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Let M be a closed, odd GKM; manifold of non-negative sectional curvature. We show
that in this situation one can associate an ordinary abstract GKM; graph to M and
prove that if this graph is orientable, then both the equivariant and the ordinary rational

cohomology of M split off the cohomology of an odd-dimensional sphere.

1. Introduction

A long-standing problem in Riemannian geometry is the classification of positively
and non-negatively curved manifolds. One characteristic shared by many of the known
examples is a high degree of symmetry. The Grove Symmetry Program suggests we
attempt the classification of such manifolds with the additional hypothesis of “large”
symmetries. The eventual goal of this program is to be able to eliminate the hypothesis
of symmetries entirely.

A natural first step is to consider the case of abelian symmetries. For the case
of positive curvature, results due to Grove and Searle [20], Rong [32] and Fang and Rong
[10], and Wilking [37] give us a classification up to diffeomorphism, homeomorphism, or
rational homotopy equivalence for a T*-action, provided k equals | (n+1)/2], [(n—1)/2],

or is greater than or equal to [(n + 4)/4], respectively. For non-negative curvature, an
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0dd GKM-Manifolds of Non-Negative Curvature 745

equivariant diffeomorphism classification for dimensions less than or equal to nine
for Tk-actions with k = |2n/3] follows from the work of Galaz-Garcia and Searle [13],
Galaz-Garcia and Kerin [12], and Escher and Searle [9]. An equivariant diffeomorphism
classification for dimensions less than or equal to 6 for T¥-actions with k = |2n/3] — 1
follows from the work of Kleiner [27], Searle and Yang [33], Galaz-Garcia [11], Galaz-
Garcia and Kerin [12], Grove and Wilking [21], Galaz-Garcia and Searle [14], and Escher
and Searle [8]. Note that all of these results rely heavily on the existence of fixed point
sets of “small” codimension.

From this point of view, one may consider GKM,; manifolds as occupying the
other end of the spectrum. Note that these are 2n-dimensional manifolds with a torus
action of rank < n. A consequence of the GKM; condition is that for a T™-action on
M2, for all I < min(k, m) — 1, there exist codimension I torus subgroups of T™ fixing
2[l-dimensional submanifolds of M, which we denote by N2, Furthermore, with the
induced T!-action, each N% is a torus manifold, that is an orientable, even-dimensional
manifold such that T* has non-empty fixed point set. GKM,;, manifolds of both positive
and non-negative curvature were studied by Goertsches and Wiemeler in [17, 18],
respectively, where they showed that the GKM,, respectively GKM,, condition allows
them to classify such manifolds up to real, respectively, rational cohomology type. The
notion of GKM manifold was extended to odd dimensions by He [26]. We call such
manifolds odd GKM manifolds. Inspired by the work of [17, 18] and [26], we consider
the case of odd GKM; manifolds of positive and non-negative curvature.

Our main result concerns odd GKM; manifolds of non-negative sectional curva-
ture. Throughout this article, we only consider cohomology with rational coefficients,
and note that an abstract GKM; graph is orientable provided its top cohomology class

is non-trivial.

Main Theorem 1.1. Let M?"! be a closed, non-negatively curved odd GKM, mani-
fold, Ty, the GKM4 graph of M, and k the number of floating edges at a vertex of T'y;.
Suppose that (T',«a, V), the abstract, even-dimensional GKM4 graph obtained from f‘M,
is orientable. Then H*(M?"*1) splits off the cohomology ring of an odd dimensional

sphere, that is,
H*(M) = H*(T',«, V) ® H*(S?**1).
In the process of proving Theorem 1.1, we also obtain a similar result for the

equivariant cohomology of M, see Theorem 5.4. For the definition of floating edges of a
GKM graph of an odd-dimensional GKM manifold, see Definition 2.32.
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In Theorem 1.1, the abstract, even-dimensional GKM; graph, I', obtained from
the odd GKM, graph associated to M2?"*!, has two-dimensional faces that contain
at most four vertices. The rational cohomology of a GKM; manifold is completely
determined by its corresponding vertex-edge graph, I'. Unfortunately, there is no general
classification of even-dimensional GKM; graphs whose two-dimensional faces contain
at most four vertices. That is, it is as yet unknown whether every such GKM; graph
corresponds to a closed, non-negatively curved GKM; manifold. However, if there are no
quadrangles as two-dimensional faces of I', that is, if no two-dimensional face in the
odd-dimensional GKM graph of M is of the form (4) in Theorem 4.3, then by the main
result of [17], H*(T', ¢, V) is isomorphic to the real cohomology ring of a compact rank
one symmetric space (CROSS). Since the result in [17] was obtained via a classification
of all possible GKM4 graphs and by applying the GKM theorem, the result also holds for

rational coefficients. We obtain the following theorem.

Theorem 1.2. Let M?"*! be a closed, non-negatively curved, odd GKM, manifold.
Suppose that the two-dimensional faces in Ty, the odd-dimensional GKM graph of M,
are not of the form (4) in Theorem 4.3 and that (I',«, V), the abstract, even-dimensional
GKM, graph obtained from Ty, is orientable. Then H*(M?**!) is the tensor product of
the rational cohomology ring of an odd dimensional sphere, and a simply-connected
CROSS, that is,

where N?"2k is q simply-connected CROSS.

Using Theorem 1.4 of [18], we see that if we assume that our manifold is GKM,,
then the cohomology ring of the manifold splits as that of an odd-dimensional sphere

and a finite quotient of a non-negatively curved torus manifold.

Theorem 1.3. Let M?"! be a closed, non-negatively curved odd GKM, manifold.
Suppose that (I',«, V), the abstract, even-dimensional GKM, graph obtained from fM,
the odd-dimensional GKM graph of M, is orientable. Then H*(M?"*') is the tensor
product of the cohomology ring of an odd dimensional sphere, and the cohomology

ring of a (quotient of) a torus manifold, that is,
H*(M) E H*(NZn—Zk/G) ®H*(52k+1),

where N is a simply-connected, non-negatively curved torus manifold and G is a finite

group acting isometrically (and orientably) on N.
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To date, only odd GKM graphs without signs have been treated in the literature.
Adding the restriction that the manifold admits a T-invariant almost contact structure,
that is, an almost contact structure invariant under a torus action, allows us to talk
about odd GKM graphs with signs. Using Theorem 1.5 of [18], we obtain the following

result.

Theorem 1.4. Let M?"*! be a closed, non-negatively manifold with an odd GKM,
T-action, which admits a T-invariant, alternating, almost contact structure. Suppose
that (T',«, V), the abstract, even-dimensional GKM, graph obtained from f‘M, the odd-
dimensional GKM graph of M, is orientable. Then the rational cohomology ring of
M is isomorphic to the tensor product of the rational cohomology ring of an odd-

dimensional sphere and the rational cohomology ring of a generalized Bott manifold.

See Definition 6.4 for a definition of an alternating almost contact structure.
Finally, we also obtain a full rational cohomology classification for positively curved
odd GKM; manifolds, as follows.

Theorem 1.5. Let M?"! be a closed, positively curved, odd GKM, manifold. Then

M?"+1 has the rational cohomology ring of S>**1,

We note that of the known examples of odd-dimensional manifolds of positive
curvature, the only ones that are rational homology spheres, but not diffeomorphic to
spheres, are the so-called Berger spaces, B’ = SO(5)/SO(3) and B'® = SU(5)/(Sp(2) x
Z,S'). These two manifolds admit both an invariant transitive and an invariant
cohomogeneity one action, but the corresponding maximal torus does not satisfy the
requirements to be odd GKMj, since the maximal torus in both cases does not have
fixed points.

Finally, we point out that the positive and non-negative curvature hypotheses
in our results serve to restrict the number of vertices in the two-dimensional faces of
the odd GKM,, graph associated to the manifold. Thus, all of the above theorems can be
reframed in a curvature-free setting by simply assuming the corresponding restrictions

on these graphs.

1.1. Organization

The paper is organized as follows. We include basic notation and preliminary material

in Section 2. In Section 3, we classify the universal covers of closed, non-negatively
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curved 5-dimensional GKM manifolds. In Section 4, we classify the corresponding
graphs of these 5-manifolds. In Section 5, we prove Theorems 1.1, 1.2, 1.3, and 1.5. In

Section 6, we give the proof of Theorem 1.4.
2. Preliminaries

In this section we gather basic results and facts about transformation groups, equivari-
ant cohomology, even- and odd-dimensional GKM and GKM], theory, as well as results

concerning G-invariant manifolds of non-negative sectional curvature.
2.1. Transformation groups

Let G be a compact Lie group acting on a smooth manifold M. We denote by
G, = {g € G | gx = x} the isotropy group at x € M and by G(x) = {gx | g € G} the
orbit of x. Note that G(x) is homeomorphic to G/G, since G is compact. We denote the
orbit space of the G-action by M /G and note that if M admits a lower sectional curvature
bound and the G-action is isometric, then M/G is an Alexandrov space admitting the
same lower curvature bound. We denote the fixed point set of M by G as either M€ or
Fix(M; G), using whichever may be more convenient.

One measurement for the size of a transformation group G x M — M is the
dimension of its orbit space M/G, also called the cohomogeneity of the action. This
dimension is clearly constrained by the dimension of the fixed point set M¢ of G in M.
In fact, dim(M/G) > dim(M®) + 1 for any non-trivial, non-transitive action. In light
of this, the fixed point cohomogeneity of an action, denoted by cohomfix(M; G), is
defined by

cohomfix(M; G) = dim(M/G) — dimM%) — 1 > 0.

A manifold with fixed point cohomogeneity 0 is also called a G-fixed point homoge-
neous manifold.
We now recall Theorem 1.9.1 of Bredon [3], which characterizes how to lift a

group action to a covering space.

Theorem 2.1. [3] Let G be a connected Lie group acting effectively on a connected,
locally path-connected space X and let X' be any covering space of X. Then there is a
covering group G' of G with an effective action of G’ on X' covering the given action.
Moreover, G’ and its action on X' are unique.

The kernel of G — G is a subgroup of the group of deck transformations of
X' — X. In particular, if X’ — X has finitely many sheets, then so does G — G.
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If G has a fixed point in X, then G = G and Fix(X'; G) is the full inverse image of
Fix(X; G).

The presence of a G-action on a manifold M induces a topological stratification
of M. In particular, when the group is a torus, that is, G = T, a special name is given to

the strata of the T-action.

Definition 2.2 (The k-skeleton of M). For G = T, a torus, we define the k-skeleton of
M to be

M, ={p € M| dim(T(p)) < k}.
We then obtain a T-invariant topological stratification of M as follows: M, C M, C
-+ C Mgjy(r) = M on M, where the 0-skeleton M, is exactly the fixed point set M".
2.2. Equivariant cohomology

We begin by providing some basic information about equivariant cohomology and

equivariantly formal manifolds for torus actions.

Definition 2.3 (Equivariant Cohomology). Given an action of a torus T on a compact

manifold M, the equivariant cohomology of the action is defined as
Hi:(M) = H*(M x 1 ET),

where ET — BT is the classifying bundle of T and ET is a contractible space on which

T acts freely.

The equivariant cohomology has the natural structure of an H*(BT)-algebra, via
the projection M x; ET — BT. Note that H*(BT) is isomorphic to the ring of rational
polynomials on the Lie algebra t, in the following sense. Denoting the rational points
in t, that is, the tensor product of the integer lattice in t with Q, by to then H*(BT),
a rational polynomial ring in dim(T) variables, is isomorphic to S(t@), the symmetric
algebra over .

Given an action of a torus T on M, we may compare Hy (M) with H;i(MT) using

the Borel Localization Theorem (see, e.g., Corollary 3.1.8 in Allday and Puppe [1]).

Theorem 2.4 (Borel Localization Theorem). The restriction map
Hi(M) — Hi(MT)

is an H*(BT)-module isomorphism modulo H*(BT)-torsion.
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Using this localization theorem, it is clear that if H;(M) is actually a free
H*(BT)-module, one can hope for a stronger relation between the manifold M and its

fixed point set M”. This motivates the following definition.

Definition 2.5 (Equivariantly Formal). We say that an action of a torus T on M is
equivariantly formal if H;(M) is a free H*(BT) = S(ta)—module.

As a compact manifold has finite-dimensional cohomology, it follows from
Corollary 4.2.3 of [1] that equivariant formality is equivalent to the degeneration of the
Leray-Serre spectral sequence of the Borel fibration M < M x;ET — BT at the E,-term.
Moreover, the following are some well-known and important properties of equivariantly

formal actions.

Proposition 2.6. An action of a torus T on a compact manifold M with H*% M) =
{0} is equivariantly formal. The converse implication is true provided that the T-fixed

point set MT is finite.

The first statement of Proposition 2.6 follows because the spectral sequence
degenerates at the E,-term, if H°4d(p1) = {0}. The second statement is a consequence
of the Borel Localization Theorem, as then H;(M) = H*(BT) ® H*(M) injects into the
module H;(MT) =~ H*(BT)QH*(MT), which vanishes in odd degrees. The next proposition
is Theorem 3.10.4 in [1].

Proposition 2.7. [1] For any action of a torus T on a compact manifold M, we have
dim H*(MT) < dim H*(M). Equality holds if and only if the action is equivariantly

formal.

The Leray-Hirsch theorem implies that for equivariantly formal actions the

ordinary cohomology ring is encoded in the equivariant cohomology algebra.

Proposition 2.8. For an equivariantly formal action of a torus T on a compact man-
ifold M the natural map Hy(M) — H*(M) is surjective and induces an isomorphism of
Q-algebras

H7.(M)

T > e,
ST(t) - Hy(M) ()

where S+(té) denotes the ideal in S(t{@) generated by Q-valued polynomials of positive

degree.
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For equivariantly formal actions, the Borel Localization Theorem 2.4 gives an
embedding of H; (M) into H}(MT). The image of this embedding can be described as
follows, combining Lemma 2.3 of Chang and Skjelbred [5] for the first isomorphism
with the version of the same lemma given in Theorem 11.51 of Guillemin and Sternberg

[22] for the second isomorphism.

Chang Skjelbred Lemma 2.9. [5], [22] If a T-action on M is equivariantly formal, then
the equivariant cohomology Hy(M) only depends on the fixed point set MT and the
1-skeleton M;:

Hy(M) = im (Hyp(M,) — Hp(M")) = () im(H; M%) — Hy(M")),

where the intersection is taken over all corank-1 subtori K of T.

Moreover, equivariant formality is inherited by subtori of the T-action. More precisely,

we have the following well-known proposition and corollary, see, for example, [26].

Proposition 2.10. Ifa T-action on M is equivariantly formal, then for any subtorus K
of T, both the K-subaction on M and the induced T/K-action on MX are equivariantly

formal.

Corollary 2.11. If a T-action on M is equivariantly formal, then for any subtorus K

of T, every connected component of MX has T-fixed points.

2.3. Even-dimensional GKM theory

The class of manifolds, now referred to as GKM manifolds, was first introduced in the
seminal work of Goresky, Kottwitz, and MacPherson [19] to study the relation between
equivariant cohomology and ordinary cohomology and is named for these authors. The
GKM Theorem 2.23 (cf. Theorem 1.2.2 of [19]) states that over an appropriate coefficient
ring R, the equivariant cohomology ring of a GKM manifold M can be computed via its
1-skeleton and the isotropy information of the GKM torus action. Motivated by their
work, the concepts of GKM manifold and GKM graph were introduced by Guillemin
and Zara in [23] to build a bridge between the topology and the combinatorics of these
spaces. We begin with the formal definition of a GKM manifold.
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Definition 2.12 (GKM Torus Action and Manifold). We say that the effective action of
atorus T' =T, 1 < n, on an orientable, compact, connected manifold M?2" is GKM, and
M?" is called a GKM manifold, if

(1) the fixed point set MT of the action is finite;
(2) for every p € MT, the weights @, € to"/{£1}i=1,...,n, of the isotropy
representation of T on T,M are pairwise linearly independent,; and

(3) the T-action is equivariantly formal.

We note that the original definition in [23] does not require the manifold
to be either orientable or the T-action to be equivariantly formal, rather, both are
assumed (sometimes implicitly) as separate hypotheses in their theorems. We include
both hypotheses in our definition, since both are included in the definition of a GKM
manifold in most of the recent literature (see, e.g., Goertsches and Wiemeler [17, 18] and
Kuroki [29]).

By Proposition 2.6, Conditions 1 and 3 imply the vanishing of the odd-
dimensional rational cohomology groups of M. Condition 2 is equivalent to the
condition that M;, the 1-skeleton of M, consists of a disjoint union of T-invariant,
orientable submanifolds, each of which is either fixed point free, or an embedded S%. By
Corollary 2.11, Condition 3 implies that M; consists entirely of T-invariant embedded
2-spheres. Moreover, Conditions 1 and 3 combined with Proposition 2.7 tell us that each

such S? contains exactly two T-fixed points.

Definition 2.13 (GKM;, Torus Action and Manifold). We say that the effective action
of a torus T on an orientable, compact, connected manifold M*" is GKM,,, and we call
M?" g GKM,, manifold, if

(1) M?"is GKM, and

(2) for each p € MT any set of k weights, o, € to*/{x£1},i = 1,...,n, of the

isotropy representation of T on T,M is linearly independent.

Remark 2.14. A GKM;, manifold is GKM, for all 2 <1 < k, and a GKM, manifold is a
GKM manifold.

By convention, the T'-action on S? is considered to be a GKM, manifold.
Note also that the linear independence is well-defined for elements that are only

defined up to sign. Condition 2 is equivalent to M;_;, the (k — 1)-skeleton, being
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a union of T-invariant submanifolds, which are either fixed point free or are
(2k — 2)-dimensional and have T-fixed points. Observe that by Corollary 2.11, the
definition implies that M;_, consists entirely of (2k — 2)-dimensional T-invariant
submanifolds.

Once we have established some conventions, we define the notion of an abstract
GKM,, graph, which consists of a triple: a graph, an axial function, and a connection.
However, in Section 4, we will be working with geometric GKM,, graphs, that is, graphs
that correspond to the graph of a GKM,; manifold. We note that an abstract GKM,;, graph
may not correspond to the graph of a GKM; manifold and that the graph described in
our Main Theorem 1.1 is abstract.

We employ the following conventions when speaking about abstract graphs.

Given an abstract graph I', we denote by

e E(I) its set of oriented edges; and by

e V(I its set of vertices.

We always assume that both the edge and vertex sets are finite, and we allow multiple

edges between vertices. For an edge e € E(I') we denote by

e e the edge with opposite orientation;
e i(e) its initial vertex; and

e t(e) its terminal vertex.

We assume that for any edge e, i(e) # t(e), that is, an edge cannot connect a vertex to
itself. For a vertex v € V(I') the set of edges emanating from v is denoted by E,,.
Before we can define an abstract GKM, graph, we define a connection, V, on a

graph I, as in [23].

Definition 2.15 (Connection). A connection on a graph T is a collection V of maps
Ve : Eje) = Ey, for each e € E(T), such that

(1) V,(e)=e and

(2) Vg= (V) h

We are now in a position to define an abstract GKM,; graph. We note that
abstract GKM graphs were originally defined in [23], and called abstract one-skeleta
there. However, in the subsequent literature, they have been referred to as abstract GKM

graphs, so we do so as well.
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Definition 2.16 (Abstract GKM, graph). Let k > 2. Then an abstract GKM,, graph,
(T,a,V), or simply (I',a) when k > 3, consists of a graph T', an axial function
oa:ET) — t@/{:i:l}, and a connection V, such that
(1) the underlying graph T is n-valent;
(2) foranyec ET), a(e) =a(e); and
(3) foranyv e V(') and any set of k distinct edges ey, ..., e, € E,, the elements
a(ey),...,aley) are linearly independent;

(4) forany v e V(I') and any pair of distinct edges e, f € E,,, we have that

(V) = £a(f) + Cep(€),

for some constant ¢ = ¢, ¢ € Z, depending on e and f.

Remark 2.17. The abstract GKM, graph for k > 3 consists of a triple, but since the

connection is canonical for k > 3 [23], there is no need to list it in this case.

We also define a variant of the abstract GKM,;, graph, which is signed, motivated
by the fact that one often assumes that a GKM manifold admits an invariant almost

complex structure.

Definition 2.18 (Abstract Signed GKM, graph). Let k > 2. Then an abstract signed
GKM,, graph is a GKM, graph where £ is replaced by +. That is, the following
modifications are made to Definition 2.16.
(1) The axial function now takes values in an R-module V, thatis,«a : ET") — V.
(2) In Part (4) is modified to be

a(Vf) =alf) + Cept(€).

In order to motivate the previous definitions, we now describe the geometric
graph obtained from a GKM, manifold, M?".

Definition 2.19 (Geometric GKM, graph). Let M?" be a GKM, manifold. Then the
geometric GKM, graph of M is an abstract GKM;,, graph, (T'y;, s, V) or simply (T, app)
for k > 3, where I'y; and oy, are defined as follows.
(1) Ty, is the quotient by the torus action of the 1-skeleton, M, /T, considered
as a graph.
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(2) The axial function oy, : E(T'y;) — t/{£1} is defined on each edge, e, of Ty,
as the corresponding weight of the isotropy representation, considered as
an element of t&/{:tl}.

Remark 2.20. With this definition V(I'y;) corresponds to the (isolated) fixed points of
the torus action and E(I'y;) corresponds to the 2-spheres fixed by a codimension one

subtorus of T, containing two isolated fixed points of T.

Equivalently, given a GKM,, action of a torus T on an orientable manifold M2,
the geometric graph of this action is constructed as follows: we have one vertex for each
fixed point, every invariant 2-sphere contains exactly two fixed points, and we associate
to it one edge connecting the corresponding vertices. The axial function associates
to each edge, that is, invariant 2-sphere, the corresponding weight of the isotropy

representation.

Remark 2.21.  Given a GKM,-manifold M?", for every choice of | < k—1 edgese, ..., ¢
at a vertex p, we can define a 2l-dimensional T-invariant submanifold N% of M, that is
itself GKM, with the induced torus action as follows. Let b := ﬂ%zl keray,(e;), consider
the subtorus H C T with Lie algebra b, and define N to be the connected component of
MH containing the fixed point p. The GKM,, condition implies that N is 2l-dimensional,
as its tangent space at p is precisely the sum of those weight spaces whose weights
vanish on . We then see that in the above definition of T'y;, the graph of the GKM,
manifold M, the quotient of the 1-skeleton of N by T is a subgraph T'y, C Ty, and we
call this subgraph a face. In the special case when M?" is a quasitoric manifold, the
quotient M/T is an n-dimensional simple polytope, P". In this special case, I'y, is the
1-skeleton of P", and each face of P" corresponds to some N2!/T, whose 1-skeleton

s Ty

We now explicitly describe the connection, V;;, in the GKM; case, as it is easier
to describe than in the GKM case, and moreover we are only concerned with the GKMj,
case in this article. In this setting, given any two distinct edges e, f emanating from a
vertex v, there is a unique two-dimensional face, F, containing e and f. Let € # e be
the unique edge in F, such that i(¢’) = t(e). Setting (Vy).f = €, it follows from [18]
that (I'y;, oy, Vyy) satisfies the conditions for an abstract GKM4 graph. In particular, we
see that the connection allows us to slide edges along edges inside the corresponding

two-dimensional face of the graph.
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This leads us to define the concept of an abstract face of an abstract GKM,
graph. Let (I', «, V) be an abstract GKM,;, graph, then we say that I’ is an [-dimensional
face of (I',«, V) if it is an [-valent subgraph, invariant under V.

We are now in a position to define the equivariant cohomology of an abstract
GKM graph, which was first done in Section 1.7 of [23] and was denoted simply by
H(I', ). Since we also define the cohomology of an abstract GKM graph below in
Definition 2.24, to avoid confusion, we denote the equivariant cohomology of an abstract
GKM graph by H; (T, o).

Definition 2.22 (Equivariant Cohomology of an Abstract GKM Graph). The equivari-
ant cohomology of an abstract GKM graph (T',«a, V) is defined as

Hi(T,a) = {(fv)veV(F) € @ S(tTQ) | a(e) dividesfi(e) —ft(e) forall e € E(T')},
veV ()

where the generators of S(t(*@) are assigned degree 2. It is naturally an S(tj@)-algebm.
We now recall Theorem 1.2.2, also known as the GKM Theorem, in [19] here.

Theorem 2.23 (GKM Theorem). [19] For a GKM action of a torus T on M, with
GKM graph Ty, the injection Hp(M) — H;(MT) = @peMT S(t@) has as image exactly
H5(Cyp,apy). Thus, Hy(M) = Hy(T'yy, 0p) as S(tj"Q)—algebms.

Motivated by Proposition 2.8 we define the cohomology of an abstract GKM

graph as follows.

Definition 2.24 (Cohomology of an abstract GKM Graph). The cohomology of an
abstract GKM graph (T',«, V) is defined as

Hi (', @)

H*T,a) = S+(t(*@) AT, a)

Remark 2.25. Thus, for a GKM action of a torus T on M, we have H*(M) = H*(I'y;) by
Theorem 2.23 and Proposition 2.8.

2.4. Results for GKM; manifolds in positive and non-negative curvature

We state here two results for GKM; manifolds of positive and non-negative sectional
curvature that we need for the proofs of Theorem 1.2 and 1.3. The first is a classification

result for positively curved GKM; manifolds from [17].
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Theorem 2.26. [17] Let M be a closed, positively curved, orientable GKM 4 Riemannian
manifold. Then M has the real cohomology ring of a compact rank one symmetric

space.

The second is a classification result for non-negatively curved GKM, manifolds
from [18].

Theorem 2.27. [18] Let M be a non-negatively curved GKM, manifold. Then
H*(M) = H*(M/G),

where M is a simply-connected, non-negatively curved torus manifold and G is a finite

group acting isometrically on M.

2.5. 0dd-dimensional GKM theory

GKM theory was generalized to torus actions on odd-dimensional manifolds with
one-dimensional fixed point set in [26]. The odd GKM condition is an odd-dimensional
analogue of the even-dimensional GKM condition. We describe the corresponding theory

here.

Definition 2.28 (0dd GKM Torus Action and Manifold). We say that the action of a

torus T on an orientable, compact, connected manifold M***! is odd GKM if

(1) the fixed point set MT of the action is a finite union of circles;
(2) for every p € MT, the weights o, € " /{£1}i=1,...,n, of the isotropy
representation of T on T,M are pairwise linearly independent,; and

(3) it is equivariantly formal.

Remark 2.29. Condition 2 is equivalent to requiring the 1-skeleton
M, ={peM|dim(T p) <1}

to be a finite union of three-dimensional T-invariant submanifolds.

Recall that for GKM manifolds, Condition 2 of Definition 2.12 implies that up
to diffeomorphism, there is only one two-dimensional T-invariant submanifold, S?,
and that S> N MT consists of exactly two isolated points. In contrast, here there are an
infinite number of possible T-invariant 3-manifolds that could occur, see Section 4 of

[26] for a complete classification of such 3-manifolds.
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Note that in [26], it is neither assumed that the action is equivariantly formal
nor that M is orientable. We include these conditions because we do so in the even-
dimensional setting, and as mentioned earlier, both are often part of the definition of a
GKM action.

Remark 2.30. One should note that in [16] a different generalization of GKM theory
to odd dimensions was introduced for the so-called Cohen-Macaulay actions. The
GKM-type actions considered there are more general than those of [26], as they do
not necessarily have fixed points. That is, using the stratification induced by the M,
skeleta, one only has that M; # ¢ for somel > 0, rather than M, = MT + (. On the other
hand, the definition from [16] is also more restrictive in terms of the stratification of
the k-skeleta. Namely, given N, a connected component of M, , \ M;, with M; # §, N
contains exactly two components of M;. By contrast, in the definition given in [26], the

number of such components is greater than or equal to 1.

As in classical GKM theory one can associate to an odd GKM manifold a
geometric odd GKM graph. For equivariantly formal actions, one can compute the
equivariant, as well as the ordinary rational, cohomology of the manifold from this
graph.

To encode the structure of the 1-skeleton in a graph, two types of vertices
are defined in [26]. We will decorate our graphs with a bar to distinguish them from

even-dimensional GKM graphs.

Definition 2.31 (Vertex Types). The graph, Ty, of an odd GKM manifold M has two

types of vertices:

(1) One circle for each circle in the fixed point set; and
(2) One square for each invariant three-dimensional submanifold in M;, the
1-skeleton of M.

We denote the set of circles by V, and the set of squares by V.

We also have restrictions on how edges are formed and distinguish between two

particular types.

Definition 2.32 (Edge and Edge Types). We connect a circle to a square by an edge
if the fixed circle is contained in the corresponding three-dimensional submanifold.
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Further, at any circle in the graph, T,;, we distinguish between the following edge
types:
(1) a floating edge, that is, an edge connecting to a square of valence 1, and

(2) a grounded edge, that is, an edge connecting to a square of valence > 2.

We further distinguish the following important subsets of ¥, and V., namely,
we denote by V,(s) the set of circles connected to s € V, and by V(c) the set of squares
connected to ¢ € V.

In analogy with how weights are assigned to the GKM; graph, we now assign

weights to square vertices rather than edges.

Definition 2.33 (Weight Function). The weight function ay; : V5 — tﬁé/{il} assigns
to each square s of T,;, a weight, ay,(s), which is the weight of the isotropy represen-
tation at any fixed circle in the three-dimensional submanifold corresponding to s,

considered as an element of tj"Q/{:tl}.

Note that by definition, any edge connects a circle to a square.

We can also introduce a notion of connection on such a graph, as in the
even-dimensional setting. The only difference is that we do not specify a single edge
along which we transport, but two circles in the same three-dimensional component of
the 1-skeleton.

Definition 2.34. A connection on the graph, Ty, of an odd-dimensional GKM
manifold M is a collection of maps NM)L,chls0 : Vy(ep) — Vg(cy), for every sy € Vg
and ¢y, ¢, € V (sp), satisfying the following conditions:

(1) (6M)cl,cz,so(so) =93y

(2) (6M)Cz,cl ,S0 = (6M)L_‘11,02,SO

(3) Forevery s € V,(c,), there exists a constant c € Z such that
g (Vi) 03,50 (8)) = £y (8) + Capg(Sp)-
The following proposition guarantees the existence of a connection on the graph

of every odd-dimensional GKM manifold. The proof is completely analogous to the proof

of Proposition 2.3 in [18], or the proof on page 5 of [23].
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Proposition 2.35. There exists a connection on the graph, T, of every
odd-dimensional GKM manifold.

With these notions, we now define a geometric odd GKM graph.

Definition 2.36 (Geometric 0dd GKM Graph). Let M?"+! be an odd GKM manifold. We
define a geometric odd GKM graph, (Ty, @y, Vi), where Ty, is the graph obtained from
the 1-skeleton of M, with vertices, edges and weight function, ay;, and a connection,

V,. as described above.

Remark 2.37. For odd GKM graphs whose squares have valence 1 or 2 only, we will use
the following notational shortcut. Namely, we will denote each 2-valent square s € V,
by Sij where ¢ cj € Vy(s) are the unique circle vertices connecting to s. In particular,
in analogy with the orientation assigned to edges in the even-dimensional case, this

allows us to assign an orientation to a 2-valent square, namely we let 5;; = s;;.

Example 2.38. The geometric odd GKM graph of a (2n + 1)-dimensional sphere
S+l < C™1 with the standard T™-action induced by the standard representation
on n of the n + 1 summands is a pinwheel with n edges terminating in squares,

corresponding to fixed 3-spheres, as follows:

In the following proposition we collect a few properties of odd GKM graphs.

Proposition 2.39. Let M?"*! be an odd GKM manifold, then the following hold:

(1) The geometric odd GKM graph is connected

(2) Each circle in the geometric odd GKM graph has valence n.

(3) The total Betti number b(M?™*1) is equal to 2m for some m € Z*, and there
are exactly m circles in the graph. Moreover, each square in the odd GKM

graph has valence bounded between 1 and m.
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Proof. We include a proof for the sake of completeness, noting that the proof
follows along the same lines as in the even-dimensional case. To prove Part 1,
we note the Chang-Skjelbred Lemma 2.9 states that for an equivariantly formal
action, the image of the injective map Hj(M) — H;Z(MT) is the same as the image
of the map Hj(M;) — H;(MT). As M is connected, it follows that the image of
HOM,) = H2(M,) — HOMT) = H'MT) is one-dimensional, which implies that M, is
connected. This is equivalent to the GKM graph being connected.

To prove Part 2, recall that any edge emanating from a circle corresponds to a
weight of the isotropy representation at that circle. Because the codimension of this
circle is 2n, and T acts on the normal space of this circle without fixed vectors, there
are precisely n such weights.

To prove Part 3, it follows by Proposition 2.7 that the equivariant formality of
the action is equivalent to the equality of total Betti numbers dim H*(M) = dim H*(M7T).
Because any circle in MT contributes 2 to the total Betti number of MT, and since any
square must contain a circle fixed by T and can contain at most m circles, the result
follows. |

We are now in a position to define an odd GKM,;, manifold.

Definition 2.40 (0dd GKM,; manifolds). An odd-dimensional GKM manifold is called
odd GKMy, for k > 2, if the following hold.

(1) M is odd-dimensional GKM, and;
(2) Atany fixed circle, any k weights of the isotropy representation are linearly

independent.

Thus, odd GKM manifolds are the same as odd GKM, manifolds. In the same
way that a geometric odd GKM graph is associated to an odd GKM manifold, we obtain
an odd geometric GKM;, graph from an odd GKM; manifold. Note that for geometric odd
GKM, graphs, for every s, € V, given c;, ¢, € V,(sy), the condition (SzM((§M)C1 Car50(8)) =
+ay(s) + cay(sy) alone uniquely determines the square (Vi) ¢, s 0 (8), for all s € V(c;),
that is, the connection is unique. Since the connection for a geometric odd GKM,;, graph
is canonical for k > 3, we will denote such graphs simply by (I, @)

For a GKM; manifold M, and any k— 1 weights at a fixed circle, there is a unique
(2k — 1)-dimensional submanifold fixed by a codimension k — 1 subtorus generated by
the intersection of the kernels of the k — 1 weights. We will denote this submanifold by

N%k_l. As in the even-dimensional case, we make the following definition of a face.
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Definition 2.41 (Face). We call the subgraph of the GKM, graph of M corresponding
to N%k_l a (k — 1)-face of the graph.

Theorem 4.6 in [26] tells us how the GKM graph encodes the equivariant
cohomology, whose relevant content we recall here. We choose an orientation on every
component of MT, which then allows us to identify its cohomology canonically with
H*(SY) = QIA1/(6?). The inclusion MT — M induces an injection

Hy(M) — HyM") = €P S(t)) @ H*(SY),
CEVO

and the image of this map is described by the following divisibility relations. For any
s € V, let N, be the three-dimensional connected submanifold fixed by the subtorus

with Lie algebra kera(s). Then, for c¢;, ..., c; € V,, the circles contained in N, we have

Py + Q) e, € EP St @ H*(SY),

ceVo
where P, Q, € S(tg@), satisfies
P, =---=P; modua(s) (2.1)
and
l
Z +Q,, =0 mod a(s). (2.2)
i=1

Here, the + signs in the sum are determined as follows. Recall that for a closed manifold
M, the fixed point sets of torus actions are closed submanifolds that are orientable if
M is. Thus N is orientable, and so the orbit space N,/T is orientable as a topological
manifold (with boundary), as well. The circles c; are boundary components of N,/T,
and if the pre-chosen orientation on each c; coincides with the induced boundary
orientation, with respect to any orientation of N,/T, then the sign of Q. is +, and if

not, then its sign is —.

Remark 2.42. It is not possible in general to consistently orient all components of M”
in such a way that for all N; we find an orientation on N/T with the property that the
circles in N carry the induced boundary orientation. Consider, for example, S x CP?

with the standard T? product action that is trivial on the first factor.
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2.6. Geometric results in the presence of a lower curvature bound

We now recall some general results about G-manifolds with non-negative curvature
which we use throughout.
We recall the classification of closed, non-negatively curved, three-dimensional

T!-fixed point homogeneous manifolds due to Galaz-Garcia [11].

Theorem 2.43. [11] Let M® be a closed, non-negatively curved T'-fixed point homoge-
neous Riemannian manifold. Then M is diffeomorphic to one of S3 S?x S, §2xS!,
the non-trivial S>-bundle over S', RP? x S!, or RP3#RP3.

Moreover, an analysis of the isometric circle action yields the following.

! Lplq !

(1) If M2 has total Betti number equal to 2, the isometric circle action fixes one
circle; and
(2) If M2 has total Betti number equal to 4, the isometric circle action fixes two

circles.

Remark 2.44. We make the following two observations.

(1) By Proposition 2.7, it follows that non-negatively curved T'-fixed point
homogeneous 3-manifolds are equivariantly formal.

(2) The only orientable manifold on this list that is not a rational cohomology
sphere is S? x S'. Moreover, S? x S! is the only manifold on this list with total

Betti number equal to 4.

The following theorem by Spindeler, [35], gives a characterization of

non-negatively curved G-fixed point homogeneous manifolds.

Theorem 2.45. [35] Assume that G acts fixed point homogeneously on a closed,
non-negatively curved Riemannian manifold M. Let F be a fixed point component
of maximal dimension. Then there exists a smooth submanifold N of M, without
boundary, such that M is diffeomorphic to the normal disk bundles D(F) and D(N)

of F and N glued together along their common boundaries
M = D(F) U, D(IV).

Further, N is G-invariant and all points of M \ {F U N} belong to principal G-orbits.

Remark 2.46. In fact N is actually Isomg(M)-invariant, where Isomg(M) is the

subgroup of isometries of M leaving F invariant, by Lemma 3.30 in [35].
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Finally, we recall the following Splitting Theorem due to Cheeger and
Gromoll [6].

Theorem 2.47. [6] Let M be a compact manifold of non-negative Ricci curvature.
Then mr; (M) contains a finite normal subgroup ¥ such that =;(M)/ V¥ is a finite group
extended by ZF, and M, the universal covering of M, splits isometrically as M x R,

where M is compact.
3. Closed, Non-Negatively Curved 5-Dimensional GKM Manifolds

Observe that a closed (2n + 1)-dimensional, equivariantly formal manifold admit-
ting an effective, isometric T"-action is GKM. In this section we prove Theorem 3.1,
which classifies the universal covers of closed, non-negatively curved, 5-dimensional,
equivariantly formal manifolds admitting an effective, isometric T?-action and hence
the universal covers of closed, non-negatively curved, 5-dimensional GKM manifolds.
Theorem 3.1 will facilitate the proof of Theorem 4.3, where we classify the geometric
graphs of closed, non-negatively curved, 5-dimensional GKM manifolds.

We also note that as M” # ¢ by equivariant formality, some S! c T? fixes a
codimension 2 submanifold in M®, that is, the T?-action on M is S'-fixed point homoge-
neous. Recall that by Theorem 2.45 if M® admits an isometric T2-action that is S!-fixed

point homogeneous, then we may decompose M® as a union of disk bundles, that is,
M°® = D*(F®) Uz D(N), (3.1)

where F? is the codimension two fixed point set of some circle subgroup of T, E is
the common boundary of the disk bundles, and by Remark 2.46, N is a T?-invariant

submanifold. Moreover, F? is itself S!-fixed point homogeneous by Proposition 2.10.

Theorem 3.1. Let M® be a closed, non-negatively curved, equivariantly formal
5-dimensional manifold admitting an isometric T?-action. Then rk(H,(M°;Z)) < 1 and

we may classify the corresponding universal cover, M°, as follows.

(1) For rk(H,(M®%;Z)) = 0, M® is diffeomorphic to one of S°, S® x S?, or S3%S?,
the non-trivial S® bundle over S?:

(2) For rk(H,(M?®; Z)) = 1, M® is diffeomorphic to R x M*, where M* is one of S*,
CP?, 5% x S2, or CP?# 4 CP?.

Combining the homeomorphism classification due to Rong [32] and the diffeo-
morphism classification results of Smale [34] and Barden [2], we have the following

theorem for the positive curvature case.
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Theorem 3.2. [32] Let M® be a closed, simply-connected, positively curved
5-dimensional manifold admitting an isometric T?-action. Then M?® is diffeomorphic
to S°.

Since positively curved manifolds have finite fundamental group, the following
corollary is immediate, allowing us to classify the universal covers of positively curved

5-dimensional GKM manifolds as follows.

Corollary 3.3. Let M® be a closed, positively curved, equivariantly formal
5-dimensional manifold admitting an isometric T?-action. Then the universal cover of
M?® is diffeomorphic to S°.

In order to prove Theorem 3.1, we first need to prove Proposition 3.4 and

Lemmas 3.5 and 3.6, which follow.

Proposition 3.4. Let M® be a closed, orientable, equivariantly formal, non-negatively
curved 5-dimensional Riemannian manifold with an isometric T?>-action. Then the
following hold for b(M?®), the total Betti number of M°.
(1) 2 <bMd) < 8; and
(2) If 6 < b(M®) < 8, then in the decomposition of M® in Display 3.1, F® is
diffeomorphic to S? x S!.

Before we begin the proof, we need the following result concerning the dimen-
sion of the submanifold at maximal distance from the codimension two fixed point set

in M2n+1 .

Lemma 3.5. Suppose M?"t1 is an S'-fixed point homogeneous closed, orientable
manifold of non-negative curvature. Let F be a codimension two fixed point set
component of the S'-action and suppose N is the submanifold given in the disk bundle
decomposition of Theorem 2.45. Then if N NFix(M; S') # @, codim(N) is even.

Proof. Recall that by Theorem 2.45 all singularities of the S!-action are contained in F
and N, and N is S!'-invariant. Let N N Fix(M; S') # @. Then any connected component
A of Fix(M;S') that is not contained in F must be contained in N and is of even
codimension in M. Since N is S!-invariant, A is also of even codimension in N and the

result follows. |

We are now in a position to prove Proposition 3.4.
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Proof of Proposition 3.4. Recall that the hypothesis of equivariant formality guar-
antees that the T?-action on M is S!-fixed point homogeneous and the manifold
decomposes as in Display 3.1. Moreover, by Proposition 2.7 the total Betti number of
Fix(M?®; S1) equals that of M°. Suppose first that N does not contain any S!-fixed points,
that is, Fix(M®; S') = F3. Since F°® is itself non-negatively curved and S'-fixed point
homogeneous with respect to some other subcircle of T2, the proposition is proven, as
by Theorem 2.43, the total Betti number of F3 is either 2 or 4.

We now assume that there are S!-fixed points in N. This implies by Lemma 3.5
that NV is of dimension one or three only. If N is one-dimensional, it follows from the
classification of 1-manifolds that N = S!, and so, the total Betti number of M is either 4
or 6.

Assume then that IV is three-dimensional. If N° is fixed by some circle subgroup
of T?, it is an orientable, totally geodesic submanifold of M, and thus non-negatively
curved. Since the T?-action is effective and equivariantly formal, by Corollary 2.11, this
implies that N2 is S-fixed point homogeneous for some S! ¢ T? and so N2 is one of the
manifolds classified in Theorem 2.43. Therefore, the total Betti number of N3 is 2 or 4.
Then by Proposition 2.7, the total Betti number of the S!-fixed point set in N2 is also
bounded from above by 4. It follows that the total Betti number of M is bounded by 8,
and if F2 is a rational cohomology sphere, then it is bounded by 6.

Suppose then that N° is not fixed by any circle subgroup of T2. Then the
T?-action on N? is of cohomogeneity one, and since there are S'-fixed points, it follows
by the classification of T? cohomogeneity one 3-manifolds in Mostert [30], and Neumann
[31], that N3 must be one of S3, Lyq S2 x S1, RP? x S!, or S2xS!. Note that in all these
cases, the total Betti number of N3 is bounded between 2 and 4. Thus, it follows that
the total Betti number of M is bounded by 8, and, again, if F? is a rational cohomology
sphere, it is bounded by 6. This proves Part (1).

We now prove Part (2). We assume that 6 < b(M°) < 8 and that F3 is not
diffeomorphic to S? xS!, to derive a contradiction. Then by Theorem 2.43, F? is a rational
(co)homology sphere, and so b(F®) = 2. As we saw above, this means that b(M®) < 6 and
so b(M®) = 6. Since b(M®°) < b(F®)+b(N) this gives us that b(IV) = 4. So N must be S? x S'.
Since E is the total space of the circle bundle inside the disk bundle D?(F®) — F3, it
follows from the Gysin sequence (see Switzer [36]) that E has the same rational homology

as S! x S3. Consider now the Mayer-Vietoris sequence of the decomposition (3.1)

Hy(M°) — Q — 0 — H,(M°) — Q — Q? — Hy(MP)

—0— Q — H,(M°) — Q — Q — H,(M°) — 0.
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Poincaré duality and the fact that b(M°) = 6 gives us that b, = by and hence
b, = b, = 2 — b,. Exactness at H,(M°) implies that b, = by € {1,2}. However, it is

clear that exactness is violated for b, = by =1 or b, = by = 2. |

With this information, we now obtain the following lemma.

Lemma 3.6. Let M° be a closed, orientable, equivariantly formal, non-negatively

curved 5-dimensional Riemannian manifold with an isometric T?-action. Then

rk(H, (M°)) < 1.

Proof. We assume that rk(H, (M®)) = k > 2, in order to derive a contradiction. This
assumption implies that the total Betti number of M® must be greater than or equal to
6. Recall again that M® decomposes as in Display 3.1, with F? the codimension two fixed
point set of S!. Therefore, F® = S? x S! by Proposition 3.4, and so b(F®) = 4. Further,
since all singularities of the S!-action are contained in F and N, and b(M7T) = b(M®) > 6,
by Proposition 2.7, then MT NN # ¢. Then Lemma 3.5 gives us that N is of dimension 1
or 3. In fact, we will show that dim(V) = 3.

Recall that E is a sphere bundle over both F and N. Since M is orientable, it
follows from the disk bundle decomposition of M that E is also orientable. We first
assume dim(lV) = 1, to derive a contradiction. Then E is an orientable S® bundle over S,
that is, E = S3 x S!, and so H;(E) = Q. However, it follows from the homology Mayer—
Vietoris sequence that H, (M) = Qk > H4(E), k > 2, giving us the desired contradiction.

Hence dim(V) = 3. Since MT N N # §, the T?-action on N is S!-ineffective for
some S! C T?, and N is S'-fixed point homogeneous for some other S! c T?. So N is
orientable and non-negatively curved. By Theorem 2.43, N is one of S%, Ly g S2 x St or
RP3#RP3. However, if N is one of S3, Ly 4 OT RP3#RP3, then by the Gysin sequence with
rational coefficients, H; (E) = Q. Poincaré duality then gives us that H;(E) = Q, which is
a contradiction, as in the case of dim(V) = 1.

Thus both F and N are diffeomorphic to S? x S!. So E is a principal S!
bundle over S? x S! and from the homology Mayer-Vietoris sequence of M, we have
H4(M5) = QF — Hy(E),k > 2. Using the Gysin sequence with rational coefficients
corresponding to the fibration S! < E — 52 x S!, we see that H; (E) = Q or Q2. Poincaré
duality then implies that k = 2, so b; = b, = 2. Since by = by = 1, it then follows from the
homology Mayer-Vietoris sequence of M° that b, = b; > 2, which implies b(M°) > 10.
But Proposition 3.4 guarantees that the total Betti number is bounded above by 8,

a contradiction. ]
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Proof of Theorem 3.1. By Lemma 3.6, rk(H, (M®)) < 1 and by Theorem 2.47, M® is either
a closed, simply-connected, non-negatively curved manifold, or it splits isometrically
as R! x M*, where M* is a closed, simply-connected, non-negatively curved 4-manifold.
The proof of Part (1) then follows directly from the work of Galaz-Garcia and Spindeler
[15] (cf. [7]). The proof of Part (2) follows by noting that since the T?-action on M® has
non-empty fixed point set, we may apply Theorem 2.1 to lift the T2-action to M®. By
Theorem 1 of Hano [25], the isometry group of R! x M* splits as the product of the
isometry groups of R! and of M*. Since T? is a compact Lie group, this implies that
the T?-action on the R! factor is trivial and fixes isolated points in M*. In particular,
M* is then a non-negatively curved torus manifold. The classification of 4-dimensional,
non-negatively curved torus manifolds up to diffeomorphism follows from the work of
Kleiner [27], Searle and Yang [33], and Galaz-Garcia [11]. | |

4. The Classification of Graphs Corresponding to Closed, Non-Negatively Curved
5-Dimensional Odd GKM Manifolds

Our goal in this section is to classify the graphs corresponding to closed, non-negatively
curved 5-dimensional odd GKM manifolds. We first prove that the lower curvature

bound imposes severe restrictions on odd GKM graphs.

Proposition 4.1. Let M?"*! be a non-negatively curved odd GKM manifold. Then each
square in the graph, Ty, has valence one or two.

Proof. The GKM condition in combination with the assumption of non-negative
curvature guarantees us that the squares correspond to three-dimensional components
of fixed point sets of codimension one subtori, which themselves are T'-fixed point
homogeneous, non-negatively curved, three-dimensional manifolds. The result then

follows directly from Theorem 2.43. ]

The corresponding result in positive curvature follows directly from the classi-

fication of positively curved 3-manifolds due to Hamilton [24].

Proposition 4.2. Let M?"*! be a positively curved odd GKM manifold, then each

square in the graph, Ty, has valence one.

In the following theorem, we obtain a classification of the graphs of closed,

non-negatively curved, 5-dimensional odd GKM manifolds.

Theorem 4.3. Let M® be a non-negatively curved, 5-dimensional odd GKM manifold.
Then its graph, Ty, is one of the following possibilities, enumerated according to the
total Betti number of MP°.
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(1) For total Betti number equal to 2, we obtain a circle with two edges

terminating in squares

(2) For total Betti number equal to 4, we have the following two possibilities

and

(3) For total Betti number equal to 6, we obtain a closed circuit in the form of

a triangle

(4) For total Betti number equal to 8, we obtain a closed circuit in the form of

a quadrangle
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Proof. By Proposition 2.39, we have that the graph is connected, each circle is 2-valent,
and the number of fixed circles equals half the total Betti number.

We showed in Proposition 3.4 that the total Betti number for such 5-manifolds is
bounded between 2 and 8. In the case where it is 2, M® is a rational cohomology sphere,
the T-fixed point set is a single circle, and the graph is necessarily of the described
form. If the total Betti number is 4, the connectedness of the graph implies directly that
it is of one of the two given shapes.

For the case of total Betti number 6 or 8, Proposition 3.4 tells us that any F?® is
diffeomorphic to S x S! in the decomposition of M® in Display 3.1, which has total Betti
number 4. This in turn implies by Proposition 2.43 that every square in the graph has

valence 2. The connectedness of the graph then directly implies the claim. |

Example 4.4. The standard examples for Theorem 4.3 are the T?-actions on S°, S? x S2,
S* x S, CP? x S', and S? x S? x S!, respectively.

Note that for positive curvature, using Proposition 4.2, it follows that only the

first graph in Theorem 4.3 occurs and we immediately obtain the following theorem.

Theorem 4.5. The unique graph, Ty, corresponding to the positively curved

5-dimensional GKM manifolds is a circle with two edges terminating in squares

5. Proof of the Main Theorem 1.1

In this section we prove the Main Theorem 1.1, which we then use in Subsection 5.3 to

prove Theorems 1.2, 1.3, and 1.5.

5.1. Proof of the Main Theorem 1.1

Let M?"*t! be a closed, non-negatively curved odd GKMj; manifold. As shown in
Proposition 4.1, any square in the graph, I';,, has valence one or two.

We now show how to construct an abstract (even-dimensional) GKM, graph,
(T', a), from a geometric odd GKM; graph, (f‘M, oy, for which the squares in 1_“M are only
of valence one or two. We define (T, @) to be the graph obtained from the geometric odd
GKM, graph (T'y;, &), by

(1) replacing each circle by a vertex;
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(2) replacing each 2-valent square, s, in 2 grounded edges by a single edge, e;
(3) labeling the edge e obtained from s by the weight of the square, ay,(s), that
is, defining a(e) := &,,(s) to be the axial function; and

(4) deleting all floating edges, together with their squares.

In order to facilitate discussion of the new graph, I', we denote the application,

T f‘M — T, of the first three of these changes to f‘M, respectively, as follows:

(1) n(c) = v, where ¢ € V,(I'y,) and v is its image in T;
(2) 7(s) = e, for s € V2, where s is the square connected to ¢; and c,, and e is its
image in I, with i(e) = 7w (c;) and t(e) = n(c,).

(3)  a(m(s)) := ay(s), for s € V2.

Before we show that (I', «) is an abstract GKM; graph, we illustrate the process

of obtaining these graphs in the following examples.

Example 5.1. Applying this construction to the odd-dimensional graphs in Theorem

4.3, we see that we obtain the following graphs.

(1) Theimage of the graph in Part (1) is a vertex:

(2) Theimages of the graphs in Part (2) are an interval and a lune, respectively:
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(3) Theimage of the graph in Part (3) is a triangle:

(4) Theimage of the graph in Part (4) is a quadrangle:

® i @
[ | ] —_—
[ i L J

Lemma 5.2. Let (I'y, &) be the odd GKM, graph corresponding to the closed,
non-negatively curved GKM; manifold, M?"*!. Let (I',a) be the graph obtained from
(fM,&M). Then (I',«) admits a connection, V, such that (I',«, V) is an abstract GKM,

graph.

Proof. Our goal is to show that I' is an abstract GKM; graph. Recall that by
Definition 2.16, an abstract GKM; graph consists of a triple (I',«, V) such that T’
satisfies Properties 1 and 2 of Definition 2.16, the axial function « satisfies Property 4
of Definition 2.16, and that a connection, V, exists and satisfies Property 3 of
Definition 2.16.

We begin by showing that I' satisfies Properties 1 and 2 of Definition 2.16. To
prove Property 1, we first claim that the graph I' obtained from T, is m-valent, for
some m < n. By Proposition 2.39, the odd-dimensional graph I';, is connected. So,
to prove this claim it suffices to show that given any two circles, ¢;,c, € Vo(l_“M),
joined by a square, sy, the number of floating edges emanating from c; and c, is

the same. Let e,f € E (Typ), such that e contains the square sy, and f is a floating
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edge with square s. Observe that because of the GKM; condition, e and f uniquely
determine a two-dimensional face of l_“M. Moreover, due to the linear dependence
condition on the connection, it follows that (@M)Cl,czls()(s) is a square belonging to
the same two-dimensional face as s. Now, Theorem 4.3 tells us that for odd GKMj,
graphs corresponding to odd GKM4 manifolds of non-negative curvature, there is only
one graph of a two-dimensional face that has a floating edge. So, this graph has two
floating edges, two circle vertices, and one grounded edge. This then implies that the
connection sends a 1-valent square to a 1-valent square. Since the graphs of all the other
two-dimensional faces have no floating edges, it follows that the connection sends a
2-valent square to a 2-valent square. We may conclude that at every circle in T';; there
are exactly the same number of floating edges, and thus all vertices in the graph I have
the same valency, and Property 1 holds. Note that the weights of the graph I' are still
3-independent, and so Property 2 holds.

By the definition of the axial function «(e) := ay,(s), where 7 (s) = e, we see that
Property 4 of Definition 2.16 also holds.

We now need to show that we have a connection on I" that satisfies Property 3.
In order to do so, we observe that we still have a notion of two-dimensional faces
in T'. Namely, given two edges e,f attached to some vertex v in I', there is a unique
two-dimensional face in the odd-dimensional graph, T;;, containing the edges corre-
sponding to e and f. Moreover, this two-dimensional face in I';; has no floating edges,
since the graphs with floating edges in Theorem 4.3 do not survive to graphs with a
two-dimensional face, as can be seen in Example 5.1. We claim that this gives a well-
defined connection on I', by sliding edges along edges inside these two-dimensional
faces in the usual fashion. In fact, we may directly translate the conditions in Definition

2.34 satisfied by the connection on I';;, by making the following substitutions:

(§M)CIIC2ISO (S) = Ve(f)r

where e = 7(sy), and f = 7 (s). With this definition, it is straightforward to verify that
the connection satisfies both Definition 2.15 and Property 3 of Definition 2.16. |

Remark 5.3. Lemma 5.2 tells us that the number of floating edges in T, is

independent of the vertex. This fact is reflected in the statement of Theorem 5.4.

We now show how to express the equivariant cohomology of the geometric odd

GKM, graph (T, &y,) in terms of the equivariant cohomology of the abstract graph (I, )
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obtained from (f‘M, &;,)- Recall that for an n-valent, abstract GKM graph (I', , V), we say
it is orientable if H*™(I', o) # 0.

In particular, for odd GKM; graphs, we prove the following result.

Theorem 5.4. Let M?"*! be a closed, non-negatively curved odd GKM; manifold and
(T, @yy) its graph. Let k be the number of floating edges at a vertex in Ty, let (T, «) be

the graph obtained from (T'y;, &,,), and assume that (I', «) is orientable. Then we have
H:(M) = Hi(T, o) @ H*(S?F1)

as S(t&)—algebms, where the S(t?@)—algebm structure on H;(I', a) @ H* (S2k+1y i the tensor
product of the standard S(t@)-algebm structure on Hy(I',a) and the trivial one on

H*(S%kt1). Therefore, we obtain
H*(M) = H* (', o) ® H*(S?F+1).

Proof of Theorem 5.4. By Proposition 4.1, any square in the odd GKM graph of M has
valence one or two. We denote by V! and V2 the sets of squares with valence one and
two, respectively. For a square s € V! we denote the unique circle connected to s by c(s),
whereas for s € V[% we denote the two circles by c, (s) and c,(s), with any ordering.

Then Displays (2.1) and (2.2) reduce to the following divisibility relations for P,
and Q:

P

C

() = Peys) mod «(s), and Q +Q, ) mod a(s) for s € Vé, and (5.1)

ci(s) =

Q 0 mod «(s) fors € Vé. (5.2)

cs) =

Then the equivariant cohomology of M is given by
Hy(M) = (P, + Q0) ey, |P, Q. satisfy Relations 5.1 and 5.2}.

By comparing the divisibility relations in Displays (5.1) and (5.2) for Hj; (M)
and the description of the equivariant cohomology in terms of the GKM graph in even
dimensions in Display (2.1), we see that the divisibility relations imposed by grounded

edges in the odd-dimensional GKM graph T, are precisely those imposed by the edges
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in I'. As a consequence, we see that we obtain an isomorphism
¥ H""(M) — H;7(T,a, V). (5.3)

Moreover, we also see by Proposition 2.8 and Definition 2.24 that H¢V*"*(M) = H*(I", «, V).

For the cohomology in odd dimensions, note that the Q, have to be divisible by
all k weights of the floating edges at ¢, so deg(Q,) > k. Thus H%ZH(F,a) =0forl < k.
On the other hand, as I' is an orientable (n — k)-valent graph, we have that H2™0 (1) =
H2=k(I" &) # 0. Poincaré duality now implies that HZ¥*1 (M) # 0. By Proposition 2.8,
H}(M) — H*(M) is onto, and it follows that H%k“(M) # 0. So there exists a nonzero
element w € H%kﬂ M).

Our goal is now to show that we may multiply elements of the even-dimensional
cohomology by @ to obtain an S(t(’@)-module isomorphism from HZ"*"(M) to H;de(M).
Using the divisibility relations in Display (5.2), we may express any nontrivial element

w in HZ* (M) as
© = (@) cey, € HF " (),
where
we = @ a(s1(0) - a(sy(0)) - ... - alsg(c), (5.4)

a. € Q depends only on the circle ¢, and s;(c), ..., si(c) are the squares in the k floating
edges connected to c. The w, must also satisfy the first set of divisibility relations in
Display (5.1), and since w € H%k“(M), this is equivalent to requiring wg, ) = Fwg, (s
mod «f(s), for s € V2.

We now want to show that a, # 0 for all ¢ € V,. We will argue by contradiction.
Assume that a, = 0 for some ¢'. Since w is non-trivial, there is a ¢’ # ¢’ such that
a.» # 0. The connectivity of the graph implies that there must be some s € V2, such
that a; ) =0, but a,, 5, # 0. Then 0 = w,, (5, by Equation (5.4). But then the divisibility
relation in (5.1) gives us that wg, 5 = o, = 0 mod a(s), and Equation (5.4) tells us
that «(s) is then a scalar multiple of one of the «(s;), 1 < i < k. However, Part 2 of the
definition of a GKM-manifold tells us «(s) and «a(s;) are pairwise linearly independent
for 1 <i <k, a contradiction.

We now claim that a, # 0 for all ¢ € V, implies that dim(HTZ,k+1 (M)) = 1. Suppose
instead that we have two linearly independent elements u, w € H%kH(M), where u, and
w, are as in Equation (5.4). Then for some c, let n, = yw, — p,, with y = af /a?. But then
for this same c, n, = 0, contradicting the fact that for any element of H%kH(M), a, #0
forallce V,.
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It now follows that multiplication with «» defines an S(t@)—module injection

HEY*™ (M) — H%(M), that is,

¢ HE""(M) — H2 (1)
(5.5)
Vi— Vo,

with w € H%kH(M). We claim that ¢ is an isomorphism. To do so, we must show that ¢
is onto. Let Q = (Q.0) ey, € Hgdd(M). For each ¢ € V,, the polynomial Q,, is divisible by
any a(s) with ¢(s) = ¢ for s € V}, and so we can write Q = (Q.0) = (P,0 ) = P - w, for
some P = (P;). Then to show that ¢ is onto, we have to show that (P,)..y,, € H7""(M).
That is, we must verify that the P, satisfy the divisibility relation (5.1) for all c € V,,. Let
s’ € V2 be arbitrary. Then «(s') divides both Q, (s £ Q,,(s) and o, ) + ©

Y where +

ci(s Ccao(s'

is taken to be the same sign in both expressions. Then we compute

Qe s £ Qeyis) = Py (9)@cy (s) £ Pey(s)Pesis)
= (Pey(s) = Pey(s)) @ey(s) T Peyis) @y (s) £ @y(s))

and the divisibility assumptions imply that «(s") divides (P;, ) — Pg,(s)) @¢,(s)- BY the
same argument used to show that a, # 0 for all ¢ € V,,, a(s’) does not divide w,, ), since
s’ € V2. So a(s) has to divide P, P

ci(sh) T T eas)r
(5.1). So, we have shown that (P,)..y, € H7"*"(M). Hence, ¢ is onto and multiplication by

which is precisely the divisibility relation

w defines an S(t(a)—module isomorphism.
We can now prove that Hi(M) = Hi(,«) ® H*(S?**!), by extending the
isomorphism in Display (5.3) via the isomorphism in Display (5.5) to an S(tf))-algebra

isomorphism
W HAT, ) @ H* (S — HiM)
Yy ®id+ B ® ugwer —> Y (y) + ¢ (B) =¥ () + v (Bo,

where y, 8 € H;(I', ), and pgek+1 is the volume form of S2k+1
The second statement of the theorem then follows immediately from Proposition
2.8 and Definition 2.24 because the S(tTQ)—module structure on H*(I', o) @ H*(S2k+1) only

exists on the first factor. [ |

Theorem 1.1 is now a direct consequence of Theorem 5.4.
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5.2. Orientability of the associated graph I'

Without the assumption of orientability of the associated graph, the conclusion of the
Main Theorem 5.4 does not hold. We include an example here. Let (S™(1),g) denote the

sphere of radius one with the standard metric. Consider
M® = 5%(1) x S?(1) x S2(1) x S3(1)

with the product metric and with a T*-action given as a product of four T'-actions,
where the action on each S? is by rotation, and on S® c C? is fixed point homogeneous,

namely,
0 i0
(€7, (21,2y)) = (e¥zy,2,).
Then consider the Z,-action on M, given by the antipodal map on each S? and on S® by
(lezz) = (Zl,éz).

As the Z,-action on M commutes with the T*-action and is free, orientation-

preserving, and by isometries, the quotient
N°® = M/(Zy)

is a non-negatively curved, closed, orientable manifold with the induced T*_action.
Using the transfer isomorphism (see, e.g., Theorem III.2.4 in [3]), we obtain
H*(N) = H*(M)?2, and we compute the Betti numbers of N to be

1 i=0,9
b(N)=13 i=4,5

0 otherwise.

Both M and N are orientable; however, the associated GKM graph of N is the
quotient of a 4-dimensional cube, I4/Z2, which is not orientable.

We claim that the T*-action on N is odd GKM,, and hence odd GKMj. First,
the fixed point set of the T*-action on N consists of exactly 4 circles. Second, the
condition on the weights is satisfied, since the action of T* on M is odd GKM,,
and the condition on the weights of the isotropy representations at the fixed
points of N is inherited from M. Third, we can use Proposition 2.7 to see that the
T*-action is equivariantly formal: as computed above, the sum of the Betti numbers

of N is equal to 8, as is the sum of the Betti numbers of NT*, So, the claim
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holds. However, the cohomology ring of N does not split off the cohomology of an

odd-dimensional sphere, and so if we remove the hypothesis on the orientability of the

associated graph I', we see that the conclusion of Theorem 1.1 does not hold for N.
Note that in this example N is not simply-connected, and so we pose the

following question:

Question 5.5. If N is a closed, simply-connected, odd GKM,; manifold, is the

associated graph T orientable?

5.3. Applications of Theorem 5.4

We consider some special subcases of Theorem 5.4. Firstly, if the metric on the GKM;,
manifold is positively curved, then by Theorem 3.2, every two-dimensional face of the
GKM graph has only one circle. This implies that the GKM graph, T, is the pinwheel
depicted in Example 2.38, and so I' is a single vertex. In particular, a single vertex graph
is orientable. Theorem 1.5 is then immediate.

As indicated in the Introduction, the proof of Theorem 1.2 follows from the proof
of Theorem 2.26.

Theorem 1.3 follows in the same way using Theorem 2.27. In order to
apply Theorem 2.27, we need to verify that I, the GKM, graph obtained from the
odd-dimensional GKM graph of M, T, is a graph with small three-dimensional faces
(see Definition 3.5 in [18]). As noted in [18], a GKM, graph that has two-dimensional
faces with at most 4 vertices must have small three-dimensional faces. Since M has
non-negative curvature, Theorem 4.3 tells us that the two-dimensional faces of f‘M have
at most 4 circle vertices, and hence the two-dimensional faces of I' have at most 4

vertices. The result follows.

6. Invariant Almost Contact Structures
The goal of this section is to prove Theorem 1.4 of the Introduction. We begin by

recalling the definition of an almost contact structure.

Definition 6.1 (Almost contact structure). An almost contact structure (¢,&,n) on a
(2n+1)-manifold M consists of a (1, 1)-tensor field ¢, a vector field &, and a differential

one-form n such that

1) =1 and ¢*(X) = —X + n(X)E,
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for any vector field X on M. Note that the vector field &, which is called the Reeb vector
field, is uniquely determined by ¢ and n, namely at a point p it is the unique vector &,
such that ¢,(£,) = 0 and 1,(&,) = 1.

Given an almost contact structure (¢,&,n) on MZ"+1, if N2k+1 < p2ntl jg g
submanifold such that & is tangent to N, and ¢ restricts to a well-defined tensor field
on N, then (¢, &, n) restricts to an almost contact structure on N. In this case we call N
an almost contact submanifold.

The following lemma may be well-known, but could not be located by the authors

elsewhere in the literature. For completeness, a proof is presented here.

Lemma 6.2. Let (¢,&,n) be an almost contact structure on a manifold M, invariant
under the action of a compact Lie group G. Then every connected component of the

fixed point set M€ of the action is an almost contact submanifold.

Proof. Let N be a connected component of MES, and recall that N is an embedded
submanifold of M by work the of Kobayashi [28]. Then for every point p € NV, the tangent
space of N is given by

_ G
T,N = (T,M)°,

the set of vectors fixed by the isotropy representation of G at p. The G-invariance of ¢
and the fact that p is fixed by G then implies that ¢ maps T,N to itself. For the same
reasons, it follows that & is tangent to N. Thus, the connected components of MF6 are

almost contact submanifolds. [ |

Combining Lemma 6.2 and the fact that the almost contact structure gives us a

T-invariant almost complex structure on kern,, we obtain the following proposition.

Proposition 6.3. Let M?"*! be an odd GKM manifold with a T-invariant almost

contact structure (¢,&,n). Then the following are true.

(1) Every component of the fixed point set of T is an isolated, closed flow line
of &.
(2) At any fixed point p of the torus action, the weights of the isotropy

representation at p are well-defined elements of tj@.
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Proof. By the definition of an odd GKM action, every component of the fixed point set
of T is an isolated circle. Lemma 6.2 then gives us that the restriction of (¢, &, n) to any of
these isolated circles is an almost contact submanifold, and the first statement follows.

To prove the second statement, we note that ¢ defines a T-invariant almost
complex structure on kern,. Since the almost contact structure is T-invariant, we have
Utp(dtp(V)) =1, (V) forallv e T,M and t € T. So at a fixed point p, ker(r;p) is T-invariant.
This fact combined with the fact that for each point the tangent space to ker(s,) has a
complex structure, gives us a complex T-representation at p, and the second statement
follows. |

By Proposition 6.3, in the presence of a T-invariant almost contact structure on
M, we have that the weights are well-defined elements of ;. This then allows us to
slightly modify the odd GKM graph, I'y,, of the T-action on M, which we call a signed
odd GKM graph, as follows. We consider the same underlying graph, I';;, but now we
assign weights to edges, not to squares, that is, to each edge connecting a circle c to a
square s, we assign the corresponding weight of the isotropy representation at the circle
¢, which is an element in ;. Regarded modulo £1, this weight is the same as the weight
assigned to the square s in the original odd-dimensional graph, I'y,. If, in addition, the
signed weights on the edges emanating from a square sum to O, we call such a graph

alternating. This leads us to make the following definition.

Definition 6.4. If the signed odd GKM graph induced from the invariant almost
contact structure on the odd GKM manifold is alternating, then we say that the almost

contact structure is alternating.

The connection of a signed odd GKM graph is modified as follows (cf.
Definition 2.34). Formally, if we denote the set of edges emanating from a circle c
by E(c), then the axial function &, is a collection of maps E(c) — t(*@, for all c. The

connection can be regarded as a collection of maps (@M)Cly : E(c;) — E(cy), where

c2,50
€y, Cy € Vo(sy), and it satisfies that for every edge e € E(c;) there exists a constant c € Z

such that

O_5M((§M)Cl,(;2,50(@)) = ay(e) + cay,(eg),

where e is an edge connecting c; or ¢, with s,.

Remark 6.5. If M?" is a closed, non-negatively curved GKM, manifold admitting
an invariant almost complex structure, then the associated classical GKM graph is a
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signed GKM graph (see Remark 2.18). At the beginning of Subsection 5.1 we showed how
one may obtain an abstract GKM graph from an odd GKM graph whose squares have
valence less than or equal to two. It follows immediately that we can obtain classical

signed GKM graphs from alternating odd GKM graphs.

We now restate a result from the proof of Lemma 5.6 in [17], noting that this

result is independent of curvature.

Lemma 6.6. [17] Let T be an abstract, signed GKM4 graph. Then I admits no biangles.

Recall that we denote by ¥k the orbit space of the linear, effective action of the
k-dimensional torus on $?¢. The following corollary to Lemma 6.6 is immediate (cf. the

proof of Lemma 7.1 in [18]).

Corollary 6.7. LetI' be an abstract, signed GKM; graph. Then there are no maximal

simplices in I" with the combinatorial type of =¥.

Before we prove Theorem 1.4, we first recall the definition of a generalized Bott

manifold.

Definition 6.8 (Generalized Bott manifold). We say that a manifold X is a generalized
Bott manifold if it is the total space of an iterated CP"-bundle

X=X —-X_,— - — X = X,={pt},

where each X; is the total space of the projectivization of a Whitney sum of n; + 1

complex line bundles over X;_,.

Remark 6.9. Torus manifolds over [| A™, where A™ denotes the standard simplex
of dimension n;, admitting an invariant almost complex structure were classified in

Choi, Masuda, and Suh [4]. They are all diffeomorphic to generalized Bott manifolds.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let M?"*! be a closed, non-negatively curved, odd GKM,
manifold, which admits an invariant almost contact structure that is alternating. By
assumption, Iy, is alternating, and so the abstract GKM graph obtained from it is

signed. By Corollary 6.7, a signed, abstract GKM, graph has no maximal simplices with
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the combinatorial type of ©*. Since GKM, manifolds are also GKMj, it follows that T’
contains no maximal simplices with the combinatorial type of =*.

We can now argue as in Section 7 of [18] to obtain the result. We briefly
outline the proof here for the sake of completeness. As noted at the end of Section 5.3,
non-negative curvature and the GKM, condition guarantee that I" will have small three-
dimensional faces. So we may apply Theorem 3.11 of [18] to show that I' is finitely
covered by a graph, T, which is the vertex-edge graph of a finite product of simplices.
One then shows that the quasitoric manifold corresponding to the graph I' admits an
invariant complex structure in Theorem 7.1 of [18]. Applying Theorem 6.4 of [4] then
shows us that I" is the GKM graph of a generalized Bott manifold. Finally, we use
Theorem 7.5 of [18], to show that ' = I'. Thus, we may apply the GKM theorem to
conclude that the rational cohomology ring of M is the tensor product of the rational
cohomology ring of an odd-dimensional sphere and the rational cohomology ring of a

generalized Bott manifold, as desired. ]

It seems very likely that the graphs corresponding to non-negatively curved,
odd GKM; manifolds admitting an invariant almost contact structure are alternating.

We finish with the following conjecture.

Conjecture 6.10. Let M?™"*! be a closed, non-negatively curved odd-dimensional
GKM4 manifold admitting an invariant almost contact structure. Then the odd GKM4

graph corresponding to M?"*! is alternating.
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