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Abstract This paper presents results from the numerical investigation of nonlinear feedback interactions
between ULF field-aligned currents (FACs) and the ionospheric plasma in the global magnetospheric
resonator with a non-symmetrical distribution of the plasma density in the conjugate hemispheres. The
density asymmetry is enhanced by the introduction of the ionospheric valley in the hemisphere where the
plasma density is already lower. The main result from this study is that in the non-symmetrical resonator,
the ionospheric feedback mechanism, driven by the electric field with the maximum amplitude of 50 mV/m,
develops nonlinear, intense, small-scale upward currents with a characteristic quarter-wavelength structure
along the ambient magnetic field. The frequency of these waves is two times less than the fundamental
frequency of the symmetrical resonator. The ionospheric valleys, which are depletions of the plasma
density between the ionospheric E and F regions, enhance this effect, by reducing the effective ionospheric
conductivity. This effect is important for the interpretation of ground, satellite, and sounding rocket
observations of ULF waves and FACs in the auroral and subauroral geospace.

1. Introduction

The combination of nonlinear interactions between the magnetospheric field-aligned currents (FACs) and the
ionospheric plasma is one of the main mechanisms defining the dynamics, structure, and amplitude of ULF elec-
tromagnetic waves and small-scale density structures in the near-Earth space at auroral and subauroral latitudes.
The essence of these interactions can be explained as an active ionospheric response to the structure and ampli-
tude of FACs, changing ionospheric conductivity by precipitating and removing electrons from the ionosphere.
The change in the conductivity changes the reflection coefficient of the waves and the dissipation of the energy
of the large-scale electric field normally existing in the high-latitude ionosphere.

The upward FACs precipitate electrons in the ionosphere and locally increase the ionospheric conductivity. The
increase in the conductivity increases the amplitude of the reflected currents and decreases the dissipation of the
large-scale electric field in the ionosphere, which, in turn, generates additional upward FACs. Thus, when the
geophysical conditions are favorable, the ionosphere provides a positive, constructive feedback on the ampli-
tude of FACs interacting with it. And if this current is trapped in some magnetospheric resonator with at least one
boundary on the ionosphere, then the positive feedback may lead to the development of a so-called ionospheric
feedback instability (IFI).

The basic concept of IFI has been introduced by Atkinson (1970) and extensively studied after that in the global
magnetospheric resonator and the ionospheric Alfvén resonator (IAR) by Sato (1978); Watanabe et al. (1993);
Trakhtengertz and Feldstein (1981, 1991); Lysak (1991); Pokhotelov et al. (2000); Pokhotelov et al. (2002a,
2002b); Streltsov and Mishin (2018a). In these studies, the ionosphere is treated as a thin conducting layer
(~10-20 km thick) located near the E-region peak (x100-110 km altitude) with a uniform density and the elec-
tric field over the height of the layer. The ionospheric Hall and Pedersen conductivities are assumed to operate
only within this layer. (Although, in the real ionosphere these conductivities maximizes at different altitudes
Kelley, 1989). This assumption is justified because the instability typically operates in the frequency range <1 Hz
(in this paper, we consider the waves with frequencies 6-20 mHz). And the parallel wavelength of these waves is
much larger than the characteristic vertical scale-size of the ionosphere. A rigorous analysis justifying treatment
of the ionosphere as a thin conducting slab has been carried out by Trakhtengertz and Feldstein (1981, 1991).

These studies show that the main parameters determining the development of the IFI are the large-scale
electric field and the plasma density in the ionosphere. The electric field is the energy source for the insta-
bility. The density defines the height-integrated Pedersen, X,, and Hall, X, conductances in the ionosphere

STRELTSOV AND MISHIN

1of 13


https://orcid.org/0000-0003-1201-2028
https://orcid.org/0000-0002-3183-0600
https://doi.org/10.1029/2022JA030659
https://doi.org/10.1029/2022JA030659

A7t |

NI Journal of Geophysical Research: Space Physics 10.1029/2022JA030659
ADVANCING EARTH
AND SPACE SCIENCE
[rrrrrrrrr T '/'}'/%/—l;’: and the so-called wave impedance above the ionosphere, X, = 1/uyv,.
220 [ . /// =TT ] Here, v4 = Bo/+/mop is the Alfvén speed, B, is the background magnetic
3 W i field, and p is the mass density. Analytical and numerical studies of IFI by
i i Trakhtengertz and Feldstein (1991); Lysak (1991); Pokhotelov et al. (2000);
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2 3 4 magnetosphere with the artificial ionospheric heating are given in (Streltsov
et al., 2018).

In addition, the rapid changes in the ionospheric density between E and

Figure 1. Examples of the jonospheric density valley from Titheridge (2003).  F region produce gradients in the background v, and these gradients may

reflect some portion of the ULF waves propagating from the magnetosphere.

In that sense, one may say that the parallel gradient in the plasma density
changes the effective conductivity of the ionosphere. To make things more complex, the reflection of the ULF
waves from such gradients depends on the perpendicular wavenumber (Seyler, 1990): the large-scale part of the
ULF wave coming from the magnetosphere can reach the bottom of the ionosphere and smaller-scale part reflects
from the density gradient in the ionosphere.

Therefore, one can expect that the structure of the ionospheric plasma density above the E region is an impor-
tant parameter in the development of the IFI and structure, dynamics, and amplitude of the small-scale FACs,
ULF waves, and density irregularities produced by the instability. This paper provides results from numerical
simulations of fields and currents produced by IFI when the ionosphere contains a so-called “valley” in the
plasma density between E and F regions. The examples of this valley are shown in Figure 1, reproduced from
Titheridge (2003).

Our investigation is based on numerical simulations of the reduced two-fluid MHD model describing propaga-
tion of dispersive Alfvén waves in the magnetosphere and their interactions with the ionospheric plasma. The
model has been used in several papers (e.g., Streltsov & Lotko, 1997; Streltsov & Mishin, 2020), and it is briefly
described in the next section for the sake of completeness.

2. Model

Small-scale Alfvén waves in the magnetosphere can be described with the reduced two-fluid MHD model
consisting of the electron parallel momentum equation, the density continuity equation, and the current continuity
equation (e.g., Chmyrev et al., 1988; Streltsov & Mishin, 2018a):
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The subscripts || and L denote vector components in the directions parallel and perpendicular to b = By /Bo, v, 1s
the parallel component of the electron velocity, T, is the background electron temperature, c is the speed of light,
and v, is the electron collision frequency.

The model includes non-ideal MHD corrections to the parallel electric field associated with the finite electron
mass (inertial dispersion) (Goertz & Boswell, 1979) and temperature (kinetic dispersion) (Hasegawa, 1976).
These corrections make the model applicable to the waves with relatively small perpendicular sizes (less than
10 km in the ionosphere), which is important for the problem considered in this study, because such small-scale
waves carry the most intense FACs interacting with the ionosphere.

Equations 1-3 are solved numerically in a two-dimensional spatial domain representing the part of the magneto-
sphere bounded by the ionosphere and two dipole magnetic shells, L = 4.7 and L = 5.1. These shells are chosen
to make the modeling results consistent with the observations of the perpendicular electric fields and the ULF
waves near the plasmapause reported by Streltsov and Mishin (2018b).

The model has two spatial dimensions: One dimension is along the dipole magnetic field, and another is perpen-
dicular to the dipole magnetic shell. The azimuthal direction is neglected. There are two reasons for such simpli-
fication: (a) Many numerical and analytical studies demonstrate that the 2D geometry adequately represents all
major features of the ionospheric feedback mechanism, for example, (Lysak, 1991; Pokhotelov et al., 2000); (b)
ULF waves and currents produced by the ionospheric feedback mechanism at auroral and subauroral latitudes
also frequently demonstrate 2D geometry for example, (Streltsov & Mishin, 2018b, 2020).

Feedback interactions between FACs and the ionosphere are included in the model via the ionospheric boundary
conditions connecting the perpendicular electric field E, and the plasma density n; in the conducting bottom of
the ionosphere with the field-aligned current density, j,. Here, the ionosphere is treated as a thin conducting layer
with an effective thickness 4 ~ 20 km located at the altitude ~100-110 km (Miura & Sato, 1980; Sato, 1978).
This is a reasonable assumption, because the vertical extend of the conducting portion of the real ionosphere is
much less than the parallel wavelength of ULF Alfvén waves.

The ionospheric boundary conditions are given by the current continuity equation V - j = 0 integrated over the
effective thickness of the conducting layer &

V- ErEL) =+, 4)
and the ionospheric density continuity equation, also integrated in height over &

ong Ji

o = op Falng = ni). ®)
Here X, = M, n, h e/lcosy; M, = 10* m%sV (Miura & Sato, 1980) is the ion Pedersen mobility; e is the
elementary charge; y is the angle between the normal to the ionosphere and the dipole magnetic field at
110 km altitude; and @ = 3 X 1077 cm?/s (Nygrén et al., 1992) is the coefficient of recombination. In Equa-

w9

tion 4, the “+” sign is used in the southern hemisphere and the sign is used in the northern hemisphere.
The term anZE in the right-hand-side of Equation 5 represents losses due to the recombination, and the term
ang . represents the unperturbed source of the ionospheric plasma providing an equilibrium state of the iono-

sphere, n,.

The Hall conductivity is not included in Equation 4 because the model is two-dimensional. In general, the Hall
conductivity affects the development of the IFI, for example, (Jia & Streltsov, 2014; Pokhotelov et al., 2000),
however, its effect can be neglected in the studies focusing on the development of mostly toroidal ULF waves in
the magnetospheric resonators with uniform density in the ionosphere. Extensive discussion of the validity of the
ionospheric model given by Equations 4 and 5 can be found in Streltsov and Mishin (2018a).

Equations 1-5 are solved numerically by using finite-difference, time-domain (FDTD) technique in the dipole
orthogonal coordinate system (L, u). Here L is the direction perpendicular to the dipole magnetic shell and y is
the direction along the ambient magnetic field. All spatial derivatives are approximated with the second-order
finite differences and the temporal dynamics is evaluated with the fourth-order predictor-corrector tech-
nique. For the details of the numerical implementation of this algorithm, see, for example, Streltsov and
Lotko (1997).
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Figure 2. (a) Background perpendicular electric field in the simulation domain. (b) Background plasma density with the ionospheric valley I in the southern
hemisphere. Profiles of the plasma density n and the Alfvén velocity v, at low altitudes in the southern hemisphere: (c) without the ionospheric valley, (d) with the
ionospheric valley I, and (e) with the ionospheric valley II. (f) Profiles of n and v, in the northern hemisphere.

2.1. Background Parameters

The main parameters defining the dynamics, structure, and magnitude of ULF waves and FACs produced by the
IFI are the plasma density and the electric field in the ionosphere. We model the development of the IFI driven by
the electric field with a maximum amplitude of 50 mV/m in the ionosphere. This is a relatively large-amplitude
field which has been observed in the Sub-Auroral Polarization Streams near the plasmapause during substorms,
for example, (Mishin et al., 2017; Streltsov & Mishin, 2018b).

The simulation starts from a current-free equilibrium state. This state requires that in the ionosphere, V -
(Z,E ) = 0. This condition means that if the perpendicular electric field is enhanced in some spatial region, then
the plasma density should be depleted in the same region.

To satisfy this condition, we specify the density cavity in the ionosphere and find the electric field by solving
Equation 4 with the right-hand-side equal to zero. The perpendicular electric field is expressed via the scalar
potential ¢p: E, = —V ¢, and this potential is mapped along the ambient magnetic field through the entire domain.
The resulting 2D plot of the background E | inside the computational domain is shown in Figure 2a.

The density inside the domain is described with the formula used in several previous studies to reproduce
small-scale, intense ULF waves and FACs generated by IFI in good, quantitative details (e.g., Streltsov &
Mishin, 2018b, 2020). In a general case, the density in two hemispheres can be different, and the formula for the
plasma density without the ionospheric valley is:

niy (L) (r —r) + na, (L), r<r<r
no(L,w)=q ° ©6)
n3y (L) e (rr2)lro 4 nay (L)/r, r>r

Here, r = (L, p) is the geocentric distance to the point with the dipole coordinates L and u; r, = 0.0175;
r; = 1 4+ 110/R,; (near the E region maximum); r, = 1 + 300/R; (near the F region maximum); and the functions
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niy (L), n2y ¢ (L), n3y <(L), and n4,, ((L) define densities in the ionospheric E region, F region, and in the equa-
torial magnetosphere. In particular, ny, (L) = nsz (L) is chosen to provide a density magnitude of 129 cm~2 in the
equatorial magnetosphere. Functions n, (L) is chosen to provide a density magnitude of 1.0 x 10> cm™ in the
southern F region, and n,, (L) is chosen to provide a density of 2.5 X 10° cm~ in the northern F region.

Function n, (L) provides a minimum density in the southern E region of 3.0 x 10° cm~>

, and n; (L) provides a
minimum density in the northern E region of 1.0 X 10* cm~3. Plots of the density and the corresponding Alfvén
velocity along L = 4.9 at the altitudes less than 0.3 R, are shown in Figure 2c (southern hemisphere) and 2F

(northern hemisphere).

The focus of this study is the effect of the ionospheric valley. The valley is implemented in the southern hemi-
sphere (where the density is already lower) by decreasing the density between the altitudes 110 and 200 km.
Without valleys the density in the southern hemisphere changes linearly from 3.0 X 103 cm™ at 110 km to
1.0 X 10* em~3 at 300 km altitude. In valley I the density is 3.0 X 10° cm~ between 110 and 200 km altitudes
and increases linearly from 3.0 x 103 cm™3 to 1.0 X 10* cm™3 between 200 and 300 km altitudes. In valley II
the density is 3.0 X 10° cm~ at 110 km altitude, it is 1.5 X 10° cm~ between 115 and 200 km, and it increases
linearly to 1.0 x 10* cm~3 between 200-300 km altitude.

Figure 2b shows 2D plot of the background density with the valley I in the southern hemisphere. Figure 2c
shows plots of n and the corresponding v, along L = 4.9 magnetic shell in the altitude range from 110 to 730 km
in the southern hemisphere without the ionospheric valleys. Figure 2d shows plots of n and v, in the southern
hemisphere with the ionospheric valley I and Figure 2e shows the same quantities in the case of the ionospheric
valley II.

3. Results and Discussion

We ran the simulations of the feedback interactions between ULF Alfvén waves and the ionosphere for 1,600 s.
Simulations show that during this time interval, the wave dynamics reach a nonlinear stage and saturates. Figure 3
shows the results from the simulations of the IFI driven by the 50 mV/m electric field when the ionosphere has
the valley I in the southern hemisphere. In particular, Figure 3a shows the snapshot of j, inside the domain taken
from the simulations at # = 512 s, and Figure 3b shows the snapshot of ji at = 1,408 s Figure 3c shows behavior
in time of JyonL =49 atthe altitude 110 km in the southern (red line) and northern (blue line) hemispheres. The
locations where these values are taken are shown in Figure 3a with red and blue circles correspondingly.

The first conclusion from Figure 3c is that the amplitude of the intensity of FACs generated by the IFI saturates
during 1,600 s at the amplitude of ~30 pA/m?. These are relatively large currents, but they have been observed on
low-orbiting satellites and sounding rockets at high latitudes, for example, (Akbari et al., 2022).

The second conclusion is that the amplitude of negative j, is larger than the amplitude of positive j in the south-
ern hemisphere and vice versa in the northern hemisphere. Also, negative j is much narrower than positive j,
in the southern hemisphere and vice versa in the northern hemisphere. Because the negative j; in the southern
hemisphere and positive ji in the northern hemisphere correspond to the downward FACs, the observed differ-
ences in sizes and amplitudes of these currents is explained by the differences in interactions of these currents
with the ionosphere. This question has been investigated in the application to the formation of so-called “black”
aurora by Streltsov (2018).

The third conclusion is that the magnitude of j, in the southern hemisphere is less than in the northern hemi-
sphere. This is because the conductivity in the southern hemisphere is less than in the northern hemisphere, and
form Equation 4 one can see, that for the same value of E |, the lesser X, means lesser j,. This effect has been also
discussed by Pokhotelov et al. (2002a) in the application to discrete auroral arcs.

The conclusion from Figure 3c is that the frequency of the large-amplitude non-linear oscillations is two times
less than the frequency of the oscillations at the initial stages of the instability. Indeed, the time period of ULF
waves near t = 512 s is ®69 s (f = 14.5 mHz), and the time period of ULF waves after t = 1,200 s is ~145 s
(f = 6.9 mHz). This effect is explained by the fact that the IFI is always associated with ULF waves standing in
the global magnetospheric or local IAR. The structure of the standing waves depends on the boundary conditions,
and if these conditions are approximately equal (both are good conductors or insulators), the main power of the
resonator is at the fundamental frequency corresponding to the wave with a wavelength equal to two length of the
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14.6 ’ ] O '> T T T T T T T 6
8 0 ‘ i
=
—~ | ~AEEN WLV TAN 0 <
8 &
£ ) o
i 0 (A) t=512s |
= | R R I
| 0 200 400 600 800 1000 1200 1400 1600
time (s)
-14.6 o1 )
osg ot 48 4.9 5.0 5.1 25
. l | T T T T T
il i ’ ‘ \ 0l ©
—~ 15 [
N
& | &
£ < 10f
=1
§ 0 (B) t=1408s | =
= ~ 5 L
5 i 0 t=1408's, L = 4.910
L | |/~ t=512s L=4925
-5 . ) ) , \
‘ | l ‘ 0 2 4 6 8 10
258 : | distance along L = 4.9 field line (Rg)
4.7 48 4.9 5.0 5.1

(L)

Figure 3. (a) The parallel current density j in the simulation domain with the ionospheric valley I in the southern hemisphere at = 512 s; (b) j at r = 1,408 s. (c)
Value of JyonL=4.9at 110 km altitude in the northern (blue line) and southern (red line) hemispheres. (d) Profiles of Jyatr=>512s (red) and t = 1,408 s (blue) along
the field lines marked with the dashed lines in panels (a) and (b), correspondingly.

resonator. If conditions at two ends of the resonator cavity are very different, then one of them can be considered a
conductor and the other an insulator. In this case, the so-called “quarter-waves” may be formed with the frequency
equal to half of the fundamental eigenfrequency.

These quarter-waves have been introduced by Allan and Knox (1979a, 1979b) and reported in the observations
by Allan (1983); Budnik et al. (1998); Obana et al. (2008, 2015). Lysak et al. (2020) modeled these waves in the
global magnetospheric resonator with a non-symmetrical ionospheric conductivity, and Pokhotelov et al. (2000)
considered them in the IAR, which walls are formed by the conducting bottom of the ionosphere (conductor) and
the gradient in the Alfvén velocity (insulator).

To confirm that the ionospheric feedback mechanism indeed produces quarter-waves, Figure 3d shows j, along
ambient magnetic field at 1 = 512 s (red line) and # = 1,408 s. This j, is taken from the simulations shown in
Figures 3a and 3b along the field lines marked with red (L = 4.925) and blue (L = 4.910) dashed lines. On these
field lines j, reaches its maximum value at these two moments in time. A comparison of the two profiles shown
in Figure 3d demonstrates that, indeed, j, reaches its maximum values in the “half-wavelength” structure at
£ =512 s and in the “quarter-wavelength” structure at r = 1,408 s. Although, the maximum values of j are not
reached on the same field line at different moments of time.

Figure 4 illustrates the differences in structure and amplitude of j, produced by the IFI when the ionosphere has
no valley (panels a, a’, a”), when it has valley I in the southern hemisphere (panels b, b’, b”), and when it has
valley I in the southern hemisphere (panels c, ¢’, ¢”). Panels a, b, and ¢ show the dynamics of j; on L = 4.9 at
the altitudes 110 km (blue line) and 580 km (red line) in the northern hemisphere, and panels a’, b’, and ¢’ show
them in the southern hemisphere. Panels a”, b”, and ¢” show snapshots of j from the corresponding simulations
at 7= 1,408 s. Locations in the computational domain where j is measured to produce plots in panels a, @', b, b’,
¢, ¢’ are marked in Figure 4a” with blue and red circles.
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Figure 4. The parallel current density JyonL= 4.9 at the altitude 110 km (blue line) and 580 km (red line) in the northern hemisphere in the simulations (a) without
the ionospheric valley, (b) with the valley I, and (c) with the valley II. Panels (a’), (b’), and (c’) show i in the southern hemisphere in the corresponding simulations.
Panels (a”), (b”), and (c”) show snapshots of j, at # = 1,408 s in the corresponding simulations.

The main conclusion from the results shown in Figure 4 is that the frequency of the large-amplitude waves
produced by the IFI in the nonlinear regime in the global resonator with different ionospheric conductivity in two
hemispheres is two times less than the frequency of the waves produced by the IFI at the initial stage. In particu-
lar, the frequencies of j; shown in Figures 4 and 4a’, Figures 4 and 4b’, and Figures 4 and 4¢’ at the time after
1,200 s are 6.8, 6.9, and 7.0 mHz, correspondingly. This means that the strongly non-linear ionospheric feedback
produces “quarter-period” standing waves in the global resonator when the ionospheric conductivity in the two
hemispheres is different.

Another conclusion from Figure 4b’ and 4c¢’ is that when the ionosphere has a valley, then in this hemisphere, the
largest amplitude of j, is not at the altitude 110 km (where the ionospheric boundary conditions are implemented)
but above it, at ~580 km. Also, Figure 4c’ and 4c” (as well as Figure 4b’ and 4b”") show that the higher frequency

STRELTSOV AND MISHIN

7of 13



A7t |

NI Journal of Geophysical Research: Space Physics 10.1029/2022JA030659
ADVANCING EARTH
AND SPACE SCIENCE
South, t= 1408 s . structures are developed in the downward currents above the ionospheric
0 T 3x10 valley. The frequencies of these structures are ~59 mHz in the simulations
| shown in Figure 4b’ (valley I) and ~35 mHz in the simulations shown in
§ | Figure 4¢’ (valley II).
I 81 = 4 ~ . . .
NE = : 2x10 K The parallel structure of j, in the southern hemisphere when the ionosphere
2 = g there has and does not have valleys is shown in Figure 5. In particular,
= ; : g \; Figure 5a shows profiles of the background v, (red line) and j, taken in the
W= -16 | 2 1x10 = southern hemisphere from the simulations without the ionospheric valley at
| ] t = 1,408 s Figure 5b shows v, and j|| from the simulations with the iono-
| No Valley spheric valley I, and Figure 5c shows the same quantities from the simula-
-24 T . L 0 tions with the ionospheric valley II. These profiles are taken along the field
0 0 | 01 0.2 0.3 3x104 lines where j” has a minimal value in the southern hemisphere.
—~ 2 | The main conclusion derived from Figure 5 is that the amplitude of j in the
NE | southern hemisphere decreases when the ionosphere has a valley. Another
2 4 | 2x104 T\n\ conclusion is that the magnitude of j, at 110 km is less than at 580 km when
2 | e the ionosphere has the valley, and the difference between these magnitudes
= 6} | = is larger when the valley is “deeper.” These results suggest that the valley
| 1x104 X lowers the effective ionospheric conductivity by creating a strong gradi-
8 | ent in v, at the upper end of the valley (in our case, at a 200 km altitude).
| Vallev | Thus, from the current's point of view, the ionosphere with the valley is “less
-10 ¢ ) .y conductive” than without it, and the reflection of the Alfvén waves from the
0 | 0.1 02 0.3 0 4 ionosphere with the low conductivity nullifies the field-aligned current at the
0 | 3x10 reflection point, for example, Mallinckrodt and Carlson (1978); Pokhotelov
et al. (2000).
=9 |
e | 2%104 - Figure 6 shows plots of j at the altitudes 110 km (blue lines) and 580 km
= =4 | E (red lines) in the northern (A) and southern (B) hemispheres taken from the
2 6 | X simulations with the ionospheric valley II at = 1,408 s Figure 6b emphasizes
= = | 4 < the presence of small-scale, higher-frequency (=35 mHz), FACs in the down-
S i 1x10 & ward current channels above the ionospheric valley. These currents occur
| because the ionospheric valley causes a strong gradient in the background v,
-10 Valley Il at the altitude =200 km (see Figures 5b and 5c), which reflects shear ULF
0 0 * 1 0 ' D) * 0.3 0 Alfvén waves. The reflection coefficient depends on the perpendicular wave-
’ ' ’ length (Seyler, 1990), and it is larger for the waves with a smaller perpendic-
distance along L = 4.9 field line (Rg) ular wavelength. Thus, the ionospheric cavity works like a low-pass filter:
Waves with larger perpendicular wavelengths propagate through it, and the
Figure 5. Profiles ofj” and v, at low altitudes in the southern hemisphere waves with smaller wavelengths reflect from it.
from the simulations (a) without the ionospheric valley, (b) with the valley I,
and (c) with the valley IT at r = 1,408 s. Each profile is taken along the field Now let us consider the development of the IFI when the ionospheric
line where lj,| reaches maximum value in the southern hemisphere. density in both hemispheres is the same. Results from the simulations with a

symmetrical density distribution relative to the magnetic equator are shown

in Figure 7. Specifically, Figures 7a, 7b, 7c, and 7d show the dynamics
of JjyonL= 4.9 at the altitudes 110 km (blue line) and 580 km (red line) in the northern hemisphere, and
Figure 7a’, 7b’, 7¢’, and 7d’ show them in the southern hemisphere. Figure 7a”, 7b”, 7¢”, and 7d” show snapshots
of j from the corresponding simulations at # = 1,408 s.

Figures 7a and 7a’, and 7a” illustrate simulations where the density in both hemispheres is equal to 1.0 X 10* cm—3

at the altitude 110 km and 2.5 X 10° cm~3 at 300 km. This is the “high X,” case. Figures 7b and 7b’, and 7b”
illustrate simulations with the density in both hemispheres equal to 0.3 X 10* cm~ at the altitude 110 km and
1.0 X 10° cm~ at 300 km. This is the “low X, case. Figures 7c and 7¢’, and 7c” illustrate simulations with the
ionospheric valley I in both hemispheres. Figures 7d and 7d’, and 7d” illustrate simulations with the ionospheric
valley II.

The main conclusion from these simulations is that the ionospheric valley reduces the effective conductivity in
the ionosphere, and the decrease of the conductivity in both hemispheres reduces the amplitude of j; generated by
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Figure 6. (a) Profiles of Jj across the ambient magnetic field at the altitudes 110 km (blue line) and 580 km (red line) in the
northern hemisphere in the simulation with the ionospheric valley IT at 7 = 1,408 s. (b) Corresponding profiles of j in the
southern hemisphere.

the instability. Indeed, the amplitude of j, at 110 km altitude in the simulations with the valley I and II (Figures 7¢
and 7d) is 10 times less than the amplitude of j in the simulations with the high %, (Figure 7a). Because the
amplitude of j, is relatively small in the simulations with the ionospheric valleys, the resonant Alfvén waves keep
the half-wavelength, fundamental structure along the ambient magnetic field, and the frequency of the resonant
waves does not change with time.

This happens because the field-aligned current changes the ionospheric conductivity in the conjugate hemi-
spheres in the opposite way: it increases the conductivity in one hemisphere and decreases it in another. Thus,
due to the active interactions between the field-aligned current and the ionospheric plasma (which is a part of
the ionospheric feedback mechanism), the non-symmetrical boundary conditions develop even in the initially
symmetrical magnetospheric resonator. The difference between the amplitudes of the ionospheric conductivity in
the conjugate hemispheres is proportional to the amplitude of the field-aligned current, and when this difference
became large enough (e.g., Lysak et al., 2020) the quartet-period waves have developed.

The frequency of oscillations observed at the altitude 110 km in both hemispheres in the simulations with the
ionospheric valleys I is 12.3 mHz, and 11.5 mHz in the simulations with valley II. The frequency of oscillations
in the simulations with high X, is 10.5 mHz and it is 11.2 mHz in the simulations with low X,. So the average
frequency of ULF waves obtained in the simulations shown in Figure 7 at r = 1,050 s is 11.4 mHz, and all four
frequencies obtained in these simulations are within 8% from: it.

Figure 8 illustrates the effect of the amplitude of the background electric field on the development of the insta-
bility in non-symmetrical hemispheres. In these simulations, the instability is driven by the electric field with the
maximum amplitude of 100 mV/m. All other parameters in these simulations (except the maximum amplitude of
the electric field) are the same as in the simulations illustrated in Figure 4. Panels a, b, and ¢ show the dynamics
of JyonL =49 at the altitudes 110 km (blue line) and 580 km (red line) in the northern hemisphere, and panels
a’, b’, and ¢’ show them in the southern hemisphere. Panels a and a’ illustrate the case with non-symmetrical
density in different hemispheres and without the ionospheric valley; panels b and b’ illustrate the case when the
ionosphere in the southern hemisphere has the valley I; panels ¢ and ¢’ illustrate the case when the ionosphere in
the southern hemisphere has the valley II.
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Figure 7. The parallel current density j, on L = 4.9 at the altitude 110 km (blue line) and 580 km (red line) in the northern
hemisphere in the simulations (a) without the ionospheric valley and high X, in both hemispheres, (b) without the valley and
low X, in both hemispheres, (c) with the valley I in both hemispheres, and (d) with the valley II in both hemispheres. Panels
(@), (b’), (¢’), and (d’) show Ji in the southern hemisphere in the corresponding simulations. Panels (a”), (b”), (c”), and (d”)
show snapshots of j at t = 1,408 s in the corresponding simulations.

A comparison between Figures 4 and 8 demonstrates that the amplitude of FACs generated by the IFI driven by
the 100 mV/m electric field (Figure 8) is larger than the amplitude of the currents generated by the 50 mV/m field
(Figure 4), but other characteristic features of these currents are quite similar. In particular, frequencies of the
large-amplitude ULF waves obtained in the simulations illustrated in Figures 8a—8c near 1,200 s are 7.2, 7.1, and
7.7 mHz. These values are close to the values obtained in the simulations with the 50 mV/m large-scale electric
field illustrated in Figure 4.
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Figure 8. The parallel current density JjyonL= 4.9 at the altitude 110 km (blue line) and 580 km (red line) in the
simulations driven by the 100 mV/m perpendicular electric field. Panels (a), (b), and (c) show jj in the northern hemisphere
in the simulations without ionospheric valley, with valley I in the southern hemisphere, and with valley II in the southern
hemisphere. Panels (a’), (b’), and (¢’) show Ji in the southern hemisphere in the corresponding simulations.
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4. Conclusions

This paper present results from the numerical investigation of intense, small-scale ULF FACs produced by the
IFI in the global magnetospheric resonator with strongly non-symmetrical distribution of the plasma density in
the conjugate hemispheres. The asymmetry in density has been enhanced by the introduction of the ionospheric
valley in the hemisphere where the plasma density is already lower. The results from this study are as follows:

e Simulations show that in both hemispheres, the amplitude of the downward currents produced by the insta-
bility in its nonlinear stage is larger than the amplitude of the upward currents, and the transverse size of the
downward currents is much smaller than the size of the upward currents.

e Simulations also show that the frequency of the large-amplitude waves produced by the IFI in the nonlin-
ear regime in the global resonator with different ionospheric conductivity in two hemispheres is two times
less than the frequency of the waves produced by the IFI at the initial stage. This means that the strongly
non-linear ionospheric feedback produces “quarter-period” standing waves in the non-symmetrical global
magnetospheric resonator.

e The ionospheric valley decreases the effective conductivity of the ionosphere. It makes the ionosphere “less
conductive” from the field-aligned current point of view, and decreases the magnitude of the current above
that ionosphere.

* Also, the ionospheric valley creates a strong gradient in v, at the upper end of the valley which reflects ULF
Alfvén waves. The reflection from the density gradient depends on the perpendicular wavelength: the waves
with smaller perpendicular wavelength reflect stronger than the larger-wavelength waves. Thus, the iono-
spheric cavity works like a low-pass filter: Waves with larger perpendicular wavelengths propagate through
it, and the waves with smaller wavelengths reflect from it. As a result, the perpendicular structure of the ULF
waves and FAC:s is different at different altitudes.

Data Availability Statement

The codes used in the simulations, the data files used to run the codes, and the results from the simulation shown
in Figures 3, 4, 7 and 8 are available from https://figshare.com (https://doi.org/10.6084/m9.figshare.19768750).
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