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Abstract—This paper proposes the use of the Short-Time
Matrix Pencil method (STMPM) technique and Graph Neural
Network (GNN) for fault location in active distribution feeders
based on an emerging class of sensors, known as Waveform Mea-
surement Units (WMUs). WMUs record synchronized voltage
and current waveforms in the time domain with high sampling
rates. The proposed fault location framework consists of two
stages. In the first stage, STMPM is adopted to capture the
dominant modes of the transient changes of WMUs’ sinusoidal
signals due to faults in different locations of the distribution
grid. The second stage is to use a grid-informed GNN model to
identify the fault location and type using the captured features
of the signal before, during, and post-fault with STMPM. GNN
can capture the spatial-temporal relationship between data from
different sensors in different locations to enhance situational
awareness and fault location accuracy. The proposed method is
examined on a modified IEEE network with distributed energy
resource (DER) and for transient symmetrical and asymmetrical
faults under different loading, DER generation level, noises, and
sensors’ sampling rate conditions. The results show the merits
of the proposed two-stage fault location framework compared
to the conventional approaches; while a challenging problem is
addressed in active distribution grids.

Index Terms—Active distribution networks, Fault location,
Short-Time Matrix Pencil Method, Graph Neural Network,
Waveform Measurement Units.

I. INTRODUCTION

OWER distribution grids can experience various types of

faults that cause outages of power supply, endangering
safety, and apparatus failures [1]. It is crucial to locate these
faults and identify their types for finding the vulnerable points
of the grids for future maintenance or performing restoration
quickly by clearing the cause of faults in the detected location.
Therefore, an efficient fault locator would enhance reliability
and situational awareness in power distribution grids. On
the other hand, the proliferation of distributed energy re-
sources (DERs) at the distribution level increases the need
for equipping grids with more advanced measurement devices
such as phasor measurement units (PMUs) and waveform
measurement units (WMUs) for better monitoring and control
[2], [3]. Thus, the recorded data by these emerging sensors
provide an opportunity to develop more accurate fault location

and event analysis tools.
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A. Motivation and Challenges

Transient faults, known as short-duration faults, happen
in distribution grids frequently due to several reasons, such
as incipient faults. An incipient fault happens because of
damaging insulation of grid components, animal and tree
contacts, and weather conditions [4]. Incipient faults have self-
clearing capability within a short period of time, varying from
sub-cycle (a quarter of a cycle) to multi-cycles (four cycles)
[5]. Since the duration of these faults is very small, it is very
challenging to identify the location of these faults and perform
proper maintenance actions to prevent the future permanent
and catastrophic faults. Localization of such challenging in-
cipient faults and similar transient faults have motivated us
to use synchronized waveform measurements provided by an
emerging class of sensors named WMUs [6]. A high sampling
rate of WMUs, which can go up to 256 samples-per-cycle and
even higher [7], enables the grid operators to monitor sudden
changes in voltages and currents [2]. In sharp contrast, phasor
measurement units (PMUSs), which were previously used at
transmission-level [8], [9], and now are becoming popular in
distribution grids for increasing situational awareness [10],
have much slower sampling rate to capture transient events
in a very short period of time. The sampling rate of PMUs
are ranging from 30 to 120 samples-per-second [11], meaning
that PMUs can record at most 2 samples per cycle which
are remarkably less than 256 recorded samples of WMUs
in each cycle. Therefore, sudden changes of signals due to
transient faults or events, recorded by PMUs, may not contain
all the required information for proper event analysis in a
short period of time and may be seen as a normal event
or variation [12]. Additionally, it is worth mentioning that
other faults with a longer duration of time or permanent faults
without self-clearing features are required to be studied and
located, as they can cause catastrophic consequences for the
grids and endanger safety if they are not cleared within a
short time by protection devices. Therefore both transient and
permanent/longer duration faults are located and identified in
this study.

Furthermore, realizing the spatial correlation of sensors can
be beneficial in improving fault location accuracy [13]. This
correlation can be captured by physics-informed graph-based
approaches containing the physical distance metrics of WMUSs
as well as temporal information of signals such as voltage or
current measurements in each node or location. Due to the



high sampling rate of WMUs, the length of the raw data
will be large and contain unnecessary and redundant infor-
mation, which increases the computation time significantly
and requires expensive resources for handling such large data
sets. Moreover, the long duration of the data stream, especially
before and after faults may not contain useful information to
improve the performance of fault location. Even during a fault,
the sudden changes may be interpreted as noise on raw data,
and therefore a robust feature-extracting approach is crucial to
characterize the transient events and recognize the meaningful
oscillations due to faults. Furthermore, these WMU sensors are
expensive devices, and distribution grids may only be equipped
with a few of them. The scarcity of WMU data is then another
challenge considered in this paper.

B. Related studies

Research studies on the classification and localization of
faults in distribution networks are classified into three groups
such as model-based, data-driven-based, and hybrid physics-
aware data-driven approaches. Authors in [14] propose an
impedance-based approach in which the fundamental phasor
elements of signals are implemented for narrowing down
the potential faulty nodes list. Then, the authors use search-
based techniques to find the fault location(s) using the voltage
changes on various monitored buses of distribution systems.
The proposed study in [15] applies traveling wave-based
techniques, using the reflected monitored waves from different
locations for identifying faulty regions. This technique needs
ultra-high sampling rate sensors for measurement, which are
emerging in distribution systems. The fault classification and
localization problems are addressed in [16] using a limited
number of PMU data and a convolution neural network
algorithm to enhance the resiliency of the grid.

Different model-based and data-based approaches have been
proposed for locating and classifying transient and incipient
faults in distribution networks. Reference [2] implements
Prony modal analysis to extract the modes of raw signals
captured by WMUs. The obtained modes are then used for
building circuits to locate transient faults and events. However,
methods focusing on circuit-based analysis and modeling
can be a challenging option considering the complexity of
the three-phase unbalance networks equipped with different
devices, mutual impedance, and randomness of the events.
As for data-driven model studies, human-level concept learn-
ing is adopted in [17] to decompose waveform signals into
residuals and segments of the shape. Then, the probabilistic
learning-based technique is used to classify the incipient faults.
This problem does not focus on the event location, and the
physics of the grid is neglected in the identification process.
In a recent study, a short-time Fourier transform (STFT)
and dual-channel CNN classifier are proposed to identify the
cause of different faults with waveform data [18]. In [19],
an early fault identification technique is presented using the
Siamese temporal graph network in passive distribution grids.
This technique converts the waveform data into a temporal
graph network model for classifying the fault types and other
transient events such as load and capacitor switching. The
problem does not focus on the localization of the events in

active grids, and the network topology is not included in the
proposed algorithm. In most of the data-based models, the
physical characteristics of the grid are ignored, unlike the
model-based problems. Recently, a network-aware data-driven
model called graph neural network (GNN) has been proposed
[20] which can link the gaps between data-based and model-
based studies for fault location and classification problems. In
[21] and paper [13], GNN is used for localizing fault in passive
and active distribution systems using phasor measurement
data, respectively. GNN is also applied for PMU-based event
classification [22], [23] and clustering [24] in distribution
systems. However, the current studies have not investigated
the emerging WMU sensors and precise feature extraction
techniques for handling the high-resolution waveform data
besides the application of graph-based learning methods in
power distribution feeders.

C. Contributions

This paper proposes an efficient feature extraction tech-
nique, named the short-time matrix pencil method (STMPM),
and a network-aware GNN model for identifying the fault
location and type in active distribution networks using the
recorded synchro waveform data. The contributions of the
proposed study are listed as follows:

e This paper mainly addresses the challenging transient
fault location problem. This is challenging as transient
faults occur in a short period of time, e.g., one cycle,
and usually have the self-clearing ability, making them
hard to detect. Permanent faults are also located using the
proposed study, which are instantly more life-threatening
and hazardous for grid equipment.

e The Syncro waveform voltage information is captured
by a high-sampling rate emerging class of sensors in
active distribution grids, before and after the occurrence
of faults. The feature extraction technique, STMPM, de-
composes the high sampling rates of WMUSs in a sliding
window into dominant modes consisting of damping
factors and angular frequencies. Unlike the matrix pencil
method (MPM), STMPM captures oscillations over the
sliding time window at each snapshot of the data stream
and records the dominant modes in each snapshot [25].

o Graph neural network (GNN) is implemented in the
fault location stage by capturing the spatial correlation
of WMU data in the limited number of nodes across
the distribution feeders. The proposed GNN incorporates
the physical characteristic of the power network as a
weighted graph with nodes containing the sensor data.
This method links the pure data-driven method with
grid-aware analysis for enhancing the fault location and
classification accuracy.

Therefore, unlike our previous study presented as a poster
in the Electrical safety workshop (ESW), which focused on
fault location problems with GNN and PMU data, this paper
addresses the same graph-based fault location problem with
a focus on synchro waveform data and STMPM feature
engineering approach. The rest of the paper is organized as
follows. Section II explains the feature engineering method.
Section III discusses the grid-informed model. Case studies



and simulation setup are explained in Section IV. Section
V and VI present the numerical experiments and discussion,
respectively. Section VII concludes the study.

II. FEATURE ENGINEERING OF MEASURED SIGNALS

The space vectors of a three-phase voltage signal are in (1)
where the real and imaginary terms correspond to « and 3
elements of the Clark transform. To simplify a three-phase set
of voltage signals and analyze their instantaneous behavior,
the space vectors are well-suited. Under the occurrence of
events, Y (¢t) and Z(t) show distorted ellipse in the complex
plane, that can be used for models using image-based fault
or event classification with CNN [12], [26]. However, each
of these terms (Y'(¢) and Z(t)) also contains information on
the original three phases observed by WMU sensors. Thus,
the real part of space vectors is used as a time-based signal
in our analysis [27] not only to shrink the data dimension for
reducing computational time but to capture the distortion in
all three-phase voltage signals together all in an informative
signal Y.

-2

[va®) + & Fap(t) + ¢/ T ue®] )

A. Theoretical Background of Signal Reconstruction

The signal in a period 7' is defined by a summation of
sinusoidal terms in the Fourier series as given in (2). In (2),
Y (t) is expanded by sinusoidal terms with residues W;/Z6;
considering the period of 7T'. Also, IV represents the number of
terms that need to be considered for reconstructing the signal
Y'(t), and i is the term number.

N
Y(t) =) W cos(2mi % +6;) 2)
=1

Equation (2) can be represented in a different way as (3),
considering f = % w; = 2im f and the summation of damped
sinusoidal terms.

N
Y(t) = Z U, e cos (w;t + 0;) 3)

i=1

In (3), o; is damping factor in sec™! and w; is angular
speed in rad.sec™!, which are real and imaginary parts of
the complex frequency «; *+ jw;, respectively. If a; = 0,
equations (2) and (3) are equal Vi. Different methods are used
for determining complex frequencies and residues in equation
(3), including Prony [28] and matrix pencil method (MPM)
[29], but MPM demonstrates better results [29], [30].

It is common that a signal restricted within a sliding window
to be defined with a few terms. A portion of the voltage signal
is shown in Fig. 1 in a window with the length of T),,. T}, is
equal to one power cycle and the recorded signal by WMUs
consists of 5 cycles. The window moves along the sample axis
and in each snapshot, the MPM is applied to capture all signal
features within the window. This method is called STMPM,
deriving the time-indexed complex frequencies [31].
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Fig. 1. Sinusoidal signal and sliding window

B. STMPM Formulation

The mathematical representation of STMPM is discussed
in this sub-section [32]. The matrix X is formed using the
samples in an N-sample sliding window, proposed as:

_ Y (1) Y (2) Y (P + 1)_
Y (2) Y (3) .. Y(P+2)
X = (4)
Y(N-P) Y(N-P+1) Y(N)

where N denotes the number of samples in the window,
Y'(.) indicates the samples, P is the pencil parameter selected
between N/3 to N/2 for filtering the noise [29]. The dimension
of X is (N — P) x (P 4 1). A singular-value decomposition
(SVD) is applied to the matrix X as follows:

Z=XX" V=X"X 5)
X=U, > U (6)
where (.)" and U denote complex conjugate and a unitary

matrix comprising eigenvectors, respectively. > shows a di-
agonal matrix with the singular values of X, and the 74 is
considered to select the dominant singular values as follows:

< (N

where « is the filtering factor, n4 and 7,4, show the dominant
and maximum singular value, respectively [29]. The columns
of Y indicating the dominant singular values are stored and
the remaining columns are omitted. As a result, the reduced
matrix is named Z' [32]. Moreover, U, is reduced to U,
by keeping its columns associated with the dominant singular
values and omitting the the rest of the columns [29]. Then, new
matrices Xjqs¢ and X ;.5 are obtained, defined as follows:

Xpoo =Uz D UM Xy =U, Y UM, (8)

where Uy ,,., is calculated by omitting the last row of U,
and Uy ., is driven by deleting the first row of UJ,. In the
next step, the eigenvalues of Xlt X firse are obtained, and

()T represents Moore—Penrose pseudoinverse. The relation

Nmax 10
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Fig. 2. Extracting modal features such as damping factor and angular frequency from the raw (sinusoidal) data

between the complex frequencies and eigenvalues is defined

as follows [29]:
N =eCoitiw)Ta yi=12... m 9)

where T shows the sampling period and ); is the eigenvalues.
In each snapshot, the complex frequencies are represented as
(10) after the calculation of the eigenvalues [32].

(67} (t) + jwi (t) = _ln(AZ)/TS ) Vi = 1,2,

The steps described in (4)—(10) are repeated for each sensor
in each snapshot.

;m - (10)

C. Feature selection of WMU data

Modal analysis is conducted using STMPM on WMU data
to characterize the dynamics of the distribution grids during
the faults. A set of features consisting of modes with damping
factors and angular frequencies and the corresponding residues
for each of the modes is obtained. In order to distinguish
the fault location, it is important to use the most informative
features among all calculated features in each sliding window
and the corresponding modes and residues. To this end, several
steps are defined as follows to reduce the number of features
into a manageable number for each sensor, defined as a new
subset of the feature vector.

o Calculating the dominant modes and corresponding
residues of the signal in each snapshot captured by the
sliding window. This is done by forming matrix X and
applying SVD on it as explained in Section II. In this
study, the length of the window is assumed to be one
cycle, and the step size of sliding over the signal is 10%
of the window’s length. Also, filtering factor & is set on
3, and P is selected to be 83 as the pencil parameter
based on the defined ranges.

o Selecting the mode that has the highest residue in each
snapshot compared to the obtained modes. The damping
factor and angular frequency of this selected mode are
stored in the sub-set feature vector of each WMU.

o Continuing to store the modes’ information until the
sliding window passes the last sample of the signal, here
is at the end of 5 cycles. At this point, a stream of data
consisting of damping factor and angular frequency is
obtained for each sensor with a shorter length and more
informative information compared to the raw sinusoidal
WMU data.

The illustrative example of mode decomposition using
STMPM for raw signals captured from three WMU sensors is
shown in Fig. 2. The asymmetrical ABG fault occurs where
sensor 3 is located in the IEEE 13-bus system. As shown in
this figure, the damping factor and angular frequency observed
by WMU 3 have more significant variations compared to other
sensors because fault causes more oscillations and creates new
modes where it happens and in the adjacent area. For instance,
the base fundamental angular frequency is roughly 377 ~ 27
60 Hz, but during the fault, it raises to more than 1200 Hz. It
also reaches zero, showing the constant behavior of sinusoidal
signal instantly after occurring fault in the limited points. The
feature dimension associated with each sensor reduces to 104
= 52 features for damping factor and 52 features for angular
frequency, which are less than 10% of the original feature
dimension on raw data. The obtained features contain more
informative and useful information for fault location as they
contain the dynamic responses of the grid under the event.

III. GRID-INFORMED DATA-DRIVEN MODEL

The topology of a distribution grid with installed WMU s is
represented as a graph consisting of edge and nodal signals.
The nodal information refers to the sensors’ recorded data
such as voltage and current, and the edge information is
related to the physical characteristic of grid lines and their
connectivity status. The grid-informed GNN enables us to
process the feature nodes and grids into the graph convolution
layers (GCNs). These layers are the substantial parts of the
GNN structure. Two spatial and spectral convolution models
are defined [33]. In a spatial model, driven by convolution
networks, the information is aggregated from adjacent nodes
of a particular node throughout the graph. Moreover, the
input data must be in a single-dimension stream of data
or two-dimension regular figures for convolution networks.
Nevertheless, the conventional convolution network lacks a
theoretical basis and cannot be implemented on a signal with
spatial features [20]. However, the spectral-based convolution
provides the chance to aggregate the spatial features more
efficiently even on irregular shapes and graphs because of the
strong theoretical basis in signal processing [20], [33]. The
background and detailed explanations of the proposed grid-
informed method are scrutinized in the following sections.



A. Theory of graphs

In this study, the distribution network is defined as an
undirected graph G = (M, H, A), where M is the set of
nodes, H shows the set of edges, and the adjacency matrix
of G is given as A. A typical element of adjacency matrix A,
showing the relationship between nodes n and m, is l,,,,,. The
element has weighted and zero values if the connection exists
and if it does not exist, respectively.

The adjacency matrix A describes the spatial relationship
between the measurement devices in various locations. The
weighted values are considered to indicate the correlation
strength of the nodes and sensors recording system states.
Nodes with stronger correlations, have larger l,,,,. For in-
stance, the closer nodes have a higher correlation and are
affected somehow correspondingly under the occurrence of
a fault in distribution grids. Thus, a distance-based metric is
given as l,, = 1/dym, where d,,,, defines the geographical
distance of two nodes [22]. The inverse relationship between
the edge weights and the distance implies that closer distances
of nodes correspond to higher correlation among them, which
is a reasonable realization of fault analysis in power systems.
Additionally, D is the diagonal degree matrix for the graph,
showing the number of nodes connected to the corresponding
node.

B. Graph convolution network

Multiplication of signal z, containing node voltages, with a
parameterized filter by is the spectral convolution in the Fourier
domain. The convolution of the graph is defined as (11),
where U contains the eigenvectors of the normalized Laplacian
graph L as (12). The eigen decomposition performed on the
normalized Laplacian graph L is shown in (13). In (13),
P = diag (A1,A2,A3, - - - ,\,) has ordered positive eigenvalues
in a diagonal fashion.

bgxz=UbgUT 2 (11)
L=I-D9%4Ap05 (12)
L=UaUT (13)

The convolution operation on the graph, indicated in (11),
has computational burden [20]. To alleviate this problem, by
which is a function of eigen values as by(P) can be de-
fined approximately with the truncated Chebyshev polynomial
expression with P order as (14) [34]. This simplification
stabilizes the training process in filters [33]. Also, Chebyshev
coefficients are represented in vector 0/, and the re-scaled
representation of the eigenvalues is defined as (15). In (15),
Amae indicates the maximum eigenvalue of L.

P

(@)~ ) 0,T,(P) (14)
p=0

D=2/ Mpae X P -1 (15)

The Chebyshev polynomials are defined recursively as
T,(q) = 2yTp—1(q) — Tp—2(q) [34]. The convolution of
the filter and signal is simplified as (16), considering the

(UUT)? = U @ U™ property. In this equation, the scaled
Laplacian matrix L is defined as (17).

P P
by x 2~ UY 0T, UT2=>"0,T,(L)z  (16)
p=0 p=0
L=2/Amae x L—1T A7)

The order of (16) is P'", meaning that it is P-localized
and depends on maximum P adjacent nodes of the particular
node [33]. In the next section, it is discussed about the optimal
order of Chebyshev terms.

C. Reformulation of graph convolutions

The equation given in (16) is approximated by setting P
equal to 1, considering the first two terms of the formula-
tion [20]. Since the first terms of the truncated Chebyshev
polynomials are as Tp(g) = 1 and T1(g) = ¢, the obtained
equation is a linear function of matrix L. It is discussed in [20]
that this approximation helps us to design a deeper structure
having less complexity compared to conventional models
[33], and reduces the over-fitting. Moreover, the convolution
on the graph is further simplified with \,,,, = 2, so the
reformulation of (16) is represented as follows:

boxz~0(+D"AD %)~ (18)

The coefficients of Chebyshev formulation are approximated
with a single parameter 6 = by = - 61, representing the first
and second terms. The eigenvalues’ range in I+D -5 AD~95
is defined as [0, 2], which causes vanishing gradients. A re-
normalization method is adopted to compensate the draw-
back of equation (18) [20]. The final representatlon of GNN

convolut10n is proposed in (19), where A =T+ A, and
=2 A, are used.
box 2~ 0(DOAD™%) 2 (19)

Equation (19) is then generalized by considering matrix
ZeRN*M jnstead of z vector as (20). The stream of data has
M features recorded by WMUs (before and after occurring
fault). The matrix Q € RM*@ represents the parameter of
filters with () feature maps, and graph convoluted signals are
given in matrix G.

G=(D"AD™ %)z (20)

D. Proposed GNN framework

The GNN structure with two GCN layers is given in (21).
W) ¢ RMXP i the input of weight matrix with P feature
maps, as shown in (21). Furthermore, W () € RP*@ represents
the weight matrix in the GCN layer.

GCN layers can store the average weighted data of sensors
located on different nodes of the graph. The GCN outputs
are passed by the last linear layer preceding the classifier,
and the obtained values are given to the softmax, known as
the multi-class classifier, represented as (22). Here, V' is the
weight matrix in the linear layer, which gives F' to the softmax
classifier. The classifier specifies the label vector Y which is
the fault location using (22). Additionally, the cross-entropy



loss function is selected in this model [20]. The parameters are
optimized in the GNN model using the iterative-based back-
propagation algorithm. The loss function is optimized using
the updated parameters with respect to the predicted Y and
actual labels.

G = AReLU(AZWO)yw®
Y = softmax(F(G,V))

21
(22)

E. Fault Location Problem

The STMPM and GNN are deployed for the two-stage
feature engineering and fault location problem, as shown in
Fig. 3. The feature selection stage is adopted to extract the
modal data of raw signal recorded by sensors in various
locations before, during, and after the occurrence of fault.
The modal information represents the dynamic response of the
grid against the fault. The selected informative data, which
are damping factors and angular frequencies combined with
the topological characteristics of the grids are considered as
the input of the GNN, set in the second stage. Note that
the weighted adjacency matrix includes the grid features such
as lines’ connectivity status, distance-based feature of lines,
and the correlation strength of nodes including sensors. The
selected modal features, containing the dynamic response of
the grid, are ordered in matrix Z € RNXM where N shows
the number of nodes in the network and M is the length of the
selected features from WMUs. £k nodes out of all N nodes are
equipped with WMU s, indicating the scarce data availability
in this analysis due to the high costs of these sensors. The
feature vector of each sensor contains an informative short
stream of damping factors and angular frequencies obtained
by STMPM on the sinusoidal voltage signal.

The engineered features of raw data are given to the
GCN layers. The rectified linear activation unit (ReLU) is set
between GCNs. The mean pooling is performed after by the
GCN layer to improve the localization accuracy. Additionally,
a dropout layer is set for preventing overfitting. The output of
the GCN layer is sent to the final linear layer preceding the
softmax classifier. The Pytorch Geometric library is used to
prepare the GNN framework [35].

IV. CASE STUDY AND SIMULATION SETUP

The proposed model is evaluated on the modified IEEE
13-bus network to locate the faults, as shown in Fig. 4. The
test system’s nodes are labeled for this problem, and a non-
dispatchable DER with a total capacity of 1 MW is added to
bus 6. The synchronous generator is used as the DER in this
simulation performed in PSCAD software [36], and is adjusted
to operate as a non-dispatchable generation unit.

Also, three WMUs with a sampling rate of 256 per cycle
are assumed to be installed at nodes 1, 6, and 8. The waveform
signals observed in three nodes are recorded from the PSCAD
simulation automated by Python interface considering various
loads, DER generation, fault type, fault location, and fault
impedance scenarios to prepare a realistic data-set under
different operational conditions. To be more specific, the
conditions are created by different DER power generation

varying between 10% to 130% of the base capacity and loads
changing from 80% to 130% of the base load to consider
their stochastic behavior during different time slots [37]. Also,
several symmetric and asymmetric faults are simulated in six
locations. The impedance of faults is 0.01, 1, and 10 ohm.
It needs to be noted that 6 different labels corresponding to
different fault locations are considered, as shown in Fig. 4
with red-colored nodes and we are trying to find the location
of these faults using STMPM and GNN. However, we have
access to the raw and high sampling rate data of just three
nodes due to the scarcity of WMU measurements. Therefore,
the grid’s topological feature and modal dynamic information
of sensors are used in the proposed two-stage technique shown
in Fig. 3 to tackle these challenges.

It is important to set up the model efficiently. In this
regard, two GCN layers with 128 channels are set for GNN
model [20], followed by a linear layer with 256 hidden nodes.
The dropout rate is 0.5, and the learning rate of the Adam
optimizer is selected to be 0.001. The batch size is adjusted
at 8, and the maximum epoch number is 100 or 150. 70 %
of data is used for training, 15% for validation, and 15%
is considered for testing the model. The parameters of the
STMPM are adjusted based on the approach discussed in
II-C. All parameters are selected based on the search-based
experiments and our previous studies [22] to get better results
and reduce the computation time.

V. RESULTS AND ANALYSIS

In this section, the proposed model is tested under different
cases to locate the fault. A comprehensive comparison is also
presented to show the competence of proposed methods.

A. Base case

In this section, 4320 scenarios are simulated for fault
location considering the aforementioned conditions. Then,
STMPM is adopted to extract the crucial features for fault
localization. To evaluate the performance of the fault local-
ization, the macro-average F1 (M-F1) score is also reported
as (23). F1 score is defined through the harmonic mean of
precision (PRE) and recall (REC) for each class . The class
set is shown with R. PRE indicates the classifier’s ability for
predicting true positives (TPs) in class & among all TPs and
predicted false positives (FPs) in the related label. The macro
average of PRE (M-PRE) is defined as (24). Moreover, REC
shows the classifier’s performance in predicting TPs in class &
between all TPs and false negatives (FNs) corresponding to the
3. In (25), the macro average of REC (M-REC) is defined for
multiple classes. The accuracy and M-F1 score for this case
study are 100% and 100%, respectively. Note that different
transient symmetrical and asymmetrical faults with 1 cycle
duration, known as challenging events, happen in the active
network and the proposed method locates them precisely. All
scores are calculated using the average of four independent
training processes for this case and the following case studies.

R 9 PREg * RECq

M-—F =
' & R« (PREs + RECs)

(23)
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B. Noisy data

The streamed waveform data of sensors may be affected by
noises, reducing the quality of the signals and making the fault
location analysis more challenging. To evaluate the robustness
of the proposed method against the noisy data, this section
addresses the localization problem considering different levels
of signal-to-noise ratios (SNR). The extracted features with
different fault impedance as 0.01, 1, and 10 ohms are stored
for testing the method. As shown in Table III, by reducing
the SNR to 15 as the worst scenario, the accuracy and M-
F1 score decrease to 77.58% and 78.46%, respectively. This
is due to the fact that the data are very noisy and noise
variations are sometimes very similar to the voltage drop under
the faults. However, the localization accuracy and M-F1 score
attain 98.88% and 99.06 % with higher SNR as 45 dB [8].
All results are the average values under four experiments in
100 epochs using 4320 samples.

Graph Neural Network (Fault location stage)
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TABLE 1
THE IMPACT OF THE NOISE ON THE MODEL’S PERFORMANCE

[sNR@B) | 45 [ 35 | 25 | 15 |
ACC % | 9888 [ 95.13 | 8757 | 77.58
M-F1 % | 99.06 | 9590 | 88.84 | 78.46

C. Sampling rates

The WMU sensors may have different sampling rates,
depending on their technology. Higher sampling rate sensors
obtain more information in a short period of time like 1 cycle,
but more communication and storage resources are required
for transmitting and storing this large data set. The impact
of the sampling rate of sensors is evaluated in the section, by
down-sampling the data to 50% and 33% of the original signal
samples. In STMPM algorithm, the length of the window
and sliding steps are kept as discussed before. Therefore, the
extracted data length is reduced to 52 and 34 in 50% and 33%
down-sampling, respectively. According to the result shown
in Table II, the average accuracy and M-F1 scores are still at
desirable levels although a significant part of the information
is missing. The original data set with SNR 45 used in sub-
section V-B is adopted for this section.

TABLE I
THE SUB-SAMPLING IMPACT ON THE MODEL’S PERFORMANCE

| Sub-sampling % [ 50 | 33 |
ACC % 97.68 | 96.29
M-F1 % 98.08 | 96.92

D. Configuration of sensors

Synchronous waveform measurements are still not very
common in distribution networks, and usually, a few WMUSs
are located to collect spatial-temporal information for event
analysis. Here, we analyze the performance of the proposed
model for as few as two sensors in three possible configu-
rations. Three configurations of two sensors are specified as
A: [1, 6], B: [1, 8], and C: [6, 8]. The location of WMUs
are chosen heuristically on three-phase nodes to enhance the
observable area of the network. Optimizing the location and



number of sensors is not within the scope of this paper.
The fault location accuracy is over 99% for configuration
B and C. However, the accuracy and M-F1 scores reduce
to 95.37% and 96.14%, respectively, when two WMUs are
located on nodes 1 and 6, indicating set A. Still, we can claim
that the performance of the model is robust against different
configurations with a minimum number of sensors to capture
the spatial-temporal correlation of nodes over the grid. The
data set of sub-section V-B with SNR 45 is considered for
this assessment.

TABLE IIT
THE IMPACT OF WMU CONFIGURATION ON LOCALIZATION

WMUs configuration ‘ A ‘ B ‘ C ‘
ACC % 95.37 | 99.03 | 99.92
M-F1 % 96.14 | 99.22 | 99.93

E. Fault duration

Suppose a permanent fault occurs and lasts until the end of
the WMU’s recording period. This fault may be cleared with
protection devices as it doesn’t have self-cleaning capability.
Intentionally, fewer samples (3360 samples) with random
inception angles, are generated under different load and DER
power generation, as in real-world situations, we may not have
access to enough historical event data and events can occur at
any inception angle. The inception angles are equally divided
into four points before and four points after the previously
fixed angle on a particular cycle. The fault impedances are
0.01 and 1 ohm, and both symmetrical and asymmetrical
faults are considered under different noise levels of 35 dB
and 45 dB. The fault location average accuracy and M-F1
scores are 95.53% and 96.04%, respectively. These are the
average scores under four independent experiments (training
and testing) with the same data set. Identifying this fault
enhances electrics’ safety and situational awareness because
these permanent/multi-cycle faults lie within the severe faults,
increasing the risk of apparatus failures and life-threatening
matters.

F. Comparison with state-of-art models

The performance of the proposed model is compared with
other methods such as Decision tree (DT), Logistic regression
(LR), and k-nearest neighbors (kNN). Sklearn package is used
for the implementation of these baseline models. The kNN
algorithm classifies an unknown sample using the predefined
labels of its closest neighbors [38]. DT method constructs the
branches as conjunctions of features and leaves as class labels.
Both kNN and DT are evaluated extensively in [39], showing
their acceptable performance in the event classification of
distribution grids. LR is an efficient and simple algorithm, used
for multi-class classification [40]. When less labeled data are
available, a less complicated algorithm like LR can lead to
higher accuracy than complex methods, as discussed in [41].

Tuning parameters: To conduct a fair comparison, the pa-
rameters are tuned with the same data set in four independent
experiments. DT is tuned by evaluating the depth of the tree
and testing several values such as 3,10, 20,50, and 100. As
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Fig. 5. Process of hyperparameter tuning

for kNN, k parameter, showing the number of neighbors, is
selected from 1, 3,7,15, and 25 candidate values in a search-
based manner. These parameters have a considerable impact
on the performance of the baseline models, as shown in Fig. 5.
The optimal parameters are 50 and 1 for DT and kNN models,
respectively, and are indicated with dotted circles in Fig. 5. The
average accuracy of four experiments is the criteria, as shown
on the y-axis of Fig. 5, to find the optimal values for these
parameters. As LR has a simple structure, a large maximum
iteration is set to 3000 for the convergence, improving the
classification accuracy with [bfgs optimizer and L2 penalty
[22].

Table IV shows comparisons between the graph-based ap-
proach and baseline models. The proposed feature engineering
technique, STMPM, is combined with all ML methods. Two
other metrics such as M-PRE and M-REC scores, introduced
in V-A, are considered to show more details in the comparison.
The transient fault data set in section V-B is completed with
a new data set considering 8 new inception angles on a cycle.
The angles are randomly selected during the process of data
generation. Additionally, the data used in V-E, representing
permanent fault events, are considered in this section. The
study in this section is also conducted under significant noisy
environments with 35 and 45 dB. Finally, 8880 samples are
prepared for this section, addressing fault location and fault
type event problems. Fault type refers to whether the fault
is transient or permanent. Detecting the fault type increases
situational awareness as the operator takes proper actions
according to the possible consequences of the faults on the
operation of grid apparatus and human safety. It is shown in
Table IV that the accuracy and other statistical metrics for the
proposed grid-informed model are better within 150 epochs
compared to the baseline methods. The demonstrated scores
are calculated by taking the average scores obtained in four
individual experiments. Here, 70% of data is used for training,
and 30% is selected for testing the models. As for baseline
models, kNN performs very well and is comparable with
GNN thanks to the extracted features by STMPM. Also, the
performance of LR and DT is acceptable for the classification
in overall.

To show the performance of the model for each class, a
confusion matrix is presented in Fig. 6 for one of the exper-
iments. The y-axis and z-axis show the actual and predicted
classes, respectively. The off-diagonal elements show the error
in locating the fault of the corresponding class in that particular
row of the matrix. The labels are 0, 1, 2, 3, 4, and 5 for
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Fig. 6. Confusion matrix of GNN (A: Actual class, P: Predicted class

permanent faults, indicating faults occurring in nodes 11, 1,
3, 5, 8, and 9 on modified IEEE 13-bus, respectively. Also,
labels 6, 7, 8, 9, 10, and 11 are related to the same locations
considered in the permanent event but for transient faults. For
instance, the proposed model misclassifies 2.44% of transient
faults in location 3 (class 8) as permanent faults in the same
location (class 2). However, the location of the fault is detected
with acceptable accuracy, but the type of the fault is not well
recognized for all scenarios of this class.

TABLE IV
THE COMPARISON OF RESULTS

| Approach | ACC % | M-PRE% | M-REC % | M-Fl1 % |
GNN | o115 97.33 97.34 97.31
kNN | 97.10 97.26 97.27 97.20
DT 90.85 91.15 90.89 90.99
LR 92.54 92.61 92.55 92.55

VI. DISCUSSION AND FUTURE DIRECTIONS

The proposed two-stage framework is a viable solution to
locate faults and determine their type in distribution networks.
Several merits of this study are discussed and future works
are highlighted as follows:
Limited number of sensors: Although there are a few
installed WMU sensors in grids due to their high costs,
the proposed model captures their spatial-temporal correlation
using the dynamic modes of the waveforms recorded by
WMUs to locate the transient and permanent faults with good
accuracy. Also, a different configuration of sensors is studied,
and the robustness of the model in localization is proved again
for as few as two sensors.
Data resolution: The emerging WMU sensors provide sinu-
soidal lengthy raw information with a high resolution. In this
study, we assume that dominant features are selected using
STMPM from these sinusoidal signals, enabling us to process

fewer dimension data (10% of the original signal) with useful
modal information for fault location and type classifications.
The STMPM, an efficient feature selection technique, reduces
computation time and enhances localization accuracy. In future
studies, the shape-based feature extraction will be used on
modal features [8], as a second layer of feature engineering,
to reduce the feature dimension while improving the accuracy.
Data-based versus physics-based models: The proposed
model is bridging both data-based and circuit-based fault locat-
ing problems using the GNN and STMPM. As shown in Table
IV, data-based conventional models do not perform better in
locating fault and identifying the fault type compared to the
grid-informed GNN. On the other hand, pure circuit-based
analysis requires accurate modeling of mutual impedance,
various types of DERs and loads, unbalanced characteristics of
lines, and hybrid networks with different overhead lines and/or
cables. The feature of the network is included in our model
with a weighted adjacency matrix. The components of this
matrix show: 1) the connectivity status of nodes which is the
grid topology, 2) the distance among the nodes related to the
impedance of lines, and 3) the correlation of sensors indicating
the highly affected nodes under the event for the particular
node. Moreover, the STMPM also extracts the feature of the
measured signals by sensors, reflecting the dynamic response
of the grid under the events. Thus, the impact of the grid’s
physics is inherently included in the modal analysis as well.
As for future works, this study can be further improved
considering more characteristics of faults such as arc modeling
and higher impedance faults [42]. The data set will be also
prepared using Real Time Digital Simulator (RTDS).

VII. CONCLUSION

This paper has proposed a two-stage fault location and
type classification framework. In the first stage, the modal
analysis was performed with the Short-Time Matrix Pencil
method (STMPM) to capture the dynamic response of the
grid during the transient and permanent faults using the
recorded sinusoidal voltages by Waveform Measurement Units
(WMUs), known as emerging class of sensors. The dominant
modes consisting of damping factor and angular frequency
were selected using STMPM as the engineered informative
features. The selected features were given to the GNN model
in the second stage to locate the faults and identify the fault
type. The physical features of the distribution power grid
and the locationally-scarce WMUSs were considered during the
training process using the weighted adjacency matrix and GCN
filters that could capture spatial-temporal features over the
grid. The efficacy and robustness of the model were verified
using the modified IEEE test system considering a variation of
DER and loads, noisy data, a different configuration of WMUs,
the various sampling rates of WMUs, and different fault types.
Statistical analysis showed that the proposed model classified
better compared to other baseline models, such as KNN, DT,
and LR. However, still simple algorithms like kNN can classify
very good thanks to the implementation of the efficient feature
extraction method, STMPM.
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