

1 **Unexpectedly Efficient Aging of Organic Aerosols Mediated by Autoxidation**

2

3 Wen Zhang¹, Zixu Zhao^{1,a}, Chuanyang Shen¹, Haofei Zhang^{1*}

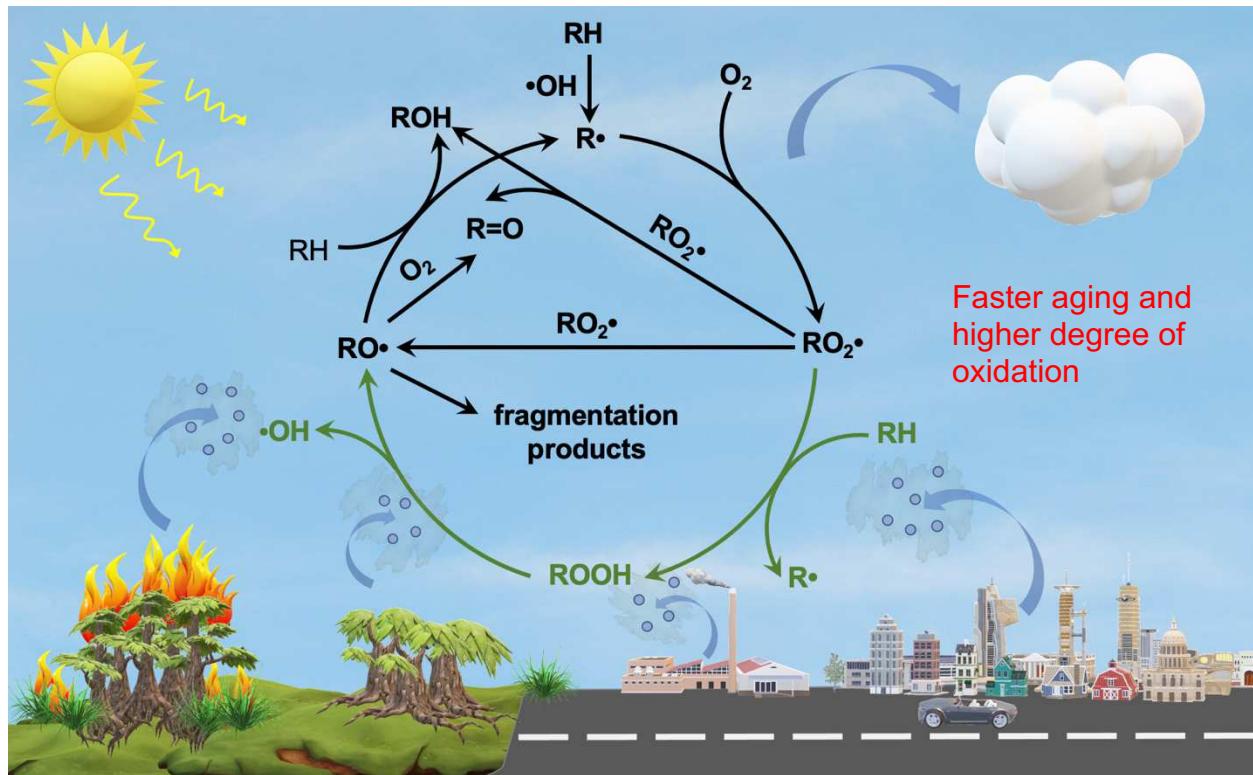
4 ¹Department of Chemistry, University of California, Riverside, California 92507, USA

5 ^aPresent address: Department of Environmental Sciences, Policy, and Management, University of
6 California, Berkeley, California 94720, USA

7 *Corresponding Author. Email: haofei.zhang@ucr.edu

8 **Abstract**

9 Multiphase oxidative aging is a ubiquitous process for atmospheric organic aerosols (OA).
10 But its kinetics was often found to be slow in previous laboratory flow tube studies where high
11 hydroxyl radical concentrations ($[{}^{\bullet}\text{OH}]$) were used. In this study, we performed heterogeneous
12 oxidation experiments of several model OA systems under varied aging timescales and gas-phase
13 $[{}^{\bullet}\text{OH}]$. Our results suggest that OA heterogeneous oxidation may be 2–3 orders of magnitude faster
14 when $[{}^{\bullet}\text{OH}]$ is decreased from typical laboratory flow tube conditions to atmospheric levels. Direct
15 laboratory mass spectrometry measurements coupled with kinetic simulations suggest that an
16 intermolecular autoxidation mechanism mediated by particle-phase peroxy radicals greatly
17 accelerates OA oxidation, with enhanced formation of organic hydroperoxides, alcohols, and
18 fragmentation products. With autoxidation, we estimate that the OA oxidation timescale in the
19 atmosphere may be from less than a day to several days. Thus, OA oxidative aging can have greater
20 atmospheric impacts than previously expected. Furthermore, our findings reveal the nature of
21 heterogeneous aerosol oxidation chemistry in the atmosphere and help improve the understanding
22 and prediction of atmospheric OA aging and composition evolution.


23

24 **Keywords:** Heterogeneous oxidation, Hydroxyl radicals, Peroxy radicals, Chain propagation,
25 Organic hydroperoxides.

26

27 **Synopsis:** Condensed-phase intermolecular autoxidation largely accelerates organic aerosol aging
28 under atmospheric oxidant concentrations and impacts aerosol compositions.

29 TOC:

30

31 **Introduction**

32 Organic aerosols (OA) are ubiquitously present in the Earth's atmosphere and greatly
33 contribute to fine particulate matter.^{1, 2} The chemical composition and properties of atmospheric
34 OA can significantly impact air quality, climate, and human health.^{3, 4} Despite the immense
35 ubiquity of OA and the oxidizing nature of the atmosphere, the OA reactivity through
36 heterogeneous oxidation by gaseous oxidants such as hydroxyl radicals ($\cdot\text{OH}$) has often been
37 considered a slow process,⁵⁻¹² in comparison to the timescales of other important atmospheric
38 processes and the overall aerosol lifetime.

39 The universal metric to quantify the heterogeneous oxidation kinetics is the effective
40 reactive uptake coefficient of $\cdot\text{OH}$ (γ_{eff}), which describes the probability of $\cdot\text{OH}$ -particle collision
41 leading to oxidation events:⁷

42
$$\gamma_{\text{eff}} = \frac{4k\rho N_A V}{\bar{c}MA} \quad (1)$$

43 where k is the second-order degradation rate constant of an OA surrogate, ρ is the particle density,
44 N_A is Avogadro's number, \bar{c} is the mean thermal velocity of $\cdot\text{OH}$, M is the molecular weight of
45 the OA surrogate, V is the particle volume, and A is the particle surface area. Previous studies
46 have often reported γ_{eff} in the range of 0.01–1.0,^{5, 8-11, 13, 14} with the smaller γ_{eff} values often
47 observed for more viscous OA due to that oxidation is confined at the particle surface region which
48 the inside materials cannot efficiently diffuse to. The kinetic information expressed in γ_{eff} could
49 also allow for estimation of the OA oxidation timescales by:¹⁵

50
$$\tau_{\text{ox}} = \frac{1}{k[\cdot\text{OH}]} = \frac{2d_p\rho N_A}{3\gamma_{\text{eff}}\bar{c}M[\cdot\text{OH}]} \quad (2)$$

51 where d_p is the particle diameter. Thus, the γ_{eff} value of 0.01–1.0 translates to oxidation timescales
52 up to several years. These significantly longer timescales than the typical aerosol lifetime in the

53 atmosphere (~ 10 days¹⁶) suggests that heterogenous oxidation of OA in the atmosphere is less
54 important in affecting air quality and the climate compared to some of the commonly focused
55 processes such as secondary OA formation which usually has a timescale of only a few hours to a
56 day. Further, OA mass loss during heterogeneous oxidation within relevant timescale was found
57 to be minimal, suggesting that it is not an efficient aerosol removal process.⁸ However, these long-
58 standing views were derived from previous laboratory studies using $\cdot\text{OH}$ concentrations 3–5 orders
59 of magnitude higher than atmospheric concentrations (i.e., $[\cdot\text{OH}] \sim 10^9\text{--}10^{11}$ molecules cm^{-3}) to
60 offset the short oxidation time ($\tau \sim 1$ min or less) in flow tube reactors (FTR),^{6, 7, 9-11, 13, 17} such that
61 one can interpret OA oxidation under relevant atmospheric conditions, termed as “ $\cdot\text{OH}$ exposure”
62 ($= [\cdot\text{OH}] \times \tau$).

63 Several prior studies have attempted to investigate the heterogeneous oxidation kinetics
64 under lower $[\cdot\text{OH}]$ using FTR,^{15, 18} continuous flow stirred tank reactors (CFSTR),¹⁹ or
65 environmental chambers.²⁰ A summary of the scarce kinetic measurements from these studies
66 (**Figure S1**) implies that lower $[\cdot\text{OH}]$ could enhance γ_{eff} to varied extent (greater enhancement for
67 oxidized OA), but large uncertainties from distinct experimental conditions impede accurate
68 interpretations. In most of these studies, such $[\cdot\text{OH}]$ -dependent γ_{eff} was suggested to be caused by
69 physical processes, including: (1) slower $\cdot\text{OH}$ reaction than the $\cdot\text{OH}$ adsorption at the gas-particle
70 interface (i.e., the Langmuir-Hinshelwood mechanism),¹⁵ (2) the diffusion limitation of organic
71 molecules to the interface for $\cdot\text{OH}$ reaction,²⁰ or (3) O_3 (an $\cdot\text{OH}$ precursor) shielding the particle
72 interface.¹⁸ In contrast, Richards-Henderson et al. examined the chemical role of nitric oxide in
73 increasing γ_{eff} via a chain propagation mechanism.¹⁹ However, this mechanism is only relevant for
74 highly polluted environment. It remains unclear whether $[\cdot\text{OH}]$ -dependent γ_{eff} may be explained
75 by a generalized chemical mechanism relevant for typical atmospheric conditions.

76

77 Here, we probe the •OH-initiated heterogeneous oxidation of a few common OA model
78 systems in a custom-designed CFSTR.^{19, 21-23} Experiments were conducted under a large range of
79 [•OH] (5×10^6 – 1×10^9 molecules cm⁻³) to bring the OA aging conditions from typical laboratory
80 [•OH] closer to ambient levels. The chosen OA surrogates (adipic acid, succinic acid, citric acid,
81 and 3-methylglutaric acid) are highly oxidized compounds (O/C ratio ~ 0.7–1.2) containing
82 multiple carboxylic acid functional groups. They all have been used in prior research to represent
83 the oxygenated and viscous nature of generic OA in the atmosphere.^{2, 10, 11, 13, 24-26} In these
84 experiments, the particle diffusion coefficients (D_{org} , 10^{-8} – 10^{-13} cm² s⁻¹) and mixing timescales (10^3 –
85 10^2 s) are also representative of typical aerosol phase state in the lower troposphere.²⁶ Their
86 degradation upon heterogeneous •OH-oxidation was monitored in real-time using a thermal
87 desorption iodide-adduct chemical ionization mass spectrometer (TD-CIMS) to provide accurate
88 kinetic measurements.^{27, 28} The comprehensive OA oxidation products were measured by the TD-
89 CIMS and an ion mobility spectrometry time-of-flight mass spectrometer (IMS-MS)^{24, 27, 29-31}
90 which provides additional isomer-resolved capability. Complementary FTR experiments were also
91 performed following similar procedures as in previous studies.^{27, 30} This allows for direct
92 comparisons of the heterogeneous oxidation kinetics and products between the CFSTR and FTR
93 experiments. In addition, a multilayer reaction-diffusion kinetic model was developed to simulate
94 and interpret the experimental results.²⁷

95

96 **Materials and Methods**

97 *Experimental setup*

98 All experiments were performed at 22 °C and varied water activity (a_w of 35–70%). A
99 customized CFSTR (volume ~ 250 L)^{31, 32} was used in this work with the setup shown in **Figure**
100 **S2**. Here, the CFSTR was operated in the “semi-batch” mode under room temperature.²¹ Before
101 each experiment, the CFSTR was flushed overnight with clean dry air, supplied by a zero-air
102 generator (Aadco Instrument, Inc.). At the beginning of each experiment, the CFSTR background
103 was monitored to ensure that aerosol particles were not present. Polydisperse organic aerosols (OA)
104 of selected model compounds were generated into the CFSTR using a constant output aerosol
105 atomizer (TSI, Inc.). The OA injection was stopped when targeted OA mass concentration was
106 reached (~ 2000–3000 $\mu\text{g m}^{-3}$). The high OA mass loading is necessary to allow sufficient
107 detection of OA composition by several techniques and eliminate evaporation of parent OA during
108 experiments. After OA injection, the clean air injection was adjusted to a total flow of 1.5 L min^{-1}
109 ¹. Two different a_w levels were studied for the OA model compounds: 0.36 ± 0.01 and 0.67 ± 0.03 .
110 For adipic acid and succinic acid, the injected OA through the dryer effloresced the particles and
111 a_w levels do not change their phase state and D_{org} . But for citric acid that does not have an
112 efflorescence point, different a_w levels lead to different amount of water in the OA and hence affect
113 the phase state and D_{org} .^{11, 33, 34} The 3-methylglutaric acid OA was only studied under $a_w = 0.36$.
114 In all the CFSTR experiments, the mean surface-weighted particle diameters for adipic acid,
115 succinic acid, citric acid, and 3-methylglutaric acid were 210 ± 50 nm, 420 ± 120 nm, 290 ± 15
116 nm, and 221 ± 17 nm, respectively. After the OA injection, a one-time injection of a VOC tracer
117 (either acetic acid or propionic acid) was made to reach a VOC concentration of 1–2 ppm. After
118 both the OA and VOC tracer have been injected, they were allowed to undergo dilution (caused
119 by the continuous flow) and wall loss in the CFSTR (**Figure S3**). Then, either O_3 or H_2O_2 was
120 continuously injected into the CFSTR. With the mercury UV lamps on ($\lambda = 254$ nm), this injection

121 initiated the in-situ generation of $\cdot\text{OH}$ radicals.^{27, 30} By changing the injection concentration of O_3
122 or H_2O_2 , the $[\cdot\text{OH}]$ was controlled. During the $\cdot\text{OH}$ -initiated oxidation, the total flow rate and a_w
123 were maintained the same as the “dilution and wall loss only” period. Therefore, the changes in
124 the decay rates of both the OA and VOC tracer were caused by oxidation. The oxidation was
125 maintained for 1–2 hours. To compare results obtained from the CFSTR experiments, auxiliary
126 FTR experiments were performed in parallel with the CFSTR studies. The setup for the FTR is the
127 same as our previous work.^{24, 27, 29, 30} The injection system and the kinetic measurements are the
128 same as for the CFSTR experiments. In both reactors, NO_x is below our detection limit (< 0.5 ppb)
129 and is expected to play a negligible role in the OA aging experiments.

130

131 ***Instrumentation***

132 The schematics of the instrumentation are shown in **Figure S2**. The OA particle size
133 distribution and number concentration were analyzed by a scanning electrical mobility
134 spectrometer and mixing condensation particle counter (SEMS and MCPC, Brechtel Inc.). A high-
135 sensitivity proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik Inc.) was used
136 to measure the decay of the VOC tracers at 0.3 L min^{-1} in some experiments.³⁵ The OA
137 composition was measured in real time by an iodide-adduct time-of-flight CIMS (Aerodyne
138 Research Inc., $m/\Delta m \sim 4000$) with a TD tube following a charcoal denuder to remove volatile
139 gases.^{27, 28, 31} The desorption temperature was set to $90 - 160 \text{ }^\circ\text{C}$ for different OA systems to
140 vaporize most of the particle mass (> 90%) and almost all the parent OA species. For the
141 experiments in which the PTR-MS was unavailable, the VOC tracers were also monitored by the
142 CIMS, where a separate gas sampling line was added bypassing the TD unit. The oxidation of 3-
143 methylglutaric acid and adipic acid OA was used as the model system for the offline chemical

144 composition analysis and comparison between the CFSTR and FTR results. The oxidized OA
145 particles were collected using a sequential spot sampler (Aerosol Devices Inc.) downstream of a
146 charcoal denuder. The collected OA samples were immediately extracted by acetonitrile and
147 infused into an electrospray ionization (ESI) IMS-MS (Aerodyne Research Inc.) in the negative
148 ion mode. The IMS-MS measurements could provide isomer-resolved characterization by
149 separating ionized molecules with their structure-dependent collisional cross sections.^{36, 37} More
150 details were described in our prior studies.^{24, 27, 30, 32} Finally, a UV-visible spectrophotometer
151 (Agilent Inc., 8453) was used for total ROOH quantification (see Supporting Information, SI for
152 details).

153

154 ***Calculations of the heterogeneous oxidation kinetics and timescales***

155 By comparing the decay rates of the parent OA compound and the VOC tracer before and
156 after the oxidation (**Figure S3**), the $[\cdot\text{OH}]$ in the CFSTR and the second-order oxidation rate
157 constants (k) of parent OA compound through heterogenous OH oxidation were determined.
158 Specifically, the $\cdot\text{OH}$ oxidation rate constants of acetic acid and propionic acid ($k_{\text{VOC}+\cdot\text{OH}}$) were
159 known from the literature ($6.6 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $1.64 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$,
160 respectively).^{38, 39} Thus, the $[\cdot\text{OH}]$ can be calculated by:

161
$$[\cdot\text{OH}] = \frac{k_{\text{VOC,ox}} - k_{\text{VOC,DL}}}{k_{\text{VOC}+\cdot\text{OH}}} \quad (3)$$

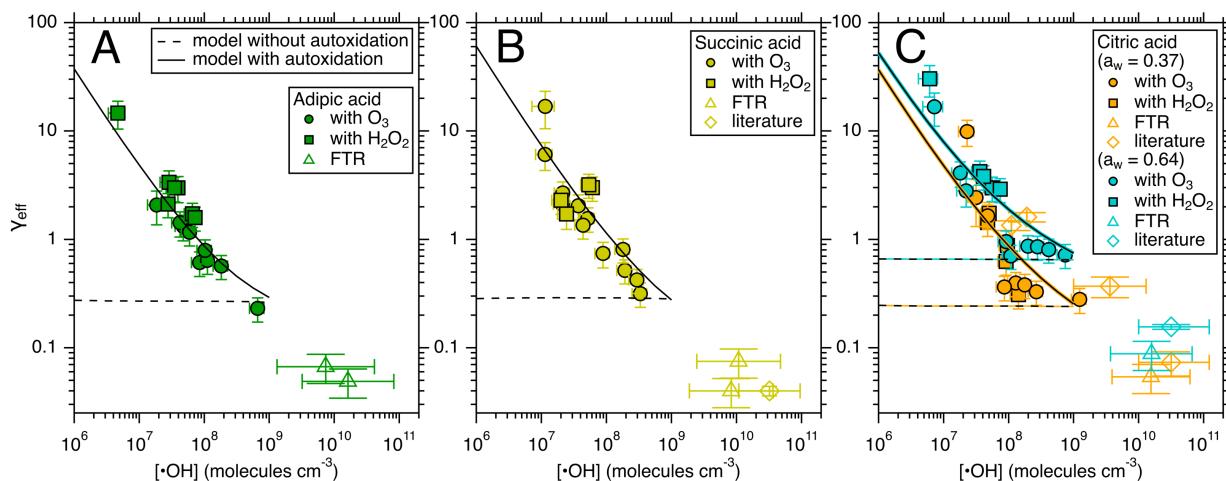
162 where $k_{\text{VOC,ox}}$ and $k_{\text{VOC,DL}}$ are the first-order VOC decay rates during the oxidation period and the
163 dilution-wall loss period, respectively. Then, the second-order oxidation rate constants (k) of
164 parent OA compound through heterogenous $\cdot\text{OH}$ oxidation was calculated by:

165
$$k = \frac{k_{\text{OA,ox}} - k_{\text{OA,DL}}}{[\cdot\text{OH}]} \quad (4)$$

166 where $k_{\text{OA,ox}}$ and $k_{\text{OA,DL}}$ are the first-order parent OA decay rates during the oxidation period and
167 the dilution-wall loss period, respectively. The four first-order decay rates ($k_{\text{VOC,ox}}$, $k_{\text{VOC,DL}}$, $k_{\text{OA,ox}}$,
168 and $k_{\text{OA,DL}}$) were obtained from the PTR-MS or TD-CIMS measurements. The high-frequency
169 measurements made by the two instruments allow for high confidence decay rates, and hence
170 reliable estimates of k . The k values were then used to calculate the effective uptake coefficient
171 (γ_{eff}) shown in Equation (1).⁷ Therefore, the relationships between the γ_{eff} and $[\cdot\text{OH}]$ can be
172 obtained. The oxidation timescales are hence estimated by Equation (2).¹⁵

173

174 ***The reaction-diffusion multilayer kinetic model***


175 To explain the experimental observation, a reaction-diffusion multilayer kinetic model was
176 developed, as described in our previous work²⁷ and is essentially a similar representation to several
177 other models that simulates heterogeneous OA oxidation processes.⁴⁰⁻⁴² The model constructs a
178 multi-compartment rectangular prism to approximate the OA particle (**Figure S4**). The area of the
179 square surface of the prism is set to be the same as the spherical OA aerosol in the experiments
180 and the height of the rectangular prism is $d_p/6$ to maintain the same surface-to-volume ratio of the
181 spherical aerosol and hence preserves the relevant scaling between surface and bulk processes.
182 The thickness of each compartment is set to 0.5 nm, which was suggested to be a good
183 representation of semisolid and solid aerosol particles.⁴² Each compartment is assumed to be a
184 well-mixed volume. The model includes (1) the adsorption, desorption, and reactions of $\cdot\text{OH}$ and
185 $\text{HO}_2\cdot$ at the outermost (i.e., surface) compartment of the OA particles, (2) organic radical-centered
186 and multi-generational reactions in each compartment, and (3) diffusions of all the species
187 molecules between compartments and evaporation of the relatively volatile products from the

188 surface compartment to gas phase. The FACSIMILE software was used to perform the
189 simulations.²⁷ See SI for more details.

190

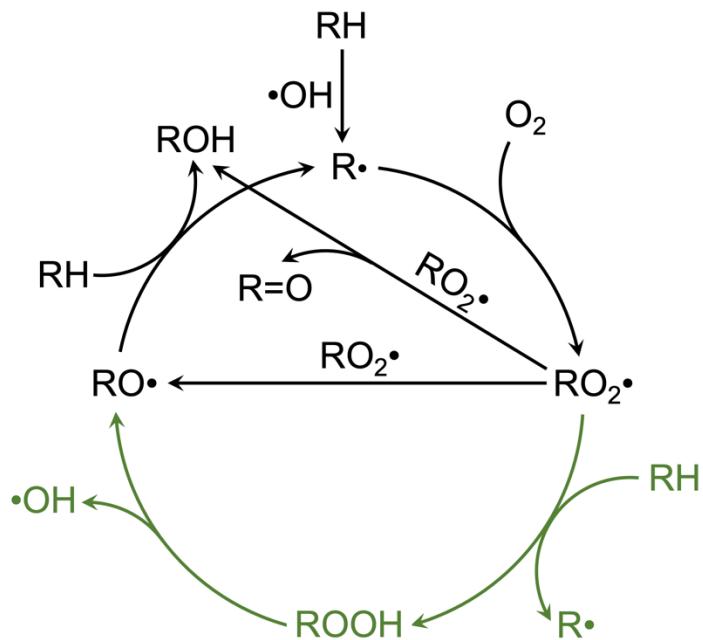
191 **Results and Discussion**

192 ***Heterogeneous oxidation kinetics***

193

194 **Figure 1.** The γ_{eff} – $[\cdot\text{OH}]$ relationship for OA surrogate systems. (A) adipic acid, (B)
195 succinic acid, and (C) citric acid, under various experimental conditions (see figure legend). For
196 succinic acid (B) and citric acid (C), measurements from a few prior studies are also shown.^{10, 11,}
197 ^{13, 20} For citric acid, experiments were performed under two different a_w conditions, resulting in
198 different D_{org} values (see SI). Model simulations with and without the consideration of
199 autoxidation are shown with the experimental data. Similar γ_{eff} – $[\cdot\text{OH}]$ trend obtained from three
200 3-methylglutaric acid experiments (Figure S5) is in general consistency with the results shown
201 here.

202


203 As shown in **Figure 1**, the measured γ_{eff} exhibits striking enhancement as $[\cdot\text{OH}]$ decreases
204 from $\sim 1 \times 10^9$ to $\sim 5 \times 10^6$ molecules cm^{-3} for all the studied OA systems. As $[\cdot\text{OH}]$ approaches

205 atmospheric levels (10^6 – 10^7 molecules cm^{-3}), the γ_{eff} values are 2–3 orders of magnitude higher
206 than those obtained from the high-[•OH] FTR experiments performed in this work and in prior
207 studies. It is also worth noting that in the citric acid system, where varied a_w was studied, higher
208 a_w and hence faster diffusion in the particles led to larger γ_{eff} under $[\cdot\text{OH}] > \sim 10^8$ molecules cm^{-3}
209 (**Figure 1C**), agreeing with prior work.^{11, 13, 43} However, the difference appears to diminish as $[\cdot\text{OH}]$
210 further drops, implying that particle-phase diffusion may not be a key limitation for OA multiphase
211 oxidative aging under ambient conditions. These kinetic results suggest that OA heterogeneous
212 oxidation in the atmosphere may have a much shorter timescale than previously expected. For
213 example, for a 500-nm diameter particle under $[\cdot\text{OH}]$ of 10^6 molecules cm^{-3} , γ_{eff} of 10 indicates an
214 oxidation timescale of ~ 2.3 days, compared to 231 days when γ_{eff} is 0.1. These kinetic results are
215 qualitatively consistent with prior studies (**Figure S1**), but contain more data points with smaller
216 uncertainties, and hence are directly comparable to obtain the $[\cdot\text{OH}]$ -dependent γ_{eff} .

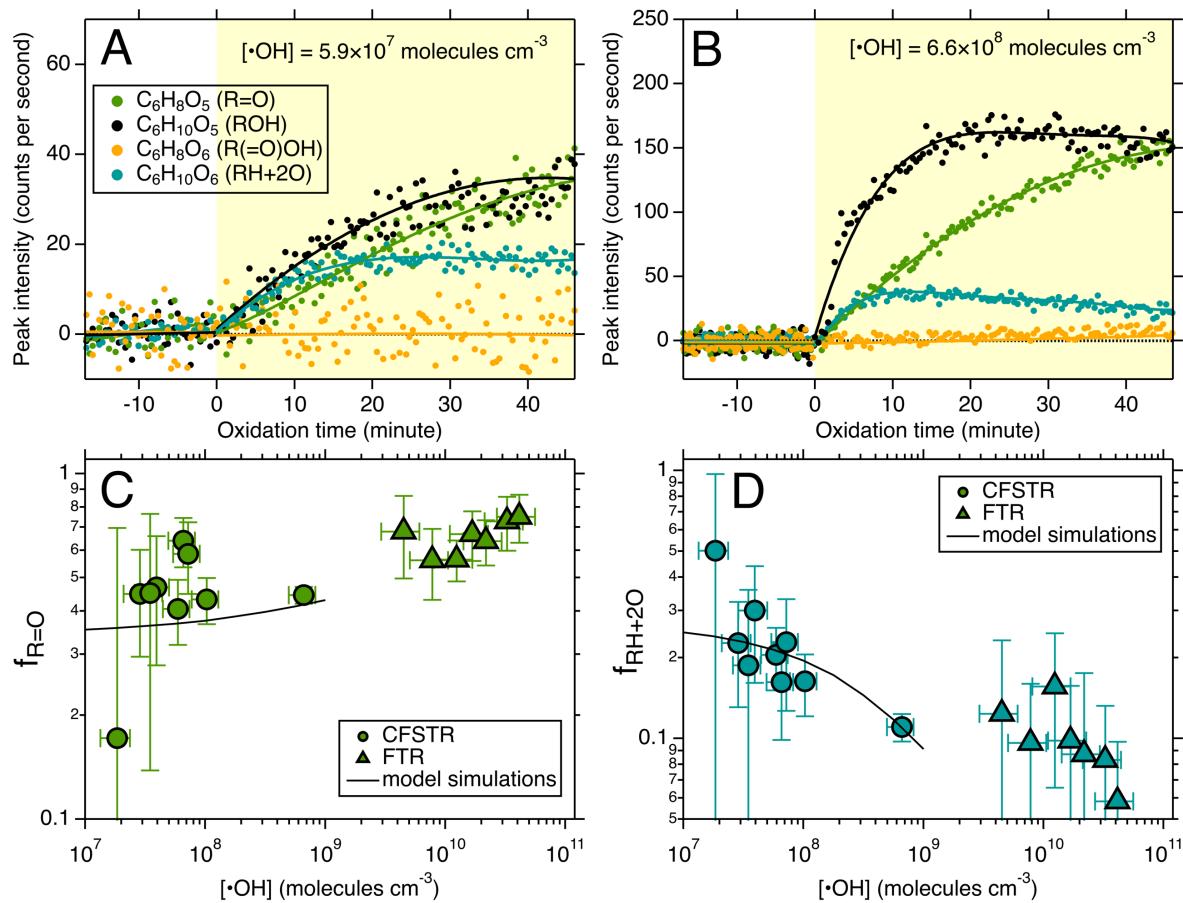
217 To investigate the cause of the $[\cdot\text{OH}]$ -dependent γ_{eff} , we used a multilayer reaction-
218 diffusion kinetic model (see SI for details). The model explicitly considers the adsorption and
219 desorption of •OH at the gas-particle interface and the diffusion and reactions at the particle surface
220 and in the bulk.^{27, 40, 44} The main reaction mechanism in the model is shown in **Figure 2** (top part),
221 where self-reaction of peroxy radical ($\text{RO}_2\cdot$) plays a central role: •OH oxidizes a parent OA
222 molecule (RH) through H-abstraction and produces an alkyl radical (R•); $\text{RO}_2\cdot$ is subsequently
223 formed following oxygen addition; the $\text{RO}_2\cdot + \text{RO}_2\cdot$ self-reaction then produce an alcohol-
224 carbonyl pair (ROH and R=O), known as the Russell mechanism, or two alkoxy radicals ($\text{RO}\cdot$);⁵
225⁴⁵ the $\text{RO}\cdot$ may decompose to smaller oxidized products or undergo chain propagation reactions
226 (i.e., $\text{RO}\cdot + \text{RH}$),¹⁹ forming an alcohol product and a new $\text{RO}_2\cdot$. The mechanism may occur at
227 multiple generations, forming multifunctional products.^{7, 24} For instance, both ROH and R=O can

228 be further oxidized to form R(OH)_2 (diol), R(=O)_2 (dicarbonyl), and R(=O)OH (hydroxycarbonyl).
229 This mechanism has been widely accepted to explain the major heterogeneous OA oxidation
230 products observed in prior research. However, the kinetic model with this mechanism fails to
231 simulate the increased γ_{eff} with reduced $[\cdot\text{OH}]$ (**Figure 1**), indicating that the traditional $\text{RO}_2\cdot +$
232 $\text{RO}_2\cdot$ dominant chemistry cannot explain the observations. Moreover, the results also suggest that
233 the previously attributed Langmuir-Hinshelwood mechanism¹⁵ and particle-phase diffusion
234 limitation²⁰ do not explain the increased γ_{eff} with reduced $[\cdot\text{OH}]$ under the studied conditions of
235 $[\cdot\text{OH}]$ and particle D_{org} , because these processes are already implemented in the kinetic model.
236 The model performance is consistent with other models developed in previous studies which also
237 considered these processes.^{14, 44} The O_3 shielding mechanism¹⁸ can also be ruled out as we
238 observed similar $\gamma_{\text{eff}}-[\cdot\text{OH}]$ behavior by using H_2O_2 as the $\cdot\text{OH}$ precursor instead of O_3 (**Figure**
239 **1**). Furthermore, the previously proposed $\text{RO}\cdot$ -driven chain propagation reactions could only
240 slightly enhance γ_{eff} ,¹⁹ and is independent of $[\cdot\text{OH}]$ (**Figure S6**). Therefore, the $[\cdot\text{OH}]$ -dependent
241 γ_{eff} suggests that a previously unrecognized mechanism is needed to explain the high γ_{eff} under
242 low $[\cdot\text{OH}]$.

243

244

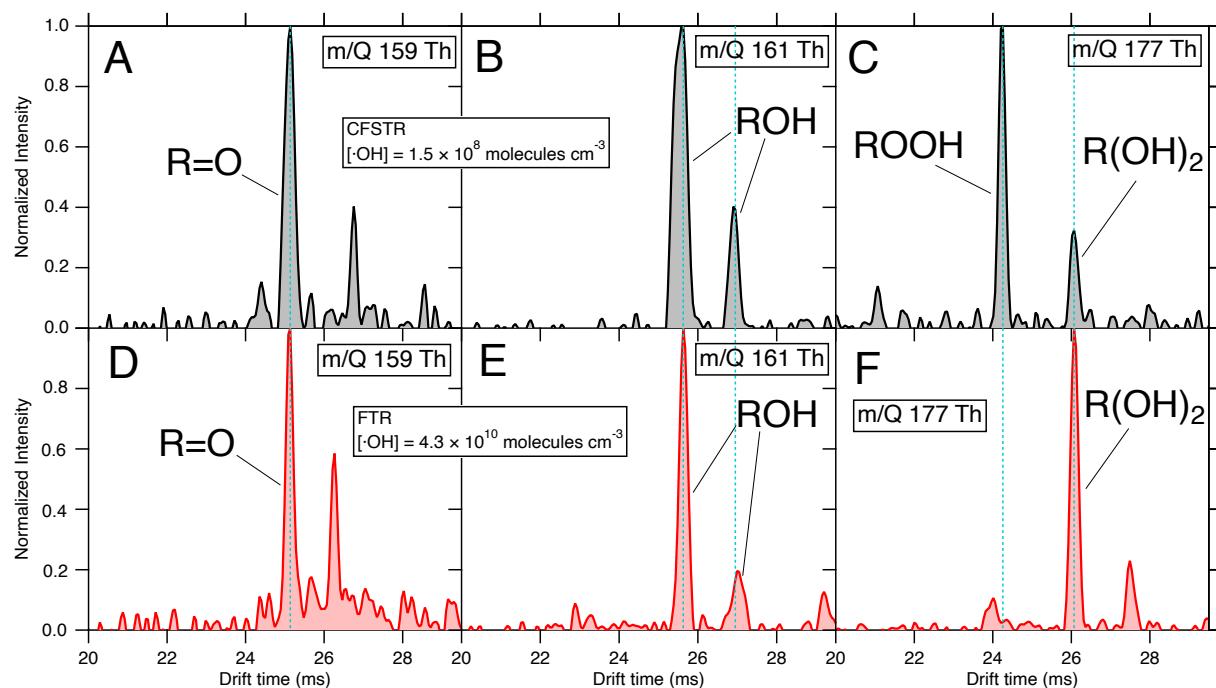
245 **Figure 2.** The $\cdot\text{OH}$ -initiated heterogeneous oxidation mechanism of organic aerosols in the
 246 atmosphere. The top part of the scheme (in black) illustrates the previous mechanistic
 247 understanding, and the bottom part (in green) shows the autoxidation mechanism proposed in this
 248 work.


249

250 ***Oxidation products highlight the formation of organic hydroperoxides***

251 To elucidate the unrecognized mechanism, we further examined the oxidation products
 252 (**Figure 3**). Consistent with the above-mentioned reaction scheme, the most abundant products
 253 observed from these experiments by the TD-CIMS are $\text{R}=\text{O}$ and ROH from the $\text{RO}_2^\bullet + \text{RO}_2^\bullet$ self-
 254 reaction. Interestingly, another major product with two additional oxygens than RH (“ $\text{RH}+2\text{O}$ ”)
 255 was also observed in some of the studied OA systems. We determine this product to be the organic
 256 hydroperoxide (ROOH) for the reasons discussed below. Although the same chemical formula
 257 could be the second-generation products $\text{R}(\text{OH})_2$, the absence of the other two expected concurrent
 258 second-generation products (i.e., $\text{R}(\text{=O})\text{OH}$ and $\text{R}(\text{=O})_2$) from the TD-CIMS measurements ruled

259 this out (**Figure 3A–B**). In contrast, these expected second-generation products were all observed
260 in the high-[•OH] FTR experiments. Additionally, the “RH+2O” signal appears almost
261 simultaneously with the onset of •OH oxidation, while a second-generation product is usually
262 indicated by delayed formation.⁷ To further confirm its identity, the IMS-MS was used to compare
263 the oxidation products between experiments under different [•OH] on the isomer-resolved level
264 and with higher sensitivity. In this comparison (**Figure 4**), adipic acid oxidation under very
265 different [•OH] produced identical isomer distributions and abundances for both R=O and ROH
266 (**Figure 4 A, B, D, and E**). In contrast, “RH+2O” exhibits very different isomer distributions
267 between the two [•OH] conditions, with a unique and dominant isomer present only under lower
268 [•OH] (**Figure 4 C vs. F**), providing unambiguous evidence for ROOH formation. Moreover,
269 auxiliary total hydroperoxide analysis also supports the formation of ROOH under low [•OH] in
270 the CFSTR (**Figure S7**). In **Figure 3C–D**, we present the signal-based fractions of R=O and
271 “RH+2O” among the three major products as a function of [•OH] in the adipic acid system, where
272 all three products were detected. The results, compared with measurements from the high-[•OH]
273 FTR experiments, clearly show that the formation of R=O is inhibited while “RH+2O” (mostly
274 ROOH) is enhanced under low [•OH]. On the contrary, most of “RH+2O” detected under high
275 [•OH] in the FTR are R(OH)₂ (**Figure 4F**). This [•OH]-dependent OA composition also explains
276 the contradiction between this work and prior studies which reported no evidence of ROOH
277 formation,^{7, 46} as prior studies used high [•OH] to investigate OA oxidative aging. Finally, to test
278 whether the ROOH formation is formed from the RO₂• + HO₂• reactions, we incorporated HO₂•
279 uptake and subsequent RO₂• + HO₂• reactions into the model using known kinetic parameters.^{47, 48}
280 However, the results suggest that this process plays a negligible role in γ_{eff} prediction and is
281 unlikely to produce sufficient ROOH under the studied conditions (see SI). In support of this,


282 $[\cdot\text{HO}_2]$ is expected to be higher with increased $[\cdot\text{OH}]$ and thus, ROOH formed from $\text{RO}_2^\bullet + \text{HO}_2^\bullet$
 283 should also increase with $[\cdot\text{OH}]$, which is opposite to the observed ROOH trend (**Figure 3D**). It
 284 should also be pointed out that during thermal desorption in TD-CIMS, decomposition of the
 285 products, especially ROOH, cannot be ruled out. However, thermal decomposition should not
 286 affect the ROOH trends shown in **Figure 3** and may indicate that the formation of ROOH is even
 287 more important.

288 **Figure 3.** Major products from adipic acid OA oxidation. (A – B) TD-CIMS time-series of the
 289 three major first-generation products (i.e., $\text{R}=\text{O}$, ROH , and “ $\text{RH}+2\text{O}$ ”) for two adipic acids
 290 oxidation CFSTR experiments under different $[\cdot\text{OH}]$. For comparison, one of the second-
 291 generation products ($\text{R}(\text{=O})\text{OH}$) is shown. The other second-generation product, $\text{R}(\text{=O})_2$, is also
 292 absent as $\text{R}(\text{=O})\text{OH}$ and hence is not shown. The light-yellow shades suggest the oxidation periods;
 293

294 the fitted curves are to guide the eye. (C – D) The fractions of R=O and “RH+2O” in the first-
295 generation products from adipic acid oxidation experiments. The error bars represent the
296 measurement standard deviation, and the curves are model results. The model simulations with
297 autoxidation only considers the ROOH as R(OH)₂ is not explicitly represented in the model. The
298 simulations show consistent trends with the measurements. The similar time series results for 3-
299 methylglutaric acid are shown in **Figure S8**.

300

301

302 **Figure 4.** Comparison of R=O, ROH, and “RH+2O” on the isomeric level between CFSTR (A –
303 C) and FTR (D – F) experiments by the IMS-MS. The same drift time peaks suggest identical
304 structures. The unique peak in (C) at 24.2 ms in m/Q 177 Th, specific only to the low-[•OH]
305 CFSTR experiment, is identified as the ROOH.

306

307 *Autoxidation as the key aging mechanism*

308 Through relating the enhancement of both γ_{eff} and ROOH formation under low [$\cdot\text{OH}$], we
309 propose a chain reaction mechanism between $\text{RO}_2\cdot$ and RH, leading to the formation of ROOH
310 and regenerating $\text{RO}_2\cdot$ in the presence of O_2 (**Figure 2**, bottom part). The formed ROOH may
311 decompose into $\text{RO}\cdot$ and $\cdot\text{OH}$, both of which could abstract H from RH in the condensed phase.
312 This $\text{RO}_2\cdot$ -mediated mechanism thus sustains the other chain reaction ($\text{RO}\cdot + \text{RH}$) and creates
313 additional secondary pathways to consume RH and form ROH and $\text{RO}_2\cdot$, further increasing γ_{eff} .
314 Under high [$\cdot\text{OH}$], the large $\cdot\text{OH}$ flux at the particle surface leads to the substantial formation of
315 $\text{RO}_2\cdot$, thus favoring the $\text{RO}_2\cdot + \text{RO}_2\cdot$ self-reaction. With lower [$\cdot\text{OH}$], the interfacial and particle-
316 phase [$\text{RO}_2\cdot$] also decreases, allowing for the competing $\text{RO}_2\cdot + \text{RH}$ reaction to become
317 nonnegligible. As a result, the formation of ROOH is promoted and that of R(=O) is inhibited with
318 low [$\cdot\text{OH}$]; in contrast, ROH may be formed in both processes. This mechanism has been known
319 for decades in biochemistry and polymer chemistry for lipids and rubbers (also known as
320 “autoxidation”),⁴⁹⁻⁵¹ but for the first time here, this mechanism is reported in aerosol chemistry. It
321 should be noted that this intermolecular autoxidation mechanism is essentially different from the
322 unimolecular autoxidation chemistry (i.e., intramolecular H-shift followed by O_2 addition) for gas
323 phase $\text{RO}_2\cdot$.⁵² Here, we demonstrate that the intermolecular autoxidation mechanism in the
324 condensed phase exhibits a unique [$\cdot\text{OH}$]-dependent behavior in aerosol chemistry, suggesting that
325 the OA heterogeneous oxidation results obtained in the past decades may not accurately describe
326 the processes occurring in the real atmosphere.

327 Following the proposal of the autoxidation mechanism, we implemented it into the kinetic
328 model to aid the interpretation of the experimental results. The $\text{RO}_2\cdot + \text{RH}$ reaction rate constant
329 is estimated to be on the order of 10^{-6} times slower than that for $\text{RO}\cdot + \text{RH}$.⁵³ The ROOH
330 decomposition rate may vary significantly, likely owing to the stability and reactivity of the ROOH.

331 Although some studies showed that ROOH can be stable in room temperature for as long as 24
332 hours,^{54, 55} ROOH in atmospheric OA were more often found to be rather labile, especially for the
333 highly functionalized molecules, with first-order decomposition rate ranging from $3 \times 10^{-5} \text{ s}^{-1}$ to \sim
334 $2 \times 10^{-3} \text{ s}^{-1}$.⁵⁶⁻⁵⁹ Further, little is known regarding the detailed ROOH decomposition mechanism
335 and products. Unimolecular decomposition via breaking the weak O–O bond to form RO[•] and •OH
336 was suggested as a possible reaction at ambient temperature for peroxides with O/C ratios at 0.5
337 or higher.⁵⁶ In addition, bimolecular reactions were also suggested, such as the Baeyer–Villiger
338 reaction and Korcek mechanism.^{57, 60} But these bimolecular mechanisms do not directly produce
339 free radicals, hence cannot propagate the chain reactions shown in **Figure 2**. The lack of detailed
340 kinetic and mechanistic understanding leads to great challenges to explicitly incorporate the
341 ROOH chemistry into the kinetic model. Therefore, we lumped the possible ROOH unimolecular⁵⁶
342 and bimolecular⁵⁷ decomposition pathways as a single pseudo first-order decomposition reaction
343 forming RO[•] + •OH with a first-order decomposition rate constant and a tunable yield (see SI for
344 model details).

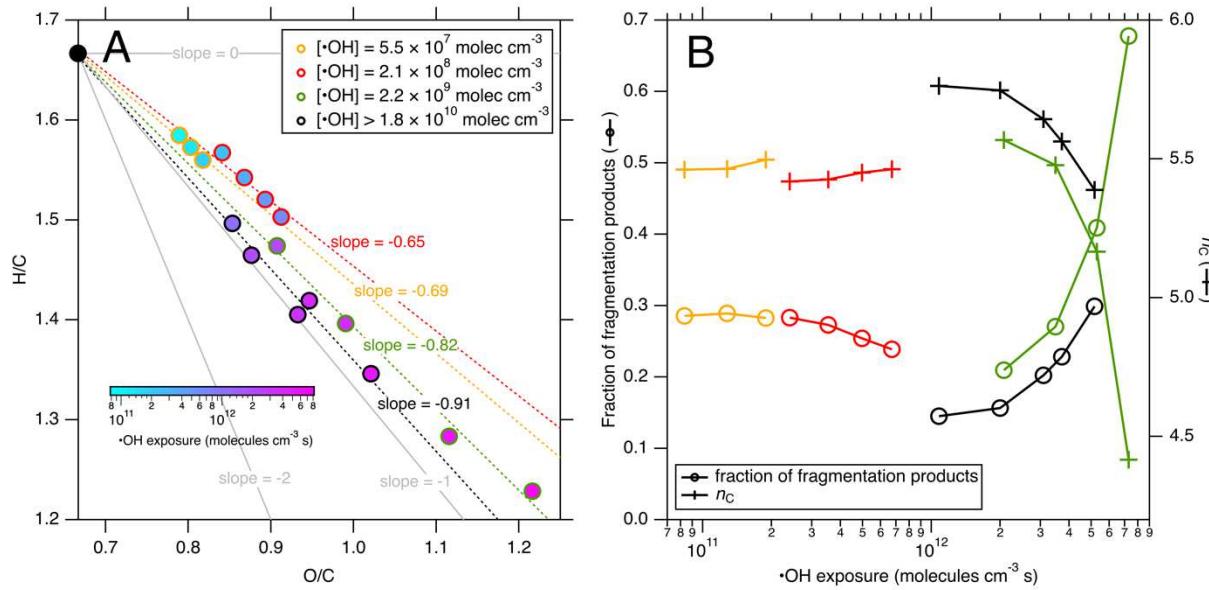
345 Despite the simplification, this model reasonably reflects the chain propagating nature of
346 the autoxidation mechanism. To capture the observed $\gamma_{\text{eff}} - [\bullet\text{OH}]$ relationship over the entire
347 studied [•OH] range, optimization suggests that the model needs to constrain the formation rate of
348 RO[•] + •OH from ROOH decomposition at 1×10^{-5} – $1 \times 10^{-4} \text{ s}^{-1}$, while keeping the RO₂[•] + RH
349 reaction rate constant in a reasonable range (i.e., 5 – $20 \times 10^{-21} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$) for all the studied
350 OA systems. Here, the formation rate of RO[•] + •OH is a combination of ROOH decomposition
351 rate and the branching ratio of RO[•] + •OH. For example, if all the ROOH decomposition forms
352 RO[•] + •OH, the decomposition rate is the same as the formation rate of RO[•] + •OH; while if only
353 10% of ROOH decomposes to RO[•] + •OH, the overall ROOH decomposition rate needs to be

354 approximately one order of magnitude higher, which is still within the range of previously reported
355 ROOH decomposition rate constant mentioned above.⁵⁶⁻⁵⁹ Model simulations of the $\gamma_{\text{eff}} - [\cdot\text{OH}]$
356 relationship using the autoxidation mechanism agree nicely with the measurements (**Figure 1**),
357 suggesting that autoxidation in the condensed phase can indeed greatly accelerate OA aging under
358 atmospherically relevant $[\cdot\text{OH}]$. It should be noted that the good model-observation agreement
359 does not require a certain unique set of parameters. Rather, with a given formation rate of $\text{RO}^\bullet +$
360 $\cdot\text{OH}$ in the above-mentioned range, a coupled $\text{RO}_2^\bullet + \text{RH}$ reaction rate constant can be determined
361 to result in a similarly good agreement as shown in **Figure 1**. Furthermore, it is remarkable that
362 the model results also agree with the trends of $[\cdot\text{OH}]$ -dependent fractions of R=O and “ RH+2O ”
363 (**Figure 3C–D**), further supporting the autoxidation mechanism. Lastly, to test whether other
364 radical-involved chemical processes might affect or contribute to the enhanced OA degradation,
365 unimolecular H-shift isomerization for RO_2^\bullet and RO^\bullet were considered in the kinetic model. This
366 unimolecular process has been shown to play important roles in the gas phase,^{52, 61, 62} but our model
367 simulations suggest that they are not fast enough at typical reaction rate constants to compete with
368 the autoxidation mechanism and play a very minor role in OA aging kinetics (see SI).

369 The kinetic model further suggests that autoxidation-involved reactions (i.e., $\text{RH} + \text{RO}_2^\bullet$,
370 $\text{RH} + \text{RO}^\bullet$, and $\text{RH} + \cdot\text{OH}$ from ROOH decomposition) could account for > 95% of total RH
371 consumption under atmospheric $[\cdot\text{OH}]$ (**Figure S9**). This means that the collision of gas-phase
372 $\cdot\text{OH}$ with OA particles plays more of an initiator role, rather than acting as the dominant oxidant
373 of OA under atmospheric conditions. This also implies that once the oxidation is triggered,
374 autoxidation may proceed even in the dark. Since most of the OA molecules are not oxidized
375 directly by the $\cdot\text{OH}$ from gas-phase adsorption under low $[\cdot\text{OH}]$, the OA oxidation is no longer
376 confined to the interfacial region of the particles. Consistently, model results suggest that the OA

377 oxidation could occur throughout the entire particles under atmospherically relevant $[^\bullet\text{OH}]$,
378 contrary to the dominant interfacial oxidation under much higher $[^\bullet\text{OH}]$ for all the examined OA
379 systems (**Figure S10**). Thus, for particles that are viscous and do not rapidly mix, autoxidation
380 could make a big difference. Beyond the D_{org} range for the studied OA, the simulations indicate
381 that even for more viscous OA particle across the semi-solid and solid ranges, the OA oxidation
382 events could still spread throughout the particles in about an hour under atmospheric $[^\bullet\text{OH}]$
383 (**Figure S11**). These simulations highlight that the autoxidation mechanism leads to highly
384 efficient OA aging by allowing the oxidation to occur in the particle bulk and bypassing diffusion
385 limitations, hence, making the viscous particles more homogeneous during oxidation.

386


387 ***Overall aerosol composition influenced by autoxidation***

388 Finally, we investigated how intermolecular autoxidation may impact the entire OA
389 composition. For this purpose, we focus on the 3-methylglutaric acid system which is more readily
390 oxidized and can form diverse oxidation products.²⁴ The observed oxidation products ($\text{C}_{1-6}\text{H}_{2-10}\text{O}_3$ -
391 8) by the IMS-MS were employed to calculate the intensity-based elemental ratios, averaged
392 carbon number (n_{C}), and fraction of fragmentation products in the particle phase under different
393 oxidation conditions (**Figure 5**). As the Van Krevelen diagram shown in **Figure 5A**, the FTR
394 experiments with the highest $[^\bullet\text{OH}]$ ($> \sim 2 \times 10^{10}$ molecules cm^{-3}) exhibit the steepest $\text{H/C} - \text{O/C}$
395 trajectory, with a slope ~ -0.91 , indicative of a mechanism that forms similar amounts of carbonyls
396 and alcohols (consistent with the Russell mechanism). In comparison, the lower $[^\bullet\text{OH}]$ CFSTR
397 experiments all had shallower $\text{H/C} - \text{O/C}$ trajectories, with slopes of $-0.65 - -0.69$ under $[^\bullet\text{OH}] <$
398 $\sim 2 \times 10^8$ molecules cm^{-3} and -0.82 under $[^\bullet\text{OH}] \sim 2 \times 10^9$ molecules cm^{-3} . The slope shift as a
399 function of $[^\bullet\text{OH}]$ suggests that low $[^\bullet\text{OH}]$ favors the formation of alcohols and hydroperoxides

400 over carbonyls, consistent with the autoxidation mechanism. This mechanistic difference was also
401 supported by comparing the major functionalization products: higher abundance of alcohols and
402 hydroperoxides were observed in the CFSTR than the FTR (**Figure S12**) and higher ratios of the
403 “RH+2O” signals over the other two major second-generation products were found under lower
404 [$\cdot\text{OH}$] (**Figure S13**). As a result of the enhanced hydroperoxides by autoxidation, the low-[$\cdot\text{OH}$]
405 CFSTR experiments reached comparable carbon oxidation state with the high-[$\cdot\text{OH}$] FTR
406 experiments, but at much lower $\cdot\text{OH}$ exposure (**Figure S14**). It is also evident that under [$\cdot\text{OH}$] >
407 $\sim 2 \times 10^9$ molecules cm^{-3} (in both reactors), the fraction of fragmentation products increases and
408 n_{C} decreases exponentially with $\cdot\text{OH}$ exposure (**Figure 5B**), consistent with prior understanding
409 that fragmentation is increasingly important after the functionalization products are further
410 oxidized. However, under lower [$\cdot\text{OH}$] ($< \sim 2 \times 10^8$ molecules cm^{-3}), an appreciable fraction of
411 the total measured products are fragmentation products (20–30% based on peak intensities, **Figure**
412 **5B**), even with very low $\cdot\text{OH}$ exposure (i.e., $< 10^{11}$ molecules $\text{cm}^{-3} \text{ s}$). We suggest that this is
413 because the enhanced autoxidation under low [$\cdot\text{OH}$] promotes RO^{\cdot} formation through ROOH
414 decomposition and hence increase fragmentation even with low $\cdot\text{OH}$ exposure. These results
415 suggest that autoxidation could provide a new pathway to rapidly produce small, oxidized
416 compounds which could evaporate to the gas phase and contribute to important atmospheric
417 processes such as secondary OA formation.

418 Overall, the chemical composition of oxidized OA provides observation-based support to
419 the autoxidation mechanism and ROOH decomposition pathways. Specifically, the increased
420 formation of alcohol and fragmentation products under lower [$\cdot\text{OH}$] strongly supports the ROOH
421 unimolecular decomposition to $\text{RO}^{\cdot} + \cdot\text{OH}$;⁵⁶ the enhanced alcohol formation may also be partly

422 due to the Baeyer-Villiger reactions.⁶⁰ Therefore, it is likely that both ROOH processes take place
 423 to promote autoxidation and explain the measurements.

424

425 **Figure 5.** Chemical composition of oxidized 3-methylglutaric acid OA. (A) The Van Krevelen
 426 diagram for four 3-methylglutaric acid oxidation experiments. The experiment with the highest
 427 [·OH] was performed in the FTR and the other three lower-[·OH] experiments were performed in
 428 the CFSTR. The linear fits with slopes are shown with the data; the color scale indicates the ·OH
 429 exposure for each data point. (B) The fraction of fragmentation products (left axis) and n_C (right
 430 axis) as a function of ·OH exposure for the same 3-methylglutaric acid oxidation experiments as
 431 in (A).

432

433 **Atmospheric Implications**

434 In this work, we report strong and direct evidence for an intermolecular autoxidation
 435 mechanism in heterogeneous oxidative aging of OA. Although only a few highly oxidized OA
 436 surrogates were examined, its chemical nature is rather nonspecific.^{50, 51, 53} Previous work showed
 437 a somewhat similar $\gamma_{\text{eff}} - [\cdot\text{OH}]$ dependence, but to a lesser degree for less oxidized OA

438 surrogates.^{7, 19, 63} This could be caused by different kinetic parameters in the autoxidation
439 mechanism (**Figure S15**). We show that autoxidation may occur at much faster rates than the other
440 particle-phase RO_2^{\bullet} pathways under atmospherically relevant $[\bullet\text{OH}]$ (e.g., RO_2^{\bullet} reactions with
441 RO_2^{\bullet} and HO_2^{\bullet}) and significantly boost OA oxidation. Through autoxidation, OA oxidative aging
442 in the atmosphere may proceed on timescales from less than a day to several days, much more
443 rapidly than prior laboratory results have suggested. This result opens up new avenues for
444 heterogeneous OA oxidation to play key roles in various atmospheric processes. Although the
445 laboratory studies showed clear evidence for enhanced OA aging kinetics and the formation of
446 ROOH , ROH , and fragmentation products, the autoxidation-involved kinetic parameters have
447 large uncertainties. This is mainly caused by: (1) the $\text{RH} + \text{RO}_2^{\bullet}$ reaction kinetics have been less
448 studied for system relevant to atmospheric OA species;⁵³ and (2) the ROOH decomposition rate
449 constant and mechanism are largely varied with chemical structures.⁵⁶⁻⁵⁹ Therefore, the
450 corresponding kinetic model is constrained within the wide ranges of reported values to our best
451 knowledge. Thus, future studies are needed to help better determine the key parameters for more
452 accurate prediction of multiphase OA aging kinetics.

453 In the atmosphere, many OA processes could occur simultaneous with aging (e.g.,
454 secondary aerosol formation, new particle formation and growth, aqueous-phase reactions,
455 evaporation, etc.); thus, direct field evidence to support such rapid OA oxidation is unavailable.
456 However, the autoxidation-mediated fast OA aging reported in this work should be considered in
457 the interpretation of field measurements. Another surprising outcome of our findings is that the
458 gas-phase $\bullet\text{OH}$ is only an initiator of OA aging, rather than the main oxidant, implying that OA
459 oxidative aging may efficiently take place even under dark conditions (e.g., nighttime or in indoor
460 environments). Additionally, substantial ROOH may be present in the oxidized OA particles as

461 reactive oxygen species, which are well known to result in health effects.⁶⁴ We also suggest that
462 autoxidation can lead to OA oxidation throughout the entire aerosol particle even for highly
463 viscous OA, rather than confined at the gas-particle interface, as previously understood. Lastly,
464 we show that autoxidation may have an extending influence on the entire OA particle composition
465 during oxidative aging. It will increase the oxygenation of OA efficiently and facilitate
466 fragmentation chemistry. The rapid and enhanced oxygenation of aerosol particles through this
467 mechanism may result in increased cloud formation, leading to larger indirect climate effects.
468 Overall, the autoxidation mechanism reported here unveils the nature of heterogeneous aerosol
469 oxidation chemistry and highlights the need to rethink aerosol aging processes in the real
470 atmosphere.

471

472 **Associated Contents**

473 Supporting Information

474 Additional experimental details of peroxide measurements, kinetic model simulations and
475 sensitivity tests, and supplementary figures of measurements and results.

476

477 **Author Information**

478 Corresponding Authors

479 E-mail address: haofei.zhang@ucr.edu (H. Zhang).

480 Notes

481 The authors declare no competing financial interest.

482

483 **Acknowledgements**

484 This work is supported by the U.S. National Science Foundation (CHE-2002413).

References

- Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.; Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L.; Dzepina, K.; Dunlea, E.; Docherty, K.; DeCarlo, P. F.; Salcedo, D.; Onasch, T.; Jayne, J. T.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Takegawa, N.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Williams, P.; Bower, K.; Bahreini, R.; Cottrell, L.; Griffin, R. J.; Rautiainen, J.; Sun, J. Y.; Zhang, Y. M.; Worsnop, D. R., Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. *Geophysical Research Letters* **2007**, *34*, L13801.
- Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, E. J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R., Evolution of Organic Aerosols in the Atmosphere. In *Science*, *Science*: 2009; Vol. 326:5959, s. 1525-1529.
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, C.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; Rasch, P.; Satheesh, S. K.; Sherwood, S.; Stevens, B.; Zhang, X.-Y. *Clouds and Aerosols*; IPCC: 2013; p 657.
- Dockery, D. W.; Pope, C. A.; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G.; Speizer, F. E., An Association between Air Pollution and Mortality in Six U.S. Cities. *N. Engl. J. Med.* **1993**, *329* (24), 1753-1759.
- George, I. J.; Abbatt, J. P. D., Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. *Nature Chemistry* **2010**, *2* (9), 713-722.
- George, I. J.; Vlasenko, A.; Slowik, J. G.; Broekhuizen, K.; Abbatt, J. P. D., Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. *Atmos. Chem. Phys.* **2007**, *7* (16), 4187-4201.
- Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.; Worsnop, D. R.; Wilson, K. R., The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. *Atmos. Chem. Phys.* **2009**, *9* (9), 3209-3222.
- George, I. J.; Abbatt, J. P. D., Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation. *Atmos. Chem. Phys.* **2010**, *10* (12), 5551-5563.
- Kroll, J. H.; Lim, C. Y.; Kessler, S. H.; Wilson, K. R., Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. *J. Phys. Chem. A* **2015**, *119* (44), 10767-10783.
- Kessler, S. H.; Nah, T.; Daumit, K. E.; Smith, J. D.; Leone, S. R.; Kolb, C. E.; Worsnop, D. R.; Wilson, K. R.; Kroll, J. H., OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol. *J. Phys. Chem. A* **2012**, *116* (24), 6358-6365.
- Davies, J. F.; Wilson, K. R., Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces. *Chemical Science* **2015**, *6* (12), 7020-7027.

532 12. Hearn, J. D.; Renbaum, L. H.; Wang, X.; Smith, G. D., Kinetics and products from
533 reaction of Cl radicals with dioctyl sebacate (DOS) particles in O₂: a model for radical-initiated
534 oxidation of organic aerosols. *Phys. Chem. Chem. Phys.* **2007**, *9* (34), 4803-4813.

535 13. Chan, M. N.; Zhang, H.; Goldstein, A. H.; Wilson, K. R., Role of Water and Phase in the
536 Heterogeneous Oxidation of Solid and Aqueous Succinic Acid Aerosol by Hydroxyl Radicals. *J.*
537 *Phys. Chem. C* **2014**, *118* (50), 28978-28992.

538 14. Arangio, A. M.; Slade, J. H.; Berkemeier, T.; Pöschl, U.; Knopf, D. A.; Shiraiwa, M.,
539 Multiphase Chemical Kinetics of OH Radical Uptake by Molecular Organic Markers of Biomass
540 Burning Aerosols: Humidity and Temperature Dependence, Surface Reaction, and Bulk Diffusion.
541 *J. Phys. Chem. A* **2015**, *119* (19), 4533-4544.

542 15. Slade, J. H.; Knopf, D. A., Heterogeneous OH oxidation of biomass burning organic
543 aerosol surrogate compounds: assessment of volatilisation products and the role of OH
544 concentration on the reactive uptake kinetics. *Phys. Chem. Chem. Phys.* **2013**, *15* (16), 5898-5915.

545 16. Kristiansen, N. I.; Stohl, A.; Olivié, D. J. L.; Croft, B.; Søvde, O. A.; Klein, H.;
546 Christoudias, T.; Kunkel, D.; Leadbetter, S. J.; Lee, Y. H.; Zhang, K.; Tsigaridis, K.; Bergman,
547 T.; Evangelou, N.; Wang, H.; Ma, P. L.; Easter, R. C.; Rasch, P. J.; Liu, X.; Pitari, G.; Di
548 Genova, G.; Zhao, S. Y.; Balkanski, Y.; Bauer, S. E.; Faluvegi, G. S.; Kokkola, H.; Martin, R.
549 V.; Pierce, J. R.; Schulz, M.; Shindell, D.; Tost, H.; Zhang, H., Evaluation of observed and
550 modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global
551 models. *Atmos. Chem. Phys.* **2016**, *16* (5), 3525-3561.

552 17. Zhang, H.; Ruehl, C. R.; Chan, A. W. H.; Nah, T.; Worton, D. R.; Isaacman, G.;
553 Goldstein, A. H.; Wilson, K. R., OH-initiated heterogeneous oxidation of cholestane: A model
554 system for understanding the photochemical aging of cyclic alkane aerosols. *J. Phys. Chem. A*
555 **2013**, *117* (47), 12449-12458.

556 18. Renbaum, L. H.; Smith, G. D., Artifacts in measuring aerosol uptake kinetics: the roles of
557 time, concentration and adsorption. *Atmos. Chem. Phys.* **2011**, *11* (14), 6881-6893.

558 19. Richards-Henderson, N. K.; Goldstein, A. H.; Wilson, K. R., Large Enhancement in the
559 Heterogeneous Oxidation Rate of Organic Aerosols by Hydroxyl Radicals in the Presence of Nitric
560 Oxide. *J. Phys. Chem. Lett.* **2015**, *6* (22), 4451-4455.

561 20. Chim, M. M.; Lim, C. Y.; Kroll, J. H.; Chan, M. N., Evolution in the Reactivity of Citric
562 Acid toward Heterogeneous Oxidation by Gas-Phase OH Radicals. *ACS Earth Space Chem.* **2018**,
563 *2* (12), 1323-1329.

564 21. Che, D. L.; Smith, J. D.; Leone, S. R.; Ahmed, M.; Wilson, K. R., Quantifying the reactive
565 uptake of OH by organic aerosols in a continuous flow stirred tank reactor. *PCCP, Phys. chem.*
566 *chem. phys. (Print)* **2009**, *11* (36), 7885-7895.

567 22. Richards-Henderson, N. K.; Goldstein, A. H.; Wilson, K. R., Sulfur Dioxide Accelerates
568 the Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals. *Environ. Sci.*
569 *Technol.* **2016**, *50* (7), 3554-3561.

570 23. Zeng, M.; Heine, N.; Wilson, K. R., Evidence that Criegee intermediates drive
571 autoxidation in unsaturated lipids. *Proceedings of the National Academy of Sciences* **2020**, *117*
572 (9), 4486-4490.

573 24. Zhao, Z.; Yang, X.; Lee, J.; Tolentino, R.; Mayorga, R.; Zhang, W.; Zhang, H., Diverse
574 Reactions in Highly Functionalized Organic Aerosols during Thermal Desorption. *ACS Earth*
575 *Space Chem.* **2020**, *4* (2), 283-296.

576 25. Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannisto, J.; Yli-Pirilä, P.; Leskinen, J.;
577 Mäkelä, J. M.; Holopainen, J. K.; Pöschl, U.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A., An

578 amorphous solid state of biogenic secondary organic aerosol particles. *Nature* **2010**, *467* (7317),
579 824-827.

580 26. Shiraiwa, M.; Li, Y.; Tsimpidi, A. P.; Karydis, V. A.; Berkemeier, T.; Pandis, S. N.;
581 Lelieveld, J.; Koop, T.; Pöschl, U., Global distribution of particle phase state in atmospheric
582 secondary organic aerosols. *Nature Communications* **2017**, *8* (1), 15002.

583 27. Zhao, Z.; Tolentino, R.; Lee, J.; Vuong, A.; Yang, X.; Zhang, H., Interfacial Dimerization
584 by Organic Radical Reactions during Heterogeneous Oxidative Aging of Oxygenated Organic
585 Aerosols. *J. Phys. Chem. A* **2019**, *123* (50), 10782-10792.

586 28. Zhao, Z.; Xu, Q.; Yang, X.; Zhang, H., Heterogeneous Ozonolysis of Endocyclic
587 Unsaturated Organic Aerosol Proxies: Implications for Criegee Intermediate Dynamics and Later-
588 Generation Reactions. *ACS Earth Space Chem.* **2019**, *3* (3), 344-356.

589 29. Zhao, Z.; Le, C.; Xu, Q.; Peng, W.; Jiang, H.; Lin, Y.-H.; Cocker, D. R.; Zhang, H.,
590 Compositional Evolution of Secondary Organic Aerosol as Temperature and Relative Humidity
591 Cycle in Atmospherically Relevant Ranges. *ACS Earth Space Chem.* **2019**, *3* (11), 2549-2558.

592 30. Zhao, Z.; Mayorga, R.; Lee, J.; Yang, X.; Tolentino, R.; Zhang, W.; Vuong, A.; Zhang,
593 H., Site-Specific Mechanisms in OH-Initiated Organic Aerosol Heterogeneous Oxidation
594 Revealed by Isomer-Resolved Molecular Characterization. *ACS Earth Space Chem.* **2020**, *4* (5),
595 783-794.

596 31. Zhao, Z.; Zhang, W.; Alexander, T.; Zhang, X.; Martin, D. B. C.; Zhang, H., Isolating
597 α -Pinene Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and
598 Secondary Organic Aerosol Formation. *Environ. Sci. Technol.* **2021**, *55* (10), 6700-6709.

599 32. Mayorga, R. J.; Zhao, Z.; Zhang, H., Formation of secondary organic aerosol from nitrate
600 radical oxidation of phenolic VOCs: Implications for nitration mechanisms and brown carbon
601 formation. *Atmos. Environ.* **2021**, *244*, 117910.

602 33. Price, H. C.; Murray, B. J.; Mattsson, J.; O'Sullivan, D.; Wilson, T. W.; Baustian, K. J.;
603 Benning, L. G., Quantifying water diffusion in high-viscosity and glassy aqueous solutions using
604 a Raman isotope tracer method. *Atmos. Chem. Phys.* **2014**, *14* (8), 3817-3830.

605 34. Song, Y. C.; Haddrell, A. E.; Bzdek, B. R.; Reid, J. P.; Bannan, T.; Topping, D. O.;
606 Percival, C.; Cai, C., Measurements and Predictions of Binary Component Aerosol Particle
607 Viscosity. *J. Phys. Chem. A* **2016**, *120* (41), 8123-8137.

608 35. Yuan, B.; Koss, A. R.; Warneke, C.; Coggon, M.; Sekimoto, K.; de Gouw, J. A., Proton-
609 Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. *Chem. Rev.* **2017**,
610 *117* (21), 13187-13229.

611 36. Zhang, X.; Krechmer, J. E.; Groessl, M.; Xu, W.; Graf, S.; Cubison, M.; Jayne, J. T.;
612 Jimenez, J. L.; Worsnop, D. R.; Canagaratna, M. R., A novel framework for molecular
613 characterization of atmospherically relevant organic compounds based on collision cross section
614 and mass-to-charge ratio. *Atmos. Chem. Phys.* **2016**, *16* (20), 12945-12959.

615 37. Krechmer, J. E.; Groessl, M.; Zhang, X.; Junninen, H.; Massoli, P.; Lambe, A. T.;
616 Kimmel, J. R.; Cubison, M. J.; Graf, S.; Lin, Y. H.; Budisulistiorini, S. H.; Zhang, H.; Surratt,
617 J. D.; Knochenmuss, R.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.; Canagaratna, M. R., Ion
618 mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric
619 gas and aerosol species. *Atmos. Meas. Tech.* **2016**, *9* (7), 3245-3262.

620 38. Butkovskaya, N. I.; Kukui, A.; Pouvesle, N.; Le Bras, G., Rate Constant and Mechanism
621 of the Reaction of OH Radicals with Acetic Acid in the Temperature Range of 229–300 K. *The
622 Journal of Physical Chemistry A* **2004**, *108* (34), 7021-7026.

623 39. Singleton, D. L.; Paraskevopoulos, G.; Irwin, R. S., Rates and mechanism of the reactions
624 of hydroxyl radicals with acetic, deuterated acetic, and propionic acids in the gas phase. *Journal*
625 *of the American Chemical Society* **1989**, *111* (14), 5248-5251.

626 40. Houle, F. A.; Hinsberg, W. D.; Wilson, K. R., Oxidation of a model alkane aerosol by OH
627 radical: the emergent nature of reactive uptake. *Phys. Chem. Chem. Phys.* **2015**, *17* (6), 4412-4423.

628 41. Shiraiwa, M.; Pfrang, C.; Koop, T.; Pöschl, U., Kinetic multi-layer model of gas-particle
629 interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical
630 reactions of organics, oxidants and water. *Atmos. Chem. Phys.* **2012**, *12* (5), 2777-2794.

631 42. Wiegel, A. A.; Liu, M. J.; Hinsberg, W. D.; Wilson, K. R.; Houle, F. A., Diffusive
632 confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols. *Phys*
633 *Chem Chem Phys* **2017**, *19* (9), 6814-6830.

634 43. Slade, J. H.; Knopf, D. A., Multiphase OH oxidation kinetics of organic aerosol: The role
635 of particle phase state and relative humidity. *Geophys. Res. Lett.* **2014**, *41* (14), 5297-5306.

636 44. Houle, F. A.; Wiegel, A. A.; Wilson, K. R., Changes in Reactivity as Chemistry Becomes
637 Confined to an Interface. The Case of Free Radical Oxidation of C₃₀H₆₂ Alkane by OH. *J. Phys.*
638 *Chem. Lett.* **2018**, *9* (5), 1053-1057.

639 45. Russell, G. A., Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons.
640 Mechanism of the Interaction of PEroxy Radicals1. *J. Am. Chem. Soc.* **1957**, *79* (14), 3871-3877.

641 46. McNeill, V. F.; Yatavelli, R. L. N.; Thornton, J. A.; Stipe, C. B.; Landgrebe, O.,
642 Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol
643 particles: vaporization and the role of particle phase. *Atmos. Chem. Phys.* **2008**, *8* (17), 5465-5476.

644 47. Lakey, P. S. J.; George, I. J.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.,
645 Measurements of the HO₂ Uptake Coefficients onto Single Component Organic Aerosols.
646 *Environ. Sci. Technol.* **2015**, *49* (8), 4878-4885.

647 48. Liu, M. J.; Wiegel, A. A.; Wilson, K. R.; Houle, F. A., Aerosol Fragmentation Driven by
648 Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous
649 Citric Acid by OH Radicals. *J. Phys. Chem. A* **2017**, *121* (31), 5856-5870.

650 49. Smith, L. M.; Aitken, H. M.; Coote, M. L., The Fate of the Peroxyl Radical in
651 Autoxidation: How Does Polymer Degradation Really Occur? *Accounts of Chemical Research*
652 **2018**, *51* (9), 2006-2013.

653 50. Foret, M. K.; Lincoln, R.; Do Carmo, S.; Cuello, A. C.; Cosa, G., Connecting the “Dots”:
654 From Free Radical Lipid Autoxidation to Cell Pathology and Disease. *Chem. Rev.* **2020**, *120* (23),
655 12757-12787.

656 51. Helberg, J.; Pratt, D. A., Autoxidation vs. antioxidants – the fight for forever. *Chem. Soc.*
657 *Rev.* **2021**, *50* (13), 7343-7358.

658 52. Ehn, M.; Thornton, J. A.; Kleist, E.; Sipila, M.; Junninen, H.; Pullinen, I.; Springer,
659 M.; Rubach, F.; Tillmann, R.; Lee, B.; Lopez-Hilfiker, F.; Andres, S.; Acir, I.-H.; Rissanen,
660 M.; Jokinen, T.; Schobesberger, S.; Kangasluoma, J.; Kontkanen, J.; Nieminen, T.; Kurten, T.;
661 Nielsen, L. B.; Jorgensen, S.; Kjaergaard, H. G.; Canagaratna, M.; Maso, M. D.; Berndt, T.;
662 Petaja, T.; Wahner, A.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D. R.; Wildt, J.; Mentel, T.
663 F., A large source of low-volatility secondary organic aerosol. *Nature* **2014**, *506* (7489), 476-479.

664 53. Denisov, E. T.; Afanas'ev, I. B., *Oxidation and antioxidants in organic chemistry and*
665 *biology*. Taylor & Francis: Boca Raton, FL, 2005; p xxxviii, 981 p.

666 54. Bakker-Arkema, J. G.; Ziemann, P. J., Measurements of Kinetics and Equilibria for the
667 Condensed Phase Reactions of Hydroperoxides with Carbonyls to Form Peroxyhemiacetals. *ACS*
668 *Earth Space Chem.* **2020**, *4* (3), 467-475.

669 55. Maben, H. K.; Ziemann, P. J., Kinetics of oligomer-forming reactions involving the major
670 functional groups present in atmospheric secondary organic aerosol particles. *Environmental
671 Science: Processes & Impacts* **2023**, 25 (2), 214-228.

672 56. Krapf, M.; El Haddad, I.; Bruns, Emily A.; Molteni, U.; Daellenbach, Kaspar R.; Prévôt,
673 André S. H.; Baltensperger, U.; Dommen, J., Labile Peroxides in Secondary Organic Aerosol.
674 *Chem* **2016**, 1 (4), 603-616.

675 57. Pospisilova, V.; Lopez-Hilfiker, F. D.; Bell, D. M.; El Haddad, I.; Mohr, C.; Huang,
676 W.; Heikkinen, L.; Xiao, M.; Dommen, J.; Prevot, A. S. H.; Baltensperger, U.; Slowik, J. G.,
677 On the fate of oxygenated organic molecules in atmospheric aerosol particles. *Science Advances*
678 **2020**, 6 (11), eaax8922.

679 58. Mertes, P.; Pfaffenberger, L.; Dommen, J.; Kalberer, M.; Baltensperger, U., Development
680 of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-
681 LOPAP). *Atmos. Meas. Tech.* **2012**, 5 (10), 2339-2348.

682 59. Pagonis, D.; Ziemann, P. J., Chemistry of hydroperoxycarbonyls in secondary organic
683 aerosol. *Aerosol Sci. Technol.* **2018**, 52 (10), 1178-1193.

684 60. Claflin, M. S.; Krechmer, J. E.; Hu, W.; Jimenez, J. L.; Ziemann, P. J., Functional Group
685 Composition of Secondary Organic Aerosol Formed from Ozonolysis of α -Pinene Under High
686 VOC and Autoxidation Conditions. *ACS Earth Space Chem.* **2018**, 2 (11), 1196–1210.

687 61. Crounse, J. D.; Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Wennberg, P. O.,
688 Autoxidation of organic compounds in the atmosphere. *J. Phys. Chem. Lett.* **2013**, 4 (20), 3513-
689 3520.

690 62. Atkinson, R., Atmospheric reactions of alkoxy and β -hydroxyalkoxy radicals. *Int. J. Chem.
691 Kinet.* **1997**, 29 (2), 99-111.

692 63. Che, D. L.; Smith, J. D.; Leone, S. R.; Ahmed, M.; Wilson, K. R., Quantifying the reactive
693 uptake of OH by organic aerosols in a continuous flow stirred tank reactor. *Phys. Chem. Chem.
694 Phys.* **2009**, 11 (36), 7885-7895.

695 64. Pöschl, U.; Shiraiwa, M., Multiphase Chemistry at the Atmosphere–Biosphere Interface
696 Influencing Climate and Public Health in the Anthropocene. *Chem. Rev.* **2015**, 115 (10), 4440-
697 4475.

698