (1895), Spearman (1904)). The same problem when d1 and d2 are
possibly unequal and larger than one (the multivariate case) is of equal practical interest but
considerably more challenging. Following early attempts (Wilks (1935)), a large literature
has emerged, with renewed interest in recent years.
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When the marginal distributions of X1 and X2 are unspecified and d1 = d2 = 1, rank
correlations provide a natural and appealing nonparametric approach to testing for indepen-
dence, as initiated in the work of Spearman (1904) and Kendall (1938); cf. Chapter III.6
in Hájek and Šidák (1967). On one hand, ranks yield distribution-free tests because, under
the null hypothesis of independence, their distributions do not depend on the unspecified
marginal distributions (Han, Chen and Liu (2017), Drton, Han and Shi (2020)). On the other
hand, they can be designed (Hoeffding (1948), Blum, Kiefer and Rosenblatt (1961), Bergsma
and Dassios (2014), Yanagimoto (1970)) to consistently estimate dependence measures that
vanish if and only if independence holds, and so detect any type of dependence—something
Spearman and Kendall’s rank correlations cannot.

New subtleties arise, however, when attempting to extend the rank-based approach to the
multivariate case. While dk ranks can be constructed separately for each coordinate of Xk ,
k = 1,2, their joint distribution depends on the distribution of the underlying Xk , preventing
distribution-freeness of the (d1 + d2)-tuple of ranks. As a consequence, the existing tests
of multivariate independence based on componentwise ranks (e.g., Puri, Sen and Gokhale
(1970)) are not distribution-free, which has both computational implications (e.g., through a
need for permutation analysis) and statistical implications (as we shall detail soon).

1.2. Desirable properties. In this paper, we develop a general framework for multivari-
ate analogues of popular rank-based measures of dependence for the univariate case. Our
objective is to achieve the following five desirable properties.

(1) Full distribution-freeness. Many statistical tests exploit asymptotic distribution-
freeness for computationally efficient distributional approximations yielding pointwise
asymptotic control of their size. This is the case, for instance, with Hallin and Paindav-
eine (2002a, 2002b, 2002c, 2008) due to estimation of a scatter matrix, or with Taskinen,
Kankainen and Oja (2003, 2004), Taskinen, Oja and Randles (2005). Pointwise asymptotics
yield, for any given significance level α ∈ (0,1), a sequence of tests φ

(n)
α indexed by the

sample size n such that limn→∞ EP[φ(n)
α ] = α for every distribution P from a class P of null

distributions. Generally, however, the size fails to be controlled in a uniform sense, that is,
it does not hold that limn→∞ supP∈P EP[φ(n)

α ] ≤ α, which may explain poor finite-sample
properties (see, e.g., Le Cam and Yang (2000), Leeb and Pötscher (2008), Belloni, Cher-
nozhukov and Hansen (2014)). While uniform inferential validity is impossible to achieve
for some problems, for example, when testing for conditional independence (Shah and Peters
(2020), Azadkia and Chatterjee (2021)), we shall see that it is achievable for testing (uncon-
ditional) multivariate independence. Indeed, for fully distribution-free tests, as obtained from
our rank-based approach, pointwise validity automatically implies uniform validity.

(2) Transformation invariance. A dependence measure μ is said to be invariant under
orthogonal transformations, shifts, and global rescaling if

μ(X1,X2) = μ(v1 + a1O1X1,v2 + a2O1X2)

for any scalars ak > 0, vectors vk ∈Rdk , and orthogonal dk × dk matrices Ok , k = 1,2. This
invariance, here simply termed “transformation invariance”, is a natural requirement in cases
where the components of X1, X2 do not have specific meanings and observations could have
been recorded in another coordinate system. Such invariance is of considerable interest in
multivariate statistics (see, e.g., Gieser and Randles (1997), Taskinen, Kankainen and Oja
(2003), Taskinen, Oja and Randles (2005), Oja, Paindaveine and Taskinen (2016)).

(3) Consistency. Weihs, Drton and Meinshausen (2018) call a dependence measure μ I-

consistent within a family of distributions P if independence between X1 and X2 with joint
distribution in P implies μ(X1,X2) = 0. If μ(X1,X2) = 0 implies independence of X1
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and X2 (i.e., dependence of X1 and X2 implies μ(X1,X2) �= 0), then μ is D-consistent

within P . Note that the measures considered in this paper do not necessarily take maximal
value 1 if and only if one random vector is a measurable function of the other. While any
reasonable dependence measure should be I-consistent, prominent examples (Pearson’s cor-
relation, Spearman’s ρ, Kendall’s τ ) fail to be D-consistent. If a dependence measure μ is
I- and D-consistent, then the consistency of tests based on an estimator μ(n) of μ is guar-
anteed by the (strong or weak) consistency of that estimator. Dependence measures that
are both I- and D-consistent (within a large nonparametric family) serve an important pur-
pose as they are able to capture nonlinear dependences. Well-known I- and D-consistent
measures for the univariate case include Hoeffding’s D (Hoeffding (1948)), Blum–Kiefer–
Rosenblatt’s R (Blum, Kiefer and Rosenblatt (1961)), and Bergsma–Dassios–Yanagimoto’s
τ∗ (Bergsma and Dassios (2014), Yanagimoto (1970), Drton, Han and Shi (2020)). Multivari-
ate extensions have been proposed, for example, in Gretton et al. (2005a), Székely, Rizzo and
Bakirov (2007), Heller, Gorfine and Heller (2012), Heller, Heller and Gorfine (2013), Heller
and Heller (2016), Zhu et al. (2017), Weihs, Drton and Meinshausen (2018), Kim, Balakr-
ishnan and Wasserman (2020a), Deb and Sen (2022), Shi, Drton and Han (2022a), Berrett,
Kontoyiannis and Samworth (2021).

(4) Statistical efficiency. Once its size is controlled, the performance of a test may be
evaluated through its power against local alternatives. For the proposed tests, our focus is
on quadratic mean differentiable alternatives (Lehmann and Romano (2005), Section 12.2),
which form a popular class for conducting local power analyses; for related recent examples
see Bhattacharya ((2019), Section 3) and Cao and Bickel ((2020), Section 4.4). Our results
then show the nontrivial local power of our tests in n−1/2 neighborhoods within this class.

(5) Computational efficiency. Statistical properties aside, modern applications require the
evaluation of a dependence measure and the corresponding test to be as computationally
efficient as possible. We thus prioritize measures leading to low computational complexity.

The main challenge, with this list of five properties, lies in combining the full distribution-
freeness from property (1) with properties (2)–(5). The solution, as we shall see, involves an
adequate multivariate extension of the univariate concepts of ranks and signs.

1.3. Contribution of this paper. This paper proposes a class of dependence measures and
tests that achieve the five properties from Section 1.2 by leveraging the recently introduced
multivariate center-outward ranks and signs (Chernozhukov et al. (2017), Hallin (2017)); see
Hallin et al. (2021) for a complete account. In contrast to earlier related concepts such as
componentwise ranks (Puri and Sen (1971)), spatial ranks (Oja (2010), Han and Liu (2018)),
depth-based ranks (Liu and Singh (1993), Zuo and He (2006)), and pseudo-Mahalanobis
ranks and signs (Hallin and Paindaveine (2002a)), the new concept yields statistics that enjoy
full distribution-freeness (in finite samples and, thus, asymptotically) as soon as the underly-
ing probability measure is Lebesgue-absolutely continuous. This allows for a general multi-
variate strategy, in which the observations are replaced by functions of their center-outward
ranks and signs when forming dependence measures and corresponding test statistics. This is
also the idea put forth in Shi, Drton and Han (2022a) and, in a slightly different way, in Deb
and Sen (2022), where the focus is on distance covariance between center-outward ranks and
signs.

Methodologically, we are generalizing this approach in two important ways. First, we in-
troduce a class of generalized symmetric covariances (GSCs) along with their center-outward
rank versions, of which the distance covariance concepts from Deb and Sen (2022) and Shi,
Drton and Han (2022a) are but particular cases. Second, we show how considerable addi-
tional flexibility and power results from incorporating score functions in the definition. Our
simulations in Section 5.4 exemplify the benefits of this “score-based” approach.
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From a theoretical point of view, we offer a new approach to asymptotic theory for the
proposed rank-based statistics. Indeed, handling this general class with the methods of Shi,
Drton and Han (2022a) or Deb and Sen (2022) would be highly nontrivial. Moreover, these
methods would not provide any insights into local power—an issue receiving much atten-
tion also in other contexts (Hallin, La Vecchia and Liu (2022), Beirlant et al. (2020), Hallin,
Mordant and Segers (2021), Hallin, Hlubinka and Hudecová (2022)). We thus develop a
completely different method, based on a general asymptotic representation result applicable
to all center-outward rank-based GSCs under the null hypothesis of independence and con-
tiguous alternatives of dependence. Our result (Theorem 5.1; see also Proposition 3.1 in Shi
et al. (2021)) is a multivariate extension of Hájek’s classical asymptotic representation for
univariate linear rank statistics (Hájek and Šidák (1967)) and also simplifies the derivation
of limiting null distributions. Combined with a nontrivial use of Le Cam’s third lemma in a
context of non-Gaussian limits, our approach allows for the first local power results in the
area; the statistical efficiency of the tests of Deb and Sen (2022) and Shi, Drton and Han
(2022a) follows as a special case. In Proposition 4.2, we establish the strong consistency
of our rank-based tests against any fixed alternative under a regularity condition on the score
function. Thanks to a recent result by Deb, Bhattacharya and Sen (2021), that assumption can
be relaxed: our tests, thus, enjoy universal consistency against fixed dependence alternatives.

Outline of the paper. The paper begins with a review of important dependence measures
from the literature (Section 2). Generalizing the idea of symmetric rank covariances put forth
in Weihs, Drton and Meinshausen (2018), we show that a single formula unifies them all; we
term the concept generalized symmetric covariance (GSC). As further background, Section 3
introduces the notion of center-outward ranks and signs. Section 4 presents our streamlined
approach of defining multivariate dependence measures, along with sample counterparts, and
highlights some of their basic properties. Section 5 treats tests of independence and develops
a theory of asymptotic representation for center-outward rank-based GSCs (Section 5.1) as
well as the local power analysis of the corresponding tests against classes of quadratic mean
differentiable alternatives (Section 5.2). Specific alternatives are exemplified in Section 5.3,
and benefits of choosing standard score functions (such as normal scores) are illustrated in
the numerical study in Section 5.4. All proofs are deferred to the Supplementary Material
(Shi et al. (2022)).

Notation. For integer m ≥ 1, put �m� := {1,2, . . . ,m}, and let Sm be the symmetric group,
that is, the group of all permutations of �m�. We write sgn(σ ) for the sign of σ ∈ Sm. In the
sequel, the subgroup

(1.1) Hm
∗ :=

〈
(1 4), (2 3)

〉
=
{
(1), (1 4), (2 3), (1 4)(2 3)

}
⊂ Sm

will play an important role. Here, we have made use of the cycle notation (omitting 1-cycles)
so that, for example, (1) denotes the identity permutation and

(1 4) ≡
(

1 2 3 4 5 6 · · · m

4 2 3 1 5 6 · · · m

)
,

(1 4)(2 3) ≡
(

1 2 3 4 5 6 · · · m

4 3 2 1 5 6 · · · m

)
,

where the right-hand sides are in classical two-line notation listing σ(i) below i, i ∈ �m�.
A set with distinct elements x1, . . . , xn is written either as {x1, . . . , xn} or {xi}ni=1. The

corresponding sequence is denoted by [x1, . . . , xn] or [xi]ni=1. An arrangement of {xi}ni=1 is
a sequence [xσ(i)]ni=1, where σ ∈ Sn. An r-arrangement is a sequence [xσ(i)]ri=1 for r ∈ �n�.
Write In

r for the family of all (n)r := n!/(n − r)! possible r-arrangements of �n�.
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The set of nonnegative reals is denotedR≥0, and 0d stands for the origin inRd . For u,v ∈
R

d , we write u � v if u� ≤ v� for all � ∈ �d�, and u � v otherwise. Let Arc(u,v) :=
(2π)−1 arccos{u�v/(‖u‖‖v‖)} if u, v �= 0d ; Arc(u,v) := 0 otherwise. Here, ‖ · ‖ stands
for the Euclidean norm. For vectors v1, . . . ,vk , we use (v1, . . . ,vk) as a shorthand for
(v�

1 , . . . ,v�
k )�. We write Id for the d × d identity matrix. For a function f : X → R, we

define ‖f ‖∞ := maxx∈X |f (x)|. The symbols �·� and 1(·) stand for the floor and indicator
functions.

The cumulative distribution function and the probability distribution of a real-valued ran-
dom variable/vector Z are denoted as FZ(·) and PZ , respectively. The class of probability
measures onRd that are absolutely continuous (with respect to the Lebesgue measure) is de-
noted as Pac

d . We use � and
a.s.−→ to denote convergence in distribution and almost sure con-

vergence, respectively. For any symmetric kernel h(·) on (Rd)m, any integer � ∈ �m�, and any
probability measure PZ , we write h�(z1 . . . ,z�;PZ) for Eh(z1 . . . ,z�,Z�+1, . . . ,Zm) where
Z1, . . . ,Zm are m independent copies of Z ∼ PZ , and Eh := Eh(Z1, . . . ,Zm). The product
measure of two distributions P1 and P2 is denoted P1 ⊗ P2.

2. Generalized symmetric covariances. Let X1 and X2 be two random vectors with
values in Rd1 and Rd2 , respectively, and assume throughout this paper that they are both
absolutely continuous with respect to the Lebesgue measure. Weihs, Drton and Meinshausen
((2018), Definition 3) introduced a general approach to defining rank-based measures of de-
pendence via signed sums of indicator functions that are acted upon by subgroups of the
symmetric group. In this section, we highlight that their resulting family of symmetric rank

covariances can be extended to cover a much wider range of dependence measures includ-
ing, in particular, the celebrated distance covariance (Székely, Rizzo and Bakirov (2007)).
This enables us to handle a broad family of dependence measures in the following common
standard form.

DEFINITION 2.1 (Generalized symmetric covariance). A measure of dependence μ is
said to be an mth order generalized symmetric covariance (GSC) if there exist two kernel
functions f1 : (Rd1)m →R≥0 and f2 : (Rd2)m →R≥0, and a subgroup H ⊆ Sm containing
an equal number of even and odd permutations such that

μ(X1,X2) = μf1,f2,H (X1,X2) := E
[
kf1,f2,H

(
(X11,X21), . . . , (X1m,X2m)

)]
.

Here (X11,X21), . . . , (X1m,X2m) are m independent copies of (X1,X2), and the depen-
dence kernel function kf1,f2,H (·) is defined as

(2.1)

kf1,f2,H

(
(x11,x21), . . . , (x1m,x2m)

)

:=
{∑

σ∈H

sgn(σ )f1(x1σ(1), . . . ,x1σ(m))

}{∑

σ∈H

sgn(σ )f2(x2σ(1), . . . ,x2σ(m))

}
.

As the group H is required to have equal numbers of even and odd permutations, the order
of a GSC satisfies m ≥ 2. This requirement also justifies the term “generalized covariance”
through the following property; compare Weihs, Drton and Meinshausen ((2018), Proposi-
tion 2).

PROPOSITION 2.1. All GSCs are I-consistent. More precisely, the GSC μf1,f2,H (X1,

X2) is I-consistent in the family of distributions such that E[fk] := E[fk(Xk1, . . . ,Xkm)] <

∞, k = 1,2, where Xk1, . . . ,Xkm are m independent copies of Xk .
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The concept of GSC unifies a surprisingly large number of well-known dependence
measures. We consider here five noteworthy examples, namely, the distance covariance
of Székely, Rizzo and Bakirov (2007) and Székely and Rizzo (2013), the multivariate
version of Hoeffding’s D based on marginal ordering (Weihs, Drton and Meinshausen
(2018), Section 2.2, page 549), and the projection-averaging extensions of Hoeffding’s
D (Zhu et al. (2017)), of Blum–Kiefer–Rosenblatt’s R (Kim, Balakrishnan and Wasser-
man (2020b), Proposition D.5), and of Bergsma–Dassios–Yanagimoto’s τ ∗ (Kim, Bal-
akrishnan and Wasserman (2020a), Theorem. 7.2). Only one type of subgroup, namely,
Hm

∗ := 〈(1 4), (2 3)〉 ⊆ Sm for m ≥ 4 is needed; recall (1.1). For simplicity, we write
w = (w1, . . . ,wm) �→ fk(w) for the kernel functions of an mth order multivariate GSC for
which the dimension of w�, � = 1, . . . ,m, is dk , hence may differ for k = 1 and k = 2. Not all
components of w need to have an impact on fk(w). For instance, the kernels of distance co-
variance, a 4th order GSC, map w = (w1, . . . ,w4) to R≥0 but depend neither on w3 nor w4.

EXAMPLE 2.1 (Examples of multivariate GSCs).

(a) Distance covariance is a 4th order GSC with H = H 4
∗ and

f dCov
k (w) =

1

2
‖w1 − w2‖ on

(
R

dk
)4

, k = 1,2.

Indeed, with cd := π (1+d)/2/	((1 + d)/2), we have

(2.2)

μf dCov
1 ,f dCov

2 ,H 4
∗
(X1,X2)

=
1

4
E
[(

‖X11 − X12‖ − ‖X11 − X13‖ − ‖X14 − X12‖ + ‖X14 − X13‖
)

×
(
‖X21 − X22‖ − ‖X21 − X23‖ − ‖X24 − X22‖ + ‖X24 − X23‖

)]

=
1

cd1cd2

∫

Rd1×Rd2

|ϕ(X1,X2)(t1, t2) − ϕX1(t1)ϕX2(t2)|2

‖t1‖d1+1‖t2‖d2+1 dt1 dt2.

Identity (2.2) was established in Székely, Rizzo and Bakirov ((2007), Remark 3), Székely and
Rizzo ((2009), Theorem 8), and Bergsma and Dassios ((2014), Section 3.4);

(b) Hoeffding’s multivariate marginal ordering D is a 5th order GSC with H = H 5
∗ and

f M
k (w) =

1

2
1(w1,w2 � w5) on

(
R

dk
)5

, k = 1,2,

since, by Weihs, Drton and Meinshausen ((2018), Proposition 1),

μf M
1 ,f M

2 ,H 5
∗
(X1,X2) =

∫

Rd1×Rd2

{
F(X1,X2)(u1,u2) − FX1(u1)FX2(u2)

}2 dF(X1,X2)(u1,u2);

(c) Hoeffding’s multivariate projection-averaging D is a 5th order GSC with H = H 5
∗ and

f D
k (w) =

1

2
Arc(w1 − w5,w2 − w5) on

(
R

dk
)5

, k = 1,2.

Indeed, by Zhu et al. ((2017), Equation (3)), we have

μf D
1 ,f D

2 ,H 5
∗
(X1,X2) =

∫

Sd1−1×Sd2−1

∫

R2

{
F(α�

1 X1,α
�
2 X2)

(u1, u2)

− F
α�

1 X1
(u1)Fα�

2 X2
(u2)

}2 dF(α�
1 X1,α

�
2 X2)

(u1, u2)dλd1(α1)dλd2(α2),

with λd the uniform measure on the unit sphere Sd−1;
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(d) Blum–Kiefer–Rosenblatt’s multivariate projection-averaging R is a 6th order GSC
with H = H 6

∗ and

f R
1 (w) =

1

2
Arc(w1 − w5,w2 − w5) on

(
R

d1
)6

,

f R
2 (w) =

1

2
Arc(w1 − w6,w2 − w6) on

(
R

d2
)6;

this follows from Kim, Balakrishnan and Wasserman ((2020b), Proposition D.5), who showed

μf R
1 ,f R

2 ,H 6
∗
(X1,X2)

=
∫

Sd1−1×Sd2−1

∫

R2

{
F(α�

1 X1,α
�
2 X2)

(u1, u2)

− F
α�

1 X1
(u1)Fα�

2 X2
(u2)

}2 dF
α�

1 X1
(u1)dF

α�
2 X2

(u2)dλd1(α1)dλd2(α2);

(e) Bergsma–Dassios–Yanagimoto’s multivariate projection-averaging τ ∗ is a 4th order
GSC with H = H 4

∗ and

f τ∗
k (w) = Arc(w1 − w2,w2 − w3) + Arc(w2 − w1,w1 − w4) on

(
R

dk
)4

, k = 1,2,

since, by Kim, Balakrishnan and Wasserman ((2020a), Theorem 7.2), we have

μ
f τ∗

1 ,f τ∗
2 ,H 4

∗
(X1,X2) =

∫

Sd1−1×Sd2−1

E
{
asign

(
α

�
1 X11,α

�
1 X12,α

�
1 X13,α

�
1 X14

)

× asign
(
α

�
2 X21,α

�
2 X22,α

�
2 X23,α

�
2 X24

)}
dλd1(α1)dλd2(α2),

with asign(w1,w2,w3,w4) := sign(|w1 − w2| − |w1 − w3| − |w4 − w2| + |w4 − w3|).

REMARK 2.1. Sejdinovic et al. (2013) recognize distance covariance as an example of
an HSIC-type statistic (Gretton et al. (2005a, 2005b, 2005c), Fukumizu, Bach and Gretton
(2007)). The HSIC-type statistics are all 4th order multivariate GSCs, and we note that our
results for distance covariance readily extend to other HSIC-type statistics.

REMARK 2.2. In the univariate case, the GSCs from Example 2.1(b)–(e) reduce to the D

of Hoeffding (1948), R of Blum, Kiefer and Rosenblatt (1961), and τ ∗ of Bergsma and
Dassios (2014), respectively. As shown by Drton, Han and Shi (2020), the latter is connected
to the work of Yanagimoto (1970). In Appendix B.1, we simplify the kernels for the univariate
case, and show that the GSC framework also covers the τ of Kendall (1938).

All the multivariate dependence measures we have introduced are D-consistent, albeit with
some variations in the families of distributions for which this holds; see, for example, the dis-
cussions in Examples 2.1–2.3 of Drton, Han and Shi (2020). As these dependence measures
all involve the group Hm

∗ , we highlight the following fact.

LEMMA 2.1. A GSC μ = μf1,f2,H
m
∗ with m ≥ 4 is D-consistent in a family P if and only

if the pair (f1, f2) is D-consistent in P—namely, if and only if

E

[ 2∏

k=1

{
fk(Xk1,Xk2,Xk3,Xk4,Xk5, . . . ,Xkm) − fk(Xk1,Xk3,Xk2,Xk4,Xk5, . . . ,Xkm)

− fk(Xk4,Xk2,Xk3,Xk1,Xk5, . . . ,Xkm) + fk(Xk4,Xk3,Xk2,Xk1,Xk5, . . . ,Xkm)
}
]

is finite, nonnegative, and equal to 0 only if X1 and X2 are independent.
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THEOREM 2.1. All the multivariate GSCs in Example 2.1 are D-consistent within the

family {P ∈ Pac
d1+d2

| EP[fk(Xk1, . . . ,Xkm)] < ∞, k = 1,2} (with fk , k = 1,2 denoting their

respective kernels).

The invariance/equivariance properties of GSCs depend on those of their kernels. We say
that a kernel function f : (Rd)m →R is orthogonally invariant if, for any orthogonal ma-
trix O ∈Rd×d and any w1, . . . ,wm ∈ (Rd)m, f (w1, . . . ,wm) = f (Ow1, . . . ,Owm).

LEMMA 2.2. If f1 and f2 both are orthogonally invariant, then any GSC of the form μ =
μf1,f2,H is orthogonally invariant, that is, μ(X1,X2) = μ(O1X1,O2X2) for any pair of

random vectors (X1,X2) and orthogonal matrices O1 ∈Rd1×d1 and O2 ∈Rd2×d2 .

PROPOSITION 2.2. The kernels (a), (c)–(e) in Example 2.1, hence the corresponding

GSCs, are orthogonally invariant.

Turning from theoretical dependence measures to their empirical counterparts, it is clear
that any GSC admits a natural unbiased estimator in the form of a U-statistic, which we call
the sample generalized symmetric covariance (SGSC).

DEFINITION 2.2 (Sample generalized symmetric covariance). The sample generalized
symmetric covariance of μ = μf1,f2,H is μ̂(n) = μ̂(n)([(x1i,x2i)]ni=1;f1, f2,H), of the form

μ̂(n) =
(

n

m

)−1 ∑

i1<i2<···<im

kf1,f2,H

(
(x1i1,x2i1), . . . , (x1im,x2im)

)
,

where kf2,f2,H is the “symmetrized” version of kf2,f2,H :

kf1,f2,H

([
(x1�,x2�)

]m
�=1

)
:=

1

m!
∑

σ∈Sm

kf1,f2,H

([(
x1σ(�),x2σ(�)

)]m
�=1

)
.

If the kernels f1 and f2 are orthogonally invariant, then it also holds that all SGSCs of
the form μ̂(n)( · ;f1, f2,H) are orthogonally invariant, in the sense of remaining unaffected
when the input [(x1i,x2i)]ni=1 is transformed into [(O1x1i,O2x2i)]ni=1 where O1 ∈Rd1×d1

and O2 ∈ Rd2×d2 are arbitrary orthogonal matrices. Proposition 2.2 thus also implies the
orthogonal invariance of SGSCs associated with kernels (a) and (c)–(e) in Example 2.1.

The SGSCs associated with the examples listed in Example 2.1, unfortunately, all fail to
satisfy the crucial property of distribution-freeness. However, as we will show in Section 4,
distribution-freeness, along with transformation invariance, can be obtained by computing
SGSCs from (functions of) the center-outward ranks and signs of the observations.

3. Center-outward ranks and signs. This section briefly introduces the concepts of
center-outward ranks and signs to be used in the sequel. The main purpose is to fix notation
and terminology; for a comprehensive coverage, we refer to Hallin et al. (2021).

We are concerned with defining multivariate ranks for a sample of d-dimensional observa-
tions drawn from a distribution in the class Pac

d of absolutely continuous probability measures
on Rd with d ≥ 2. Let Sd and Sd−1 denote the open unit ball and the unit sphere in Rd , re-
spectively. Denote by Ud the spherical uniform measure on Sd , that is, the product of the
uniform measures on [0,1) (for the distance to the origin) and on Sd−1 (for the direction).
The push-forward of a measure Q by a measurable transformation T is denoted as T �Q.
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DEFINITION 3.1 (Center-outward distribution function). The center-outward distribu-

tion function of a probability measure P ∈ Pac
d is the P-a.s. unique function F± that (i) maps

R
d to the open unit ball Sd , (ii) is the gradient of a convex function onRd , and (iii) pushes P

forward to Ud (i.e., such that F±�P = Ud ).

The center-outward distribution function F± of P entirely characterizes P provided that P ∈
Pac

d ; cf. Hallin et al. ((2021), Proposition 2.1(iii)). Also, F± is invariant under shift, global
rescaling, and orthogonal transformations. We refer the readers to Appendix B.2 for details
about these elementary properties of center-outward distribution functions.

The sample counterpart F
(n)
± of F± is based on an n-tuple of data points z1, . . . ,zn ∈Rd .

The key idea is to construct n grid points in the unit ball Sd such that the corresponding
discrete uniform distribution converges weakly to Ud as n → ∞. For d ≥ 2, the construction
proposed in Hallin ((2017), Section 4.2) starts by factorizing n into

n = nRnS + n0, nR, nS ∈Z>0, 0 ≤ n0 < min{nR, nS},

where in asymptotic scenarios nR and nS → ∞, hence n0/n → 0, as n → ∞. Next consider
the intersection points between

– the nR hyperspheres centered at 0d , with radii r/(nR + 1), r ∈ �nR �, and
– nS rays given by distinct unit vectors {s(nS)

s }s∈�nS � that divide the unit circle into arcs of
equal length 2π/nS for d = 2, and are distributed as regularly as possible on the unit sphere
Sd−1 for d ≥ 3; asymptotic statements merely require that the discrete uniform distribution
over {s(nS)

s }nS

s=1 converges weakly to the uniform distribution on Sd−1 as nS → ∞.

Letting n := (nR, nS, n0), the grid G
d
n is defined as the set of nRnS points { r

nR+1s
(nS)
s }

with r ∈ �nR � and s ∈ �nS � as described above along with the origin 0 in case n0 = 1 or,
whenever n0 > 1, the n0 points { 1

2(nR+1)
s
(nS)
s }, s ∈ S where S is chosen as a random sam-

ple of size n0 without replacement from �nS �. For d = 1, letting nS = 2, nR = �n/nS�,
n0 = n − nRnS = 0 or 1, Gd

n reduces to the points {±r/(nR + 1) : r ∈ �nR �}, along with the
origin 0 in case n0 = 1.

The empirical version F
(n)
± of F± is then defined as the optimal coupling between the

observed data points and the grid G
d
n.

DEFINITION 3.2 (Center-outward ranks and signs). Let z1, . . . ,zn be distinct data points
in Rd . Let T be the collection of all bijective mappings between the set {zi}ni=1 and the
grid G

d
n= {ui}ni=1. The sample center-outward distribution function is defined as

(3.1) F(n)
± := argmin

T ∈T

n∑

i=1

∥∥zi − T (zi)
∥∥2

,

and (nR + 1)‖F
(n)
± (zi)‖ and F

(n)
± (zi)/‖F

(n)
± (zi)‖ are called the center-outward rank and

center-outward sign of zi , respectively.

REMARK 3.1. The particular way that the grid G
d
n is constructed here produces center-

outward ranks and signs that enjoy all the properties—uniform distributions and mutual
independence—that are expected from ranks and signs (see Section B.2 of the online Ap-
pendix (Shi et al. (2022)). These properties, however, are not required for the finite-sample
validity and asymptotic properties of the rank-based tests we are pursuing in the subsequent
sections. Any sequence of grids Gd

n, whether stochastic (defined over a different probability
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space than the observations) or deterministic, is fine provided that the corresponding empir-
ical distribution converges to the spherical uniform Ud . In addition, for the reasons devel-
oped, for example, in Hallin (2022), we deliberately only consider the spherical uniform Ud .
In practice, the uniform distribution over the unit cube [0,1]d could be considered as well,
yielding similar tests enjoying similar properties, with proofs following along similar lines.

The next proposition describes the Glivenko–Cantelli property of empirical center-outward
distribution functions, a result we shall heavily rely on.

PROPOSITION 3.1 (Hallin (2017), Proposition 5.1, del Barrio et al. (2018), Theorem 3.1,
and Hallin et al. (2021), Proposition 2.3). Consider the following classes of distributions:

• the class P+
d of distributions P ∈ Pac

d with nonvanishing probability density, namely, with

Lebesgue density f such that, for all D > 0 there exist constants λD;f < 
D;f ∈ (0,∞)

such that λD;f ≤ f (z) ≤ 
D;f for all ‖z‖ ≤ D;

• the class P#
d of all distributions P ∈ Pac

d such that, denoting by F
(n)
± the sample distribution

function computed from an n-tuple Z1, . . . ,Zn of independent copies of Z ∼ P,

(3.2) max
1≤i≤n

∥∥F(n)
± (Zi) − F±(Zi)

∥∥ a.s.−→ 0 as nR and nS → ∞.

It holds that P+
d � P#

d � Pac
d .

More properties about the population and empirical center-outward distribution functions
can be found in Appendix B.2 and Chernozhukov et al. (2017), Figalli (2018), del Barrio,
González-Sanz and Hallin (2020), Hallin et al. (2021), Ghosal and Sen (2022), and references
there in.

4. Rank-based dependence measures. We are now ready to present our proposed fam-
ily of dependence measures based on the notions of GSCs and center-outward ranks and
signs. Throughout, (X1,X2) is a pair of random vectors with PX1 ∈ Pac

d1
and PX2 ∈ Pac

d2
, and

(X11,X21), (X12,X22), . . . , (X1n,X2n) is an n-tuple of independent copies of (X1,X2).
Let Fk,± denote the center-outward distribution function of Xk , and write F

(n)
k,± for the sample

center-outward distribution function corresponding to {Xki}ni=1, k = 1,2.
Our ideas build on Shi, Drton and Han (2022a) and, in slightly different form, also on

Deb and Sen (2022), where the authors introduce a multivariate dependence measure by
applying distance covariance to F1,±(X1) and F2,±(X2), with a sample counterpart involv-
ing F

(n)
1,±(X1i) and F

(n)
2,±(X2i), i ∈ �n�. Our generalization of this particular dependence mea-

sure involves score functions and requires further notation. The score functions are contin-
uous functions J1, J2 : [0,1) → R≥0. Classical examples include the normal or van der

Waerden score function JvdW(u) := (F−1
χ2

d

(u))1/2 (with Fχ2
d

the χ2
d distribution function),

the Wilcoxon score function JW(u) := u, and the sign test score function Jsign(u) := 1.
For k = 1,2, let Jk(u) := Jk(‖u‖)u/‖u‖ if u ∈ Sdk

\{0dk
} and 0dk

if u = 0dk
. Define the popu-

lation and sample scored center-outward distribution functions as Gk,±(·) := Jk(Fk,±(·)) and
G

(n)
k,±(·) := Jk(F

(n)
k,±(·)), respectively.

DEFINITION 4.1 (Rank-based dependence measures). Let J1, J2 be two score functions.
The (scored) rank-based version of a dependence measure μ is obtained by applying μ to the
pair (G1,±(X1),G2,±(X2)). For a GSC μ = μf1,f2,H , the rank-based version is denoted

(4.1) μ±(X1,X2) = μ±;J1,J2,f1,f2,H (X1,X2) := μf1,f2,H

(
G1,±(X1),G2,±(X2)

)
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and termed a rank-based GSC for short. The associated rank-based SGSC is

(4.2) W
˜

(n)
μ = W

˜
(n)
J1,J2,μf1,f2,H

:= μ̂(n)([(G(n)
1,±(X1i),G

(n)
2,±(X2i)

)]n
i=1;f1, f2,H

)
.

REMARK 4.1. There is no immediate reason why a rank-based GSC should itself by
a GSC in the sense of Definition 2.1. In this context, an observation of Bergsma (2006),
Bergsma (2011) is of interest. For distance covariance in the univariate case (equivalent to 4κ

in his notation), Lemma 10 in Bergsma (2006) implies that

1

16
μf dCov

1 ,f dCov
2 ,H 4

∗

(
GX1,±(X1),GX2,±(X2)

)
=
∫

(F(X1,X2) − FX1FX2)
2 dFX1 dFX2 .

In other words, for d1 = d2 = 1 and J1(u) = J2(u) = u, the rank-based distance covariance
coincides with R of Blum, Kiefer and Rosenblatt (1961) up to a scalar multiple. Recall that R

is a GSC, but of higher order than distance covariance; see Example B.1(c) in Appendix B.1.

Plugging the center-outward ranks and signs into the multivariate dependence measures
from Section 2 in combination with various score functions, one immediately obtains a large
variety of rank-based GSCs and SGSCs, as we exemplify below. In particular, the choice f1 =
f dCov

1 , f2 = f dCov
2 , J1(u) = J2(u) = u, and H = H 4

∗ recovers the multivariate rank-based
distance covariance from Shi, Drton and Han (2022a).

EXAMPLE 4.1. Some rank-based SGSCs.

(a) Rank-based distance covariance

W
˜

(n)
dCov :=

(
n

4

)−1 ∑

i1<···<i4

hdCov
((

G
(n)
1,±(X1i1),G

(n)
2,±(X2i1)

)
, . . . ,

(
G

(n)
1,±(X1i4),G

(n)
2,±(X2i4)

))

with hdCov := kf dCov
1 ,f dCov

2 ,H 4
∗

as given in Example 2.1(a). We have by definition that

W
˜

(n)
dCov =

(
n

4

)−1 ∑

i1 �=···�=i4

1

4 · 4!
[{∥∥G(n)

1,±(X1i1) − G
(n)
1,±(X1i2)

∥∥−
∥∥G(n)

1,±(X1i1) − G
(n)
1,±(X1i3)

∥∥

−
∥∥G(n)

1,±(X1i4) − G
(n)
1,±(X1i2)

∥∥+
∥∥G(n)

1,±(X1i4) − G
(n)
1,±(X1i3)

∥∥}

×
{∥∥G(n)

2,±(X2i1) − G
(n)
2,±(X2i2)

∥∥−
∥∥G(n)

2,±(X2i1) − G
(n)
2,±(X2i3)

∥∥

−
∥∥G(n)

2,±(X2i4) − G
(n)
2,±(X2i2)

∥∥+
∥∥G(n)

2,±(X2i4) − G
(n)
2,±(X2i3)

∥∥}].

(b) Similarly, Hoeffding’s rank-based multivariate marginal ordering D (giving W
˜

(n)
M ),

Hoeffding’s rank-based multivariate projection-averaging D (W
˜

(n)
D ), Blum–Kiefer–

Rosenblatt’s rank-based multivariate projection-averaging R (W
˜

(n)
R ), and Bergsma–Dassios–

Yanagimoto’s rank-based multivariate projection-averaging τ ∗ (W
˜

(n)
τ∗ ) can be defined with

kernels hM := kf M
1 ,f M

2 ,H 5
∗
, hD := kf D

1 ,f D
2 ,H 5

∗
, hR := kf R

1 ,f R
2 ,H 6

∗
, and hτ∗ := k

f τ∗
1 ,f τ∗

2 ,H 4
∗

as

given in Example 2.1, respectively.

Having proposed a general class of dependence measures, we now examine, for each rank-
based GSC, the five desirable properties listed in Section 1.2. To this end, we first introduce
two regularity conditions on the score functions.

DEFINITION 4.2. A score function J : [0,1) → R≥0 is called weakly regular if it is
continuous over [0,1) and nondegenerate:

∫ 1
0 J 2(u)du > 0. If, moreover, J is Lipschitz-

continuous, strictly monotone, and satisfies J (0) = 0, it is called strongly regular.



1944 SHI, HALLIN, DRTON AND HAN

PROPOSITION 4.1. The normal and sign test score functions are weakly but not strongly

regular; the Wilcoxon score function is strongly regular.

PROPOSITION 4.2. Suppose the considered pair (X1,X2) has marginal distribu-

tions PX1 ∈ Pac
d1

and PX2 ∈ Pac
d2

. Consider any rank-based GSC μ± := μ±;J1,J2,f1,f2,H

and its rank-based SGSC W
˜

(n)
μ := W

˜
(n)
J1,J2,μf1,f2,H

as defined in (4.1) and (4.2). Further,

let μ∗± := μ±;J1,J2,f1,f2,H
m
∗ be an instance using the group from (1.1). Then:

(i) (Exact distribution-freeness) Under independence of X1 and X2, the distribution

of W
˜

(n)
μ does not depend on PX1 nor PX2 .

(ii) (Transformation invariance) If the kernels f1 and f2 are orthogonally invariant, it holds

for any orthogonal matrix Ok ∈Rdk×dk , any vector vk ∈Rdk , and any scalar ak ∈R>0
that μ±(X1,X2) = μ±(v1 + a1O1X1,v2 + a2O2X2).

(iii) (I- and D-Consistency)

(a) μ± is I-consistent in the family

{
P(X1,X2) | PXk

∈ P
ac
dk

and E
[
fk

([
Gk,±(Xki)

]m
i=1

)]
< ∞ for k = 1,2

}
.

(b) If the pair of kernels is D-consistent in the class
{
P(X1,X2) ∈ P

ac
d1+d2

| E
[
fk(Xk1, . . . ,Xkm)

]
< ∞ for k = 1,2

}

(cf. Lemma 2.1), then μ∗± is D-consistent in the family

(4.3) P
ac
d1,d2,∞ :=

{
P(X1,X2) ∈ P

ac
d1+d2

| E
[
fk

([
Gk,±(Xki)

]m
i=1

)]
< ∞ for k = 1,2

}

provided that the score functions J1 and J2 are strictly monotone;

(iv) (Strong consistency) If fk([G(n)
k,±(Xki�)]m�=1) and fk([Gk,±(Xki�)]m�=1) are almost surely

bounded, that is, if there exists a constant C (depending on fk , Jk , and PXk
) such that

for any n and k = 1,2,

P
( ∣∣fk

([
G

(n)
k,±(Xki�)

]m
�=1

)∣∣≤ C
)
= 1 = P

( ∣∣fk

([
Gk,±(Xki�)

]m
�=1

)∣∣≤ C
)
,

and

(4.4) (n)−1
m

∑

[i1,...,im]∈In
m

∣∣fk

([
G

(n)
k,±(Xki�)

]m
�=1

)
− fk

([
Gk,±(Xki�)

]m
�=1

)∣∣ a.s.−→ 0,

then

(4.5) W
˜

(n)
μ = W

˜
(n)
J1,J2,μf1,f2,H

a.s.−→ μ±(X1,X2).

THEOREM 4.1 (Examples). As long as PX1 ∈ P#
d1

, PX2 ∈ P#
d2

, and J1, J2 are strongly

regular, all the kernel functions in Example 2.1(a)–(e) satisfy Condition (4.4).

REMARK 4.2. Unfortunately, Theorem 4.1 does not imply that the rank-based SGSCs
with normal score functions satisfy (4.5) although, in view of Proposition 4.2(iii), their pop-
ulation counterparts are both I- and D-consistent within a fairly large nonparametric family
of distributions. A weaker version (replacing a.s. convergence by convergence in probability)
of (4.5) holds in the univariate case with d1 = d2 = 1 by Feuerverger ((1993), Section 6).
Consistency for normal scores, however, follows from a recent and yet unpublished result of
Deb, Bhattacharya and Sen ((2021), Proposition 4.3), which was not available to us at the
time this paper was written and which is obtained via a completely different technique.
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We conclude this section with a discussion of computational issues. Two steps, in the eval-
uation of multivariate rank-based SGSCs, are potentially costly: (i) calculating the center-
outward ranks and signs in (3.1), and (ii) computing a GSC μ̂(n)(·) with n inputs. The
optimal matching problem (3.1) yielding [G(n)

1,±(X1i)]ni=1 and [G(n)
2,±(X2i)]ni=1 can be solved

in O(n5/2 log(nN)) time if the costs ‖zi −uj‖2, i, j ∈ �n� are integers bounded by N (Gabow
and Tarjan (1989)); in dimension d = 2, this can improved to O(n3/2+δ log(N)) time for
some arbitrarily small constant δ > 0 (Sharathkumar and Agarwal (2012)). The problem can
also be solved approximately in O(n3/2�(n, ε,�)) time if d ≥ 3, where

�(n, ε,�) := ε−1τ(n, ε) log4(n/ε) log(�)

depends on n, ε (the accuracy of the approximation) and � := max cij/min cij , with τ(n, ε) a
small term (Agarwal and Sharathkumar (2014)). Further details are deferred to Appendix B.3.

Once [G(n)
1,±(X1i)]ni=1 and [G(n)

2,±(X2i)]ni=1 are obtained, a naïve evaluation of W
˜

(n), on the
other hand, requires O(nm) operations. Great speedups are possible, however, in particular
cases such as the rank-based SGSCs from Example 4.1. A detailed summary is provided in
Proposition B.4 of the Appendix. The total computational complexity of the five statistics in
Example 4.1 is given in the last three rows of Table 1.

5. Local power of rank-based tests of independence. Besides quantifying the depen-
dence between two groups of random variables, the rank-based GSCs from Section 4 allow
for constructing tests of the null hypothesis

H0 : X1 and X2 are mutually independent,

based on a sample (X11,X21), . . . , (X1n,X2n) of n independent copies of (X1,X2). Shi,
Drton and Han (2022a), and, in a slightly different manner, Deb and Sen (2022), studied the
particular case of a test based on the Wilcoxon version of the rank-based distance covariance
W
˜

(n)
dCov. Among other results, they derive the limiting null distribution of W

˜
(n)
dCov, using combi-

natorial limit theorems and “brute-force” calculation of permutation statistics. Although this
led to a fairly general combinatorial noncentral limit theorem (Shi, Drton and Han (2022a),
Theorems 4.1 and 4.2), the derivation is not intuitive and difficult to generalize. In contrast,
in this paper, we take a new and more powerful approach to the asymptotic analysis of rank-
based SGSCs, which resolves the following three main issues:

(i) Intuitively, the asymptotic behavior of rank-based dependence measures follows from
that of their Hájek asymptotic representations, which are oracle versions in which the obser-
vations are transformed using the unknown actual center-outward distribution function F±

rather than its sample version F
(n)
± . Here, we show the correctness of this intuition by proving

asymptotic equivalence between rank-based SGSCs and their oracle versions.
(ii) Previous work does not perform any power analysis for the new rank-based tests.

Here, we fill this gap by proving that these tests have nontrivial power in the context of the
class of quadratic mean differentiable alternatives (Lehmann and Romano (2005), Defini-
tion 12.2.1).

(iii) Finally, our rank-based tests allow for the incorporation of score functions, which
may improve their performance.

This novel approach rests on a generalization of the classical Hájek representation method
(Hájek and Šidák (1967)) to the multivariate setting of center-outward ranks and signs, which
simplifies the derivation of asymptotic null distributions and, via a nontrivial use of Le Cam’s
third lemma for nonnormal limits, enables our local power analysis.
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TABLE 1
Properties of the center-outward GSCs in Example 4.1 with weakly regular score functions Jk

W
˜

(n)
μ W

˜
(n)
dCov W

˜
(n)
M W

˜
(n)
D W

˜
(n)
R W

˜
(n)
τ∗

(1) Distribution-freeness P(X1,X2) ∈P
ac
d1

⊗P
ac
d2

(a) P(X1,X2) ∈P
ac
d1

⊗P
ac
d2

P(X1,X2) ∈P
ac
d1

⊗P
ac
d2

P(X1,X2) ∈P
ac
d1

⊗P
ac
d2

P(X1,X2) ∈P
ac
d1

⊗P
ac
d2

(2) Transformation
invariance

Orthogonal transf., shifts,
and global scales

Shifts and global scales Orthogonal transf.,
shifts, and global scales

Orthogonal transf.,
shifts, and global scales

Orthogonal transf.,
shifts, and global scales

(3) D-consistency Jk strictly monotone and
integrable,
P(X1,X2) ∈P

ac
d1+d2

(b)

Jk strictly monotone,
P(X1,X2) ∈P

ac
d1+d2

Jk strictly monotone,
P(X1,X2) ∈P

ac
d1+d2

Jk strictly monotone,
P(X1,X2) ∈P

ac
d1+d2

Jk strictly monotone,
P(X1,X2) ∈P

ac
d1+d2

(3′) Consistency of test Jk strongly regular,
P(X1,X2) ∈P

#
d1,d2

(c)
Jk strongly regular,
P(X1,X2) ∈P

#
d1,d2

Jk strongly regular,
P(X1,X2) ∈P

#
d1,d2

Jk strongly regular,
P(X1,X2) ∈P

#
d1,d2

Jk strongly regular,
P(X1,X2) ∈P

#
d1,d2

(4) Efficiency Jk square-integrable Jk weakly regular (as
assumed)

Jk weakly regular (as
assumed)

Jk weakly regular (as
assumed)

Jk weakly regular (as
assumed)

(5) Exact
d1 ∨ d2 = 2 O(n2) O(n3/2+δ logN)(d) O(n3) O(n4) O(n4)

d1 ∨ d2 = 3 O(n5/2 log(nN))(d) O(n5/2 log(nN)) O(n3) O(n4) O(n4)

Fast approximation O(n3/2� ∨ nK logn)(d) O(n3/2�) O(n3/2� ∨ nK logn) O(n3/2� ∨ nK logn) O(n3/2� ∨ nK logn)

(a) Pac
d1

⊗P
ac
d2

is the family of all P(X1,X2) such that X1, X2 independent, PX1 ∈P
ac
d1

and PX2 ∈P
ac
d2

.
(b) Pac

d1+d2
is the family of all absolutely continuous distributions on Rd1+d2 .

(c) P#
d1,d2

:= {P(X1,X2) ∈P
ac
d1+d2

| PX1 ∈P
#
d1

,PX2 ∈P
#
d2

}.
(d) Here we assume without loss of generality that cij , i, j ∈ �n� are all integers and bounded by integer N , δ is some arbitrarily small constant, � is defined as

ε−1τ (n, ε) log4(n/ε) log(max cij /min cij ), and K is sufficiently large; as usual, q1 ∨ q2 stands for the minimum of two quantities q1 and q2. Also refer to Propositions B.3
and B.4 in Section B of the Appendix.
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5.1. Asymptotic representation. In order to develop our multivariate asymptotic repre-
sentation, we first introduce formally the oracle counterpart to the rank-based SGSC W

˜
(n)
μ .

DEFINITION 5.1 (Oracle rank-based SGSCs). The oracle version of the rank-based
SGSC W

˜
(n)
J1,J2,μf1,f2,H

associated with the GSC μ = μf1,f2,H is

W (n)
μ = W

(n)
J1,J2,μf1,f2,H

:= μ̂(n)([(G1,±(X1i),G2,±(X2i)
)]n

i=1;f1, f2,H
)
.

Note that the oracle W
(n)
μ cannot be computed from the observations as it involves the

population scored center-outward distribution functions G1,± and G2,±. However, the limiting
null distribution of W (n), unlike that of W

˜
(n), follows from standard theory for degenerate U-

statistics (Serfling (1980), Chapter 5.5.2). This point can be summarized as follows.

PROPOSITION 5.1. Let μ = μf1,f2,H
m
∗ be a GSC with m ≥ 4. Let the kernels f1, f2 and

the score functions J1, J2 satisfy

(5.1) 0 < Var
(
gk(W k1,W k2)

)
< ∞, k = 1,2,

where W ki := Jk(U ki) with (U1i,U2i), i ∈ �m� independent and distributed according to

the product of spherical uniform distributions Ud1 ⊗ Ud2 ,

(5.2) gk(wk1,wk2) := E
[
2fk,Hm

∗ (wk1,wk2,W k3,W k4, . . . ,W km)
]
,

and fk,Hm
∗ :=

∑
σ∈Hm

∗
sgn(σ )fk(xkσ(1), . . . ,xkσ(m)), k = 1,2. Then, under the null hypothe-

sis H0 that X1 ∼ PX1 ∈ Pac
d1

and X2 ∼ PX2 ∈ Pac
d2

are independent,

nW (n)
μ = nW

(n)
J1,J2,μf1,f2,Hm∗

�

∞∑

v=1

λμ,v

(
ξ2
v − 1

)
,

where [λμ,v]∞v=1 are the nonzero eigenvalues of the integral equation

(5.3) E
[
g1(w11,W 12)g2(w21,W 22)ψ(W 12,W 22)

]
= λψ(w11,w21).

and [ξv]∞v=1 are independent standard Gaussian random variables.

The tests we are considering reject for large values of test statistics that estimate a nonneg-
ative (I- and D-)consistent dependence measure. In all these tests

(5.4) all eigenvalues of the integral equation (5.3) are nonnegative.

However, it should be noted that, in view of the following multivariate representation result,
a valid test of H0 can be implemented also when (5.4) does not hold.

THEOREM 5.1 (Multivariate Hájek representation). Let f1, f2 be kernel functions of

order m ≥ 4, and let J1, J2 be weakly regular score functions. Writing U(n)
dk

for the discrete

uniform distribution over the grid G
dk
n , let W

(n)
ki := Jk(U

(n)
ki ) where (U

(n)
1i ,U

(n)
2i ) for i ∈ �m�

are independent with distribution U(n)
d1

⊗ U(n)
d2

. Define gk , k = 1,2, as in (5.2), and

(5.5) g
(n)
k (wk1,wk2) := E

[
2fk,Hm

∗

(
wk1,wk2,W

(n)
k3 ,W

(n)
k4 , . . . ,W

(n)
km

)]
, k = 1,2.

Assume that

(5.6)

fk and gk are Lipschitz-continuous, g
(n)
k converges uniformly to gk,

sup
i1,...,im∈�m�

E
[
fk

(
[W ki�]m�=1

)2]
< ∞ and

∫ 1

0
J 2

k (u)du < ∞, k = 1,2.
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Then, under the hypothesis H0 that X1 ∼ PX1 ∈ Pac
d1

and X2 ∼ PX2 ∈ Pac
d2

are independent,

the rank-based SGSC W
˜

(n)
μ = W

˜
(n)
J1,J2,μ

associated to the GSC μ = μf1,f2,H
m
∗ is asymptoti-

cally equivalent to its oracle version W
(n)
μ , that is, W

˜
(n)
μ − W

(n)
μ = oP(n−1) as nR, nS → ∞.

THEOREM 5.2. The conclusion of Theorem 5.1 still holds with (5.6) replaced by

(5.7) fk is uniformly bounded, and almost everywhere continuous, k = 1,2.

PROPOSITION 5.2 (Examples). If X1 ∼ PX1 ∈ Pac
d1

is independent of X2 ∼ PX2 ∈ Pac
d2

and J1, J2 are weakly regular, then the kernel functions from Example 2.1(b)–(e) satisfy (5.1),
(5.4), and (5.7). If, moreover, J1, J2 are square-integrable (viz.,

∫ 1
0 J 2

k (u)du < ∞ for k =
1,2), then (5.1), (5.4), and (5.6) hold also for the kernels in Example 2.1(a).

COROLLARY 5.1 (Limiting null distribution). Suppose the conditions in Proposition 5.1
and Theorem 5.1 hold. Then, for μ = μf1,f2,H

m
∗ with m ≥ 4, under the hypothesis H0 that

X1 ∼ PX1 ∈ Pac
d1

and X2 ∼ PX2 ∈ Pac
d2

are independent,

(5.8) nW
˜

(n)
μ = nW

˜
(n)
J1,J2,μf1,f2,Hm∗

�

∞∑

v=1

λμ,v

(
ξ2
v − 1

)

with [λμ,v]∞v=1 and [ξv]∞v=1 as defined in Proposition 5.1.

REMARK 5.1. Corollary 5.1 gives no rate, that is, no Berry–Esséen type bound for the
convergence in (5.8). Indeed, deriving such bounds in the present context is quite challenging.
Results for the univariate case with d1 = d2 = 1 were established for simpler statistics such as
Spearman’s ρ and Kendall’s τ by Koroljuk and Borovskich ((1994), Chapter 6.2) and, more
recently, by Pinelis and Molzon (2016). Extending these results to the multivariate measure-
transportation-based ranks considered here is highly nontrivial and requires properties of
empirical transports that have not yet been obtained. This pertains, in particular, to working
out the rate of convergence in the Glivenko–Cantelli result for the center-outward distribution
function given in (3.2); an open problem in the recent survey by Hallin ((2022), Section 5).

For any significance level α ∈ (0,1), define the quantile

(5.9) qμ,1−α := inf

{
x ∈R : P

( ∞∑

v=1

λμ,v

(
ξ2
v − 1

)
≤ x

)
≥ 1 − α

}
,

where [λμ,v]∞v=1 and [ξv]∞v=1 are as in Proposition 5.1. Let W
˜

(n)
μ be as in Theorem 5.1, and

define the test

T
(n)
μ,α := 1

(
nW
˜

(n)
μ > qμ,1−α

)
.

The next proposition summarizes the asymptotic validity and properties of this test.

PROPOSITION 5.3 (Uniform validity and consistency). Let J1, J2 be weakly regular

score functions, and let μ = μf1,f2,H
m
∗ be a GSC with m ≥ 4 such that Conditions (5.1)

and one of (5.6) and (5.7) hold. Then:

(i) limn→∞ P(T
(n)
μ,α = 1) = α for any P ∈ Pac

d1
⊗Pac

d2
, that is, for X1 and X2 independent

with X1 ∼ PX1 ∈Pac
d1

and X2 ∼ PX2 ∈ Pac
d2

.

(ii) It follows from Proposition 4.2(i) that limn→∞ supP∈Pac
d1

⊗P
ac
d2

P(T
(n)
μ,α = 1) = α.

(iii) If, moreover, the pair of kernels (f1, f2) is D-consistent, J1, J2 are strictly monotone,
and (4.5) holds, limn→∞ P(T

(n)
μ,α = 1) = 1 for any fixed alternative P(X1,X2) ∈ Pac

d1,d2,∞ as

defined in (4.3).
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5.2. Local power analysis. In this section, we conduct local power analyses of the
proposed tests for quadratic mean differentiable classes of alternatives (Lehmann and Ro-
mano (2005), Definition 12.2.1), for which we establish nontrivial power in n−1/2 neighbor-
hoods. We begin with a model {qX(x; δ)}|δ|<δ∗ with δ∗ > 0, under which X = (X1,X2) has
Lebesgue-density qX(x; δ) = q(X1,X2)((x1,x2); δ), with qX1(x1; δ) and qX2(x2; δ) being the
marginal densities. We then make the following assumptions.

ASSUMPTION 5.1.

(i) Dependence of X1 and X2: qX(x; δ) = qX1(x1; δ)qX2(x2; δ) holds if and only if
δ = 0.

(ii) The family {qδ(x)}|δ|<δ∗ is quadratic mean differentiable at δ = 0 with score func-
tion �̇(·;0), that is,

∫ (√
qX(x; δ) −

√
qX(x;0) −

1

2
δ�̇(x;0)

√
qX(x;0)

)2
dx = o

(
δ2) as δ → 0.

(iii) The Fisher information is positive, that is, IX(0) :=
∫
{�̇(x;0)}2qX(x,0)dx > 0; of

note, Assumption 5.1(ii) implies that IX(0) < ∞ and
∫

�̇(x;0)qX(x,0)dx = 0.
(iv) The score function �̇(x;0) is not additively separable, that is, there do not exist func-

tions h1 and h2 such that �̇(x;0) = h1(x1) + h2(x2).

REMARK 5.2. For the sake of simplicity, we have restricted ourselves to one-parameter
classes. Analogous results hold for families indexed by a multivariate parameter δ.

For a local power analysis, we consider a sequence of local alternatives obtained as

(5.10) H
(n)
1 (δ0) : δ = δ(n) where δ(n) := n−1/2δ0

with some constant δ0 �= 0. In this local model, testing the null hypothesis of independence
reduces to testing H0 : δ0 = 0 versus H1 : δ0 �= 0.

THEOREM 5.3 (Power analysis). Consider a GSC μ = μf1,f2,H
m
∗ with m ≥ 4 and ker-

nel functions f1, f2 picked from Example 2.1. Assume that J1, J2 are weakly regular score

functions that satisfy the assumptions of Proposition 5.2. Then if Assumption 5.1 holds, for

any β > 0, there exists a constant Cβ > 0 depending only on β such that, as long as |δ0| > Cβ ,

limn→∞ P{T(n)
μ,α = 1|H (n)

1 (δ0)} ≥ 1 − β .

Following the arguments from the proof of Theorem 5.3, one should be able to obtain
similar local power results for the original (non-rank-based) tests associated with the kernels
listed in Example 2.1. However, to the best of our knowledge, this analysis has not been
performed in the literature, except for d1 = d2 = 1 where results can be found, for example,
in Dhar, Dassios and Bergsma (2016) and Shi, Drton and Han (2022b). We also emphasize
that, although Theorem 5.3 only considers the specific cases listed also in Example 4.1, the
proof technique applies more generally. We refrain, however, from stating a more general
version of Theorem 5.3 as this would require a number of tedious technical conditions.

As a by-product of Theorem 5.3, the following corollary gives the asymptotic distribution
of the test statistic under the local alternative.

COROLLARY 5.2 (Limiting local alternative distribution). Suppose all the conditions in

Theorem 5.3 hold. Then, under the local alternative hypothesis H
(n)
1 (δ0),

nW
˜

(n)
μ �

∞∑

v=1

λμ,v

(
(ξv + δ0γμ,v)

2 − 1
)
,
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where [λμ,v]∞v=1 and [ξv]∞v=1 are as defined in Proposition 5.1,

γμ,v := Cov
[
ψμ,v

(
G∗

1,±
(
X

∗
1
)
,G∗

2,±
(
X

∗
2
))

, �̇
((

X
∗
1,X

∗
2
)
;0
)]

,

in which ψμ,v is the eigenfunction associated with the eigenvalue λμ,v of the integral equation

(5.3), X∗ = (X∗
1,X

∗
2) has the same distribution as X with δ = 0, and G∗

1,± and G∗
2,± denote

the respective population scored center-outward distribution functions of X∗
1 and X∗

2.

Notice that [γμ,v]∞v=1 cannot be all zero, which is ensured by Assumption 5.1(iv), and thus
the limiting local alternative distribution will differ from the limiting null distribution.

Combined with the following result, Theorem 5.3 yields nontrivial power of the proposed
tests in n−1/2 neighborhoods of δ = 0.

THEOREM 5.4. Let Assumption 5.1 hold. Then, for any β > 0 such that α +β < 1, there

exists an absolute constant cβ > 0 such that, as long as |δ0| ≤ cβ ,

inf
T

(n)
α ∈T (n)

α

P
{
T

(n)
α = 0|H (n)

1 (δ0)
}
≥ 1 − α − β

for all sufficiently large n. Here the infimum is taken over the class T
(n)
α of all size-α tests.

Table 1 summarizes our results for the rank-based SGSCs from Example 4.1 by giving an
overview of the five properties listed in the Introduction. It also indicates consistency of the
tests. In all cases, it is assumed that the score functions involved are weakly regular.

5.3. Examples in the quadratic mean differentiable class. This section presents two spe-
cific examples in the quadratic mean differentiable class that satisfy Assumption 5.1. First, we
consider parametrized families that extend the bivariate Konijn alternatives (Konijn (1956)).
These alternatives are classical in the context of testing for multivariate independence and
have also been considered by Gieser (1993), Gieser and Randles (1997), Taskinen, Kankainen
and Oja (2003), Taskinen, Kankainen and Oja (2004), Taskinen, Oja and Randles (2005), and
Hallin and Paindaveine (2008).

Konijn families are constructed as follows. Let X∗
1 ∼ PX∗

1
∈ Pac

d1
and X∗

2 ∼ PX∗
2
∈ Pac

d2
be

two (without loss of generality) mean zero (unobserved) independent random vectors with
densities q1 and q2, respectively. Let PX∗ ∈ Pac

d1+d2
be their joint distribution, qX∗(x) =

qX∗((x1,x2)) = q1(x1)q2(x2) be their joint density. Define, for δ ∈R,

(5.11) X =
(
X1
X2

)
:=
(

Id1 δ M1
δ M2 Id2

)(
X

∗
1

X
∗
2

)
= Aδ

(
X

∗
1

X
∗
2

)
= AδX

∗,

where M1 ∈ Rd1×d2 and M2 ∈ Rd2×d1 are two deterministic matrices. For δ = 0, the ma-
trix Aδ is the identity and, thus, invertible. By continuity, Aδ is also invertible for δ in
a sufficiently small neighborhood � of 0. For δ ∈ �, the density of X can be expressed
as qX(x; δ) = |det(Aδ)|−1qX∗(A−1

δ x), which is differentiable with respect to δ. The follow-
ing additional assumptions will be made on the generating scheme (5.11).

ASSUMPTION 5.2.

(i) The distributions of X have a common support for all δ ∈ �. Without loss of gener-
ality, we assume X := {x : qX(x; δ) > 0} does not depend on δ.

(ii) The map x �→
√

qX∗(x) is continuously differentiable.
(iii) The Fisher information IX(0) :=

∫
{�̇(x;0)}2qX(x;0)dx of X relative to δ at δ = 0

is strictly positive and finite.
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EXAMPLE 5.1.

(i) Suppose X∗
1 and X∗

2 are elliptical with centers 0d1 and 0d2 and covariances �1 and
�2, respectively, that is, qk(xk) ∝ φk(x

�
k �

−1
k xk), k = 1,2, where φk is such that Var(X∗

k) =
�k and E[‖Z∗

k‖2ρk(‖Z∗
k‖2)2] < ∞, k = 1,2 where Z∗

k has density function proportional to
φk(‖zk‖2) and ρk(t) := φ′

k(t)/φk(t). Then Assumption 5.2 is satisfied for any M1, M2 such
that �1M�

2 + M1�2 �= 0.
(ii) As a specific example of (i), if X∗

1 and X∗
2 are centered multivariate normal or follow

centered multivariate t-distributions with degrees of freedom strictly greater than two, then
Assumption 5.2 is satisfied for any M1, M2 such that �1M�

2 + M1�2 �= 0.

Next, consider the following mixture model extending the alternatives treated in Dhar,
Dassios and Bergsma ((2016), Section 3). Let q1 and q2 be fixed (Lebesgue-)density functions
for X1 an X2, respectively. The joint density of X = (X1,X2) under independence is q1q2.
Letting q∗ �= q1q2 denote a fixed joint density, mixture alternatives indexed by δ ∈ [0,1] are
defined as qX(x; δ) := (1 − δ)q1q2 + δq∗.

ASSUMPTION 5.3. It is assumed that:

(i) (1 + δ∗)q1q2 − δ∗q∗ is a bonafide joint density for some δ∗ > 0;
(ii) q∗ and q1q2 are mutually absolutely continuous;

(iii) the function δ �→
√

qX(x; δ) is continuously differentiable in some neighborhood
of 0;

(iv) the Fisher information IX(δ) :=
∫
(q∗ − q1q2)

2/{(1 − δ)q1q2 + δq∗}dx of X relative
to δ is finite, strictly positive, and continuous at δ = 0;

(v) �̇(x;0) = q∗(x)/{q1(x1)q2(x2)} − 1 is not additively separable.

EXAMPLE 5.2. If qk(xk) = 1 for xk ∈ [0,1]dk , k = 1,2, and q∗(x) �≡ 1 is continuous
and supported on [0,1]d1+d2 , then Assumption 5.3 holds.

PROPOSITION 5.4. Assumption 5.1 is satisfied by the Konijn alternatives under Assump-

tion 5.2, and by the mixture alternatives under Assumption 5.3.

5.4. Numerical experiments. Extensive simulations of Shi, Drton and Han (2022a) give
evidence for the superiority, under non-Gaussian densities, of the Wilcoxon versions of our
tests over the original distance covariance tests. That superiority is more substantial when
non-Wilcoxon scores, such as the Gaussian ones, are considered (Figure 4). In view of these
results, there is little point in pursuing simulations with non-Gaussian densities, and we in-
stead focus on Gaussian cases (Figures 1–3) to study the impact on finite-sample performance
of the dimensions d1 and d2, sample size n, and within- and between-sample correlations.

EXAMPLE 5.3. The data are a sample of n independent copies of the multivariate normal
vector (X1,X2) in Rd1+d2 , with mean zero and covariance matrix �, where

�ij = �ji =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, i = j,

τ, i = 1, j = 2,

ρ, i = 1, j = d1 + 1,

0, otherwise.

Here τ characterizes the within-group correlation and we consider (a) τ = 0, (b) τ = 0.5, and
(c) τ = 0.9. Independence holds if and only if ρ, a between-group correlation, is zero.
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FIG. 1. Empirical powers of the five competing tests in Example 5.3(a) (τ = 0, no within-group correlation).
The y-axis represents rejection frequencies based on 1000 replicates, the x-axis represents ρ (the between-group

correlation), and the blue, green, red, gold, and grey lines represent the performance of (i) Szekely and Rizzo’s

original distance covariance test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi–Dr-

ton–Han’s center-outward Wilcoxon version of the distance covariance test, (iv) the center-outward normal-score

version of the distance covariance test, and (v) the likelihood ratio test, respectively.

EXAMPLE 5.4. The data are n independent copies of (X1,X2) with X1i =
Qt (1)(�(X′

1i)) and X2j = Qt (1)(�(X′
2j )) for i ∈ �d1� and j ∈ �d2�; here Qt (1) denotes the

quantile function of the standard Cauchy distribution and (X′
1,X

′
2) is generated according to

Example 5.3(b).

We compare the empirical performance of the following five tests:

(i) permutation test using the original distance covariance (Székely and Rizzo (2013));
(ii) permutation test applying original distance covariance to marginal ranks (Lin (2017));

(iii) center-outward rank-based distance covariance test with Wilcoxon scores and critical
values from the asymptotic distribution (Shi, Drton and Han (2022a));

(iv) new center-outward rank-based distance covariance test with normal scores and crit-
ical values from the asymptotic distribution;
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FIG. 2. Empirical powers of the five competing tests in Example 5.3(b) (τ = 0.5, moderate within-group cor-

relation). The y-axis represents rejection frequencies based on 1000 replicates, the x-axis represents ρ (the be-

tween-group correlation), and the blue, green, red, gold, and grey lines represent the performance of (i) Szekely

and Rizzo’s original distance covariance test, (ii) Lin’s marginal rank version of the distance covariance test,
(iii) Shi–Drton–Han’s center-outward Wilcoxon version of the distance covariance test, (iv) the center-outward

normal-score version of the distance covariance test, and (v) the likelihood ratio test, respectively.

(v) likelihood ratio test in the Gaussian model (Anderson (2003), Chapters 9.3.3 and
8.4.4).

The parametric test (v) is tailored for Gaussian densities and plays the role of a bench-
mark. Unsurprisingly, in the Gaussian experiments in Figures 1–3, it uniformly outperforms
tests (i)-(iv). See Figure 4 for its unsatisfactory performance for non-Gaussian densities.

Figures 1–4 report empirical powers (rejection frequencies) of these five tests, based
on 1000 simulations with nominal significance level 0.05, dimensions d1 = d2 ∈ {2,3,5,7},
and sample size n ∈ {216,432,864,1728}. The parameter ρ in the true covariance matrix
takes values ρ ∈ {0,0.005, . . . ,0.15}. The critical values for tests (i) and (ii) were computed
on the basis of n random permutations. For tests (iii) and (iv), to determine the critical values
from the asymptotic distribution given in Corollary 5.1, we numerically compute the eigen-
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FIG. 3. Empirical powers of the five competing tests in Example 5.3(c) (τ = 0.9, high within-group correlation).
The y-axis represents rejection frequencies based on 1000 replicates, the x-axis represents ρ (the between-group

correlation), and the blue, green, red, gold, and grey lines represent the performance of (i) Szekely and Rizzo’s

original distance covariance test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi–Dr-

ton–Han’s center-outward Wilcoxon version of the distance covariance test, (iv) the center-outward normal-score

version of the distance covariance test, and (v) the likelihood ratio test, respectively.

values by adopting the same strategy as in Shi, Drton and Han ((2022a), Section 5.2); see
also Lyons ((2013), page 3291).

It is evident from Figure 4 that, in non-Gaussian experiments, the potential benefits of
rank-based tests are huge, particularly so when Gaussian scores are adopted (note the very
severe bias of the Gaussian likelihood ratio test as d increases). In Gaussian experiments, the
performance of the normal score–based test (iv) is uniformly better than that of its Wilcoxon
score counterpart (iii); that superiority increases with the dimension and decreases with the
within-group dependence τ . The superiority of both center-outward rank-based tests (iii) and
(iv) over the traditional distance covariance one and its marginal rank version is quite signif-
icant for high values of the within-group correlation τ .

The way the normal-score rank-based test (and also the Wilcoxon-score one) outperforms
the original distance covariance test may come as a surprise. However, the original distance
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FIG. 4. Empirical powers of the five competing tests in Example 5.4. The y-axis represents rejection frequencies

based on 1000 replicates, the x-axis represents ρ (the between-group correlation), and the blue, green, red, gold,
and grey lines represent the performance of (i) Szekely and Rizzo’s original distance covariance test, (ii) Lin’s

marginal rank version of the distance covariance test, (iii) Shi–Drton–Han’s center-outward Wilcoxon version of

the distance covariance test, (iv) the center-outward normal-score version of the distance covariance test, and

(v) the likelihood ratio test, respectively.

covariance does not yield a Gaussian parametric test but rather a nonparametric test for which
there is no reason to expect superiority over its rank-based versions in Gaussian settings. In
a different context, we have long been used to the celebrated Chernoff–Savage phenomenon
that normal-score rank statistics may (uniformly) outperform their pseudo-Gaussian counter-
parts (Chernoff and Savage (1958)). This is best known in the context of two-sample location
problems; see, however, Hallin (1994), Hallin and Paindaveine (2008), and Deb, Bhattacharya
and Sen (2021) for Chernoff–Savage results for linear time series (traditional univariate ranks
and correlogram-based pseudo-Gaussian procedures) and vector independence (Mahalanobis
ranks and signs under elliptical symmetry and Wilks’ test as the pseudo-Gaussian procedure;
measure-transportation-based ranks under elliptical symmetry or independent component as-
sumptions). Although the present context is different, their superiority is another example in
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which restricting to rank-based methods brings distribution-freeness at no substantial cost in
terms of efficiency/power.

6. Conclusion. This paper provides a general framework for specifying dependence
measures that leverage the new concept of center-outward ranks and signs. The associated
independence tests have the strong appeal of being fully distribution-free. Via the use of a
flexible class of generalized symmetric covariances and the incorporation of score functions,
our framework allows one to construct a variety of consistent dependence measures. This, as
our numerical experiments demonstrate, can lead to significant gains in power.

The theory we develop facilitates the derivation of asymptotic distributions yielding easily
computable approximate critical values. The key result is an asymptotic representation that
also allows us to establish, for the first time, a nontrivial local power result for tests of vector
independence based on center-outward ranks and signs.
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