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Let M be a closed, odd GKM3 manifold of non-negative sectional curvature. We show

that in this situation one can associate an ordinary abstract GKM3 graph to M and

prove that if this graph is orientable, then both the equivariant and the ordinary rational

cohomology of M split off the cohomology of an odd-dimensional sphere.

1. Introduction

A long-standing problem in Riemannian geometry is the classification of positively

and non-negatively curved manifolds. One characteristic shared by many of the known

examples is a high degree of symmetry. The Grove Symmetry Program suggests we

attempt the classification of such manifolds with the additional hypothesis of “large”

symmetries. The eventual goal of this program is to be able to eliminate the hypothesis

of symmetries entirely.

A natural first step is to consider the case of abelian symmetries. For the case

of positive curvature, results due to Grove and Searle [20], Rong [32] and Fang and Rong

[10], and Wilking [37] give us a classification up to diffeomorphism, homeomorphism, or

rational homotopy equivalence for a Tk-action, provided k equals �(n+1)/2�, �(n−1)/2�,

or is greater than or equal to �(n + 4)/4�, respectively. For non-negative curvature, an
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Odd GKM-Manifolds of Non-Negative Curvature 745

equivariant diffeomorphism classification for dimensions less than or equal to nine

for Tk-actions with k = �2n/3� follows from the work of Galaz-García and Searle [13],

Galaz-García and Kerin [12], and Escher and Searle [9]. An equivariant diffeomorphism

classification for dimensions less than or equal to 6 for Tk-actions with k = �2n/3� − 1

follows from the work of Kleiner [27], Searle and Yang [33], Galaz-García [11], Galaz-

García and Kerin [12], Grove and Wilking [21], Galaz-García and Searle [14], and Escher

and Searle [8]. Note that all of these results rely heavily on the existence of fixed point

sets of “small” codimension.

From this point of view, one may consider GKMk manifolds as occupying the

other end of the spectrum. Note that these are 2n-dimensional manifolds with a torus

action of rank ≤ n. A consequence of the GKMk condition is that for a Tm-action on

M2n, for all l ≤ min(k, m) − 1, there exist codimension l torus subgroups of Tm fixing

2l-dimensional submanifolds of M, which we denote by N2l. Furthermore, with the

induced T l-action, each N2l is a torus manifold, that is an orientable, even-dimensional

manifold such that T l has non-empty fixed point set. GKMk manifolds of both positive

and non-negative curvature were studied by Goertsches and Wiemeler in [17, 18],

respectively, where they showed that the GKM3, respectively GKM4, condition allows

them to classify such manifolds up to real, respectively, rational cohomology type. The

notion of GKM manifold was extended to odd dimensions by He [26]. We call such

manifolds odd GKM manifolds. Inspired by the work of [17, 18] and [26], we consider

the case of odd GKM3 manifolds of positive and non-negative curvature.

Our main result concerns odd GKM3 manifolds of non-negative sectional curva-

ture. Throughout this article, we only consider cohomology with rational coefficients,

and note that an abstract GKM3 graph is orientable provided its top cohomology class

is non-trivial.

Main Theorem 1.1. Let M2n+1 be a closed, non-negatively curved odd GKM3 mani-

fold, �̄M the GKM3 graph of M, and k the number of floating edges at a vertex of �̄M .

Suppose that (�, α, ∇), the abstract, even-dimensional GKM3 graph obtained from �̄M ,

is orientable. Then H∗(M2n+1) splits off the cohomology ring of an odd dimensional

sphere, that is,

H∗(M) ∼= H∗(�, α, ∇) ⊗ H∗(S2k+1).

In the process of proving Theorem 1.1, we also obtain a similar result for the

equivariant cohomology of M, see Theorem 5.4. For the definition of floating edges of a

GKM graph of an odd-dimensional GKM manifold, see Definition 2.32.
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746 C. Escher et al.

In Theorem 1.1, the abstract, even-dimensional GKM3 graph, �, obtained from

the odd GKM3 graph associated to M2n+1, has two-dimensional faces that contain

at most four vertices. The rational cohomology of a GKMk manifold is completely

determined by its corresponding vertex-edge graph, �. Unfortunately, there is no general

classification of even-dimensional GKM3 graphs whose two-dimensional faces contain

at most four vertices. That is, it is as yet unknown whether every such GKM3 graph

corresponds to a closed, non-negatively curved GKM3 manifold. However, if there are no

quadrangles as two-dimensional faces of �, that is, if no two-dimensional face in the

odd-dimensional GKM graph of M is of the form (4) in Theorem 4.3, then by the main

result of [17], H∗(�, α, ∇) is isomorphic to the real cohomology ring of a compact rank

one symmetric space (CROSS). Since the result in [17] was obtained via a classification

of all possible GKM3 graphs and by applying the GKM theorem, the result also holds for

rational coefficients. We obtain the following theorem.

Theorem 1.2. Let M2n+1 be a closed, non-negatively curved, odd GKM3 manifold.

Suppose that the two-dimensional faces in �̄M , the odd-dimensional GKM graph of M,

are not of the form (4) in Theorem 4.3 and that (�, α, ∇), the abstract, even-dimensional

GKM3 graph obtained from �̄M , is orientable. Then H∗(M2n+1) is the tensor product of

the rational cohomology ring of an odd dimensional sphere, and a simply-connected

CROSS, that is,

H∗(M) ∼= H∗(N2n−2k) ⊗ H∗(S2k+1),

where N2n−2k is a simply-connected CROSS.

Using Theorem 1.4 of [18], we see that if we assume that our manifold is GKM4,

then the cohomology ring of the manifold splits as that of an odd-dimensional sphere

and a finite quotient of a non-negatively curved torus manifold.

Theorem 1.3. Let M2n+1 be a closed, non-negatively curved odd GKM4 manifold.

Suppose that (�, α, ∇), the abstract, even-dimensional GKM4 graph obtained from �̄M ,

the odd-dimensional GKM graph of M, is orientable. Then H∗(M2n+1) is the tensor

product of the cohomology ring of an odd dimensional sphere, and the cohomology

ring of a (quotient of) a torus manifold, that is,

H∗(M) ∼= H∗(N2n−2k/G) ⊗ H∗(S2k+1),

where N is a simply-connected, non-negatively curved torus manifold and G is a finite

group acting isometrically (and orientably) on N.
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Odd GKM-Manifolds of Non-Negative Curvature 747

To date, only odd GKM graphs without signs have been treated in the literature.

Adding the restriction that the manifold admits a T-invariant almost contact structure,

that is, an almost contact structure invariant under a torus action, allows us to talk

about odd GKM graphs with signs. Using Theorem 1.5 of [18], we obtain the following

result.

Theorem 1.4. Let M2n+1 be a closed, non-negatively manifold with an odd GKM4

T-action, which admits a T-invariant, alternating, almost contact structure. Suppose

that (�, α, ∇), the abstract, even-dimensional GKM4 graph obtained from �̄M , the odd-

dimensional GKM graph of M, is orientable. Then the rational cohomology ring of

M is isomorphic to the tensor product of the rational cohomology ring of an odd-

dimensional sphere and the rational cohomology ring of a generalized Bott manifold.

See Definition 6.4 for a definition of an alternating almost contact structure.

Finally, we also obtain a full rational cohomology classification for positively curved

odd GKM3 manifolds, as follows.

Theorem 1.5. Let M2n+1 be a closed, positively curved, odd GKM3 manifold. Then

M2n+1 has the rational cohomology ring of S2n+1.

We note that of the known examples of odd-dimensional manifolds of positive

curvature, the only ones that are rational homology spheres, but not diffeomorphic to

spheres, are the so-called Berger spaces, B7 = SO(5)/SO(3) and B13 = SU(5)/(Sp(2) ×

Z2S1). These two manifolds admit both an invariant transitive and an invariant

cohomogeneity one action, but the corresponding maximal torus does not satisfy the

requirements to be odd GKM3, since the maximal torus in both cases does not have

fixed points.

Finally, we point out that the positive and non-negative curvature hypotheses

in our results serve to restrict the number of vertices in the two-dimensional faces of

the odd GKMk graph associated to the manifold. Thus, all of the above theorems can be

reframed in a curvature-free setting by simply assuming the corresponding restrictions

on these graphs.

1.1. Organization

The paper is organized as follows. We include basic notation and preliminary material

in Section 2. In Section 3, we classify the universal covers of closed, non-negatively
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748 C. Escher et al.

curved 5-dimensional GKM manifolds. In Section 4, we classify the corresponding

graphs of these 5-manifolds. In Section 5, we prove Theorems 1.1, 1.2, 1.3, and 1.5. In

Section 6, we give the proof of Theorem 1.4.

2. Preliminaries

In this section we gather basic results and facts about transformation groups, equivari-

ant cohomology, even- and odd-dimensional GKM and GKMk theory, as well as results

concerning G-invariant manifolds of non-negative sectional curvature.

2.1. Transformation groups

Let G be a compact Lie group acting on a smooth manifold M. We denote by

Gx = {g ∈ G | gx = x} the isotropy group at x ∈ M and by G(x) = {gx | g ∈ G} the

orbit of x. Note that G(x) is homeomorphic to G/Gx since G is compact. We denote the

orbit space of the G-action by M/G and note that if M admits a lower sectional curvature

bound and the G-action is isometric, then M/G is an Alexandrov space admitting the

same lower curvature bound. We denote the fixed point set of M by G as either MG or

Fix(M; G), using whichever may be more convenient.

One measurement for the size of a transformation group G × M → M is the

dimension of its orbit space M/G, also called the cohomogeneity of the action. This

dimension is clearly constrained by the dimension of the fixed point set MG of G in M.

In fact, dim(M/G) ≥ dim(MG) + 1 for any non-trivial, non-transitive action. In light

of this, the fixed point cohomogeneity of an action, denoted by cohomfix(M; G), is

defined by

cohomfix(M; G) = dim(M/G) − dim(MG) − 1 ≥ 0.

A manifold with fixed point cohomogeneity 0 is also called a G-fixed point homoge-

neous manifold.

We now recall Theorem I.9.1 of Bredon [3], which characterizes how to lift a

group action to a covering space.

Theorem 2.1. [3] Let G be a connected Lie group acting effectively on a connected,

locally path-connected space X and let X ′ be any covering space of X. Then there is a

covering group G′ of G with an effective action of G′ on X ′ covering the given action.

Moreover, G′ and its action on X ′ are unique.

The kernel of G′ → G is a subgroup of the group of deck transformations of

X ′ → X. In particular, if X ′ → X has finitely many sheets, then so does G′ → G.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/1

/7
4
4
/6

3
8
3
5
8
2
 b

y
 T

e
c
h
n
ic

a
l S

e
rv

ic
e
s
 - S

e
ria

ls
 u

s
e
r o

n
 0

8
 A

u
g
u
s
t 2

0
2
3



Odd GKM-Manifolds of Non-Negative Curvature 749

If G has a fixed point in X, then G′ = G and Fix(X ′; G) is the full inverse image of

Fix(X; G).

The presence of a G-action on a manifold M induces a topological stratification

of M. In particular, when the group is a torus, that is, G = T, a special name is given to

the strata of the T-action.

Definition 2.2 (The k-skeleton of M). For G = T, a torus, we define the k-skeleton of

M to be

Mk = {p ∈ M | dim(T(p)) ≤ k}.

We then obtain a T-invariant topological stratification of M as follows: M0 ⊂ M1 ⊂

· · · ⊂ Mdim(T) = M on M, where the 0-skeleton M0 is exactly the fixed point set MT .

2.2. Equivariant cohomology

We begin by providing some basic information about equivariant cohomology and

equivariantly formal manifolds for torus actions.

Definition 2.3 (Equivariant Cohomology). Given an action of a torus T on a compact

manifold M, the equivariant cohomology of the action is defined as

H∗
T(M) = H∗(M ×T ET),

where ET → BT is the classifying bundle of T and ET is a contractible space on which

T acts freely.

The equivariant cohomology has the natural structure of an H∗(BT)-algebra, via

the projection M ×T ET → BT. Note that H∗(BT) is isomorphic to the ring of rational

polynomials on the Lie algebra t, in the following sense. Denoting the rational points

in t, that is, the tensor product of the integer lattice in t with Q, by tQ, then H∗(BT),

a rational polynomial ring in dim(T) variables, is isomorphic to S(t∗
Q
), the symmetric

algebra over t∗
Q

.

Given an action of a torus T on M, we may compare H∗
T(M) with H∗

T(MT) using

the Borel Localization Theorem (see, e.g., Corollary 3.1.8 in Allday and Puppe [1]).

Theorem 2.4 (Borel Localization Theorem). The restriction map

H∗
T(M) → H∗

T(MT)

is an H∗(BT)-module isomorphism modulo H∗(BT)-torsion.
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750 C. Escher et al.

Using this localization theorem, it is clear that if H∗
T(M) is actually a free

H∗(BT)-module, one can hope for a stronger relation between the manifold M and its

fixed point set MT . This motivates the following definition.

Definition 2.5 (Equivariantly Formal). We say that an action of a torus T on M is

equivariantly formal if H∗
T(M) is a free H∗(BT) ∼= S(t∗

Q
)-module.

As a compact manifold has finite-dimensional cohomology, it follows from

Corollary 4.2.3 of [1] that equivariant formality is equivalent to the degeneration of the

Leray–Serre spectral sequence of the Borel fibration M ↪→ M ×T ET → BT at the E2-term.

Moreover, the following are some well-known and important properties of equivariantly

formal actions.

Proposition 2.6. An action of a torus T on a compact manifold M with Hodd(M) =

{0} is equivariantly formal. The converse implication is true provided that the T-fixed

point set MT is finite.

The first statement of Proposition 2.6 follows because the spectral sequence

degenerates at the E2-term, if Hodd(M) = {0}. The second statement is a consequence

of the Borel Localization Theorem, as then H∗
T(M) ∼= H∗(BT) ⊗ H∗(M) injects into the

module H∗
T(MT) ∼= H∗(BT)⊗H∗(MT), which vanishes in odd degrees. The next proposition

is Theorem 3.10.4 in [1].

Proposition 2.7. [1] For any action of a torus T on a compact manifold M, we have

dim H∗(MT) ≤ dim H∗(M). Equality holds if and only if the action is equivariantly

formal.

The Leray–Hirsch theorem implies that for equivariantly formal actions the

ordinary cohomology ring is encoded in the equivariant cohomology algebra.

Proposition 2.8. For an equivariantly formal action of a torus T on a compact man-

ifold M the natural map H∗
T(M) → H∗(M) is surjective and induces an isomorphism of

Q-algebras

H∗
T(M)

S+(t∗
Q
) · H∗

T(M)
∼= H∗(M),

where S+(t∗
Q
) denotes the ideal in S(t∗

Q
) generated by Q-valued polynomials of positive

degree.
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Odd GKM-Manifolds of Non-Negative Curvature 751

For equivariantly formal actions, the Borel Localization Theorem 2.4 gives an

embedding of H∗
T(M) into H∗

T(MT). The image of this embedding can be described as

follows, combining Lemma 2.3 of Chang and Skjelbred [5] for the first isomorphism

with the version of the same lemma given in Theorem 11.51 of Guillemin and Sternberg

[22] for the second isomorphism.

Chang Skjelbred Lemma 2.9. [5], [22] If a T-action on M is equivariantly formal, then

the equivariant cohomology H∗
T(M) only depends on the fixed point set MT and the

1-skeleton M1:

H∗
T(M) ∼= im (H∗

T(M1) → H∗
T(MT)) ∼=

⋂
im(H∗

T(MK) → H∗
T(MT)),

where the intersection is taken over all corank-1 subtori K of T.

Moreover, equivariant formality is inherited by subtori of the T-action. More precisely,

we have the following well-known proposition and corollary, see, for example, [26].

Proposition 2.10. If a T-action on M is equivariantly formal, then for any subtorus K

of T, both the K-subaction on M and the induced T/K-action on MK are equivariantly

formal.

Corollary 2.11. If a T-action on M is equivariantly formal, then for any subtorus K

of T, every connected component of MK has T-fixed points.

2.3. Even-dimensional GKM theory

The class of manifolds, now referred to as GKM manifolds, was first introduced in the

seminal work of Goresky, Kottwitz, and MacPherson [19] to study the relation between

equivariant cohomology and ordinary cohomology and is named for these authors. The

GKM Theorem 2.23 (cf. Theorem 1.2.2 of [19]) states that over an appropriate coefficient

ring R, the equivariant cohomology ring of a GKM manifold M can be computed via its

1-skeleton and the isotropy information of the GKM torus action. Motivated by their

work, the concepts of GKM manifold and GKM graph were introduced by Guillemin

and Zara in [23] to build a bridge between the topology and the combinatorics of these

spaces. We begin with the formal definition of a GKM manifold.
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752 C. Escher et al.

Definition 2.12 (GKM Torus Action and Manifold). We say that the effective action of

a torus T l = T, l ≤ n, on an orientable, compact, connected manifold M2n is GKM, and

M2n is called a GKM manifold, if

(1) the fixed point set MT of the action is finite;

(2) for every p ∈ MT , the weights αi,p ∈ tQ
∗/{±1}, i = 1, . . . , n, of the isotropy

representation of T on TpM are pairwise linearly independent; and

(3) the T-action is equivariantly formal.

We note that the original definition in [23] does not require the manifold

to be either orientable or the T-action to be equivariantly formal, rather, both are

assumed (sometimes implicitly) as separate hypotheses in their theorems. We include

both hypotheses in our definition, since both are included in the definition of a GKM

manifold in most of the recent literature (see, e.g., Goertsches and Wiemeler [17, 18] and

Kuroki [29]).

By Proposition 2.6, Conditions 1 and 3 imply the vanishing of the odd-

dimensional rational cohomology groups of M. Condition 2 is equivalent to the

condition that M1, the 1-skeleton of M, consists of a disjoint union of T-invariant,

orientable submanifolds, each of which is either fixed point free, or an embedded S2. By

Corollary 2.11, Condition 3 implies that M1 consists entirely of T-invariant embedded

2-spheres. Moreover, Conditions 1 and 3 combined with Proposition 2.7 tell us that each

such S2 contains exactly two T-fixed points.

Definition 2.13 (GKMk Torus Action and Manifold). We say that the effective action

of a torus T on an orientable, compact, connected manifold M2n is GKMk, and we call

M2n a GKMk manifold, if

(1) M2n is GKM, and

(2) for each p ∈ MT any set of k weights, αi,p ∈ tQ
∗/{±1}, i = 1, . . . , n, of the

isotropy representation of T on TpM is linearly independent.

Remark 2.14. A GKMk manifold is GKM l for all 2 ≤ l ≤ k, and a GKM2 manifold is a

GKM manifold.

By convention, the T1-action on S2 is considered to be a GKM2 manifold.

Note also that the linear independence is well-defined for elements that are only

defined up to sign. Condition 2 is equivalent to Mk−1, the (k − 1)-skeleton, being
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Odd GKM-Manifolds of Non-Negative Curvature 753

a union of T-invariant submanifolds, which are either fixed point free or are

(2k − 2)-dimensional and have T-fixed points. Observe that by Corollary 2.11, the

definition implies that Mk−1 consists entirely of (2k − 2)-dimensional T-invariant

submanifolds.

Once we have established some conventions, we define the notion of an abstract

GKMk graph, which consists of a triple: a graph, an axial function, and a connection.

However, in Section 4, we will be working with geometric GKMk graphs, that is, graphs

that correspond to the graph of a GKMk manifold. We note that an abstract GKMk graph

may not correspond to the graph of a GKMk manifold and that the graph described in

our Main Theorem 1.1 is abstract.

We employ the following conventions when speaking about abstract graphs.

Given an abstract graph �, we denote by

• E(�) its set of oriented edges; and by

• V(�) its set of vertices.

We always assume that both the edge and vertex sets are finite, and we allow multiple

edges between vertices. For an edge e ∈ E(�) we denote by

• ē the edge with opposite orientation;

• i(e) its initial vertex; and

• t(e) its terminal vertex.

We assume that for any edge e, i(e) �= t(e), that is, an edge cannot connect a vertex to

itself. For a vertex v ∈ V(�) the set of edges emanating from v is denoted by Ev.

Before we can define an abstract GKMk graph, we define a connection, ∇, on a

graph �, as in [23].

Definition 2.15 (Connection). A connection on a graph � is a collection ∇ of maps

∇e : Ei(e) → Et(e), for each e ∈ E(�), such that

(1) ∇e(e) = ē, and

(2) ∇ē = (∇e)
−1.

We are now in a position to define an abstract GKMk graph. We note that

abstract GKM graphs were originally defined in [23], and called abstract one-skeleta

there. However, in the subsequent literature, they have been referred to as abstract GKM

graphs, so we do so as well.
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754 C. Escher et al.

Definition 2.16 (Abstract GKMk graph). Let k ≥ 2. Then an abstract GKMk graph,

(�, α, ∇), or simply (�, α) when k ≥ 3, consists of a graph �, an axial function

α : E(�) → t∗
Q
/{±1}, and a connection ∇, such that

(1) the underlying graph � is n-valent;

(2) for any e ∈ E(�), α(ē) = α(e); and

(3) for any v ∈ V(�) and any set of k distinct edges e1, . . . , ek ∈ Ev, the elements

α(e1), . . . , α(ek) are linearly independent;

(4) for any v ∈ V(�) and any pair of distinct edges e, f ∈ Ev, we have that

α(∇ef ) = ±α(f ) + ce,f α(e),

for some constant c = ce,f ∈ Z, depending on e and f .

Remark 2.17. The abstract GKMk graph for k ≥ 3 consists of a triple, but since the

connection is canonical for k ≥ 3 [23], there is no need to list it in this case.

We also define a variant of the abstract GKMk graph, which is signed, motivated

by the fact that one often assumes that a GKM manifold admits an invariant almost

complex structure.

Definition 2.18 (Abstract Signed GKMk graph). Let k ≥ 2. Then an abstract signed

GKMk graph is a GKMk graph where ± is replaced by +. That is, the following

modifications are made to Definition 2.16.

(1) The axial function now takes values in an R-module V, that is, α : E(�) → V.

(2) In Part (4) is modified to be

α(∇ef ) = α(f ) + ce,f α(e).

In order to motivate the previous definitions, we now describe the geometric

graph obtained from a GKMk manifold, M2n.

Definition 2.19 (Geometric GKMk graph). Let M2n be a GKMk manifold. Then the

geometric GKMk graph of M is an abstract GKMk graph, (�M , αM , ∇M) or simply (�M , αM)

for k ≥ 3, where �M and αM are defined as follows.

(1) �M is the quotient by the torus action of the 1-skeleton, M1/T, considered

as a graph.
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Odd GKM-Manifolds of Non-Negative Curvature 755

(2) The axial function αM : E(�M) → t∗
Q
/{±1} is defined on each edge, e, of �M ,

as the corresponding weight of the isotropy representation, considered as

an element of t∗
Q
/{±1}.

Remark 2.20. With this definition V(�M) corresponds to the (isolated) fixed points of

the torus action and E(�M) corresponds to the 2-spheres fixed by a codimension one

subtorus of T, containing two isolated fixed points of T.

Equivalently, given a GKMk action of a torus T on an orientable manifold M2n,

the geometric graph of this action is constructed as follows: we have one vertex for each

fixed point, every invariant 2-sphere contains exactly two fixed points, and we associate

to it one edge connecting the corresponding vertices. The axial function associates

to each edge, that is, invariant 2-sphere, the corresponding weight of the isotropy

representation.

Remark 2.21. Given a GKMk-manifold M2n, for every choice of l ≤ k−1 edges e1, . . . , el

at a vertex p, we can define a 2l-dimensional T-invariant submanifold N2l of M, that is

itself GKM l with the induced torus action as follows. Let h :=
⋂l

i=1 ker αM(ei), consider

the subtorus H ⊂ T with Lie algebra h, and define N to be the connected component of

MH containing the fixed point p. The GKMk condition implies that N is 2l-dimensional,

as its tangent space at p is precisely the sum of those weight spaces whose weights

vanish on h. We then see that in the above definition of �M , the graph of the GKMk

manifold M, the quotient of the 1-skeleton of N by T is a subgraph �N ⊂ �M , and we

call this subgraph a face. In the special case when M2n is a quasitoric manifold, the

quotient M/T is an n-dimensional simple polytope, Pn. In this special case, �M is the

1-skeleton of Pn, and each face of Pn corresponds to some N2l/T, whose 1-skeleton

is �N .

We now explicitly describe the connection, ∇M , in the GKM3 case, as it is easier

to describe than in the GKM case, and moreover we are only concerned with the GKM3

case in this article. In this setting, given any two distinct edges e, f emanating from a

vertex v, there is a unique two-dimensional face, F, containing e and f . Let e′ �= ē be

the unique edge in F, such that i(e′) = t(e). Setting (∇M)ef = e′, it follows from [18]

that (�M , αM , ∇M) satisfies the conditions for an abstract GKM3 graph. In particular, we

see that the connection allows us to slide edges along edges inside the corresponding

two-dimensional face of the graph.
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756 C. Escher et al.

This leads us to define the concept of an abstract face of an abstract GKMk

graph. Let (�, α, ∇) be an abstract GKMk graph, then we say that �′ is an l-dimensional

face of (�, α, ∇) if it is an l-valent subgraph, invariant under ∇.

We are now in a position to define the equivariant cohomology of an abstract

GKM graph, which was first done in Section 1.7 of [23] and was denoted simply by

H(�, α). Since we also define the cohomology of an abstract GKM graph below in

Definition 2.24, to avoid confusion, we denote the equivariant cohomology of an abstract

GKM graph by HT(�, α).

Definition 2.22 (Equivariant Cohomology of an Abstract GKM Graph). The equivari-

ant cohomology of an abstract GKM graph (�, α, ∇) is defined as

H∗
T(�, α) = {(fv)v∈V(�) ∈

⊕

v∈V(�)

S(t∗Q) | α(e) divides fi(e) − ft(e) for all e ∈ E(�)},

where the generators of S(t∗
Q
) are assigned degree 2. It is naturally an S(t∗

Q
)-algebra.

We now recall Theorem 1.2.2, also known as the GKM Theorem, in [19] here.

Theorem 2.23 (GKM Theorem). [19] For a GKM action of a torus T on M, with

GKM graph �M , the injection H∗
T(M) → H∗

T(MT) =
⊕

p∈MT S(t∗
Q
) has as image exactly

H∗
T(�M , αM). Thus, H∗

T(M) ∼= H∗
T(�M , αM) as S(t∗

Q
)-algebras.

Motivated by Proposition 2.8 we define the cohomology of an abstract GKM

graph as follows.

Definition 2.24 (Cohomology of an abstract GKM Graph). The cohomology of an

abstract GKM graph (�, α, ∇) is defined as

H∗(�, α) =
H∗

T(�, α)

S+(t∗
Q
) · H∗

T(�, α)
.

Remark 2.25. Thus, for a GKM action of a torus T on M, we have H∗(M) ∼= H∗(�M) by

Theorem 2.23 and Proposition 2.8.

2.4. Results for GKMk manifolds in positive and non-negative curvature

We state here two results for GKMk manifolds of positive and non-negative sectional

curvature that we need for the proofs of Theorem 1.2 and 1.3. The first is a classification

result for positively curved GKM3 manifolds from [17].
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Odd GKM-Manifolds of Non-Negative Curvature 757

Theorem 2.26. [17] Let M be a closed, positively curved, orientable GKM3 Riemannian

manifold. Then M has the real cohomology ring of a compact rank one symmetric

space.

The second is a classification result for non-negatively curved GKM4 manifolds

from [18].

Theorem 2.27. [18] Let M be a non-negatively curved GKM4 manifold. Then

H∗(M) ∼= H∗(M̃/G),

where M̃ is a simply-connected, non-negatively curved torus manifold and G is a finite

group acting isometrically on M̃.

2.5. Odd-dimensional GKM theory

GKM theory was generalized to torus actions on odd-dimensional manifolds with

one-dimensional fixed point set in [26]. The odd GKM condition is an odd-dimensional

analogue of the even-dimensional GKM condition. We describe the corresponding theory

here.

Definition 2.28 (Odd GKM Torus Action and Manifold). We say that the action of a

torus T on an orientable, compact, connected manifold M2n+1 is odd GKM if

(1) the fixed point set MT of the action is a finite union of circles;

(2) for every p ∈ MT , the weights αi,p ∈ tQ
∗/{±1}, i = 1, . . . , n, of the isotropy

representation of T on TpM are pairwise linearly independent; and

(3) it is equivariantly formal.

Remark 2.29. Condition 2 is equivalent to requiring the 1-skeleton

M1 = {p ∈ M | dim (T · p) ≤ 1}

to be a finite union of three-dimensional T-invariant submanifolds.

Recall that for GKM manifolds, Condition 2 of Definition 2.12 implies that up

to diffeomorphism, there is only one two-dimensional T-invariant submanifold, S2,

and that S2 ∩ MT consists of exactly two isolated points. In contrast, here there are an

infinite number of possible T-invariant 3-manifolds that could occur, see Section 4 of

[26] for a complete classification of such 3-manifolds.
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758 C. Escher et al.

Note that in [26], it is neither assumed that the action is equivariantly formal

nor that M is orientable. We include these conditions because we do so in the even-

dimensional setting, and as mentioned earlier, both are often part of the definition of a

GKM action.

Remark 2.30. One should note that in [16] a different generalization of GKM theory

to odd dimensions was introduced for the so-called Cohen–Macaulay actions. The

GKM-type actions considered there are more general than those of [26], as they do

not necessarily have fixed points. That is, using the stratification induced by the Mk

skeleta, one only has that Ml �= ∅ for some l ≥ 0, rather than M0 = MT �= ∅. On the other

hand, the definition from [16] is also more restrictive in terms of the stratification of

the k-skeleta. Namely, given N, a connected component of Ml+1 \ Ml, with Ml �= ∅, N

contains exactly two components of Ml. By contrast, in the definition given in [26], the

number of such components is greater than or equal to 1.

As in classical GKM theory one can associate to an odd GKM manifold a

geometric odd GKM graph. For equivariantly formal actions, one can compute the

equivariant, as well as the ordinary rational, cohomology of the manifold from this

graph.

To encode the structure of the 1-skeleton in a graph, two types of vertices

are defined in [26]. We will decorate our graphs with a bar to distinguish them from

even-dimensional GKM graphs.

Definition 2.31 (Vertex Types). The graph, �̄M , of an odd GKM manifold M has two

types of vertices:

(1) One circle for each circle in the fixed point set; and

(2) One square for each invariant three-dimensional submanifold in M1, the

1-skeleton of M.

We denote the set of circles by V◦ and the set of squares by V
�
.

We also have restrictions on how edges are formed and distinguish between two

particular types.

Definition 2.32 (Edge and Edge Types). We connect a circle to a square by an edge

if the fixed circle is contained in the corresponding three-dimensional submanifold.
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Odd GKM-Manifolds of Non-Negative Curvature 759

Further, at any circle in the graph, �̄M , we distinguish between the following edge

types:

(1) a floating edge, that is, an edge connecting to a square of valence 1, and

(2) a grounded edge, that is, an edge connecting to a square of valence ≥ 2.

We further distinguish the following important subsets of V◦ and V
�
, namely,

we denote by V◦(s) the set of circles connected to s ∈ V
�
, and by V

�
(c) the set of squares

connected to c ∈ V◦.

In analogy with how weights are assigned to the GKMk graph, we now assign

weights to square vertices rather than edges.

Definition 2.33 (Weight Function). The weight function αM : V
�

→ t∗
Q
/{±1} assigns

to each square s of �̄M , a weight, αM(s), which is the weight of the isotropy represen-

tation at any fixed circle in the three-dimensional submanifold corresponding to s,

considered as an element of t∗
Q
/{±1}.

Note that by definition, any edge connects a circle to a square.

We can also introduce a notion of connection on such a graph, as in the

even-dimensional setting. The only difference is that we do not specify a single edge

along which we transport, but two circles in the same three-dimensional component of

the 1-skeleton.

Definition 2.34. A connection on the graph, �̄M , of an odd-dimensional GKM

manifold M is a collection of maps (∇̄M)c1,c2,s0
: V

�
(c1) → V

�
(c2), for every s0 ∈ V

�

and c1, c2 ∈ V◦(s0), satisfying the following conditions:

(1) (∇̄M)c1,c2,s0
(s0) = s0

(2) (∇̄M)c2,c1,s0
= (∇̄M)−1

c1,c2,s0

(3) For every s ∈ V
�
(c1), there exists a constant c ∈ Z such that

ᾱM((∇̄M)c1,c2,s0
(s)) = ±ᾱM(s) + c ᾱM(s0).

The following proposition guarantees the existence of a connection on the graph

of every odd-dimensional GKM manifold. The proof is completely analogous to the proof

of Proposition 2.3 in [18], or the proof on page 5 of [23].
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760 C. Escher et al.

Proposition 2.35. There exists a connection on the graph, �̄M , of every

odd-dimensional GKM manifold.

With these notions, we now define a geometric odd GKM graph.

Definition 2.36 (Geometric Odd GKM Graph). Let M2n+1 be an odd GKM manifold. We

define a geometric odd GKM graph, (�̄M , ᾱM , ∇̄M), where �̄M is the graph obtained from

the 1-skeleton of M, with vertices, edges and weight function, ᾱM , and a connection,

∇̄M , as described above.

Remark 2.37. For odd GKM graphs whose squares have valence 1 or 2 only, we will use

the following notational shortcut. Namely, we will denote each 2-valent square s ∈ V
�
,

by sij where ci, cj ∈ V◦(s) are the unique circle vertices connecting to s. In particular,

in analogy with the orientation assigned to edges in the even-dimensional case, this

allows us to assign an orientation to a 2-valent square, namely we let s̄ji = sij.

Example 2.38. The geometric odd GKM graph of a (2n + 1)-dimensional sphere

S2n+1 ⊂ Cn+1 with the standard Tn-action induced by the standard representation

on n of the n + 1 summands is a pinwheel with n edges terminating in squares,

corresponding to fixed 3-spheres, as follows:

In the following proposition we collect a few properties of odd GKM graphs.

Proposition 2.39. Let M2n+1 be an odd GKM manifold, then the following hold:

(1) The geometric odd GKM graph is connected

(2) Each circle in the geometric odd GKM graph has valence n.

(3) The total Betti number b(M2n+1) is equal to 2m for some m ∈ Z+, and there

are exactly m circles in the graph. Moreover, each square in the odd GKM

graph has valence bounded between 1 and m.
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Odd GKM-Manifolds of Non-Negative Curvature 761

Proof. We include a proof for the sake of completeness, noting that the proof

follows along the same lines as in the even-dimensional case. To prove Part 1,

we note the Chang–Skjelbred Lemma 2.9 states that for an equivariantly formal

action, the image of the injective map H∗
T(M) → H∗

T(MT) is the same as the image

of the map H∗
T(M1) → H∗

T(MT). As M is connected, it follows that the image of

H0(M1) ∼= H0
T(M1) → H0

T(MT) ∼= H0(MT) is one-dimensional, which implies that M1 is

connected. This is equivalent to the GKM graph being connected.

To prove Part 2, recall that any edge emanating from a circle corresponds to a

weight of the isotropy representation at that circle. Because the codimension of this

circle is 2n, and T acts on the normal space of this circle without fixed vectors, there

are precisely n such weights.

To prove Part 3, it follows by Proposition 2.7 that the equivariant formality of

the action is equivalent to the equality of total Betti numbers dim H∗(M) = dim H∗(MT).

Because any circle in MT contributes 2 to the total Betti number of MT , and since any

square must contain a circle fixed by T and can contain at most m circles, the result

follows. �

We are now in a position to define an odd GKMk manifold.

Definition 2.40 (Odd GKMk manifolds). An odd-dimensional GKM manifold is called

odd GKMk, for k ≥ 2, if the following hold.

(1) M is odd-dimensional GKM, and;

(2) At any fixed circle, any k weights of the isotropy representation are linearly

independent.

Thus, odd GKM manifolds are the same as odd GKM2 manifolds. In the same

way that a geometric odd GKM graph is associated to an odd GKM manifold, we obtain

an odd geometric GKMk graph from an odd GKMk manifold. Note that for geometric odd

GKM3 graphs, for every s0 ∈ V
�
, given c1, c2 ∈ V◦(s0), the condition ᾱM((∇̄M)c1,c2,s0

(s)) =

±ᾱM(s) + cᾱM(s0) alone uniquely determines the square (∇̄M)c1,c2,s0
(s), for all s ∈ V

�
(c1),

that is, the connection is unique. Since the connection for a geometric odd GKMk graph

is canonical for k ≥ 3, we will denote such graphs simply by (�̄M , ᾱM).

For a GKMk manifold M, and any k−1 weights at a fixed circle, there is a unique

(2k − 1)-dimensional submanifold fixed by a codimension k − 1 subtorus generated by

the intersection of the kernels of the k − 1 weights. We will denote this submanifold by

N2k−1
T . As in the even-dimensional case, we make the following definition of a face.
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762 C. Escher et al.

Definition 2.41 (Face). We call the subgraph of the GKMk graph of M corresponding

to N2k−1
T a (k − 1)-face of the graph.

Theorem 4.6 in [26] tells us how the GKM graph encodes the equivariant

cohomology, whose relevant content we recall here. We choose an orientation on every

component of MT , which then allows us to identify its cohomology canonically with

H∗(S1) = Q[θ ]/(θ2). The inclusion MT → M induces an injection

H∗
T(M) −→ H∗

T(MT) =
⊕

C∈V◦

S(t∗Q) ⊗ H∗(S1),

and the image of this map is described by the following divisibility relations. For any

s ∈ V
�
, let Ns be the three-dimensional connected submanifold fixed by the subtorus

with Lie algebra ker α(s). Then, for c1, . . . , cl ∈ V◦, the circles contained in Ns, we have

(Pc + Qcθ)c∈V◦ ∈
⊕

c∈V◦

S(t∗Q) ⊗ H∗(S1),

where Pc, Qc ∈ S(t∗
Q
), satisfies

Pc1
≡ · · · ≡ Pcl

mod α(s) (2.1)

and

l∑

i=1

±Qci
≡ 0 mod α(s). (2.2)

Here, the ± signs in the sum are determined as follows. Recall that for a closed manifold

M, the fixed point sets of torus actions are closed submanifolds that are orientable if

M is. Thus Ns is orientable, and so the orbit space Ns/T is orientable as a topological

manifold (with boundary), as well. The circles ci are boundary components of Ns/T,

and if the pre-chosen orientation on each ci coincides with the induced boundary

orientation, with respect to any orientation of Ns/T, then the sign of Qci
is +, and if

not, then its sign is −.

Remark 2.42. It is not possible in general to consistently orient all components of MT

in such a way that for all Ns we find an orientation on Ns/T with the property that the

circles in Ns carry the induced boundary orientation. Consider, for example, S1 × CP2

with the standard T2 product action that is trivial on the first factor.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/1

/7
4
4
/6

3
8
3
5
8
2
 b

y
 T

e
c
h
n
ic

a
l S

e
rv

ic
e
s
 - S

e
ria

ls
 u

s
e
r o

n
 0

8
 A

u
g
u
s
t 2

0
2
3



Odd GKM-Manifolds of Non-Negative Curvature 763

2.6. Geometric results in the presence of a lower curvature bound

We now recall some general results about G-manifolds with non-negative curvature

which we use throughout.

We recall the classification of closed, non-negatively curved, three-dimensional

T1-fixed point homogeneous manifolds due to Galaz-García [11].

Theorem 2.43. [11] Let M3 be a closed, non-negatively curved T1-fixed point homoge-

neous Riemannian manifold. Then M is diffeomorphic to one of S3, Lp,q, S2 ×S1, S2×̃S1,

the non-trivial S2-bundle over S1, RP2 × S1, or RP3#RP3.

Moreover, an analysis of the isometric circle action yields the following.

(1) If M3 has total Betti number equal to 2, the isometric circle action fixes one

circle; and

(2) If M3 has total Betti number equal to 4, the isometric circle action fixes two

circles.

Remark 2.44. We make the following two observations.

(1) By Proposition 2.7, it follows that non-negatively curved T1-fixed point

homogeneous 3-manifolds are equivariantly formal.

(2) The only orientable manifold on this list that is not a rational cohomology

sphere is S2 ×S1. Moreover, S2 ×S1 is the only manifold on this list with total

Betti number equal to 4.

The following theorem by Spindeler, [35], gives a characterization of

non-negatively curved G-fixed point homogeneous manifolds.

Theorem 2.45. [35] Assume that G acts fixed point homogeneously on a closed,

non-negatively curved Riemannian manifold M. Let F be a fixed point component

of maximal dimension. Then there exists a smooth submanifold N of M, without

boundary, such that M is diffeomorphic to the normal disk bundles D(F) and D(N)

of F and N glued together along their common boundaries

M = D(F) ∪∂ D(N).

Further, N is G-invariant and all points of M \ {F ∪ N} belong to principal G-orbits.

Remark 2.46. In fact N is actually IsomF(M)-invariant, where IsomF(M) is the

subgroup of isometries of M leaving F invariant, by Lemma 3.30 in [35].
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764 C. Escher et al.

Finally, we recall the following Splitting Theorem due to Cheeger and

Gromoll [6].

Theorem 2.47. [6] Let M be a compact manifold of non-negative Ricci curvature.

Then π1(M) contains a finite normal subgroup � such that π1(M)/� is a finite group

extended by Zk, and M̃, the universal covering of M, splits isometrically as M × Rk,

where M is compact.

3. Closed, Non-Negatively Curved 5-Dimensional GKM Manifolds

Observe that a closed (2n + 1)-dimensional, equivariantly formal manifold admit-

ting an effective, isometric Tn-action is GKM. In this section we prove Theorem 3.1,

which classifies the universal covers of closed, non-negatively curved, 5-dimensional,

equivariantly formal manifolds admitting an effective, isometric T2-action and hence

the universal covers of closed, non-negatively curved, 5-dimensional GKM manifolds.

Theorem 3.1 will facilitate the proof of Theorem 4.3, where we classify the geometric

graphs of closed, non-negatively curved, 5-dimensional GKM manifolds.

We also note that as MT �= ∅ by equivariant formality, some S1 ⊂ T2 fixes a

codimension 2 submanifold in M5, that is, the T2-action on M is S1-fixed point homoge-

neous. Recall that by Theorem 2.45 if M5 admits an isometric T2-action that is S1-fixed

point homogeneous, then we may decompose M5 as a union of disk bundles, that is,

M5 = D2(F3) ∪E D(N), (3.1)

where F3 is the codimension two fixed point set of some circle subgroup of T, E is

the common boundary of the disk bundles, and by Remark 2.46, N is a T2-invariant

submanifold. Moreover, F3 is itself S1-fixed point homogeneous by Proposition 2.10.

Theorem 3.1. Let M5 be a closed, non-negatively curved, equivariantly formal

5-dimensional manifold admitting an isometric T2-action. Then rk(H1(M5;Z)) ≤ 1 and

we may classify the corresponding universal cover, M̃5, as follows.

(1) For rk(H1(M5;Z)) = 0, M̃5 is diffeomorphic to one of S5, S3 × S2, or S3×̃S2,

the non-trivial S3 bundle over S2;

(2) For rk(H1(M5;Z)) = 1, M̃5 is diffeomorphic to R×M4, where M4 is one of S4,

CP2, S2 × S2, or CP2# ± CP2.

Combining the homeomorphism classification due to Rong [32] and the diffeo-

morphism classification results of Smale [34] and Barden [2], we have the following

theorem for the positive curvature case.
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Odd GKM-Manifolds of Non-Negative Curvature 765

Theorem 3.2. [32] Let M5 be a closed, simply-connected, positively curved

5-dimensional manifold admitting an isometric T2-action. Then M5 is diffeomorphic

to S5.

Since positively curved manifolds have finite fundamental group, the following

corollary is immediate, allowing us to classify the universal covers of positively curved

5-dimensional GKM manifolds as follows.

Corollary 3.3. Let M5 be a closed, positively curved, equivariantly formal

5-dimensional manifold admitting an isometric T2-action. Then the universal cover of

M5 is diffeomorphic to S5.

In order to prove Theorem 3.1, we first need to prove Proposition 3.4 and

Lemmas 3.5 and 3.6, which follow.

Proposition 3.4. Let M5 be a closed, orientable, equivariantly formal, non-negatively

curved 5-dimensional Riemannian manifold with an isometric T2-action. Then the

following hold for b(M5), the total Betti number of M5.

(1) 2 ≤ b(M5) ≤ 8; and

(2) If 6 ≤ b(M5) ≤ 8, then in the decomposition of M5 in Display 3.1, F3 is

diffeomorphic to S2 × S1.

Before we begin the proof, we need the following result concerning the dimen-

sion of the submanifold at maximal distance from the codimension two fixed point set

in M2n+1.

Lemma 3.5. Suppose M2n+1 is an S1-fixed point homogeneous closed, orientable

manifold of non-negative curvature. Let F be a codimension two fixed point set

component of the S1-action and suppose N is the submanifold given in the disk bundle

decomposition of Theorem 2.45. Then if N ∩ Fix(M; S1) �= ∅, codim(N) is even.

Proof. Recall that by Theorem 2.45 all singularities of the S1-action are contained in F

and N, and N is S1-invariant. Let N ∩ Fix(M; S1) �= ∅. Then any connected component

A of Fix(M; S1) that is not contained in F must be contained in N and is of even

codimension in M. Since N is S1-invariant, A is also of even codimension in N and the

result follows. �

We are now in a position to prove Proposition 3.4.
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766 C. Escher et al.

Proof of Proposition 3.4. Recall that the hypothesis of equivariant formality guar-

antees that the T2-action on M is S1-fixed point homogeneous and the manifold

decomposes as in Display 3.1. Moreover, by Proposition 2.7 the total Betti number of

Fix(M5; S1) equals that of M5. Suppose first that N does not contain any S1-fixed points,

that is, Fix(M5; S1) = F3. Since F3 is itself non-negatively curved and S1-fixed point

homogeneous with respect to some other subcircle of T2, the proposition is proven, as

by Theorem 2.43, the total Betti number of F3 is either 2 or 4.

We now assume that there are S1-fixed points in N. This implies by Lemma 3.5

that N is of dimension one or three only. If N is one-dimensional, it follows from the

classification of 1-manifolds that N = S1, and so, the total Betti number of M is either 4

or 6.

Assume then that N is three-dimensional. If N3 is fixed by some circle subgroup

of T2, it is an orientable, totally geodesic submanifold of M, and thus non-negatively

curved. Since the T2-action is effective and equivariantly formal, by Corollary 2.11, this

implies that N3 is S1-fixed point homogeneous for some S1 ⊂ T2 and so N3 is one of the

manifolds classified in Theorem 2.43. Therefore, the total Betti number of N3 is 2 or 4.

Then by Proposition 2.7, the total Betti number of the S1-fixed point set in N3 is also

bounded from above by 4. It follows that the total Betti number of M is bounded by 8,

and if F3 is a rational cohomology sphere, then it is bounded by 6.

Suppose then that N3 is not fixed by any circle subgroup of T2. Then the

T2-action on N3 is of cohomogeneity one, and since there are S1-fixed points, it follows

by the classification of T2 cohomogeneity one 3-manifolds in Mostert [30], and Neumann

[31], that N3 must be one of S3, Lp,q, S2 × S1, RP2 × S1, or S2×̃S1. Note that in all these

cases, the total Betti number of N3 is bounded between 2 and 4. Thus, it follows that

the total Betti number of M is bounded by 8, and, again, if F3 is a rational cohomology

sphere, it is bounded by 6. This proves Part (1).

We now prove Part (2). We assume that 6 ≤ b(M5) ≤ 8 and that F3 is not

diffeomorphic to S2×S1, to derive a contradiction. Then by Theorem 2.43, F3 is a rational

(co)homology sphere, and so b(F3) = 2. As we saw above, this means that b(M5) ≤ 6 and

so b(M5) = 6. Since b(M5) ≤ b(F3)+b(N) this gives us that b(N) = 4. So N must be S2 ×S1.

Since E is the total space of the circle bundle inside the disk bundle D2(F3) → F3, it

follows from the Gysin sequence (see Switzer [36]) that E has the same rational homology

as S1 × S3. Consider now the Mayer–Vietoris sequence of the decomposition (3.1)

H5(M5) −→ Q −→ 0 −→ H4(M5) −→ Q −→ Q2 −→ H3(M5)

−→ 0 −→ Q −→ H2(M5) −→ Q −→ Q −→ H1(M5) −→ 0.
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Odd GKM-Manifolds of Non-Negative Curvature 767

Poincaré duality and the fact that b(M5) = 6 gives us that b2 = b3 and hence

b1 = b4 = 2 − b2. Exactness at H2(M5) implies that b2 = b3 ∈ {1, 2}. However, it is

clear that exactness is violated for b2 = b3 = 1 or b2 = b3 = 2. �

With this information, we now obtain the following lemma.

Lemma 3.6. Let M5 be a closed, orientable, equivariantly formal, non-negatively

curved 5-dimensional Riemannian manifold with an isometric T2-action. Then

rk(H1(M5)) ≤ 1.

Proof. We assume that rk(H1(M5)) = k ≥ 2, in order to derive a contradiction. This

assumption implies that the total Betti number of M5 must be greater than or equal to

6. Recall again that M5 decomposes as in Display 3.1, with F3 the codimension two fixed

point set of S1. Therefore, F3 = S2 × S1 by Proposition 3.4, and so b(F3) = 4. Further,

since all singularities of the S1-action are contained in F and N, and b(MT) = b(M5) ≥ 6,

by Proposition 2.7, then MT ∩ N �= ∅. Then Lemma 3.5 gives us that N is of dimension 1

or 3. In fact, we will show that dim(N) = 3.

Recall that E is a sphere bundle over both F and N. Since M is orientable, it

follows from the disk bundle decomposition of M that E is also orientable. We first

assume dim(N) = 1, to derive a contradiction. Then E is an orientable S3 bundle over S1,

that is, E = S3 × S1, and so H3(E) ∼= Q. However, it follows from the homology Mayer–

Vietoris sequence that H4(M) ∼= Qk ↪→ H3(E), k ≥ 2, giving us the desired contradiction.

Hence dim(N) = 3. Since MT ∩ N �= ∅, the T2-action on N is S1-ineffective for

some S1 ⊂ T2, and N is S1-fixed point homogeneous for some other S1 ⊂ T2. So N is

orientable and non-negatively curved. By Theorem 2.43, N is one of S3, Lp,q, S2 × S1 or

RP3#RP3. However, if N is one of S3, Lp,q, or RP3#RP3, then by the Gysin sequence with

rational coefficients, H1(E) ∼= Q. Poincaré duality then gives us that H3(E) ∼= Q, which is

a contradiction, as in the case of dim(N) = 1.

Thus both F and N are diffeomorphic to S2 × S1. So E is a principal S1

bundle over S2 × S1 and from the homology Mayer–Vietoris sequence of M, we have

H4(M5) ∼= Qk ↪→ H3(E), k ≥ 2. Using the Gysin sequence with rational coefficients

corresponding to the fibration S1 ↪→ E → S2 × S1, we see that H1(E) ∼= Q or Q2. Poincaré

duality then implies that k = 2, so b1 = b4 = 2. Since b0 = b5 = 1, it then follows from the

homology Mayer–Vietoris sequence of M5 that b2 = b3 ≥ 2, which implies b(M5) ≥ 10.

But Proposition 3.4 guarantees that the total Betti number is bounded above by 8,

a contradiction. �
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768 C. Escher et al.

Proof of Theorem 3.1. By Lemma 3.6, rk(H1(M5)) ≤ 1 and by Theorem 2.47, M̃5 is either

a closed, simply-connected, non-negatively curved manifold, or it splits isometrically

as R1 × M4, where M4 is a closed, simply-connected, non-negatively curved 4-manifold.

The proof of Part (1) then follows directly from the work of Galaz-García and Spindeler

[15] (cf. [7]). The proof of Part (2) follows by noting that since the T2-action on M5 has

non-empty fixed point set, we may apply Theorem 2.1 to lift the T2-action to M̃5. By

Theorem 1 of Hano [25], the isometry group of R1 × M4 splits as the product of the

isometry groups of R1 and of M4. Since T2 is a compact Lie group, this implies that

the T2-action on the R1 factor is trivial and fixes isolated points in M4. In particular,

M4 is then a non-negatively curved torus manifold. The classification of 4-dimensional,

non-negatively curved torus manifolds up to diffeomorphism follows from the work of

Kleiner [27], Searle and Yang [33], and Galaz-García [11]. �

4. The Classification of Graphs Corresponding to Closed, Non-Negatively Curved

5-Dimensional Odd GKM Manifolds

Our goal in this section is to classify the graphs corresponding to closed, non-negatively

curved 5-dimensional odd GKM manifolds. We first prove that the lower curvature

bound imposes severe restrictions on odd GKM graphs.

Proposition 4.1. Let M2n+1 be a non-negatively curved odd GKM manifold. Then each

square in the graph, �̄M , has valence one or two.

Proof. The GKM condition in combination with the assumption of non-negative

curvature guarantees us that the squares correspond to three-dimensional components

of fixed point sets of codimension one subtori, which themselves are T1-fixed point

homogeneous, non-negatively curved, three-dimensional manifolds. The result then

follows directly from Theorem 2.43. �

The corresponding result in positive curvature follows directly from the classi-

fication of positively curved 3-manifolds due to Hamilton [24].

Proposition 4.2. Let M2n+1 be a positively curved odd GKM manifold, then each

square in the graph, �̄M , has valence one.

In the following theorem, we obtain a classification of the graphs of closed,

non-negatively curved, 5-dimensional odd GKM manifolds.

Theorem 4.3. Let M5 be a non-negatively curved, 5-dimensional odd GKM manifold.

Then its graph, �̄M5 , is one of the following possibilities, enumerated according to the

total Betti number of M5.
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Odd GKM-Manifolds of Non-Negative Curvature 769

(1) For total Betti number equal to 2, we obtain a circle with two edges

terminating in squares

(2) For total Betti number equal to 4, we have the following two possibilities

and

(3) For total Betti number equal to 6, we obtain a closed circuit in the form of

a triangle

(4) For total Betti number equal to 8, we obtain a closed circuit in the form of

a quadrangle
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770 C. Escher et al.

Proof. By Proposition 2.39, we have that the graph is connected, each circle is 2-valent,

and the number of fixed circles equals half the total Betti number.

We showed in Proposition 3.4 that the total Betti number for such 5-manifolds is

bounded between 2 and 8. In the case where it is 2, M5 is a rational cohomology sphere,

the T-fixed point set is a single circle, and the graph is necessarily of the described

form. If the total Betti number is 4, the connectedness of the graph implies directly that

it is of one of the two given shapes.

For the case of total Betti number 6 or 8, Proposition 3.4 tells us that any F3 is

diffeomorphic to S2 ×S1 in the decomposition of M5 in Display 3.1, which has total Betti

number 4. This in turn implies by Proposition 2.43 that every square in the graph has

valence 2. The connectedness of the graph then directly implies the claim. �

Example 4.4. The standard examples for Theorem 4.3 are the T2-actions on S5, S2×S3,

S4 × S1, CP2 × S1, and S2 × S2 × S1, respectively.

Note that for positive curvature, using Proposition 4.2, it follows that only the

first graph in Theorem 4.3 occurs and we immediately obtain the following theorem.

Theorem 4.5. The unique graph, �̄M , corresponding to the positively curved

5-dimensional GKM manifolds is a circle with two edges terminating in squares

5. Proof of the Main Theorem 1.1

In this section we prove the Main Theorem 1.1, which we then use in Subsection 5.3 to

prove Theorems 1.2, 1.3, and 1.5.

5.1. Proof of the Main Theorem 1.1

Let M2n+1 be a closed, non-negatively curved odd GKM3 manifold. As shown in

Proposition 4.1, any square in the graph, �̄M , has valence one or two.

We now show how to construct an abstract (even-dimensional) GKM3 graph,

(�, α), from a geometric odd GKM3 graph, (�̄M , ᾱM), for which the squares in �̄M are only

of valence one or two. We define (�, α) to be the graph obtained from the geometric odd

GKM3 graph (�̄M , ᾱM), by

(1) replacing each circle by a vertex;
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Odd GKM-Manifolds of Non-Negative Curvature 771

(2) replacing each 2-valent square, s, in 2 grounded edges by a single edge, e;

(3) labeling the edge e obtained from s by the weight of the square, ᾱM(s), that

is, defining α(e) := ᾱM(s) to be the axial function; and

(4) deleting all floating edges, together with their squares.

In order to facilitate discussion of the new graph, �, we denote the application,

π : �̄M → �, of the first three of these changes to �̄M , respectively, as follows:

(1) π(c) = v, where c ∈ V◦(�̄M) and v is its image in �;

(2) π(s) = e, for s ∈ V2
�
, where s is the square connected to c1 and c2, and e is its

image in �, with i(e) = π(c1) and t(e) = π(c2).

(3) α(π(s)) := ᾱM(s), for s ∈ V2
�
.

Before we show that (�, α) is an abstract GKM3 graph, we illustrate the process

of obtaining these graphs in the following examples.

Example 5.1. Applying this construction to the odd-dimensional graphs in Theorem

4.3, we see that we obtain the following graphs.

(1) The image of the graph in Part (1) is a vertex:

(2) The images of the graphs in Part (2) are an interval and a lune, respectively:
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772 C. Escher et al.

(3) The image of the graph in Part (3) is a triangle:

(4) The image of the graph in Part (4) is a quadrangle:

Lemma 5.2. Let (�̄M , ᾱM) be the odd GKM3 graph corresponding to the closed,

non-negatively curved GKM3 manifold, M2n+1. Let (�, α) be the graph obtained from

(�̄M , ᾱM). Then (�, α) admits a connection, ∇, such that (�, α, ∇) is an abstract GKM3

graph.

Proof. Our goal is to show that � is an abstract GKM3 graph. Recall that by

Definition 2.16, an abstract GKM3 graph consists of a triple (�, α, ∇) such that �

satisfies Properties 1 and 2 of Definition 2.16, the axial function α satisfies Property 4

of Definition 2.16, and that a connection, ∇, exists and satisfies Property 3 of

Definition 2.16.

We begin by showing that � satisfies Properties 1 and 2 of Definition 2.16. To

prove Property 1, we first claim that the graph � obtained from �̄M is m-valent, for

some m ≤ n. By Proposition 2.39, the odd-dimensional graph �̄M is connected. So,

to prove this claim it suffices to show that given any two circles, c1, c2 ∈ V◦(�̄M),

joined by a square, s0, the number of floating edges emanating from c1 and c2 is

the same. Let e, f ∈ Ec1
(�̄M), such that e contains the square s0, and f is a floating
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Odd GKM-Manifolds of Non-Negative Curvature 773

edge with square s. Observe that because of the GKM3 condition, e and f uniquely

determine a two-dimensional face of �̄M . Moreover, due to the linear dependence

condition on the connection, it follows that (∇̄M)c1,c2,s0
(s) is a square belonging to

the same two-dimensional face as s. Now, Theorem 4.3 tells us that for odd GKM3

graphs corresponding to odd GKM3 manifolds of non-negative curvature, there is only

one graph of a two-dimensional face that has a floating edge. So, this graph has two

floating edges, two circle vertices, and one grounded edge. This then implies that the

connection sends a 1-valent square to a 1-valent square. Since the graphs of all the other

two-dimensional faces have no floating edges, it follows that the connection sends a

2-valent square to a 2-valent square. We may conclude that at every circle in �̄M there

are exactly the same number of floating edges, and thus all vertices in the graph � have

the same valency, and Property 1 holds. Note that the weights of the graph � are still

3-independent, and so Property 2 holds.

By the definition of the axial function α(e) := ᾱM(s), where π(s) = e, we see that

Property 4 of Definition 2.16 also holds.

We now need to show that we have a connection on � that satisfies Property 3.

In order to do so, we observe that we still have a notion of two-dimensional faces

in �. Namely, given two edges e, f attached to some vertex v in �, there is a unique

two-dimensional face in the odd-dimensional graph, �̄M , containing the edges corre-

sponding to e and f . Moreover, this two-dimensional face in �̄M has no floating edges,

since the graphs with floating edges in Theorem 4.3 do not survive to graphs with a

two-dimensional face, as can be seen in Example 5.1. We claim that this gives a well-

defined connection on �, by sliding edges along edges inside these two-dimensional

faces in the usual fashion. In fact, we may directly translate the conditions in Definition

2.34 satisfied by the connection on �̄M , by making the following substitutions:

(∇̄M)c1,c2,s0
(s) �→ ∇e(f ),

where e = π(s0), and f = π(s). With this definition, it is straightforward to verify that

the connection satisfies both Definition 2.15 and Property 3 of Definition 2.16. �

Remark 5.3. Lemma 5.2 tells us that the number of floating edges in �̄M is

independent of the vertex. This fact is reflected in the statement of Theorem 5.4.

We now show how to express the equivariant cohomology of the geometric odd

GKM3 graph (�̄M , ᾱM) in terms of the equivariant cohomology of the abstract graph (�, α)
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774 C. Escher et al.

obtained from (�̄M , ᾱM). Recall that for an n-valent, abstract GKM graph (�, α, ∇), we say

it is orientable if H2n(�, α) �= 0.

In particular, for odd GKM3 graphs, we prove the following result.

Theorem 5.4. Let M2n+1 be a closed, non-negatively curved odd GKM3 manifold and

(�̄M , ᾱM) its graph. Let k be the number of floating edges at a vertex in �̄M , let (�, α) be

the graph obtained from (�̄M , ᾱM), and assume that (�, α) is orientable. Then we have

H∗
T(M) ∼= H∗

T(�, α) ⊗ H∗(S2k+1)

as S(t∗
Q
)-algebras, where the S(t∗

Q
)-algebra structure on H∗

T(�, α)⊗H∗(S2k+1) is the tensor

product of the standard S(t∗
Q
)-algebra structure on H∗

T(�, α) and the trivial one on

H∗(S2k+1). Therefore, we obtain

H∗(M) ∼= H∗(�, α) ⊗ H∗(S2k+1).

Proof of Theorem 5.4. By Proposition 4.1, any square in the odd GKM graph of M has

valence one or two. We denote by V1
�

and V2
�

the sets of squares with valence one and

two, respectively. For a square s ∈ V1
�

we denote the unique circle connected to s by c(s),

whereas for s ∈ V2
�

we denote the two circles by c1(s) and c2(s), with any ordering.

Then Displays (2.1) and (2.2) reduce to the following divisibility relations for Pc

and Qc:

Pc1(s) ≡ Pc2(s) mod α(s), and Qc1(s) ≡ ±Qc2(s) mod α(s) for s ∈ V2
�
, and (5.1)

Qc(s) ≡ 0 mod α(s) for s ∈ V1
�
. (5.2)

Then the equivariant cohomology of M is given by

H∗
T(M) ∼= {(Pc + Qcθ)c∈V◦

∣∣Pc, Qc satisfy Relations 5.1 and 5.2}.

By comparing the divisibility relations in Displays (5.1) and (5.2) for H∗
T(M)

and the description of the equivariant cohomology in terms of the GKM graph in even

dimensions in Display (2.1), we see that the divisibility relations imposed by grounded

edges in the odd-dimensional GKM graph �̄M are precisely those imposed by the edges
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Odd GKM-Manifolds of Non-Negative Curvature 775

in �. As a consequence, we see that we obtain an isomorphism

ψ : Heven
T (M) −→ H∗

T(�, α, ∇). (5.3)

Moreover, we also see by Proposition 2.8 and Definition 2.24 that Heven(M) = H∗(�, α, ∇).

For the cohomology in odd dimensions, note that the Qc have to be divisible by

all k weights of the floating edges at c, so deg(Qc) ≥ k. Thus H2l+1
T (�, α) = 0 for l < k.

On the other hand, as � is an orientable (n − k)-valent graph, we have that H2(n−k)(M) =

H2(n−k)(�, α) �= 0. Poincaré duality now implies that H2k+1(M) �= 0. By Proposition 2.8,

H∗
T(M) → H∗(M) is onto, and it follows that H2k+1

T (M) �= 0. So there exists a nonzero

element ω ∈ H2k+1
T (M).

Our goal is now to show that we may multiply elements of the even-dimensional

cohomology by ω to obtain an S(t∗
Q
)-module isomorphism from Heven

T (M) to Hodd
T (M).

Using the divisibility relations in Display (5.2), we may express any nontrivial element

ω in H2k+1
T (M) as

ω = (ωcθ)c∈V◦ ∈ H2k+1
T (M),

where

ωc = ac α(s1(c)) · α(s2(c)) · . . . · α(sk(c)), (5.4)

ac ∈ Q depends only on the circle c, and s1(c), . . . , sk(c) are the squares in the k floating

edges connected to c. The ωc must also satisfy the first set of divisibility relations in

Display (5.1), and since ω ∈ H2k+1
T (M), this is equivalent to requiring ωc1(s) ≡ ±ωc2(s)

mod α(s), for s ∈ V2
�
.

We now want to show that ac �= 0 for all c ∈ V◦. We will argue by contradiction.

Assume that ac′ = 0 for some c′. Since ω is non-trivial, there is a c′′ �= c′ such that

ac′′ �= 0. The connectivity of the graph implies that there must be some s ∈ V2
�
, such

that ac1(s) = 0, but ac2(s) �= 0. Then 0 = ωc1(s) by Equation (5.4). But then the divisibility

relation in (5.1) gives us that ωc1(s) ≡ ωc2(s) ≡ 0 mod α(s), and Equation (5.4) tells us

that α(s) is then a scalar multiple of one of the α(si), 1 ≤ i ≤ k. However, Part 2 of the

definition of a GKM-manifold tells us α(s) and α(si) are pairwise linearly independent

for 1 ≤ i ≤ k, a contradiction.

We now claim that ac �= 0 for all c ∈ V◦ implies that dim(H2k+1
T (M)) = 1. Suppose

instead that we have two linearly independent elements μ, ω ∈ H2k+1
T (M), where μc and

ωc are as in Equation (5.4). Then for some c, let ηc = γωc − μc, with γ = a
μ
c /aω

c . But then

for this same c, ηc = 0, contradicting the fact that for any element of H2k+1
T (M), ac �= 0

for all c ∈ V◦.
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776 C. Escher et al.

It now follows that multiplication with ω defines an S(t∗
Q
)-module injection

Heven
T (M) → Hodd

T (M), that is,

φ : Heven
T (M) −→ Hodd

T (M)

ψ �−→ ψ · ω,
(5.5)

with ω ∈ H2k+1
T (M). We claim that φ is an isomorphism. To do so, we must show that φ

is onto. Let Q = (Qcθ)c∈V◦ ∈ Hodd
T (M). For each c ∈ V◦, the polynomial Qc is divisible by

any α(s) with c(s) = c for s ∈ V1
�
, and so we can write Q = (Qcθ) = (Pc ωcθ) = P · ω, for

some P = (Pc). Then to show that φ is onto, we have to show that (Pc)c∈V◦ ∈ Heven
T (M).

That is, we must verify that the Pc satisfy the divisibility relation (5.1) for all c ∈ V◦. Let

s′ ∈ V2
�

be arbitrary. Then α(s′) divides both Qc1(s′) ± Qc2(s′) and ωc1(s′) ± ωc2(s′), where ±

is taken to be the same sign in both expressions. Then we compute

Qc1(s) ± Qc2(s) = Pc1(s)ωc1(s) ± Pc2(s)ωc2(s)

= (Pc1(s) − Pc2(s)) ωc1(s) + Pc2(s)(ωc1(s) ± ωc2(s)),

and the divisibility assumptions imply that α(s′) divides (Pc1(s′) − Pc2(s′)) ωc1(s′). By the

same argument used to show that ac �= 0 for all c ∈ V◦, α(s′) does not divide ωc1(s′), since

s′ ∈ V2
�
. So α(s′) has to divide Pc1(s′) − Pc2(s′), which is precisely the divisibility relation

(5.1). So, we have shown that (Pc)c∈V◦ ∈ Heven
T (M). Hence, φ is onto and multiplication by

ω defines an S(t∗
Q
)-module isomorphism.

We can now prove that H∗
T(M) ∼= H∗

T(�, α) ⊗ H∗(S2k+1), by extending the

isomorphism in Display (5.3) via the isomorphism in Display (5.5) to an S(t∗
Q
)-algebra

isomorphism

� : H∗
T(�, α) ⊗ H∗(S2k+1) −→ H∗

T(M)

γ ⊗ id + β ⊗ μS2k+1 �−→ ψ(γ ) + φ(ψ(β)) = ψ(γ ) + ψ(β)ω,

where γ , β ∈ H∗
T(�, α), and μS2k+1 is the volume form of S2k+1.

The second statement of the theorem then follows immediately from Proposition

2.8 and Definition 2.24 because the S(t∗
Q
)-module structure on H∗(�, α) ⊗ H∗(S2k+1) only

exists on the first factor. �

Theorem 1.1 is now a direct consequence of Theorem 5.4.
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Odd GKM-Manifolds of Non-Negative Curvature 777

5.2. Orientability of the associated graph �

Without the assumption of orientability of the associated graph, the conclusion of the

Main Theorem 5.4 does not hold. We include an example here. Let (Sn(1), g) denote the

sphere of radius one with the standard metric. Consider

M9 = S2(1) × S2(1) × S2(1) × S3(1)

with the product metric and with a T4-action given as a product of four T1-actions,

where the action on each S2 is by rotation, and on S3 ⊂ C2 is fixed point homogeneous,

namely,

(eiθ , (z1, z2)) �→ (eiθz1, z2).

Then consider the Z2-action on M, given by the antipodal map on each S2 and on S3 by

(z1, z2) �→ (z1, z̄2).

As the Z2-action on M commutes with the T4-action and is free, orientation-

preserving, and by isometries, the quotient

N9 = M/(Z2)

is a non-negatively curved, closed, orientable manifold with the induced T4-action.

Using the transfer isomorphism (see, e.g., Theorem III.2.4 in [3]), we obtain

H∗(N) = H∗(M)Z2 , and we compute the Betti numbers of N to be

bi(N) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 i = 0, 9

3 i = 4, 5

0 otherwise.

Both M and N are orientable; however, the associated GKM graph of N is the

quotient of a 4-dimensional cube, I4/Z2, which is not orientable.

We claim that the T4-action on N is odd GKM4, and hence odd GKM3. First,

the fixed point set of the T4-action on N consists of exactly 4 circles. Second, the

condition on the weights is satisfied, since the action of T4 on M is odd GKM4,

and the condition on the weights of the isotropy representations at the fixed

points of N is inherited from M. Third, we can use Proposition 2.7 to see that the

T4-action is equivariantly formal: as computed above, the sum of the Betti numbers

of N is equal to 8, as is the sum of the Betti numbers of NT4
. So, the claim
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778 C. Escher et al.

holds. However, the cohomology ring of N does not split off the cohomology of an

odd-dimensional sphere, and so if we remove the hypothesis on the orientability of the

associated graph �, we see that the conclusion of Theorem 1.1 does not hold for N.

Note that in this example N is not simply-connected, and so we pose the

following question:

Question 5.5. If N is a closed, simply-connected, odd GKM3 manifold, is the

associated graph � orientable?

5.3. Applications of Theorem 5.4

We consider some special subcases of Theorem 5.4. Firstly, if the metric on the GKM3

manifold is positively curved, then by Theorem 3.2, every two-dimensional face of the

GKM graph has only one circle. This implies that the GKM graph, �̄M , is the pinwheel

depicted in Example 2.38, and so � is a single vertex. In particular, a single vertex graph

is orientable. Theorem 1.5 is then immediate.

As indicated in the Introduction, the proof of Theorem 1.2 follows from the proof

of Theorem 2.26.

Theorem 1.3 follows in the same way using Theorem 2.27. In order to

apply Theorem 2.27, we need to verify that �, the GKM4 graph obtained from the

odd-dimensional GKM graph of M, �̄M , is a graph with small three-dimensional faces

(see Definition 3.5 in [18]). As noted in [18], a GKM4 graph that has two-dimensional

faces with at most 4 vertices must have small three-dimensional faces. Since M has

non-negative curvature, Theorem 4.3 tells us that the two-dimensional faces of �̄M have

at most 4 circle vertices, and hence the two-dimensional faces of � have at most 4

vertices. The result follows.

6. Invariant Almost Contact Structures

The goal of this section is to prove Theorem 1.4 of the Introduction. We begin by

recalling the definition of an almost contact structure.

Definition 6.1 (Almost contact structure). An almost contact structure (φ, ξ , η) on a

(2n+1)-manifold M consists of a (1, 1)-tensor field φ, a vector field ξ , and a differential

one-form η such that

η(ξ) = 1 and φ2(X) = −X + η(X)ξ ,
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Odd GKM-Manifolds of Non-Negative Curvature 779

for any vector field X on M. Note that the vector field ξ , which is called the Reeb vector

field, is uniquely determined by φ and η, namely at a point p it is the unique vector ξp

such that φp(ξp) = 0 and ηp(ξp) = 1.

Given an almost contact structure (φ, ξ , η) on M2n+1, if N2k+1 ⊂ M2n+1 is a

submanifold such that ξ is tangent to N, and φ restricts to a well-defined tensor field

on N, then (φ, ξ , η) restricts to an almost contact structure on N. In this case we call N

an almost contact submanifold.

The following lemma may be well-known, but could not be located by the authors

elsewhere in the literature. For completeness, a proof is presented here.

Lemma 6.2. Let (φ, ξ , η) be an almost contact structure on a manifold M, invariant

under the action of a compact Lie group G. Then every connected component of the

fixed point set MG of the action is an almost contact submanifold.

Proof. Let N be a connected component of MG, and recall that N is an embedded

submanifold of M by work the of Kobayashi [28]. Then for every point p ∈ N , the tangent

space of N is given by

TpN = (TpM)G,

the set of vectors fixed by the isotropy representation of G at p. The G-invariance of φ

and the fact that p is fixed by G then implies that φ maps TpN to itself. For the same

reasons, it follows that ξ is tangent to N. Thus, the connected components of MG are

almost contact submanifolds. �

Combining Lemma 6.2 and the fact that the almost contact structure gives us a

T-invariant almost complex structure on ker ηp, we obtain the following proposition.

Proposition 6.3. Let M2n+1 be an odd GKM manifold with a T-invariant almost

contact structure (φ, ξ , η). Then the following are true.

(1) Every component of the fixed point set of T is an isolated, closed flow line

of ξ .

(2) At any fixed point p of the torus action, the weights of the isotropy

representation at p are well-defined elements of t∗
Q

.
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780 C. Escher et al.

Proof. By the definition of an odd GKM action, every component of the fixed point set

of T is an isolated circle. Lemma 6.2 then gives us that the restriction of (φ, ξ , η) to any of

these isolated circles is an almost contact submanifold, and the first statement follows.

To prove the second statement, we note that φ defines a T-invariant almost

complex structure on ker ηp. Since the almost contact structure is T-invariant, we have

ηtp(dtp(v)) = ηp(v) for all v ∈ TpM and t ∈ T. So at a fixed point p, ker(ηp) is T-invariant.

This fact combined with the fact that for each point the tangent space to ker(ηp) has a

complex structure, gives us a complex T-representation at p, and the second statement

follows. �

By Proposition 6.3, in the presence of a T-invariant almost contact structure on

M, we have that the weights are well-defined elements of t∗
Q

. This then allows us to

slightly modify the odd GKM graph, �̄M , of the T-action on M, which we call a signed

odd GKM graph, as follows. We consider the same underlying graph, �̄M , but now we

assign weights to edges, not to squares, that is, to each edge connecting a circle c to a

square s, we assign the corresponding weight of the isotropy representation at the circle

c, which is an element in t∗
Q

. Regarded modulo ±1, this weight is the same as the weight

assigned to the square s in the original odd-dimensional graph, �̄M . If, in addition, the

signed weights on the edges emanating from a square sum to 0, we call such a graph

alternating. This leads us to make the following definition.

Definition 6.4. If the signed odd GKM graph induced from the invariant almost

contact structure on the odd GKM manifold is alternating, then we say that the almost

contact structure is alternating.

The connection of a signed odd GKM graph is modified as follows (cf.

Definition 2.34). Formally, if we denote the set of edges emanating from a circle c

by E(c), then the axial function ᾱM is a collection of maps E(c) → t∗
Q

, for all c. The

connection can be regarded as a collection of maps (∇̄M)c1,c2,s0
: E(c1) → E(c2), where

c1, c2 ∈ V◦(s0), and it satisfies that for every edge e ∈ E(c1) there exists a constant c ∈ Z

such that

ᾱM((∇̄M)c1,c2,s0
(e)) = ᾱM(e) + cᾱM(e0),

where e0 is an edge connecting c1 or c2 with s0.

Remark 6.5. If M2n is a closed, non-negatively curved GKMk manifold admitting

an invariant almost complex structure, then the associated classical GKM graph is a
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Odd GKM-Manifolds of Non-Negative Curvature 781

signed GKM graph (see Remark 2.18). At the beginning of Subsection 5.1 we showed how

one may obtain an abstract GKM graph from an odd GKM graph whose squares have

valence less than or equal to two. It follows immediately that we can obtain classical

signed GKM graphs from alternating odd GKM graphs.

We now restate a result from the proof of Lemma 5.6 in [17], noting that this

result is independent of curvature.

Lemma 6.6. [17] Let � be an abstract, signed GKM3 graph. Then � admits no biangles.

Recall that we denote by �k the orbit space of the linear, effective action of the

k-dimensional torus on S2k. The following corollary to Lemma 6.6 is immediate (cf. the

proof of Lemma 7.1 in [18]).

Corollary 6.7. Let � be an abstract, signed GKM3 graph. Then there are no maximal

simplices in � with the combinatorial type of �k.

Before we prove Theorem 1.4, we first recall the definition of a generalized Bott

manifold.

Definition 6.8 (Generalized Bott manifold). We say that a manifold X is a generalized

Bott manifold if it is the total space of an iterated CPni-bundle

X = Xk → Xk−1 → · · · → X1 → X0 = {pt},

where each Xi is the total space of the projectivization of a Whitney sum of ni + 1

complex line bundles over Xi−1.

Remark 6.9. Torus manifolds over
∏

�ni , where �ni denotes the standard simplex

of dimension ni, admitting an invariant almost complex structure were classified in

Choi, Masuda, and Suh [4]. They are all diffeomorphic to generalized Bott manifolds.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let M2n+1 be a closed, non-negatively curved, odd GKM4

manifold, which admits an invariant almost contact structure that is alternating. By

assumption, �̄M is alternating, and so the abstract GKM graph obtained from it is

signed. By Corollary 6.7, a signed, abstract GKM3 graph has no maximal simplices with
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the combinatorial type of �k. Since GKM4 manifolds are also GKM3, it follows that �

contains no maximal simplices with the combinatorial type of �k.

We can now argue as in Section 7 of [18] to obtain the result. We briefly

outline the proof here for the sake of completeness. As noted at the end of Section 5.3,

non-negative curvature and the GKM4 condition guarantee that � will have small three-

dimensional faces. So we may apply Theorem 3.11 of [18] to show that � is finitely

covered by a graph, �̃, which is the vertex-edge graph of a finite product of simplices.

One then shows that the quasitoric manifold corresponding to the graph �̃ admits an

invariant complex structure in Theorem 7.1 of [18]. Applying Theorem 6.4 of [4] then

shows us that �̃ is the GKM graph of a generalized Bott manifold. Finally, we use

Theorem 7.5 of [18], to show that �̃ = �. Thus, we may apply the GKM theorem to

conclude that the rational cohomology ring of M is the tensor product of the rational

cohomology ring of an odd-dimensional sphere and the rational cohomology ring of a

generalized Bott manifold, as desired. �

It seems very likely that the graphs corresponding to non-negatively curved,

odd GKM3 manifolds admitting an invariant almost contact structure are alternating.

We finish with the following conjecture.

Conjecture 6.10. Let M2n+1 be a closed, non-negatively curved odd-dimensional

GKM3 manifold admitting an invariant almost contact structure. Then the odd GKM3

graph corresponding to M2n+1 is alternating.
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