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What Improves Evacuations: Exploring the

Hurricane-Forecast-Evacuation System Dynamics
Using an Agent-Based Framework

Austin Harris, Ph.D."; Rebecca Morss, Ph.D.%; and Paul Roebber, Ph.D.3

Abstract: The hurricane-forecast-evacuation system is complex and dynamic, making it difficult to diagnose potential challenges and
implement effective intervention strategies to ensure successful evacuations for everyone. Here we use an agent-based modeling frame-
work to explore how changing different components of the system affects key evacuation outcomes. Called the forecasting laboratory for
exploring the evacuation-system (FLEE), this modeling framework integrates high-level representations of the natural hazard (hurricane),
the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connections between el-
ements (forecasts and warning information, traffic). Using FLEE, we investigate the simulated effects of changing the number of cars
on the road network (changing evacuation demand), implementing approximations to different evacuation management strategies and
policies (contraflow, evacuation order timing), and changing population characteristics (population growth and distribution), all for two
real scenarios (Irma, Dorian) and one simulated storm (rapid-onset version of Irma). After comparing and validating FLEE’s evacuation
outcomes with real-world empirical data, we use FLEE to explore how simulated changes impact evacuation success overall, how the
changes compare, and how impacts from the changes vary across forecast scenarios and regions. Through the experiments, we dem-
onstrate the power of these types of frameworks as tools for exploring the forecast-evacuation system across many scenarios, and identify
potential next steps to better support researchers, practitioners, and policymakers. DOI: 10.1061/NHREFO.NHENG-1671. This work
is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/
by/4.0/.

Practical Applications: Because hurricane evacuations involve many factors and uncertainties, it is often difficult to diagnose potential
challenges and implement intervention strategies to ensure everyone can evacuate safely. This research provides a new attempt to help address
these needs, by integrating the many physical-social factors into a single modeling framework where we can explore potential challenges and
interventions from a new perspective. Using the model, we look at how evacuation outcomes vary with the number of cars on the road
network, evacuation management strategies and policies, changes in population characteristics, and different forecast scenarios. We look
at which changes are most important to evacuation success, if that changes across forecast scenarios, and if some areas in the model are more
impacted than others. Throughout the analyses, we demonstrate how the modeling framework is a powerful research tool capable of studying
evacuations across many scenarios. We also discuss next steps for improving the models to support researchers and practitioners working to
improve evacuations and save lives.

Introduction

Many physical-social factors and uncertainties can influence
evacuation outcomes. Consider Hurricanes Irma (2017) and Rita
(2005), cases where forecasts of major storms approaching highly
populated areas triggered mass evacuations in Florida and Texas,
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respectively. Although many evacuated successfully—and some,
arguably, unnecessarily—severe traffic jams led to major compli-
cations during these evacuations, including driving some high-risk
residents to remain in place (Wong et al. 2018; Zhang et al. 2007).
Considering the forecasts were accurate given current forecast
skill, the cases illustrate the complexities of designing and imple-
menting strategies to ensure successful evacuations for everyone
involved, especially with growing at-risk populations along the
US coastlines.

Surveys, interviews, and other methods are often used to study
evacuations, including how forecast information, the built environ-
ment, and other factors influence evacuation decision-making and
traffic (findings are synthesized e.g., in Lindell and Perry 2012;
Huang et al. 2016; Murray-Tuite et al. 2019). Here, we build on this
empirical and theoretical knowledge by studying the hurricane-
forecast-evacuation system using computational modeling, which
enables exploration of a wide variety of scenarios. Computational
models built on this knowledge can be compared with data from
real evacuation cases, and then used to simulate many different hypo-
thetical situations, e.g., different forecast scenarios, potential societal
challenges, and evacuation interventions. Such work enables new
and complementary forms of knowledge building, and provides a
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way to test the effectiveness of different evacuation strategies prior to
implementing them in the real world when lives are at risk.

Computational models are designed in different ways, depend-
ing on their intended purpose. Models geared toward knowledge
building (Barton 2014; Miller and Page 2007) explicitly simulate
microscale processes and interactions of interest, with run-time less
of a concern, whereas models intended to support evacuations in
real time (Blanton et al. 2018; Davidson et al. 2018) require sim-
ulating certain aspects of evacuations, often through statistical pa-
rameterizations of key processes to generate rapid predictions of
aggregate outcomes. The former, research models have been used
to investigate evacuation information flows (Morss et al. 2017;
Watts et al. 2019), decision-making processes (Watts et al. 2019;
Dixon et al. 2017; Yin et al. 2014) and evacuation traffic (Gehlot
et al. 2018; Ukkusuri et al. 2017). Here, we integrate high-level
representations of these different features into one framework,
incorporating realistic representations of forecast information and
uncertainty. Integrating these features enables us to simulate and
compare many potential influences on hurricane evacuation out-
comes, complimenting and building upon past empirical and com-
putational work.

In this article, we use a recently developed computational,
agent-based modeling framework for studying the dynamics of
the hurricane-forecast-evacuation system. Called the forecasting
laboratory for exploring the evacuation-system (FLEE), the mod-
eling framework represents key processes within the system at a
high-level, but not the full details of the real system, as this is com-
putationally challenging. This includes representing the natural
hazard (hurricane), the human system (information flow, evacu-
ation decisions), the built environment (road infrastructure), and
their interconnections such as forecasts, warning information, and
traffic (Harris et al. 2021). By coupling these subsystems, FLEE is
capable of simultaneously exploring their (potentially nonlinear)
interactions and influences on evacuation outcomes.

FLEE’s conceptualization and implementation is described in
Harris et al. (2021). This paper presents a comparison of FLEE with
empirical data and then uses the model to begin exploring targeted
aspects of the system’s dynamics. Specifically, we conduct a series
of experiments exploring how changing different societal compo-
nents of the hurricane-forecast-evacuation system affects key
evacuation outcomes across three forecast scenarios impacting the
Florida peninsula. This includes investigating the effects of chang-
ing the number of cars on the road network (changing evacuation
demand), implementing approximations to different evacuation
management strategies and policies (contraflow, evacuation order
timing), and changing population characteristics (population growth
and distribution), all for two real scenarios (Irma, Dorian) and one
simulated storm (rapid-onset version of Irma). Using this novel
modeling framework, our goal is to simulate potential challenges
and evacuation interventions from this new perspective as steps
towards better understanding features important for successful
evacuation outcomes.

Throughout the analysis, we ask:

1. How do these simulated changes hinder or improve overall
evacuation success and how do they compare with each other?

2. How do these simulated changes vary across forecast scenarios,
regions, and different areas of impact?

In beginning to answer these questions, we demonstrate how
agent-based computational frameworks like FLEE can build our
understanding of the system’s dynamics—including identifying
ways to improve evacuations—across many real and imagined sce-
narios. We consider this analysis a starting point for developing
research models looking at these different features together As
the models become more realistic, receive additional validation,
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and become capable of additional experiments with increasing
computing power, these types of computational modeling frame-
works will be increasingly well-suited to support researchers and
decision-makers in hazard risk management.

Methodology

Overview of FLEE

Details regarding FLEE’s model design are provided in Harris et al.

(2021). Here we highlight important aspects of FLEE to note when

interpreting experiments exploring these targeted aspects of the

system’s dynamics.

e Virtual world—The area modeled is a 10 x 4 cellular represen-
tation of the north-south axis of Florida (Fig. 1). Census data
informs the spatial distribution and characteristics of FLEE’s
4.1 million household agents.

e Forecast and warning information—Every 6 h, National Hur-
ricane Center (NHC) products overviewing current and forecast
data are synthesized into a light system forecast of wind, storm
surge, and rain for FLEE’s different grid cells.

* Evacuation orders—Emergency manager agents, located within
FLEE’s coastal grid cells, decide whether to issue evacuation
orders based on storm surge forecasts, clearance times, and the
forecast time of arrival of tropical storm force winds.

* Evacuation decision-making—Household agents decide whether
to evacuate based on a combination of forecast information,
evacuation order information, and household characteristics
(mobile home ownership, age, car ownership, and socioeco-
nomic status).

* Road networks—Idealized virtual highways and interstates
designed to simulate key aspects of Florida’s road network are
overlaid on the model grid. These roads allow evacuating house-
hold agents to move between grid cells.

e Evacuation traffic—If spots on roads are unavailable due to
traffic for a period of time (or once tropical storm force winds
reach a grid cell) household agents who decided to evacuate will
decide to shelter in-place instead.

Validation and Model Updates

As a first step for this analysis, we compared FLEE’s evacuation
outcomes with new empirical data for Hurricane’s Irma and Dorian,
which triggered evacuations across Florida in 2017 and 2019, re-
spectively. For Irma, the empirical data provides the spatial and
temporal patterns of evacuation orders, evacuation rates, and traffic
intensity. For Dorian, spatial and temporal patterns of evacuation
orders are provided, as are the storm’s evacuation rates. Depending
on the study, the empirical data are expressed in different ways. For
example, evacuation rates are expressed by county, zip code, re-
gions, and so on. Because it is not feasible to translate the empirical
data by county, for example, onto FLEE’s 40 grid cells for an exact
comparison, we instead aggregate the empirical data to ensure the
bigger picture aspects of FLEE’s evacuation (evacuation orders,
rates, and traffic) behave realistically. Full descriptions and sources
of the empirical data are provided in Table 5, which is located in the
Appendix.

Based on several iterations of experiments comparing FLEE’s
evacuation behaviors to the new empirical data, the version of
FLEE used here includes several updates made to the implemen-
tation described in Harris et al. (2021), as summarized in Table 6,
which is also located in the Appenidx. First, to reduce unrealistic
evacuation rates early in the simulations and make the temporal
patterns of evacuation closer to observations for Irma and Dorian,
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Fig. 1. (Color) Evacuation rates and traffic by grid cell for the baseline hurricane scenarios, which are then used for comparing subsequent experi-
ments. (a) Irma (evacuation rates); (b) Irma (% unsuccessful due to traffic); (¢c) Dorian (evacuation rates); (d) Dorian (% unsuccessful due to traffic);
(e) Irma-RO (evacuation rates); (f) Irma-RO (% unsuccessful due to traffic); and (g) population by grid cell. Numbers in each grid cell represent the
percentage of the population in that cell that successfully evacuated and those who intended to evacuate but did not due to excessive traffic in the Irma,
Dorian, and Irma-RO simulations (a—f). Also shown is the population by grid cell (g) to provide a frame of reference e.g., major cities depicted include
Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange star).

we made two changes: (1) integrating households into the decision-
making process gradually rather than assuming instantaneous
communication of risk information (e.g., communication process
described in Watts et al. 2019); and (2) allowing risk perception to
increase as the storm approaches. Second, FLEE’s previous formu-
lation in Harris et al. (2021) exhibited unrealistic variability be-
tween grid cells in some situations compared to the empirical data;
to address this, we reduced the influence of mobile home and socio-
economic status in the evacuation decision-making algorithm. In
addition, FLEE’s previous formulation overestimated evacuation
rates in coastal grid cells compared to inland cells, as evacuation
orders were issued for the entire grid cell. Thus, we changed the
formulation of evacuation orders so they are only issued to a per-
centage of households in coastal grid cells, reflecting the approxi-
mate percentage of population in different regions of Florida that
live in evacuation zones (Fig. 5).

Experimental Design

Using the updated version of FLEE, we perform a set of experi-
ments on the model that involve changing the storm and corre-
sponding forecast scenarios. Specifically, we run FLEE using real
forecasts from Hurricane Irma, Dorian, and a hypothetical version
of Irma where its forecasts are condensed into a shorter timeframe
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to assess how rapid onset (and similarly, rapid intensification) im-

pacts evacuation outcomes. We note that, though the Irma and

Dorian forecasts are identical to those in Harris et al. (2021), the

simulations are new due to additional validation and model up-

dates. We also note that the rapid onset case was run for Irma only
because it had a larger, more complicated evacuation than Dorian.

Together, these three forecast scenarios (Irma, Dorian, Irma-RO)

are used to provide a baseline of evacuation behaviors to compare

additional experiments against.

Starting from these baseline scenarios for each storm, we
systematically modify parameters in FLEE, while holding other
variables constant, to explore FLEE’s behaviors and sensitivities
to potential evacuation challenges and interventions within the
hurricane-forecast-evacuation system including:

e Changing the number of cars on roads—Here we modify
evacuation demand by changing the number of people evacuat-
ing per car, which changes the number of cars used to evacuate a
specified number of people.

* Implementing contraflow—We study the potential benefits of
this widely-known evacuation management strategy by adding
one, two, and three lanes across important highways.

» Shifting evacuation order timing—Here we shift the issuance
of evacuation orders by 10 and 20 h earlier and later for each
grid cell, by adjusting clearance times these amounts.
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e Accounting for changing populations and distributions—
For this we project FLEE’s population forward in time to ex-
pected values in 2030 and 2040 and make population density
uniform across the model grid.

We again note the intention is not to represent actual evacuation
challenges and evacuation management strategies, but simplified
versions of them given idealizations in the model. By comparing
the different experiments to the baseline simulations, to each other,
and to other studies of evacuation management solutions, we inves-
tigate the relative importance of factors and interactions (potentially
nonlinear), and we demonstrate how FLEE can explore targeted
aspects of system’s dynamics across many scenarios.

Data Analyses

To compare evacuation behaviors quantitatively across experi-
ments, we track evacuation statistics across time for each of FLEE’s
40 grid cells, thus showing the spatial and temporal variation in
evacuation outcomes. The primary model outputs analyzed in
FLEE are the percent of households that successfully evacuated
(i.e., evacuation rates) and the percent of households that intended
to evacuate but did not due to excessive traffic in their area. We track
the latter statistic to provide insight into where excessive traffic pre-
vented successful evacuations (see, e.g., Wong et al. 2018 for Irma).
Other parameters of interest are the percent of residents under evacu-
ation orders in the model who evacuated (sometimes called compli-
ance rates), and the percent of residents who evacuated from areas
not under evacuation orders (sometimes called shadow evacuations;
McGhee and Grimes 2006; Murray-Tuite et al. 2019).

In addition to displaying data by grid cells and averaged across
the domain, these statistics are sometimes broken down into multi-
ple impact zones, designed as first-order approximations of areas
likely to experience different levels of impacts based on the actual
meteorological conditions produced by the storm. Here, we use
four impact zones, defined by whether the grid cells are: (1) coastal
or inland; and (2) experience winds that are greater than 64 knots
(hurricane-force) or less than 64 knots during the storm of interest.
Using the impact zones, we can determine who evacuated from
locations that did not end up experiencing hazardous wind condi-
tions (future versions could do this for rain and surge parameters
as well).

In interpreting the results for different experiments, we compare
multiple metrics that might indicate successful outcomes in differ-
ent ways. For example, high evacuation rates may not be good if the
storm ends up not having much impact in those areas, and unnec-
essary evacuations may not matter if those in areas experiencing the
greatest impacts were able to evacuate successfully (without being
impeded by traffic jams).

Because FLEE includes stochastic elements, it can exhibit some
run-to-run variability. Therefore, when interpreting results, changes
less than 0%—2% in evacuation statistics across experiments are con-
sidered insignificant (e.g., see experiments in Harris et al. 2021).

Table 1. Evacuation metrics for the baseline storm scenario simulations

Results and Discussion

Baseline Forecast Scenarios and Comparison with
Empirical Data

First, we examine results from FLEE’s baseline simulations for
Hurricane’s Irma and Dorian. Comparing these simulations against
observations provides a first-order assessment that the model be-
haves reasonably for these two forecast scenarios based on the
processes implemented. Next, we examine results from a simulation
using forecasts from a new rapid-onset version of Irma (hereafter
called Irma-RO). Together, the Irma, Dorian, and Irma-RO simula-
tions provide a baseline for interpreting subsequent experiments in
FLEE where, for each storm scenario, we change the number of cars
on the roads, number of available lanes (contraflow), evacuation
order timing, and population characteristics.

Hurricane Irma

Irma’s 3—10-day forecasts, as shown in Fig. 2 of Harris et al.
(2021), place the entire model domain under significant threat, with
the most likely outcome being a landfalling major hurricane near
Miami. However, forecasts shifted westward as the storm ap-
proached, with the storm eventually making a first mainland US
landfall as a Category 4 in the Florida Keys and a second landfall
as a Category 3 in southwest Florida. Irma’s hurricane-force winds
[Figs. 1(a and b); dotted cells] impacted the western two-thirds of
the model—particularly the southwest coastlines—with the east-
coast experiencing tropical storm force winds. Based on these Irma
forecasts, emergency manager agents in FLEE issued evacuation
orders along both coasts, starting in Miami [Figs. 1(a and b); red
cells], which was observed in Irma’s actual evacuation orders
(Wong et al. 2018; Darzi et al. 2021). The comparison with empiri-
cal data increase our confidence that FLEE’s evacuation order
algorithm behaves sufficiently realistically for the purpose of the
subsequent experiments.

Irma’s simulated evacuation rates in FLEE [Fig. 1(a)] vary from
20% to 40% along Florida’s east coasts, 50-60% along the south
and west coasts, and 10%—-40% inland. This closely resembles the
observational data, which also suggest evacuation rates vary from
20% to 40% along Florida’s east coast, to 40%—70% across the
south and west coasts, and around 10%-30% inland [data aggre-
gated from Wong et al. (2018), Long et al. (2020), Martin et al.
(2020), and Feng and Lin (2021)]. This was the largest evacuation
in US history, causing severe traffic across the state (Wong et al.
2018). In FLEE, traffic is most severe around Tampa Bay-St.
Petersburg [Fig. 1(b)] with 5%—-20% of the metro failing to evacu-
ate due to traffic. This broadly matches observations of traffic rates,
which shows severe traffic across the Tampa Bay, 1-75, and sur-
rounding areas (Feng and Lin 2021; Staes et al. 2021).

Across FLEE’s entire model grid, 32.0% of households evacuate
for the storm, which equals 5.4 million people (Table 1). Estimates
from the FDEM (2018) suggest actual evacuation numbers to-
taled 6.9 million. When considering households evacuating to local

% Successfully evacuated

% Under % Not under

Coastal Inland Coastal Inland evacuation evacuation % Unsuccessful
Baseline Total >64 knot >64 knot <64 kts <64 kts orders who orders who evacuation
storm scenario (all cells) zone zone zone zone evacuated evacuated due to traffic
Irma 32.0 39.3 24.5 29.6 29.4 34.9 25.6 2.5
Dorian 12.0 — — 14.7 0.6 354 4.3 0.7
Irma-RO 26.3 30.2 18.8 26.8 28.9 28.8 25.3 7.7
© ASCE 04023042-4 Nat. Hazards Rev.
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Fig. 2. (Color) Evacuation rates and traffic over time for the baseline hurricane scenarios. Evacuation rates are shown (solid lines), averaged across all
grid cells, as are the percentage who intended to evacuate but did not due to traffic (dashed line). The times of landfall for the Irma and Irma-RO

scenarios are indicated (vertical dashed lines).

shelters in FLEE (not shown), FLEE’s evacuation rates closely re-
semble the observations. For a given level of wind impact, FLEE’s
evacuation rates are higher along the coasts than inland, which is
also shown in the real-world data (Feng and Lin 2021; Martin
et al. 2020).

The temporal evolution of FLEE’s evacuation rates is shown in
Fig. 2. Despite not receiving evacuation orders, some households
(black solid line) evacuate in the first 0-72 h. Evacuation rates in-
crease linearly between 72 and 108 h as evacuation orders expand.
Just before the storm moves ashore around 126 h, evacuation rates
decrease. In survey data from Wong et al. (2018), evacuation rates
increased linearly over the same 72—-108 time period and decreased
24 h before landfall.

This information—combined with the other comparisons against
empirical data on evacuation orders, rates, and traffic—suggest this
version of FLEE sufficiently captures the broader patterns of evacu-
ation for Irma and thus provides a realistic baseline for interpreting
results from Irma’s other experiments.

Hurricane Dorian

Dorian’s early forecasts [Fig. 13 of Harris et al. (2021)] place the
entire Florida peninsula under threat initially, with the most likely
scenario as a landfalling major hurricane along Florida’s east coast.
However, after remaining nearly stationary over the Bahamas for
many hours, the storm accelerates northward, narrowly missing
Florida’s east coast. Because of the forecasts, FLEE’s emergency
manager agents issued evacuation orders along the model’s east
coast [Figs. 1(c and d); red cells], matching what occurred (Roache
2019).

Dorian is a fundamentally different storm than Irma with fewer
people at risk. As a result, FLEE’s simulated evacuation rates were
lower, 12.0% compared to 32.0% for Irma, resulting in 3.3 million
fewer evacuees (Table 1). Due to fewer evacuees overall—and the
evacuation being spread over a longer time (Fig. 2; blue lines)—
fewer people fail to evacuate due to traffic during Dorian (0.7%)
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than Irma (2.5%). FLEE’s evacuation rates and traffic congestion
are confined to the east coast during Dorian [Figs. 1(c and d)],
matching our understanding of what occurred (Mongold et al.
2020).

Though Dorian’s empirical data is not as robust as Irma’s, the
available data, which provides the timing and location of evacu-
ation orders (Roache 2019) and evacuation rates (Mongold et al.
2020), suggests the model is generating reasonable evacuation
behaviors, i.e., the Dorian simulation appears as accurate as
possible given current empirical data, and is reasonable for
experimentation.

Hurricane Irma-RO

The hypothetical Irma-RO forecasts are shown in Fig. 3. For each
grid cell, the peak magnitudes of forecast risk are identical to Irma’s
forecasts. However, the forecasts—and subsequently, the simulation—
are compressed from 168 to 72 h. By comparing FLEE’s evacuation
response between Irma’s real and hypothetical Irma-RO forecasts,
this simulation explores the potential effects of a storm that exhibits
rapid onset (and also, to a degree, rapid intensification) on the hur-
ricane evacuation dynamics.

FLEE’s response to the Irma-RO forecast is similar to Irma’s,
but with key differences. First, evacuation orders [Figs. 1(e and f),
red cells] are not issued around Jacksonville [Fig. 1(g), green star].
This occurs because the westward shift in forecast risk happens
more quickly than with Irma, meaning the area was removed from
risk before evacuation order decisions were made by FLEE’s emer-
gency manger agents. As a result, Irma-RO has 300,000 fewer peo-
ple intending to evacuate in these regions, despite having identical
peak magnitudes of risk in FLEE.

In addition, a lower percentage of FLEE’s population evacuates
in Irma-RO (26.3%) than Irma (32.0%). This is partially because
fewer evacuation orders are issued, but mostly because there were a
greater number of households who intended to evacuate but did not
due to excessive traffic in Irma-RO (7.7%) than Irma (2.5%), an
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Fig. 3. (Color) Forecasts for Hurricane Irma-RO approaching FLEE’s
10 x 4 version of the north-south axis of Florida. Forecasts are shown
for every 24 h but update every 6 h (not shown). Red indicates high
forecast risk, whereas green represents little to no risk, and so on. For a
detailed explanation of the forecasts see Harris et al. (2021).

increase of 852,000 people (Table 1). The increased traffic in Irma-
RO occurs in the Tampa Bay-St. Petersburg metropolitan areas and
surrounding southwest coastlines i.e., areas with significant popu-
lations at risk that need considerable time for safe evacuations.
However, unlike with Irma, residents around Miami-Ft. Lauderdale
also experience significant numbers of households giving up to
traffic during the Irma-RO scenario [Fig. 1(f)]. Therefore, we be-
lieve the Irma-RO case suggests that rapid-onset—and possibly,
rapid intensification—can worsen evacuation rates and traffic in
these higher-risk areas. Though consistent with our conceptual
understanding of these situations, as there is less time to evacuate
safely, this is the first study (to our knowledge) to provide evidence
that rapid onset scenarios negatively impacts evacuations.

Experiments Modifying Model Parameters

In the following subsections, we modify key model parameters and
compare their evacuation behaviors to the Irma, Dorian, and Irma-
RO baseline experiments discussed earlier. Specifically, we assess
how evacuation outcomes change with the number of cars on the
road network (evacuation demand), approximations to evacuation
management strategies and policies (contraflow, evacuation order
timing), and evolving population characteristics (population growth,
distribution). The idea is to demonstrate how FLEE can explore the
role of these factors on evacuation outcomes, including exploring
how these simulated changes (1) affect evacuation success overall;
and (2) vary across forecast scenarios and regions.
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Number of Cars on Roads

First, we examine how FLEE’s evacuation outcomes change when
more or fewer cars are used to evacuate the same number of people.
One way to interpret this set of experiments is simulating the in-
fluence of evacuation demand, through use of public transportation,
carpooling, or other factors (see summary in Murray-Tuite et al.
2019). Relative to evacuation management strategies like contra-
flow, these types of influences on evacuation demand are studied
less frequently (Bullard and Wright 2011; exceptions in Swamy
et al. 2017; Zhang and Chang 2014) nor were they widely used
during past storms like Irma and Dorian; (Wong et al. 2018;
Murray-Tuite et al. 2019). However, these experiments help illus-
trate how changes in evacuation demand by using different strat-
egies to evacuate the same number of people can benefit or hinder
successful evacuation.

To simulate the effects of changing the number of cars on the
road in FLEE, we change the number of people evacuating per car
from 4 (baseline) to 2, 3, 5, 6, and 8. Going from 4 to 2 people per
car doubles the number of cars evacuating. Alternatively, going
from 4 to 8 people per car halves the number of cars evacuating.
The former can be viewed as looking at what happens when house-
holds use multiple vehicles, whereas the latter can be viewed as
exploring what happens if there is an option to transport many
people by bus or if people were asked to stay home. Though the
car-length is kept the same in FLEE throughout these experiments,
we believe the assumption is reasonable for a first-order analysis of
modifying FLEE’s evacuation demand.

Evacuation rates and traffic are shown in Table 2. Across all
scenarios, results indicate that evacuation rates increase when trans-
portation demand is reduced, as fewer people decide to stay home
due to excessive traffic in their areas. These improvements are
significant. For example, with Irma, increasing from 4 to 6 people
per evacuating car (one-thirds fewer cars on roads) improves
evacuation rates by 2.2%, or 500,000 people. The magnitude of
improvements is scenario-dependent, with the largest improve-
ments happening with Irma-RO followed by Irma and Dorian. This
is because Irma-RO has the most traffic issues, followed by Irma
and then Dorian.

The experiments also reveal nonlinearities in the system (Table 2).
For example, in all forecast scenarios, doubling the number of evacu-
ating cars results in significantly larger changes to evacuation rates
than halving the number of evacuating cars. We believe this suggests
excessive traffic can worsen evacuations exponentially. Future work
may consider furthering our understanding of this relationship, in-
cluding identifying whether tipping points exist, or whether targeted
carpooling and bussing (or other influences) helps, supporting prac-
titioners in risk management.

Fig. 4 shows which areas are impacted by the experiments
changing the number of cars on roads. When halving the number
of evacuating vehicles, evacuation rates and traffic improve areas
heavily trafficked in the baseline simulations (Fig. 1). When
doubling the number of evacuating vehicles, evacuations worsen
considerably, particularly across at-risk areas where evacuees
are dependent on traffic downstream, i.e., southern Florida. By
and large, results suggest that reducing evacuation demand,
whether through targeted public transportation or other factors,
could improve evacuations significantly, especially for the most
heavily trafficked scenarios and regions (i.e., Irma-RO, south
Florida).

Contraflow

Here we investigate the influence of road capacity in FLEE by im-
plementing a simple version of contraflow where the number of
lanes are increased in different areas. Though used before (and
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Table 2. Evacuation metrics for the experiments changing the number of cars on roads relative to baseline. For example, baseline x 2 represents the effects of

doubling the number of cars used for evacuation

Experiments Results
% Under % Not under
evacuation evacuation % Unsuccessful Unsuccessful
Number of Evacuation % Change orders who orders who evacuation evacuation
Storm cars on roads rates from baseline Evacuated evacuated evacuated due to traffic due to traffic
Irma Baseline x 2 22.5 —-9.5 3.67 m 25.5 16.0 12.0 1.97 m
Baseline x 1.33 28.5 3.5 4.67 m 32.0 20.9 6.0 980 k
Baseline 32.0 0 5.24 m 349 25.6 2.5 410 k
Baseline x 0.8 33.7 +1.7 5.52 m 26.4 27.6 0.8 130 k
Baseline x 0.66 34.2 +2.2 5.6l m 37.1 27.9 0.3 49 k
Baseline x 0.5 34.4 +2.4 5.64 m 37.1 28.3 0.1 16 k
Dorian Baseline x 2 9.5 —2.5 1.56 m 26.7 3.9 3.1 508 k
Baseline x 1.33 11.2 —-0.8 1.84 m 32.9 4.2 1.4 229 k
Baseline 12.0 0 1.97 m 354 4.3 0.7 115 k
Baseline x 0.8 12.2 +0.2 1.99 m 36.4 4.3 0.4 66 k
Baseline x 0.66 12.3 +0.3 2.02 m 36.8 4.3 0.3 49 k
Baseline x 0.5 12.5 +0.5 2.05 m 37.8 3.7 0.1 16 k
Irma-RO Baseline x 2 16.9 -94 2.77 m 17.4 16.0 17.1 2.81 m
Baseline x 1.33 21.5 —4.8 3.52 m 23.1 18.6 12.4 2.03 m
Baseline 26.3 0 431 m 28.8 253 7.7 1.26 m
Baseline x 0.8 29.7 +3.4 4.87 m 32.3 25.0 43 704 k
Baseline x 0.66 31.0 +4.7 5.08 m 34.2 25.6 2.9 475 k
Baseline x 0.5 33.2 +6.9 544 m 37.0 26.4 0.9 147 k

Note: Bold values were meant to serve as a reference point for comparison.

successfully) during Hurricane’s Floyd (1999) and Katrina (2005),
contraflow was not implemented, to our knowledge, for Irma or
Dorian (Wong et al. 2018; Wolshon and Lambert 2004), as it re-
quires considerable personnel resources and must be planned days
in advance (e.g., summary in Murray-Tuite et al. 2019).

As described in Harris et al. (2021), FLEE’s road network consists
of two northbound, five-lane interstates situated on the model’s coasts
(i.e., Florida’s 1-75 and I-95). Meanwhile, two east-west running,
three-lane interstates move evacuees across the grid horizontally
(i.e., I-75 and I-4), while eight two-lane highways move inland res-
idents onto the coastal interstates where they flee to safety. Here we
examine the influence of adding contraflow on these highways and
interstates.

Evacuation rates and traffic are shown when adding one lane on
1-95 and I-75, and one, two, and three lanes across the entire road
network (Table 3). This simplified version of contraflow improves
evacuation rates across all scenarios, matching the known effec-
tiveness of the evacuation management strategy. Adding lanes
everywhere is more effective than adding lanes on one highway,
consistent with other studies (e.g., discussion of contraflow effec-
tiveness in Murray-Tuite et al. 2019). Opening three lanes of
contraflow before Irma increases evacuation rates by 1.9%. For
comparison, experiments reducing the number of cars on roads
by one-fifth and one-thirds (relative to baseline) increase evacu-
ation rates by 1.7% and 2.2%, respectively.

The magnitude of improvements from this simple version of
contraflow are forecast-scenario-dependent (Table 3). For example,
relative to the baseline simulations, adding three lanes increases
evacuation rates by 1.9% with Irma, 0.3% with Dorian, and 3.5%
with Irma-RO. In terms of areas impacted (Fig. 5), contraflow im-
proves heavily trafficked areas in the baseline scenarios (i.e., urban
areas and areas dependent on traffic upstream like south Florida).
This is consistent with the evacuation demand experiments changing
the number of cars on roads, and suggests evacuation management
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strategies are most effective in the heavily trafficked scenarios and
regions.

Evacuation Order Timing

Regarding evacuation orders, there are modeling studies investigat-
ing how to optimize evacuation order timing to support decision-
makers [e.g., see summary in Yi et al. (2017); examples in Dixit and
Radwan (2009) and Davidson (2018); clearance time studies in
Florida Statewide Regional Evacuation Study Program (2019)].
Though we are not optimizing FLEE’s evacuation orders, we pro-
vide a first-order exploration of the importance of evacuation order
timing in FLEE, specifically by issuing orders 10 and 20 h earlier
and later than the baseline simulations across all grid cells, and
observing the effects on evacuations.

When averaged across all grid cells, shifting the timing of
evacuation orders did not meaningfully impact evacuation rates and
traffic. The largest changes occurred with Irma-RO; however,
evacuation rates only improved by 0.8%, 0.8%, 0.2%, and 0.1%
for the 20 h earlier, 10 h earlier, 10 h later, and 20 h later experi-
ments, respectively (not shown). At this scale, these effects are
much smaller than implementing contraflow.

However, between grid cells, evacuation order timing has
complex—but sometimes significant—impacts (Fig. 6). For exam-
ple, during Irma, later evacuation orders improve evacuation rates
around Tampa Bay-St. Petersburg by 3%—6%, and reduce evacu-
ation rates along the northwest coastline and Jacksonville metro-
plex by 5%-11%. The latter is actually a positive, however, as
the later evacuation order thresholds caused evacuation orders to
not be issued in this area, as the forecast risk shifted westward,
removing Jacksonville from harm’s way. In this way, FLEE cap-
tures the tradeoff between issuing evacuation orders earlier (earlier
warnings) versus waiting (reduction in false alarms). Similar im-
pacts occur with Dorian, where later evacuation orders reduced
evacuation rates, and subsequently, false alarms. With Irma-RO,
earlier orders helps generally (but also increases false alarms),
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Fig. 4. (Color) Evacuation rates by grid cell for select experiments changing the number of cars on roads. (a) Irma (doubling number of cars on road);
(b) Irma (halving number of cars on road); (c) Dorian (doubling number of cars on road); (d) Dorian (halving number of cars on road); (e) Irma-RO
(doubling number of cars on road); (f) Irma-RO (halving number of cars on road); and (g) population by grid cell. Values in (a—f) are expressed
as changes relative to the baseline simulations for Irma, Dorian, and Irma-RO, as shown in Fig. 1. Also shown is the population by grid cell (g).
These provide a frame of reference, e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star),

Jacksonville (green star), and Orlando (orange star).

while later evacuation orders again exhibits localized effects
(e.g., it improves evacuation rates inland but worsens evacuations
along coastal grid cells).

Relative to experiments changing the number of cars on the road
and contraflow, evacuation order timing has less impact on evacu-
ation rates and traffic overall, which differs from some other studies
(e.g., Dixit and Radwan 2009; Chiu et al. 2008). That’s not to say it
is unimportant in FLEE, however, as evacuation order timing has
significant but localized effects on evacuations that varies consid-
erably across scenarios. Reasons for the discrepancy with previous
studies might include that evacuation orders are earlier in FLEE’s
order of operations between subsystems, or that FLEE has a more
complex representation of forecasts and their influence on evacu-
ation decisions. Future work may consider studying these complex
effects by shifting evacuation order timing at specific areas in
FLEE, studying more forecast scenarios, and/or by implementing
phased evacuations (e.g., building on Chiu et al. 2008; Chen and
Zhan 2008; Zhang and Chang 2014).

Population Growth and Distribution

To our knowledge, no studies directly explore how US hurricane
evacuations may change with population growth and changing the
distributions of households. In this section, we begin to explore
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these effects by increasing FLEE’s Florida peninsula population
from 16.9 million in 2020 to 2030 and 2040 projections of
19.3 million and 22.3 million, respectively [see Figs. 7(g and h)
for population increase by grid cell; projections in Florida DOT
2020]. Meanwhile, a third experiment representing the potential
effects of deurbanization is conducted by making the popula-
tion density uniform across the model grid. Together, these ex-
periments begin to look at how evacuations may change with
population characteristics and how that compares with other
experiments.

Evacuation statistics are shown for this set of experiments in
Table 4. Results suggest that evacuations may worsen in the future
due to projected population changes. For example, relative to the
baseline simulation, Irma’s evacuation rates decrease by 1.3% and
3.3% in 2030 and 2040, respectively. Relative to the evacuation
management strategies tested earlier, the changes are significant,
e.g., adding three lanes of contraflow increases evacuation rates
by 1.9%. Lastly, making population density uniform across the
model grid improves evacuations overall.

As with contraflow, the impacts of population growth and uni-
form population distributions are scenario dependent. For example,
the 2040 experiments result in a 3.3% decrease in evacuation rates
with Irma, a 0.8% decrease with Dorian, and a 4.4% decrease with
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Table 3. Evacuation metrics for the contraflow experiments

Experiments Results
% Under % Not under
% Change evacuation evacuation % Unsuccessful Unsuccessful
Contraflow Evacuation relative to orders who orders who evacuation evacuation
Storm (lanes added) rates baseline Evacuated evacuated evacuated due to traffic due to traffic
Irma Baseline 32.0 0 524 m 349 25.6 2.5 409 k
+1 1-95 32.1 +0.1 5.26 m 35.0 25.8 24 393 k
+1 I-75 32.0 0 524 m 34.9 25.6 2.5 409 k
+1 all 32.7 +0.7 5.36 m 35.7 26.0 1.9 311 k
+2 all 335 +1.5 549 m 36.3 27.2 1.0 163 k
+3 all 33.9 +1.9 5.56 m 36.8 27.4 0.7 115k
Dorian Baseline 12.0 0 1.97 m 354 4.3 0.7 115k
+1 1-95 12.2 +0.2 2.0 m 36.3 3.8 0.5 82 k
+1 I-75 12.0 0 1.97 m 35.5 4.3 0.7 115k
+1 all 12.1 +0.1 1.98 m 36.2 4.3 0.5 82 k
+2 all 12.3 +0.3 2.02 m 36.7 4.3 0.3 49 k
+3 all 12.3 +0.3 2.02 m 36.9 4.3 0.3 49 k
Irma-RO Baseline 26.3 0 4.31 m 28.8 253 7.7 1.26 m
+1 195 27.1 +0.8 4.44 m 29.2 23.2 6.9 1.13 m
+1 1-75 26.3 0 431 m 28.8 22.1 7.6 1.25 m
+1 all 28.0 +1.7 4.59 m 30.6 23.5 5.9 967 k
+2 all 29.3 +3.0 4.80 m 31.8 25.0 4.7 770 k
+3 all 29.8 +3.5 4.88 m 32.6 25.0 4.2 688 k
Note: Bold values were meant to serve as a reference point for comparison.
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Fig. 5. (Color) Evacuation rates by grid cell for select contraflow experiments. (a) Irma (+1 all lanes); (b) Irma (43 all lanes); (c) Dorian (+1 all
lanes); (d) Dorian (+3 all lanes); (e) Irma-RO (+1 all lanes); (f) Irma-RO (4-3 all lanes); and (g) population by grid cell. Values in a-f are expressed as
changes relative to the baseline simulations for Irma, Dorian, and Irma-RO, as shown in Fig. 1. Also shown is the population by grid cell (g). These
provide a frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville

(green star), and Orlando (orange star).
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Fig. 6. (Color) Evacuation rates by grid cell for select evacuation order timing experiments. (a) Irma (EO 20 h earlier); (b) Irma (EO 20 h later);
(c) Dorian (EO 20 h earlier); (d) Dorian (EO 20 h later); (e) Irma-RO (EO 20 h earlier); (f) [rma-RO (EO 20 h later); and (g) population by grid cell.
Values in a-f are expressed as changes relative to the baseline simulations for Irma, Dorian, and Irma-RO, as shown in Fig. 1. Also shown is the
population by grid cell (g). These provide a frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St.

Petersburg (blue star), Jacksonville (green star), and Orlando (orange star).

Irma-RO, i.e., the heavily trafficked scenarios are most sensitive to
these experiments.

Fig. 7 shows the change in evacuation rates and traffic by grid
cell. In the Irma and Irma-RO scenarios, evacuation worsen in 2030
and 2040 across the southern half of the model, with notable
impacts surrounding Tampa Bay-St. Petersburg and Miami-Ft.
Lauderdale. This also occurs in Dorian, though to a lesser extent,
mainly in the areas at risk [Figs. 7(c and d); red cells] that are most
upstream, i.e., southern portions of the areas at risk.

Results suggest that, in the absence of other changes, popu-
lation growth may worsen future evacuations by adding more
vehicles on the roads. Its impacts may be most significant in
heavily trafficked, rapid onset forecast scenarios, and across
south Florida, which is further upstream with respect to traffic
flow. With population growth or demographic shifts more gen-
erally, additional evacuation management strategies may be es-
pecially important in certain geographic areas, depending on the
storm scenario.

Summary and Conclusions

After presenting a comparison of simulated evacuation outcomes
with empirical data for two real storms, this analysis began to ex-
plore targeted aspects of the hurricane-forecast-evacuation system
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dynamics using an agent-based, computational framework capable
of exploring how the natural-human-built environment sub-systems
influence evacuation outcomes. By changing certain model param-
eters one-by-one, we investigate, to a first order, how evacuations
are hindered and improved when changing the number of cars on
the road network (changing evacuation demand), when implement-
ing approximations to different evacuation management strategies
and policies (contraflow, evacuation order timing), and when
changing population characteristics (population growth and distri-
bution). Experiments are conducted for two real forecast scenarios

(Irma, Dorian) and one simulated storm (rapid-onset version of

Irma).

In analyzing the results, we ask and answer the following
questions:

1. How do these simulated changes hinder or improve overall
evacuation success and how do they compare with each
other? Overall, evacuations may be less successful (perhaps ex-
ponentially) if households use more cars to evacuate the same
number of people, or if the at-risk populations increase with
population growth. On the other hand, evacuations generally im-
prove when contraflow is implemented or when evacuation de-
mand is reduced. Though having significant localized effects,
shifting evacuation order timing has less impact on evacuation
success overall than other simulated changes.

Nat. Hazards Rev.
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Fig. 7. (Color) Evacuation rates by grid cell for the 2030 and 2040 projected populations. (a) Irma (2030 projections); (b) Dorian (2030 projections);
(c) Irma-RO (2030 projections); (d) Irma (2040 projections); (e) Dorian (2040 projections); (f) Irma-RO (2040 projections); (g) population (2030
projections); and (h) population (2040 projections). Values in (a)—(f) are expressed as changes relative to the baseline simulations for Irma, Dorian,
and Irma-RO, as shown in Fig. 1. Also shown is the 2030 population by grid cell (g) and the 2040 population by grid cell (h). These provide a frame of
reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and

Orlando (orange star).

2. How do these simulated changes vary across forecast
scenarios, regions, and different areas of impact? We find
evidence that evacuations during rapid-onset scenarios are con-
siderably less successful in the highest impacted areas, and that
impacts from the simulated changes—both those hindering and
improving evacuations—are largest in these rapid onset events.
Regionally, the most heavily trafficked areas (e.g., urban areas
at-risk and places upstream of traffic) benefit from evacuation
management strategies and policies the most (contraflow,
reducing evacuation demand), suggesting potential benefits
of targeted interventions.

Together, these results demonstrate how agent-based frame-
works like FLEE can be powerful virtual laboratories capable of
investigating aspects of the system dynamics across many scenar-
ios, real or synthetic. The findings presented are not intended to be
definitive. Rather, they provide a foundation for this type of work
exploring the system dynamics computationally, and for testing the
effectiveness of evacuation management strategies and policies
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prior to implementing them in the real world when the stakes

are high.

There are several challenges and opportunities to improve FLEE
and increase its utility in evacuation planning and practice. This
includes:

1. Conducting additional tests and validation—As empirical
data on real-world evacuations becomes increasingly available,
that information can be codified into FLEE and used to validate
the model. For example, recent Hurricane Ian (2022) provides
new opportunities to validate (and improve) FLEE. This in-
creases FLEE’s realism, and subsequently, its ability to answer
questions of interest.

2. Improving the model resolution—FLEE’s spatial resolution,
for example, should be improved to better represent the actual
distribution of households, road networks, and cities.

3. Improving computational run-time—The modeling frame-
work is computationally expensive, requiring 3—5 days of real-
time to run a single simulation on a personal computer. Improving
FLEE’s computational efficiency would allow for running many
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Table 4. Evacuation metrics for the population growth and uniform geographical population distribution experiments

Experiments Results
% Under % Not under
Population % Change evacuation evacuation % Unsuccessful Unsuccessful
growth and Evacuation relative to orders who orders but evacuation evacuation
Storm distribution rates baseline Evacuated evacuated evacuated due to traffic due to traffic
Irma Baseline 32.0 0 524 m 34.9 25.6 2.5 409 k
Uniform 33.6 +1.6 551 m 36.7 29.8 2.6 426 k
2030 30.7 -1.3 593 m 333 24.9 3.6 695 k
2040 28.7 -33 6.38 m 31.8 22.1 5.5 1.22 m
Dorian Baseline 12.0 0 1.97 m 354 4.3 0.7 115 k
Uniform 11.2 —0.8 1.84 m 36.4 3.8 0.6 98 k
2030 11.6 —-0.4 224 m 34.1 44 1.0 193 k
2040 11.2 —0.8 2.49 m 32.7 4.5 1.5 333 k
Irma-RO Baseline 26.3 0 431 m 28.8 253 7.7 1.26 m
Uniform 29.2 +2.9 4.79 m 32.0 26.7 6.0 983 m
2030 23.7 —2.6 4.58 m 28.1 20.0 10.0 1.93 m
2040 21.9 —4.4 4.87 m 23.6 21.7 11.7 2.61 m

Note: Bold values were meant to serve as a reference point for comparison.

additional experiments, increasing the model resolution, and

incorporating other features relevant to evacuations, such as

simulating the challenges of implementing evacuation manage-
ment strategies (e.g., contraflow is time sensitive and requires
significant resources and planning).

Other applications for computational modeling frameworks like
FLEE include using them to explore how changes in forecast track
and intensity influences evacuations. The idea is to demonstrate
how these types of models can provide a societally relevant com-
plement to traditional measures of forecast accuracy, by measuring
the impact of forecast errors on evacuation success [need described
by Morss (2005), Murphy (1993), and Roebber and Bosart (1996)].
Furthermore, this type of modeling framework can be extended
to other hazards where evacuation traffic is a concern, such as
wildfires. Though this requires customizing FLEE’s details and de-
sign, the principles of agent-based models are broadly and readily
extendable to these phenomena.

As we continue to develop computational frameworks like FLEE
and improve their ability to answer questions of interest, this area of
research can support practitioners, policymakers, and scholars in haz-
ard risk management and related disciplines. Practitioners could use
the models to explore evacuation outcomes under many different

Table 5. Empirical information used to validate FLEE

scenarios and improve our knowledge of which strategies are most
effective, when, and where. FLEE will be especially helpful for
decision-makers once the models are capable of running in pseudo
real-time. Policymakers could use the models to identify resource
needs in future climate-population scenarios. Meanwhile, researchers
can benefit from many aspects of knowledge building using the mod-
eling frameworks, including studying how these different physical-
social factors combine to produce evacuation outcomes, cultivating
important cross-disciplinary understanding (Bostrom et al. 2016).

Appendix. Notes on Model Validation and Updates

In Table 5, we overview the empirical information used to validate
FLEE. Then, we describe FLEE’s model improvements inspired by
the validation in Table 6, including showing the percentage of
coastal grid cells now receiving evacuation orders in the updated
model (Fig. 8). These updated values are based on the percentage
of the Florida population estimated to reside in an evacuation zone,
as derived from Fig. 2 of Wong et al. (2018), Florida Department of
Emergency Management (personal communication), and Fig. 1 of
Darzi et al. (2021).

Information category Storm Data specifics Sources
Evacuation orders Irma Counties, evacuation zones Fig. 2 of Wong et al. (2018), Florida Department of Emergency
Management (personal communication), Fig. 1 of Darzi et al. (2021)
Dorian Counties, evacuation zones Roache (2019)
Evacuation rates Irma By region Fig. 4 of Wong et al. (2018)
Irma By voting precinct Fig. 1(c) of Long et al. (2020)
Irma By county Table 10 of Martin et al. (2020)
Irma By state Florida Department of Emergency Management (2017), Fig. 6 of
Wong et al. (2018), and Fig. 2(c) of Long et al. (2020)
Irma By city Feng and Lin (2021)
Dorian Storm total Mongold et al. (2020)
Evacuation traffic Irma Areas/times of congestion Page 15 of Wong et al. (2018), Ghorbanzadeh et al. (2021), and
Staes et al. (2021)
Irma Total numbers stuck Feng and Lin (2021)
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Table 6. Updates to the model since Harris et al. (2021)

Original parameters

Updated parameters

Intended effect

Instantaneous communication—forecast
information were received immediately by
households to begin the evacuation
decision-making process

Evacuation barriers (car ownership,
socioeconomic status) are static and do not
change

Households are randomly assigned a value
between 0 and 24 h. This is the amount of time
before households begin making evacuation
decisions. The value is a best guess—sensitivity
analysis suggests the exact value does not
significantly impact evacuations

Evacuation barriers are raised by 36 h initially
and decrease linearly to their original values in
Harris et al. (2021) by 54 h before landfall

To provide a more realistic, slower representation of
information diffusion through the population
(e.g., see Watts et al. 2019)

This effectively increases risk perception over time,
which helps prevent too many people from evacuating
early in the simulations, e.g., upstate and inland in the

Mobile home ownership weighting in
household evacuation decision-making
algorithm: Random between 0 and 10

Socioeconomic status weighting in household
evacuation decision-making algorithm:
Random between 5 and 125

Mobile home ownership weighting in
household evacuation decision-making
algorithm: Random between 0 and 0.5

Socioeconomic status weighting in household
evacuation decision-making algorithm:
Random between 5 and 109

Irma and Dorian simulations

To reduce the impact of mobile home ownership
relative to other decision-making inputs. In turn, this
minimized excess variability in evacuation rates
between neighboring grid cells, particularly inland

To reduce excess variability in evacuation rates
between neighboring grid cells, particularly inland

30 - - 20
15 - - 15
20 - - 5
5 - - 5
20 - - 10
15 - - 5
30 - - 5
45 - - 15
65 - - 5
100 | 100 15 5
(@)

100K | 100K | 300 K J{ 450 K

100K | 100K | 250K | 250K

50 K 250K | 100K | 200K

50 K 250K | 100K | 200K
300K | 200K | 150 ? 300K
25m @ 600K | 1.0 800 K

1.0m 50 K 100K | 250K

700 K 40 K 400K | 800K

200K | 300K | 800K | 800K

15K 35K 1.1m | 1.1m

(b)

Fig. 8. (Color) (a) The percentage of households in a coastal grid cell receiving evacuation orders, if issued for the cell; and (b) Population by grid cell
along with the approximate location of major cities: Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green

star), and Orlando (orange star).

Data Availability Statement

All input data and model code generated and used during the study
are available in a repository or online in accordance with funder
data retention policies. The model code was created using the
Fortran programming language. The commented code, an ODD
specification (a formal, detailed model description), and supporting
input files are available for download at the CoOMSES model library
(https://www.comses.net/codebase-release/4cd05855-£387-48bd
-8899-9d62375518cb/).

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 2100801. The authors thank
NSF for their support.

© ASCE

04023042-13

Author contributions: A. H., P. R., and R. M. designed the re-
search; A. H. and P. R. created the built environment components of
the model; R. M. and A. H. built the human system elements of the
model; A. H., R. M., and P. R. analyzed the data; A. H. wrote the
paper with R. M. and P. R. providing edits.

References

Barton, C. M. 2014. “Complexity, social complexity, and modeling.”
J. Archaeol. Method Theory 21 (2): 306-324. https://doi.org/10.1007
/s10816-013-9187-2.

Blanton, B., K. Dresback, B. Colle, R. Kolar, H. Vergara, Y. Hong,
N. Leonardo, R. Davidson, L. Nozick, and T. Wachtendorf. 2018. “An
integrated scenario ensemble-based framework for hurricane evacuation
modeling: Part 2—Hazard modeling.” Risk Anal. 40 (1): 117-133.
https://doi.org/10.1111/risa.13004.

Nat. Hazards Rev.

Nat. Hazards Rev., 2023, 24(4): 04023042


https://www.comses.net/codebase-release/4cd05855-f387-48bd-8899-9d62375518cb/
https://www.comses.net/codebase-release/4cd05855-f387-48bd-8899-9d62375518cb/
https://doi.org/10.1007/s10816-013-9187-2
https://doi.org/10.1007/s10816-013-9187-2
https://doi.org/10.1111/risa.13004

Downloaded from ascelibrary.org by 128.150.201.75 on 08/07/23. Copyright ASCE. For personal use only; all rights reserved.

Bostrom, A., R. E. Morss, J. K. Lazo, J. L. Demuth, H. Lazrus, and
R. Hudson. 2016. “A mental models study of hurricane forecast and
warning production, communication, and decision-making.” Weather
Clim. Soc. 8 (2): 111-129. https://doi.org/10.1175/WCAS-D-15-0033.1.

Bullard, R., and B. Wright. 2011. Race, place, and environmental justice
after Hurricane Katrina: Struggles to reclaim, rebuild, and revitalize
New Orleans and the gulf coast. Boulder, CO: Westview Press.

Chen, X., and F. B. Zhan. 2008. “Agent-based modelling and simulation of
urban evacuation: Relative effectiveness of simultaneous and staged
evacuation strategies.” J. Oper. Res. Soc. 59 (1): 25-33. https://doi
.org/10.1057/palgrave.jors.2602321.

Chiu, Y.-C., H. Zheng, J. A. Villalobos, W. G. Peacock, and R. Henk. 2008.
“Evaluating regional contra-flow and phased evacuation strategies for
Texas using a large-scale dynamic traffic simulation and assignment
approach.” J. Homeland Secur. Emerg. Manage. 5 (1): 1547-7355.
https://doi.org/10.2202/1547-7355.1409.

Darzi, A., V. Frias-Martinez, S. Ghader, H. Younes, and L. Zhang. 2021.
“Constructing evacuation evolution patterns and decisions using mobile
device location data: A case study of hurricane Irma.” Preprint, submit-
ted February 24, 2021. https://arxiv.org/abs/2102.12600.

Davidson, R., et al. 2018. “An integrated scenario ensemble-based framework
for hurricane evacuation modeling: Part 1—Decision support system.”
Risk Anal. 40 (1): 97-116. https://doi.org/10.1111/risa.12990.

Dixit, V. V,, and E. Radwan. 2009. “Optimal scheduling of evacuation
orders for cities.” In Proc., 88th Annual Meeting of the Transportation
Research Board. Washington, DC: Transportation Research Board.

Dixon, D. S., P. Mozumder, W. F. Vasquez, and H. Gladwin. 2017. “Hetero-
geneity within and across households in hurricane evacuation response.”
Networks Spatial Econ. 17 (2): 645-680. https://doi.org/10.1007/s11067
-017-9339-0.

FDEM (Florida Division of Emergency Management). 2018. “Regional
emergency management liaison team.” Accessed August 20, 2022.
https://www.floridadisaster.org/dem/directors-office/regions/.

Feng, K., and N. Lin. 2021. “Reconstructing and analyzing the traffic flow
during evacuation in Hurricane Irma (2017).” Transp. Res. Part D:
Transp. Environ. 94 (May): 102788. https://doi.org/10.1016/j.trd.2021
.102788.

Florida DOT (Florida Department of Transportation). 2020. “Technical
memorandum projections of Florida population by county, 2020—
2070.” Accessed August 20, 2022. https://www.fdot.gov/planning
/demographic/baseline.shtm.

Florida Statewide Regional Evacuation Study Program. 2019. “Regional
evacuation transportation analysis. Technical data report South Florida
region.” Accessed August 20, 2022. http://sfregionalcouncil.org/wp
-content/uploads/2019/08/Vol1-11_ChVILpdf.

Gehlot, H., X. Zhan, X. Qian, and C. Thompson. 2018. “A-RESCUE 2.0: A
high-fidelity, parallel, agent-based evacuation simulator.” J. Comput.
Civ. Eng. 33 (2): 04018059. https://doi.org/10.1061/(ASCE)CP.1943
-5487.0000802.

Ghorbanzadeh, M., S. Burns, L. V. Rugminiamma, E. Erman Ozguven, and
W. Huang. 2021. “Spatiotemporal analysis of highway traffic patterns in
hurricane Irma evacuation.” Transp. Res. Rec. 2675 (9): 321-334.
https://doi.org/10.1177/03611981211001870.

Harris, A. R., P. J. Roebber, and R. E. Morss. 2021. “An agent-based mod-
eling framework for examining the dynamics of the hurricane-forecast-
evacuation system.” Int. J. Disaster Risk Reduct. 67 (Jan): 102669.
https://doi.org/10.1016/j.ijdrr.2021.102669.

Huang, S.-K., M. K. Lindell, and C. S. Prater. 2016. “Who leaves and who
stays? A review and statistical meta-analysis of hurricane evacuation
studies.” Environ. Behav. 48 (8): 991-1029. https://doi.org/10.1177
/0013916515578485.

Lindell, M. K., and R. W. Perry. 2012. “The protective action decision
model: Theoretical modifications and additional evidence.” Risk Anal.
32 (4): 616-632. https://doi.org/10.1111/.1539-6924.2011.01647 .x.

Long, E. F., M. K. Chen, and R. Rohla. 2020. “Political storms: Emergent
partisan skepticism of hurricane risks.” Sci. Adv. 6 (37): eabb7906.
https://doi.org/10.1126/sciadv.abb7906.

Martin, Y., S. L. Cutter, and Z. Li. 2020. “Bridging twitter and survey data
for evacuation assessment of Hurricane Matthew and Hurricane Irma.”

© ASCE

04023042-14

Nat. Hazard. Rev. 21 (2): 04020003. https://doi.org/10.1061/(ASCE)
NH.1527-6996.0000354.

McGhee, C. C., and M. C. Grimes. 2006. An operational analysis of the
Hampton roads hurricane evacuation traffic control plan. Richmond,
VA: Virginia DOT.

Miller, J. H., and S. E. Page. 2007. Complex adaptive systems: An intro-
duction to computational models of social life. Princeton, NJ: Princeton
University Press.

Mongold, E., R. A. Davidson, J. Trivedi, S. DeYoung, T. Wachtendorf, and
P. Anyidoho. 2020. “Hurricane evacuation beliefs and behaviour of
inland vs. coastal populations.” Environ. Hazards 20 (4): 363-381.
https://doi.org/10.1080/17477891.2020.1829531.

Morss, R. E. 2005. “Problem definition in atmospheric science public
policy: The example of observing-system design for weather predic-
tion.” Bull. Am. Meteorol. Soc. 86 (2): 181-192. https://doi.org/10
.1175/BAMS-86-2-181.

Morss, R. E., et al. 2017. “Hazardous weather prediction and communica-
tion in the modern information environment.” Bull. Am. Meteorol. Soc.
98 (12): 2653-2674. https://doi.org/10.1175/BAMS-D-16-0058.1.

Murphy, A. H. 1993. “What is a good forecast? An essay on the nature of
goodness in weather forecasting.” Weather Forecasting 8 (2): 281-293.
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0
.CO;2.

Murray-Tuite, P., M. K. Lindell, B. Wolshon, and E. J. Baker. 2019. Large-
scale evacuation: The analysis, modeling, and management of emergency
relocation from hazardous area. 1st ed. New York: Taylor & Francis.

Roache, M. 2019. “At least 1 million people in these counties are under
evacuation orders as Hurricane Dorian approaches.” Accessed August
20, 2022. https://time.com/5666941/hurrican-dorian-evacuation-orders
-counties/.

Roebber, P. J., and L. F. Bosart. 1996. “The complex relationship between
forecast skill and forecast value: A real-world analysis.” Weather Fore-
casting 11 (4): 544-559. https://doi.org/10.1175/1520-0434(1996)
011<0544:TCRBFS>2.0.CO:;2.

Staes, B., N. Menon, and R. L. Bertini. 2021. “Analyzing transportation
network performance during emergency evacuations: Evidence from
Hurricane Irma.” Transp. Res.Part D: Transp. Environ. 95 (Jun):
102841. https://doi.org/10.1016/j.trd.2021.102841.

Swamy, R., J. E. Kang, R. Batta, and Y. Chung. 2017. “Hurricane evacu-
ation planning using public transportation.” Socio-Econ. Plann. Sci.
59 (Sep): 43-55. https://doi.org/10.1016/j.seps.2016.10.009.

Ukkusuri, S. V., S. Hasan, B. Luong, K. Doan, X. Zhan, P. Murray-Tuite,
and W. Yin. 2017. “ARESCUE: An agent based regional evacuation
simulator coupled with user enriched behavior.” Networks Spatial Econ.
17 (1): 197-223. https://doi.org/10.1007/s11067-016-9323-0.

Watts, J., R. E. Morss, C. M. Barton, and J. L. Demuth. 2019. “Concep-
tualizing and implementing an agent-based model of information flow
and decision making during hurricane threats.” Environ. Modell. Software
122 (Dec): 104524. https://doi.org/10.1016/j.envsoft.2019.104524.

Wolshon, B., and L. Lambert. 2004. Convertible roadways and lanes.
NCHRP Synthesis of Highway Practice 340. Washington, DC: Trans-
portation Research Board, National Research Council.

Wong, S., S. Shaheen, and J. Walker. 2018. Understanding evacuee behav-
ior: A case study of hurricane Irma. Berkeley, CA: Transportation
Sustainability Research Center.

Yi, W, L. K. Nozick, R. A. Davidson, B. Blanton, and B. A. Colle. 2017.
“Optimization of the issuance of evacuation orders under evolving hur-
ricane conditions.” Transp. Res. Part B: Methodol. 95 (Jan): 285-304.
https://doi.org/10.1016/j.trb.2016.10.008.

Yin, W., P. Murray-Tuite, S. V. Ukkusuri, and H. Gladwin. 2014. “An
agent-based modeling system for travel demand simulation for hurri-
cane evacuation.” Transp. Res. Part C: Emerging Technol. 42 (May):
44-59. https://doi.org/10.1016/j.trc.2014.02.015.

Zhang, F., et al. 2007. “An in-person survey investigating public percep-
tions of and response to Hurricane Rita forecasts along the Texas
Coast.” Weather Forecasting 22 (6): 1177-1190. https://doi.org/10
.1175/2007WAF2006118.1.

Zhang, X., and G. Chang. 2014. “A transit-based evacuation model for met-
ropolitan areas.” J. Public Transp. 17 (3): 129-147. https://doi.org/10
.5038/2375-0901.17.3.9.

Nat. Hazards Rev.

Nat. Hazards Rev., 2023, 24(4): 04023042


https://doi.org/10.1175/WCAS-D-15-0033.1
https://doi.org/10.1057/palgrave.jors.2602321
https://doi.org/10.1057/palgrave.jors.2602321
https://doi.org/10.2202/1547-7355.1409
https://arxiv.org/abs/2102.12600
https://doi.org/10.1111/risa.12990
https://doi.org/10.1007/s11067-017-9339-0
https://doi.org/10.1007/s11067-017-9339-0
https://www.floridadisaster.org/dem/directors-office/regions/
https://doi.org/10.1016/j.trd.2021.102788
https://doi.org/10.1016/j.trd.2021.102788
https://www.fdot.gov/planning/demographic/baseline.shtm
https://www.fdot.gov/planning/demographic/baseline.shtm
http://sfregionalcouncil.org/wp-content/uploads/2019/08/Vol1-11_ChVI.pdf
http://sfregionalcouncil.org/wp-content/uploads/2019/08/Vol1-11_ChVI.pdf
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000802
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000802
https://doi.org/10.1177/03611981211001870
https://doi.org/10.1016/j.ijdrr.2021.102669
https://doi.org/10.1177/0013916515578485
https://doi.org/10.1177/0013916515578485
https://doi.org/10.1111/j.1539-6924.2011.01647.x
https://doi.org/10.1126/sciadv.abb7906
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000354
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000354
https://doi.org/10.1080/17477891.2020.1829531
https://doi.org/10.1175/BAMS-86-2-181
https://doi.org/10.1175/BAMS-86-2-181
https://doi.org/10.1175/BAMS-D-16-0058.1
https://doi.org/10.1175/1520-0434(1993)008%3C0281:WIAGFA%3E2.0.CO;2
https://doi.org/10.1175/1520-0434(1993)008%3C0281:WIAGFA%3E2.0.CO;2
https://time.com/5666941/hurrican-dorian-evacuation-orders-counties/
https://time.com/5666941/hurrican-dorian-evacuation-orders-counties/
https://doi.org/10.1175/1520-0434(1996)011%3C0544:TCRBFS%3E2.0.CO;2
https://doi.org/10.1175/1520-0434(1996)011%3C0544:TCRBFS%3E2.0.CO;2
https://doi.org/10.1016/j.trd.2021.102841
https://doi.org/10.1016/j.seps.2016.10.009
https://doi.org/10.1007/s11067-016-9323-0
https://doi.org/10.1016/j.envsoft.2019.104524
https://doi.org/10.1016/j.trb.2016.10.008
https://doi.org/10.1016/j.trc.2014.02.015
https://doi.org/10.1175/2007WAF2006118.1
https://doi.org/10.1175/2007WAF2006118.1
https://doi.org/10.5038/2375-0901.17.3.9
https://doi.org/10.5038/2375-0901.17.3.9

